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Abstract. We show that maps from Bn to a smooth compact boundaryless mani-
fold Y which are smooth out of a singular set of dimension n− 2 are dense for the
strong topology in W 1/2(Bn,Y). We also prove that for n ≥ 2 smooth maps from
Bn to Y are dense inW 1/2(Bn,Y) if and only if π1(Y) = 0, i.e. the first homotopy
group of Y is trivial.

In this paper we consider vector valued maps into a manifold which have finite
W 1/2-energy and we discuss density properties with respect to the strong topology
of W 1/2. Let Bn be the unit ball R

n, n ≥ 2, and let Y be a smooth oriented Rie-
mannian manifold of dimension M ≥ 1, isometrically embedded in R

N for some
N ≥ 2. We shall assume that Y is compact, connected and without boundary.

Let W 1/2(Bn,RN) denote standard space of functions ϕ which are traces of
functions u in W 1,2(Bn × I,RN), where I =] − 1, 1[, with the norm given by

|ϕ|1/2 := |ϕ|L2 + inf{D(u) : u = ϕ on Bn × {0}} ,
compare [1]. If u ∈ W 1,2(Bn × I,RN) we will denote by

D(u) := 1

2

∫
Bn×I

|Du(z)|2 dz

the Dirichlet energy of u. Also, let

W 1/2(Bn,Y) := {ϕ ∈ W 1/2(Bn,RN) | ϕ(x) ∈ Y for a.e. x ∈ Bn} .
Finally let R∞

1/2(B
n,Y) be the set of all maps u ∈ W 1/2(Bn,Y) which are smooth

except on a singular set �(u) of the type

�(u) =
r⋃
i=1

�i , r ∈ N ,
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where �i is a smooth (n− 2)-dimensional subset of Bn with smooth boundary, if
n ≥ 3, and �i is a point if n = 2. It is well-known that if n = 1 maps inC1(B1,Y)
are dense in W 1/2(B1,Y), compare [4]. If n ≥ 2, our first result is

Theorem 1. The class R∞
1/2(B

n,Y) is dense in W 1/2(Bn,Y).

Theorem 1 was proved in [7], compare also [5], in dimension n = 2 and in
the case Y = S1, the standard unit circle. Moreover, in [3] it is pointed out that
if the first homotopy group of the target manifold is nontrivial, π1(Y) �= 0, then
there exist functions ϕ ∈ W 1/2(Bn,Y) which cannot be approximated in W 1/2 by
smooth maps in W 1/2(Bn,Y). Our second result proves that the converse holds
true. More precisely, we will show that if π1(Y) = 0, then in any dimension n
smooth maps in W 1/2(Bn,Y) are dense in W 1/2(Bn,Y).

Theorem 2. The class C∞(Bn,Y) is dense in W 1/2(Bn,Y) if and only if
π1(Y) = 0.

We remark that in [3, Lemma 4] it is claimed that if n ≤ p < n + 1, and
π[p]−1(Y) = 0, then maps inW 1−1/p,p(Bn,Y), which are smooth except at a finite
number of point, can be approximated inW 1−1/p,p by smooth maps inC∞(Bn,Y).
Actually the proof is not clear to us and we argue in a different way.

Since Bn is bilipschitz homeomorphic to the unit open n-cube

Cn :=]0, 1[n ,

we will prove the theorems in the case of maps defined in Cn. We point out that it
is possible to modify the proofs of Theorems 1 and 2 to handle the case of maps
defined in the unit n-sphere Sn or in the boundary of an (n+1)-cube. Moreover the
proofs extend to cover the case of maps with fixed boundary data. More precisely,
if B̃n denotes a bounded domain in R

n such that Bn ⊂⊂ B̃n, ψ : B̃n → Y is a
given smooth W 1/2 function, and for X = W 1/2, R∞

1/2 or C∞ we set

Xψ(B̃
n,Y) := {ϕ ∈ X(B̃n,Y) | ϕ = ψ on B̃n \ Bn} ,

we can then also state the following density result, the proof of which is omitted.

Theorem 3. The class R∞
1/2,ψ (B̃

n,Y) is dense in W
1/2
ψ (B̃n,Y). Moreover, the

class C∞
ψ (B̃

n,Y) is dense in W 1/2
ψ (B̃n,Y) if and only if π1(Y) = 0.

Before giving the proofs we fix some notation. We will always denote

z = (x, t) = (x1, . . . , xn, t) ∈ R
n × R

a point in the cylinder Cn × I . If u ∈ W 1,2(Cn × I,RN) and A is a "smooth"
Hk-measurable k-dimensional subset of Cn × I , we denote

D(u,A) := 1

2

∫
A

|Du|A|2 dHk , D(u) := D(u, Cn × I ) ,
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the k-dimensional Dirichlet integral of the restriction u|A of u to A. Moreover we
will write T (u) = ϕ if ϕ ∈ W 1/2(Cn,RN) is the trace of u on Cn × {0}. If
p = (p1, . . . , pk) ∈ R

k , we set

‖p‖k := max
1≤i≤k

|pi | .

Also, for i = 1, . . . , n+1 and λ ∈ R, we denote by P(λ, i) the restriction to Cn×I
of the hyperplane of R

n+1 = R
n × R containing the point λ ei and orthogonal to

ei , where (e1, . . . , en+1) is the canonical basis of R
n+1, i.e.,

P(λ, i) := {z ∈ Cn × I | (z− λ ei | ei)Rn+1 = 0} .
For m ∈ N

∗ and a = (a1, . . . , an) ∈ [1/4m, 3/4m]n we denote by Lm the grid

Lm :=
n⋃
i=1

m−1⋃
j=0

P(ai + j/m, i) (1)

and by C(k)m the k-skeleton of the grid of Cn given by the intersection of Lm with
the n-space R

n × {0}. Moreover we define by

Cnm := a + [0, (m− 1)/m]n

�
(k)
m := C

(k)
m ∩ Cnm , ∀ k = 1, . . . , n

(2)

the closed n-cube of side (m− 1)/m inside Cn and the part of the k-skeleton C(k)m
which is contained in Cnm. We finally denote by u(m) the restriction u(m) := u|C(1)m ×I
of u to the 2-skeleton C(1)m × I .

Remark 1. For future use, we denote by

Yε := {y ∈ R
N | dist(y,Y) < ε}

the ε-neighborhood of Y and we observe that, since Y is smooth, there exists ε0 > 0
such that for 0 < ε ≤ ε0 the nearest point projection �ε of Yε onto Y is a well
defined Lipschitz map, with Lipschitz constant Lip�ε → 1+ as ε → 0+. Note
that for 0 < ε ≤ ε0 the open set Yε is equivalent to Y in the sense of the algebraic
topology. In particular, we have that

π1(Yε) = π1(Y) .

Proof of Theorem 1. Let ϕ ∈ W 1/2(Cn,Y) and u ∈ W 1,2(Cn × I,RN) be the
harmonic extension of ϕ, so that T (u) = ϕ. Since for i = 1, . . . , n we have

3/4m∫

1/4m

m−1∑
j=0

D(u, P (t + j/m, i)) dt ≤
m−1∑
j=0

D(u, {j/m ≤ xi ≤ (j + 1)/m})

= D(u, Cn × I ) ,
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we find a vector a = a(m) ∈ [1/4m, 3/4m]n such that u|P(ai+j/m,i) ∈ W 1,2

(P (ai + j/m, i),RN) for every i = 1, . . . , n and j = 0, . . . , m− 1 and

D(u, C(n−1)
m × I ) ≤ c mD(u, Cn × I ) . (3)

We first make use of the argument of [3, 2.1], which in turn makes use of an
idea from [8], by taking the 1-skeleton C(1)m instead of the boundary of the unit
square, and prove the following �
Proposition 1. Let εh ↘ 0. There exists a sequence of continuous maps
{u(m)h }h ⊂ W 1,2(�

(1)
m × I,RN) such that u(m)h → u(m) strongly in W 1,2(�

(1)
m

×I,RN) and {T (u(m)h )}h ⊂ W 1/2(�
(1)
m ,Yεh).

Proof. If z = (x, t) ∈ �(1)m × I and 0 < h < 1/4m we denote by

C(z, h) := B
n
(x, h/2)× [t − h/2, t + h/2]

the cylinder centered at z over the ball of diameter h and of height h, and by

�(z, h) := C(z, h) ∩ (C(1)m × I )

the intersection of the cylinder with the 2-skeleton C(1)m × I . Setting then, for
z ∈ �(1)m × I ,

u
(m)
h (z) := 1

H2
(
�(z, h)

)
∫
�(z,h)

u(m)(y) dH2 ,

it is not difficult to show that u(m)h ∈ W 1,2(�
(1)
m × I,RN) is continuous and

that u(m)h → u(m) strongly in W 1,2 as h → 0+. It remains to show that if

ϕ
(m)
h := T (u

(m)
h ), possibly passing to a subsequence ϕ(m)h (�

(1)
m ) ⊂ Yεh .

To this aim, for ε > 0 to be determined later, choose hε > 0 small so that for
h ≤ hε ∫

�(z,h)

|Du(m)(y)|2 dH2 ≤ ε ∀ z ∈ �(1)m × I .

For fixed P0 ∈ �(1)m × {0}, we observe that the 2-dimensional set �(P0, h) always
contains a square R1 of side h. More precisely, suppose for example
P0 = (x1

0 , . . . , x
n
0 , 0), where x1

0 ∈ a1 + [0, (m − 1)/m] and xi0 = ai + ji/m

for every i = 2, . . . , n, where ji ∈ {0, . . . , m− 1}. Then we have

�(P0, h) = R1 ∪
n⋃
i=2

Ri

where R1 is the square

R1 := [x1
0 − h/2, x1

0 + h/2] × {(x2
0 , . . . , x

n
0 )} × [−h/2, h/2]
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and for i = 2, . . . , n the (possibly degenerate) sets Ri are rectangles Ri := R̃i ×
[−h/2, h/2], where

R̃i := {(a1 + j1/m, x
2
0 , . . . , x

i−1
0 )} × [xi0 − h/2, xi0 + h/2] × {(xi+1

0 , . . . , xn0 )}

if n ≥ 3, and

R̃2 := {a1 + j1/m} × [x2
0 − h/2, x2

0 + h/2]

if n = 2, for some index j1 and for some h ∈ [0, h], possibly h = 0.
Slicing the squareR1 with hyperplanes orthogonal to the direction e1, and taking

h ≤ hε, we find h1 ∈ [x1
0 − h/2, x1

0 + h/2] such that

D(u(m), R1 ∩ P(h1, 1)) ≤ 2

h
D(u(m), R1) ≤ 1

h

∫
�(P0,h)

|Du(m)(y)|2 dH2 ≤ ε

h
.

Choosing z0 ∈ R1 ∩P(h1, 1)∩ (�(1)m ×{0}) and applying the Sobolev embedding
theorem, since R1 ∩ P(h1, 1) is a line segment of length h, it follows that

max
z∈R1∩P(h1,1)

|u(z)− u(z0)| ≤ c ε1/2 .

Let now η > 0 to be determined later. Slicing the 2-dimensional set �(P0, h) with
hyperplanes orthogonal to the “vertical” direction en+1, and setting

Ah := {h′ ∈ [−h/2, h/2] : D(u(m),�(P0, h) ∩ P(h′, n+ 1)) ≤ εη/h}

and Bh := [−h/2, h/2] \ Ah, for every h′ ∈ Ah, by the Sobolev theorem, since
�(P0, h) ∩ P(h′, n + 1) is the union of n line segments and diam(�(P0, h) ∩
P(h′, n+ 1)) ≤ c h, we obtain

max
z∈�(P0,h)∩P(h′,n+1)

|u(z)− u(z0)| ≤ c (η1/2 + 1) ε1/2 .

Consequently, since ‖u(m)‖∞ ≤ K∞, being Y compact, L1(Bh) ≤ h/η and
H2(�(P0, h)) ≥ h2, setting y

(m)
h := u(m)(z0) ∈ Y , similarly to [3, 2.1] we infer

that

|u(m)h (P0)− y
(m)
h | ≤ 4

K∞
η

+ c (η1/2 + 1) ε1/2 .

Taking first η large so that 4K∞/η < εh/2, and then ε small so that
c (η1/2 + 1) ε1/2 < εh/2, we easily conclude that

dist
(
ϕ
(m)
h (x0),Y

) ≤ |u(m)h (P0)− y
(m)
h | < εh ∀ x0 ∈ �(1)m .

�

As a consequence of Proposition 1, we now prove the following
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Proposition 2. There exists a sequence of maps {v(m)h }h ⊂ W 1,2(Cnm×I,RN), con-

tinuous out of Cnm × {0}, such that v(m)h → u|Cnm×I strongly inW 1,2(Cnm × I,RN),

with v(m)h |�(1)m ×I = u
(m)
h . In particular we have

T (v
(m)
h )|�(1)m ∈ W 1/2(�(1)m ,Yεh) ∀h .

Proof. We first give the proof in the case n = 2.

The case n = 2. Let Qm denote the family of all squares Q of side 1/m with
boundary contained in the 1-grid �(1)m , i.e. ∂Q ⊂ �

(1)
m , so that

∪Qm = C2
m .

For every h we let 0 < ε � 1 to be fixed later. If Q ∈ Qm, we define
v
(Q)
h : Q× I → R

N by setting for every (x, t) ∈ Q× I

v
(Q)
h :=



u

(
p + x − p

1 − ε
, t

)
if ρ ≤ 1 − ε

2m

S(ρ) u
(m)
h

(
y, t

) + (
1 − S(ρ)

)
u
(
y, t

)
if

1 − ε

2m
≤ ρ ≤ 1

2m
.

(4)

Here ρ = ρ(x) := ‖x − p‖2, where p is the center of Q, so that ρ(x) = 1/2m
if x ∈ ∂Q; moreover

y = y(x) := p + 1

2m

x − p

ρ(x)

and finally

S(ρ) := 2m

ε
ρ + ε − 1

ε
, (5)

so that S
(
1/2m

) = 1 and S
(
(1 − ε)/2m

) = 0. Trivially v
(Q)
h is a function in

W 1,2(Q × I,RN), continuous out of Q × {0}, with v
(Q)
h → u|Q×I in

L2(Q× I,RN). Moreover, it is not difficult to prove that
∫

{ρ(x)≤(1−ε)/2m}×I
|Dv(Q)h |2 dx dt = 2 D(u,Q× I )

and ∫

{(1−ε)/2m≤ρ(x)≤1/2m}×I
|Dv(Q)h |2 dx dt ≤ c (m)

1

ε

∫

∂Q×I
|u− u

(m)
h |2 dH2

+c (m) ε
∫

∂Q×I

(|Dτu|2 + |Dτu(m)h |2) dH2 ,

where τ is an orthonormal frame to �(1)m × I and c (m) > 0 only depends on m.
Define now v

(m)
h : C2

m × I → R
N by v(m)h (x, t) := v

(Q)
h (x, t) if x ∈ Q for some
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Q ∈ Qm. Then {v(m)h }h is a sequence in W 1,2(C2
m × I,RN), continuous out of

C2
m × {0}, such that

D(v(m)h , C2
m × I ) ≤ D(u, C2

m × I )+ c1 (m)
1

ε

∫

�
(1)
m ×I

|u− u
(m)
h |2 dH2

+ c2 (m) ε

∫

�
(1)
m ×I

(|Dτu|2 + |Dτu(m)h |2) dH2 .

Now, by Proposition 1, there exists h(m) such that for h ≥ h(m)

∫

�
(1)
m ×I

|Dτu(m)h |2 dH2 ≤ 2
∫

�
(1)
m ×I

|Dτu|2 dH2

so that by (3) we have
∫

�
(1)
m ×I

(|Dτu|2 + |Dτu(m)h |2) dH2 ≤ 3 c mD(u, C2 × I ) .

Then, for every j ∈ N we first choose ε = εj small so that

3 c c2 (m) εj mD(u, C2 × I ) ≤ 1

j
.

Secondly, since by Proposition 1 we have u
(m)
h → u in L2(�

(1)
m × I ), we take

h = hj ≥ h(m) large enough so that hj+1 > hj and

c1 (m)
1

εj

∫

�
(1)
m ×I

|u− u
(m)
hj

|2 dH2 ≤ 1

j
∀ j ∈ N .

Finally, since by the previous estimates

D(v(m)hj
, C2
m × I ) ≤ D(u, C2

m × I )+ 2

j
,

it suffices to relabel {v(m)j } the subsequence {v(m)hj
}, where ε = εj in (4).

The case n ≥ 3. We first set v(m)h = u
(m)
h on �

(1)
m × I . Arguing by induction on

the dimension k = 2, . . . , n, by the inductive hypothesis we have already defined
v
(m)
h : �(k−1)

m × I → R
N in such a way that v(m)h → u|�(k−1)

m ×I strongly in

W 1,2(�
(k−1)
m × I,RN).

We now extend {v(m)h } to �(k)m × I as follows. Let F be a k-face of side 1/m

of �(k)m , and hence with boundary contained in �(k−1)
m . Without loss of generality,

we may and will suppose F oriented by e1 ∧ · · · ∧ ek , and we set

x = (̃x, x̂) ∈ R
k × R

n−k .
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Similarly to (4), we define v(F)h : F × I → R
N by setting for (x, t) ∈ F × I

v
(F )
h :=



u

(
p̃ + x̃ − p̃

1 − ε
, p̂, t

)
if ρ ≤ 1 − ε

2m

S(ρ) v
(m)
h

(
y, p̂, t

) + (
1 − S(ρ)

)
u
(
y, p̂, t

)
if

1 − ε

2m
≤ ρ ≤ 1

2m
.

Here ρ = ρ(̃x) := ‖x̃ − p̃‖k , where p = (p̃, p̂) is the center of F ; moreover

y = y(̃x) := p̃ + 1

2m

x̃ − p̃

ρ(̃x)

and S(ρ) is given by (5). We then extend v
(m)
h : �(k)m × I → R

N by setting

v
(m)
h (x, t) := v

(F)
h (x, t) if x ∈ F for some k-face F as before. Finally, simi-

larly to the case n = 2, it is not difficult to show that {v(m)h }h is a sequence in

W 1,2(�
(k)
m × I,RN), continuous out of �(k)m × {0}, such that, possibly passing to

a subsequence, v(m)h → u|�(k)m ×I strongly in W 1,2(�
(k)
m × I,RN). The proof of

Proposition 2 is complete. �

End of the proof of Theorem 1. We use an adaptation of [3, Lemma 5].
Slicing the cylinder Cnm × I with hyperplanes P(t, n + 1) orthogonal to the “ver-

tical” direction en+1, since {v(m)h } converges to u|Cnm×I strongly in W 1,2(Cnm ×
I,RN), see Proposition 2, we may and do choose an+1 ∈ [1/4m, 3/4m] so that
v
(m)
h|P(an+1+j/m,n+1) ∈ W 1,2(P (an+1 + j/m, n + 1),RN) for every h ∈ N and
j ∈ {−m, . . . , m− 1}, with

m−1∑
j=−m

D(v(m)h , P (an+1 + j/m, n+ 1)) ≤ c mD(u, Cnm × I ) ∀h . (6)

Let Q̃m denote the family of (n+1)-cubes of Cnm×I , of side 1/m, whose boundary
lies in the n-skeleton

Lm ∪
m−1⋃
j=−m

P (an+1 + j/m, n+ 1) ,

compare (1). Also, let Fm be the family of the (n+1)-cubes in Q̃m which intersect
the n-cube Cn × {0}, and let

Gm := Cn×] − 10m−1, 10m−1[ .

The case n = 2. Since v
(m)
h |�(1)m ×I = u

(m)
h , where u

(m)
h → u(m) strongly in

W 1,2(�
(1)
m × I,RN), compare Propositions 1 and 2, then by (3) and (6) we infer

that for every h sufficiently large
∑
Q∈Q̃m

D(v(m)h , ∂Q) ≤ c mD(u, Cn × I ) .
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As in [3, Lemma 5], by refining the slicing arguments in (3) and (6) we in fact may
and do choose (a1, a2, a3) ∈ [1/4m, 3/4m]3 so that we also have

(m−1)2∑
l=1

D(v(m)h , ∂Cl) ≤ c mD(u,Gm) ∀h ≥ h , (7)

where {Cl}(m−1)2

l=1 is a list of the cubes in Fm. For every l let fl be a diffeomorphism
between Cl and [−1/2m, 1/2m]3 such that

fl(Cl ∩ (C2 × {0})) = [−1/2m, 1/2m]2 × {0}
fl(∂Cl ∩ (C2 × {0})) = ∂[−1/2m, 1/2m]2 × {0}

and

‖Dfl‖∞ ≤ K , ‖Df−1
l ‖∞ ≤ K .

We then define U(m)h on Cl by

U
(m)
h (z) = v

(m)
h

[
f−1
l

( fl(z)

2m‖fl(z)‖3

)]
,

so that

D(U(m)h , Cl) ≤ c

m
D(v(m)h , ∂Cl)

for every l and hence, by (7),

D(U(m)h ,∪Fm) ≤ C D(u,Gm) . (8)

Set

U
(m)
h (z) = v

(m)
h (z) ∀ z ∈ (C2

m × I ) \ ∪Fm ,

so that U(m)h is continuous on C2
m × I except at one singularity on each Cl , which

lies on C2
m × {0}. Moreover, {U(m)h } is a sequence in W 1,2(C2

m × I,RN) such that
for h large enough

D(U(m)h − v
(m)
h , C2

m × I ) ≤ C D(u,Gm)

and therefore, by Proposition 2,

lim sup
h→+∞

D(U(m)h , C2
m × I ) ≤ D(u, C2

m × I )+ C D(u,Gm) .

Remark 2. We also notice that for every cube Cl in Fm, we have that U(m)h |∂Cl =
v
(m)
h |∂Cl , where the traces T (v(m)h )|�(1)m ∈ W 1/2(�

(1)
m ,Yεh), see Proposition 2. As a

consequence, by the definition of fl we infer that the traces T (U(m)h ) are functions
in W 1/2(C2

m,Yεh) for every h.
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Now, let ψm : C2 → C2
m be an affine bijective function such that Lipψm =

(m − 1)/m and ψm → IdC2 uniformly as m → +∞. Setting um(x, t) :=
U
(m)
hm
(ψm(x), t) for some increasing sequence hm ↗ ∞, since meas(Gm) → 0

as m → +∞ we easily infer that {um}m is a sequence of maps in W 1,2(C2×I,RN),
continuous out of a finite number of points, such that um → u strongly in W 1,2.
Moreover by Remark 2 it follows that the traces T (um) ∈ W 1/2(C2,Yεhm ) for
everym. Therefore, taking ϕm(x) := �εhm ◦T (um)(x), compare Remark 1, clearly
{ϕm} ⊂ W 1/2(C2,Y) is continuous out of a discrete set of points and ϕm → ϕ in
W 1/2. Finally, e.g. as in [2, Appendix], every function ϕm can be approximated by
maps in R∞

1/2(C2,Y).
The case n ≥ 3. Let F (k)

m be the k-dimensional skeleton of Fm, i.e. the union of
the k-faces of the (n+ 1)-cubes Cl of Fm. Since v(m)h → u inW 1,2(Cnm × I,RN),
by using a more refined slicing argument similar to the one in [6, Prop. 4], we may
and do choose (a1, . . . , an+1) ∈ [1/4m, 3/4m]n+1 so that for every h sufficiently
large the following holds:

(i) for every k = 2, . . . , n the restriction of v(m)h to any k-face Q of F (k)
m is a

function in W 1,2(Q,RN);
(ii) there exists some absolute constant c > 0, not depending on h, such that

D(v(m)h ,F (k)
m ) ≤ c mn+1−k D(u,Gm) ∀ k = 2, . . . , n . (9)

First we let U(m)h ≡ v
(m)
h on F (2)

m , and then we extend U(m)h to F (k)
m arguing by

induction on the dimension k = 3, . . . , n + 1. To this aim, for every k-face Q in
F (k)
m we distinguish two cases.

If Q is “horizontal”, i.e. the direction en+1 is not spanned by the vector space
underlying Q, we let

U
(m)
h ≡ v

(m)
h on Q. (10)

If Q is not "horizontal", as in the case n = 2 we let fQ be a diffeomorphism
between Q and [−1/2m, 1/2m]k such that

fQ(Q ∩ (Cn × {0})) = [−1/2m, 1/2m]k−1 × {0}
fQ(∂Q ∩ (Cn × {0})) = ∂[−1/2m, 1/2m]k−1 × {0}

and

‖DfQ‖∞ ≤ K , ‖Df−1
Q ‖∞ ≤ K .

Since we have already defined U(m)h on ∂Q, we extend U(m)h to Q by setting

U
(m)
h (z) = U

(m)
h

[
f−1
Q

( fQ(z)

2m‖fQ(z)‖k
)]
, (11)

so that

D(U(m)h ,Q) ≤ c

m
D(U(m)h , ∂Q) . (12)
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Repeating the argument for k = 3, . . . , n+ 1, we then easily estimate

D(U(m)h ,∪Fm) ≤ C(n)

n∑
k=2

1

mn+1−k D(v(m)h ,F (k)
m ) (13)

and hence, by (9), we obtain again (8). Setting then U(m)h (z) = v
(m)
h (z) for every

z ∈ (Cnm × I ) \ ∪Fm, this way U(m)h is continuous on Cnm × I except at an (n− 2)-
dimensional singular set, which lies on Cnm × {0}, given by the union of a finite
number (depending on n and m) of affine (n − 2)-planes parallel to the coordi-
nate directions in R

n × {0}. Moreover, by the construction we infer that the traces
T (U

(m)
h ) ∈ W 1/2(Cnm,Yεh) for everym. The rest of the proof follows as in the case

n = 2.
.

Proof of Theorem 2. We shall first give the proof in the case n = 2.

The case n = 2. Due to Theorem 1 it suffices to show that smooth maps in
C∞(C2,Y) are dense in R∞

1/2(C2,Y). Let ϕ ∈ R∞
1/2(C2,Y), so that ϕ is smooth out

of a discrete set of points. Since the argument is local, without loss of generality
we may and will suppose that ϕ is smooth out of the origin. For 0 < r < 1 we
denote

Qr := [−r, r]3 , Fr := Qr ∩ (R2 × {0}) .

Let u ∈ W 1,2(C2 × I,RN) be the harmonic extension of ϕ. For every fixed ε > 0
let 0 < R = R(ε) � 1 be such that

D(u,QR) ≤ ε .

Since

D(u,QR \QR/2) = 1

2

∫ R

R/2
dr

∫
∂Qr

|Du|2 dH2 ,

then there exists r = r(ε) ∈ [R/2, R] such that

D(u, ∂Qr) := 1

2

∫
∂Qr

|Du|2 dH2 ≤ 2

R
D(u,QR \QR/2) ≤ 2ε

R
. (14)

Since ϕ|∂Fr : ∂Fr → Y is a smooth map in W 1/2(∂Fr,Y), and the first ho-
motopy group π1(Y) = 0, then there exists a smooth extension ϕr : Fr → Y of
ϕ with finite W 1,2-energy.

Let now Q±
r := {z = (x, t) ∈ Qr | ±t ≥ 0} be the upper and lower half cubes

of Qr . Moreover, let v±
r : Q±

r → R
N be the solution of the Dirichlet problem on

Q±
r with boundary condition

{
v±
r = u on ∂Q±

r ∩ {(x, t) | ±t > 0}
v±
r = ϕr on Fr
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and let vr : Qr → R
N be given by vr(z) = v±

r (z) if z ∈ Q±
r . Define then

wr : C2 × I → R
N by

wr(z) :=




vr

(
r

δ
z

)
if ‖z‖3 ≤ δ

u

(
r
z

‖z‖3

)
if δ ≤ ‖z‖3 ≤ r

u(z) if ‖z‖3 ≥ r

for some 0 < δ < r , so that wr ∈ W 1,2(C2 × I,RN) is continuous and with trace
T (wr) ∈ W 1/2(C2,Y). We easily estimate

D(wr, C2 × I ) ≤ D(u, C2 × I )+ c r D(u, ∂Qr)+ δ

r
D(vr ,Qr)

for some absolute constant c > 0, so that by (14), and since r < R,

D(wr, C2 × I ) ≤ D(u, C2 × I )+ 2cε + δ

r
D(vr ,Qr)

≤ D(u, C2 × I )+ (2c + 1) ε ,

taking δ sufficiently small. Letting ε → 0 we infer that wrε → u in
W 1,2(C2 × I,RN) and hence that T (wrε ) → ϕ in W 1/2(C2,Y). Since the trace
T (wr) ∈ W 1/2(C2,Y) is continuous, then in a standard way it can be approximated
by smooth maps, as required.

The case n ≥ 3. We will modify the End of the proof of Theorem 1. Recall that
the singular set of the approximating map U

(m)
h is contained in Cnm × {0} and

intersects every "horizontal" (k + 2)-cube Q in F (k+2)
m , for k = 1, . . . , n− 1, on

a (k − 1)-dimensional set obtained by the "homogeneous" extension (11) of the
restriction of U(m)h to the boundary of Q. To remove the singular set, working by
induction on k = 1, . . . , n−1, it then suffices to modify the definition (11) to (17),
where vQ : Q → R

N is a suitable smooth extension of the boundary datum. More
precisely, let

F := Q ∩ (Rn × {0}) (15)

be the (k + 1)-face in �(k+1)
m given by the intersection of Q with Cn × {0}, see

(2). Moreover, let ϕ̃ := T (U
(m)
h )|∂F be the trace of U(m)h on the boundary of

F . Since π1(Y) = 0, if k = 1 there exists a smooth extension ϕF : F → Yεh
of ϕ̃ and therefore, as in the case n = 2, we define vQ by solving the Dirich-
let problem on the upper and lower half cubes Q± with boundary data given by
(16). However, since we have no information on the higher order homotopy groups
πk(Y) for k ≥ 2, we cannot in general expect the existence of a smooth extension
ϕF : F → Yεh of ϕ̃. To overcome this difficulty, at the (k − 1)th Step we will

show how to modify the definition of the trace of U(m)h on �(k)m in such a way that
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ϕ̃ : ∂F → Yεh is homotopically trivial. More precisely, we first let U(m)h ≡ v
(m)
h

on F (2)
m . Then for every k = 1, . . . , n− 1 we give the following

kth Step: definition of the trace on �(k+1)
m and extension to F (k+2)

m .
We first give a list {Q(i)}i of the n-cubes of �(n)m in such a way that Q(i−1)

intersects Q(i) on an (n− 1)-face, for every i.
In case k ≤ n−2, for every i we also give a list {F̃ (i)j }j of all the (k+2)-faces

of Q(i) such that the following holds:

(i) F̃ (i)j is not a (k + 2)-face of the n-cubes Q(l), for every l ≤ i − 1;

(ii) there exists a (k+ 1)-face L̃(i)j of F̃ (i)j which is neither a face of the F̃ (i)l ’s, for

every l ≤ j − 1, nor a face of the Q(l)’s, for every l ≤ i − 1.

We then relabel by {F (i)}i the (k + 2)-faces of �(k+2)
m by means of the lexico-

graphic order given by the indices i and j of the F̃ (i)j ’s. Note that F (i) = Q(i) if

k = n− 2. Moreover, let {L(i)j }j (k)j=1 be a list of the (k+ 1)-faces of F (i) such that

the last (k + 1)-face L(i)j (k) is exactly L̃(i)j , if F (i) = F̃
(i)
j .

If k = 1, we let (1) : �(1)m → Yεh be given by (1) := T (U
(m)
h )|�(1)m , where

U
(m)
h is given by Theorem 1. Also, let ϕ̃(i)j := (1)|∂L(i)j

be the trace of U(m)h on

the boundary of the 2-face L(i)j . Since π1(Yεh) = 0, compare Remark 1, then ϕ̃(i)j
is homotopically trivial.

If 2 ≤ k ≤ n − 2, at the (k − 1)th Step the function (k) : �(k)m → Yεh is

defined so that if ϕ̃(i)j := (k)|∂L(i)j
, then ϕ̃

(i)
j : ∂L(i)j → Yεh is a homotopically

trivial smooth function in W 1/2(∂L
(i)
j ,Yεh) for all i and j .

For every k ≤ n − 2, we let �̃(i)j : L(i)j → Yεh be a smooth map in

W 1,2(L
(i)
j ,Yεh) such that �̃(i)

j |∂L(i)j
= ϕ̃

(i)
j , and let �̃(i) : ∂F (i) → Yεh be such that

�̃(i) = �̃
(i)
j on L(i)j . We now modify the maps �̃(i) to new maps�(i) which are ho-

motopically trivial. To this aim, let V (i) := ∂F (i) \ L(i)j (k) and g(i) : ∂F (i) → V (i)

be a Lipschitz map such that g(i)|V (i) = Id|V (i) and g(i)|L(i)
j (k)

is a 1 to 1 map onto

V (i).
We first modify the function �̃(1) by setting �(1) := �̃(1) ◦ g(1). This way

�(1) is a homotopically trivial smooth map in W 1,2(∂F (i),Yεh).
Arguing by iteration on the index i, once we have defined the functions �(l), for

l = 1, . . . , i − 1, at the ith step we first substitute �̃(i) by the map
�̂(i) : ∂F (i) → Yεh such that �̂(i) = �(l) on L

(i)
j , if L(i)j is a (k + 1)-face

of F (l) for some l = 1, . . . , i − 1, and �̂(i) = �̃(i) elsewhere on ∂F (i). We
remark that by the previous conditions (i) and (ii) we infer that �̂(i) = �̃(i) on
L
(i)
j (k). We then modify the function �̂(i) by setting �(i) := �̂(i) ◦ g(i). This way

�(i) is again a homotopically trivial smooth map in W 1,2(∂F (i),Yεh). Finally, let

̃(k+1) : �(k+1)
m → Yεh be given by ̃(k+1) = �(i) on ∂F (i), for every i.
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Remark 3. Note that, since �(i) = �̂(i) on V (i), when defining �(i) we do not
modify the definition of ̃(k+1) on ∂F (l), for every l ≤ i − 1.

If k = n − 1, at the (n − 2)th Step the function (n−1) : �(n−1)
m → Yεh

is defined in such a way that (n−1)|∂Q(i) : ∂Q(i) → Yεh is a homotopically

trivial smooth W 1,2 function for every n-cube Q(i) of �(n)m . Therefore, we let
̃(n) : �(n)m → Yεh be a smooth W 1,2 extension of (n−1).

For every k = 1, . . . , n− 1, we now extend the function U(m)h to F (k+2)
m .

If Q is a “horizontal” (k + 2)-cube in F (k+2)
m , we define U(m)h as in (10).

If Q is not “horizontal”, let F be the (k + 1)-face given by (15) and let
ϕF : F → Yεh be defined by ϕF := ̃

(k+1)
|F , so that ϕF is a smooth map in

W 1,2(F,Yεh). Let now Q± := {z = (x, t) ∈ Q | ±t ≥ 0} be the upper and lower
half (k + 2)-cubes of Q. Moreover, let v±

Q : Q± → R
N be the solution of the

Dirichlet problem on Q± with boundary condition

{
v±
Q = U

(m)
h on ∂Q± ∩ {(x, t) | ±t > 0}

v±
Q = ϕF on F

(16)

and let vQ : Q → R
N be given by vQ(z) = v±

Q(z) if z ∈ Q±. If fQ is the diffe-

omorphism between Q and [−1/2m, 1/2m]k+2 given by Theorem 1, we modify
the definition (11) of U(m)h by setting for every z ∈ Q

U
(m)
h :=



vQ

[
f−1
Q

(fQ(z)
2mδ

)]
if ‖fQ(z)‖k+2 ≤ δ

U
(m)
h

[
f−1
Q

( fQ(z)

2m‖fQ(z)‖k+2

)]
if δ ≤ ‖fQ(z)‖k+2 ≤ 1

2m
.

(17)

Similarly to the case n = 2, we easily infer that (12) holds again if
0 < δ < 1/2m is sufficiently small, whereas this time U

(m)
h is continuous on

Q and with trace T (U(m)h ) in W 1/2(F,Yεh). We conclude the kth Step by setting

(k+1) := T (U
(m)
h )|�(k+1)

m
.

After the (n− 1)th Step, we obtain again (13) and hence, by (9), we conclude
again with (8). The rest of the proof is similar to that of Theorem 1.

Acknowledgements. The second author thanks the Research Center Ennio De Giorgi of
the Scuola Normale Superiore of Pisa for the hospitality during the preparation of this
paper.

References

1. Adams, R.A.: Sobolev spaces. Academic Press, New York, 1975
2. Bethuel, F.: The approximation problem for Sobolev maps between manifolds. Acta

Math. 167, 153–206 (1992)



Density results for the W 1/2 energy of maps into a manifold 549

3. Bethuel, F.: Approximations in trace spaces defined between manifolds. Nonlinear
Analysis 24, 121–130 (1995)

4. Bourgain, J., Brezis, H., Mironescu, P.: On the structure of the Sobolev space H 1/2

with values into the circle. C.R. Acad. Sci. Paris 331, 119–124 (2000)
5. Bourgain, J., Brezis, H., Mironescu, P.:H 1/2 maps with values into the circle: minimal

connections, lifting, and the Ginzburg Landau equation. Publ. Math. I.H.E.S. 99, 1–115
(2004)

6. Mucci, D.: A characterization of graphs which can be approximated in area by smooth
graphs. J. Eur. Math. Soc. 3, 1–38 (2001)

7. Rivière, T.: Dense subsets of H 1/2(S2; S1). Annals of Global Analysis and Geometry
18, 517–528 (2000)

8. Schoen, R., Uhlenbeck, K.: Boundary regularity and the Dirichlet problem for harmonic
maps. J. Diff. Geom. 18, 253–268 (1983)


