DOI: 10.1007/s00209-005-0820-y

Density results for the *W***¹***/***² energy of maps into a manifold**

Mariano Giaquinta1**, Domenico Mucci**²

- ¹ Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56100 Pisa (e-mail: giaquinta@sns.it)
- 2 Dipartimento di Matematica dell'Università di Parma, Parco Area delle Scienze 53/A, I-43100 Parma (e-mail: domenico.mucci@unipr.it)

Received: 1 April 2005: in final form: 6 December 2004 / Published online: 13 July 2005 – © Springer-Verlag 2005

Abstract. We show that maps from B^n to a smooth compact boundaryless manifold Y which are smooth out of a singular set of dimension $n - 2$ are dense for the strong topology in $W^{1/2}(B^n, \mathcal{Y})$. We also prove that for $n \geq 2$ smooth maps from *Bⁿ* to *y* are dense in $W^{1/2}(B^n, Y)$ if and only if $\pi_1(Y) = 0$, i.e. the first homotopy group of Y is trivial.

In this paper we consider vector valued maps into a manifold which have finite $W^{1/2}$ -energy and we discuss density properties with respect to the strong topology of $W^{1/2}$. Let B^n be the unit ball \mathbb{R}^n , $n \ge 2$, and let $\mathcal Y$ be a smooth oriented Riemannian manifold of dimension $M \geq 1$, isometrically embedded in \mathbb{R}^N for some $N \geq 2$. We shall assume that $\mathcal Y$ is compact, connected and without boundary.

Let $W^{1/2}(B^n, \mathbb{R}^N)$ denote standard space of functions φ which are traces of functions *u* in $W^{1,2}(B^n \times I, \mathbb{R}^N)$, where $I =]-1, 1[$, with the norm given by

$$
|\varphi|_{1/2} := |\varphi|_{L^2} + \inf{\{\mathbf{D}(u) : u = \varphi \text{ on } B^n \times \{0\}\}},
$$

compare [1]. If $u \in W^{1,2}(B^n \times I, \mathbb{R}^N)$ we will denote by

$$
\mathbf{D}(u) := \frac{1}{2} \int_{B^n \times I} |Du(z)|^2 dz
$$

the *Dirichlet energy* of *u*. Also, let

$$
W^{1/2}(B^n, \mathcal{Y}) := \{ \varphi \in W^{1/2}(B^n, \mathbb{R}^N) \mid \varphi(x) \in \mathcal{Y} \text{ for a.e. } x \in B^n \}.
$$

Finally let $R^{\infty}_{1/2}(B^n, \mathcal{Y})$ be the set of all maps $u \in W^{1/2}(B^n, \mathcal{Y})$ which are smooth except on a singular set $\Sigma(u)$ of the type

$$
\Sigma(u) = \bigcup_{i=1}^r \Sigma_i, \qquad r \in \mathbb{N},
$$

where Σ_i is a smooth $(n-2)$ -dimensional subset of B^n with smooth boundary, if $n \geq 3$, and Σ_i is a point if $n = 2$. It is well-known that if $n = 1$ maps in $C^1(B^1, \mathcal{Y})$ are dense in $W^{1/2}(B^1, \mathcal{Y})$, compare [4]. If $n \geq 2$, our first result is

Theorem 1. *The class* $R^{\infty}_{1/2}(B^n, \mathcal{Y})$ *is dense in* $W^{1/2}(B^n, \mathcal{Y})$ *.*

Theorem 1 was proved in [7], compare also [5], in dimension $n = 2$ and in the case $\mathcal{Y} = S^1$, the standard unit circle. Moreover, in [3] it is pointed out that if the first homotopy group of the target manifold is nontrivial, $\pi_1(\mathcal{Y}) \neq 0$, then there exist functions $\varphi \in W^{1/2}(B^n, \mathcal{Y})$ which cannot be approximated in $W^{1/2}$ by smooth maps in $W^{1/2}(B^n, \mathcal{Y})$. Our second result proves that the converse holds true. More precisely, we will show that if $\pi_1(\mathcal{Y}) = 0$, then in any dimension *n* smooth maps in $W^{1/2}(B^n, Y)$ are dense in $W^{1/2}(B^n, Y)$.

Theorem 2. The class $C^{\infty}(B^n, \mathcal{Y})$ is dense in $W^{1/2}(B^n, \mathcal{Y})$ if and only if $\pi_1(\mathcal{Y}) = 0$.

We remark that in [3, Lemma 4] it is claimed that if $n \leq p \leq n + 1$, and $\pi_{[p]-1}(y) = 0$, then maps in $W^{1-1/p,p}(B^n, y)$, which are smooth except at a finite number of point, can be approximated in $W^{1-1/p,p}$ by smooth maps in $C^{\infty}(B^n, \mathcal{Y})$. Actually the proof is not clear to us and we argue in a different way.

Since $Bⁿ$ is bilipschitz homeomorphic to the unit open *n*-cube

$$
\mathcal{C}^n:=]0,1[^n,
$$

we will prove the theorems in the case of maps defined in \mathcal{C}^n . We point out that it is possible to modify the proofs of Theorems 1 and 2 to handle the case of maps defined in the unit *n*-sphere S^n or in the boundary of an $(n + 1)$ -cube. Moreover the proofs extend to cover the case of maps with fixed boundary data. More precisely, if \widetilde{B}^n denotes a bounded domain in \mathbb{R}^n such that $B^n \subset \widetilde{B}^n$, $\psi : \widetilde{B}^n \to \mathcal{Y}$ is a given smooth $W^{1/2}$ function, and for $X = W^{1/2}$, $R^{\infty}_{1/2}$ or C^{∞} we set

$$
X_{\psi}(\widetilde{B}^n, \mathcal{Y}) := \{ \varphi \in X(\widetilde{B}^n, \mathcal{Y}) \mid \varphi = \psi \quad \text{on } \widetilde{B}^n \setminus \overline{B}^n \},
$$

we can then also state the following density result, the proof of which is omitted.

Theorem 3. *The class* $R^{\infty}_{1/2, \psi}(\widetilde{B}^n, \mathcal{Y})$ *is dense in* $W^{1/2}_{\psi}(\widetilde{B}^n, \mathcal{Y})$ *. Moreover, the class* $C^{\infty}_{\psi}(\widetilde{B}^n, \mathcal{Y})$ *is dense in* $W^{1/2}_{\psi}(\widetilde{B}^n, \mathcal{Y})$ *if and only if* $\pi_1(\mathcal{Y}) = 0$ *.*

Before giving the proofs we fix some notation. We will always denote

$$
z=(x,t)=(x_1,\ldots,x_n,t)\in\mathbb{R}^n\times\mathbb{R}
$$

a point in the cylinder $C^n \times I$. If $u \in W^{1,2}(\mathbb{C}^n \times I, \mathbb{R}^N)$ and A is a "smooth" \mathcal{H}^k -measurable *k*-dimensional subset of $\mathcal{C}^n \times I$, we denote

$$
\mathbf{D}(u, A) := \frac{1}{2} \int_A |Du_{|A}|^2 d\mathcal{H}^k, \qquad \mathbf{D}(u) := \mathbf{D}(u, \mathcal{C}^n \times I),
$$

the *k*-dimensional Dirichlet integral of the restriction $u_{|A}$ of *u* to *A*. Moreover we will write $T(u) = \varphi$ if $\varphi \in W^{1/2}(\mathcal{C}^n, \mathbb{R}^N)$ is the trace of *u* on $\mathcal{C}^n \times \{0\}$. If $p = (p_1, \ldots, p_k) \in \mathbb{R}^k$, we set

$$
||p||_k := \max_{1 \leq i \leq k} |p_i|.
$$

Also, for $i = 1, ..., n+1$ and $\lambda \in \mathbb{R}$, we denote by $P(\lambda, i)$ the restriction to $C^n \times I$ of the hyperplane of $\mathbb{R}^{n+1} = \mathbb{R}^n \times \mathbb{R}$ containing the point λe_i and orthogonal to e_i , where (e_1, \ldots, e_{n+1}) is the canonical basis of \mathbb{R}^{n+1} , i.e.,

$$
P(\lambda, i) := \{z \in \mathcal{C}^n \times I \mid (z - \lambda e_i \mid e_i)_{\mathbb{R}^{n+1}} = 0\}.
$$

For $m \in \mathbb{N}^*$ and $a = (a_1, \ldots, a_n) \in [1/4m, 3/4m]^n$ we denote by \mathcal{L}_m the grid

$$
\mathcal{L}_m := \bigcup_{i=1}^n \bigcup_{j=0}^{m-1} P(a_i + j/m, i) \tag{1}
$$

and by $C_m^{(k)}$ the *k*-skeleton of the grid of C^n given by the intersection of \mathcal{L}_m with the *n*-space $\mathbb{R}^n \times \{0\}$. Moreover we define by

$$
C_m^n := a + [0, (m-1)/m]^n
$$

\n
$$
\Sigma_m^{(k)} := C_m^{(k)} \cap C_m^n, \qquad \forall k = 1, ..., n
$$
\n(2)

the closed *n*-cube of side $(m - 1)/m$ inside C^n and the part of the k-skeleton $C_m^{(k)}$ which is contained in C_m^n . We finally denote by $u^{(m)}$ the restriction $u^{(m)} := u_{|C_m^{(1)} \times I}$ of *u* to the 2-skeleton $C_m^{(1)} \times I$.

Remark 1. For future use, we denote by

$$
\mathcal{Y}_{\varepsilon} := \{ y \in \mathbb{R}^N \mid \text{dist}(y, \mathcal{Y}) < \varepsilon \}
$$

the *ε*-neighborhood of *y* and we observe that, since *y* is smooth, there exists $\varepsilon_0 > 0$ such that for $0 < \varepsilon \leq \varepsilon_0$ the nearest point projection Π_{ε} of $\mathcal{Y}_{\varepsilon}$ onto Y is a well defined Lipschitz map, with Lipschitz constant Lip $\Pi_{\varepsilon} \to 1^+$ as $\varepsilon \to 0^+$. Note that for $0 < \varepsilon \leq \varepsilon_0$ the open set \mathcal{Y}_ε is equivalent to $\mathcal Y$ in the sense of the algebraic topology. In particular, we have that

$$
\pi_1(\mathcal{Y}_\varepsilon)=\pi_1(\mathcal{Y})\,.
$$

Proof of Theorem 1*.* Let $\varphi \in W^{1/2}(\mathbb{C}^n, \mathcal{Y})$ and $u \in W^{1,2}(\mathbb{C}^n \times I, \mathbb{R}^N)$ be the harmonic extension of φ , so that $T(u) = \varphi$. Since for $i = 1, \ldots, n$ we have

$$
\int_{1/4m}^{3/4m} \sum_{j=0}^{m-1} \mathbf{D}(u, P(t+j/m, i)) dt \leq \sum_{j=0}^{m-1} \mathbf{D}(u, \{j/m \leq x_i \leq (j+1)/m\})
$$

= $\mathbf{D}(u, C^n \times I)$,

we find a vector $a = a(m) \in [1/4m, 3/4m]^n$ such that $u_{|P(a_i+j/m,i)} \in W^{1,2}$ *(P(a_i* + *j/m, i)*, ℝ^{*N*}) for every *i* = 1*,...*, *n* and *j* = 0*,...*, *m* − 1 and

$$
\mathbf{D}(u, C_m^{(n-1)} \times I) \le c \, m \, \mathbf{D}(u, C^n \times I). \tag{3}
$$

We first make use of the argument of [3, 2.1], which in turn makes use of an idea from [8], by taking the 1-skeleton $C_m^{(1)}$ instead of the boundary of the unit square, and prove the following square and \square

Proposition 1. Let $\varepsilon_h \searrow 0$. There exists a sequence of continuous maps ${u_h^{(m)}}_h$ $\subset W^{1,2}(\Sigma_m^{(1)} \times I, \mathbb{R}^N)$ such that $u_h^{(m)} \to u^{(m)}$ strongly in $W^{1,2}(\Sigma_m^{(1)})$ $\times I$, \mathbb{R}^{N}) *and* $\{T(u_{h}^{(m)})\}_{h} \subset W^{1/2}(\Sigma_{m}^{(1)}, \mathcal{Y}_{\varepsilon_{h}}).$

Proof. If $z = (x, t) \in \Sigma_m^{(1)} \times I$ and $0 < h < 1/4m$ we denote by

$$
C(z, h) := \overline{B}^n(x, h/2) \times [t - h/2, t + h/2]
$$

the cylinder centered at *z* over the ball of diameter *h* and of height *h*, and by

$$
\Sigma(z, h) := C(z, h) \cap (C_m^{(1)} \times I)
$$

the intersection of the cylinder with the 2-skeleton $C_m^{(1)} \times I$. Setting then, for $z \in \Sigma_m^{(1)} \times I$,

$$
u_h^{(m)}(z) := \frac{1}{\mathcal{H}^2(\Sigma(z,h))} \int_{\Sigma(z,h)} u^{(m)}(y) d\mathcal{H}^2,
$$

it is not difficult to show that $u_h^{(m)} \in W^{1,2}(\Sigma_m^{(1)} \times I, \mathbb{R}^N)$ is continuous and that $u_h^{(m)} \to u^{(m)}$ strongly in $W^{1,2}$ as $h \to 0^+$. It remains to show that if $\varphi_h^{(m)} := T(u_h^{(m)})$, possibly passing to a subsequence $\varphi_h^{(m)}(\Sigma_m^{(1)}) \subset \mathcal{Y}_{\varepsilon_h}$.

To this aim, for $\varepsilon > 0$ to be determined later, choose $h_{\varepsilon} > 0$ small so that for $h \leq h_{\varepsilon}$

$$
\int_{\Sigma(z,h)} |Du^{(m)}(y)|^2 d\mathcal{H}^2 \leq \varepsilon \qquad \forall z \in \Sigma_m^{(1)} \times I.
$$

For fixed $P_0 \in \Sigma_m^{(1)} \times \{0\}$, we observe that the 2-dimensional set $\Sigma(P_0, h)$ always contains a square R_1 of side *h*. More precisely, suppose for example $P_0 = (x_0^1, \ldots, x_0^n, 0)$, where $x_0^1 \in a_1 + [0, (m-1)/m]$ and $x_0^i = a_i + j_i/m$ for every $i = 2, \ldots, n$, where $j_i \in \{0, \ldots, m-1\}$. Then we have

$$
\Sigma(P_0, h) = R_1 \cup \bigcup_{i=2}^n R_i
$$

where R_1 is the square

$$
R_1 := [x_0^1 - h/2, x_0^1 + h/2] \times \{(x_0^2, \dots, x_0^n)\} \times [-h/2, h/2]
$$

and for $i = 2, ..., n$ the (possibly degenerate) sets R_i are rectangles $R_i := R_i \times I_i/2$, $I_i/2$ where [−*h/*2*, h/*2], where

$$
\widetilde{R}_i := \{ (a_1 + j_1/m, x_0^2, \dots, x_0^{i-1}) \} \times [x_0^i - \overline{h}/2, x_0^i + \overline{h}/2] \times \{ (x_0^{i+1}, \dots, x_0^n) \}
$$

if $n > 3$, and

$$
\widetilde{R}_2 := \{a_1 + j_1/m\} \times [x_0^2 - \overline{h}/2, x_0^2 + \overline{h}/2]
$$

if *n* = 2, for some index *j*₁ and for some $\overline{h} \in [0, h]$, possibly $\overline{h} = 0$.

Slicing the square R_1 with hyperplanes orthogonal to the direction e_1 , and taking *h* $\leq h_{\varepsilon}$, we find $h_1 \in [x_0^1 - h/2, x_0^1 + h/2]$ such that

$$
\mathbf{D}(u^{(m)}, R_1 \cap P(h_1, 1)) \leq \frac{2}{h} \mathbf{D}(u^{(m)}, R_1) \leq \frac{1}{h} \int_{\Sigma(P_0, h)} |Du^{(m)}(y)|^2 d\mathcal{H}^2 \leq \frac{\varepsilon}{h}.
$$

Choosing $z_0 \in R_1 \cap P(h_1, 1) \cap (\Sigma_m^{(1)} \times \{0\})$ and applying the Sobolev embedding theorem, since $R_1 \cap P(h_1, 1)$ is a line segment of length *h*, it follows that

$$
\max_{z \in R_1 \cap P(h_1, 1)} |u(z) - u(z_0)| \leq c \, \varepsilon^{1/2} \, .
$$

Let now $\eta > 0$ to be determined later. Slicing the 2-dimensional set $\Sigma(P_0, h)$ with hyperplanes orthogonal to the "vertical" direction e_{n+1} , and setting

$$
A_h := \{ h' \in [-h/2, h/2] : \mathbf{D}(u^{(m)}, \Sigma(P_0, h) \cap P(h', n+1)) \le \varepsilon \eta / h \}
$$

and $B_h := [-h/2, h/2] \setminus A_h$, for every $h' \in A_h$, by the Sobolev theorem, since $\Sigma(P_0, h) \cap P(h', n + 1)$ is the union of *n* line segments and diam $(\Sigma(P_0, h) \cap$ $P(h', n + 1) \leq c h$, we obtain

$$
\max_{z \in \Sigma(P_0, h) \cap P(h', n+1)} |u(z) - u(z_0)| \le c \left(\eta^{1/2} + 1\right) \varepsilon^{1/2}.
$$

Consequently, since $||u^{(m)}||_{\infty} \le K_{\infty}$, being $\mathcal Y$ compact, $\mathcal L^1(B_h) \le h/\eta$ and $\mathcal{H}^2(\Sigma(P_0, h)) \geq h^2$, setting $y_h^{(m)} := u^{(m)}(z_0) \in \mathcal{Y}$, similarly to [3, 2.1] we infer that

$$
|u_h^{(m)}(P_0) - y_h^{(m)}| \le 4 \frac{K_{\infty}}{\eta} + c \left(\eta^{1/2} + 1\right) \varepsilon^{1/2}.
$$

Taking first *η* large so that $4 K_{\infty}/\eta \leq \varepsilon_h/2$, and then ε small so that $c (n^{1/2} + 1) \varepsilon^{1/2} < \varepsilon_h/2$, we easily conclude that

$$
\mathrm{dist}\big(\varphi_h^{(m)}(x_0),\mathcal{Y}\big)\leq |u_h^{(m)}(P_0)-y_h^{(m)}|<\varepsilon_h \qquad \forall x_0\in\Sigma_m^{(1)}.
$$

As a consequence of Proposition 1, we now prove the following

 \Box

Proposition 2. There exists a sequence of maps $\{v_h^{(m)}\}_h \subset W^{1,2}(\mathcal{C}_m^n \times I,\mathbb{R}^N)$, continuous out of $C_m^n \times \{0\}$, such that $v_h^{(m)} \to u_{|C_m^n \times I}$ strongly in $W^{1,2}(C_m^n \times I, \mathbb{R}^N)$, *with* $v_h^{(m)}|_{\Sigma_m^{(1)} \times I} = u_h^{(m)}$. In particular we have

$$
T(v_h^{(m)})_{|\Sigma_m^{(1)}} \in W^{1/2}(\Sigma_m^{(1)},\mathcal{Y}_{\varepsilon_h}) \qquad \forall \, h \, .
$$

Proof. We first give the proof in the case $n = 2$.

The case $n = 2$. Let Q_m denote the family of all squares Q of side $1/m$ with boundary contained in the 1-grid $\Sigma_m^{(1)}$, i.e. $\partial Q \subset \Sigma_m^{(1)}$, so that

$$
\cup \mathcal{Q}_m = \mathcal{C}_m^2 \, .
$$

For every *h* we let $0 < \varepsilon \ll 1$ to be fixed later. If $Q \in \mathcal{Q}_m$, we define $v_h^{(Q)}: Q \times I \to \mathbb{R}^N$ by setting for every $(x, t) \in Q \times I$

$$
v_h^{(Q)} := \begin{cases} u\left(p + \frac{x - p}{1 - \varepsilon}, t\right) & \text{if } \rho \le \frac{1 - \varepsilon}{2m} \\ S(\rho) u_h^{(m)}(y, t) + \left(1 - S(\rho)\right) u(y, t) & \text{if } \frac{1 - \varepsilon}{2m} \le \rho \le \frac{1}{2m} \end{cases} (4)
$$

Here $\rho = \rho(x) := ||x - p||_2$, where *p* is the center of *Q*, so that $\rho(x) = 1/2m$ if *x* ∈ *∂Q*; moreover

$$
y = y(x) := p + \frac{1}{2m} \frac{x - p}{\rho(x)}
$$

and finally

$$
S(\rho) := \frac{2m}{\varepsilon} \rho + \frac{\varepsilon - 1}{\varepsilon},\tag{5}
$$

so that $S(1/2m) = 1$ and $S((1 - \varepsilon)/2m) = 0$. Trivially $v_h^{(Q)}$ is a function in $W^{1,2}(Q \times I, \mathbb{R}^N)$, continuous out of $Q \times \{0\}$, with $v_h^{(Q)} \rightarrow u_{|Q \times I}$ in L^2 ($Q \times I$, \mathbb{R}^N). Moreover, it is not difficult to prove that

$$
\int_{\{\rho(x)\leq (1-\varepsilon)/2m\}\times I} |Dv_h^{(Q)}|^2 dx dt = 2\mathbf{D}(u, Q \times I)
$$

and

$$
\int_{\{(1-\varepsilon)/2m\leq \rho(x)\leq 1/2m\}\times I} |Dv_h^{(Q)}|^2 dx dt \leq c(m) \frac{1}{\varepsilon} \int_{\partial Q \times I} |u - u_h^{(m)}|^2 d\mathcal{H}^2
$$

+c(m) $\varepsilon \int_{\partial Q \times I} (|D_\tau u|^2 + |D_\tau u_h^{(m)}|^2) d\mathcal{H}^2$,

where τ is an orthonormal frame to $\Sigma_m^{(1)} \times I$ and $c(m) > 0$ only depends on *m*. Define now $v_h^{(m)}$: $C_m^2 \times I \to \mathbb{R}^N$ by $v_h^{(m)}(x, t) := v_h^{(Q)}(x, t)$ if $x \in Q$ for some $Q \in \mathcal{Q}_m$. Then $\{v_h^{(m)}\}_h$ is a sequence in $W^{1,2}(\mathcal{C}_m^2 \times I, \mathbb{R}^N)$, continuous out of $\mathcal{C}_m^2 \times \{0\}$, such that

$$
\mathbf{D}(v_h^{(m)}, C_m^2 \times I) \le \mathbf{D}(u, C_m^2 \times I) + c_1(m) \frac{1}{\varepsilon} \int_{\Sigma_m^{(1)} \times I} |u - u_h^{(m)}|^2 d\mathcal{H}^2
$$

+ $c_2(m) \varepsilon \int_{\Sigma_m^{(1)} \times I} (|D_\tau u|^2 + |D_\tau u_h^{(m)}|^2) d\mathcal{H}^2.$

Now, by Proposition 1, there exists $\overline{h}(m)$ such that for $h \ge \overline{h}(m)$

$$
\int\limits_{\Sigma_m^{(1)}\times I} |D_\tau u_h^{(m)}|^2 d\mathcal{H}^2 \le 2 \int\limits_{\Sigma_m^{(1)}\times I} |D_\tau u|^2 d\mathcal{H}^2
$$

so that by (3) we have

$$
\int_{\Sigma_m^{(1)} \times I} \left(|D_\tau u|^2 + |D_\tau u_h^{(m)}|^2 \right) d\mathcal{H}^2 \leq 3 \, cm \, \mathbf{D}(u, \mathcal{C}^2 \times I) \, .
$$

Then, for every $j \in \mathbb{N}$ we first choose $\varepsilon = \varepsilon_j$ small so that

$$
3\,c\,c_2(m)\,\varepsilon_j\,m\,\mathbf{D}(u,\mathcal{C}^2\times I)\leq\frac{1}{j}\,.
$$

Secondly, since by Proposition 1 we have $u_h^{(m)} \to u$ in $L^2(\Sigma_m^{(1)} \times I)$, we take $h = h_j \geq \overline{h}(m)$ large enough so that $h_{j+1} > h_j$ and

$$
c_1(m)\frac{1}{\varepsilon_j}\int\limits_{\Sigma_m^{(1)}\times I}|u-u_{h_j}^{(m)}|^2 d\mathcal{H}^2\leq \frac{1}{j}\qquad \forall\ j\in\mathbb{N}.
$$

Finally, since by the previous estimates

$$
\mathbf{D}(v_{h_j}^{(m)}, \mathcal{C}_m^2 \times I) \leq \mathbf{D}(u, \mathcal{C}_m^2 \times I) + \frac{2}{j},
$$

it suffices to relabel $\{v_j^{(m)}\}$ the subsequence $\{v_{h_j}^{(m)}\}$, where $\varepsilon = \varepsilon_j$ in (4).

The case $n \ge 3$. We first set $v_h^{(m)} = u_h^{(m)}$ on $\Sigma_m^{(1)} \times I$. Arguing by induction on the dimension $k = 2, \ldots, n$, by the inductive hypothesis we have already defined $v_h^{(m)}$: $\Sigma_m^{(k-1)} \times I \to \mathbb{R}^N$ in such a way that $v_h^{(m)} \to u_{|\Sigma_m^{(k-1)} \times I}$ strongly in $W^{1,2}(\Sigma_m^{(k-1)} \times I, \mathbb{R}^N)$.

We now extend $\{v_h^{(m)}\}$ to $\Sigma_m^{(k)} \times I$ as follows. Let *F* be a *k*-face of side $1/m$ of $\Sigma_m^{(k)}$, and hence with boundary contained in $\Sigma_m^{(k-1)}$. Without loss of generality, we may and will suppose *F* oriented by $e_1 \wedge \cdots \wedge e_k$, and we set

$$
x=(\widetilde{x},\widehat{x})\in\mathbb{R}^k\times\mathbb{R}^{n-k}.
$$

Similarly to (4), we define $v_h^{(F)}$: $F \times I \to \mathbb{R}^N$ by setting for $(x, t) \in F \times I$

$$
v_h^{(F)} := \begin{cases} u\left(\widetilde{p} + \frac{\widetilde{x} - \widetilde{p}}{1 - \varepsilon}, \widehat{p}, t\right) & \text{if } \rho \le \frac{1 - \varepsilon}{2m} \\ S(\rho) v_h^{(m)}(y, \widehat{p}, t) + (1 - S(\rho)) u(y, \widehat{p}, t) & \text{if } \frac{1 - \varepsilon}{2m} \le \rho \le \frac{1}{2m} \end{cases}.
$$

Here $\rho = \rho(\tilde{x}) := ||\tilde{x} - \tilde{p}||_k$, where $p = (\tilde{p}, \tilde{p})$ is the center of *F*; moreover

$$
y = y(\widetilde{x}) := \widetilde{p} + \frac{1}{2m} \frac{\widetilde{x} - \widetilde{p}}{\rho(\widetilde{x})}
$$

and *S*(*ρ*) is given by (5). We then extend $v_h^{(m)}$: $\Sigma_m^{(k)} \times I \to \mathbb{R}^N$ by setting $v_h^{(m)}(x, t) := v_h^{(F)}(x, t)$ if $x \in F$ for some *k*-face *F* as before. Finally, similarly to the case $n = 2$, it is not difficult to show that $\{v_h^{(m)}\}_h$ is a sequence in $W^{1,2}(\Sigma_m^{(k)} \times I, \mathbb{R}^N)$, continuous out of $\Sigma_m^{(k)} \times \{0\}$, such that, possibly passing to a subsequence, $v_h^{(m)} \to u_{\vert \Sigma_m^{(k)} \times I}$ strongly in $W^{1,2}(\Sigma_m^{(k)} \times I, \mathbb{R}^N)$. The proof of Proposition 2 is complete. 

End of the proof of Theorem 1*.* We use an adaptation of [3, Lemma 5].

Slicing the cylinder $C_m^n \times I$ with hyperplanes $P(t, n + 1)$ orthogonal to the "vertical" direction e_{n+1} , since $\{v_h^{(m)}\}$ converges to $u_{|\mathcal{C}_m^n \times I}$ strongly in $W^{1,2}(\mathcal{C}_m^n \times$ *I*, \mathbb{R}^{N}), see Proposition 2, we may and do choose $a_{n+1} \in [1/4m, 3/4m]$ so that $v_{h|P(a_{n+1}+j/m,n+1)}^{(m)}$ ∈ *W*^{1,2}*(P*(*a_{n+1}* + *j/m, n* + 1), \mathbb{R}^{N}) for every *h* ∈ N and *j* ∈ { $-m$, ..., *m* − 1}, with

$$
\sum_{j=-m}^{m-1} \mathbf{D}(v_h^{(m)}, P(a_{n+1} + j/m, n+1)) \le c \, m \, \mathbf{D}(u, C_m^n \times I) \qquad \forall \, h \,.
$$
 (6)

Let \widetilde{Q}_m denote the family of $(n+1)$ -cubes of $C_m^n \times I$, of side $1/m$, whose boundary lies in the *n*-skeleton

$$
\mathcal{L}_m \cup \bigcup_{j=-m}^{m-1} P(a_{n+1}+j/m,n+1)\,,
$$

compare (1). Also, let \mathcal{F}_m be the family of the $(n+1)$ -cubes in \mathcal{Q}_m which intersect the *n*-cube $C^n \times \{0\}$, and let

$$
G_m := \mathcal{C}^n \times]-10m^{-1}, 10m^{-1}[.
$$

The case $n = 2$. Since $v_h^{(m)}|_{\Sigma_m^{(1)} \times I} = u_h^{(m)}$, where $u_h^{(m)} \to u^{(m)}$ strongly in $W^{1,2}(\Sigma_m^{(1)} \times I, \mathbb{R}^N)$, compare Propositions 1 and 2, then by (3) and (6) we infer that for every *h* sufficiently large

$$
\sum_{Q \in \widetilde{\mathcal{Q}}_m} \mathbf{D}(v_h^{(m)}, \partial Q) \leq c \, m \, \mathbf{D}(u, \mathcal{C}^n \times I) \, .
$$

As in [3, Lemma 5], by refining the slicing arguments in (3) and (6) we in fact may and do choose $(a_1, a_2, a_3) \in [1/4m, 3/4m]^3$ so that we also have

$$
\sum_{l=1}^{(m-1)^2} \mathbf{D}(v_h^{(m)}, \partial C_l) \le c \, m \, \mathbf{D}(u, G_m) \qquad \forall \, h \ge \overline{h} \,, \tag{7}
$$

where ${C_l}_{l=1}^{(m-1)^2}$ is a list of the cubes in \mathcal{F}_m . For every *l* let f_l be a diffeomorphism between C_l and $[-1/2m, 1/2m]^3$ such that

$$
f_l(C_l \cap (C^2 \times \{0\})) = [-1/2m, 1/2m]^2 \times \{0\}
$$

$$
f_l(\partial C_l \cap (C^2 \times \{0\})) = \partial [-1/2m, 1/2m]^2 \times \{0\}
$$

and

$$
||Df_l||_{\infty} \leq K, \qquad ||Df_l^{-1}||_{\infty} \leq K.
$$

We then define $U_h^{(m)}$ on C_l by

$$
U_h^{(m)}(z) = v_h^{(m)} \left[f_l^{-1} \left(\frac{f_l(z)}{2m \| f_l(z) \|_3} \right) \right],
$$

so that

$$
\mathbf{D}(U_h^{(m)}, C_l) \leq \frac{c}{m} \mathbf{D}(v_h^{(m)}, \partial C_l)
$$

for every *l* and hence, by (7),

$$
\mathbf{D}(U_h^{(m)}, \cup \mathcal{F}_m) \le C \, \mathbf{D}(u, G_m) \,. \tag{8}
$$

Set

$$
U_h^{(m)}(z) = v_h^{(m)}(z) \qquad \forall z \in (\mathcal{C}_m^2 \times I) \setminus \cup \mathcal{F}_m,
$$

so that $U_h^{(m)}$ is continuous on $C_m^2 \times I$ except at one singularity on each C_l , which lies on $C_m^2 \times \{0\}$. Moreover, $\{U_h^{(m)}\}$ is a sequence in $W^{1,2}(\mathcal{C}_m^2 \times I, \mathbb{R}^N)$ such that for *h* large enough

$$
\mathbf{D}(U_h^{(m)} - v_h^{(m)}, \mathcal{C}_m^2 \times I) \le C \mathbf{D}(u, G_m)
$$

and therefore, by Proposition 2,

$$
\limsup_{h\to+\infty}\mathbf{D}(U_h^{(m)},\mathcal{C}_m^2\times I)\leq \mathbf{D}(u,\mathcal{C}_m^2\times I)+C\,\mathbf{D}(u,\mathcal{G}_m)\,.
$$

Remark 2. We also notice that for every cube C_l in \mathcal{F}_m , we have that $U_h^{(m)}|_{\partial C_l} =$ $v_h^{(m)}|_{\partial C_l}$, where the traces $T(v_h^{(m)})_{|\Sigma_m^{(1)}} \in W^{1/2}(\Sigma_m^{(1)}, \mathcal{Y}_{\varepsilon_h})$, see Proposition 2. As a consequence, by the definition of f_l we infer that the traces $T(U_h^{(m)})$ are functions in $W^{1/2}(\mathcal{C}_m^2, \mathcal{Y}_{\varepsilon_h})$ for every *h*.

Now, let ψ_m : $C^2 \to C_m^2$ be an affine bijective function such that Lip ψ_m = $(m-1)/m$ and $\psi_m \to \bar{I}d_{\mathcal{C}^2}$ uniformly as $m \to +\infty$. Setting $u_m(x, t) :=$ $U_{h_m}^{(m)}(\psi_m(x), t)$ for some increasing sequence $h_m \nearrow \infty$, since meas $(G_m) \to 0$ as $m \to +\infty$ we easily infer that $\{u_m\}_m$ is a sequence of maps in $W^{1,2}(\mathcal{C}^2 \times I, \mathbb{R}^N)$ continuous out of a finite number of points, such that $u_m \to u$ strongly in $W^{1,2}$. Moreover by Remark 2 it follows that the traces $T(u_m) \in W^{1/2}(\mathcal{C}^2, \mathcal{Y}_{\varepsilon_{h_m}})$ for every *m*. Therefore, taking $\varphi_m(x) := \Pi_{\varepsilon_{hm}} \circ T(u_m)(x)$, compare Remark 1, clearly ${\varphi_m}$ ∈ *W*^{1/2}*(C*², *Y*) is continuous out of a discrete set of points and φ_m → φ in $W^{1/2}$. Finally, e.g. as in [2, Appendix], every function φ_m can be approximated by maps in $R^{\infty}_{1/2}(\mathcal{C}^2,\mathcal{Y})$.

The case $n \geq 3$. Let $\mathcal{F}_m^{(k)}$ be the *k*-dimensional skeleton of \mathcal{F}_m , i.e. the union of the *k*-faces of the $(n + 1)$ -cubes C_l of \mathcal{F}_m . Since $v_h^{(m)} \to u$ in $W^{1,2}(\mathcal{C}_m^n \times I, \mathbb{R}^N)$, by using a more refined slicing argument similar to the one in $[6, Prop. 4]$, we may and do choose $(a_1, \ldots, a_{n+1}) \in [1/4m, 3/4m]^{n+1}$ so that for every *h* sufficiently large the following holds:

- (i) for every $k = 2, ..., n$ the restriction of $v_h^{(m)}$ to any *k*-face *Q* of $\mathcal{F}_m^{(k)}$ is a function in $W^{1,2}(O, \mathbb{R}^N)$;
- (ii) there exists some absolute constant $c > 0$, not depending on *h*, such that

$$
\mathbf{D}(v_h^{(m)}, \mathcal{F}_m^{(k)}) \le c \, m^{n+1-k} \, \mathbf{D}(u, G_m) \qquad \forall \, k = 2, \dots, n \,. \tag{9}
$$

First we let $U_h^{(m)} \equiv v_h^{(m)}$ on $\mathcal{F}_m^{(2)}$, and then we extend $U_h^{(m)}$ to $\mathcal{F}_m^{(k)}$ arguing by induction on the dimension $k = 3, \ldots, n + 1$. To this aim, for every *k*-face *Q* in $\mathcal{F}_m^{(k)}$ we distinguish two cases.

If Q is "horizontal", i.e. the direction e_{n+1} is not spanned by the vector space underlying *Q*, we let

$$
U_h^{(m)} \equiv v_h^{(m)} \qquad \text{on } Q. \tag{10}
$$

If *Q* is not "horizontal", as in the case $n = 2$ we let f_Q be a diffeomorphism between Q and $[-1/2m, 1/2m]^k$ such that

$$
f_Q(Q \cap (C^n \times \{0\})) = [-1/2m, 1/2m]^{k-1} \times \{0\}
$$

$$
f_Q(\partial Q \cap (C^n \times \{0\})) = \partial [-1/2m, 1/2m]^{k-1} \times \{0\}
$$

and

$$
||Df_Q||_{\infty} \leq K, \qquad ||Df_Q^{-1}||_{\infty} \leq K.
$$

Since we have already defined $U_h^{(m)}$ on ∂Q , we extend $U_h^{(m)}$ to Q by setting

$$
U_h^{(m)}(z) = U_h^{(m)} \left[f_Q^{-1} \left(\frac{f_Q(z)}{2m \| f_Q(z) \|_k} \right) \right],\tag{11}
$$

so that

$$
\mathbf{D}(U_h^{(m)}, Q) \leq \frac{c}{m} \mathbf{D}(U_h^{(m)}, \partial Q). \tag{12}
$$

Density results for the $W^{1/2}$ energy of maps into a manifold 545

Repeating the argument for $k = 3, \ldots, n + 1$, we then easily estimate

$$
\mathbf{D}(U_h^{(m)}, \cup \mathcal{F}_m) \le C(n) \sum_{k=2}^n \frac{1}{m^{n+1-k}} \mathbf{D}(v_h^{(m)}, \mathcal{F}_m^{(k)})
$$
(13)

and hence, by (9), we obtain again (8). Setting then $U_h^{(m)}(z) = v_h^{(m)}(z)$ for every $z \in (C_m^n \times I) \setminus \cup \mathcal{F}_m$, this way $U_h^{(m)}$ is continuous on $C_m^n \times I$ except at an $(n-2)$ dimensional singular set, which lies on $C_m^n \times \{0\}$, given by the union of a finite number (depending on *n* and *m*) of affine $(n - 2)$ -planes parallel to the coordinate directions in $\mathbb{R}^n \times \{0\}$. Moreover, by the construction we infer that the traces $T(U_h^{(m)}) \in W^{1/2}(\mathcal{C}_m^n, \mathcal{Y}_{\varepsilon_h})$ for every *m*. The rest of the proof follows as in the case $n=2$.

Proof of Theorem 2. We shall first give the proof in the case $n = 2$.

The case $n = 2$. Due to Theorem 1 it suffices to show that smooth maps in $C^{\infty}(\mathcal{C}^2, \mathcal{Y})$ are dense in $R^{\infty}_{1/2}(\mathcal{C}^2, \mathcal{Y})$. Let $\varphi \in R^{\infty}_{1/2}(\mathcal{C}^2, \mathcal{Y})$, so that φ is smooth out of a discrete set of points. Since the argument is local, without loss of generality we may and will suppose that φ is smooth out of the origin. For $0 < r < 1$ we denote

$$
Q_r := [-r, r]^3
$$
, $F_r := Q_r \cap (\mathbb{R}^2 \times \{0\})$.

Let $u \in W^{1,2}(\mathbb{C}^2 \times I, \mathbb{R}^N)$ be the harmonic extension of φ . For every fixed $\varepsilon > 0$ let $0 < R = R(\varepsilon) \ll 1$ be such that

$$
\mathbf{D}(u, Q_R) \leq \varepsilon.
$$

Since

.

$$
\mathbf{D}(u, Q_R \setminus Q_{R/2}) = \frac{1}{2} \int_{R/2}^R dr \int_{\partial Q_r} |Du|^2 d\mathcal{H}^2,
$$

then there exists $r = r(\varepsilon) \in [R/2, R]$ such that

$$
\mathbf{D}(u,\,\partial Q_r) := \frac{1}{2} \int_{\partial Q_r} |Du|^2 \, d\mathcal{H}^2 \leq \frac{2}{R} \mathbf{D}(u,\,Q_R \setminus Q_{R/2}) \leq \frac{2\varepsilon}{R} \,. \tag{14}
$$

Since $\varphi_{|\partial F_r}$: $\partial F_r \to \mathcal{Y}$ is a smooth map in $W^{1/2}(\partial F_r, \mathcal{Y})$, and the first homotopy group $\pi_1(\mathcal{Y}) = 0$, then there exists a smooth extension $\varphi_r : F_r \to \mathcal{Y}$ of φ with finite $W^{1,2}$ -energy.

Let now $Q_r^{\pm} := \{z = (x, t) \in Q_r \mid \pm t \ge 0\}$ be the upper and lower half cubes of Q_r . Moreover, let $v_r^{\pm} : Q_r^{\pm} \to \mathbb{R}^N$ be the solution of the Dirichlet problem on Q_r^{\pm} with boundary condition

$$
\begin{cases} v_r^{\pm} = u & \text{on} \quad \partial Q_r^{\pm} \cap \{(x, t) \mid \pm t > 0\} \\ v_r^{\pm} = \varphi_r & \text{on} \quad F_r \end{cases}
$$

and let v_r : $Q_r \rightarrow \mathbb{R}^N$ be given by $v_r(z) = v_r^{\pm}(z)$ if $z \in Q_r^{\pm}$. Define then $w_r: \mathcal{C}^2 \times I \to \mathbb{R}^N$ by

$$
w_r(z) := \begin{cases} v_r\left(\frac{r}{\delta}z\right) & \text{if } \|z\|_3 \le \delta \\ u\left(r\frac{z}{\|z\|_3}\right) & \text{if } \delta \le \|z\|_3 \le r \\ u(z) & \text{if } \|z\|_3 \ge r \end{cases}
$$

for some $0 < \delta < r$, so that $w_r \in W^{1,2}(\mathbb{C}^2 \times I, \mathbb{R}^N)$ is continuous and with trace $T(w_r) \in W^{1/2}(\mathcal{C}^2, \mathcal{Y})$. We easily estimate

$$
\mathbf{D}(w_r, \mathcal{C}^2 \times I) \leq \mathbf{D}(u, \mathcal{C}^2 \times I) + c \, r \, \mathbf{D}(u, \partial Q_r) + \frac{\delta}{r} \mathbf{D}(v_r, Q_r)
$$

for some absolute constant $c > 0$, so that by (14), and since $r < R$,

$$
\mathbf{D}(w_r, C^2 \times I) \leq \mathbf{D}(u, C^2 \times I) + 2c\varepsilon + \frac{\delta}{r} \mathbf{D}(v_r, Q_r)
$$

$$
\leq \mathbf{D}(u, C^2 \times I) + (2c + 1)\varepsilon,
$$

taking δ sufficiently small. Letting $\varepsilon \to 0$ we infer that $w_{r_{\varepsilon}} \to u$ in $W^{1,2}(\mathcal{C}^2 \times I, \mathbb{R}^N)$ and hence that $\widetilde{T}(w_{r_c}) \to \varphi$ in $W^{1/2}(\mathcal{C}^2, \mathcal{Y})$. Since the trace $T(w_r) \in W^{1/2}(\mathcal{C}^2, \mathcal{Y})$ is continuous, then in a standard way it can be approximated by smooth maps, as required.

The case $n \geq 3$. We will modify the End of the proof of Theorem 1. Recall that the singular set of the approximating map $U_h^{(m)}$ is contained in $C_m^n \times \{0\}$ and intersects every "horizontal" *(k* + 2)-cube *Q* in $\mathcal{F}_m^{(k+2)}$, for $k = 1, ..., n - 1$, on a *(k* − 1*)*-dimensional set obtained by the "homogeneous" extension (11) of the restriction of $U_h^{(m)}$ to the boundary of *Q*. To remove the singular set, working by induction on $k = 1, \ldots, n-1$, it then suffices to modify the definition (11) to (17), where $v_Q: Q \to \mathbb{R}^N$ is a suitable smooth extension of the boundary datum. More precisely, let

$$
F := Q \cap (\mathbb{R}^n \times \{0\}) \tag{15}
$$

be the $(k + 1)$ -face in $\Sigma_m^{(k+1)}$ given by the intersection of *Q* with $C^n \times \{0\}$, see (2). Moreover, let $\widetilde{\varphi} := T(U_h^{(m)})_{\partial F}$ be the trace of $U_h^{(m)}$ on the boundary of F Since $\pi: (N) = 0$ if $k = 1$ there exists a smooth extension $\varphi_R : F \to N$ *F*. Since $\pi_1(\mathcal{Y}) = 0$, if $k = 1$ there exists a smooth extension $\varphi_F : F \to \mathcal{Y}_{\varepsilon_h}$ of $\tilde{\varphi}$ and therefore, as in the case $n = 2$, we define v_O by solving the Dirichlet problem on the upper and lower half cubes Q^{\pm} with boundary data given by (16). However, since we have no information on the higher order homotopy groups $\pi_k(\mathcal{Y})$ for $k \geq 2$, we cannot in general expect the existence of a smooth extension φ_F : *F* \rightarrow $\mathcal{Y}_{\varepsilon_h}$ of $\tilde{\varphi}$. To overcome this difficulty, at the $(k-1)^{th}$ Step we will show how to modify the definition of the trace of $U_h^{(m)}$ on $\Sigma_m^{(k)}$ in such a way that

 $\widetilde{\varphi}: \partial F \to \mathcal{Y}_{\varepsilon_h}$ is homotopically trivial. More precisely, we first let $U_h^{(m)} \equiv v_h^{(m)}$ on $\mathcal{F}_m^{(2)}$. Then for every $k = 1, \ldots, n - 1$ we give the following

 k^{th} *Step: definition of the trace on* $\sum_{m}^{(k+1)}$ *and extension to* $\mathcal{F}_{m}^{(k+2)}$ *.*

We first give a list $\{Q^{(i)}\}_i$ of the *n*-cubes of $\Sigma_m^{(n)}$ in such a way that $Q^{(i-1)}$ intersects $Q^{(i)}$ on an $(n - 1)$ -face, for every *i*.

In case *k* ≤ *n* − 2, for every *i* we also give a list $\{F_j^{(i)}\}_j$ of all the $(k+2)$ -faces of $Q^{(i)}$ such that the following holds:

- (i) $\widetilde{F}_j^{(i)}$ is not a $(k + 2)$ -face of the *n*-cubes $Q^{(l)}$, for every $l \le i 1$;
- (ii) there exists a $(k + 1)$ -face $\widetilde{L}_{j}^{(i)}$ of $\widetilde{F}_{j}^{(i)}$ which is neither a face of the $\widetilde{F}_{l}^{(i)}$'s, for every $l \leq j - 1$, nor a face of the $Q^{(l)}$'s, for every $l \leq i - 1$.

We then relabel by $\{F^{(i)}\}_i$ the $(k+2)$ -faces of $\Sigma_m^{(k+2)}$ by means of the lexicographic order given by the indices *i* and *j* of the $\widetilde{F}_j^{(i)}$'s. Note that $F_j^{(i)} = Q_j^{(i)}$ if *k* = *n* − 2. Moreover, let ${L_j^{(i)}}_{j=1}^{j(k)}$ be a list of the $(k+1)$ -faces of $F^{(i)}$ such that the last $(k + 1)$ -face $L_{j(k)}^{(i)}$ is exactly $\widetilde{L}_j^{(i)}$, if $F^{(i)} = \widetilde{F}_j^{(i)}$.

If $k = 1$, we let $\Psi^{(1)} : \Sigma_m^{(1)} \to \mathcal{Y}_{\varepsilon_h}$ be given by $\Psi^{(1)} := T(U_h^{(m)})_{|\Sigma_m^{(1)}},$ where $U_h^{(m)}$ is given by Theorem 1. Also, let $\tilde{\varphi}_j^{(i)} := \Psi^{(1)}_{\vert \partial L_j^{(i)}}$ be the trace of $U_h^{(m)}$ on the boundary of the 2-face $L_j^{(i)}$. Since $\pi_1(\mathcal{Y}_{\varepsilon_h}) = 0$, compare Remark 1, then $\tilde{\varphi}_j^{(i)}$ is homotonically trivial is homotopically trivial.

If $2 \le k \le n-2$, at the $(k-1)^{th}$ Step the function $\Psi^{(k)} : \Sigma_m^{(k)} \to \mathcal{Y}_{\varepsilon_h}$ is defined so that if $\widetilde{\varphi}_j^{(i)} := \Psi^{(k)}|_{\partial L_j^{(i)}}$, then $\widetilde{\varphi}_j^{(i)} : \partial L_j^{(i)} \to \mathcal{Y}_{\varepsilon_h}$ is a homotopically trivial smooth function in $W^{1/2}(\partial L_j^{(i)}, \mathcal{Y}_{\varepsilon_h})$ for all *i* and *j*.

For every $k \leq n-2$, we let $\widetilde{\Phi}_{j}^{(i)}$: $L_j^{(i)} \to \mathcal{Y}_{\varepsilon_h}$ be a smooth map in $W^{1,2}(L_j^{(i)}, \mathcal{Y}_{\varepsilon_h})$ such that $\widetilde{\Phi}_{j|\partial L_j^{(i)}}^{(i)} = \widetilde{\varphi}_j^{(i)}$, and let $\widetilde{\Phi}^{(i)} : \partial F^{(i)} \to \mathcal{Y}_{\varepsilon_h}$ be such that $\widetilde{\Phi}^{(i)} = \widetilde{\Phi}_j^{(i)}$ on $L_j^{(i)}$. We now modify the maps $\widetilde{\Phi}^{(i)}$ to new maps $\Phi^{(i)}$ which are homotopically trivial. To this aim, let $V^{(i)} := \partial F^{(i)} \setminus L_{j(k)}^{(i)}$ and $g^{(i)} : \partial F^{(i)} \to V^{(i)}$ be a Lipschitz map such that $g^{(i)}|_{V^{(i)}} = Id_{|V^{(i)}}$ and $g^{(i)}|_{L^{(i)}_{j(k)}}$ is a 1 to 1 map onto $V^{(i)}$

We first modify the function $\widetilde{\Phi}^{(1)}$ by setting $\Phi^{(1)} := \widetilde{\Phi}^{(1)} \circ g^{(1)}$. This way $\Phi^{(1)}$ is a homotopically trivial smooth map in $W^{1,2}(\partial F^{(i)}, \mathcal{Y}_{\varepsilon_h})$.

Arguing by iteration on the index *i*, once we have defined the functions $\Phi^{(l)}$, for *l* = 1,..., *i* − 1, at the *i*th step we first substitute $\tilde{\Phi}^{(i)}$ by the map $\widehat{\Phi}^{(i)}$: $\partial F^{(i)} \rightarrow \mathcal{Y}_{\varepsilon_h}$ such that $\widehat{\Phi}^{(i)} = \Phi^{(l)}(i)$ on $L_j^{(i)}$, if $L_j^{(i)}$ is a $(k+1)$ -face of $F^{(l)}$ for some $l = 1, ..., i - 1$, and $\widehat{\Phi}^{(i)} = \widetilde{\Phi}^{(i)}$ elsewhere on $\partial F^{(i)}$. We remark that by the previous conditions (i) and (ii) we infer that $\hat{\Phi}^{(i)} = \tilde{\Phi}^{(i)}$ on $L^{(i)}_{\substack{j(k) \\ j(k)}}$. We then modify the function $\widehat{\Phi}^{(i)}$ by setting $\Phi^{(i)} := \widehat{\Phi}^{(i)} \circ g^{(i)}$. This way $\Phi^{(i)}$ is again a homotopically trivial smooth map in $W^{1,2}(\partial F^{(i)}, \mathcal{Y}_{\varepsilon_h})$. Finally, let $\widetilde{\Psi}^{(k+1)}$: $\Sigma_m^{(k+1)} \to \mathcal{Y}_{\varepsilon_h}$ be given by $\widetilde{\Psi}^{(k+1)} = \Phi^{(i)}$ on $\partial F^{(i)}$, for every *i*.

Remark 3. Note that, since $\Phi^{(i)} = \hat{\Phi}^{(i)}$ on $V^{(i)}$, when defining $\Phi^{(i)}$ we do not modify the definition of $\widetilde{\Psi}^{(k+1)}$ on $\partial F^{(l)}$, for every $l \leq i - 1$.

If $k = n - 1$, at the $(n - 2)^{th}$ Step the function $\Psi^{(n-1)}$: $\Sigma_m^{(n-1)} \rightarrow \mathcal{Y}_{\varepsilon_h}$ is defined in such a way that $\Psi^{(n-1)}|_{\partial Q^{(i)}} : \partial Q^{(i)} \to \mathcal{Y}_{\varepsilon_h}$ is a homotopically trivial smooth $W^{1,2}$ function for every *n*-cube $Q^{(i)}$ of $\Sigma_m^{(n)}$. Therefore, we let $\widetilde{\Psi}^{(n)}$: $\Sigma_m^{(n)} \to \mathcal{Y}_{\varepsilon_h}$ be a smooth $W^{1,2}$ extension of $\Psi^{(n-1)}$.

For every $k = 1, \ldots, n - 1$, we now extend the function $U_h^{(m)}$ to $\mathcal{F}_m^{(k+2)}$.

If *Q* is a "horizontal" $(k + 2)$ -cube in $\mathcal{F}_m^{(k+2)}$, we define $U_h^{(m)}$ as in (10).

If \overline{O} is not "horizontal", let *F* be the $(k + 1)$ -face given by (15) and let $\varphi_F : F \to \mathcal{Y}_{\varepsilon_h}$ be defined by $\varphi_F := \widetilde{\Psi}_{|F}^{(k+1)}$, so that φ_F is a smooth map in $W^{1,2}(F, \mathcal{Y}_{\varepsilon_h})$. Let now $Q^{\pm} := \{z = (x, t) \in Q \mid \pm t \geq 0\}$ be the upper and lower half $(k + 2)$ -cubes of *Q*. Moreover, let v_Q^{\pm} : $Q^{\pm} \rightarrow \mathbb{R}^N$ be the solution of the Dirichlet problem on Q^{\pm} with boundary condition

$$
\begin{cases}\nv_Q^{\pm} = U_h^{(m)} & \text{on} \quad \partial Q^{\pm} \cap \{(x, t) \mid \pm t > 0\} \\
v_Q^{\pm} = \varphi_F & \text{on} \quad F\n\end{cases} \tag{16}
$$

and let $v_Q: Q \to \mathbb{R}^N$ be given by $v_Q(z) = v_Q^{\pm}(z)$ if $z \in Q^{\pm}$. If f_Q is the diffeomorphism between *Q* and $[-1/2m, 1/2m]^{k+2}$ given by Theorem 1, we modify the definition (11) of $U_h^{(m)}$ by setting for every $z \in Q$

$$
U_h^{(m)} := \begin{cases} v_Q \Big[f_Q^{-1} \Big(\frac{f_Q(z)}{2m\delta} \Big) \Big] & \text{if } \| f_Q(z) \|_{k+2} \le \delta \\ U_h^{(m)} \Big[f_Q^{-1} \Big(\frac{f_Q(z)}{2m \| f_Q(z) \|_{k+2}} \Big) \Big] & \text{if } \delta \le \| f_Q(z) \|_{k+2} \le \frac{1}{2m} \,. \end{cases} \tag{17}
$$

Similarly to the case $n = 2$, we easily infer that (12) holds again if $0 < \delta < 1/2m$ is sufficiently small, whereas this time $U_h^{(m)}$ is continuous on *Q* and with trace $T(U_h^{(m)})$ in $W^{1/2}(F, \mathcal{Y}_{\varepsilon_h})$. We conclude the k^{th} Step by setting $\Psi^{(k+1)} := T(U_h^{(m)})_{|\Sigma_m^{(k+1)}}$.

After the $(n - 1)^{th}$ Step, we obtain again (13) and hence, by (9), we conclude again with (8). The rest of the proof is similar to that of Theorem 1.

Acknowledgements. The second author thanks the Research Center Ennio De Giorgi of the Scuola Normale Superiore of Pisa for the hospitality during the preparation of this paper.

References

- 1. Adams, R.A.: Sobolev spaces. Academic Press, New York, 1975
- 2. Bethuel, F.: The approximation problem for Sobolev maps between manifolds. Acta Math. **167**, 153–206 (1992)
- 3. Bethuel, F.: Approximations in trace spaces defined between manifolds. Nonlinear Analysis **24**, 121–130 (1995)
- 4. Bourgain, J., Brezis, H., Mironescu, P.: On the structure of the Sobolev space $H^{1/2}$ with values into the circle. C.R. Acad. Sci. Paris **331**, 119–124 (2000)
- 5. Bourgain, J., Brezis, H., Mironescu, P.: *H*1*/*² maps with values into the circle: minimal connections, lifting, and the Ginzburg Landau equation. Publ. Math. I.H.E.S. **99**, 1–115 (2004)
- 6. Mucci, D.: A characterization of graphs which can be approximated in area by smooth graphs. J. Eur. Math. Soc. **3**, 1–38 (2001)
- 7. Rivière, T.: Dense subsets of $H^{1/2}(S^2; S^1)$. Annals of Global Analysis and Geometry **18**, 517–528 (2000)
- 8. Schoen, R., Uhlenbeck, K.: Boundary regularity and the Dirichlet problem for harmonic maps. J. Diff. Geom. **18**, 253–268 (1983)