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Abstract. For a reduced F -finite ring R of characteristic p > 0 and q = pe one
can write R1/q = Raq ⊕Mq , where Mq has no free direct summands over R. We
investigate the structure of F -finite, F -pure rings R by studying how the numbers
aq grow with respect to q. This growth is quantified by the splitting dimension and
the splitting ratios of R which we study in detail. We also prove the existence of
a special prime ideal P(R) of R, called the splitting prime, that has the property
that R/P(R) is strongly F -regular. We show that this ideal captures significant
information with regard to the F -purity of R.

1. Introduction

Let (R,m, k) be a reduced, local ring of positive characteristic p > 0 and Krull
dimension d. Throughout this paper, q = pe denotes a power of the characteristic,
R1/q is the ring of qth roots of elements in R, and R will usually be assumed to be
F -finite, i.e. R1/p is module finite over R. This implies that R1/q is module finite
over R for all q. Write R1/q = Raq ⊕Mq , which is a direct sum decomposition of
R1/q over R such that Mq has no free direct summands. We would like to inves-
tigate the size of the numbers aq , as q grows to infinity, by studying the splitting
dimension of the ring R (for short the s-dimension of R, as it was called in [3]).
(For precise definitions, we refer the reader to Section 2). The rings for which some
aq > 0 (equivalently, all aq > 0) are called F -pure. The purpose of this paper is
to demonstrate that there is much more structure to be discerned in such rings, and
at least part of this structure is captured by the s-dimension and the splitting ratios
(defined below).
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The behavior of the sequence {aq}q captures subtle information about the
structure of the ring R with regard to the natural action of Frobenius on it. This
behavior is intimately connected to the notions of F -purity and strong F -regular-
ity. In fact, our work starts with and extends ideas originating in papers of Huneke
and Leuschke ([13]), and Aberbach and Leuschke ([3]) where the relation between
the strong F -regularity and the F -signature of Gorenstein rings ([13]) and Co-
hen-Macaulay rings ([3]) are analyzed. One can think of the concept of strong
F -regularity as a very strong form of F -purity, as the definitions included below
show. Our work shows that there is a spectrum of F -pure behavior, ranging from
“merelyF -pure,” in the case that sdim(R) = 0 (i.e., essentially aq = 1 for all q), all
the way up to strong F -regularity (i.e., sdim(R) = dim(R)). Moreover, the central
notions of the paper, the splitting dimension and the Frobenius splitting ratios, will
quantify this behavior in a clear fashion.

An important outcome of our analysis is the discovery, in any F -pure ring R,
of a special prime ideal P(R), which we will call the splitting prime of R, whose
dimension (i.e. dim(R/P)) is an upper bound for the splitting dimension of R.
A significant feature of this prime ideal P is that it defines a strongly F -regular
quotient R/P . In the case of a Gorenstein ring R this ideal is the only F -stable
prime of R (the study of the F -stable primes of ring R was initiated in ([5]).

Let (R,m, k) be an F -finite F -pure ring. For simplicity in making an initial
statement, assume that the residue field of R is perfect. We let k be the largest inte-
ger such that lim infq

aq

qk
> 0 and call this number the s-dimension of R, sdim(R).

We can then prove

Theorem 1.1. There exists a prime ideal P = P(R) such that R/P is strongly
F -regular and sdim(R) ≤ dim(R/P). The prime P is 0 if and only if R is strongly
F -regular.

The proof of this theorem is contained in Theorem 3.3 and Theorem 4.8.
The first part of the paper will introduce the relevant concepts of the paper,

such as the splitting dimension and the Frobenius splitting ratios. Section 2 of the
paper contains some results about the splitting dimension, the splitting prime ideal
P , and the lower and upper Frobenius splitting ratios of a ring R. We also raise the
question of whether or not sdim(R) = P(R) and provide some evidence in support
of an affirmative answer. The study of these concepts continues in Section 3 where
we investigate the case of reduced rings that are images of regular local rings and
state our main Theorem (Theorem 4.8). The last section of the paper extends some
of the earlier results to the class of R-modules.

We would like to conclude our introduction by outlining some of the main facts
about F -purity and strong F -regularity. The notion of F -purity was introduced in
the work of Hochster and Roberts ([12]) and that of strong F -regularity in a paper
by Hochster and Huneke ([9]). Both concepts have been studied by many other
authors; the main facts about them, which are now considered standard, will be
listed below without any proofs or references.

Let F : R → R be the Frobenius homomorphism F(r) = rp. We denote by
Fe the eth iteration of F , that is Fe(r) = rq , Fe : R → R. One can regard R as an
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R-algebra via the homomorphism Fe. Although as an abelian group it equals R, it
has a different scalar multiplication. We will denote this new algebra by R(e).

Definition 1.2. R is F -finite if R(1) is module finite over R, or, equivalently (in
the case that R is reduced), R1/p is module finite over R. R is called F -pure if
the Frobenius homomorphism is a pure map, i.e, F ⊗R M is injective for every
R-module M .

If R is F -finite, then R1/q is module finite over R, for every q. Moreover,
any quotient and localization of an F -finite ring is F -finite. Any finitely generated
algebra over a perfect field is F -finite. An F -finite ring is excellent.

If R is F -finite, then R is F -pure if and only if the inclusion R ↪→ R1/p splits
over R. This is equivalent to the assertion that R ↪→ R1/q splits, for every q. The
reader should note that R1/q � R(e) as R-algebras, by sending r1/q to r .

Let Ro be the complement of the minimal primes of the ring R.

Definition 1.3. A reduced Noetherian F -finite ring R is strongly F -regular if for
every c ∈ Ro there exists q such that the R-linear map R → R1/q that sends 1 to
c1/q splits over R, or equivalently Rc1/q ⊂ R1/q splits over R.

The notion is related to that of F -purity by the fact that, in the definition above,
if a splitting exists for a choice of c ∈ Ro and q, then the inclusion R ↪→ R1/q ′

(sending 1 	→ 1) also splits for every q ′. Also, if a splitting ofRc1/q ⊂ R1/q exists,
then a splitting of Rc1/q ′ ⊂ R1/q ′

exists too for all q ′ ≥ q.
The notion of strongF -regularity localizes well, and all ideals are tightly closed

in strongly F -regular rings. Regular rings are strongly F -regular and strongly F -
regular rings are Cohen-Macaulay and normal. To show that a reduced Noethe-
rian and F -finite ring is strongly F -regular it is necessary and sufficient to show
that, for some c ∈ Ro such that Rc is strongly F -regular, there exists q such that
Rc1/q ⊂ R1/q splits over R.

Let ER(k) be the injective hull of the residue field of R. Then R is strongly
F -regular if and only if 0∗

ER
= 0. The ideal AnnR(0∗

ER
) is called the CS-test ideal

of R and is denoted by τ̃ (R). Note that τ̃ (R) = R if and only if R is strongly
F -regular.

Definition 1.4. The ring (R,m) is approximately Gorenstein if R has a sequence
of m-primary irreducible ideals {It }t cofinal with the powers of m. See [8].

By taking a subsequence, we may assume that It ⊃ It+1. For each t , let ut be an
element of R which represents a socle element modulo It . Then there is, for each
t , a homomorphism R/It ↪→ R/It+1 such that ut + It 	→ ut+1 + It+1. The direct
limit of the system will be the injective hullE = ER(R/m) and each ut will map to
the socle element of E, which we will denote by u. Hochster has shown that every
excellent, reduced local ring is approximately Gorenstein ([8]). In particular, every
F -finite reduced ring is approximately Gorenstein.

2. Notation and terminology

Let (R,m, k) be a reduced, local, F -finite ring of positive characteristic p > 0
and Krull dimension d . As in the introduction, let
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R1/q = Raq ⊕Mq

be a direct sum decomposition of R1/q such thatMq has no free direct summands.
If R is complete, such a decomposition is unique up to isomorphism, but it is
always the case that the values of the aq are independent of the decomposition. As
mentioned in the introduction, we investigate here the size of the numbers aq with
respect to q.

For a local ring (R,m, k), we set α(R) = logp[k : kp]. For I an ideal of R,
let I [q] = (iq : i ∈ I )R. It is easy to see that, for an m-primary ideal I of R,
λR(R

1/q/IR1/q) = λ(R/I [q])qα(R). If P is a prime ideal of R, then α(P ) will
simply denote α(RP ). It is often convenient to understand many of the statements
in this paper first in the case that k is perfect, i.e., α(R) = 0. However, in order
to use induction and have the concepts localize well we must keep track of the
exponent α(R).

Before we proceed, we would like to remind the reader of the following fact
([14]).

Lemma 2.1. LetR be an F -finite Noetherian ring of characteristic p. Then for any
prime ideals P ⊂ Q of R,

α(P ) = α(Q)+ ht(Q/P ).

We would like to first define the notion of F -signature as it appears in [3]
and [13].

Definition 2.2. Let R be an F -finite local ring. The F -signature of R is

s(R) = lim
q→∞ aq/q

d+α(R),

if it exists.

The following result, due to Aberbach and Leuschke, holds:

Theorem 2.3. Let (R,m, k) be a reduced Noetherian ring of positive characteris-
ticp. Then lim infq→∞ aq/q

d+α(R) > 0 if and only if lim supq→∞ aq/q
d+α(R) > 0

if and only if R is strongly F -regular.

Moreover, Huneke and Leuschke proved that if R is local, reduced and Go-
renstein, then the F -signature exists. Yao has extended this result to rings that are
Gorenstein on their punctured spectrum. Recently, the authors of this paper have
shown the existence of the F -signature for N-graded rings and isolated non Q-Go-
renstein rings, see [2].

We are now able to define the central concepts to be investigated in this paper.

Definition 2.4. Let R be an F -finite local ring. The s-dimension of R, sdim(R), is
the largest integer k such that

lim inf
q→∞

aq

qk+α(R)

is not zero. If R is not F -pure then sdim(R) = −∞. The lower Frobenius split-
ting ratio of R, r−F (R), equals the value of the limit introduced above, that is
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r−F (R) = lim infq→∞
aq

qsdim(R)+α(R) . Similarly, the upper Frobenius splitting ratio of

R, r+F (R), equals lim supq→∞
aq

qsdim(R)+α(R) . Whenever r−F (R) = r+F (R), we call this

number the Frobenius splitting ratio of R, rF (R).
Whenever sdim(R) = dim(R) (equivalently, R is strongly F -regular), we re-

cover the notion of F -signature of R, denoted by s(R), and, we will use this
terminology whenever we are in such a special case. In particular, whenever
sdim(R) = dim(R), we will be speaking of the lower and upper signature of R,
denoted accordingly by s−(R) and s+(R), instead of its lower and, respectively,
upper Frobenius splitting ratio.

We show below that R is F -pure if and only if sdim(R) ≥ 0.

Remark 2.5. In [15] the notion of minimal relative Hilbert-Kunz multiplicity is
defined, denoted mHK(R). Theorem 2.3 shows that this number is non-zero if and
only if R is strongly F -regular. In our terminology, mHK(R) = 0 if sdim(R) <
dim(R) and mHK(R) = s−(R) otherwise.

The following result is classical and very helpful in understanding the number
of free direct summands of R1/q . We will quote it here in the form stated in [11].

Theorem 2.6. Let (R,m, k) be a local ring and F be a free finitely generated
R-module. Let M be a finitely generated R-module and φ : F → M an R-linear
map. Then φ splits over R if and only if φ ⊗ ER(k) is an injective map.

If M is a finite R-module that has no nonzero free direct summands, then for
every m ∈ M , the map R → M that sends 1 to m does not split. By tensoring
with ER(k) and using the above Theorem, we conclude that the map ER(k) →
ER(k)⊗M that sends e to e⊗m is not injective. Denote by u the socle generator
for ER(k). The following holds:

Proposition 2.7. Let (R,m, k) be a local ring, letM be a finite R-module, and let
u be the socle generator of ER(k). Then M has no nonzero free direct summands
if and only if for every m ∈ M , u⊗m = 0 in ER(k)⊗M .

Proof. For each m ∈ M , define fm : R → M by fm(r) = rm. Then fmdoes not
split overR if and only if fm⊗ER(k) is not injective if and only if ker(fm⊗ER(k))
is nonzero (Theorem 2.6). This holds if and only if ker(fm ⊗ER(k)) intersects the
socle ofER(k) non trivially. But, Soc(ER(k)) = Ru. So,fm⊗ER(k) is not injective
if and only if u⊗m = 0. ��

The following Corollary will prove to be of much use in what follows. Yao has
also noted this result in his recent work [16].

Corollary 2.8. Let (R,m, k) be an F -finite reduced local ring of characteristic p.
Let R1/q = Raq ⊕Mq be a direct sum decomposition of R1/q over R, where Mq

has no R-free direct summands. Define

Jq := {r ∈ R1/q : r ⊗ u = 0 in R1/q ⊗ ER(k)}.
Then, aq = λR(R

1/q/Jq).
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Proof. R1/q = Raq ⊕Mq ; so, by tensoring with Ru ⊂ ER(k), we get

R1/q ⊗ R · u = (Raq ⊗ R · u)⊕ (Mq ⊗ R · u).
Map this further to R1/q ⊗ ER(k) and apply Proposition 2.7 to Mq . We have that
Im(R1/q ⊗R ·u → R1/q ⊗ER(k)) = Im(g : Raq ⊗Ru → R1/q ⊗ER(k)), where
g(a⊗ ru) = a⊗ ru. But g factors through Raq ⊗ER(k) → R1/q ⊗ER(k) which
is an injective map (again by Theorem 2.6), so g is also injective. But λ(Ru) = 1,
and hence λ(Raq ⊗ Ru) = aq. In conclusion,

λ(Im(R1/q ⊗ R · u → R1/q ⊗ ER(k))) = aq.

There is a natural R-linear map R1/q → R1/q ⊗ ER(k) that sends r ∈ R1/q to
r ⊗ u. The kernel of this map equals Jq and the theorem is proved. ��

3. Splittings, s-dimension and strong F -regularity

Let Fe : R → R be the eth iteration of the Frobenius map. We can regard R as
a new (right) R-algebra, under this map, which we denote by R(e). Corollary 2.8
leads us to define the following sequence of ideals.

Definition 3.1. Let (R,m, k) be an F -finite local ring. We define

Ae = Ae(R) = {r ∈ R : r ⊗ u = 0 ∈ R(e) ⊗R ER(k)}.
If R is not reduced then the map R → R(e) cannot be injective for e > 0, and
hence by Theorem 2.6, Ae = R for all e ≥ 1. So assume that R is reduced (hence
approximately Gorenstein). Then clearly, Ae = (Jq)

[q] (note that R1/q � R(e)

by r1/q 	−→ r). In fact, Ae is an ideal both of R and R(e). Using the notation in
Definition 1.4, we see that Ae = ∪t (I [q]

t : uqt ). We claim that the sequence {Ae}e
is non-increasing. If R is not F -pure then Ae = R for all e. Otherwise, let r ∈ Ae.
For t � 0, ruqt ∈ I

[q]
t where q = pe, hence rpuqt ∈ I

[q]
t . Taking pth roots and

applying the splitting yields, ruq/pt ∈ I [q/p]
t , showing that Ae ⊆ Ae−1.

Definition 3.2. Let (R,m, k) be an F -finite reduced local ring. Let

P(R) = {r ∈ R : r ⊗ u = 0 ∈ R(e) ⊗R ER(k) for all e � 0} = ∩eAe.
If the ring is understood we will sometimes refer to this ideal simply as P .

As we will show in Theorem 3.3 below, the ideal P(R) is prime.
Since u is the socle generator for ER(k), we have rq ⊗ u = 1 ⊗ ru, which

is 0 if r ∈ m, so m[q] ⊂ Ae for every q. On the other hand, if u /∈ 0∗
ER

, then
P = 0 (see [1], Proposition 2.4). If R is a domain, then P is nonzero only if R is
not strongly F -regular, since 0∗

ER
= 0 in strongly F -regular rings (see also Corol-

lary 3.4). The reader is invited to note that there is a similarity between the ideal
P(R) introduced here and the concept of F -stable primes ofR introduced in [5]. In
fact, when R is Gorenstein, then R admits a unique F -stable prime, which, indeed,
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is P . This similarity is underlined by our next Theorem that asserts that P(R) is in
fact a prime ideal of R. We will refer to P(R) as the splitting prime for R.

Before we state the result, we need to introduce some notation. For every c ∈ R,
one can define an R-linear map φc,e : R → R1/q, φc,e(1) = c1/q , where q = pe.

Theorem 3.3. Let (R,m, k) be an F -finite reduced local ring of characteristic p.
Then, Ae = {c ∈ R : φc,q does not split over R} and P(R) is a prime ideal or the
unit ideal.

Proof. By Theorem 2.6 we know thatφc,e splits if and onlyφc,e⊗ER(k) is injective.
Take c ∈ Ae. Then c1/q belongs to Jq . Hence c1/q ⊗ u = 0, and therefore

φc,e does not split. Now, assume that c ∈ R is an element such that the map φc,q
does not split. Then again u ∈ Ker(φc,e ⊗ER(k)) which means that c1/q ∈ Jq . So,
c ∈ Ae. This shows the first assertion of the Theorem.

For the second assertion assume that P(R) is not the unit ideal and let us write

P = {c ∈ R : φc,e does not split for any e � 0}.
If P is not prime, then there exist a and b not in P such that ab ∈ P . Since a and b
are not in P we can find e1 and e2 large enough such that the R-linear maps φa,e1

and φb,e2 split. Let θ1 : R1/q1 → R an R-linear that maps a1/q1 to 1. This map
exists because φa,e1 splits over R. Similarly, we can find θ2 : R1/q1q2 → R1/q1 ,
such that θ2(b

1/q1q2) = 1 and θ2 isR1/q1 -linear (we can do this by taking the q1-root
of a splitting for φb,e2 ).

Let θ = θ1θ2. It is easy to check that θ is R-linear and θ((aq2b)1/q1q2) = 1. So,
for e0 = e1 + e2, φaq2b,e0 splits.

We know that ab ∈ P , and this implies that aq2b ∈ P . So, if we fix e2, this
means that φaq2b,e does not split for any e � 0 large enough. This is a contradic-
tion, since we have just shown the existence of a splitting for values q of the form
q = q0 = pe0 = pe1+e2 , where q1 = pe1 can be arbitrarily large.

In conclusion, P is a prime ideal. ��
Corollary 3.4. Let (R,m, k) be an F -finite reduced local ring of characteristic p.
Then, R is F -pure if and only if P(R) is a proper ideal if and only if sdim(R) ≥ 0.
In this case,

sdim(R) ≤ dim(R/P).
The ring R is strongly F -regular if and only if P = 0. Also, dim(R/P) = 0 if and
only if P = m if and only if sdim(R) = 0, in which case rF (R) = 1.

Proof. R is F -pure if and only if some aq > 0 if and only if Ae is proper, and
since the sequence {Ae}e is non-increasing this occurs if and only if P(R) �= R.
By Theorem 2.8, aq = λ(R1/q/Jq) and hence aq = λ(R/Ae) · qα(R) with α(R) =
logp[k : kp] . From this we can see that R is F -pure if and only if sdim(R) ≥ 0.

We next show that sdim(R) ≤ dim(R/P). Since m[q] ⊂ Ae, for every q = pe,
we have that m[q] + P ⊂ Ae. Then aq/qk+α(R) = λ(R/Aq)/q

k ≤ λ(R/m[q] +
P)/qk . If k > dim(R/P), then by the theory of Hilbert-Kunz functions,
limq→∞ λ(R/m[q] + P)/qk = 0. So, sdim(R) ≤ dim(R/P).
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The ideal P = 0 if and only if for all c �= 0 there exists a q such that φc,q splits;
this is precisely the definition of a strongly F -regular ring.

Since P is prime, dim(R/P) = 0 if and only if P = m. Clearly P �= R if and
only if R is F -pure if and only if Ae �= R for all e. So, P = m if and only if R is
F -pure andAe = m for all e. In conclusion, aq/qα(R) = λ(R/Ae) = λ(R/m) = 1.
Hence, in particular, rF (R) = 1. ��
Remark 3.5. We note the following facts:

1) The proof of the above Corollary shows that, in fact, when R is F -pure and
P = m (an important such case is that of an isolated non-strongly F -regular
point), then aq = qα(R).

2) Assume thatR is strongly F -regular. A result of Aberbach ([1]) shows that there
exists eo such thatAe ⊂ m[q/qo] for every e ≥ eo. This shows that aq/qd+α(R) ≥
λ(R/m[q/qo])/qd ; since eHK(m) > 0, we conclude that sdim(R) = d and
rF (R) ≥ eHK(m)/q

d
o . This result was first established in [3] and our remark is

along the lines of the argument given there.
3) Also, let us take c ∈ τ̃ (R) = AnnR(0∗

ER
), a CS-test element. The ring Rc

is strongly F -regular. If c /∈ Ae, for some e, then R is strongly F -regular (as
explained in the introduction). So, ifR is not stronglyF -regular, then τ̃ (R) ⊆ P .

The splitting prime of R does not localize well in general. The most obvi-
ous example is when P(R) = m. Then for all Q ∈ Spec(R), RQ is F -pure, so
P(RQ) �= RQ = P(R)RQ. However, when Q ⊇ P(R) we do get a nice localiza-
tion result.

Proposition 3.6. Let (R,m, k) be a local ring of characteristic p. Then for every
Q ∈ Spec(R) such that P ⊂ Q we have

P(RQ) = P(R)RQ.
Proof. We first note that (R1/q)Q = (RQ)

1/q = R1/q ⊗ RQ. Moreover, if φc,e
splits, then φc,e ⊗ RQ splits, too.

Take c/s ∈ P(RQ). Then c/1 belongs to P(RQ). We would like to show that
c ∈ P(R). Assume the contrary; then, φc,e : R → R1/q does split for e � 0. By
tensoring with RQ we get a splitting over RQ, which is a contradiction.

Now, take c ∈ P(R). We want to show that c/1 belongs to P(RQ). If not,

for large q, the map RQ → R
1/q
Q that sends 1 to c1/q/1 splits. So, for each such

q = pe, there is an element dq /∈ Q and a map R1/q → R that sends c1/q to dq .
But, dq is not in P(R), since P(R) ⊂ Q. So, for q ′ � 0, there is an R-linear map

R1/q ′ → R that sends d1/q ′
q to 1. Combining these last two assertions, we conclude

that c is not in P(R) and this is a contradiction. ��
Proposition 3.7. Let R be an F -pure local ring. Then Q ⊂ P , for every Q ∈
Min(R).

Proof. Let c ∈ R. For every q, the map φc,q is not injective if c is a zero-divisor on
R. Since R is reduced this means that c belongs to some minimal prime Q of R.
So, if c ∈ Q, withQ a minimal prime, then φc,q cannot split over R for any q. The
assertion of the Proposition follows. ��
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We would like to show that the splitting prime of the completion is extended.
In order to do this we need the next Lemma.

Lemma 3.8. Let (R,m) → (S, n) be a faithfully flat map of F -finite local reduced
rings such that the closed fiber S/mS is regular of dimension n. Then Ae(S) =
Ae(R)S + n[q]. If sdimR = 0, then sdim S = n, P(S) = mS, and r−F (S) =
r+F (S) = 1.

Proof. Both rings are approximately Gorenstein, and the closed fiber S/mS is reg-
ular of dimension n. Let z1, . . . , zn be a sequence of elements in S that define
a regular sequence on S/mS. Then for any q = pe, zq1 , . . . , z

q
n form a regular

sequence on S/mS and, in fact, R → S/(z
q
1 , . . . , z

q
n)S if a faithfully flat map.

If {It }t is a sequence of irreducible m-primary ideals of R, cofinal with the
powers of m, then {Jt }t = {ItS + (zt1, . . . , z

t
n)}t is a sequence of irreducible n-

primary ideals of S, cofinal with the powers of n. Let ut be elements of R which
are socle elements modulo It . Then the images of the ut · (z1 · · · zn)t−1 in S are
socle elements modulo Jt . Moreover, R/I [q]

t → S/I
[q]
t S is flat with regular closed

fiber of dimension n. Since R/I [q]
t has depth 0, we see that S/I [q]

t S has depth n. It
follows that S/I [q]

t S is Cohen-Macaulay. In particular, this shows that z1, . . . , zn

form a regular sequence on S/I [q]
t S, because their images in S/I [q]

t S form a system
of parameters.

Let us compute Ae(S) = ∪t ((I [q]
t S + (z

tq
1 , · · · , ztqn )) : uqt · (z1 · · · zn)(t−1)q).

If a ∈ S such that

a · uqt · (z1 · · · zn)(t−1)q ∈ I [q]
t S + (z

tq
1 , · · · , ztqn )

then, by using that z1, . . . , zn form a regular sequence on S/I [q]
t S, we have that

au
q
t ∈ I [q]

t S + (z
q
1 , . . . , z

q
n).

This is equivalent to a ∈ (I [q]
t S + (z

q
1 , . . . , z

q
n)) :S u

q
t ).

By flatness of S/(zq1 , . . . , z
q
n) over R, (I [q]

t S + (z
q
1 , . . . , z

q
n)) :S u

q
t = (I

[q]
t :R

u
q
t )S + (z

q
1 , . . . , z

q
n). In conclusion, Ae(S) = ∪t ((I [q]

t :R u
q
t )S + (z

q
1 , . . . , z

q
n))

and hence Ae(S) = Ae(R)S + (z
q
1 , . . . , z

q
n). So, if sdim(R) = 0, then Ae(S) =

m[q]S + (z
q
1 , . . . , z

q
n). Hence, aq = λS(S/Ae(S)) = λS(S/(mS + (z

q
1 , . . . , z

q
n))

which shows that sdim(S) = n. ��
Proposition 3.9. Let (R,m) and (S, n) be local, reduced, F -finite rings of charac-
teristic p and let f : (R,m) → (S, n) be a flat local map with regular fibers. Then
Ae(S) = Ae(R)S + n[q] for every q = pe, and P(S) = P(R)S. In particular, if R
is local, reduced and F -finite, then Ae(R)R̂ = Ae(R̂) and P(R)R̂ = P(R̂).
Proof. The assertion that Ae(S) = Ae(R)+ n[q] has been shown in Lemma 3.8.

To see that P(S) = P(R)S we first observe that P(S) = ∩eAe(S) is a prime
ideal of S lying over P(R).

We first show that any prime of S that is minimal over P(R)S is in fact contained
in P(S). Let Q �= P(S) be a prime ideal of S that is minimal over P(R)S. Since
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R → S is flat thenQ lies over P . Thus the map RP(R) → SQ is faithfully flat and
P(R)SQ = QSQ. By Lemma 3.8, sdim(SQ) = 0. In particular, Ae(SQ) = QSQ
for all e. However, if we take c ∈ Q − P(S), then for q � 0, c1/qS ⊆ S1/q

splits over S. This remains true after localizing, showing that Ae(SQ) �= QSQ, a
contradiction.

In conclusion, Q ⊆ P(S).
Note that P(R) is prime in R, and since R → S has regular fibers, then P(R)S

is a radical ideal in S.
Now, we would like to argue that P(S) itself is a minimal prime of P(R)S. The

homomorphism RP(R) → SP(S) is flat because P(S) lies over P(R). Its closed
fiber is regular and sdim(RP(R)) = 0. If the dimension of its closed fiber is positive,
then, by Lemma 3.8 below, sdim(SP(S)) > 0. However, this is impossible. In con-
clusion, the closed fiber of RP(R) → SP(S) is 0-dimensional, so P(S) is minimal
over P(R)S.

Now, since P(R)S is radical and its only minimal prime is P(S), we obtain the
equality P(R)S = P(S).

The last assertion about the completion follows from the fact that, under our
hypotheses, R is excellent, so all the fibers of the completion homomorphism are
smooth, hence regular. ��

Proposition 3.9 enables us to reduce the study of the s-dimension and the Frobe-
nius splitting ratio of reduced excellent rings to the case of complete local rings.
These rings are images of regular local rings. Following in the paths of Fedder,
Glassbrenner, and Cowden-Vassilev we can analyze the finer structure of F -pure
rings in this way.

4. Images of regular rings

In this section, we continue our analysis in the case of local rings that are images of
regular local rings. The more general case of reduced F-finite rings can be reduced
to this class of rings by Proposition 3.9.

Let us write R = S/I where S is regular and local and π : S → R the natural
projection. Assume that R is reduced, i.e., I is a radical ideal. There are two results
that describe under what conditions such rings are F -pure or strongly F -regular.
The first one is due to Fedder (Theorem 1.12 in [6]). It does not require R to be
F -finite.

Theorem 4.1. Let (S,m, k) be a regular local ring of characteristic p and let
R = S/I . Then R is F -pure if and only if (I [p] : I ) �⊂ m[p].

The idea behind this criterion for F -purity has been used by Glassbrenner to
give a similar criterion for strong F -regularity (Theorem 2.3 in [7]). We will state
it here in the form we need it later.

Theorem 4.2. Let (S,m, k) be a local regular ring and let R = S/I and c ∈ S.
Then, for every q = pe, the map φπ(c),e splits if and only if c /∈ m[q] :S (I [q] : I ).
Moreover, R is strongly F -regular if and only if I = ∩q

(
m[q] :S (I [q] : I )

)
.



The structure of F -pure rings

Using the notation introduced previously, we see that Ae = (
m[q] :S (I [q] :

I )
)
/I. So, aq = qα(R) λS(S/(m

[q] :S (I [q] : I ))). Note that S/m[q] is zero dimen-
sional and Gorenstein. The quotient S/

(
m[q] :S (I [q] : I )

)
is an S/m[q]-module

and its Matlis dual is (I [q]:I )+m[q]

m[q] . Hence, aq = qα(R) λS(
(I [q]:I )+m[q]

m[q] ).
Although Theorem 4.2 was stated in [7] under the assumption that S is local,

regular and F -finite, one can note that the F -finiteness hypothesis can be removed
along the lines of the argument used by Fedder in proving his criterion for F -purity
(where we interpret “strongly F -regular” to mean that 0∗

E = 0). The point is that
one can make a flat base change, by enlarging the residue field to its perfect closure,
to get to the case where S is F -finite. Strong F -regularity commutes with this base
change (see, for example, Theorem 3.6 [1]).

Remark 4.3 (for proofs, see [6], 1.4 and 1.5). For every q = pe, HomS(S
1/q, S)

has an S1/q - structure given by s1/q · φ(t1/q) := φ((st)1/q), for every s, t ∈ S and
φ ∈ HomS(S

1/q, S). Moreover, HomS(S
1/q, S) � S1/q . Let T be a generator for

HomS(S
1/q, S) and s1/q ∈ S. Then s1/qT defines an element in HomR(R

1/q, R)

if and only if s1/q ∈ (IS1/q : I 1/q) if and only if s ∈ (I [q] : I ).

The following result is similar to Theorem 3.1 in [4], in which Cowden-Vassilev
showed that if R is F -pure then so is R/τ(R), where τ(R) is the test ideal of R.
We give two proofs: one is similar to the proof of Theorem 3.1 given in [4], while
the other one uses some ideas originating in Fedder’s work, [6].

Proposition 4.4. Let (S,m, k) be an F -finite local regular ring and let R = S/I

be reduced and F -pure. Set Q to be the full preimage of P(R) in S. Then for all q,
(I [q] : I ) ⊂ (Q[q] : Q). In particular, if R is F -finite then sdim(R/P) ≥ sdim(R).

Proof. Proof 1. R is excellent and reduced, so it is approximately Gorenstein. Let
{It } be a collection of irreducible m-primary ideals in R cofinal with the powers of
m, and denote by {Jt } their full preimages in S. Let ut be an element of S mapping
to the socle in S/Jt . Then we may describe Q as Q = ∩q(∪t (J [q]

t + I ) :S u
q
t ).

Let w ∈ (I [q] : I ) and v ∈ Q. We want to show that vw ∈ Q[q] = (∩q ′ ∪t
(J

[q ′]
t + I ) : uq

′
t

)[q], which by flatness of the Frobenius endomorphism over S is

∩q ′ ∪t
(
(J

[qq ′]
t + I [q]) : uqq

′
t

)
. For all q ′ there is a t such that vuqq

′
t ∈ J [qq ′]

t + I ,

hence vwuqq
′

t ∈ J [qq ′]
t + I [q]. This shows that vw ∈ Q[q], as desired.

Proof 2. Let T be as in Remark 4.3. In the light of this Remark we need to
show that if ψ := s1/qT ∈ HomR(R

1/q, R), then (sQ)1/q ∈ QS1/q . By the
same Remark, this is equivalent to the assertion that ψ induces an R-linear map
R1/q/Q1/q → R/Q.

We can define an R1/q ′
-linear map by ψq ′ : R1/qq ′ → R1/q ′

, ψq ′(a) =
ψ(aq

′
)1/q

′
. This map is, in particular, R-linear.

Take c ∈ Q; then, c1/qq ′ ⊗ u = 0 in R1/qq ′ ⊗ ER(k) where u is the socle
generator in ER(k).

Clearly, ψq ′(c1/qq ′
)⊗ u = 0. That is, ψ(c1/q)1/q

′ ⊗ u = 0. So, s1/qT (c1/q) =
ψ(c1/q) ∈ Q. Hence, s1/qT takes Q1/q into Q. So, s1/qT defines an element in
HomR(R

1/q/Q1/q, R/Q), and hence s ∈ (Q[q] : Q).
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The last statement now follows, after noting that α(R) = α(R/P), since

aq(R) = qα(R) λS

(
I [q] : I + m[q]

m[q]

)

≤ qα(R/P) λS
(Q[q] : Q + m[q]

m[q]

)

= aq(R/P).

��
Remark 4.5. This result improves Theorem 3.4, since the s-dimension of a ring is
bounded above by its dimension.

Corollary 4.6. LetR be a characteristicp localF -pure ring that is a homomorphic
image of a regular local ring (S,m, k), that is R = S/I . Then sdim(RP ) = 0.

Proof. Denote by k(P) the residue field of the localization of R at P . Apply The-
orem 4.4 to RP . We get that 0 = sdim(k(P)) ≥ sdim(RP ) and we are done.
��
Theorem 4.7. Let R = S/I be a characteristic p local F -pure, F -finite ring that
is a homomorphic image of a regular local ring S. ThenR/P is strongly F -regular.

Proof. If sdimR = 0, i.e., P = mR this is clear. Thus we may assume that
sdimR > 0. If R/P is not strongly F -regular we may localize a prime minimal
among the set {P |(R/P)P is not strongly F -regular}. After relabeling this ring R,
we note that the s-dimension is still positive. Thus we can assume that (R/P)Q is
strongly F -regular for all Q, different from m, containing P . We know that R/P
is F -pure by Proposition 4.4.

If R/P is not strongly F -regular, then P(R/P) equals mR/P since mR/P =
τ̃ (R/P) ⊆ P(R/P). But then sdim(R/P) = 0, a contradiction. ��

Now we are in a position to describe the s-dimension of a local ring of positive
characteristic. We also give some information on the splitting ratios. We expect
that the upper and lower splitting ratios always coincide. At present, we can only
prove this if sdim(R) ≤ 1, however, we can give an upper bound on the ratio
r+F (R)/r

−
R (F ), if sdim(R) = dim(R/P).

Theorem 4.8. Let R be an F -pure, F -finite local ring of positive characteristic.
Then

i) R/P is strongly F -regular, sdim(R) ≤ dim(R/P). Moreover, if sdim(R) =
dim(R/P), then r−F (R) ≤ s−(R/P) ≤ 1, r+F (R) ≤ s+(R/P) ≤ 1.

ii) If sdim(R) = dim(R/P), then r+F (R) ≤ r−F (R) · eHK(R/P). This shows that,
in this case, r+F (R) > 0 if and only if r−F (R) > 0.

iii) If dim(R/P) = 1, then sdim(R) = 1 and R/P is a DVR.
iv) If dim(R/P) ≤ 1 then r+F (R) = r−F (R).
v) dim(R/P) = dim(R) if and only if R is strongly F -regular. In this case,
s−(R) ≤ s+(R)eHK(R).

vi) depthR ≥ sdimR.



The structure of F -pure rings

Proof. One can pass to the completion of R by Proposition 3.9, and hence assume
that R = S/I with S regular local.

For part i), let us note that since R is a homomorphic image of a regular ring,
R/P is strongly F -regular by Theorem 4.7.

The inequalities stated in i) follow easily from the proof of Proposition 4.4.
To prove ii), let j = sdim(R) and choose two sequences of indices q and q ′

such that λ(R/Ae)/qj approaches r−F and λ(R/Ae+e′)/(qq ′)j approaches r+F . Let

us note that P + A
[q]
e′ ⊂ Ae+e′ .

Claim:

λ(R/Ae+e′) ≤ λ(R/P + A
[q ′]
e ) ≤ λ(R/Ae) · λ(R/P + m[q ′]).

Indeed, the left side of the inequality is immediate since P +A[q]
e′ ⊂ Ae+e′ . Set

k = λ(R/Ae) and write a composition seriesAe = Io ⊂ · · · ⊂ Ii ⊂ · · · ⊂ Ik = R.

Then (P + A
[q ′]
e ) ⊂ · · · ⊂ (P + Ii) ⊂ · · · ⊂ (P + Ik) = R. The succes-

sive quotients of this filtration are homomorphic images of R/P + m[q]. Hence,

λ(R/Ae+e′) ≤ λ(R/P + A
[q ′]
e ) ≤ k · λ(R/P + m[q]).

By dividing on both sides by (qq ′)j , with j = sdim(R) = dim(R/P), and
letting q, q ′ approach infinity we obtain the inequality stated in ii).

For iii), note that a one-dimensional strongly F -regular ring R is a DVR. Part
iv) follows at once from i), ii) and iii) by noting that the Hilbert-Kunz multiplicity
of a local regular ring equals one.

For v), dim(R/P) = dim(R) implies that P is a minimal prime of R. Since P
contains all the minimal primes of R, it follows that P is, in fact, the only minimal
prime of R. But R is reduced, so P = 0. Hence, R is strongly F -regular.

That depthR ≥ sdimR follows from [17], Lemma 2.2. ��
Question 4.9. Is is true that, for a local reduced and F -finite ring (R,m, k) ,
sdim(R) = dim(R/P)?

Our results so far seem to indicate an affirmative answer to this question, since
we have the equality sdim(R) = dim(R/P) if dim(R/P) ∈ {0, 1, dim(R)}.
Proposition 4.10. Let R = S/I be a Stanley-Reisner ring, then

∑
Q = P where

the sum runs over all the minimal primes Q of R.

Proof. By the definition of Stanley-Reisner rings, I is a square-free monomial
ideal. In particular, I can be written as an intersection of some prime ideals in S,
each of them generated by a string of indeterminates.

Let us assume that the union of all the minimal primes of R lifted to S involves
all the indeterminates of S. But then

∑
Q = m ⊂ P ⊂ m and we are done.

In the general case, let us assume that x1, . . . , xk are all the indeterminates
that do not appear in any of the minimal primes of R. Then one can write R =
A[x1, . . . , xk], with A a Stanley-Reisner ring that satisfies the condition on the
minimal primes of the previous paragraph. Hence mA = P(A). It is easy to show
that P(R) = P(A)R. But then, P(R) = mAR and this equals the sum of all the
minimal primes Q of R as it can be easily checked. ��
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5. The module case

In what follows, we would like to extend some of our considerations to the case of
R-modules. Let M be a finitely generated R-module. For every e, we can define
a new R-module on the Z-module M with the R-multiplication given as follows:
r ·m = rp

e
m, for every r ∈ R and m ∈ M . Denote this new module by M(e) and,

as before, let us denote q = pe. The reader should note that M(e) = M as abelian
groups.

Denote by aq the maximal rank of a free direct summand ofM . Hence,M(e) =
Raq ⊕ Mq with Mq an R-module with no free direct summands. Also, for every
m ∈ M , denote φm,e : R → M(e) the map that takes r to rqm for every r ∈ R.
This is clearly a map of R-modules.

Definition 5.1. Let u be the socle generator for ER(k). For every positive integer
e, one can define

Ae(M) = {m ∈ M(e) : m⊗ u = 0}
in M(e) ⊗ ER(k). Here M(e) is the R-module just introduced above. It is easy to
see that Ae(M) is a submodule ofM = M(e) over R with either of the two module
structures that can be considered. Let us also define, P(M) := ∩e�0Ae(M) seen
as an R-submodule of M .

Note that the above Definition naturally extends the Definition 3.1.
Also, m[q]M + P(M) ⊂ Ae(M) for every e: if r ∈ m and m ∈ M , then

rqm⊗ u = m⊗ ru = m⊗ 0 = 0.
The following Theorem is similar to the Theorem 2.8.

Theorem 5.2. With the notations introduced above, one has that

λR(M/Ae(M)) · qα(R) = aq.

Proof. Regard Ae(M) as an R-submodule of M . Then (M/Ae(M))
(e) =

M(e)/Ae(M).
The proof is similar to that of Theorem 2.8 and one can show that aq =

λR(M
(e)/Ae(M)). But, for every R-module N one has that λR(N(e)) = λR(N) ·

qα(R). Hence, aq = λR(M/Ae(M)) · qα(R). ��
Theorem 5.3. Let M be a finitely generated R-module and r ∈ R and m ∈ M .
Then rm ∈ P(M) if and only if r ∈ P(R) or m ∈ P(M).
Proof. The proof is similar to the that of Theorem 3.3.

Let r ∈ P(R) and m ∈ M . We need to show that rm ∈ P(M). Consider the
map R(e) → M(e) that sends r ′ to r ′m (seen as an element of M under the usual
R-module structure) for every r ′ ∈ R(e). Tensor this map with ER(k) and let u be
the socle element of this module. For every e � 0, r ⊗ u = 0. This maps further
to zero, so rm⊗ u = 0 for e � 0. Hence, rm ∈ P(M).

For the converse implication, assume that rm ∈ P(M) and that r /∈ P(R) and
m /∈ P(M).
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Since r /∈ P(R), we have that for e � 0 the map φr,e : R → R(e) splits over
R. Similarly, for m /∈ P(M), we have that φm,e′ : R → M(e′) splits over R.

Fix e′ � 0 so that φm,e′ splits over R. Let q ′ = pe
′
. We will show that

rq
′
m /∈ P(M) which contradicts the fact that rm ∈ P(M). This will prove the

converse implication.
Take e � 0, so that φr,e splits. Define the map ψm,e′ : R(e) → M(e+e′) by

ψm,e′(r
′) = r ′q

′
m. This is essentially the map φm,e′ “lifted” to R(e). It is an R-

linear map and it splits over R. The composition of the two maps φr,e and ψm,e′
defines an R-linear map R → M(e+e′) that sends 1 → rq

′
m. This map splits over

R for all e � 0 (or, equivalently, e + e′ � 0) and hence rq
′
m /∈ P(M). ��

We can define the s-dimension and the Frobenius splitting ratio of anR-module.

Definition 5.4. The s-dimension of M, sdim(M), is the largest integer k such that

lim inf
q→∞

aq

qk+α(R)

is not zero. The lower Frobenius splitting ratio of M , rF (M), equals the value of
the limit introduced above, that is r−F (M) = lim infq→∞

aq

qsdim(M)+α(R) . Similarly,

the upper Frobenius splitting ratio of M , r+F (M), equals lim supq→∞
aq

qsdim(M)+α(R) .

Whenever r−F (M) = r+F (M), we call this number the Frobenius splitting ratio of
M .

The following result is an extension of the case when M = R.

Theorem 5.5. Let M be an R-module. Then sdim(M) ≤ dim(M/P(M)). If R is
stronglyF -regular andM is an torsion freeR-module, then sdim(M) = dim(R) =
dim(M).

Proof. From the definition of M(e) one can see that (AnnR(M(e)))q ⊂ AnnR(M),
so dim(M(e)) = dim(M). Write M(e) = Raq ⊕Mq . If aq �= 0, for some q, then
dim(M(e)) = dim(R), because R injects into M(e).

We have seen that aq = λR(M/Ae(M)), and m[q]M + P(M) ⊂ Ae(M). So,
aq ≥ λ(M/m[q]M + P(M)). Since, eHK(m,M/P(M)) > 0, the first part of the
Theorem follows.

If R is strongly F -regular, then P(R) = 0. IfM is torsion-free over R, thenM
injects intoRn for some n. Hence, ifm⊗u = 0 inM(e)⊗ER(k) for all e � 0, then
the image ofm inRn, say (r1, . . . , rn), belongs to P(R) component-wise. However,
P(R) = 0, and so P(M) = 0. So, aq ≤ λ(M/m[q]M), and since eHK(m,M) > 0
we see that sdim(M) = dim(M) = dim(R). ��
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