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1. Introduction

E. Bedford and D. Burns ([Be-Bu]) and later U. Cegrell ([Ce 1]) proved around
1978 that any smooth bounded domain satisfying certain boundary conditions is a
domain of existence of a plurisubharmonic function.

However since plurisubharmonic functions occur in complex analysis through
inequalities, it is more natural to ask for the subextension problem.

El Mir gave in 1980 an example of a plurisubharmonic function on the unit
bidisc for which the restriction to any smaller bidisc admits no subextension to the
whole space (see [El]). He also proved that, after attenuatting the singularities of a
given plurisubharmonic function by composition with a suitable convex increasing
function, it is possible to obtain a global subextension.

Later Alexander and Taylor gave in 1984 a generalization of this result with a
more effective and simple proof (see [Al-Ta]).

On the other hand, Fornaess and Sibony pointed out in 1987 that for a ring
domain in C

2, there exists a plurisubharmonic function which admits no subexten-
sion inside the hole (see [Fo-Sib]).

Finally E. Bedford and B.A. Taylor proved in 1988 that any smoothly bounded
domain in C

n is a domain of existence of a smooth plurisubharmonic function (see
[Be-Ta 3]).

Recently, the first and the last authors proved that plurisubharmonic functions
with uniformly bounded Monge-Ampère mass on a bounded hyperconvex domain
always admit a plurisubharmonic subextension to any larger hyperconvex domain
(see [Ce-Ze]).
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Here we want to prove several results showing that plurisubharmonic func-
tions with various bounds on their Monge-Ampère masses on a bounded hypercon-
vex domain always admit global plurisubharmonic subextension with logarithmic
growth at infinity.

Let us describe more precisely the content of the article.
In section 2 we recall basic definitions concerning the Cegrell class E(�) of plu-

risubharmonic functions of locally uniformly bounded Monge-Ampère masses on
a hyperconvex domain� � C

n and its subclasses of plurisubharmonic functions of
finite energy. Then we give a characterization in terms of some capacity of functions
from the class E(�) which provides several examples of functions in this class.

In section 3, we give almost sharp estimates on the size of sublevel sets of
plurisubharmonic functions in various subclasses of the class E(�).

In section 4, we give a generalization of Alexander-Taylor’s subextension the-
orem which implies, using results from section 3, that plurisubharmonic functions
of finite energy in the sense of Cegrell admit a global subextention with logarithmic
growth of arbitrary small logarithmic type.

Finally in section 5, using recent results from the theory of Monge-Ampère
equation on compact Kähler manifolds due to the second author, we prove two re-
sults about global subextension of plurisubharmonic functions of uniformly bounded
masses on a hyperconvex domain by plurisubharmonic function with logarithmic
growth on C

n with a well defined global Monge-Ampère measure in some cases.
A part of this research was done during the visit of the second author in Labora-

toire Emile Picard of the University Paul Sabatier (Toulouse) in January 2004. He
would like to thank the staff of the Laboratoire for its hospitality and stimulating
discussions.

2. Plurisubharmonic functions with locally uniformly bounded
Monge-Ampère masses

Let us first recall some definitions from ([Ce 2,Ce 3]). We use the notation dc =
i

2π (∂̄ − ∂). Let � � C
n be a hyperconvex domain. We denote by E0(�) the set of

negative and bounded plurisubharmonic functions ϕ on�which tend to zero at the
boundary and satisfy

∫
�
(ddcϕ)n < +∞. Then for each p > 0 define Ep(�) to be

the class of plurisubharmonic functions ϕ on � such that there exists a decreasing
sequence of plurisubharmonic functions (ϕj ) from the class E0(�)which converges
to ϕ such that

sup
j

∫

�

(−ϕj )p(ddcϕj )n < +∞. (2.1)

If moreover the sequence (ϕj ) can be chosen so that supj
∫
�
(ddcϕj )

n < +∞,

then we say that ϕ ∈ Fp(�).
Let us denote by F(�) the set of all ϕ ∈ PSH(�) such that there exists

a sequence (ϕj ) of plurisubharmonic function in E0(�) such that ϕj ↘ ϕ and
supj

∫
�
(ddcϕj )

n < +∞. We also need the subclass Fa(�) of functions from
F(�) whose Monge-Ampère measures put no mass on pluripolar subsets of �.
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By Cegrell [Ce 2] we have E0(�) ⊂ Fp(�) ⊂ Ep(�); Fa(�) ⊂ F(�), for any
p > 0. It is also proved in ([Ce 2,Ce 3]) that the complex Monge-Ampère operator
is well defined for a function ϕ ∈ F(�) as the weak*-limit of the sequence of
measures (ddcϕj )n, where (ϕj ) is any decreasing sequence of plurisubharmonic
functions from the class E0(�) which converges to ϕ and satisfying the required
conditions in the definition.

Finally we denote by E(�) the set of plurisubharmonic functions which are
locally in F(�). Then the complex Monge-Ampère operator is well defined on the
class E(�) (see [Ce 3]).
The following result will be useful for later refrence; it has been proved in [Ce 3]
for p ≥ 1.

Lemma 2.1. Let ϕ ∈ Ep(�), if p > 0 and ϕ ∈ F(�) if p = 0. Then the pluricom-
plex p−energy of ϕ defined by the following formula

ep(ϕ) :=
∫

�

(−ϕ)p(ddcϕ)n (2.2)

is finite and there exists a sequence (ϕj ) of plurisubharmonic functions in E0(�)

such that ϕj ↘ ϕ and limj→+∞
∫
�
(−ϕj )p(ddcϕj )n = ∫

�
(−ϕ)p(ddcϕ)n.

Such a sequence will be called a p−admissible sequence decreasing to ϕ.

Proof. Observe that for any sequence (ϕj ) of plurisubharmonic functions in E0,

decreasing to ϕ, with the condition (2.1), the sequence (−ϕj )p is an increasing
sequence of lower semi-continuous functions on � converging to (−ϕ)p and the
sequence of measures (ddcϕj )n converges weakly to (ddcϕ)n on �. Therefore it
follows that

∫
�
(−ϕ)p(ddcϕ)n ≤ lim infj→+∞

∫
�
(−ϕj )p(ddcϕj )n,which proves

that ep(ϕ) < +∞. For p = 0, the result of the lemma follows from the defi-
nition. Now fix p > 0. Then, since for the given function ϕ ∈ Ep the measure
(ddcϕ)n puts no mass on pluripolar sets, it follows from Cegrell’s decomposition
theorem [Ce 2] that there exists ψ0 ∈ E0(�) and 0 ≤ f ∈ L1(�; (ddcψ0)

n)

such that (ddcϕ)n = f (ddcψ0)
n. By Kolodziej’s theorem (see [Ko 1,Ce 2]), for

any integer j ≥ 1 there exists ϕj ∈ E0(�) such that (ddcϕj )n = min{f, j} ·
(ddcψ0)

n. Now by the comparison principle [Be-Ta 1], we see that the sequence
(ϕj ) decreases to a plurisubharmonic function ψ on � such that ψ ∈ Ep(�)
and (ddcψ)n = (ddcϕ)n. By the comparison principle it follows that ϕ = ψ

on�. Now by the monotone convergence theorem we obtain
∫
�
(−ϕ)p(ddcϕ)n =

limj→+∞
∫
�
(−ϕj )p min(f, j)(ddcψ0)

n = limj→+∞
∫
�
(−ϕj )p(ddcϕj )n,which

proves the lemma. �	
Now let us give a quantitative characterization of the class E(�) in terms of

some capacity introduced by Bedford (see [Be]).
Given ϕ ∈ PSH−(�) andK ⊂ � a borelean set, following [Be] we define the

following positive “ϕ−capacity”

Cϕ(K;�) := sup{
∫

K

(ddcψ)n ; ψ ∈ PSH−(�) ∩ L∞(�), ϕ ≤ ψ ≤ 0}.
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Consider also the corresponding extremal function

ϕ̃K = sup{u ∈ PSH−(�); u ≤ ϕ q.e. on K}. (2.3)

where u ≤ ϕ q.e. (quasi-everywhere) onK means outside a pluripolar subset ofK.
Then we get the following characterization of functions from the class E(�).

Proposition 2.2. Letϕ ∈ PSH−(�).Thenϕ ∈ E(�) if and only if for any compact
set K ⊂ � we have Cϕ(K) < +∞. Moreover, if ϕ ∈ E(�), then for any borelean
set K � �, ϕ̃K ∈ F(�), ϕ̃K = ϕ q.e. on K and

Cϕ(K
◦) ≤

∫

�

(ddcϕ̃K)
n ≤ Cϕ(K;�). (2.4)

Proof. From the definition of ϕ̃K, it follows that ϕ̃K is plurisubharmonic on �,
maximal on � \K and satisfies the inequality ϕ ≤ ϕ̃K ≤ 0 on �.
Now assume that ϕ ∈ E(�). Then it follows from ([Ce 2,Ce 3]) that ϕ̃K =
sup{ϕ, ϕ̃K} ∈ E(�) and

∫
�
(ddcϕ̃K)

n = ∫
K
(ddcϕ̃K)

n < +∞.

Let us first prove that ϕ̃K ∈ F(�). Indeed, take a decreasing sequence (ϕj )j≥0

from E0(�) converging toϕ on a neighbourhood ofK such that supj
∫
�
(ddcϕj )

n <

+∞. Then for each j ∈ N define the function ϕ̃j by the formula (2.3) with ϕ repla-
ced by ϕj . Then (ϕ̃j ) is a decreasing sequence of plurisubharmonic functions from
the class E0(�) such that ϕj ≤ ϕ̃j on � and ϕ̃j = ϕj q.e. on K. Therefore (ϕ̃j )
converges to a plurisubharmonic functionψ such that ϕ̃K ≤ ψ on� andψ = ϕ q.e.
on K. Thus ψ = ϕ̃K . Since ϕj ≤ ϕ̃j on � and these functions belong to E0(�), it
follows that

∫
�
(ddcϕ̃j )

n ≤ ∫
�
(ddcϕj )

n for any j ≥ 0. Thus the sequence (ϕ̃j )j≥0
decreases to ϕ̃K and supj

∫
�
(ddcϕ̃j )

n ≤ supj
∫
�
(ddcϕj )

n < +∞, which proves
that ϕ̃K ∈ F(�).Then since ϕ ≤ ϕ̃j , it follows that

∫
�
(ddcϕ̃j )

n = ∫
K
(ddcϕ̃j )

n ≤
Cϕ(K). By Cegrell (see [Ce 3]), the sequence of measures (ddcϕ̃j ) converges to
the measure (ddcϕ̃)n, thus

∫
�
(ddcϕ̃K)

n ≤ lim infj
∫
�
(ddcϕ̃j )

n ≤ Cϕ(K), which
proves the second inequality in (2.4).
Now let ψ ∈ E0(�) be chosen so that ϕ ≤ ψ on � and set ψj := sup{ψ, ϕj } on
�. Then ϕj ≤ ψj and then ϕ̃j ≤ ψj q.e. onK. Since functions from E0(�) put no
mass on pluripolar sets, it follows from Demailly’s inequality ([De]) that

∫

K

(ddcψj )
n ≤

∫

K

(ddc sup{ψj , ϕ̃j })n

≤
∫

�

(ddc sup{ψj , ϕ̃j })n

≤
∫

�

(ddcϕ̃j )
n =

∫

K

(ddcϕ̃j )
n,

where the last inequality follows from the comparison principle for functions in
E0(�).

Therefore by the convergence theorem (see [Ce 2,Ce 3]) we have

Cϕ(K
◦;�) ≤

∫

�

(ddcϕ̃K)
n < +∞,
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which proves the first inequality in (2.4) as well as the necessary condition of the
theorem.
Now assume that the condition on the capacity Cϕ is satisfied. Then consider a
decreasing sequence of plurisubharmonic functions (ϕj ) from the class E0(�) con-
verging to ϕ. Take any subset K � � and define ϕ̃j := (ϕ̃j )K for j ∈ N

∗. Then
ϕ̃j ∈ E0(�) and supj

∫
�
(ddcϕ̃j )

n = supj
∫
K
(ddcϕ̃j )

n ≤ Cϕ(K;�) < +∞. We
know from the first part that (ϕ̃j ) decreases to ϕ̃K = ϕ q.e. on K. Therefore we
have proved that ϕ ∈ E(�). Moreover by the convergence theorem we obtain the
second inequality in (2.4). �	
Bedford considered the following class (see [Be]). Let θ : R −→ R be a monotone
decreasing function such that

∫ +∞

1

θ(t)

t
dt < +∞ (2.5)

and the function t −→ −(−t θ(−t))1/n is monotone increasing and convex on
] − ∞, 0[. Then define B(�) to be the class of negative function ψ ∈ PSH(�)

such that for any z0 ∈ � there exists a neighbourhood ω of z0, a negative pluri-
subharmonic function v on ω and a decreasing function θ satisfying (2.5) such that
−(−vθ(−v))1/n ≤ ψ on ω.
From the last result we can deduce the following one which provides concrete
examples of functions from the class E(�). This result has been also obtained by
the first author (see [Ce 4]).

Proposition 2.3. For any hyperconvex domain � � C
n, we have B(�) ⊂ E(�).

In particular, for any negative plurisubharmonic function u on � and any
0 < α < 1/n, −(−u)α ∈ E(�).
Proof. Bedford has proved that for any function ψ ∈ B(�), the condition
Cψ(K;�) < +∞ holds for any K � � (see [Be]). Therefore the inclusion
B(�) ⊂ E(�) follows from the last proposition. Since α < 1/n, we clearly have
−(−u)α = −(−uθ(−u))1/n, where θ(t) = tnα−1 which satisfies the condition
(2.5). Therefore −(−u)α ∈ B(�) ⊂ E(�). �	

3. Capacity of sublevel sets of plurisubharmonic
functions in subclasses of E(�)

Now we prove the following capacity estimate of the sublevel sets of plurisubhar-
monic functions of finite energy.

Proposition 3.1. Let ϕ ∈ Ep(�) if p > 0 and ϕ ∈ F(�) if p = 0. Then the
following estimate

Cap({z ∈ � ; ϕ(z) < −s};�) ≤ cn,p · ep(ϕ) · s−n−p,∀s > 0, (3.1)

holds, where cn,p > 0 is an absolute constant and ep(ϕ) is the p−energy of ϕ.
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Proof. 1) Assume first that ϕ ∈ E0(�) and define �(ϕ, s) := {z ∈ �;ϕ(z) < −s}
for each s > 0.LetK ⊂ �(ϕ, s) a fixed pluriregular subset andhK the (−1, 0)−ex-
tremal function of the condenser (K,�). Then hK ∈ E0(�) and since −ϕ/s ≥ 1
on K, we have

Cap(K;�) =
∫

K

(ddchK)
n ≤

∫

K

(−ϕ
s

)n+p
(ddchK)

n (3.2)

≤ 1

sn+p

∫

�

(−ϕ)n+p(ddchK)n

= cn,p

sn+p

∫

�

(−ϕ)p(ddcϕ)n,

where the last inequality follows by integration by parts (see [Ce 3,Bl]). Then we
deduce that

Cap
(
�(ϕ, s);�) ≤ cn,p

sn+p

∫

�

(−ϕ)p(ddcϕ)n

for each ϕ ∈ E0(�).

2) Let ϕ ∈ Ep(�) and (ϕj ) a p−admissible sequence of plurisubharmonic func-
tions from the class E0(�) decreasing to ϕ. Then applying the estimate (3.1) to
each function ϕj ∈ E0(�) we obtain the following estimate

Cap
(
�(ϕj , s);�

) ≤ cn,p

sn+p

∫

�

(−ϕj )p(ddcϕj )n,∀j.

Now by Lemma 2.1, there exists a decreasing sequence of plurisubharmonic func-
tions (ϕj ) from the class E0(�) which converges to ϕ and satisfies the condition
ep(ϕ) = limj

∫
�
(−ϕj )p(ddcϕj )n. Then applying the last estimate to this function

we get the following estimate

Cap
(
�(ϕ, s);�) ≤ cn,p

ep(ϕ)

sn+p
.

This proves our proposition. �	
Let us prove a converse to the last result which shows that the estimates (3.1) are
almost sharp.

Proposition 3.2. Let ϕ ∈ E(�) a function such that there exists an open subset
ω ⊂ �, a constant A > 0 and a real number q > n such that

Cap({z ∈ ω ; ϕ(z) < −s};�) ≤ Cs−q,∀s > 0.

Then ϕ̃ω ∈ Ep(�) for any real number p with 0 < p < q − n.

Proof. First we claim that for any plurisubharmonic function u ∈ E(�) and any
Borel set B ⊂ �, we have

∫

B

(ddcu)n ≤ (sup
B

|u|)n Cap(B;�), (3.3)

provided that supB |u| < +∞.
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To prove this estimate, set M := supB |u| and define the function
v = sup{u/M,−1} on �. Then v ∈ PSH(�),−1 ≤ v ≤ 0 and v = u/M on
B. Therefore from Demailly’s inequality ([De]), it follows thatM−n ∫

B
(ddcu)n ≤∫

B
(ddcv)n ≤ Cap(B;�), which proves our claim.
Now define the following sets Bj := {z ∈ ω ; −2j+1 ≤ ϕ(z) < −2j } for

j ≥ 0. Then it follows from (3.3) that
∫

Bj

(−ϕ)p(ddcϕ)n ≤ (sup
Aj

|ϕ|)n+pCap(Bj ;�) ≤ C2j (n+p−q)

and then
∫
ω
(−ϕ)p(ddcϕ)n ≤ C

∑
j≥0 2(n+p−q)j < +∞, since p < q−n.There-

fore we have
∫
�
(−ϕ̃ω)p(ddcϕ̃ω)n < +∞. �	

As a consequence we state the following result which improves the result of Prop-
osition 2.3 and provides examples of functions in the classes Ep(�).
Corollary 3.3. Let u ∈ PSH−(�), α a real number such that 0 < α < 1/n and
ϕ = ϕα := −(−u)α. Then for any Borel subset ω � � ϕ̃ω ∈ Ep(�) for any real
number p such that 0 < p < 1/α − n,

Proof. Indeed it is easy to check that Cap({z ∈ ω ; ϕ(z) < −s};�) ≤ As−1/α,

for any s > 0. Thus the result follows from the last one. �	
It is possible to characterize the class Fa(�) by means of the behaviour of the
capacity of sublevel sets.

Proposition 3.4. Let ϕ ∈ F(�). Then the following properties are equivalent

(i) ϕ ∈ Fa(�),

(ii)
∫
{ϕ=−∞}(dd

cϕ)n = 0,
(iii) lims→+∞ sncap({ϕ < −s};�) = 0.

Proof. Take a sequence (ϕj ) of continuous functions from E0(�) which decreases
to ϕ and satisfies supj

∫
�
(ddcϕj )

n < +∞.

Define the open sets�j(s) := {ϕj < −s},�(s) := {ϕ < −s} and the functions

aj (s) := cap({ϕj < −s};�), a(s) := cap({ϕ < −s};�),
and

bj (s) :=
∫

�j (s)

(ddcϕj )
n, b(s) :=

∫

�(s)

(ddcϕ)n.

We claim that for j ∈ N and s > 0,

snaj (2s) ≤ bj (s) ≤ snaj (s). (3.4)

Indeed take any function u ∈ PSH(�) with −1 ≤ u ≤ 0. Then �j(2s) ⊂
{ϕj/s < u− 1} ⊂ �j(s) � �. By the comparison principle, we get
∫

�j (2s)
(ddcu)n ≤

∫

{ϕj /s<u−1}
s−n(ddcϕj )n ≤

∫

�j (s)

s−n(ddcϕj )n = s−nbj (s).

Taking the supremum over all u’s, we obtain the first inequality of (3.4).
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To obtain the second inequality, observe that for 0 < s < t, sup{ϕj ,−t} =
ϕj on the open set {ϕj > −t} which is a neighbourhood of ∂�j (s) and then∫
�j (s)

(ddc sup{ϕj ,−t})n = ∫
�j (s)

(ddcϕj )
n. Therefore

aj (s) ≥ t−n
∫

�j (s)

(ddc sup{ϕj ,−t})n = t−n
∫

�j (s)

(ddcϕj )
n,

which proves the required inequality since t > s is arbitrarily close to s. Taking
the limit in (3.4) when j → +∞, we obtain

sna(2s) ≤ b(s−) and b(s) ≤ sna(s), ∀s > 0. (3.5)

where b(s−) := limε→0+ b(s − ε).

From the estimates (3.5), it follows that the conditions (ii) and (iii) are equiv-
alent. Moreover it is clear that (i) implies (ii). So it is enough to prove that (iii)
implies (i). Indeed, assume that that lims→+∞ sna(s) = 0 and take a pluripolar
subset K of �. It follows from ([De,Ce-Ko]) that

∫

K\�(s)
(ddcϕ)n ≤

∫

K\�(s)
(ddc sup{ϕ,−s})n ≤ sncap(K;�) = 0.

Moreover, by (3.5), we have
∫

K∩�(s)
(ddcϕ)n ≤ b(s) ≤ sna(s).

Therefore
∫
K
(ddcϕ)n = 0 and then ϕ ∈ Fa(�). �	

4. Global subextension of plurisubharmonic
functions with weak singularities

Here we want to prove a general subextension theorem for a class of plurisubhar-
monic functions of weak singularities, generalizing a theorem by El Mir ([El]) and
also by Alexander and Taylor (see [Al-Ta,De]). Then we will apply our result to
derive theorems on subextension of plurisubharmonic functions of finite energy.

To sate our results we need to introduce the usual Lelong classes of plurisub-
harmonic functions.

Lγ (Cn) := {u ∈ PSH(Cn); lim sup
r→+∞

max|z|=r u(z)
log r

≤ γ }, γ > 0. (4.1)

When γ = 1 we write L(Cn) = L1(C
n).

Theorem 4.1. Let ϕ ∈ PSH−(�) and ω ⊂ � an open subset. Define the function
χ(s) = χϕ(s, ω) := Cap({z ∈ ω ; ϕ(z) < −s};�). Assume that the following
integral condition

∫ +∞

1
χ(s)1/nds < +∞ (4.2)

holds. Then for any ε > 0, there exists a function Uε ∈ Lε(Cn) such that Uε ≤ ϕ

on ω.
In particular νϕ(a) = 0 for any a ∈ ω.
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Proof. We use the same construction as in ([Al-Ta]). Indeed let us denote by

M(s) := max
�

Vs = − log T�
(
ω(ϕ; s)), s > 0,

where Vs is the L−extremal function of the open set ω(ϕ; s) := {z ∈ ω ; ϕ(z)
< −s}. Then by Alexander-Taylor’s inequality ([Al-Ta]), we deduce the following

M(s) ≥ χ(s)−1/n, ∀s > 0, (4.3)

where χ(s) = χϕ(s;ω) for s > 0. Now define the following function

ws(z) = w(z, s) := Vs(z)−M(s), (z, s) ∈ C
n × R

+. (4.4)

We claim that this function satisfies the following properties
(i) ws ∈ L and ws(z) ≤ a + log+ |z|, ∀z ∈ C

n, ∀s > 0,
(ii) ws(z) = −M(s), ∀z ∈ ω(ϕ, s),∀s > 0,
(iii)max� ws = 0 and

∫
�
ws(z)dλ(z) ≥ −b, ∀s > 0, and the Lebesque measure.

where a, b > 0 are absolute constants and λ the Lebesque measure.
Assume for the moment that all the above properties are satisfied and observe

that for any fixed z ∈ C
n, the function s −→ ws(z) is a function of bounded

variation (equal to the difference of two monotone functions) and upper bounded
on R

+, by condition (i). Therefore we can define the following function

vc(z) :=
∫ +∞

c

w(z, s)χ(s)1/nds, z ∈ C
n,

for each c > 0. From condition (i), it follows that

vc(z) ≤ a · ηc + ηc · log+ |z|, ∀z ∈ C
n, (4.5)

where ηc := ∫ +∞
c

χ(s)1/nds. Now from (iii) it follows that
∫

�

vc(z)dλ(z) ≥ −b · ηc (4.6)

Then it follows from (4.6) and (4.5) that vc is plurisubharmonic on C
n. Now fix

t > c ≥ 0 and z ∈ ω(ϕ, t). Then by (ii), for any s < t, we have ϕ(z) < −t and
ws(z) = −M(s). Therefore, since ws ≤ 0 on �, we get from (4.3) the following
estimate

vc(z) ≤
∫ t

c

ws(z)χ(s)
1/nds ≤ (−t + c).

This means that vc(z) ≤ ϕ(z)+ c if ϕ(z) < −c. But if ϕ(z) ≥ −c, this inequality
is clearly satisfied, since vc(z) ≤ 0 for any z ∈ �. Define uc(z) := vc(z)− c, for
z ∈ C

n. Then it is clear that uc ≤ ϕ on ω. Moreover, from (4.5), it follows that

uc(z) ≤ a · ηc − c + ηc · log+ |z|, ∀z ∈ C
n, (4.7)

Now given ε > 0, we can choose c = c(ε) > 0 such that η(c) < ε, then the
corresponding function Uε := uc(ε) satisfies the conclusions of the theorem with
γ (ε) := a · ηc(ε) − c(ε).
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Now it remains to prove that our function (4.4) satifies the properties (i), (ii) and
(iii). By definitionws ∈ L and max� ws = 0. Thenws ≤ V� on C

n for any s > 0,
which proves (i), sinceV� ∈ L.The condition (ii) is trivial sinceVs = Vω(ϕ,s) = 0
on ω(ϕ, s). The condition (iii) is related to an inequality by Alexander (see [Al],
[Sic 2], [De]) and can be proved easily as follows. Observe that the normalized
subclass L̇� := {w ∈ L ; max� = 0} is a (relatively) compact subset of L for the
L1
loc−topology (see [Ze]) and the functional w −→ ∫

�
w(z)dλ(z) is continuous

on L. Therefore it is bounded on L̇�, which proves the condition (iii). �	
Now from our result we can deduce the Alexander-Taylor’s subextension the-

orem.
Let h : R

− −→ R
− be an increasing convex function such that

∫ +∞

1

−h(−t)
t1+1/n dt < +∞. (4.8)

Then we obtain the following result.

Corollary 4.2. Let u ∈ PSH−(�) and h : R
− −→ R

− be an increasing convex
function satisfying the condition (4.8). Then for any subdomain ω � �, for any
ε > 0, there exists a function Uε ∈ Lε(Cn) such that Uε ≤ h(u) on ω.

Proof. Let g : R
− −→ R

− be the inverse function of h. Then ω(h(u); s) =
ω(u; g(−s)) for any s > 0. Now use the usual capacity estimate for u to conclude
that

Cap(ω(h(u); s);�) ≤ A

−g(−s) ,∀s > 0. (4.9)

Now observe that the condition (4.8 ) on h implies that
∫ +∞

1 (−g(−s))−1/nds <

+∞. Therefore from the estimate (4.9), it follows that the condition (4.2) is satisfied
for the function h(u) and then the corollary follows from the last theorem. �	

Now using capacity estimates from section 3 and the last theorem, we easily
see that functions from the classes Ep(�), with p > 0, have global subextension
of arbitrarily small logarithmic growth at infinity.

Corollary 4.3. Let ϕ ∈ Ep(�), with p > 0. Then for any ε > 0, there exists a
function Uε ∈ Lε(Cn) such that Uε ≤ ϕ on �.

Proof. From the estimates (3.1) of Proposition 3.1, it follows that the condition
(4.2) of Theorem 4.1 is satisfied with ω = �, which implies our result. �	

5. Global subextension of psh functions with uniformly
bounded Monge-Ampère masses

As we pointed out in the introduction, on any smoothly bounded domain in C
2 there

is a smooth plurisubharmonic function which admits no subextention to any larger
domain (see [Be-Ta 3]). In contrast to this negative result, the first and the third
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author proved that for any hyperconvex domain � � C
n, functions from the class

F(�) always admit a subextension to any larger bounded hyperconvex domain (see
[Ce-Ze]).

Here we want to prove that such functions have a global subextension which is
plurisubharmonic of logarithmic growth on C

n.

Besides the Lelong classes Lγ (Cn) defined in section 4, we also need the fol-
lowing class.

L+
γ (C

n) := {u ∈ PSH(Cn); sup
z∈Cn

|u(z)− γ log+ |z|| < +∞}.

Now we can state our main result.

Theorem 5.1. Let� � C
n be a bounded hyperconvex domain andϕ ∈ F(�).Then

there exists a plurisubharmonic function u ∈ Lγ (Cn),with γ n := ∫
�
(ddcϕ)n such

that max� u = 0 and u ≤ ϕ on �.

Proof. 1)Assume first thatϕ ∈ E0(�) and define the following Borel measureµ :=
1�(ddcϕ)n.Fix a ball B ⊂ C

n such that� ⊂ B.Then in general there is no bounded
plurisubharmonic function v on B such that (ddcv)n ≥ µ on B (see the example
below). We will approximate the measure µ by measures for which such bounded
plurisubharmonic functions exist. Indeed, since µ puts no mass on pluripolar sets,
by ([Ce 1]) there exists ψ ∈ E0(B) and f ∈ L1(B, µ) such that µ = f · (ddcψ)n
on B. Then consider the sequence of measures µk := 1� inf{f, k}(ddcψ)n, k ∈ N

with compact support in B.

Fix an integer k ≥ 1.Sinceµk ≤ (ddcψk)
n on B,whereψk := k1/nψ ∈ E0(B),

it follows from ([Ko 2]) that there exists uk ∈ L+
γk
(Cn) such that (ddcuk)n = µk on

C
n, where γ nk := µk(B).We can normalize uk so that max� uk = 0.We can also

find gk ∈ E0(�) such that (ddcgk)n = µk on�. Then from the comparison princi-
ple, we have uk ≤ gk on � and since the sequence of measures (µk) is increasing,
the sequence of plurisubharmonic functions (gk) decreases to ϕ on �. By Hartogs
lemma, u := (lim supk→+∞ uk)

∗ is plurisubharmonic on C
n and max� u = 0.

It is clear that u ≤ ϕ on � and u ∈ Lγ (Cn), where γ n := ∫
�
(ddcu)n, since

γk ≤ γ,∀k ∈ N.

2) Assume now that ϕ ∈ F(�). By Lemma 2.1, there exists a decreasing
sequence (ϕj ) of functions from the class E0(�) which converges to ϕ on � and∫
�
(ddcϕ)n = limj

∫
�
(ddcϕj )

n. Let us define γ > 0 so that γ n := ∫
�
(ddcϕ)n <

+∞ and fix j ∈ N. Then by the first case there exists uj ∈ L+
γj
(Cn) such that

max� uj = 0 and uj ≤ ϕj on �, where γ nj = ∫
�
(ddcϕj )

n.

Again the function u := (lim supj→+∞ uj )
∗ ∈ Lγ (Cn) and satisfies the

inequality u ≤ ϕ on � and by Hartogs’ lemma we have max� u = 0. �	
From this result we get the following one.

Corollary 5.2. Let � � C
n be a bounded hyperconvex domain and ϕ ∈ E(�).

Then for any open set ω � �, there exists a function u ∈ Lγ (Cn), where γ > 0
such that u ≤ ϕ on ω.

Proof. This result follows from the last theorem applied to the function ϕ̃ω, which
belongs to F(�) and satisfies ϕ̃ω = ϕ on ω by Proposition 2.2. �	
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It’s possible to get a control on the Monge-Ampère measure of the subextension
in some cases as the following result shows. Recall that Fa(� is the set of pluri-
subharmonic functions ϕ ∈ F(�) such that (ddcϕ)n puts no mass on pluripolar
subsets of �.

Theorem 5.3. Let � � C
n be a bounded hyperconvex domain and ψ ∈ Fa(�)

with
∫
�
(ddcψ)n = 1. Then there exists u ∈ L(Cn) such that u ≤ ψ on � and

(ddcu)n = 1�(ddcψ)n on C
n. Here (ddcu)n is the unique measure with the prop-

erty that for any sequence vj ∈ L+(Cn) decreasing to u we have (ddcvj )n →
(ddcu)n weakly on C

n.

Proof. Take a hyperconvex domain�′ containing�. Then by [Ce 3], there exists a
plurisubharmonic function ϕ ∈ Fa(�′) such that ϕ ≤ ψ on � and (ddcϕ)n =
1�(ddcψ)n =: µ as Borel measures on �′. Then µ(Uj ) → 0 as j → ∞
when Uj = {z ∈ �′;ϕ(z) < −j}. Set µj = µ − µ|Uj and observe that
(ddc sup{ϕ,−j})n ≥ µj on �′ (see [De], [Ce-Ko]). Then by [Ko 1] there exist
ϕj ∈ E0(�

′) such that (ddcϕj )n = µj . Define

αj = 1

µj (�′)

and observe that αj ≥ 1. By [Ko 2] there exist uj ∈ L+(Cn) with sup�′ uj =
0, uj ≤ ϕj and (ddcuj )n = αjµj .

Set
vj = (sup

k≥j
uk)

∗.

Then vj ≥ uj and ψ ≥ ϕ ≥ u := lim vj ∈ L. Observe that for a fixed j ∈ N, the
sequence

ṽj,k := sup{u�; j ≤ � ≤ k}, k ≥ j

is an increasing sequence of plurisubharmonic functions in L+(Cn) which con-
verges a.e. on C

n to vj . Since (ddcu�)n ≥ µ on C
n \Uj , for any � ≥ j, it follows

from ([De], [Ce-Ko]) that (ddcvj,k)n ≥ µ on C
n \Uj .By the convergence theorem

[Be-Ta 1], it follows that

(ddcvj )
n ≥ µ on C

n \ Uj
and for M > 0

(ddc max(vj ,−M))n ≥ µ on C
n \ (Uj ∪ VM), VM := {u < −M}.

Since by the convergence theorem [Be-Ta 1],

lim
j→∞

(ddc max(vj ,−M))n = (ddc max(u,−M))n

we obtain

(ddc max(u,−M))n = lim
j→∞

(ddc max(vj ,−M))n ≥ µ on C
n \ VM.
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Therefore
lim
M→∞

(ddc max(u,−M))n ≥ µ

on C
n and since the integrals of both measures are equal, the measures themselves

are equal. Hence
µM = (ddc max(u,−M))n → µ.

Take a sequence (wj ) of continuous functions in L+(Cn) decreasing to u. We have
to prove that (ddcwj )n → dµ. It is no loss of generality to assume thatwj > wj+1
for all j .

Set for j ∈ N,

νj = (ddcwj )
n,

and
νj,M = (ddc max(wj ,−M))n.

Fix t > 1. Then for Ej = {wj > u+ (t − 1)} ∩ {u ≥ −M + 1} we have
∫

Ej

µ → 0. (5.1)

(since Ej decrease to ∅.) Since the set {wj < −M} is relatively compact and the
sequencewj is strictly monotone one can find k0 so big that for k > k0, vk < wj on
this set. Note that if wj(z) < −M then wj(z)+M > vk(z)+M > t(vk(z)+M).
Hence, by the comparison principle
∫

{wj<−M}
(ddcwj )

n ≤
∫

{t (vk+M)<wj+M}
(ddcwj )

n

≤ tn
∫

{t (vk+M)<wj+M}
(ddcvk)

n≤ tn
∫

{u<−M+1}∪ Ej

(ddcvk)
n.

Then, by (5.1)

lim sup
j→∞

∫

{wj<−M}
(ddcwj )

n ≤ lim inf
k→∞

∫

{u<−M+1}
(ddcvk)

n =: ε(M).

From this estimate and the fact that νj,M = νj on {wj > −M} we conclude that
the total variation

||νj,M − νj || ≤ 2ε(M/2), j ≥ j (M).

We claim that ε(M) → 0 as M → ∞. Indeed, since
∫
Cn
(ddcvk)

n = 1 =
µ(Cn) and (ddcvk)

n ≥ µ on � \ Uk ⊃ � \ (Uk ∪ VM−1), it follows that∫
Uk∪VM−1

(ddcvk)
n ≤ µ(Uk ∪ VM−1). Now since µ(Uk ∪ VM−1) ≤ µ(Uk) +

µ(VM−1) and the measure µ puts no mass on pluripolar sets, it follow that each of
these terms tends to 0 and then so does ε(M) ≤ µ(VM−1).

Therefore for a test function χ we can make the first and the third term on the
right in the formula

∫
χ(νj − µ) =

∫
χ(νj − νj,M)+

∫
χ(νj,M − µM)+

∫
χ(µM − µ)
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arbitrarily small by taking M large enough and j ≥ j (M). The middle term goes
to zero as j → ∞ by the convergence theorem. Therefore the left hand side tends
to zero. �	
Remark. 1) Observe that the measure (ddcu)n was defined globally. It would be
interesing if we can show that it is can be defined locally. It would be also interesting
to know if the last theorem is true for ψ ∈ F(�).

2) We can define a “canonical” subextention

u = sup{v ∈ L : v ≤ ψ}.
Roughly speaking it should have Monge-Ampère mass supported on the set
{u = ψ}.

We will come back to these questions in a subsequent paper.

Example. We give an example of a bounded subharmonic function v on the unit
discD ⊂ C such that

∫
D
ddcv < +∞ and there is no bounded subharmonic func-

tion u on an open neighbourhood D′ of D such that ddcu = 1Dddcv as measures
on D′.

Indeed let (aj ) be a discrete sequence of points in the unit disc D ⊂ C which
converges to 1. For j ∈ N, define vj (z) := sup{gD(z, aj ),−1} for z ∈ D, where
gD(z, aj ) is the Green function of D with pole at aj . Let (εj ) be a sequence of
positive numbers such that

∑
j εj = 1. Then v := ∑

j εj vj is a bounded subhar-
monic function on D such that −1 ≤ v ≤ 0 on D and

∫
D
ddcv < +∞.

It is easy to see that ddcvj converges weakly to δ1 as measures on C since∫
D
ddcvj = 1 for any j ∈ N and for j ∈ N large enough ddcvj puts no

mass outside any arbitrary neighbourhood of 1. Then it follows that
lim supj→+∞

∫
D

log |1 − z|ddcvj = −∞. Therefore, taking a subsequence if
necessary, we can assume that the poles and the weights are choosen so that∑
j εj

∫
D

log |1 − z|ddcvj = −∞.

Now if u is a subharmonic function on a disc D′ containing D, such that
ddcu = 1Dddcv on D′ then by the Riesz decomposition we have u(1) = c +∫
D

log |1 − z|ddcu = c + ∑
j εj

∫
D

log |1 − z|ddcvj = −∞ by construction.

Remark. As observed by El Mir ([El]), there exists a plurisubharmonic function u
on some open subset � ⊂ C

2 which has no subextension to any larger domain.
The main obstruction is the fact that the polar set of u in � may contain a non
trivial analytic set, which does not extend as an analytic set in a larger domain. This
analytic stucture comes from the fact that superlevel sets of Lelong numbers of ϕ
defined by

A(ϕ; c) := {a ∈ � ; ν(ϕ, a) ≥ c}, c > 0,

are analytic sets by Siu’s theorem (cf. [Siu]). Indeed, let u be a plurisubharmonic
function on some open subset ω ⊂ �. Assume that there exists a function U ∈
PSH(�) such that U ≤ u on ω. Then A(u; c) ⊂ A(U ; c) ∩ ω. Hence the sub-
extension problem is closely related to the propagation of singularities of pluri-
subharmonic functions. Observe that for all the functions which were considered
in our theorems the sets A(ϕ; c) are finite so that obviously there is no analytic
obstruction to subextension.
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[Ce-Ko] Cegrell, U., Kolodziej, S.: The Dirichlet problem for the complex Monge-

Ampère operator: Perron classes and rotation invariant measures. Michigan
Math. J. 41, 563–569 (1994)

[Ce-Ze] Cegrell U., Zeriahi, A.: Subextension of plurisubharmonic functions with
bounded Monge-Ampère mass. C. R. Acad. Sci. Paris, Ser. I 336 (2003)

[De] Demailly, J.-P.: Potential theory in several complex variables, École d’été
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naire Lelong-Skoda, Lecture Notes in Math. 822, Springer-Verlag, 1980,
pp. 61–76

[Fo-Sib] Fornaess, J.E., Sibony, N.: Plurisubharmonic functions on ring domains,
Complex Analysis (Univ. Park, 1986), Lecture Notes in Math. 1268, Springer-
Verlag, 1987, pp. 111–120

[Ko 1] Kolodziej, S.: The range of the complex Monge-Ampère operator II. Indiana
U. Math. J. 44(3), 765–782 (1995)

[Ko 2] Kolodziej, S.: On the set of measures given by bounded solutions of the com-
plex Monge-Ampère equation on compact Kähler manifolds, preprint IMUJ
2003/2 (www.im.uj.edu.pl/preprint)

[Sic 1] Siciak, J.: Extremal plurisubharmonic functions in C
N . Ann. Polon. Math. 39,

175–211 (1981)
[Sic 2] Siciak, J.: Extremal plurisubharmonic functions and capacities in C

N , Sophia
Kokyuroku in Math. Tokyo, 14, 1982

[Siu] Siu, Y.T.: Analyticity of sets associated to Lelong numbers and the extension
of closed positive currents. Invent. Math. 27, 53–156 (1974)



22 U. Cegrell et al.

[Za] Zahariuta, V.P.: Extremal plurisubharmonic functions, orthogonal polynomi-
als and Bernstein-Walsh theorem for analytic functions of several complex
variables. Ann. Polon. Math. 33, 137–148 (1976)

[Ze] Zeriahi, A.: A criterion of algebraicity for Lelong classes and analytic sets.
Acta Math. 184, 113–143 (2000)


