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Abstract We prove a bilinear restriction theorem for a surface of negative curva-
ture. This is the analogue of the results of T. Wolff [19] and T. Tao [14], [15] for
cones and paraboloids. As a consequence we obtain an almost sharp linear restric-
tion theorem.
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1 Introduction

Let S be a smooth compact hypersurface with boundary in Rn and let dσ denote
the Lebesgue measure on S. We say that the (linear) adjoint restriction estimate
R∗

S(p → r) holds if

‖f̂ dσ‖r ≤ C‖f ‖p (1)

for all test functions supported on S, with a constant C independent of f. The
operator

f̂ dσ (x) =
∫

S

f (ξ)2πix·ξ dσ (ξ),

can be considered as the adjoint of the operator of restriction of the Fourier trans-
form to S.

E. M. Stein posed this problem in the seventies. The conjecture is that if S has
non-vanishing Gaussian curvature, then (1) holds whenever

r > 2n/(n − 1), p′ ≤ n − 1

n + 1
r. (2)
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The problem was first studied in dimension 2 by Stein and C. Fefferman (see
[7]). The conjecture was proven in dimension 2 by A. Zygmund [20]. In higher
dimensions it is still open. The first results were due to P. Tomas [18], P. Sjölin [6],
R. S. Strichartz [12] and E. M. Stein [11] who proved that (1) was true for p = 2
and r in the range given in (2), r ≥ 2 n+1

n−1 . Many years later, J. Bourgain [2,3,5]

showed the estimate for some p ≥ 2, p′ < n−1
n+1 r. There were some improvements,

due toA. Moyua, T. Tao, L.Vega andA.Vargas [9], [10], [16],[17] for hypersurfaces
of elliptic type. Recently, T. Tao [15] proved the estimate for all r > 2 n+2

n
and p

in the range (2), p′ ≤ n−1
n+1 r, for paraboloids.

Given two surfaces S1, S2 with measures dσ1, and dσ2 respectively, we say
that the bilinear restriction estimate R∗

S1,S2
(p × p → q) holds if

‖f̂1 dσ1f̂2 dσ2‖q ≤ C‖f1‖p‖f2‖p (3)

for all test functions f1, f2 on S1 and S2 respectively.
If (2) were true, then, for all S1, S2 ⊂ S we would have that R∗

S1,S2
(p×p → q)

for all q = r/2, r in the same range. It was observed that under certain assumptions,
a wider range was allowed for (3). Tao, Vega and Vargas [16], [17], proved several
results in this direction, for elliptic type hypersurfaces under the hypothesis that
S1 and S2 are separated compact subsets of S. They also proved that the bilinear
restriction estimates (with the separation hypothesis) imply the linear estimates
(Theorem 2.2 in in [16]). Finally, Tao [15] proved that if S is a paraboloid (or more
generally, a hypersurface of elliptic type), under the same hypothesis on S1 and S2,

(3) holds also for

q >
n + 2

n
,

n + 2

2q
+ n

p
< n. (4)

It is worth to mention that the analogous problem for cones (case of null cur-
vature) has been solved. The linear theorem in R3 is due to B. Barcelo, [1]. For the
bilinear theorem, there were partial results due to Bourgain [4] and T. Tao and A.
Vargas [17]. Finally, T. Wolff [19] and T. Tao [14] gave the optimal estimates.

Here, we want to consider the case of a surface with negative Gaussian curva-
ture. The model surface is the hyperbolic paraboloid, z = xy, in R3. Concerning
bilinear restriction estimates, the first remark that we have to make is that the
hypothesis on S1 and S2 has to be different from the one that we had in the elliptic
case. The separation condition is not enough to give a range for (3) wider than
(2). The existence of line segments in a hyperbolic paraboloid makes the following
example possible:

Remark 1.1. Consider the hyperbolic paraboloid

S = {(ξ, η, τ ) / τ = ξη} ⊂ R3.

Define the subsets of S

S1 = S ∩ {(ξ, η, τ ) / 1/2 < ξ < 1, −1 < η < 1}
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and
S2 = S ∩ {(ξ, η, τ ) / − 1 < ξ < −1/2, −1 < η < 1}.

Then, R∗
S1,S2

(p × p → q) is false for any p′ > q.

To prove this statement, we just consider the sets A = S ∩ {(ξ, η, τ ) / 1/2 <

ξ < 1, |η| < ε}, B = S ∩ {(ξ, η, τ ) / − 1 < ξ < −1/2, |η| < ε}, and the
functions

f1 = χA, f2 = χB.

Then, for i = 1, 2, and |x| ≤ 1/10, |y| ≤ 1/(10ε), |z| ≤ 1/(10ε), we have

|f̂i dσi(x, y, z)| ≥ cε.

Hence,
‖f̂1 dσ1f̂2 dσ2‖q ≥ ε2−2/q,

while,
‖fi‖p ∼ ε1/p.

This proves the remark.
We will state a bilinear restriction theorem with some hypothesis that avoid this

type of example. Since the line segments in the hyperbolic paraboloid all lie above
the axis parallel lines in the (ξ, η) parameter space, one is lead to the formulation
of the separation condition: the two subsets S1 and S2 are separated both in the ξ

and the η parameter. Under this hypothesis, we can follow the argument due to T.
Tao [15] to obtain,

Theorem 1.2. Consider the surface

S = {(ξ, η, τ ) / τ = ξη, |ξ |, |η| ≤ 1} ⊂ R3.

Consider compact subsets of S, S1 and S2 satisfying:
for all (ξ1, η1, ξ1η1) ∈ S1 and (ξ2, η2, ξ2η2) ∈ S2 we have |ξ1 − ξ2| ≥ 1 and

|η1 − η2| ≥ 1.

Then, R∗
S1,S2

(p × p → q) holds for any q > 5/3, 5
2q

+ 3
p

< 3.

This separation condition appeared in [17], section 9. It was proven there that,
under the assumptions of Theorem 1.2, R∗

S1,S2
(2 × 2 → 12/7) holds.

As in the case of elliptic surfaces, the bilinear theorem will imply the right linear
restriction estimate. Since our hypotheses here are different, we can not use directly
Theorem 2.2 of [16]. We need to prove a theorem suited for our case, adapting the
ideas of [16]. Unfortunately, we lose the endpoint.

Theorem 1.3. Define

S = {(ξ, η, τ ), / τ = ξη, |ξ |, |η| ≤ 1} ⊂ R3.

Then R∗
S(p → r) holds for r > 10/3 and p′ < r/2.
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In section 2 we derive Theorem 1.3 from Theorem 1.2. In section 3 we give the
proof of Theorem 1.2.

The author would like to thank Terry Tao for suggesting to work on this prob-
lem. And to him and Luis Vega for their helpful comments about this manuscript.
The author is also very indebted to the referee for his/her careful reading and all
the suggestions given, that certainly improved this paper.

After the submission of this paper, the author was informed that Sanghyuk Lee
[8] obtained independently the same result, giving also a more general version of
Theorem 1.2.

2 Proof of Theorem 1.3

By scaling and translation, Theorem 1.2 implies the following

Proposition 2.1. Let j, k, m, n, m′, n′ be natural numbers such that |m − m′| =
2, |n − n′| = 2, and functions f, g, with supp f ⊂ S ∩ {(ξ, η, τ ) : m2−k ≤ ξ ≤
(m + 1)2−k, n2−j ≤ η ≤ (n + 1)2−j } and supp g ⊂ S ∩ {(ξ, η, τ ) : m′2−k ≤
ξ ≤ (m′ + 1)2−k, n′2−j ≤ η ≤ (n′ + 1)2−j }. Then, for all q > 5/3, 5

2q
+ 3

p̃
< 3,

‖f̂ dσ ĝ dσ‖Lq ≤ C2−(j+k)(2− 2
q
− 2

p̃
)‖f ‖Lp̃‖g‖Lp̃ ,

where C is a constant independent of j, k, m, n, f and g.

By interpolation, to obtain Theorem 1.3, it is enough to prove the restricted type
estimate,

‖χ̂� dσ‖L2q ≤ C‖χ�‖Lp ,

for all � ⊂ S, 2 > q > 5/3, and p such that 1
p

+ 1
q

< 1.

For each j, k natural numbers, we decompose S into “rectangles” τ
k,j
l of the

form {(ξ, η, ξη) : m2−k ≤ ξ ≤ (m + 1)2−k, n2−j ≤ η ≤ (n + 1)2−j },
l = (m, n) ∈ Z × Z. If τ

k,j
l and τ

k,j
h are two rectangles with l = (m, n) and

h = (m′, n′) and |m−m′| = 2, |n−n′| = 2, we say that these rectangles are close
and write τ

k,j
l ∼ τ

k,j
h . For almost every (x, y), (x′, y′) ∈ [−1, 1] × [−1, 1] there

exists a unique pair of close rectangles τ
k,j
l , τ

k,j
h containing (x, y) and (x′, y′)

respectively. Thus we have

χ̂� dσ χ̂� dσ =
∑

k,j

∑

l,h:τ k,j
l ∼τ

k,j
h

̂χ
�∩τ

k,j
l

dσ ̂χ
�∩τ

k,j
h

dσ .

Hence,

‖χ̂� dσ‖2
L2q = ‖χ̂� dσ χ̂� dσ‖Lq ≤

∑

k,j

∥
∥
∥
∥

∑

l,h:τ k,j
l ∼τ

k,j
h

̂χ
�∩τ

k,j
l

dσ ̂χ
�∩τ

k,j
h

dσ

∥
∥
∥
∥

Lq

.
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As in [16] this can be majorized by

∑

k,j

(
∑

l,h:τ k,j
l ∼τ

k,j
h

‖ ̂χ
�∩τ

k,j
l

dσ ̂χ
�∩τ

k,j
h

dσ‖q
Lq

)1/q

.

By proposition 2.1, this is less than or equal to

∑

k,j

2−(j+k)(2− 2
q
− 2

p̃
)

(
∑

l,h:τ k,j
l ∼τ

k,j
h

|� ∩ τ
k,j
l |q/p̃|� ∩ τ

k,j
h |q/p̃

)1/q

for some p̃ that we will choose later.
Due to the fact that we have a double sum, in k and j, the rest of the argument

has some technical complication. We need to decompose the set � in convenient
subsets. For η ∈ [−1, 1], we define �η = {ξ : (ξ, η, ξη) ∈ �}. For each natural
number K, set �(K) = {(ξ, η, ξη) ∈ � : 2−K < |�η| ≤ 2−K+1}. For 	 ⊂ R3,

denote by P(	) the orthogonal projection onto the second coordinate axis. For
each K, denote J = J (K), a natural number so that the length |P(�K)| ∼ 2−J .

Then,

|�(K)| ∼ 2−K−J . (5)

We write

� =
∞⋃

K=0

�(K)

and

χ̂� dσ =
∞∑

K=0

̂χ�(K) dσ .

We are first going to show

‖ ̂χ�(K) dσ‖L2q ≤ C|�(K)|1−1/q . (6)

We fix K and estimate, as above,

‖ ̂χ�(K) dσ‖2
L2q

= ‖ ̂χ�(K) dσ ̂χ�(K) dσ‖Lq

≤
∑

k,j

2−(j+k)(2− 2
q
− 2

p̃
)

(
∑

l,h:τ k,j
l ∼τ

k,j
h

|�(K) ∩ τ
k,j
l |q/p̃|�(K) ∩ τ

k,j
h |q/p̃

)1/q

.

We use the fact that for each rectangle τ
k,j
l there are only four rectangles τ

k,j
h

such that τ
k,j
l ∼ τ

k,j
h . We define, for l = (m, n),

5τ
k,j
l := {(ξ, η, ξη) : (m−2)2−k ≤ ξ ≤ (m+3)2−k, (n−2)2−j ≤ η ≤ (n+3)2−j }.
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Then, for each l,

∑

h:τ k,j
l ∼τ

k,j
h

|�(K) ∩ τ
k,j
l |q/p̃|�(K) ∩ τ

k,j
h |q/p̃ ≤ C|�(K) ∩ 5τ

k,j
l |2q/p̃.

Hence,

‖ ̂χ�(K) dσ‖2
L2q ≤ C

∑

k,j

2−(j+k)(2− 2
q
− 2

p̃
)

(
∑

l

|�(K) ∩ 5τ
k,j
l |2q/p̃

)1/q

. (7)

We will take into account that

|�(K) ∩ 5τ
k,j
l | ≤ 25 min{2−j−k, 2−k2−J , 2−j 2−K, 2−K2−J }. (8)

To bound (7) we decompose it in four sums: first one for j ≤ J (K) and k ≥ K,

second j ≥ J (K) and k ≤ K, third j ≥ J (K) and k ≥ K, and fourth j ≤ J (K)

and k ≤ K. We begin by

S1 :=
∑

k≥K

∑

j≤J

2−(j+k)(2− 2
q
− 2

p̃
)

(
∑

l

|�(K) ∩ 5τ
k,j
l |2q/p̃

)1/q

.

Note that for q > 3/2 and p̃ close to p0,
1
p0

+ 1
q

= 1, we have that 2q/p̃ > 1. For
j, k such that, j ≤ J and k ≥ K, we have, by (8),

≤ C
∑

k≥K

∑

j≤J

2−(j+k)(2− 2
q
− 2

p̃
)

(
∑

l

|�(K) ∩ 5τ
k,j
l |[2−J 2−k]2q/p̃−1

)1/q

≤ C[2−J ]2/p̃−1/q
∑

k≥K

∑

j≤J

2−j (2− 2
q
− 2

p̃
)2−k(2− 3

q
)

(
∑

l

|�(K) ∩ 5τ
k,j
l |

)1/q

.

We observe that
∑

l

|�(K) ∩ 5τ
k,j
l | ≤ C|�(K)|.

We can choose p̃ such that, (2− 2
q

− 2
p̃
) < 0, while 2− 3

q
> 0. We sum both series

to bound

S1 ≤ C[2−J ]2/p̃−1/q |�(K)|1/q2−J (2− 2
q
− 2

p̃
)2−K(2− 3

q
) ≤ C|�(K)|2−2/q,

by (5).
We do similarly for the second sum

S2 :=
∑

k≤K

∑

j≥J

2−(j+k)(2− 2
q
− 2

p̃
)

(
∑

l

|�(K) ∩ 5τ
k,j
l |2q/p̃

)1/q

.
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In this case, we use the estimate (8) to obtain,

≤ C
∑

k≤K

∑

j≥J

2−(j+k)(2− 2
q
− 2

p̃
)

(
∑

l

|�(K) ∩ 5τ
k,j
l |2(−K−j)(2q/p̃−1)

)1/q

≤ C2−K(2/p̃−1/q)
∑

k≤K

∑

j≥J

2−k(2− 2
q
− 2

p̃
)2−j (2− 3

q
)

(
∑

l

|�(K) ∩ 5τ
k,j
l |

)1/q

.

The same reasoning above, gives us

S2 ≤ C|�(K)|2−2/q .

The third piece of the sum,

S3 :=
∑

k≤K

∑

j≤J

2−(j+k)(2− 2
q
− 2

p̃
)

(
∑

l

|�(K) ∩ 5τ
k,j
l |2q/p̃

)1/q

≤ C
∑

k≤K

∑

j≤J

2−(j+k)(2− 2
q
− 2

p̃
)

(
∑

l

|�(K) ∩ 5τ
k,j
l ||�(K)|2q/p̃−1

)1/q

.

≤ C
∑

k≤K

∑

j≤J

2−(j+k)(2− 2
q
− 2

p̃
)

(

|�(K)|2q/p̃

)1/q

.

Again, we obtain, S3 ≤ C|�(K)|2−2/q .

About the fourth term,

S4 :=
∑

k≥K

∑

j≥J

2−(j+k)(2− 2
q
− 2

p̃
)

(
∑

l

|�(K) ∩ 5τ
k,j
l |2q/p̃

)1/q

≤ C
∑

k≥K

∑

j≥J

2−(j+k)(2− 2
q
− 2

p̃
)

(
∑

l

|�(K) ∩ 5τ
k,j
l |[2−(j+k)]2q/p̃−1

)1/q

= C
∑

k≥K

∑

j≥J

2−(j+k)(2− 3
q
)

(
∑

l

|�(K) ∩ 5τ
k,j
l |

)1/q

≤ C|�(K)|2−2/q .

This proves (6).
Once we have this, to be able to sum in K, we have some loss. Using (6)

‖χ̂� dσ‖Lq ≤
∑

K

‖ ̂χ�(K) dσ‖Lq ≤ C
∑

K

|�(K)|1−1/q .

Now, simply notice that |�(K)| ≤ 2−K, and write,
∑

K

|�(K)|1−1/q ≤ C
∑

K≥0

|�|1−1/q−ε2−Kε ≤ Cε |�|1−1/q−ε,

for all ε > 0. This finishes the proof.
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3 Proof of Theorem 1.2

By interpolation, it suffices to prove that R∗
S1,S2

(2 × 2 → q) holds for all q > 5/3.

Our proof follows the lines of the proof in [15]. The “local part”of the argument
is exactly the same. We only need to check the transversality properties which are
crucial for the “global part”. For the sake of completeness, we will recall the main
steps of [15].

By translation, we can assume that

S1 = S ∩ {(ξ, η, τ ) / − 1 < ξ < −1/2, −1 < η < −1/2}
and

S2 = S ∩ {(ξ, η, τ ) / 1/2 < ξ < 1, 1/2 < η < 1}
Denote by R∗

S1,S2
(2 × 2 → q, α) the estimate

‖f̂1 dσ1f̂2 dσ2‖Lq(B(p,R)) ≤ CRα‖f1‖2‖f2‖2 (9)

for all balls of radius R and all functions f1, f2 in S1, S2. Then, the epsilon removal
argument on [13] reduces the proof of the theorem to show that R∗

S1,S2
(2 × 2 →

5/3, α) holds for all α > 0. Moreover, following Wolff’s induction on scale argu-
ment we just have to prove:

Proposition 3.1. There is a constant C > 0 such that, if

R∗
S1,S2

(2 × 2 → 5/3, α) (10)

holds for some α > 0, then

R∗
S1,S2

(2 × 2 → 5/3, max{(1 − δ)α, Cδ} + ε)

holds for all δ > 0 and all 0 < ε << 1.

Fix R > 0. To prove this proposition, we decompose fj , j = 1, 2 following
the notation in Lemma 4.1 in [15]. There the tubes T are defined as as the sets of
the form

T = {(x, y, t) : R/2 ≤ t ≤ R; |(x, y) − (x(T ), y(T )) − tv(T )| ≤ R1/2},
where (x(T ), y(T )) ∈ R1/2Z2 is the initial position of T and v(T ) ∈ R−1/2Z2 is
the velocity. Then, Tao shows that we can write

f̂j dσ =
∑

Tj

cTj
φTj

,

for some coefficients cTj
satisfying

∑

Tj

|cTj
|2 ≤ ‖fj‖2

2.
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and some functions φTj
adapted to tubes Tj , i.e. satisfying

|φTj
(x, y, t)| ≤ CNR−1/2

(

1 + |(x, y) − (x(Tj ), y(Tj )) − tv(Tj )|
R1/2

)−N

(11)

for all N > 0.

Moreover, the functions φTj
are of the form

φTj
= f̂Tj

dσ (12)

where fTj
is supported in a R−1/2–neighborhood of some point (ξj , ηj , ξj ηj ) ∈ Sj

and v(Tj ) = (−ηj , −ξj ). Notice that the axis of the tube Tj is orthogonal to the
surface Sj at the point (ξj , ηj , ξj ηj ). Finally, we also have, for any family of
tubes, T,

∥
∥
∥
∥

∑

Tj ∈T

fTj

∥
∥
∥
∥

2

2
≤ C#T (13)

or equivalently

∥
∥
∥
∥

∑

Tj ∈T

φTj
(·, t)

∥
∥
∥
∥

2

2
≤ C#T uniformly in t. (14)

Denote by T(Sj ), j = 1, 2, the family of all the tubes T , such that v(T ) =
(−η, −ξ) for some (ξ, η, ξη) ∈ Sj . A transversality condition holds:

If T1 ∈ T(S1) and T2 ∈ T(S2), then T1 and T2 are transversal, (15)

meaning this that the angle between their axes is bounded below by a positive
absolute constant (independent of the tubes).

Let us go back to the proof of the proposition. We assume that R∗
S1,S2

(2 × 2 →
q, α) holds and consider QR ⊂ {(x, y, t) : R/2 < t < R} a square of side length
R/2. It suffices to prove the estimate

‖f̂1 dσ1f̂2 dσ2‖L5/3(QR) ≤ Cε,δR
ε
(
R(1−δ)α + Rcδ

)‖f1‖2‖f2‖2. (16)

Using the decomposition of f1 and f2 and some pigeonholing argument, this can
be reduced to

Proposition 3.2.
∥
∥
∥
∥

∑

T1∈T1

∑

T2∈T2

φT1φT2

∥
∥
∥
∥

L5/3(QR)

≤ C
(
R(1−δ)α + Rcδ

)
(#T1)

1/2(#T2)
1/2 (17)

for all collections of tubes Tj ⊂ T(Sj ), j = 1, 2.
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We cover the ball QR by balls B of radius R1−δ with finite overlap. Then
∥
∥
∥
∥

∑

T1

∑

T2

φT1φT2

∥
∥
∥
∥

L5/3(QR)

≤
∑

B

∥
∥
∥
∥

∑

T1

∑

T2

φT1φT2

∥
∥
∥
∥

L5/3(B)

We will also decompose each ball B in cubes q of side length R1/2 with finite
overlap.

By a pigeonholing argument we can assume that there are numbers 1 ≤ µ1, µ2
≤ R200 such that, for all the cubes q that we will consider, we have:

µj ≤ #{Tj ∈ Tj : Tj ∩ Rδq �= ∅ } ≤ 2µj for j = 1, 2. (18)

Also, we can assume that there is λ1 > 0, such that for all tubes T1,

λ1 ≤ #{q satisfying (18) : T1 ∩ Rδq �= ∅} ≤ 2λ1. (19)

We associate tubes in T1 ∪ T2 and balls B as in [15]. There is a relation ∼,

between tubes and balls, such that, for all T ∈ T1 ∪ T2 we have

1 ≤ #{B : T ∼ B} ≤ CRcδ, (20)

and by (19), for all T1 ∈ T1, T1 ∼ B,

#{q : q ∩ 10B �= ∅, T1 ∩ Rδq �= ∅} ≥ R−cδλ1. (21)

For each ball B set B̂ as the union of all the cubes q in B satisfying (18). We
estimate the local part

∑

B

∥
∥
∥
∥

∑

T1∼B

∑

T2∼B

φT1φT2

∥
∥
∥
∥

L5/3(B̂)

≤
∑

B

∥
∥
∥
∥

∑

T1∼B

∑

T2∼B

φT1φT2

∥
∥
∥
∥

L5/3(B)

as in [15], using the induction hypothesis (10) and (14), by

≤
∑

B

CR(1−δ)α(#{T1 ∈ T1 : T1 ∼ B})1/2(#{T2 ∈ T2 : T2 ∼ B})1/2.

By Cauchy–Schwarz inequality,

≤ CR(1−δ)α

(
∑

B

#{T1 ∈ T1 : T1 ∼ B}
)1/2 (

∑

B

#{T2 ∈ T2 : T2 ∼ B}
)1/2

.

Finally, by (20), this is less than or equal to

CR(1−δ)α(#T1)
1/2(#T2)

1/2.

The geometry of the surface will be important for the estimate of the global part
∑

T1 �∼B

∑

T2∼B

φT1φT2 +
∑

T1 �∼B

∑

T2 �∼B

φT1φT2 +
∑

T1∼B

∑

T2 �∼B

φT1φT2 .



Restriction theorems for a surface with negative curvature 107

We will consider the first term of this sum, the others being similar. We are going
to interpolate an L1 and an L2 estimate for that sum. For the L1 estimate, we apply
Cauchy–Schwarz inequality

∥
∥
∥
∥

∑

T1 �∼B

∑

T2∼B

φT1φT2

∥
∥
∥
∥

L1(B)

≤
∥
∥
∥
∥

∑

T1 �∼B

φT1

∥
∥
∥
∥

L2(B)

∥
∥
∥
∥

∑

T2∼B

φT2

∥
∥
∥
∥

L2(B)

and directly estimate the norms using (14) to obtain

≤ R(#T1)
1/2(#T2)

1/2.

The proof will end if we show the estimate

∥
∥
∥
∥

∑

T1 �∼B

∑

T2∼B

φT1φT2

∥
∥
∥
∥

2

L2(B̂)

≤ CRCδR−1/2(#T1)(#T2). (22)

As we said before, we decompose B̂ in cubes q of side length R1/2, satisfying
(18). We estimate the left hand side of (22) by

∑

q

∥
∥
∥
∥

∑

T1 �∼B

∑

T2∼B

φT1φT2

∥
∥
∥
∥

2

L2(q)

.

We can assume that we have (18) and (19). Set, for q ⊂ 2B,

T1(q) = {T1 ∈ T1 : T1 �∼ B, T1 ∩ Rδq �= ∅}, (23)

and
T2(q) = {T2 ∈ T2 : T2 ∩ Rδq �= ∅},

We will consider the contribution of the cubes q and tubes T1, satisfying (18) and
(19), such that T1 ∈ T1(q) and T2 ∈ T2(q), the remaining being easy to estimate
by (11).

Denote �j = {(ξ, η) : (ξ, η, ξη) ∈ Sj }, j = 1, 2, the orthogonal projections
of Sj onto the ξη–plane. For (ξ1, η1) ∈ �1 and (ξ ′

2, η
′
2) ∈ �2, define the set

π((ξ1, η1), (ξ
′
2, η

′
2))

= {(ξ ′
1, η

′
1) ∈ �1 : (ξ1, η1, ξ1η1) + (ξ2, η2, ξ2η2)

= (ξ ′
1, η

′
1, ξ

′
1η

′
1) + (ξ ′

2, η
′
2 + ξ ′

2η
′
2) for some (ξ2, η2) ∈ �2}. (24)

It turns out that π((ξ1, η1), (ξ
′
2, η

′
2)) is contained in a straight line. Actually, if

we set A = ξ ′
2 − ξ1 and B = η′

2 −η1, then, π((ξ1, η1), (ξ
′
2, η

′
2)) is contained in the

straight line that passes through (ξ1, η1) and orthogonal to the vector (B, A), i.e.

r = r((ξ1, η1), (ξ
′
2, η

′
2)) := {(ξ ′

1, η
′
1) : Bξ ′

1 + Aη′
1 = Bξ1 + Aη1}. (25)

Note also that by the definition of S1 and S2, A ∼ 1, and B ∼ 1. This implies
that for all (ξ2, η2) ∈ �2, r((ξ1, η1), (ξ

′
2, η

′
2)) is transversal to the vector (ξ2, η2),
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and that, the distance from (ξ2, η2) to r((ξ1, η1), (ξ
′
2, η

′
2)) is ∼ 1. This has an

important consequence for us: define the plane

P((ξ1, η1), (ξ
′
2, η

′
2))

as the plane containing the point (0, 0, 1) and the straight line {(ξ, η, 0) : (ξ, η) ∈
r((ξ1, η1), (ξ

′
2, η

′
2))}. Then, for all (ξ2, η2) ∈ �2,

(−ξ2, −η2, 1) and P((ξ1, η1), (ξ
′
2, η

′
2)) are transversal. (26)

For each cube q we want to estimate
∥
∥
∥
∥

∑

T1∈T1(q)

∑

T2∈T2(q)

φT1φT2

∥
∥
∥
∥

2

L2(q)

.

First, note that, by (11) and the fact that the tubes T1 ∈ T1 and T2 ∈ T2 are
transversal, we have

‖φT1φT2‖2
L2 ≤ CR−1/2.

Moreover, we can write
∥
∥
∥
∥

∑

T1∈T1(q)

∑

T2∈T2(q)

φT1φT2

∥
∥
∥
∥

2

2
=

∑

T1∈T1(q)

∑

T2∈T2(q)

∑

T ′
1∈T1(q)

∑

T ′
2∈T2(q)

∫

φT1φT2φT ′
1
φT ′

2
,

and use (12)

=
∑

T1∈T1(q)

∑

T2∈T2(q)

∑

T ′
1∈T1(q)

∑

T ′
2∈T2(q)

(fT1 dσ) ∗ (fT2dσ) ∗ (f̃T ′
1
dσ) ∗ (f̃T ′

2
dσ)(0).

(Here we use the notation g̃ = g(−·).) Now, notice that

(fT1 dσ) ∗ (fT2dσ) ∗ (f̃T ′
1
ds) ∗ (f̃T ′

2
ds)(0)

it not zero only if (ξ ′
1, η

′
1) belongs to a R−1/2–neighborhood of π((ξ1, η1), (ξ

′
2, η

′
2))

and

(ξ1, η1, ξ1η1) + (ξ2, η2, ξ2η2) = (ξ ′
1, η

′
1, ξ

′
1η

′
1) + (ξ ′

2, η
′
2, ξ

′
2η

′
2) + O(R−1/2).

For fixed (ξ ′
1, η

′
1), (ξ1, η1) and (ξ2, η2), there are at most O(1) points (ξ ′

2, η
′
2)

satisfying that equation.
Denote by ν(q) the supremum on all the points (ξ1, η1) ∈ �1, (ξ ′

2, η
′
2) ∈ �2

of

#{T ′
1 ∈ T1(q) : v(T ′

1) = (−η′
1, −ξ ′

1) such that (ξ ′
1, η

′
1) belongs to a

R−1/2 − neighborhood of π((ξ1, η1), (ξ
′
2, η

′
2))}

Then, the above reasoning shows that
∥
∥
∥
∥

∑

T1∈T1(q)

∑

T2∈T2(q)

φT1φT2

∥
∥
∥
∥

2

L2(q)

≤ CR−1/2ν(q)(#T1(q))(#T2(q)).
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To end the proof we need to show that

∑

q

ν(q)(#T1(q))(#T2(q)) ≤ CRCδ(#T1)(#T2).

By (19)
∑

q

#T1(q) ≤ λ1#T1

and by (18),
#T2(q) ≤ 2µ2.

Therefore, as in [15] this reduces our problem to show that for each cube q,

ν(q) ≤ CRCδ #T2

λ1µ2
.

Fix a cube q0 and (ξ1, η1) ∈ �1, (ξ
′
2, η

′
2) ∈ �2. Denote

T′
1 := {T ′

1 ∈ T1(q0) : v(T ′
1) = (−η′

1, −ξ ′
1), (ξ ′

1, η
′
1) belongs to a R−1/2

−neighborhood of π((ξ1, η1), (ξ
′
2, η

′
2))}.

We want to prove

#T′
1 ≤ CRCδ #T2

λ1µ2
.

By (18) and (21),

#{(q, T ′
1, T2) : T ′

1 ∈ T′
1, T ′

1 ∩ Rδq �= ∅, T2 ∩ Rδq �= ∅, dist (q, q0) ≥ R−CδR}
≥ R−Cδλ1µ2#T′

1.

Besides,

#{(q, T ′
1, T2) : T ′

1 ∈ T′
1, T ′

1 ∩ Rδq �= ∅, T2 ∩ Rδq �= ∅, dist (q, q0) ≥ R−CδR}
≤ (#T2) · sup

T2∈T2

#{(q, T ′
1) : T ′

1 ∈ T′
1, T ′

1 ∩ Rδq �= ∅, T2 ∩ Rδq �= ∅,

dist (q, q0) ≥ R−CδR}.

Hence, what we need to prove is

Lemma 3.3. For all T2 ∈ T2

#{(q, T ′
1) : T ′

1 ∈ T′
1, T ′

1 ∩ Rδq �= ∅, T2 ∩ Rδq �= ∅, dist (q, q0) ≥ R−CδR}
≤ CRCδ.

To prove the lemma, note that once T2 is fixed, if (q, T ′
1) is as in the lemma, q

is contained in a ball of radius RCδR1/2 determined by RCδT ′
1 ∩ RCδT2. Hence,

we just have to count the tubes T ′
1 such that
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(a) T ′
1 ∩ Rδq0 �= ∅,

(b) (ξ ′
1, η

′
1) belongs to a R−1/2–neighborhood of π((ξ1, η1), (ξ

′
2, η

′
2))

and for which there is a cube q such that
(c) T ′

1 ∩ Rδq �= ∅,

(d) T2 ∩ Rδq �= ∅
(e) dist (q, q0) ≥ R−CδR.

We observe that the union of all tubes T ′
1 satisfying (a) and (b) is contained in

a RCδ neighborhood of a plane that passes through q0 and is parallel to the plane

P̃ = {t (−η′, −ξ ′, 1) : t ∈ R, (ξ ′, η′) ∈ r((ξ1, η1), (ξ
′
2, η

′
2))}.

Note that T2 crosses that plane transversally, for all T2 ∈ T2. This can be seen as
a consequence of (26), since under the orthogonal transformation L(u, v, w) =
(v, u, w), v(T2) goes to (−ξ2, −η2, 1) and P̃ goes to P((ξ1, η1), (ξ

′
2, η

′
2)). More-

over the sets

RCδT ′
1 ∩ {p ∈ R3 : dist (p, q0) ≥ R−CδR}

have overlap bounded by RCδ. Hence, we conclude that RCδT2 intersects at most
RCδ of those RCδT ′

1. This proves the lemma.

Remarks. The proof of Theorem 1.2 can be adapted to other pairs of surfaces, S1,

S2, with non vanishing curvature. To repeat the proof for general S1 and S2, the
axis of the tubes T ∈ Tj have to be normal to Sj , j = 1, 2, at some points. For a
point p ∈ Sj denote N(p) a normal vector to Sj at p. To have (15) we need

(A) For all p1 ∈ S1 and p2 ∈ S2, N(p1) and N(p2) are transversal.

For p1 ∈ S1 and p′
2 ∈ S2, denote

π(p1, p
′
2) = {p′

1 ∈ S1 / p1 + p2 = p′
1 + p′

2 for some p2 ∈ S2}.
A second transversality condition is needed in the Proof of Lemma 3.3. The defi-
nition of P̃ is replaced by

P̃ = {tN(p) : t ∈ R p ∈ π(p1, p
′
2)}.

The second condition that we need is

(B) For all p1 ∈ S1 and p2, p′
2 ∈ S2, N(p2) is tranversal to P̃ .
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