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Abstract The regular type of a real hyper-surfaceM in an (almost) complex man-
ifold at some point p is the maximal contact order at p of M with germs of non
singular (pseudo) holomorphic disks. The main purpose of this paper is to give
two intrinsic characterizations the type : one in terms of Lie brackets of a complex
tangent vector field onM , the other in terms of some kind of derivatives of the Levi
form.
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The purpose of this paper is to study order of contact between holomorphic curves
(as well pseudoholomorphic curves) and a real hyper-surface. In the integrable
case, this invariant is connected to the boundary behavior of the Cauchy-Riemann
equations, the Bergman kernel, invariant metrics, etc.. see for example [5,3,4,10,
9]. One of the difficulty to use this number in function theory on a domain D, is
due to the fact that in general, it was not known how to calculate it with intrinsic
“complex geometry” of the boundary of D. In C

2 the situation is clear (see [9]) ;
for C

n (n > 2), we only know how to compute the order of contact of complex
hyper-surface with the natural Lie algebra of the boundary of D (see [2]). In [2],
I. Graham and T. Bloom ask how to characterize the regular “type” in a similar
intrinsic way with only one complex vector field; T. Bloom (see[1]) succeeds in
the pseudoconvex case in C

3 but unfortunately, the result is not valid without the
pseudoconvexity hypothesis.

In this article, we consider an hyper-surface (pseudoconvex or not) in C
n or

in R
2n endowed with an almost complex structure, and characterize its “regular

one type”, by means of Lie brackets of one “complex tangent vector field” on the
hyper-surface (see theorem 1), and by means of derivatives of the “levi form” in
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some way (see theorem 2). We decided to work in the non-integrable situation,
because our main argument shows up naturally in this setting. In particular, we
recall the definition of the Levi form in the non-integrable case, show that it has the
same properties as the classical one, and use it to define strictly pseudoconvexity
and pseudoconvexity.

The plane of the paper is the following: in the first section, we define relevant
objects in the non-integrable case and we expound the main results; in section two,
we compare jets of holomorphic curves (with contact order k) with jets of complex
tangent vector fields; in section three, we relate the order of contact with complex
line sub-bundles of T J (M) = TM ∩ JTM (see the definition in the first section)
nearly involutive (see theorem 1); in section four, we introduce the “derivatives of
the Levi form” and we demonstrate the theorem 2; in the last section, we discuss
the base point dependency of the type in (complex) dimension 2 and in a particular
case in dimension 3.

1 Notations and main results

Let us first recall, in the almost complex case, the notions of “complex tangent
space”, “complex vector fields”, “Levi form” and “pseudoconvexity” and derive
some of their properties well known in the integrable case.

All along this paper, we will work with the following objects : let J be an almost
complex structure on R

2n (with J (0) = i) and M an oriented real hyper-surface
through 0 in R

2n. Let T JM = TM ∩ JTM denote the J -invariant part of TM .
The sections of T JM will be called J -tangent or complex tangent vector fields on
M . We choose a vector field N transversal to M so that we have :

R
2n = TM ⊕ RN and TM = T JM ⊕ R(JN).

Let φ : R
2n → R be a defining function for M , i.e. a function such that M =

φ−1(0), 0 is a regular value of φ, and φ defines the positive orientation of M . Of
course, if ψ is another defining function of M , then there exists a non negative
function f : R

2n →]0,+∞[ such that ψ = f φ. Once a defining function φ and a
metric on R

2n are chosen, we can take N to be the gradient ∇φ of φ with respect
to the metric.

The set M+ = {φ > 0} will be called the outside, and M− = {φ < 0} the
inside defined by M .

The main purpose of this paper is to characterize the maximal contact order
�1

reg(p) ofM with regular (eventually pseudo-) holomorphic disks at some point p
intrinsically, i.e. in terms of tangent vector fields on M . Recall that a germ of map
u : (C, 0) → (R2n, 0) is pseudo-holomorphic with respect to J , or J -holomorphic
if it satisfies the relation du + J (u)dui = 0. Since this should not produce any
ambiguity, we will speak about “holomorphic” disks in both the integrable and the
non integrable case, forgetting about the “pseudo” or J prefix. The precise notions
of contact and type we will work with are the following :
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Definition 1. Let u : (�, 0) → (R2n, 0) be a (pseudo-)holomorphic disk mapping
0 to 0, and regular i.e. such that du(0) �= 0. Its contact order δ0(M, u) with M at
0 is the degree of the first term in the Taylor expansion of φ ◦ u.

Definition 2. Let Dreg be the set of all germs of (pseudo-)holomorphic disks u such
that u(0) = 0 and du(0) �= 0. The (regular) type of M at 0 is the number

�1
reg(M, 0) = sup

u∈Dreg

(δ0(M, u))

Our aim is to compute the type of M at 0 in terms of tangent vector fields on
M . We propose two results in this direction, inspired from two classical results in
complex analysis.

Our first result in this direction is a generalization of the classical results of [9]
and [2] and computes the type in term of Lie brackets of “one” tangent vector field.

Theorem 1. Let δ = CX be J -line in T0M . The three following conditions are
equivalent :

(1) There exists a smooth (J -)holomorphic disk C = u(�) tangent to M at 0 with
order k + 2, with direction δ (i.e. T0C = δ).

(2) There exists a complex line sub-bundle L of TM such that L0 = δ and all the
Lie brackets of length at most k + 1 of sections of L steel belong to δ at 0.

(3) there exists a J -tangent vector field X0 with X0(0) ∈ δ such that all the Lie
brackets of X0 and JX0 of length at most k + 1 vanish at 0.

Moreover, if ∇ is a symmetric connexion, u and X0 can be chosen such that at 0 :

X0 = ∂u
∂x
,∇X0X0 = ∂2u

∂x2 , . . . ,∇X0(∇X0(. . .∇X0X0)) = ∂k+1u
∂xk+1 .

Remark 1. If L is involutive, i.e. (every where !) stable by Lie brackets, then by the
Frobenius theorem, M is foliated by J -holomorphic curves.

Our second result in the same direction uses “higher order” Levi forms, which
are some kind of derivatives of the standard Levi form ; in contrast to the standard
Levi form, they depend on the choice of a symmetric connexion.

Let us first discuss the Levi form itself. It is often defined on the complexifi-
cation of TM , but we choose not to work in this setting to reduce the number of
(almost) complex structures involved.

Thus we will use the following definition :

Definition 3. Let T JM = TM ∩ J (TM) be the J -invariant part of TM . The
function Lφ : T JM → R defined by

Lφ(X) = dφ(J [X, JX]) (1)

is in fact a quadratic form on TM , called the Levi form associated to φ. It depends
on φ only up to multiplication by a non negative function.

The fact thatL(X) does not depend on the derivatives ofX is a straight forward
computation. Let us just mention by the way the polar form associated to Lφ :

�φ(X, Y ) = 1

2

(
dφ(J [X, JY ] + J [Y, JX])+ i dφ(J [X, Y ] + J [JX, JY ])

)

(2)
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In particular, if α and β are two real functions on M , then

Lφ((α + βJ )X) = (α2 + β2)Lφ(X). (3)

The classical relation between the Levi form and the second derivative of φ has
to be modified in the non integrable case to take derivatives of the almost complex
structure J into account :

Proposition 4. LetD2
∇φ denote the second derivative of φ with respect to ∇. Then

Lφ(X) = D2
∇φ(X,X)+D2

∇φ(JX, JX)+ dφ
(
(∇JXJ )X − (∇XJ ) JX

)
(4)

Remark 2. We will use a multiplicative notation for the derivatives, i.e. when dif-
ferentiating many times in different directions, ∇X1(∇X2(. . .∇Xk−1Xk)) will be
replaced by X1 ·X2 · · ·Xk , and if all the Xi are the same, simply by Xk . We stress
that this notation is somewhat misleading since this “product” is not associative.

The particular cases when the Levi form is non negative or positive are specially
interesting.

Definition 5. The hyper-surface M is said to be

• pseudoconvex if Lφ ≥ 0.
• strictly pseudoconvex if Lφ > 0.

The Levi form is a good tool to study the holomorphic disks tangent to M at
the first order, i.e. to check whether the type is 2 or grater than 2 :

Proposition 6. Consider the Levi form at the origin.

• If ∃X ∈ T J0 M, Lφ(X) > 0, then there exits a smooth J -holomorphic disk u :
� → R

2n tangent to M at 0 from the outside (i.e. lying in M+).
• ∃X ∈ T J0 M, Lφ(X) = 0 if and only if there exits a smooth J -holomorphic disk
u : � → R

2n tangent to M at 0 with contact order > 2.

Moreover, in each case, X and u can be chosen such that at 0 : X = ∂u
∂x

.

Remark 3. This is just a computation, which will be detailed later on, as an introduc-
tion to the definition of higher order Levi forms. The existence of such holomorphic
disk is useful to study properties of hyperbolicity for strictly pseudoconvex hyper-
surfaces (see [7] and [8]).

The main result is as follows :

Theorem 2. Out of the derivatives of the Levi form (see definition 14 in section 4.1
for precise statement), one can compute functions Lp,q : (R2n)p+q+1 → R for all
p, q ∈ N such that the two following conditions are equivalent :

(1) There exists a regular (J -)holomorphic disk tangent toM at 0 with order k+ 2
(2) There exists a complex tangent vector field X ∈ 	(T JM) such that

∀(p, q), p + q ≤ k − 1, Lp,q(X(0),X2(0), . . . , Xp+q+1(0)) = 0.
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Moreover, u and X can be chosen such that at 0 : X = ∂u
∂x
, . . . , Xk+1 = ∂ku

∂xk+1 ;
(recall that Xp stands for ∇X(· · · (∇X(X)))︸ ︷︷ ︸

p

).

Remark 4. This result generalizes the theorem of Bloom in C
3 (see [1]) for pseudo-

convex hyper-surface; but compare carefuly the definition of iterated derivatives of
the levi form in our theorem and in [1].

The two theorems (1 and 2) rest on the comparison of jets of J -holomorphic
disks and the appropriate notion of jets of vector fields on M .

2 Jets of disks and tangent vector fields

Definition 7. Define the (p, q)-th derivative of some vector field X in R
2n, to be

the vector X differentiated p times in its own direction and then q times in the JX
direction :

D
p,q
X X(0) = (JX)qXp ·X(0) = (JX · · · · (JX︸ ︷︷ ︸

q

· (X · · · · (X︸ ︷︷ ︸
p

·X)))(0)

Definition 8. The collection of all the (p, q)-th derivatives of a vector field X on
R

2n at 0 for 0 ≤ p + q ≤ k will be called its oder k jet and denoted by jk0X. This
defines a map

jk0 : 	(TR
2n) → J k

0 (R
2n) = (R2n)

(k+1)(k+2)
2

X → (X(0), . . . , Dp,qX X(0), . . . , D0,k
X X(0))

and a jet ξ ∈ J k
0 (R

2n) is said to be realizable if it belongs toJ k
0 (M) = jk0 (	(T

JM)).

Given an holomorphic disk u tangent toM , one would like to know whether or
not it’s jet at 0 can be realized as the jet of some vector fieldX ∈ 	(T JM). This is
what this section is devoted to.

Let us start with a basic observation :

Proposition 9. Let X and Y be two J -tangent vector fields such that jk0 (X) =
jk0 (Y ). Then for all p, q ∈ N with p + q = k + 1, we have

D
p,q
X X(0)−D

p,q
Y Y (0) ∈ T JM

Proof. One has to prove the two equalities

dφ(D
p,q
X X(0)−D

p,q
Y Y (0)) = 0 (5)

dφ(J [Dp,qX X(0)−D
p,q
Y Y (0)]) = 0. (6)

Let us compute Dp,qX (dφ(X)). On one hand, it is 0 (since X ∈ TM). On the other
hand, the development of Dp,qX (dφ(X)) is a sum of terms of the form

Dαφ(D
p1,q1
X X(0), . . . , Dpα,qαX X(0))
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If pi + qi ≤ k, then this term is the same as

Dαφ(D
p1,q1
Y Y (0), . . . , Dpα,qαY Y (0))

Thus 0 − 0 = D
p,q
X (dφ(X))−D

p,q
Y (dφ(Y )) = dφ(D

p,q
X X −D

p,q
Y Y ).

The equality (6) is obtained along the same lines (eventually taking the deriva-
tives of J into account) using Dp,qX (dφ(JX)) = 0 since JX ∈ TM . ��

Realizability of jets can then be recursively tested as follows :

Proposition 10. Let ξ ∈ J k+1
0 (R2n). Let [ξ ]k be its J k

0 (R
2n)-component, and

(ξk+1,0, . . . , ξp,q, . . . , ξ0,k+1) its homogeneous part of degree k + 1. Then

∃X ∈ 	(T JM), jk+1
0 (X) = ξ (7)

if and only if
{

∃X1 ∈ 	(T JM), jk0 (X1) = [ξ ]k
∀(p, q), p + q = k + 1, ξp,q − [jk+1

0 (X1)]p,q ∈ T J0 M
(8)

In other words, if you take a realizable k + 1-jet, then the N and JN components
of its maximal degree part are completely determined by its k-order part, but the
T JM component can be anything.

Proof. (7)⇒(8) is obvious. So let us start with X1 and the compatibility condition
(8). Let (T1, . . . , Tn−1) be a (complex) basis of T JM and let X = X1 + ∑

λiTi ,
where the λi are complex valued functions on M , all the derivatives of which van-
ish at 0 up to order k, and such that λi(0) = 1. Then if p + q ≤ k, Dp,qX X =
DX1+

∑
λiTi (X+∑

λiTi) is the sum ofDp,qX1
X1 and of terms involving derivatives

of the λi of order at most k. Therefore at 0 we have

∀(p, q), p + q ≤ k, D
p,q
X X(0) = D

p,q
X1
X1(0) (9)

For p+q = k+1, the k+1-th derivatives of λi appear in the following terms :

D
p,q
X X(0) = D

p,q
X1
X1(0)+

∑
(D

p,q
X1
λi)(0)Ti(0)

= D
p,q
X1
X1(0)+

∑
Dk+1

0 λi(JX1, . . . , JX1, X1, . . . , X1)Ti(0) (10)

which proves that the k + 1 degree part of jk0 (X1) can only be modified in the
T JM direction, and all the modification in this direction are possible since any
(αk+1,0, αk,1, . . . , α0,k+1) ∈ C

k+2 can be realized as the derivatives of a com-
plex valued function in the directions X1 and JX1 (provided that X1 �= 0) :
∀(αk+1,0, αk,1, . . . , α0,k+1) ∈ C

k+2 ∃λ : M → C such that





λ(0) = 1

∀r ≤ k, Dr0λ = 0

∀(p, q), p + q = k + 1, Dk+1
0 λ(JX1 . . . JX1, X1 . . . X1) = αp,q

��
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Corollary 11. There exists a regular holomorphic disk u : � → R
2n tangent toM

at 0 with order k+ 2 (i.e. φ ◦ u(z) = O(zk+2)) if and only if the k+ 1-jet of u at 0
is realizable, i.e.

∃X ∈ 	(T JM), ∀(p, q), p + q ≤ k, D
p,q
X X(0) = ∂p+qu

∂xp∂yq

∂u

∂x
(0).

Proof. Let u be a disk tangent to M with order k + 3, ξ the k-jet of ∂u
∂x

at 0 (i.e.

ξp,q = ∂p+q+1u
∂xp+1∂yq

(0)). By induction, there exists a J tangent vector fieldX1 realizing

the k-jet of ∂u
∂x

. Then, comparing the developments of

∂k+1

∂xp∂yq

[
dφ(∂u

∂x
)
]
(0) and D

p,q
X1

[
dφ(X1)

]
(0)

for p + q = k + 1, it turns out that all the terms are the same except may be the
terms where no derivative is applied to dφ. Thus, we have :

∂k+1

∂xp∂yq

[
dφ(∂u

∂x
)(0)

]
(0)−D

p,q
X1

[
dφ(X1)

]
(0) = dφ

[
∂k+1

∂xp∂yq
∂u
∂x
(0)−D

p,q
X1
X1(0)

]
.

(11)

On the other hand, ∂k+1

∂xp∂yq

[
dφ(∂u

∂x
)
]
(0) = 0 since φ ◦ u(z) = O(zk+3), and

D
p,q
X1

[
dφ(X1)

]
(0) = 0 since X1 ∈ TM . Thus we have

dφ
(
ξp,q − [jk+1

0 X1]p,q
)

= 0. (12)

Comparing in the same way

∂k+1

∂xp∂yq

[
dφ(J (u) ∂u

∂x
)
]
(0) and D

p,q
X1

[
dφ(JX1)

]
(0)

we get

∂k+1

∂xp∂yq

[
dφ(∂u

∂y
)(0)

]
(0)−D

p,q
X1

[
dφ(JX1)

]
(0)

= dφ
[
J ∂k+1

∂xp∂yq
∂u
∂x
(0)− JD

p,q
X1
X1(0)

]
. (13)

and finally

dφ
(
Jξp,q − J [jk+1

0 X1]p,q
)

= 0. (14)

The relations (12) and (14) and the proposition 10 now proves that X1 can be
modified into a new complex tangent vector field X to have :

jk+1
0 X = ξ.
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Start now with u and X ∈ T JM such that ∀(p, q), p + q ≤ k, ∂
p+q+1u
∂xp+1yq

(0) =
D
p,q
X X(0) and compute ∂p+qφ◦u

∂xp∂yq
(0) for p + q ≤ k + 1. The main tool is again the

relations (11) and (13). If p > 1 we have

∂p+q

∂xp∂yq

[
φ ◦ u](0) = ∂p+q

∂xp−1∂yq

[
dφ(∂u

∂x
)
]
(0)

= D
p−1,q
X

[
dφ(X)

]
(0) = 0 (15)

and if p = 0 :

∂q

∂yq

[
φ ◦ u](0) = ∂q−1

∂yq−1

[
dφ(J ∂u

∂x
)
]
(0)

= D
0,q−1
X

[
dφ(JX)

]
(0) = 0 (16)

Finally, we have φ ◦ u(z) = O(zk+2). ��

3 Regular type and Lie algebra of line bundles

3.1 Commutativity of vector fields at one point

Definition 12. A complex tangent vector field X is said to commute at 0 up to
order k if and only if ∀m ≤ k,∀X1, . . . , Xm ∈ {X, JX} and ∀σ ∈ Sm we have
Xσ(1) ·Xσ(2) · · ·Xσ(k) = X1 ·X2 · · ·Xk .

Of course, we can use the group structure of Sk and the properties of the Lie
brackets to reduce attention only to a few permutations :

Proposition 13. Let X be a complex tangent vector fields. The four following con-
ditions are equivalent :

(1) X commutes up to order k at 0.
(2) ∀p, q/p + q ≤ k,

JX · · · JX︸ ︷︷ ︸
q

·X · · ·X︸ ︷︷ ︸
p

· JX = JX · · · JX︸ ︷︷ ︸
q+1

·X · · ·X︸ ︷︷ ︸
p

(3) All the Lie brackets of X and JX up to length k vanish at 0.
(4) ∀m ≤ k − 2,∀X1 . . . Xm ∈ {X, JX}, X1 · · ·Xm · [X, JX] = 0

Proof. (1) ⇒ (2) is clear.
(2) ⇒ (1) rests on the remark that if X commutes up to order k − 1, then the

relations of (1) for m = k and σ(k) = k are automatic :

X1 · · ·Xk−1 ·Xk =
∑

1≤α≤k−1
I1∪···∪Iα={1...n}

Ii∩Ij=∅

DαXk(X
I1 , . . . , XIα )

where XIi = Xi1 · · ·Xir when Ii = {i1 < · · · < ir}.
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The group Sk−1 acts transitively on the indexing set, and since X commutes
up to order k − 1, XIi does not depend on the order used on Ii . We conclude that
X1 · · ·Xk = Xσ(1) · · ·Xσ(k−1) ·Xk for all σ ∈ Sk−1. This ends the proof since the
permutations corresponding to the relation (2) and Sk−1 generate Sk .

(1) ⇒ (3) is clear.
(3) ⇒ (4) : suppose that all the Lie brackets ofX andJX vanish at 0 up to length

k, and, by induction, that all the derivatives of [X, JX] in theX and JX directions
vanish at 0 up to order k − 3. Then in the development of [X1[. . . Xk−2[X, JX]]],
all the terms vanish but the term where [X, JX] is differentiated k − 2 times :

0 = [X1[. . . Xk−2[X, JX]]] = X1 · · ·Xk−2 · [X, JX]

(4) ⇒ (1) : it is enough to prove the relation when σ is a transposition (i, i+1).
But X1 · · ·X · (JX) · · ·Xm − X1 · · · (JX) · X · · ·Xm = X1 · · · [X, JX] · · ·Xm,
and all the terms in the development of this last expression involve a derivative of
order at most m− 2 of [X, JX] in the X and JX directions : thus it is null. ��

We can now come to the proof of theorem 1.

3.2 Proof of theorem 1

Proof of (1) ⇒ (3) in theorem 1 : Start with a regular disk u : (�, 0) → (R2n, 0)
tangent toM with order k+2. Then, by corollary 11, there exists a complex tangent
vector fieldX such that∀(p, q), p+q ≤ k, ∂p+q

∂xp∂yq
∂u
∂x
(0) = D

p,q
X X(0). Let us check

that thisX commutes up to order k+1 at 0, i.e. thatDp,qX (JX)(0) = D
p−1,q+1
X X(0)

for p + q ≤ k.
We have the relation

D
p,q
X (JX) =

∑

a+c=p
b+d=q

CapC
b
q (D

a,b
X J ) D

c,d
X X

Differentiating ∂u
∂y

= J (u) ∂u
∂x

with respect to x p times and to y q times, we obtain

∂p+q
∂xp∂yq

∂u
∂y

=
∑

a+c=p
b+d=q

CapC
b
q (

∂a+b
∂xa∂yb

(J (u))) ∂c+d
∂xc∂yd

∂u
∂x

from which we deduce that :

D
p,q
X (JX)(0) = ∂p+q

∂xp∂yq
∂u
∂y
(0)

= ∂p+q

∂xp−1∂yq+1
∂u
∂x
(0)

= D
p−1,q+1
X X(0)

This ends the proof of (1)⇒(3) in theorem 1.
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Proof of (3) ⇒(1) in theorem 1 : Let now X be a vector field commuting up
to order k + 1 at 0. By an argument of J.-C. Sikorav [11], there exists a germ
u : � → R

2n of J -holomorphic disk such that ∀m ≤ k + 1, ∂
mu
∂xm

(0) = Xm(0).

Since X commutes, one can easily check that ∂p+q
∂xp∂yq

∂u
∂x

= D
p,q
X X(0) and then

apply proposition 11.

Proof of (2) ⇔(3) in theorem 1 : The basic remark here is that if X is replaced
by (α + βJ )X where α and β are real valued functions on M , then an iterated Lie
bracket of X and JX of length k is affected by addition of a linear combination
of strictly shorter Lie brackets. Therefore, if X commutes up to order k + 1 at 0,
then the line subbundle generated by X is stable at 0 up to order k+ 1. In the other
direction, if a line bundle is stable at 0 up to order k+ 1, then choosing a local non
vanishing section X of it, and suitable functions α and β, we obtain a vector field
commuting at 0 up to order k + 1.

4 Higher order Levi forms

4.1 Definition

As an introduction, let us discuss the proof of proposition 6. The main tool here is
the relationship between the Levi form and laplacian of φ ◦ u for tangent disks u.

Suppose that X ∈ T J0 M satisfies Lφ(X) > 0. Recall that from an argument

of Sikorav [11], all the derivatives ∂ku
∂xk
(0) of a J -holomorphic disk can be chosen

arbitrarily, i.e. for all X1, . . . , Xk ∈ R
2n there exists a germ of holomorphic disk

such that Xi = ∂iu
∂xi
(0).

Let u : � → R
2n be a (germ of) J -holomorphic disk such that u(0) = 0,

∂u
∂x
(0) = X. In the Taylor expansion of φ ◦ u, use the fact that u is holomorphic,

that is ∂u
∂y

= J (u) ∂u
∂x

, to express all the deirvatives of u, as derivatives with respect
to x only. We get :

φ ◦ u(z) = a2,0x
2 + a1,1xy + a0,2y

2 + o(x2 + y2)

where

a2,0 = D2φ(X,X)︸ ︷︷ ︸
a

+Dφ(∂
2u
∂x2 )

a1,1 = D2φ(JX,X)+Dφ((X · J )X)︸ ︷︷ ︸
b

+Dφ(J ∂
2u
∂x2 )

a0,2 = D2φ(JX, JX)+Dφ(((JX) · J )X − (X · J )JX)︸ ︷︷ ︸
c

−Dφ(∂
2u
∂x2 )

Recall from (4) that Lφ(X) = D2φ(X,X)+D2φ(JX, JX)+Dφ(((JX) ·J )X−
(X · J )JX) :

Lφ(X) = a2,0 + a0,2 = �(φ ◦ u)(0). (17)
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Since ∂2u
∂x2 (0) can be chosen arbitrarily, we can in particular choose dφ( ∂

2u
∂x2 )(0)

(i.e. its N -component) and dφ(J ∂
2u
∂x2 )(0) (i.e. its JN component) independently.

The choices

dφ(
∂2u

∂x2 )(0) = c − a

2
dφ(J

∂2u

∂x2 )(0) = −b (18)

lead to the formula

φ ◦ u(z) = Lφ(X)

2
(x2 + y2)+ o(|z|2) (19)

If Lφ(X) > 0, u is clearly tangent to M from the outside.
If Lφ(X) = 0, then the contact order of u with M is at least 3.
If u has a contact of order at least 3 with M , then a2,0 = a1,1 = a0,2 = 0 and

the relation (17) proves that taking X = ∂u
∂x
(0) ∈ T J0 M , we have Lφ(X) = 0.

This ends the proof of theorem 6.
The following definition of the higher order Levi forms derive from very similar

ideas in the study of the higher order Taylor expansion of φ ◦ u : the pairwise sums
of the coefficients are related to the derivatives of�(φ ◦ u), and thus to derivatives
of the Levi form.

Let u be a germ of holomorphic disk at 0. Using the relation ∂u
∂y

= J (u) ∂u
∂x

and

eventually derivatives of it, it is possible to express ∂
k�(φ◦u)
∂xp∂yq

by means of derivatives
of u in the x direction only, and this process is purely algebraic :

Definition 14. For all (p, q), there exists a polynomial function Lp,q :
(R2n)p+q+1 → R, called the (p, q)-th Levi form which depends on (the deriv-
atives of) φ and J only, such that for all germ of holomorphic disk u at 0 :

∂p+q

∂xp∂yq
�(φ ◦ u) = Lp,q(

∂u

∂x
, . . . ,

∂p+q+1u

∂xp+q+1 )

At first sight, it seems that Lp,q should depend on the derivatives of u up to
order p+ q + 2 and not only p+ q + 1 as mentioned in this definition. In fact, the
derivatives of u of order p+q+2 involoved in the computation of ∂p+q

∂xp∂yq
�(φ ◦u)

appear only in the following term : dφ( ∂
p+q+2u

∂xp+2∂yq
+ ∂p+q+2u

∂xp∂yq+2 ) which is null in the
integrable case, and involves only derivatives of u of order at most p + q + 1 in
the non integrable one.

Especially in the almost complex case, the explicit computation of Lp,q is of
course a bit tedious, but we stress that it is not more complicated than the com-
putation of the derivatives of some compound function. More precisely, in the
integrable case,Lp,q can be obtained by the following “recipe” : formally compute
the (p, q)-th derivative of �(φ ◦ u), and replace the (α, β)-derivatives of u by
JβXα+β .

Another way to think about Lp,q(X,X2, . . . , Xk) for a given vector field X,
is to formally differentiate the usual Levi form, p times in the X direction, then
q times in the JX direction, and then “force” the commutation of X and JX by
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replacing all (JX)βXα by JβXα+β . In the non integrable case, this commutation
relation involves of course some derivatives of J .

For instance, in the integrable case :

L0,0(X1) = D2φ(X1, X1)+D2φ(iX1, iX1)

L1,0(X1, X2) = D3φ(X1, X1, X1)+D3φ(X1, iX1, iX1)+
+ 2D2φ(X2, X1)+ 2D2φ(iX2, iX1)

L0,1(X1, X2) = D3φ(iX1, X1, X1)+D3φ(iX1, iX1, iX1)+
+ 2D2φ(iX2, X1)− 2D2φ(X2, iX1)

. . .

By construction, if u is a J -holomorphic disk, the extended Levi forms above
are related to the Taylor expansion of φ ◦ u at 0 in the following way : write the
homogeneous part of degree k as

[φ ◦ u(z)]k = ak,0x
k + ak−1,1x

k−1y + · · · + a0,ky
k.

Then

ai+2,j + ai,j+2 = Li,j ( ∂u
∂x
, . . . , ∂

k−1u
∂xk−1 ) (20)

We can now turn to the proof of theorem 2.

4.2 Proof of theorem 2

Proof of (1)⇒(2) in theorem 2 : Start with a J -holomorphic disk u tangent toM at
0 with order k+2. Then the relation (20) proves that for all (i, j), i+j+2 ≤ k+1
we have

Li,j ( ∂u
∂x
, . . . , ∂

i+j+1u
∂xi+j+1 ) = 0. (21)

On the other hand, the corollary 11 provides us with a J -tangent vector field X
such that ∀m ≤ k + 1, ∂

mu
∂xm

(0) = Xm(0), and therefore, ∀(i, j), i + j ≤ k − 1 :

Li,j (X(0), . . . , Xi+j+1(0)) = 0. (22)

Proof of (2)⇒(1) in theorem 2 : Start with a J -tangent vector field X such that
∀(i, j), i + j ≤ k − 1, Li,j (X(0), . . . , Xi+j+1(0)) = 0. Choose a germ u of
J -holomorphic disk at 0 such that

∀m ≤ k + 1,
∂mu

∂xm
(0) = Xm(0). (23)

Suppose by induction that u is tangent toM with order k+1. The Taylor expansion
of φ ◦ u has the form

φ ◦ u(z) = ak+1,0x
k+1 + ak,1x

ky + · · · + a0,k+1y
k+1 + o(|z|k+1).
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and because of relation (20), we have

∀(i, j), i + j + 2 = k + 1, ai+2,j = −ai,j+2. (24)

Using (23), one can easily compute ak+1,0 :

ak+1,0 = ∂

∂xk
dφ

(∂u
∂x

)
(0)

= Xk(dφ(X))(0) = 0. (25)

To compute ak,1, let us first remark that the computation of Xk · (JX)(0) is a
sum of terms involving a derivative of J in the (Xα)α≤k+1 directions and one of
the (Xα)α≤k+1. The computation of ∂

∂xk
dφ(J (u) ∂u

∂x
) (0) leads to the same sum

where the Xα are replaced by the ∂αu
∂xα

, and thus :

ak,1 = ∂

∂xk
dφ

(
J (u)

∂u

∂x

)
(0)

= Xk(dφ(JX))(0) = 0 (26)

The relations (24), (25) and (26) prove that φ ◦ u = O(zk+2), ending the proof
of the theorem.

5 Base point dependency in lower dimensions

In general, even in the pseudo-convex case, the type is not an upper continuous
function onM : it is not even locally bounded (see [6] for striking examples). How-
ever, in complex dimension 2, it is known to be upper-continuous in the integrable
case. In the first part of this section, we give a proof of this fact with the point of
vue developed all along this paper ; in particular, the proof still apply to the almost
complex case.

In the second part of this section, we discuss a particular case in complex dimen-
sion 3 : if the Levi form has constant signature, the type is an upper-continuous
function of the base point.

5.1 Upper continuity in dimension 2

Proposition 15. In complex dimension 2 (real dimension 4), the regular type of an
hyper-surface M is an upper-continuous function on M .

The basic idea of the proof is to translate �1
reg(p) ≥ k in terms of jets : the

functions Lp,q are defined on a space of jets, and since they are invariant under
rescaling, we can reduce to a compact subset. The set {Lp,q = 0, p + q ≤ k} is
then compact and a sequence of “good” jets above a converging sequence pn inM
should therefore (sub-)converge to a “good” jet at p∞. The point is that the set of
realizable jets is not closed, since if the first component of the jet vanishes, all the
remaining components should vanish as well.
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This phenomenon occurs when the sequence of curves catches a singularity in
the limit. In terms of jets, if we rescale our jets so that the first component has
always length 1, this means that one component explodes in the limit. Fortunately,
in dimension 2 (real dimension 4), there is no room for that, and the phenomenon
can be controlled.

Proof. Let us first concentrate on one point where the type is k + 2. Let X be a
germ of J -tangent vector field at this point on which all the Levi forms vanish up
to order k − 1.

Let u be a germ of holomorphic disk at 0 such that ∀m ≤ k + 1, ∂mu
∂xm

(0) =
Xm(0). Then, u has contact order k + 2 with M and thus, for any germ θ of
holomorphic function with θ(0) = 0, θ ′(0) �= 0, the disk v(z) = u ◦ θ(z) also
has contact order k + 2. Suitably choosing the jet of θ , and computing the jet of
v at 0, we obtain that in fact any Y = (α + βJ )X where α and β are real valued
functions, i.e. any section of T JM , satisfy the relations Lp,q(Y, . . . , Y p+q+1) = 0
for p + q ≤ k − 1.

Let nowX be a local non vanishing sectionX of T JM near 0, andpn a sequence
of points onM converging to 0. If eachpn is of type at least k+2, then the functions
Lp,q(X, . . . , Xp+q+1) vanish at each pn, and thus at 0. therefore

�1
reg(lim pn) ≥ lim sup�1

reg(pn).

��

5.2 Case of dimension 3 with non degenerate Levi form

The behaviour of the jet can also be controlled in some cases if the Levi form is not
degenerated :

Theorem 3. If n = 3 and the Levi form onM is (every where) non degenerate then
�1

reg(p) is an upper continuous function of p.

Proof. If the Levi form is definite positive (or negative) then �1
reg(p) = 2 every

where.
If it is not, its signature is (1, 1), and the type is at least 3 every where. Let

(X, Y ) be a field of bases of T JM in which L = (
0 1
1 0

)
. The coordinates are chosen

such that (X(0), Y (0), N(0)) is the canonical basis of C
3. Suppose that the type

is at least k + 2 at 0 : let u be a regular disk with contact k + 2 and Z a complex
vector field on M realizing the jet of ∂u

∂x
up to order k.

In the integrable case, we can reparametrise u, so that u(z) = (z, h(z), g(z)).
In the non integrable case, this is not possible, but the first coordinate of u can still
be brought to the form z+ r(z) where r(z) = o(z) is a function whose derivatives
are controlled by the derivatives of J , and the derivatives of the other coordinates.

Let us decompose Zk(0) in the base (X, JX, Y, JY,N, JN) : Zk = αX(0)+
βY(0)+ γN(0), where α, β, γ are complex valued functions.

The X-component of Zk is controlled by the Ck norm of J and the other com-
ponents of Zk .
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We already proved (see the proof of 10) that the N and JN components of Zk

can be expressed as a combination of derivatives of φ (of length at most k) and all
the Zi for i < k : we conclude that

|γ | ≤ ‖φ‖Ck sup
i<k

‖Zi‖k/i

To control the Y component of Zk at 0, remark that in Lk−1,0(Z, . . . , Zk), the
only term involving Zk is L(Zk, Z) :

Lk−1,0(Z, . . . , Zk) = 2L(Zk, Z)+ Pφ(Z, . . . , Zk−1)

where Pφ(Z, . . . , Zk−1) is a homogeneous polynomial in Z, . . . , Zk−1 of degree
k + 1, whose coefficients come from derivatives of φ and J up to order k.

We obtain thatL(β1Y+β2JY,X)=Aφ(Z, . . . , Zk−1)whereAφ(Z, . . . , Zk−1)

is an homogeneous polynomial in (Z, . . . , Zk−1) controlled by the Ck norm of φ
and J .

In the same way, we can prove that L(β1Y + β2JY, JX) = Bφ(Z, . . . , Zk−1)

where Bφ is again controlled by the Ck norms of φ and J .
Finally

{
β1L(Y,X)+ β2L(JY,X) = Aφ(Z, . . . , Zk−1)

β1L(Y, JX)+ β2L(JY, JX) = Bφ(Z, . . . , Zk−1)

and since L(JY,X) = −L(JY,X), the determinant of this system is at least
L(Y,X)2 = 1. As a consequence, |β| is controlled by the Ck norms of φ and J ,
and the norms of (Z, . . . , Zk−1) : there exists a contant M , depending only on the
Ck norms of φ and J such that

‖Zk‖ ≤ M sup
i<k

‖Zi‖k/i .

By induction, we obtain a collection of constants Mi such that at 0 :

∀i ≤ k, ‖Zi‖ ≤ Mi‖Z‖i .

This inequality implies that if we consider a converging sequence pn of points
of type at least k+ 2 inM , we can find a sequence of realizable jets (Zn, . . . , Zkn),
normalized so that ‖Zn(0)‖ = 1, on which all the Lp,q vanish for p + q < k, and
such that all the components stay bounded : this sequence (sub-)converges to a jet
ξ , that is realisable, and on which all the Lp,q vanish. ��

Remark 5. We want to finish with an open question related to the base point depen-
dency of the type: in a complex case (see [5]), we know that the finite regular type is
not an open condition ; but, if we consider all curves (even singular), this condition
become open. Is it true for a almost complex structure and for pseudo-holomorphic
curves ? We think that the answer is positive.
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