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Abstract. Consider a Borel probability measure µ on the real line, and denote by
{µt : t ≥ 1} the free additive convolution semigroup defined by Nica and Speicher.
We show that the singular part of µt is purely atomic and the density of µt is locally
analytic, provided that t > 1. The main ingredient is a global inversion theorem
for analytic functions on a half plane.
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1 Introduction

Given two Borel probability measures µ, ν on R, we denote by µ � ν their free
additive convolution. We recall briefly the definition of free convolution, and refer
to [11] for a systematic exposition of the subject. Denote by (L(F2), τ ) the von
Neumann algebra of the free group with two generators a, b, endowed with its
usual trace τ . We can find elements x, y affiliated with the subalgebra generated
by a, b, respectively, and with distributions µ, ν. In other words,

τ(u(x)) =
∫ ∞

−∞
u(t) dµ(t), τ (u(y)) =

∫ ∞

−∞
u(t) dν(t)

for every bounded Borel function u on the real line. The measure µ � ν is the
distribution of x + y. It has been shown that the Cauchy transform

Gµ�ν(z) =
∫ ∞

−∞
1

z − t
d(µ � ν)(t), �z > 0,

� Supported in part by a grant from the National Science Foundation.



666 S. T. Belinschi, H. Bercovici

is subordinate to Gµ, in the sense that Gµ�ν = Gµ ◦ ω for some analytic self map
of the upper half-plane C

+ = {z = x + iy ∈ C : y > 0}. This was shown under
a genericity assumption in [8], extended with combinatorial tools in [4], and then
proved again in [9] under more general circumstances.

On the other hand, it was already shown by A. Nica and R. Speicher in [6] that
the discrete semigroup

µn = µ � µ � · · · � µ︸ ︷︷ ︸
n times

, n = 1, 2, . . .

can be embedded in a continuous family {µt : t ≥ 1} such that µs+t = µs � µt .

(The existence of µt for large values of t was shown in [2] in case µ has compact
support.)

By the subordination result mentioned above, there exist analytic selfmaps ωn

of the upper half-plane satisfying Gµn = Gµ ◦ ωn. Our purpose is to extend this
subordination result for arbitrary values of t > 1. In fact, our proof of subordination
does not rely on any of the earlier arguments and it also yields an alternate proof
of the existence of µt for t > 1. We will also use this subordination result in order
to show that µt has no continuous singular part if t > 1, and that the density of its
absolutely continuous part is locally analytic. The subordination functions ωt turn
out to be injective, and their existence follows from a global inversion theorem.
The inversion theorem essentially follows from the existence of free convolutions;
we are not aware of a classical proof.

2 An analytic inversion result and subordination for µt

Given a Borel probability measure µ on R, there exist ε > 0, and an analytic
function

Rµ : {z = x + iy : −ε < x < ε, −|x| < y < 0} → C
+,

such that Gµ( 1
z

+ Rµ(z)) = z and limy→0 yRµ(iy) = 0 (see [1]). (This local

inverse 1
z

+ Rµ(z) of Gµ(z) is usually denoted Kµ(z).) The function Rµ is called
the R-transform of µ. Its relevance to free convolution arises from the remarkable
equation

Rµ�ν = Rµ + Rν,

which is valid in the common domain of the three functions (see [10], [11], [5], and
[1] for the original statement and succesive extensions.)

Lemma 2.1. Consider a Borel probability measure µ on R, and set H2(z) = 2z −
1

Gµ(z)
, and ω2(z) = 1

2

[
z + 1

Gµ�µ(z)

]
, z ∈ C

+. Then

(1) ω2 is injective on C
+;

(2) �ω2(z) ≥ �z, z ∈ C
+;

(3) H2(ω2(z)) = z, z ∈ C
+; and

(4) Gµ�µ(z) = Gµ(ω2(z)), z ∈ C
+.
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Proof. Let us note that the function ω(z) = 1
Gµ�µ(z)

+Rµ(Gµ�µ(z)) is defined in

�M = {z ∈ C
+ : z = x + iy, M < |x| <

y
2 }, provided that M is sufficiently large.

Observe that for z ∈ �M

ω(z) = 1

Gµ�µ(z)
+ Rµ(Gµ�µ(z))

= 1

Gµ�µ(z)
+ 1

2
Rµ�µ(Gµ�µ(z))

= 1

Gµ�µ(z)
+ 1

2

[
Kµ�µ(Gµ�µ(z)) − 1

Gµ�µ(z)

]

= ω2(z).

From the definition of Rµ we see that Gµ(ω(z)) = Gµ�µ(z) for z ∈ �M, and we
conclude by analytic continuation that (4) holds. Next we calculate

H2(ω2(z)) = 2ω2(z) − 1

Gµ(ω2(z))

= 2ω2(z) − 1

Gµ�µ(z)
,

and (3) follows from the definition of ω2. Clearly (3) implies (1), and (2) follows
because � 1

Gµ(z)
≥ �z, z ∈ C

+, for any probability measure µ (cf. [5] and [1]). ��
The preceding observation leads to the following global inversion theorem.

Theorem 2.2. Let H : C
+ → C be an analytic function satisfying the following

two conditions:

(1) �H(z) < 2�z, z ∈ C
+, and

(2) limy→+∞ H(iy)/iy = 1.

Then there exists an analytic function ω : C
+ → C

+ such that H(ω(z)) = z, z ∈
C

+. Moreover, �ω(z) ≥ �z, z ∈ C
+, and limy→+∞ ω(iy)/iy = 1.

Proof. Let us define

G(z) = 1

2z − H(z)
, z ∈ C

+,

and observe that conditions (1) and (2) translate into �G(z) < 0 for z ∈ C
+, and

limy→+∞ iyG(iy) = 1, respectively. According to [1], Theorem 5.1, these two
conditions imply the existence of a Borel probability measure µ on R such that
G = Gµ. Using the notations of the preceding lemma, we have H(z) = H2(z) =
2z − 1

Gµ(z)
, and therefore the theorem follows with

ω(z) = ω2(z) = 1

2

[
z + 1

Gµ�µ(z)

]
.

The last assertions of the theorem follow easily from the corresponding properties
of H . ��
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It may be worthwile to note that the hypothesis of Theorem 2.2 can be weakened
somewhat.

Proposition 2.3. Let t > 1, and let H : C
+ −→ C be an analytic function such

that �H(z) < t�z, z ∈ C
+, and limy→∞ H(iy)

iy
= 1. Then �H(z) ≤ �z for

z ∈ C
+.

Proof. As in the proof of Theorem 2.3 there must exist a probability measure µ

such that

Gµ(z) = t − 1

tz − H(z)
, z ∈ C

+.

The conclusion follows immediatly from the formula

H(z) = tz − (t − 1)
1

Gµ(z)
,

since � 1
Gµ(z)

≥ �z, z ∈ C
+. ��

We note below some useful properties of the function ω provided by the pre-
ceding theorem.

Proposition 2.4. Let ω, H : C
+ → C be analytic functions such that ω(C+) ⊂

C
+, �H(z) ≤ �z, and H(ω(z)) = z for z ∈ C

+. Then for every x ∈ R, the limit
ω(x) = limz→x ω(z) exists in the extended complex plane. Moreover, if ω(x) ∈
C

+, there exists δ > 0 such that ω can be continued analytically through the
intervals (x − δ, x) and (x, x + δ). The limit limz→∞ ω(z) also exists.

Proof. First assume that there exists a sequence zn → x such that the limit λ =
limn→∞ ω(zn) exists and belongs to C

+. In this case we have H(λ) = x. Denote
by n ≥ 1 the order of the zero of H(z)− x at z = λ. We can find analytic functions
ω1, ω2, . . . , ωn defined in a set of the form 	 = {w : 0 < |w − x| < δ, w �∈
x − iR+} such that H(ωj (w)) = w for w ∈ 	 and j = 1, 2, . . . , n. Clearly ω

must coincide with one of the functions ωj on 	∩C
+ and it follows that ω extends

continuously to the interval (x−δ, x+δ) and the extension is analytic on (x−δ, x)

and (x, x + δ).
Assume to the contrary that there is no sequence zn as in the first part of the

argument. In other words, if zn → x and limn→∞ ω(zn) exists, this limit is either
infinite or real. Assume now that two sequences zn, wn ∈ C

+ have limit equal to
x and the limits limn→∞ ω(zn), limn→∞ ω(wn) exist and are different. Consider
a continuous path γ : (0, 1) −→ C

+ passing through all the points zn and wn, and
such that limt→1 γ (t) = x. There exists then an open interval (α, β) ⊂ R such
that for every s ∈ (α, β) there is a sequence tn → 1 such that ω(γ (tn)) → s.

In fact tn can be chosen so that ω(γ (tn)) → s nontangentially as n → ∞. Since
H(ω(γ (tn))) = γ (tn), we deduce that the nontangential limit H(s) of H at s is
equal to x almost everywhere. The F. and M. Riesz theorem shows now that H

must be constant, and this is a contradiction. Therefore limz→x ω(z) exists. The
case x = ∞ is treated similarily. ��
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As noted in the introduction, it was shown in [6] that measures µt such that
Rµt = tRµ exist for t ≥ 1. The following theorem provides an alternative approach
to this result.

Theorem 2.5. Consider a Borel probability measure µ on R, and a real number
t ≥ 1.

(1) There exists a probability measure µt satisfying Rµt (z) = tRµ(z) for z in the
common domain of the two functions.

(2) There exists an injective analytic map ωt : C
+ → C

+ such that Gµt (z) =
Gµ(ωt (z)), for z ∈ C

+.

(3) We have ωt(z) = 1
t
z + (

1 − 1
t

) 1
Gµt (z)

, and Ht(ωt (z)) = z, where Ht(z) =
tz + (1 − t) 1

Gµ(z)
, for z ∈ C

+.

(4) If t > 1, the functions ωt and 1
Gµt

extend continuously to functions from C+ ∪
{∞} to C ∪ {∞}.

Proof. If t = 1, clearly µ1 = µ and ω1(z) = z will satisfy the conclusions of the
theorem. Assume therefore that t > 1. We clearly have

�Ht(z) = t�z − (t − 1)� 1

Gµ(z)

≤ t�z − (t − 1)�z

= �z,

and

lim
y→+∞ Ht(iy)/iy = t − (t − 1) lim

y→+∞
1

iyGµ(iy)
= 1.

Therefore, Theorem 2.2 implies the existence of an analytic function ωt : C
+ →

C
+ satisfying Ht(ωt (z)) = z, z ∈ C

+. We also have �ωt(z) ≥ �z

and limy→+∞ ωt(iy)/iy = 1. It follows that the function

Gt(z) = t − 1

tωt (z) − z
, z ∈ C

+

satisfies the conditions �Gt(z) ≤ 0, z ∈ C
+, and limy→+∞ iyGt (iy) = 1. These

conditions imply the existence of a Borel probability measure µt on R satisfying
Gµt = Gt . Note that the definition of Gt yields the first formula in (3). To prove
(2) we observe that

Gµ(z) = t − 1

tz − Ht(z)
, z ∈ C

+,

so that

Gµ(ωt (z)) = t − 1

tωt (z) − z
= Gt(z), z ∈ C

+.
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Finally, let us observe that, for z in the domain of definition of Rµt , we have

z = Gµt

(
1

z
+ Rµt (z)

)

= Gµ

(
ωt

(
1

z
+ Rµt (z)

))

= Gµ

(
1

t

[
1

z
+ Rµt (z)

]
+
(

1 − 1

t

)
1

Gµt (
1
z

+ Rµt (z))

)

= Gµ

(
1

t

[
1

z
+ Rµt (z)

]
+
(

1 − 1

t

)
1

z

)

= Gµ

(
1

z
+ 1

t
Rµt (z)

)
,

where we used (2) in the second equality, and (3) in the third equality. We conclude

that the functionρ(z)= 1
t
Rµt (z) satisfies limy→0 yρ(iy)=0 andGµ

(
1
z
+ρ(z)

)
=z.

Therefore, ρ(z) = Rµ(z), which proves (1). Finally, property (4) is a consequence
of Proposition 2.4. ��

Let us note that the calculation of µt involves in principle two function inverses:
first we calculate Rµ by inverting Gµ, then we calculate Gµt by inverting 1

z
+

tRµ(z). The preceding result allows us to calculate Gµt with just one inversion.
Thus, we invert Ht to calculate ωt , and then we find

Gµt (z) = t − 1

tωt (z) − z
.

We illustrate this in the case of µ = 1
2 (δ−1 + δ1). For this measure,

Gµ(z) = z

z2 − 1

so that

Ht(z) = tz − (t − 1)
z2 − 1

z
= z2 + t − 1

z

and therefore

ωt(z) = z +
√

z2 − 4(t − 1)

2
,

where the square root must be chosen to be positive for large real values of z. After
some simple manipulations we obtain

Gµt (z) = (2 − t)z + t
√

z2 − 4(t − 1)

2(z2 − t2)
.

Note that the function Gµt has poles at z = ±t with residue

2 − t + |2 − t |
4

.
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This indicates that µt has atoms at ±t provided that t < 2. The absolutely contin-
uous part of µt is concentrated on [−2

√
t − 1, 2

√
t − 1] and it has density

t
√

4(t − 1) − x2

2π(t2 − x2)
, x ∈ [−2

√
t − 1, 2

√
t − 1].

This density is bounded for all t , except for t = 2 when it equals

1

π
√

4 − x2
.

This behaviour for atoms and the absolutely continuous part is rather general, as
seen in the following section.

3 Atoms and regularity for µt

It is known (see [3]) that a free convolution µ � ν generally has a finite number of
atoms, fewer than either µ or ν. This fact extends to the measures µt .

Theorem 3.1. Let µ be a probability measure on R, and let µt be such that Rµt =
tRµ, t > 1. A number α ∈ R is an atom of µt if and only if α/t is an atom of µ

such that µ ({α/t}) > 1 − 1
t
. In this case,

µt({α}) = tµ
({α

t

})
− (t − 1).

If Nt denotes the number of atoms of µt , we have Nt < t
t−1 .

Proof. The estimate onNt follows immediatly from the inequalityµ
({

α
t

})
> 1− 1

t
.

Recall the fact that for every Borel probability measure on R and for every α ∈ R,
we have

µt({α}) = lim
z−→α�

(z − α)Gµt (z),

where the notation z −→ α
�

indicates nontangential convergence (see [3], Lemma

7.1).
Using the notation of Theorem 2.5, we have

ωt(z) − α

t
= 1

t
(z − α) +

(
1 − 1

t

)
1

Gµt (z)
.

Since 1
Gµt (z)

converges to zero as z tends to α nontangentially, we conclude that
ωt(α) = α/t. Moreover, since

lim
z−→α�

ωt(z) − α
t

z − α
= 1

t
+
(

1 − 1

t

)
lim
z−→α�

1

(z − α)Gµt (z)
= 1

t
+
(

1 − 1

t

)
1

µt({α}) ,
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we deduce that ωt(z) approaches α/t nontangentially as z −→ α
�

. Using these facts

we deduce that

µ
({α

t

})
= lim

w−→α/t�

(
w − α

t

)
Gµ(w) = lim

z−→α�

(
ωt(z) − α

t

)
Gµ(ωt (z))

= lim
z−→α�

(
ωt(z) − α

t

)
Gµt (z)

= lim
z−→α�

ωt(z) − α/t

z − α
µt({α})

=
(

1

t
+
(

1 − 1

t

)
1

µt({α})
)

µt({α})

= 1

t
µt ({α}) + 1 − 1

t
.

Thus α/t must be an atom of µ with the required mass.
Conversely, let us assume that α/t is an atom of µ such that µ ({α/t}) > 1− 1

t
.

We will use the realization of µt given in [6]. Namely, there exists a W ∗-probability
space (M, τ ), a selfadjoint random variable X affiliated with M, and a projection
p ∈ M such that X and p are free, τ(p) = t−1, X has distribution µ, and tpXp

has distribution µt in the W ∗-probability space (pMp, tτ ). Since α/t is an atom
for µ, we have Xq = α

t
q for some projection q ∈ M with τ(q) = µ ({α/t}) . We

conclude that (tpXp)(p ∧ q) = α(p ∧ q), and the projection p ∧ q is not zero
because τ(p) + τ(q) > 1

t
+ (

1 − 1
t

) = 1. We conclude that α is indeed an atom
for µt . ��

We restate one of the ingredients of the previous proof which will be useful
later.

Lemma 3.2. With the notations of Theorem 3.1, assume that t > 1, α, β ∈ R, and
there exists a sequence zn ∈ C

+ such that zn −→ α nontangentially, ωt(zn) −→ β

nontangentially, and 1
Gµt (zn)

−→ 0 as n → ∞. Then β is an atom of µ, β = α/t ,
and

µ({β}) = 1

t
µt ({α}) + 1 − 1

t
.

Proof. The relation

ωt(zn) = 1

t
zn +

(
1 − 1

t

)
1

Gµt (zn)

implies immediatly β = α/t . The fact that β is an atom with the required mass
follows now from

(ω(zn) − β)Gµ(ωt (zn)) = 1

t
(zn − α)Gµt (zn) + 1 − 1

t
.

��
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Theorem 3.1 indicates that the atomic part of µt loses mass in a piecewise linear
fashion as t increases. The next result gives some indication of where the lost mass
goes.

Proposition 3.3. With the notation of Theorem 3.1, assume that t > 1 and µt has
atoms α < β. Then we have µt((α, β)) > 0.

Proof. Assume to the contrary that µt((α, β)) = 0. In this case Gµt takes real val-
ues on the interval (α, β), Gµt (α +0) = +∞, and Gµt (β −0) = −∞. We deduce
the existence of x ∈ (α, β) satisfying Gµt (x) = 0, and henceforth ωt(x) = ∞. On
the other hand, ωt(α) = α/t , ωt(β) = β/t , and ωt(∞) = ∞. We claim that this
combination of values is not possible. Indeed, consider a simple path γ joining α

and β in the upper half-plane. Now, ωt(γ ) cuts the range of ωt into two components,
one of which must be bounded. Since ωt(∞) and ωt(x) belong to the closures of
different components, only one of these limits can be infinite. ��

The preceding argument shows in fact that Gµt cannot change sign on any
interval disjoint from the support of µt ; Gµt is real, continuous, and decreasing on
such intervals.

We will see next that µt has no singular spectrum beside the atoms discussed in
Theorem 3.1. We will denote by µac

t the absolutely continous part of the measure
µt .

Theorem 3.4. Let µ be a probability measure on R, and let µt satisfy Rµt = tRµ

for some t > 1. The measure µt has no continuous singular part. Moreover, there
exists a closed set σ ⊂ R with µac

t (σ ) = 0 such that the density dµt (x)
dx

is locally
analytic for x ∈ R \ σ.

Proof. Assume that µt does have a singular continuous part ν. In this case, it is
known that

lim
z−→a�

1

|Gµt (z)|
= 0

for ν-almost every a ∈ R and, by Theorem 2.7 of [7], the convergence of 1/Gµt (z)

to zero is not typically tangential. In particular, there exist uncountably many values
a ∈ R for which there is a sequence zn ∈ C

+ converging to a nontangentially, such
that limn→∞ 1/|Gµt (zn)| = 0 and

sup
n∈N

∣∣∣∣�Gµt (zn)

�Gµt (zn)

∣∣∣∣ < ∞.

Using again the notations of Theorem 2.5,

ωt(zn) − a

t
= 1

t
(zn − a) +

(
1 − 1

t

)
1

Gµt (zn)
,

and this shows that ωt(zn) −→ a
t

nontangentially as n → ∞. By Lemma 3.2, a/t

is an atom of µ. Since we can only have at most countably many atoms, we arrive
at a contradiction, showing that indeed ν = 0 .
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For µac
t -almost every a ∈ R, the nontangential limit limz→a Gµt (z) exists, and

it has imaginary part equal to −π
dµt

dx
(a). We deduce that the nontangential limit

limz→a ωt (z) also exists, and it has nonzero imaginary part. Proposition 2.4 implies
now that ωt , and hence Gµt , extends continuously to some interval (a − δ, a + δ)

and is analytic on that interval except possibly at a. The set σ can be taken to be
the common complement of the intervals (a − δ, a + δ) \ {a} obtained this way. ��
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