DOI: 10.1007/s00209-004-0671-y

Atoms and regularity for measures in a partially defined free convolution semigroup

S. T. Belinschi¹, H. Bercovici^{2,*}

- ¹ Institute of Mathematics, Romanian Academy, P.O.Box 1-764, 70700 Bucharest, Romania (e-mail: teodor.belinschi@imar.ro)
- ² Mathematics Department, Indiana University, Bloomington, IN 47405, USA (e-mail: bercovic@indiana.edu)

Received: 28 July 2003; in final form: 17 November 2003 / Published online: 27 April 2004 – © Springer-Verlag 2004

Abstract. Consider a Borel probability measure μ on the real line, and denote by $\{\mu_t : t \geq 1\}$ the free additive convolution semigroup defined by Nica and Speicher. We show that the singular part of μ_t is purely atomic and the density of μ_t is locally analytic, provided that $t > 1$. The main ingredient is a global inversion theorem for analytic functions on a half plane.

Mathematics Subject Classification (2000): 46L54, 30A99

1 Introduction

Given two Borel probability measures μ , ν on \mathbb{R} , we denote by $\mu \boxplus \nu$ their free additive convolution. We recall briefly the definition of free convolution, and refer to [11] for a systematic exposition of the subject. Denote by $(L(\mathbb{F}_2), \tau)$ the von Neumann algebra of the free group with two generators a, b , endowed with its usual trace τ . We can find elements x, y affiliated with the subalgebra generated by a, b, respectively, and with distributions μ , ν . In other words,

$$
\tau(u(x)) = \int_{-\infty}^{\infty} u(t) d\mu(t), \quad \tau(u(y)) = \int_{-\infty}^{\infty} u(t) d\nu(t)
$$

for every bounded Borel function u on the real line. The measure $\mu \boxplus \nu$ is the distribution of $x + y$. It has been shown that the Cauchy transform

$$
G_{\mu\boxplus \nu}(z)=\int_{-\infty}^{\infty}\frac{1}{z-t}\,d(\mu\boxplus \nu)(t),\ \Im z>0,
$$

Supported in part by a grant from the National Science Foundation.

is subordinate to G_{μ} , in the sense that $G_{\mu\boxplus\nu} = G_{\mu} \circ \omega$ for some analytic self map of the upper half-plane $\mathbb{C}^+ = \{z = x + iy \in \mathbb{C} : y > 0\}$. This was shown under a genericity assumption in [8], extended with combinatorial tools in [4], and then proved again in [9] under more general circumstances.

On the other hand, it was already shown by A. Nica and R. Speicher in [6] that the discrete semigroup

$$
\mu_n = \underbrace{\mu \boxplus \mu \boxplus \cdots \boxplus \mu}_{n \text{ times}}, \quad n = 1, 2, \ldots
$$

can be embedded in a continuous family $\{\mu_t : t \geq 1\}$ such that $\mu_{s+t} = \mu_s \boxplus \mu_t$. (The existence of μ_t for large values of t was shown in [2] in case μ has compact support.)

By the subordination result mentioned above, there exist analytic selfmaps ω_n of the upper half-plane satisfying $G_{\mu_n} = G_{\mu} \circ \omega_n$. Our purpose is to extend this subordination result for arbitrary values of $t > 1$. In fact, our proof of subordination does not rely on any of the earlier arguments and it also yields an alternate proof of the existence of μ_t for $t > 1$. We will also use this subordination result in order to show that μ_t has no continuous singular part if $t > 1$, and that the density of its absolutely continuous part is locally analytic. The subordination functions ω_t turn out to be injective, and their existence follows from a global inversion theorem. The inversion theorem essentially follows from the existence of free convolutions; we are not aware of a classical proof.

2 An analytic inversion result and subordination for μ_t

Given a Borel probability measure μ on R, there exist $\varepsilon > 0$, and an analytic function

$$
R_{\mu} : \{ z = x + iy : -\varepsilon < x < \varepsilon, -|x| < y < 0 \} \to \mathbb{C}^+,
$$

such that $G_{\mu}(\frac{1}{z} + R_{\mu}(z)) = z$ and $\lim_{y\to 0} yR_{\mu}(iy) = 0$ (see [1]). (This local inverse $\frac{1}{z} + R_{\mu}(z)$ of $G_{\mu}(z)$ is usually denoted $K_{\mu}(z)$.) The function R_{μ} is called the R-transform of μ . Its relevance to free convolution arises from the remarkable equation

$$
R_{\mu\boxplus\nu}=R_{\mu}+R_{\nu},
$$

which is valid in the common domain of the three functions (see [10], [11], [5], and [1] for the original statement and succesive extensions.)

Lemma 2.1. *Consider a Borel probability measure* μ *on* \mathbb{R} *, and set* $H_2(z) = 2z \frac{1}{G_{\mu}(z)}$, and $\omega_2(z) = \frac{1}{2} \left[z + \frac{1}{G_{\mu} \boxplus \mu(z)} \right]$, $z \in \mathbb{C}^+$. Then

(1) ω_2 *is injective on* \mathbb{C}^+ ; (2) $\Im \omega_2(z) \geq \Im z, \ z \in \mathbb{C}^+;$ (3) $H_2(\omega_2(z)) = z, z \in \mathbb{C}^+;$ and (4) $G_{\mu\boxplus \mu}(z) = G_{\mu}(\omega_2(z)), z \in \mathbb{C}^+$.

Proof. Let us note that the function $\omega(z) = \frac{1}{G_{\mu \boxplus \mu}(z)} + R_{\mu}(G_{\mu \boxplus \mu}(z))$ is defined in $\Gamma_M = \{z \in \mathbb{C}^+ : z = x + iy, M < |x| < \frac{y}{2}\}$, provided that M is sufficiently large. Observe that for $z \in \Gamma_M$

$$
\omega(z) = \frac{1}{G_{\mu \boxplus \mu}(z)} + R_{\mu}(G_{\mu \boxplus \mu}(z))
$$

=
$$
\frac{1}{G_{\mu \boxplus \mu}(z)} + \frac{1}{2} R_{\mu \boxplus \mu}(G_{\mu \boxplus \mu}(z))
$$

=
$$
\frac{1}{G_{\mu \boxplus \mu}(z)} + \frac{1}{2} \left[K_{\mu \boxplus \mu}(G_{\mu \boxplus \mu}(z)) - \frac{1}{G_{\mu \boxplus \mu}(z)} \right]
$$

=
$$
\omega_2(z).
$$

From the definition of R_{μ} we see that $G_{\mu}(\omega(z)) = G_{\mu \boxplus \mu}(z)$ for $z \in \Gamma_M$, and we conclude by analytic continuation that (4) holds. Next we calculate

$$
H_2(\omega_2(z)) = 2\omega_2(z) - \frac{1}{G_\mu(\omega_2(z))}
$$

=
$$
2\omega_2(z) - \frac{1}{G_\mu \boxplus_\mu(z)},
$$

and (3) follows from the definition of ω_2 . Clearly (3) implies (1), and (2) follows because $\Im \frac{1}{G_{\mu}(z)} \geq \Im z$, $z \in \mathbb{C}^+$, for any probability measure μ (cf. [5] and [1]). \Box

The preceding observation leads to the following global inversion theorem.

Theorem 2.2. Let $H : \mathbb{C}^+ \to \mathbb{C}$ be an analytic function satisfying the following *two conditions:*

(1) $\Im H(z) < 2\Im z, z \in \mathbb{C}^+$, and (2) $\lim_{y \to +\infty} H(iy)/iy = 1$.

Then there exists an analytic function ω : $\mathbb{C}^+ \to \mathbb{C}^+$ *such that* $H(\omega(z)) = z$, $z \in$ \mathbb{C}^+ *. Moreover,* $\Im \omega(z) \geq \Im z$, $z \in \mathbb{C}^+$ *, and* $\lim_{y \to +\infty} \omega(iy)/iy = 1$.

Proof. Let us define

$$
G(z)=\frac{1}{2z-H(z)},\;z\in\mathbb{C}^+,
$$

and observe that conditions (1) and (2) translate into $\Im G(z) < 0$ for $z \in \mathbb{C}^+$, and $\lim_{y \to +\infty} i y G(iy) = 1$, respectively. According to [1], Theorem 5.1, these two conditions imply the existence of a Borel probability measure μ on $\mathbb R$ such that $G = G_{\mu}$. Using the notations of the preceding lemma, we have $H(z) = H_2(z) =$ $2z - \frac{1}{G_u(z)}$, and therefore the theorem follows with

$$
\omega(z) = \omega_2(z) = \frac{1}{2} \left[z + \frac{1}{G_{\mu \boxplus \mu}(z)} \right].
$$

The last assertions of the theorem follow easily from the corresponding properties of H .

It may be worthwile to note that the hypothesis of Theorem 2.2 can be weakened somewhat.

Proposition 2.3. *Let* $t > 1$ *, and let* $H : \mathbb{C}^+ \longrightarrow \mathbb{C}$ *be an analytic function such that* $\Im H(z) < t \Im z$, $z \in \mathbb{C}^+$, and $\lim_{y\to\infty} \frac{H(iy)}{iy} = 1$. *Then* $\Im H(z) \leq \Im z$ *for* $z \in \mathbb{C}^+$.

Proof. As in the proof of Theorem 2.3 there must exist a probability measure μ such that

$$
G_{\mu}(z) = \frac{t-1}{tz - H(z)}, \ z \in \mathbb{C}^{+}.
$$

The conclusion follows immediatly from the formula

$$
H(z) = tz - (t - 1)\frac{1}{G_{\mu}(z)},
$$

\n
$$
\Re \frac{1}{G_{\mu}(z)} \ge \Re z, z \in \mathbb{C}^{+}.
$$

since

We note below some useful properties of the function ω provided by the preceding theorem.

Proposition 2.4. *Let* ω , $H : \mathbb{C}^+ \to \mathbb{C}$ *be analytic functions such that* $\omega(\mathbb{C}^+) \subset$ \mathbb{C}^+ , $\Im H(z) \leq \Im z$, and $H(\omega(z)) = z$ for $z \in \mathbb{C}^+$. Then for every $x \in \mathbb{R}$, the limit $\omega(x) = \lim_{z \to x} \omega(z)$ *exists in the extended complex plane. Moreover, if* $\omega(x) \in$ \mathbb{C}^+ , *there exists* $\delta > 0$ *such that* ω *can be continued analytically through the intervals* $(x - \delta, x)$ *and* $(x, x + \delta)$ *. The limit* $\lim_{z \to \infty} \omega(z)$ *also exists.*

Proof. First assume that there exists a sequence $z_n \to x$ such that the limit $\lambda =$ $\lim_{n\to\infty}\omega(z_n)$ exists and belongs to \mathbb{C}^+ . In this case we have $H(\lambda) = x$. Denote by $n \ge 1$ the order of the zero of $H(z) - x$ at $z = \lambda$. We can find analytic functions $\omega_1, \omega_2, \ldots, \omega_n$ defined in a set of the form $\Omega = \{w : 0 < |w - x| < \delta, w \notin \Omega\}$ $x - i\mathbb{R}_+$ such that $H(\omega_j(w)) = w$ for $w \in \Omega$ and $j = 1, 2, ..., n$. Clearly ω must coincide with one of the functions ω_i on $\Omega \cap \mathbb{C}^+$ and it follows that ω extends continuously to the interval $(x - \delta, x + \delta)$ and the extension is analytic on $(x - \delta, x)$ and $(x, x + \delta)$.

Assume to the contrary that there is no sequence z_n as in the first part of the argument. In other words, if $z_n \to x$ and $\lim_{n\to\infty} \omega(z_n)$ exists, this limit is either infinite or real. Assume now that two sequences z_n , $w_n \in \mathbb{C}^+$ have limit equal to x and the limits $\lim_{n\to\infty}\omega(z_n)$, $\lim_{n\to\infty}\omega(w_n)$ exist and are different. Consider a continuous path γ : (0, 1) \longrightarrow C⁺ passing through all the points z_n and w_n , and such that $\lim_{t\to 1} \gamma(t) = x$. There exists then an open interval $(\alpha, \beta) \subset \mathbb{R}$ such that for every $s \in (\alpha, \beta)$ there is a sequence $t_n \to 1$ such that $\omega(\gamma(t_n)) \to s$. In fact t_n can be chosen so that $\omega(\gamma(t_n)) \to s$ nontangentially as $n \to \infty$. Since $H(\omega(\gamma(t_n))) = \gamma(t_n)$, we deduce that the nontangential limit $H(s)$ of H at s is equal to x almost everywhere. The F. and M. Riesz theorem shows now that H must be constant, and this is a contradiction. Therefore $\lim_{z\to x} \omega(z)$ exists. The case $x = \infty$ is treated similarily.

Atoms and regularity for measures in a partially defined free convolution semigroup 669

As noted in the introduction, it was shown in [6] that measures μ_t such that $R_{\mu_t} = tR_\mu$ exist for $t \geq 1$. The following theorem provides an alternative approach to this result.

Theorem 2.5. *Consider a Borel probability measure* µ *on* R*, and a real number* $t \geq 1$.

- (1) *There exists a probability measure* μ_t *satisfying* $R_{\mu_t}(z) = tR_{\mu}(z)$ *for z in the common domain of the two functions.*
- (2) *There exists an injective analytic map* $\omega_t : \mathbb{C}^+ \to \mathbb{C}^+$ *such that* $G_{\mu_t}(z) =$ $G_{\mu}(\omega_t(z)),$ for $z \in \mathbb{C}^+$.
- (3) *We have* $\omega_t(z) = \frac{1}{t}z + \left(1 \frac{1}{t}\right) \frac{1}{G_{\mu_t}(z)}$, and $H_t(\omega_t(z)) = z$, where $H_t(z) = z$ $tz + (1 - t) \frac{1}{G_u(z)},$ for $z \in \mathbb{C}^+$.
- (4) If $t > 1$, the functions ω_t and $\frac{1}{G_{\mu_t}}$ extend continuously to functions from $\overline{\mathbb{C}^+}$ \cup {∞} *to* C ∪ {∞}.

Proof. If $t = 1$, clearly $\mu_1 = \mu$ and $\omega_1(z) = z$ will satisfy the conclusions of the theorem. Assume therefore that $t > 1$. We clearly have

$$
\mathfrak{B}H_t(z) = t \mathfrak{B}z - (t-1)\mathfrak{B}\frac{1}{G_\mu(z)}
$$

\n
$$
\leq t \mathfrak{B}z - (t-1)\mathfrak{B}z
$$

\n
$$
= \mathfrak{B}z,
$$

and

$$
\lim_{y \to +\infty} H_t(iy)/iy = t - (t-1) \lim_{y \to +\infty} \frac{1}{iyG_\mu(iy)} = 1.
$$

Therefore, Theorem 2.2 implies the existence of an analytic function $\omega_t : \mathbb{C}^+ \to$ \mathbb{C}^+ satisfying $H_t(\omega_t(z)) = z, z \in \mathbb{C}^+$. We also have $\Im \omega_t(z) \geq \Im z$ and $\lim_{y\to+\infty} \omega_t(iy)/iy = 1$. It follows that the function

$$
G_t(z) = \frac{t-1}{t\omega_t(z) - z}, \ z \in \mathbb{C}^+
$$

satisfies the conditions $\Im G_t(z) \leq 0$, $z \in \mathbb{C}^+$, and $\lim_{y \to +\infty} i y G_t(iy) = 1$. These conditions imply the existence of a Borel probability measure μ_t on R satisfying $G_{\mu_t} = G_t$. Note that the definition of G_t yields the first formula in (3). To prove (2) we observe that

$$
G_{\mu}(z) = \frac{t-1}{tz - H_t(z)}, \ z \in \mathbb{C}^+,
$$

so that

$$
G_{\mu}(\omega_t(z)) = \frac{t-1}{t\omega_t(z)-z} = G_t(z), \ z \in \mathbb{C}^+.
$$

Finally, let us observe that, for z in the domain of definition of R_{μ} , we have

$$
z = G_{\mu_t} \left(\frac{1}{z} + R_{\mu_t}(z) \right)
$$

= $G_{\mu} \left(\omega_t \left(\frac{1}{z} + R_{\mu_t}(z) \right) \right)$
= $G_{\mu} \left(\frac{1}{t} \left[\frac{1}{z} + R_{\mu_t}(z) \right] + \left(1 - \frac{1}{t} \right) \frac{1}{G_{\mu_t}(\frac{1}{z} + R_{\mu_t}(z))} \right)$
= $G_{\mu} \left(\frac{1}{t} \left[\frac{1}{z} + R_{\mu_t}(z) \right] + \left(1 - \frac{1}{t} \right) \frac{1}{z} \right)$
= $G_{\mu} \left(\frac{1}{z} + \frac{1}{t} R_{\mu_t}(z) \right)$,

where we used (2) in the second equality, and (3) in the third equality. We conclude that the function $\rho(z) = \frac{1}{t} R_{\mu_t}(z)$ satisfies $\lim_{y\to 0} y\rho(iy) = 0$ and $G_\mu\left(\frac{1}{z} + \rho(z)\right) = z$. Therefore, $\rho(z) = R_{\mu}(z)$, which proves (1). Finally, property (4) is a consequence of Proposition 2.4. \Box

Let us note that the calculation of μ_t involves in principle two function inverses: first we calculate R_{μ} by inverting G_{μ} , then we calculate G_{μ} by inverting $\frac{1}{z}$ + $tR_\mu(z)$. The preceding result allows us to calculate G_{μ_t} with just one inversion. Thus, we invert H_t to calculate ω_t , and then we find

$$
G_{\mu_t}(z) = \frac{t-1}{t\omega_t(z) - z}.
$$

We illustrate this in the case of $\mu = \frac{1}{2}(\delta_{-1} + \delta_1)$. For this measure,

$$
G_{\mu}(z) = \frac{z}{z^2 - 1}
$$

so that

$$
H_t(z) = tz - (t - 1)\frac{z^2 - 1}{z} = \frac{z^2 + t - 1}{z}
$$

and therefore

$$
\omega_t(z) = \frac{z + \sqrt{z^2 - 4(t - 1)}}{2},
$$

where the square root must be chosen to be positive for large real values of z. After some simple manipulations we obtain

$$
G_{\mu_t}(z) = \frac{(2-t)z + t\sqrt{z^2 - 4(t-1)}}{2(z^2 - t^2)}.
$$

Note that the function $G_{\mu t}$ has poles at $z = \pm t$ with residue

$$
\frac{2-t+|2-t|}{4}.
$$

This indicates that μ_t has atoms at $\pm t$ provided that $t < 2$. The absolutely contin-This indicates that μ_t has atoms at $\pm t$ provided that $t < 2$. The absolutely uous part of μ_t is concentrated on $[-2\sqrt{t-1}, 2\sqrt{t-1}]$ and it has density

$$
\frac{t\sqrt{4(t-1)-x^2}}{2\pi(t^2-x^2)}, \ x \in [-2\sqrt{t-1}, 2\sqrt{t-1}].
$$

This density is bounded for all t, except for $t = 2$ when it equals

$$
\frac{1}{\pi\sqrt{4-x^2}}.
$$

This behaviour for atoms and the absolutely continuous part is rather general, as seen in the following section.

3 Atoms and regularity for μ_t

It is known (see [3]) that a free convolution $\mu \boxplus \nu$ generally has a finite number of atoms, fewer than either μ or ν . This fact extends to the measures μ_t .

Theorem 3.1. Let μ be a probability measure on \mathbb{R} , and let μ_t be such that $R_{\mu_t} =$ tR_{μ} , $t > 1$. *A number* $\alpha \in \mathbb{R}$ *is an atom of* μ_t *if and only if* α/t *is an atom of* μ *such that* μ ({ α/t }) > 1 – $\frac{1}{t}$ *. In this case,*

$$
\mu_t(\{\alpha\}) = t\mu\left(\left\{\frac{\alpha}{t}\right\}\right) - (t-1).
$$

If N_t denotes the number of atoms of μ_t , we have $N_t < \frac{t}{t-1}$.

Proof. The estimate on N_t follows immediatly from the inequality $\mu\left(\left\{\frac{\alpha}{t}\right\}\right) > 1 - \frac{1}{t}$. Recall the fact that for every Borel probability measure on R and for every $\alpha \in \mathbb{R}$, we have

$$
\mu_t(\{\alpha\}) = \lim_{\substack{z \to \alpha \\ \prec}} (z - \alpha) G_{\mu_t}(z),
$$

where the notation $z \rightarrow \alpha$ \triangleleft indicates nontangential convergence (see [3], Lemma 7.1).

Using the notation of Theorem 2.5, we have

$$
\omega_t(z) - \frac{\alpha}{t} = \frac{1}{t}(z - \alpha) + \left(1 - \frac{1}{t}\right) \frac{1}{G_{\mu_t}(z)}.
$$

Since $\frac{1}{G_{\mu_t}(z)}$ converges to zero as z tends to α nontangentially, we conclude that $\omega_t(\alpha) = \alpha/t$. Moreover, since

$$
\lim_{\substack{z \to a \\ z \to a}} \frac{\omega_t(z) - \frac{\alpha}{t}}{z - \alpha} = \frac{1}{t} + \left(1 - \frac{1}{t}\right) \lim_{\substack{z \to a \\ z \to a}} \frac{1}{(z - \alpha)G_{\mu_t}(z)} = \frac{1}{t} + \left(1 - \frac{1}{t}\right) \frac{1}{\mu_t(\{\alpha\})},
$$

we deduce that $\omega_t(z)$ approaches α/t nontangentially as $z \longrightarrow \alpha$ \triangleleft . Using these facts we deduce that

$$
\mu\left(\left\{\frac{\alpha}{t}\right\}\right) = \lim_{\substack{w \to \alpha/t \\ \alpha}} \left(w - \frac{\alpha}{t}\right) G_{\mu}(w) = \lim_{\substack{z \to \alpha \\ \alpha}} \left(\omega_{t}(z) - \frac{\alpha}{t}\right) G_{\mu}(\omega_{t}(z))
$$

$$
= \lim_{\substack{z \to \alpha \\ \alpha}} \left(\omega_{t}(z) - \frac{\alpha}{t}\right) G_{\mu_{t}}(z)
$$

$$
= \lim_{\substack{z \to \alpha \\ \alpha}} \frac{\omega_{t}(z) - \alpha/t}{z - \alpha} \mu_{t}(\{\alpha\})
$$

$$
= \left(\frac{1}{t} + \left(1 - \frac{1}{t}\right) \frac{1}{\mu_{t}(\{\alpha\})}\right) \mu_{t}(\{\alpha\})
$$

$$
= \frac{1}{t} \mu_{t}(\{\alpha\}) + 1 - \frac{1}{t}.
$$

Thus α/t must be an atom of μ with the required mass.

Conversely, let us assume that α/t is an atom of μ such that μ ({ α/t }) > 1 – $\frac{1}{t}$. We will use the realization of μ_t given in [6]. Namely, there exists a W^{*}-probability space (\mathcal{M} , τ), a selfadjoint random variable X affiliated with \mathcal{M} , and a projection $p \in M$ such that X and p are free, $\tau(p) = t^{-1}$, X has distribution μ , and $tpXp$ has distribution μ_t in the W^{*}-probability space ($p \mathcal{M} p$, $t\tau$). Since α/t is an atom for μ , we have $Xq = \frac{\alpha}{t}q$ for some projection $q \in M$ with $\tau(q) = \mu$ ({ α/t }). We conclude that $(tpXp)(p \wedge q) = \alpha(p \wedge q)$, and the projection $p \wedge q$ is not zero because $\tau(p) + \tau(q) > \frac{1}{t} + (1 - \frac{1}{t}) = 1$. We conclude that α is indeed an atom for μ_t .

We restate one of the ingredients of the previous proof which will be useful later.

Lemma 3.2. *With the notations of Theorem 3.1, assume that* $t > 1$, α , $\beta \in \mathbb{R}$ *, and there exists a sequence* $z_n \in \mathbb{C}^+$ *such that* $z_n \longrightarrow \alpha$ *nontangentially,* $\omega_t(z_n) \longrightarrow \beta$ *nontangentially, and* $\frac{1}{G_{\mu_t}(z_n)} \longrightarrow 0$ *as* $n \to \infty$ *. Then* β *is an atom of* μ *,* $\beta = \alpha/t$ *, and*

$$
\mu({\{\beta\}}) = \frac{1}{t}\mu_t({\{\alpha\}}) + 1 - \frac{1}{t}.
$$

Proof. The relation

$$
\omega_t(z_n) = \frac{1}{t} z_n + \left(1 - \frac{1}{t}\right) \frac{1}{G_{\mu_t}(z_n)}
$$

implies immediatly $\beta = \alpha/t$. The fact that β is an atom with the required mass follows now from

$$
(\omega(z_n) - \beta)G_{\mu}(\omega_t(z_n)) = \frac{1}{t}(z_n - \alpha)G_{\mu_t}(z_n) + 1 - \frac{1}{t}.
$$

 \Box

Atoms and regularity for measures in a partially defined free convolution semigroup 673

Theorem 3.1 indicates that the atomic part of μ_t loses mass in a piecewise linear fashion as t increases. The next result gives some indication of where the lost mass goes.

Proposition 3.3. With the notation of Theorem 3.1, assume that $t > 1$ and μ_t has *atoms* $\alpha < \beta$ *. Then we have* $\mu_t((\alpha, \beta)) > 0$ *.*

Proof. Assume to the contrary that $\mu_t((\alpha, \beta)) = 0$. In this case G_{μ_t} takes real values on the interval (α, β) , $G_{\mu_t}(\alpha + 0) = +\infty$, and $G_{\mu_t}(\beta - 0) = -\infty$. We deduce the existence of $x \in (\alpha, \beta)$ satisfying $G_{\mu_t}(x) = 0$, and henceforth $\omega_t(x) = \infty$. On the other hand, $\omega_t(\alpha) = \alpha/t$, $\omega_t(\beta) = \beta/t$, and $\omega_t(\infty) = \infty$. We claim that this combination of values is not possible. Indeed, consider a simple path γ joining α and β in the upper half-plane. Now, $\omega_t(\gamma)$ cuts the range of ω_t into two components, one of which must be bounded. Since $\omega_t(\infty)$ and $\omega_t(x)$ belong to the closures of different components, only one of these limits can be infinite.

The preceding argument shows in fact that G_{μ_t} cannot change sign on any interval disjoint from the support of μ_t ; G_{μ_t} is real, continuous, and decreasing on such intervals.

We will see next that μ_t has no singular spectrum beside the atoms discussed in Theorem 3.1. We will denote by μ_t^{ac} the absolutely continous part of the measure μ_t .

Theorem 3.4. *Let* μ *be a probability measure on* \mathbb{R} *, and let* μ_t *satisfy* $R_{\mu_t} = tR_{\mu_t}$ *for some* $t > 1$. *The measure* μ_t *has no continuous singular part. Moreover, there exists a closed set* $\sigma \subset \mathbb{R}$ *with* $\mu_t^{ac}(\sigma) = 0$ *such that the density* $\frac{d\mu_t(x)}{dx}$ *is locally analytic for* $x \in \mathbb{R} \setminus \sigma$.

Proof. Assume that μ_t does have a singular continuous part ν . In this case, it is known that

$$
\lim_{z \to a \atop z \to 0} \frac{1}{|G_{\mu_t}(z)|} = 0
$$

for *v*-almost every $a \in \mathbb{R}$ and, by Theorem 2.7 of [7], the convergence of $1/G_{\mu_t}(z)$ to zero is not typically tangential. In particular, there exist uncountably many values $a \in \mathbb{R}$ for which there is a sequence $z_n \in \mathbb{C}^+$ converging to a nontangentially, such that $\lim_{n\to\infty} 1/|G_{\mu_t}(z_n)| = 0$ and

$$
\sup_{n\in\mathbb{N}}\left|\frac{\Re G_{\mu_t}(z_n)}{\Im G_{\mu_t}(z_n)}\right|<\infty.
$$

Using again the notations of Theorem 2.5,

$$
\omega_t(z_n) - \frac{a}{t} = \frac{1}{t}(z_n - a) + \left(1 - \frac{1}{t}\right) \frac{1}{G_{\mu_t}(z_n)},
$$

and this shows that $\omega_t(z_n) \longrightarrow \frac{a}{t}$ nontangentially as $n \to \infty$. By Lemma 3.2, a/t is an atom of μ . Since we can only have at most countably many atoms, we arrive at a contradiction, showing that indeed $\nu = 0$.

For μ_t^{ac} -almost every $a \in \mathbb{R}$, the nontangential limit $\lim_{z \to a} G_{\mu_t}(z)$ exists, and it has imaginary part equal to $-\pi \frac{d\mu_t}{dx}(a)$. We deduce that the nontangential limit $\lim_{z\to a}\omega_t(z)$ also exists, and it has nonzero imaginary part. Proposition 2.4 implies now that ω_t , and hence G_{μ_t} , extends continuously to some interval $(a - \delta, a + \delta)$ and is analytic on that interval except possibly at a. The set σ can be taken to be the common complement of the intervals $(a - \delta, a + \delta) \setminus \{a\}$ obtained this way. \Box

References

- 1. Bercovici, H., Voiculescu, D.: Convolutions of measures with unbounded support. Indiana Univ. Math. J. **42**(3), 733–773 (1993)
- 2. Bercovici, H., Voiculescu, D.: Superconvergence to the central limit and failure of the Cram´er theorem for free random variables. Probab. Theory Related Fields **103**(2), 215–222 (1995)
- 3. Bercovici, H., Voiculescu, D.: Regularity questions for free convolution. Nonselfadjoint operator algebras, operator theory, and related topics. Oper. Theory Adv. Appl. Birkh¨auser, Basel, **104**, 37–47 (1998)
- 4. Biane, P.: Processes with free increments. Math. Z. **227**(1), 143–174 (1998)
- 5. Maassen, H.: Addition of freely independent random variables. J. Funct. Anal. **106**(2), 409–438 (1992)
- 6. Nica, A., Speicher, R.: On the multiplication of free N -tuples of noncommutative random variables. Amer. J. Math. **118**(4), 799–837 (1996)
- 7. Poltoratski, A.: Images of non-tangential sectors under Cauchy transforms. J. Anal. Math. **89**, 385–395 (2003)
- 8. Voiculescu, D.: The analogues of entropy and of Fisher's information measure in free probability theory. I. Comm. Math. Phys. **155**(1), 411–440 (1993)
- 9. Voiculescu, D.: The coalgebra of the free difference quotient and free probability. Internat. Math. Res. Notices **2**, 79–106 (2000)
- 10. Voiculescu, D.: Addition of certain noncommuting random variables. J. Funct. Anal. **66**(3), 323–346 (1986)
- 11. Voiculescu, D.V., Dykema, K.J., Nica, A.: Free Random Variables. CRM Monograph Series, Vol. **1** Am. Math. Soc. Providence, RI, 1992