DOI: 10.1007/s00209-004-0671-y

Atoms and regularity for measures in a partially defined free convolution semigroup

S. T. Belinschi¹, H. Bercovici^{2,*}

- ¹ Institute of Mathematics, Romanian Academy, P.O.Box 1-764, 70700 Bucharest, Romania (e-mail: teodor.belinschi@imar.ro)
- ² Mathematics Department, Indiana University, Bloomington, IN 47405, USA (e-mail: bercovic@indiana.edu)

Received: 28 July 2003; in final form: 17 November 2003 / Published online: 27 April 2004 – © Springer-Verlag 2004

Abstract. Consider a Borel probability measure μ on the real line, and denote by $\{\mu_t : t \ge 1\}$ the free additive convolution semigroup defined by Nica and Speicher. We show that the singular part of μ_t is purely atomic and the density of μ_t is locally analytic, provided that t > 1. The main ingredient is a global inversion theorem for analytic functions on a half plane.

Mathematics Subject Classification (2000): 46L54, 30A99

1 Introduction

Given two Borel probability measures μ , ν on \mathbb{R} , we denote by $\mu \boxplus \nu$ their free additive convolution. We recall briefly the definition of free convolution, and refer to [11] for a systematic exposition of the subject. Denote by $(L(\mathbb{F}_2), \tau)$ the von Neumann algebra of the free group with two generators a, b, endowed with its usual trace τ . We can find elements x, y affiliated with the subalgebra generated by a, b, respectively, and with distributions μ, ν . In other words,

$$\tau(u(x)) = \int_{-\infty}^{\infty} u(t) \, d\mu(t), \quad \tau(u(y)) = \int_{-\infty}^{\infty} u(t) \, d\nu(t)$$

for every bounded Borel function *u* on the real line. The measure $\mu \boxplus \nu$ is the distribution of x + y. It has been shown that the Cauchy transform

$$G_{\mu\boxplus\nu}(z) = \int_{-\infty}^{\infty} \frac{1}{z-t} d(\mu \boxplus \nu)(t), \quad \Im z > 0,$$

^{*} Supported in part by a grant from the National Science Foundation.

is subordinate to G_{μ} , in the sense that $G_{\mu \boxplus \nu} = G_{\mu} \circ \omega$ for some analytic self map of the upper half-plane $\mathbb{C}^+ = \{z = x + iy \in \mathbb{C} : y > 0\}$. This was shown under a genericity assumption in [8], extended with combinatorial tools in [4], and then proved again in [9] under more general circumstances.

On the other hand, it was already shown by A. Nica and R. Speicher in [6] that the discrete semigroup

$$\mu_n = \underbrace{\mu \boxplus \mu \boxplus \dots \boxplus \mu}_{n \text{ times}}, \quad n = 1, 2, \dots$$

can be embedded in a continuous family $\{\mu_t : t \ge 1\}$ such that $\mu_{s+t} = \mu_s \boxplus \mu_t$. (The existence of μ_t for large values of t was shown in [2] in case μ has compact support.)

By the subordination result mentioned above, there exist analytic selfmaps ω_n of the upper half-plane satisfying $G_{\mu_n} = G_{\mu} \circ \omega_n$. Our purpose is to extend this subordination result for arbitrary values of t > 1. In fact, our proof of subordination does not rely on any of the earlier arguments and it also yields an alternate proof of the existence of μ_t for t > 1. We will also use this subordination result in order to show that μ_t has no continuous singular part if t > 1, and that the density of its absolutely continuous part is locally analytic. The subordination functions ω_t turn out to be injective, and their existence follows from a global inversion theorem. The inversion theorem essentially follows from the existence of free convolutions; we are not aware of a classical proof.

2 An analytic inversion result and subordination for μ_t

Given a Borel probability measure μ on \mathbb{R} , there exist $\varepsilon > 0$, and an analytic function

$$R_{\mu}: \{z = x + iy : -\varepsilon < x < \varepsilon, -|x| < y < 0\} \to \mathbb{C}^+,$$

such that $G_{\mu}(\frac{1}{z} + R_{\mu}(z)) = z$ and $\lim_{y\to 0} yR_{\mu}(iy) = 0$ (see [1]). (This local inverse $\frac{1}{z} + R_{\mu}(z)$ of $G_{\mu}(z)$ is usually denoted $K_{\mu}(z)$.) The function R_{μ} is called the *R*-transform of μ . Its relevance to free convolution arises from the remarkable equation

$$R_{\mu\boxplus\nu}=R_{\mu}+R_{\nu},$$

which is valid in the common domain of the three functions (see [10], [11], [5], and [1] for the original statement and succesive extensions.)

Lemma 2.1. Consider a Borel probability measure μ on \mathbb{R} , and set $H_2(z) = 2z - \frac{1}{G_{\mu}(z)}$, and $\omega_2(z) = \frac{1}{2} \left[z + \frac{1}{G_{\mu \boxplus \mu}(z)} \right]$, $z \in \mathbb{C}^+$. Then

(1) ω_2 is injective on \mathbb{C}^+ ; (2) $\Im \omega_2(z) \ge \Im z, \ z \in \mathbb{C}^+$; (3) $H_2(\omega_2(z)) = z, \ z \in \mathbb{C}^+$; and (4) $G_{\mu \boxplus \mu}(z) = G_{\mu}(\omega_2(z)), \ z \in \mathbb{C}^+$. *Proof.* Let us note that the function $\omega(z) = \frac{1}{G_{\mu \boxplus \mu}(z)} + R_{\mu}(G_{\mu \boxplus \mu}(z))$ is defined in $\Gamma_M = \{z \in \mathbb{C}^+ : z = x + iy, M < |x| < \frac{y}{2}\}$, provided that *M* is sufficiently large. Observe that for $z \in \Gamma_M$

$$\begin{split} \omega(z) &= \frac{1}{G_{\mu\boxplus\mu}(z)} + R_{\mu}(G_{\mu\boxplus\mu}(z)) \\ &= \frac{1}{G_{\mu\boxplus\mu}(z)} + \frac{1}{2}R_{\mu\boxplus\mu}(G_{\mu\boxplus\mu}(z)) \\ &= \frac{1}{G_{\mu\boxplus\mu}(z)} + \frac{1}{2}\left[K_{\mu\boxplus\mu}(G_{\mu\boxplus\mu}(z)) - \frac{1}{G_{\mu\boxplus\mu}(z)}\right] \\ &= \omega_2(z). \end{split}$$

From the definition of R_{μ} we see that $G_{\mu}(\omega(z)) = G_{\mu \boxplus \mu}(z)$ for $z \in \Gamma_M$, and we conclude by analytic continuation that (4) holds. Next we calculate

$$H_2(\omega_2(z)) = 2\omega_2(z) - \frac{1}{G_\mu(\omega_2(z))} \\ = 2\omega_2(z) - \frac{1}{G_{\mu\boxplus\mu}(z)},$$

and (3) follows from the definition of ω_2 . Clearly (3) implies (1), and (2) follows because $\Im_{\overline{G_u(z)}} \ge \Im_z$, $z \in \mathbb{C}^+$, for any probability measure μ (cf. [5] and [1]).

The preceding observation leads to the following global inversion theorem.

Theorem 2.2. Let $H : \mathbb{C}^+ \to \mathbb{C}$ be an analytic function satisfying the following two conditions:

(1) $\Im H(z) < 2\Im z, \ z \in \mathbb{C}^+, \ and$ (2) $\lim_{y \to +\infty} H(iy)/iy = 1.$

Then there exists an analytic function $\omega : \mathbb{C}^+ \to \mathbb{C}^+$ such that $H(\omega(z)) = z, z \in \mathbb{C}^+$. Moreover, $\Im \omega(z) \ge \Im z, z \in \mathbb{C}^+$, and $\lim_{y \to +\infty} \omega(iy)/iy = 1$.

Proof. Let us define

$$G(z) = \frac{1}{2z - H(z)}, \ z \in \mathbb{C}^+,$$

and observe that conditions (1) and (2) translate into $\Im G(z) < 0$ for $z \in \mathbb{C}^+$, and $\lim_{y \to +\infty} iyG(iy) = 1$, respectively. According to [1], Theorem 5.1, these two conditions imply the existence of a Borel probability measure μ on \mathbb{R} such that $G = G_{\mu}$. Using the notations of the preceding lemma, we have $H(z) = H_2(z) = 2z - \frac{1}{G_{\mu}(z)}$, and therefore the theorem follows with

$$\omega(z) = \omega_2(z) = \frac{1}{2} \left[z + \frac{1}{G_{\mu \boxplus \mu}(z)} \right].$$

The last assertions of the theorem follow easily from the corresponding properties of H.

It may be worthwile to note that the hypothesis of Theorem 2.2 can be weakened somewhat.

Proposition 2.3. Let t > 1, and let $H : \mathbb{C}^+ \longrightarrow \mathbb{C}$ be an analytic function such that $\Im H(z) < t \Im z$, $z \in \mathbb{C}^+$, and $\lim_{y\to\infty} \frac{H(iy)}{iy} = 1$. Then $\Im H(z) \leq \Im z$ for $z \in \mathbb{C}^+$.

Proof. As in the proof of Theorem 2.3 there must exist a probability measure μ such that

$$G_{\mu}(z) = \frac{t-1}{tz - H(z)}, \ z \in \mathbb{C}^+.$$

The conclusion follows immediatly from the formula

$$H(z) = tz - (t-1)\frac{1}{G_{\mu}(z)},$$
$$\overline{z_{\lambda}} \ge \Im z, \ z \in \mathbb{C}^{+}.$$

since $\Im \frac{1}{G_{\mu}(z)} \ge \Im z, z \in \mathbb{C}^+$.

We note below some useful properties of the function ω provided by the preceding theorem.

Proposition 2.4. Let ω , $H : \mathbb{C}^+ \to \mathbb{C}$ be analytic functions such that $\omega(\mathbb{C}^+) \subset \mathbb{C}^+$, $\Im H(z) \leq \Im z$, and $H(\omega(z)) = z$ for $z \in \mathbb{C}^+$. Then for every $x \in \mathbb{R}$, the limit $\omega(x) = \lim_{z \to x} \omega(z)$ exists in the extended complex plane. Moreover, if $\omega(x) \in \mathbb{C}^+$, there exists $\delta > 0$ such that ω can be continued analytically through the intervals $(x - \delta, x)$ and $(x, x + \delta)$. The limit $\lim_{z \to \infty} \omega(z)$ also exists.

Proof. First assume that there exists a sequence $z_n \to x$ such that the limit $\lambda = \lim_{n\to\infty} \omega(z_n)$ exists and belongs to \mathbb{C}^+ . In this case we have $H(\lambda) = x$. Denote by $n \ge 1$ the order of the zero of H(z) - x at $z = \lambda$. We can find analytic functions $\omega_1, \omega_2, \ldots, \omega_n$ defined in a set of the form $\Omega = \{w : 0 < |w - x| < \delta, w \notin x - i\mathbb{R}_+\}$ such that $H(\omega_j(w)) = w$ for $w \in \Omega$ and $j = 1, 2, \ldots, n$. Clearly ω must coincide with one of the functions ω_j on $\Omega \cap \mathbb{C}^+$ and it follows that ω extends continuously to the interval $(x - \delta, x + \delta)$ and the extension is analytic on $(x - \delta, x)$ and $(x, x + \delta)$.

Assume to the contrary that there is no sequence z_n as in the first part of the argument. In other words, if $z_n \to x$ and $\lim_{n\to\infty} \omega(z_n)$ exists, this limit is either infinite or real. Assume now that two sequences $z_n, w_n \in \mathbb{C}^+$ have limit equal to x and the limits $\lim_{n\to\infty} \omega(z_n)$, $\lim_{n\to\infty} \omega(w_n)$ exist and are different. Consider a continuous path $\gamma : (0, 1) \longrightarrow \mathbb{C}^+$ passing through all the points z_n and w_n , and such that $\lim_{t\to 1} \gamma(t) = x$. There exists then an open interval $(\alpha, \beta) \subset \mathbb{R}$ such that for every $s \in (\alpha, \beta)$ there is a sequence $t_n \to 1$ such that $\omega(\gamma(t_n)) \to s$. In fact t_n can be chosen so that $\omega(\gamma(t_n)) \to s$ nontangentially as $n \to \infty$. Since $H(\omega(\gamma(t_n))) = \gamma(t_n)$, we deduce that the nontangential limit H(s) of H at s is equal to x almost everywhere. The F. and M. Riesz theorem shows now that H must be constant, and this is a contradiction. Therefore $\lim_{z\to x} \omega(z)$ exists. The case $x = \infty$ is treated similarily.

Atoms and regularity for measures in a partially defined free convolution semigroup 669

As noted in the introduction, it was shown in [6] that measures μ_t such that $R_{\mu_t} = t R_{\mu}$ exist for $t \ge 1$. The following theorem provides an alternative approach to this result.

Theorem 2.5. Consider a Borel probability measure μ on \mathbb{R} , and a real number $t \ge 1$.

- (1) There exists a probability measure μ_t satisfying $R_{\mu_t}(z) = t R_{\mu}(z)$ for z in the common domain of the two functions.
- (2) There exists an injective analytic map $\omega_t : \mathbb{C}^+ \to \mathbb{C}^+$ such that $G_{\mu_t}(z) = G_{\mu}(\omega_t(z))$, for $z \in \mathbb{C}^+$.
- (3) We have $\omega_t(z) = \frac{1}{t}z + (1 \frac{1}{t})\frac{1}{G_{\mu_t}(z)}$, and $H_t(\omega_t(z)) = z$, where $H_t(z) = tz + (1 t)\frac{1}{G_{\mu_t}(z)}$, for $z \in \mathbb{C}^+$.
- (4) If t > 1, the functions ω_t and $\frac{1}{G_{\mu_t}}$ extend continuously to functions from $\overline{\mathbb{C}^+} \cup \{\infty\}$ to $\mathbb{C} \cup \{\infty\}$.

Proof. If t = 1, clearly $\mu_1 = \mu$ and $\omega_1(z) = z$ will satisfy the conclusions of the theorem. Assume therefore that t > 1. We clearly have

$$\Im H_t(z) = t \Im z - (t-1) \Im \frac{1}{G_{\mu}(z)}$$

$$\leq t \Im z - (t-1) \Im z$$

$$= \Im z.$$

and

$$\lim_{y \to +\infty} H_t(iy)/iy = t - (t-1) \lim_{y \to +\infty} \frac{1}{iyG_{\mu}(iy)} = 1.$$

Therefore, Theorem 2.2 implies the existence of an analytic function $\omega_t : \mathbb{C}^+ \to \mathbb{C}^+$ satisfying $H_t(\omega_t(z)) = z, \ z \in \mathbb{C}^+$. We also have $\Im \omega_t(z) \ge \Im z$ and $\lim_{y\to+\infty} \omega_t(iy)/iy = 1$. It follows that the function

$$G_t(z) = \frac{t-1}{t\omega_t(z) - z}, \ z \in \mathbb{C}^+$$

satisfies the conditions $\Im G_t(z) \leq 0$, $z \in \mathbb{C}^+$, and $\lim_{y \to +\infty} iy G_t(iy) = 1$. These conditions imply the existence of a Borel probability measure μ_t on \mathbb{R} satisfying $G_{\mu_t} = G_t$. Note that the definition of G_t yields the first formula in (3). To prove (2) we observe that

$$G_{\mu}(z) = \frac{t-1}{tz - H_t(z)}, \ z \in \mathbb{C}^+,$$

so that

$$G_{\mu}(\omega_t(z)) = \frac{t-1}{t\omega_t(z)-z} = G_t(z), \ z \in \mathbb{C}^+.$$

Finally, let us observe that, for z in the domain of definition of R_{μ_t} , we have

$$z = G_{\mu_t} \left(\frac{1}{z} + R_{\mu_t}(z) \right)$$

= $G_{\mu} \left(\omega_t \left(\frac{1}{z} + R_{\mu_t}(z) \right) \right)$
= $G_{\mu} \left(\frac{1}{t} \left[\frac{1}{z} + R_{\mu_t}(z) \right] + \left(1 - \frac{1}{t} \right) \frac{1}{G_{\mu_t}(\frac{1}{z} + R_{\mu_t}(z))} \right)$
= $G_{\mu} \left(\frac{1}{t} \left[\frac{1}{z} + R_{\mu_t}(z) \right] + \left(1 - \frac{1}{t} \right) \frac{1}{z} \right)$
= $G_{\mu} \left(\frac{1}{z} + \frac{1}{t} R_{\mu_t}(z) \right),$

where we used (2) in the second equality, and (3) in the third equality. We conclude that the function $\rho(z) = \frac{1}{t} R_{\mu_t}(z)$ satisfies $\lim_{y\to 0} y\rho(iy) = 0$ and $G_{\mu}\left(\frac{1}{z} + \rho(z)\right) = z$. Therefore, $\rho(z) = R_{\mu}(z)$, which proves (1). Finally, property (4) is a consequence of Proposition 2.4.

Let us note that the calculation of μ_t involves in principle two function inverses: first we calculate R_{μ} by inverting G_{μ} , then we calculate G_{μ_t} by inverting $\frac{1}{z} + tR_{\mu}(z)$. The preceding result allows us to calculate G_{μ_t} with just one inversion. Thus, we invert H_t to calculate ω_t , and then we find

$$G_{\mu_t}(z) = \frac{t-1}{t\omega_t(z)-z}.$$

We illustrate this in the case of $\mu = \frac{1}{2}(\delta_{-1} + \delta_1)$. For this measure,

$$G_{\mu}(z) = \frac{z}{z^2 - 1}$$

so that

$$H_t(z) = tz - (t-1)\frac{z^2 - 1}{z} = \frac{z^2 + t - 1}{z}$$

and therefore

$$\omega_t(z) = \frac{z + \sqrt{z^2 - 4(t-1)}}{2},$$

where the square root must be chosen to be positive for large real values of z. After some simple manipulations we obtain

$$G_{\mu_t}(z) = \frac{(2-t)z + t\sqrt{z^2 - 4(t-1)}}{2(z^2 - t^2)}$$

Note that the function G_{μ_t} has poles at $z = \pm t$ with residue

$$\frac{2-t+|2-t|}{4}$$

This indicates that μ_t has atoms at $\pm t$ provided that t < 2. The absolutely continuous part of μ_t is concentrated on $[-2\sqrt{t-1}, 2\sqrt{t-1}]$ and it has density

$$\frac{t\sqrt{4(t-1)-x^2}}{2\pi(t^2-x^2)}, \ x \in [-2\sqrt{t-1}, 2\sqrt{t-1}].$$

This density is bounded for all t, except for t = 2 when it equals

$$\frac{1}{\pi\sqrt{4-x^2}}$$

This behaviour for atoms and the absolutely continuous part is rather general, as seen in the following section.

3 Atoms and regularity for μ_t

It is known (see [3]) that a free convolution $\mu \boxplus \nu$ generally has a finite number of atoms, fewer than either μ or ν . This fact extends to the measures μ_t .

Theorem 3.1. Let μ be a probability measure on \mathbb{R} , and let μ_t be such that $R_{\mu_t} = tR_{\mu}$, t > 1. A number $\alpha \in \mathbb{R}$ is an atom of μ_t if and only if α/t is an atom of μ such that $\mu(\{\alpha/t\}) > 1 - \frac{1}{t}$. In this case,

$$\mu_t(\{\alpha\}) = t\mu\left(\left\{\frac{\alpha}{t}\right\}\right) - (t-1).$$

If N_t denotes the number of atoms of μ_t , we have $N_t < \frac{t}{t-1}$.

Proof. The estimate on N_t follows immediatly from the inequality $\mu\left(\left\{\frac{\alpha}{t}\right\}\right) > 1 - \frac{1}{t}$. Recall the fact that for every Borel probability measure on \mathbb{R} and for every $\alpha \in \mathbb{R}$, we have

$$\mu_t(\{\alpha\}) = \lim_{\substack{z \to \alpha \\ \triangleleft}} (z - \alpha) G_{\mu_t}(z),$$

where the notation $z \xrightarrow{\triangleleft} \alpha$ indicates nontangential convergence (see [3], Lemma 7.1).

Using the notation of Theorem 2.5, we have

$$\omega_t(z) - \frac{\alpha}{t} = \frac{1}{t}(z - \alpha) + \left(1 - \frac{1}{t}\right)\frac{1}{G_{\mu_t}(z)}$$

Since $\frac{1}{G_{\mu_t}(z)}$ converges to zero as z tends to α nontangentially, we conclude that $\omega_t(\alpha) = \alpha/t$. Moreover, since

$$\lim_{z \to \alpha} \frac{\omega_t(z) - \frac{\alpha}{t}}{z - \alpha} = \frac{1}{t} + \left(1 - \frac{1}{t}\right) \lim_{z \to \alpha} \frac{1}{(z - \alpha)G_{\mu_t}(z)} = \frac{1}{t} + \left(1 - \frac{1}{t}\right) \frac{1}{\mu_t(\{\alpha\})},$$

we deduce that $\omega_t(z)$ approaches α/t nontangentially as $z \xrightarrow{\triangleleft} \alpha$. Using these facts we deduce that

$$\mu\left(\left\{\frac{\alpha}{t}\right\}\right) = \lim_{\substack{w \to \alpha/t \\ \triangleleft}} \left(w - \frac{\alpha}{t}\right) G_{\mu}(w) = \lim_{\substack{z \to \alpha \\ \dashv}} \left(\omega_t(z) - \frac{\alpha}{t}\right) G_{\mu}(\omega_t(z))$$
$$= \lim_{\substack{z \to \alpha \\ \dashv}} \left(\omega_t(z) - \frac{\alpha}{t}\right) G_{\mu_t}(z)$$
$$= \lim_{\substack{z \to \alpha \\ \dashv}} \frac{\omega_t(z) - \alpha/t}{z - \alpha} \mu_t(\{\alpha\})$$
$$= \left(\frac{1}{t} + \left(1 - \frac{1}{t}\right) \frac{1}{\mu_t(\{\alpha\})}\right) \mu_t(\{\alpha\})$$
$$= \frac{1}{t} \mu_t(\{\alpha\}) + 1 - \frac{1}{t}.$$

Thus α/t must be an atom of μ with the required mass.

Conversely, let us assume that α/t is an atom of μ such that $\mu(\{\alpha/t\}) > 1 - \frac{1}{t}$. We will use the realization of μ_t given in [6]. Namely, there exists a W^* -probability space (\mathcal{M}, τ) , a selfadjoint random variable X affiliated with \mathcal{M} , and a projection $p \in \mathcal{M}$ such that X and p are free, $\tau(p) = t^{-1}$, X has distribution μ , and tpXp has distribution μ_t in the W^* -probability space $(p\mathcal{M}p, t\tau)$. Since α/t is an atom for μ , we have $Xq = \frac{\alpha}{t}q$ for some projection $q \in \mathcal{M}$ with $\tau(q) = \mu(\{\alpha/t\})$. We conclude that $(tpXp)(p \land q) = \alpha(p \land q)$, and the projection $p \land q$ is not zero because $\tau(p) + \tau(q) > \frac{1}{t} + (1 - \frac{1}{t}) = 1$. We conclude that α is indeed an atom for μ_t .

We restate one of the ingredients of the previous proof which will be useful later.

Lemma 3.2. With the notations of Theorem 3.1, assume that t > 1, α , $\beta \in \mathbb{R}$, and there exists a sequence $z_n \in \mathbb{C}^+$ such that $z_n \longrightarrow \alpha$ nontangentially, $\omega_t(z_n) \longrightarrow \beta$ nontangentially, and $\frac{1}{G_{\mu_t}(z_n)} \longrightarrow 0$ as $n \to \infty$. Then β is an atom of μ , $\beta = \alpha/t$, and

$$\mu(\{\beta\}) = \frac{1}{t}\mu_t(\{\alpha\}) + 1 - \frac{1}{t}.$$

Proof. The relation

$$\omega_t(z_n) = \frac{1}{t} z_n + \left(1 - \frac{1}{t}\right) \frac{1}{G_{\mu_t}(z_n)}$$

implies immediatly $\beta = \alpha/t$. The fact that β is an atom with the required mass follows now from

$$(\omega(z_n)-\beta)G_{\mu}(\omega_t(z_n))=\frac{1}{t}(z_n-\alpha)G_{\mu_t}(z_n)+1-\frac{1}{t}.$$

Atoms and regularity for measures in a partially defined free convolution semigroup 673

Theorem 3.1 indicates that the atomic part of μ_t loses mass in a piecewise linear fashion as *t* increases. The next result gives some indication of where the lost mass goes.

Proposition 3.3. With the notation of Theorem 3.1, assume that t > 1 and μ_t has atoms $\alpha < \beta$. Then we have $\mu_t((\alpha, \beta)) > 0$.

Proof. Assume to the contrary that $\mu_t((\alpha, \beta)) = 0$. In this case G_{μ_t} takes real values on the interval (α, β) , $G_{\mu_t}(\alpha + 0) = +\infty$, and $G_{\mu_t}(\beta - 0) = -\infty$. We deduce the existence of $x \in (\alpha, \beta)$ satisfying $G_{\mu_t}(x) = 0$, and henceforth $\omega_t(x) = \infty$. On the other hand, $\omega_t(\alpha) = \alpha/t$, $\omega_t(\beta) = \beta/t$, and $\omega_t(\infty) = \infty$. We claim that this combination of values is not possible. Indeed, consider a simple path γ joining α and β in the upper half-plane. Now, $\omega_t(\gamma)$ cuts the range of ω_t into two components, one of which must be bounded. Since $\omega_t(\infty)$ and $\omega_t(x)$ belong to the closures of different components, only one of these limits can be infinite.

The preceding argument shows in fact that G_{μ_t} cannot change sign on any interval disjoint from the support of μ_t ; G_{μ_t} is real, continuous, and decreasing on such intervals.

We will see next that μ_t has no singular spectrum beside the atoms discussed in Theorem 3.1. We will denote by μ_t^{ac} the absolutely continous part of the measure μ_t .

Theorem 3.4. Let μ be a probability measure on \mathbb{R} , and let μ_t satisfy $R_{\mu_t} = t R_{\mu}$ for some t > 1. The measure μ_t has no continuous singular part. Moreover, there exists a closed set $\sigma \subset \mathbb{R}$ with $\mu_t^{ac}(\sigma) = 0$ such that the density $\frac{d\mu_t(x)}{dx}$ is locally analytic for $x \in \mathbb{R} \setminus \sigma$.

Proof. Assume that μ_t does have a singular continuous part ν . In this case, it is known that

$$\lim_{\substack{z \to a \\ \triangleleft}} \frac{1}{|G_{\mu_t}(z)|} = 0$$

for ν -almost every $a \in \mathbb{R}$ and, by Theorem 2.7 of [7], the convergence of $1/G_{\mu_t}(z)$ to zero is not typically tangential. In particular, there exist uncountably many values $a \in \mathbb{R}$ for which there is a sequence $z_n \in \mathbb{C}^+$ converging to *a* nontangentially, such that $\lim_{n\to\infty} 1/|G_{\mu_t}(z_n)| = 0$ and

$$\sup_{n\in\mathbb{N}}\left|\frac{\Re G_{\mu_t}(z_n)}{\Im G_{\mu_t}(z_n)}\right|<\infty.$$

Using again the notations of Theorem 2.5,

$$\omega_t(z_n) - \frac{a}{t} = \frac{1}{t}(z_n - a) + \left(1 - \frac{1}{t}\right)\frac{1}{G_{\mu_t}(z_n)}$$

and this shows that $\omega_t(z_n) \longrightarrow \frac{a}{t}$ nontangentially as $n \to \infty$. By Lemma 3.2, a/t is an atom of μ . Since we can only have at most countably many atoms, we arrive at a contradiction, showing that indeed $\nu = 0$.

For μ_t^{ac} -almost every $a \in \mathbb{R}$, the nontangential limit $\lim_{z\to a} G_{\mu_t}(z)$ exists, and it has imaginary part equal to $-\pi \frac{d\mu_t}{dx}(a)$. We deduce that the nontangential limit $\lim_{z\to a} \omega_t(z)$ also exists, and it has nonzero imaginary part. Proposition 2.4 implies now that ω_t , and hence G_{μ_t} , extends continuously to some interval $(a - \delta, a + \delta)$ and is analytic on that interval except possibly at a. The set σ can be taken to be the common complement of the intervals $(a - \delta, a + \delta) \setminus \{a\}$ obtained this way. \Box

References

- Bercovici, H., Voiculescu, D.: Convolutions of measures with unbounded support. Indiana Univ. Math. J. 42(3), 733–773 (1993)
- Bercovici, H., Voiculescu, D.: Superconvergence to the central limit and failure of the Cramér theorem for free random variables. Probab. Theory Related Fields 103(2), 215–222 (1995)
- Bercovici, H., Voiculescu, D.: Regularity questions for free convolution. Nonselfadjoint operator algebras, operator theory, and related topics. Oper. Theory Adv. Appl. Birkhäuser, Basel, 104, 37–47 (1998)
- 4. Biane, P.: Processes with free increments. Math. Z. 227(1), 143–174 (1998)
- Maassen, H.: Addition of freely independent random variables. J. Funct. Anal. 106(2), 409–438 (1992)
- Nica, A., Speicher, R.: On the multiplication of free N-tuples of noncommutative random variables. Amer. J. Math. 118(4), 799–837 (1996)
- Poltoratski, A.: Images of non-tangential sectors under Cauchy transforms. J. Anal. Math. 89, 385–395 (2003)
- Voiculescu, D.: The analogues of entropy and of Fisher's information measure in free probability theory. I. Comm. Math. Phys. 155(1), 411–440 (1993)
- 9. Voiculescu, D.: The coalgebra of the free difference quotient and free probability. Internat. Math. Res. Notices **2**, 79–106 (2000)
- Voiculescu, D.: Addition of certain noncommuting random variables. J. Funct. Anal. 66(3), 323–346 (1986)
- Voiculescu, D.V., Dykema, K.J., Nica, A.: Free Random Variables. CRM Monograph Series, Vol. 1 Am. Math. Soc. Providence, RI, 1992