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Abstract. We consider the Choquard-Pekar equation

−�u+ V u = (W ∗ u2)u u ∈ H 1(R3)

and focus on the case of periodic potential V . For a large class of even functionsW
we show existence and multiplicity of solutions. Essentially the conditions are that
0 is not in the spectrum of the linear part −�+V and thatW does not change sign.
Our results carry over to more general nonlinear terms in arbitrary space dimension
N ≥ 2.
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1 Introduction

We consider the problem

−�u+ V u = (W ∗ u2)u u ∈ H 1(R3) (P)

where V and W are real functions on R
3, W is even, and u assumes real values.

Here, for two functions u, v on R
3, u ∗ v denotes convolution of u and v. Let us

define

�(u) = 1

4

∫
R3
(W ∗ u2)u2 dx

for u ∈ H 1(R3). Finding weak solutions of (P) is equivalent to finding critical
points of the energy functional

�(u) = 1

2

∫
R3
(|∇u|2 + V u2) dx −�(u)

defined on H 1(R3).
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This type of problem is often referred to as Choquard-Pekar equation when
W ≥ 0. It comes up as an approximation to Hartree-Fock theory of a Plasma or in
the Hartree theory of bosonic systems (cf. [3, 10, 11]). The case W ≤ 0 appears as
a Hartree equation for the Helium atom.

Associated with (P) is the eigenvalue problem

−�u+ V u− (W ∗ u2)u = λu u ∈ H 1(R3) (EP)

that is usually called Choquard equation if W ≥ 0. Here one is interested in solu-
tions with prescribed L2-norm |u|22 = M , λ ∈ R being a free parameter. Solutions
are the critical points of the energy � restricted to the L2-sphere

SM = { u ∈ H 1(R3) | |u|22 = M } .
For physical reasons let us call V the exterior potential and W the potential

of particle interaction. In the sequel we speak of the radial case if V and W are
radial functions and existence of radial solutions is investigated. The periodic case
refers to V being periodic and nonconstant. Moreover, we assume for the whole
discussion that W does not change sign.

Both problems have been investigated in the nonperiodic case by many authors,
cf. [6,13–15,18,19,21,25,27] and the references therein. Here relative compactness
of Palais-Smale (PS) sequences of � or of the restriction of � to SM is achieved
by exploiting radial symmetry and Strauss’ Lemma [24, 28], or the fact that the
spectrum of L = −�+ V is discrete at the bottom.

In contrast, the compactness issue in the periodic case is much more difficult
to handle due to the invariance of (P) and (EP) under the action of the noncompact
group Z

N induced by translation by integer values in the coordinate directions.
Minimizers for � over SM have been constructed in the periodic case in [2, 8].
Additional difficulties are encountered when considering excited states, i.e. solu-
tions of (EP) at higher energy levels, or solutions of (EP) with λ in a gap of the
spectrum of L.

Even though problem (EP) seems to be more relevant in physics, we concen-
trate on problem (P). Our assumptions are that V is periodic and that W does not
change sign. We believe that the techniques we develop will be useful in studying
(EP) as well.

To summarize our results, let us introduce the following notion: Two elements
u, v ∈ H 1(R3) are called geometrically distinct if u is not contained in the orbit of v
under the action of Z

N . The elements of a subset ofH 1(R3) are called geometrically
distinct if they are pairwise geometrically distinct.

In the case of periodic V > 0 (the positive definite case) with W ≥ 0, the
existence of one nontrivial solution is relatively easy to prove. One can obtain a
(PS)-sequence with the Mountain Pass Theorem. Invariance of�with respect to the
action of Z

N and weak sequential continuity of �′ then yield existence. We prove
existence of infinitely many geometrically distinct solutions for (P) using a theorem
of Bartsch and Ding. A multiplicity result for periodic Schrödinger equations was
known before only for local nonlinear terms, and it was achieved by a multibump
construction in [9]. The method of proof used in the latter reference does not apply
to the nonlocal problem (P).
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The main novelty in our proof is a lemma about decomposition of � along
(PS)-sequences (cf. Lemma 4.5 below). To show this we prove a variant of Bre-
zis-Lieb’s Lemma that should be of independent interest since little regularity is
assumed. Results about decomposition were known before in this generality only
for local right hand sides in (P), see [9] for example. Nevertheless, partial results
about decomposition for nonlocal functionals are already present in [7, 8].

Now we turn to the case of a periodic exterior potential V that changes sign.
Here it may happen that the Schrödinger operator L, which has purely continuous
spectrum that consists of a union of closed intervals, has essential spectrum below
0. As a consequence the quadratic part of � is strongly indefinite and one needs
subtle arguments to construct (PS)-sequences. In contrast to the positive definite
case, mere existence of one solution is hard to prove. This was first achived in [7],
assuming that 0 is in a gap of the spectrum of L and thatW(x) = 1/|x|. The proof
makes substantial use of the specific form of �. In fact, consider the symmetric
bilinear form sending functions u, v to

I (u, v) =
∫

R3

∫
R3

1

|x − y|u(y)v(x) dy dx . (1.1)

Since the Fourier transform of 1/|x| is known to be positive, I is positive definite
on an appropriate function space. From this it follows that � is convex, a fact that
lies at the heart of the proof in [7]. Moreover, positive definiteness of I is used
there to show boundedness of (PS)-sequences. The proof extends to more general
W that have nonnegative Fourier transform, but no general criterion is known to
decide whether this is the case for a particular choice of W .

For physical reasons it is desirable to treat potentialsW without being restricted
by the assumption on the Fourier transform ofW . Indeed, in work of Fröhlich, Tsai
and Yau [10, 11] on the Hartree equation for the thermodynamic limit of systems
of non-relativistic bosons, the authors propose to model particle interaction with a
potential W that behaves as

W(x) ∼ 1

|x|6 + C

|x| (1.2)

for |x| large (see also the discussion in [3]). Here the first term describes van der
Waals, the second gravitational attraction between atoms. Near 0 this function must
be modified in an appropriate way to be able to work in a variational setting. It is
not at all clear how to do this modification such that the Fourier transform of W is
nonnegative. Therefore we take a different approach to show existence of solutions
to (P) in the periodic and indefinite case, applying generalized linking theorems
of Kryszewski-Szulkin and Bartsch-Ding. No convexity of � is required, and we
prove boundedness of (PS)-sequences by using a Cauchy-Schwarz type inequality
for the bilinear form associated withW as in (1.1), see condition (W3) below. In [1]
we give conditions onW that imply (W3), allowing for a lot of freedom in choosing
the regularization ofW described above. Hence we prove the existence of infinitely
many geometrically distinct solutions also in this case.

Our method of proof carries over to arbitrary space dimension N ≥ 2, replac-
ing u2 by f (u) and u by f ′(u) on the right hand side of (P), with suitable growth
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restrictions on f . Moreover, no radial symmetry ofW is assumed, and we treat the
cases of W ≥ 0 and W ≤ 0, i.e. attractive and repulsive particle interaction.

The organization of the paper is as follows: The next section contains a precise
formulation of our results and a discussion of the conditions onW and f . Section 3
deals with mapping properties and regularity of �. It is split into two subsections
for simplicity to account for the possibility of W and f being sums of functions
with different growth rates. Finally in Sect. 4 we show how to apply the abstract
critical point theorems in this setting.

1.1 General notation

We set E = H 1(RN), E∗ = H−1(RN) (the dual space of E). Denote by ‖u‖E the
standard norm for u ∈ E. For any measure space � and u ∈ Lp(�) let |u|p,� be
the corresponding norm, and set |u|p = |u|p,RN .

If X is a metric space, A is a point or a subset of X, and ρ > 0, then we set

Uρ(A,X) = { x ∈ X | distX(x,A) < ρ }
Bρ(A,X) = { x ∈ X | distX(x,A) ≤ ρ }
Sρ(A,X) = { x ∈ X | distX(x,A) = ρ } .

When there is no confusion possible we sometimes omit the X-dependency. If
(X, ‖·‖) is a normed vector space and A = 0, we often write UρX instead of
Uρ(0, X), and so forth.

Acknowledgements. The author wishes to thank A. Pankov for suggesting the nonlocal
problem, and for many helpful discussions concerning [10, 11] and [23]. Moreover the
author thanks T. Bartsch for communicating the theorem used to obtain the multiplicity
result.

2 Main results

To be more explicit, consider the following problems:

−�u+ V u = (W ∗ f (u))f ′(u) u ∈ H 1(RN) (P+)

and

−�u+ V u = −(W ∗ f (u))f ′(u) u ∈ H 1(RN) . (P−)

We define as usual the critical Sobolev exponent 2∗ = ∞ for N = 2 and 2∗ =
2N/(N − 2) for N ≥ 3 and consider the following conditions:

(V1) V ∈ L∞(RN,R), and V is 1-periodic in xi for i = 1, 2, . . . , N .
(V1

2) σ(−�+ V ) ⊆ (0,∞).

(V2
2) 0 /∈ σ(−�+ V ) and σ(−�+ V ) ∩ (−∞, 0) �= ∅.

(W1) There are 1 ≤ r1 ≤ r2 < ∞ such that W ∈ Lr1(RN)+ Lr2(RN), and W is
an even function.

(W2) W ≥ 0, and on a neighborhood of 0 we have W > 0.
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(W3) There is C ≥ 0 such that for all nonnegative ϕ,ψ ∈ L1
loc(R

N)

∫
RN
(W ∗ ϕ)ψ dx ≤ C

√∫
RN
(W ∗ ϕ)ϕ dx

∫
RN
(W ∗ ψ)ψ dx . (2.1)

(F1) f ∈ C1(R,R), f (0) = 0, and there are C > 0 and p1, p2 > 1 with
2 − 1/r2 < p1 ≤ p2 < (2 − 1/r1)2∗/2 such that for all u ∈ R

|f ′(u)| ≤ C(|u|p1−1 + |u|p2−1) .

(F2) There is θ > 2 such that for all u ∈ R \ {0}
2f ′(u)u ≥ θf (u) > 0 .

(F3) f is an even function.

We can now state for the positive definite case

Theorem 2.1. If (V1), (V1
2), (W1), (W2), (F1) and (F2) are satisfied, then (P+) has

a nontrivial weak solution. Problem (P−) admits no nontrivial solution. If addition-
ally (F3) holds, then there are infinitely many geometrically distinct weak solutions
for (P+).

For the strongly indefinite case we have

Theorem 2.2. If (V1), (V2
2), (W1), (W2), (W3), (F1) and (F2) are satisfied, then both

(P+) and (P−) have a nontrivial weak solution. If additionally (F3) holds, then there
are infinitely many geometrically distinct weak solutions for both of these problems.

Some comments on the conditions given above are in order. First, for N = 3
we have 2∗ = 6, so that for any 1 ≤ r1 ≤ r2 < ∞ and for f (u) = u2 (F1)–(F3) are
satisfied with p1 = p2 = 2 and θ = 4. Therefore our results apply to the special
case of (P).

If r1 < N/4 we must require that r2 < r1(N − 2)/(N − 4r1) for (F1) to
be meaningful. A general model for f is the function |u|p1 + |u|p2 with suitable
exponents p1 and p2. It satisfies all requirements (using θ = 2p1). To see that
the condition on p1, p2 is quite natural, suppose that N ≥ 3, W ∈ Lr for some
r ∈ [1,∞] and f (u) = |u|p for some p > 0. ByYoung’s theorem on convolutions

∫
RN
(W ∗ f (u))f (u) dx

is well defined if f (u) ∈ Ls for s ≥ 1 defined by

1

r
+ 2

s
= 2 .

Since u ∈ H 1(RN) we must therefore require that sp ∈ [2, 2∗] and hence

2

s
= 2 − 1

r
≤ p ≤ 2∗

s
= 2∗

2

(
2 − 1

r

)
.
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Moreover, for the concentration compactness arguments to work, here we need
strict inequalities. For the same reason we need r < ∞, while in the radial case
r = ∞ is allowed. In that case compactness is achieved by a different means, as
mentioned in the introduction.

To state criteria for checking (W3), we introduce some more quantities. For any
nonemptyX ⊆ R

N let α(X) denote the least positive integerm such that there is a
closed convex setA ⊆ X of dimensionN ,A being symmetric (i.e. −A = A), with
the property that X can be covered by m translates of A. If X = ∅ put α(X) = 0.
If W is a nonnegative Borel function on R

N put X(t) = { x ∈ R
N | W(x) ≥ t }

for t ≥ 0. The results in [1] yield that W satisfies (W3) if

lim sup
t→0

α(X(t))+ lim sup
t→∞

α(X(t)) < ∞ . (2.2)

In that paper we also give examples that demonstrate that the class of W ≥ 0 with
(W3) is larger than the class of W ≥ 0 with nonnegative Fourier transform. In
particular, W need not be radially symmetric.

There is a simpler criterion if W(x) = h(p(x)) for some seminorm p on
R
N and some nonnegative Borel function h on [0,∞). For any Y ⊆ [0,∞) put

λ(Y ) = sup{ t > 0 | [0, t] ⊆ Y } and

β(Y ) =




0 Y = ∅

∞ λ(Y ) = −∞ and Y �= ∅

sup(Y )/λ(Y ) otherwise.

Here we set ∞/a = ∞ if a > 0, and ∞/∞ = 1. Now put Y (t) = { s ∈ [0,∞) |
h(s) ≥ t } for t ≥ 0. By [1] W satisfies (W3) if

lim sup
t→0

β(Y (t))+ lim sup
t→∞

β(Y (t)) < ∞ . (2.3)

The last statement applies in particular to nonnegative radial decreasing func-
tions W (this case was also studied in [20]). For W as in (1.2) we can thus use a
simple regularization near 0 as was mentioned in the introduction.

It is clear that any nontrivial even function W ≥ 0 that satisfies either (2.2) or
(2.3) is positive on a neighborhood of 0, so that (W2) holds.

3 Regularity properties of the nonlinearity

Here we collect properties of the superquadratic part of�. Throughout this section
we will assume (W1) and (F1). Instead of dealing directly with the different expo-
nents r1, r2, p1, p2 it seems simpler to first consider the case of just two exponents
r and p. This is justified by the splitting of W = W1 + W2 into a sum of func-
tions belonging toLr1 respectivelyLr2 . Similarly f can be split: Choose a function
ζ ∈ C∞(R,R) such that ζ(t) = 0 for |t | ≥ 2, ζ(t) = 1 for |t | ≤ 1 and ζ(t) ∈ [0, 1]
for all t . Then set

f1(u) =
∫ u

0
ζ(t)f ′(t) dt and f2 = f − f1 .
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Clearly we have

|f ′
1(u)| ≤ C|u|p1−1 and |f ′

2(u)| ≤ C|u|p2−1 (3.1)

where C only depends on f . Now
∫

RN
(W ∗ f (u))f (u) dx

can be written as a sum of integrals of the form
∫

RN
(U ∗ g(u))h(u) dx ,

where U stands for W1 or W2, and g, h each stand for either f1 or f2.

3.1 The Simple Case

In this subsection we assume U ∈ Lr(RN) for some r ∈ [1,∞), g, h ∈ C1(R,R),
g(0) = h(0) = 0, and that there exist p, q > 1 and a constant C > 0 such that

|g′(u)| ≤ C|u|p−1 and |h′(u)| ≤ C|u|q−1 .

Moreover, for s = 2r/(2r − 1) we assume sp, sq ∈ [2, 2∗).

Lemma 3.1. Let s′ be the conjugate exponent for s, let t ∈ [s,∞), and let µ be
given by 1/s′ + 1/t = 1/µ. Then the bilinear map Ls ×Lt → Lµ, sending (u, v)
to (U ∗ u)v, is well defined and continuous, with

|(U ∗ u)v|µ ≤ |U ∗ u|s′ |v|t ≤ |U |r |u|s |v|t .
If (un) ⊆ Ls and (vn) ⊆ Lt are bounded and either un → u in Ls and vn → v in
Ltloc or un → u in Lsloc and vn → v in Lt , then (U ∗ un)vn → (U ∗ u)v in Lµ.

Proof. If u ∈ Ls and v ∈ Lt , by Young’s Convolution Theorem U ∗ u is in Ls
′

since 1/r + 1/s = 1 + 1/s′, and

|U ∗ u|s′ ≤ |U |r |u|s .
From t ≥ s we obtain µ ≥ 1. Hölder’s inequality then yields the continuity of the
bilinear map (u, v) �→ (U ∗ u)v.

Now let (un) and (vn) be given as in the statement of this lemma. In the case
that un → u in Ls we can assume vn → 0 in Ltloc, and, since (vn) is bounded, it
suffices to show that

(U ∗ u)vn → 0 in Lµ. (3.2)

Let ε > 0. Since s′ < ∞ there is R > 0 such that

|U ∗ u|s′,RN\BR ≤ ε .
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We have∫
RN

|(U ∗ u)vn|µ dx =
∫
BR

|(U ∗ u)vn|µ dx +
∫

RN\BR
|(U ∗ u)vn|µ dx

≤ |U ∗ u|µ
s′ |vn|µt,BR + |U ∗ u|µ

s′,RN\BR |vn|µt
≤ C1|vn|µt,BR + C2ε

µ .

Letting n → ∞ and then ε → 0 (3.2) follows.
In the case that vn → v in Lt , again we can assume that un → 0 in Lsloc, and it

suffices to show

(U ∗ un)v → 0 in Lµ (3.3)

since U ∗ un is bounded in Ls
′
. We claim that

U ∗ un → 0 in Ls
′

loc. (3.4)

Fix R1 > 0. For any ε > 0 there is R2 > 0 such that

|U |r,RN\BR2
≤ ε .

Put U1 = χBR2
U and U2 = U −U1 (here χBR2

denotes the characteristic function
of BR2 ). We have

|U1 ∗ un|s′s′,BR1
≤

∫
BR1

(∫
RN

|U1(x − y)un(y)| dy
)s′

dx

=
∫
BR1

(∫
BR1+R2

|U1(x − y)un(y)| dy
)s′

dx

≤ |U1|s′r |un|s′s,BR1+R2
.

The last inequality follows from [22, Thm. 3.1], a generalized form of Young’s
Theorem on convolutions. It follows that

|U ∗ un|s′,BR1
≤ |U1 ∗ un|s′,BR1

+ |U2 ∗ un|s′,BR1

≤ |U1|r |un|s,BR1+R2
+ |U2|r |un|s

≤ |U1|r |un|s,BR1+R2
+ Cε .

Letting n → ∞ and then ε → 0 we have proved (3.4) since R1 was arbitrary. Now
(3.3) follows from (3.4) as for the first case. ��

The following is a variant of Brezis-Lieb’s lemma, as already mentioned in the
introduction.

Lemma 3.2. Suppose that un ⇀ v in E. Then, after extraction of a subsequence,
there is a sequence (vn) ⊆ E with vn → v in E, such that for any t ≥ 1, µ > 0
with tµ ∈ [2, 2∗) and any continuous f : R → R with

|f (u)| ≤ C|u|µ
for some C > 0 we have

f (un)− f (un − vn) → f (v) in Lt .
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Proof. Define functions Qn : [0,∞) → [0,∞) by

Qn(R) =
∫
BR

(|∇un|2 + u2
n) dx .

Then the Qn are uniformly bounded and nondecreasing. There is a subsequence
converging almost everywhere to a bounded nondecreasing function Q (cf. [16]).
It is easy, extracting another subsequence, to build a sequence Rn → ∞ such that
for any ε > 0 there is R > 0, arbitrarily large, with

lim sup
n→∞

(Qn(Rn)−Qn(R)) ≤ ε

or, stated differently,

lim sup
n→∞

∫
BRn\BR

(|∇un|2 + u2
n) dx ≤ ε . (3.5)

Here all balls B are taken to have center at 0. Fix a smooth function η : [0,∞) →
[0, 1] with η(t) = 1 for |t | ≤ 1 and η(t) = 0 for |t | ≥ 2. Put vn(x) =
η(2|x|/Rn)v(x) for x ∈ R

N and n ∈ N.
Given f as in the statement of this lemma, fix ε > 0 and choose R > 0 such

that (3.5) holds and such that
∫

RN\BR
(|∇v|2 + v2) dx ≤ ε .

Now un → v in Ltµ(BR) by the compactness of Sobolev embeddings, so that by
continuity of the Nemyckii operator induced by f on Ltµ we have

lim
n→∞

∫
BR

|f (un)− f (un − vn)− f (vn)|t dx

= lim
n→∞

∫
BR

|f (un)− f (un − v)− f (v)|t dx = 0 .

As n → ∞ there is a uniform constant for the continuous embeddings H 1(BRn \
BR) → Ltµ(BRn \ BR). It follows that

lim sup
n→∞

|un|tµ,BRn\BR ≤ C
√
ε

lim sup
n→∞

|vn|tµ,BRn\BR ≤ |v|tµ,RN\BR ≤ C
√
ε .

From this we obtain

lim sup
n→∞

∫
RN

|f (un)− f (un − vn)− f (vn)|t dx

= lim sup
n→∞

∫
BRn\BR

|f (un)− f (un − vn)− f (vn)|t dx
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≤ C lim sup
n→∞

∫
BRn\BR

(|un|µ + |un − vn|µ + |vn|µ)t dx

= C lim sup
n→∞

∣∣|un|µ + |un − vn|µ + |vn|µ
∣∣t
t

≤ C lim sup
n→∞

(|un|µtµ + |un − vn|µtµ + |vn|µtµ)t

≤ C lim sup
n→∞

(2εµ/2 + (|un|tµ + |vn|tµ)µ)t

≤ Cεtµ/2 .

Here the Ltµ and Lt norms in rows 2–4 counted from the bottom are taken with
respect to BRn \ BR , and we have used that tµ ≥ 1 and t ≥ 1. Letting ε tend to 0
we find that

f (un)− f (un − vn)− f (vn) → 0 in Lt .

By noting that vn → v in E and thus f (vn) → f (v) in Lt we finish the proof. ��
Remark 3.3. The preceding lemma can easily be extended to the case of an open
subset� ⊆ R

N . Here all is needed is that�∩BR(0) satisfies a uniform cone condi-
tion for large R, so that we have uniform constants from the Sobolev embeddings.
Also the case of f depending on x ∈ R

N can be treated with the same proof.

Consider F : E → R and G : E → E∗ given by

F(u) =
∫

RN
(U ∗ g(u))h(u) dx

G(u)[v] =
∫

RN
(U ∗ g(u))h′(u)v dx

for u, v ∈ E.

Lemma 3.4. The maps F andG are well defined and continuous. For u, v ∈ E we
have

|F(u)| ≤ |U |r |u|psp|u|qsq
‖G(u)‖E∗ ≤ C|U |r |u|psp|u|q−1

sq .

G is weakly sequentially continuous. If un ⇀ v in E there is (after extraction
of a subsequence) a sequence vn → v in E, independent of g and h, such that

F(un)− F(un − vn) → F(v) in R

G(un)−G(un − vn) → G(v) in E∗.

Proof. We have continuous Nemyckii operatorsLsp → Ls ,Lsq → Ls , andLsq →
Lsq/(q−1) induced by g, h, and h′ respectively. Thus the inequality for F follows
from Lemma 3.1 with t = s and µ = 1. Continuity of F is then a consequence of
continuous Sobolev embeddings E → Lsp and E → Lsq . The inequality for and
continuity of G follows from Lemma 3.1 with t = sq/(q − 1) and µ = (sq)′ (the
conjugate exponent for sq), and from the continuous embedding L(sq)

′ → E∗.
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If un ⇀ v inE, then un → v inLsploc and inLsqloc, by the compactness of Sobolev
embeddings. Thus

g(un) → g(v) in Lsloc

h(un) → h(v) in Lsloc

h′(un) → h′(v) in Lsq/(q−1)
loc ,

(3.6)

and these sequences are bounded. Clearly (as in the proof of Lemma 3.1) for any
w ∈ E we have h′(un)w → h′(v)w in Ls , so that again by Lemma 3.1 with
t = s and µ = 1 G(un)[w] → G(v)[w] in R. Therefore G is weakly sequentially
continuous.

By Lemma 3.2 we can, for a subsequence of (un), build vn, independent of g
and h, such that vn → v in E, un − vn ⇀ 0 in E, and (as above)

g(un − vn) → 0 in Lsloc

h(un − vn) → 0 in Lsloc

h′(un − vn) → 0 in Lsq/(q−1)
loc

g(un)− g(un − vn) → g(v) in Ls

h(un)− h(un − vn) → h(v) in Ls

h′(un)− h′(un − vn) → h(v) in Lsq/(q−1) .

Using this, Lemma 3.1, (3.6), and bilinearity, the last two claims follow easily. ��

3.2 The Combined Case

Let us denote

�(u) = 1

2

∫
RN
(W ∗ f (u))f (u) dx

for u ∈ E. We consider the splitting of W and f discussed above. This yields a
splitting of� into a sum of at most six terms. We set si = 2ri/(2ri−1) for i = 1, 2.
From (F1) it follows that

sipj ∈ (2, 2∗) (3.7)

for i, j ∈ {1, 2}, so that we can apply the results of Section 3.1.

Lemma 3.5. � is aC1-functional where� and� ′ map bounded sets into bounded
sets.� is weakly sequentially lower semicontinuous and� ′ is weakly sequentially
continuous. If un ⇀ v in E, there exists (after extraction of a subsequence) a
sequence vn → v in E such that

�(un)−�(un − vn) → �(v) in R

� ′(un)−� ′(un − vn) → � ′(v) in E∗.
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Proof. By Lemma 3.4 � is well defined and continuous. Let un ⇀ u in E. We
can assume (after extraction of a subsequence) that un → u pointwise a.e. Since
W,f ≥ 0 Fatou’s Lemma yields

�(u) =
∫

RN

∫
RN

lim
n→∞W(x − y)f (un(y))f (un(x)) dy dx ≤ lim inf

n→∞ �(un) .

Thus � is weakly sequentially lower semicontinuous.
Consider the map G : E → E∗ given by

G(u)[v] =
∫

RN
(W ∗ f (u))f ′(u)v dx

for u, v ∈ E.G is well defined, continuous and weakly sequentially continuous by
Lemma 3.4. We show that for u, h ∈ E

�(u+ h)−�(u) =
∫ 1

0
G(u+ sh)[h] ds . (3.8)

Clearly from this and the continuity of G it follows that � is differentiable every-
where and � ′ = G. To show (3.8) recall that W is even. We calculate

2
∫ 1

0
G(u+ sh)[h] ds

= 2
∫ 1

0

∫
RN

∫
RN

[
W(x − y)f (u(y)+ sh(y))

× f ′(u(x)+ sh(x))h(x)
]
dy dx ds

=
∫

RN

∫
RN
W(x − y)

∫ 1

0

[
f ′(u(y)+ sh(y))h(y)f (u(x)+ sh(x))

+ f (u(y)+ sh(y))f ′(u(x)+ sh(x))h(x)
]
ds dy dx

=
∫

RN

∫
RN
W(x − y)

[
f (u(y)+ h(y))f (u(x)+ h(x))

− f (u(y))f (u(x))
]
dy dx

= 2(�(u+ h)−�(u)) .

The integrand in the second row is easily seen to be in L1([0, 1] × R
N × R

N) by
using the splitting of W and f , and the estimates in Section 3.1. This allows us to
change the order of integration and (3.8) is proved. The remaining properties of �
are clear from Lemma 3.4. ��
Lemma 3.6. If (W2) and (F2) hold, then for all u ∈ E \ {0} we have

� ′(u)[u] ≥ θ�(u) > 0 .
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If in addition (W3) holds, then for all u ∈ E we have

‖� ′(u)‖E∗ ≤ C(
√
� ′(u)[u] +� ′(u)[u]) .

Proof. From (F2) and W,f ≥ 0 it follows that � ′(u)[u] ≥ θ�(u) for all u ∈ E.
If u �= 0 then also �(u) > 0 since W > 0 on a neighborhood of 0.

For the proof of the second assertion consider again the splitting of f = f1+f2.
Let p′

1 and p′
2 be the conjugate exponents for p1 and p2 respectively. From (3.1)

we obtain

|f ′
1(u)|p

′
1 ≤ Cf ′(u)u

|f ′
2(u)|p

′
2 ≤ Cf ′(u)u .

Using this, (F2), (W3), and Hölder’s inequality we can compute for any u, v ∈ E
∫

RN
(W ∗ f (u))|f ′

1(u)v| dx

≤
(∫

(W ∗ f (u))|f ′
1(u)|p

′
1

) 1
p′

1

(∫
(W ∗ f (u))|v|p1

) 1
p1

≤ C

(∫
(W ∗ f (u))f ′(u)u

) 1
p′

1

(∫
(W ∗ f (u))|v|p1

) 1
p1

≤ C

(∫
(W ∗ f (u))f ′(u)u

) 1
p′

1

(∫
(W ∗ f (u))f (u)

) 1
2p1

×
(∫

(W ∗ |v|p1)|v|p1

) 1
2p1

≤ C

(∫
(W ∗ f (u))f ′(u)u

) 1
p′

1

(∫
(W ∗ f (u))f ′(u)u

) 1
2p1

×
(∫

(W ∗ |v|p1)|v|p1

) 1
2p1

≤ C(� ′(u)[u])
1
p′

1
+ 1

2p1 ‖v‖E
and a similar estimate for f2 in place of f1. This, together with

|� ′(u)[v]| ≤
∫

RN
(W ∗ f (u))|f ′

1(u)v| dx +
∫

RN
(W ∗ f (u))|f ′

2(u)v| dx

and 1/p′
i + 1/(2pi) ∈ (1/2, 1) for i = 1, 2 yields the desired inequality. ��

4 Abstract critical point theory

In this section we assume (V1), (W1), (W2), (F1) and (F2) throughout. We also
assume that 0 /∈ σ(−�+ V ).
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By Lemma 3.5 the functional

�(u) = 1

2

∫
RN
(|∇u|2 + V u2) dx −�(u)

is of class C1. Weak solutions of (P+) correspond to critical points of �. We have
a splitting E = E− ⊕ E+ with orthogonal projections P− and P+ corresponding
to the decomposition of σ(−�+V ) in the negative and positive part. Let us define
a new norm ‖·‖ on E by setting

‖u+‖2 =
∫

RN

|∇u+|2 + V |u+|2 dx

‖u−‖2 = −
∫

RN

|∇u−|2 + V |u−|2 dx

where u± = P±u. Since 0 /∈ σ(−� + V ) the norms ‖·‖ and ‖·‖E are equiva-
lent. The norm ‖·‖ is induced by a scalar product 〈·, ·〉, and the projections P±
are orthogonal with respect to this new scalar product. For these statements see for
example [26]. Note that if (V1

2) holds we have E− = {0} and ‖u+‖ = ‖u‖. Let ‖·‖
also denote the induced norm on E∗. Now we can write

�(u) = 1

2
(‖u+‖2 − ‖u−‖2)−�(u) .

4.1 The Geometry of �

Lemma 4.1. There is ρ > 0 such that inf �(SρE+) > 0.

Proof. Suppose that z ∈ E+ with ‖z‖ ≤ 1. Using Lemma 3.4 we see that

�(z) = 1

2
‖z‖2 −�(z) ≥ 1

2
‖z‖2 − C‖z‖2p1

where 2p1 > 2, and the claim follows if we choose ρ small enough. ��
Lemma 4.2. Let Z be a finite dimensional subspace of E+. Then�(u) → −∞ as
‖u‖ → ∞ in E− ⊕ Z.

Proof. For any u ∈ E with ‖u‖ ≥ 1 and for any t > 0 put g(t) = �(tu/‖u‖) > 0.
By Lemma 3.6 we have

g′(t)
g(t)

≥ θ

t

for t > 0. Integrating this expression over [1, ‖u‖] we find

�(u) ≥ �(u/‖u‖)‖u‖θ . (4.1)

Choose β ∈ (0, 1) and set γ = sin(arctan β) ∈ (0, 1). Consider the set

K = { u ∈ E | u+ ∈ Z, ‖u+‖ ≥ γ, ‖u‖ = 1 } .
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If Z = {0} the claim follows from � ≥ 0. If dimZ ≥ 1 there is (un) ⊆ K

with limn→∞�(un) = inf �(K) =: δ ≥ 0. Since K is bounded we may assume
that un ⇀ u ∈ E such that u+

n → u+ in Z. Clearly ‖u+‖ ≥ γ and u �= 0.
Now � is weakly sequentially lower semicontinuous. By Lemma 3.6 therefore
δ ≥ �(u) > 0.

Letu∈E−⊕Z satisfy‖u‖ ≥ 1 and let us distinguish two cases: If‖u+‖/‖u−‖≥
β we have

‖u+‖
‖u‖ = sin

(
arctan

‖u+‖
‖u−‖

)
≥ γ

and therefore u/‖u‖ ∈ K . In view of (4.1) and the definition of δ we obtain
�(u) ≥ δ‖u‖θ and

�(u) ≤ 1

2
‖u‖2 − δ‖u‖θ .

If ‖u+‖/‖u−‖ ≤ β we have

�(u) ≤ 1

2
(‖u+‖2 − ‖u−‖2) ≤ − 1 − β2

2(1 + β2)
‖u‖2 . (4.2)

For ‖u‖ large we find in either case that (4.2) is satisfied, and the claim is proved
since β2 < 1. ��

Let K be the set of critical points of �.

Lemma 4.3. If either (V1
2) or (W3) holds, then there is α > 0 such that for any

u ∈ K \ {0} we have �(u) ≥ α.

Proof. First we show that ‖·‖ is bounded away from 0 on K \ {0}. Let u ∈ E \ {0}
with �′(u) = 0. If ‖u‖ ≤ 1, using Lemma 3.4 we find

‖u+‖2 = � ′(u)[u+] ≤ C‖u‖2p1−1‖u+‖
‖u−‖2 = −� ′(u)[u−] ≤ C‖u‖2p1−1‖u−‖

and therefore

‖u‖ ≤ C‖u‖2p1−1

where 2p1 − 1 > 1. This shows that ‖u‖ ≥ C > 0 for some independent constant
C.

Next, from Lemma 3.6 we see that

�(u) = 1

2
�′(u)[u] + 1

2
� ′(u)[u] −�(u)

≥
(

1

2
− 1

θ

)
� ′(u)[u] .

In the case of (V1
2) we also have ‖u‖2 = � ′(u)[u] and thus ‖u‖ ≤ C

√
�(u) for

some independent C.
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In the case of (W3) we argue as follows: If � ′(u)[u] ≥ 1 we have an inde-
pendent positive lower bound for �(u). If � ′(u)[u] ≤ 1, by Lemma 3.6 it follows
that

‖� ′(u)‖ ≤ C
√
� ′(u)[u] ≤ C

√
�(u) ,

leading to

‖u+‖2 = � ′(u)[u+] ≤ C
√
�(u)‖u+‖

‖u−‖2 = −� ′(u)[u−] ≤ C
√
�(u)‖u−‖ .

Again it follows that ‖u‖ ≤ C
√
�(u). In either case �(u) ≥ C > 0 for some

independent C since ‖u‖ is bounded away from 0 on K \ {0} as shown above. ��

4.2 Palais-Smale-Sequences

Lemma 4.4. Assume (V1
2) or (W3). If (un) ⊆ E is a (PS)c-sequence for �, then

c ≥ 0 and (un) is bounded.

Proof. Suppose that (un) ⊆ E with �(un) ≤ C and ‖�′(un)‖ ≤ 1
n

. From

�(un) = 1

2
�′(un)[un] + 1

2
� ′(un)[un] −�(un)

≥ −‖un‖
2n

+
(

1

2
− 1

θ

)
� ′(un)[un]

(4.3)

we obtain

� ′(un)[un] ≤ C

(
1 + ‖un‖

n

)
. (4.4)

If (V1
2) holds then � ′(un)[un] = ‖un‖2 +O(1/n)‖un‖, and (4.4) yields ‖un‖2 ≤

C(1 + ‖un‖/n). Consequently ‖un‖ must be bounded.
If (W3) holds, by Lemma 3.6

‖� ′(un)‖ ≤ C(1 +� ′(un)[un]) ,

and together with (4.4)

‖� ′(un)‖ ≤ C

(
1 + ‖un‖

n

)
.

Therefore

‖u+
n ‖2 = �′(un)[u+

n ] +� ′(un)[u+
n ] ≤ C

(
1 + ‖un‖

n

)
‖u+
n ‖

‖u−
n ‖2 = −�′(un)[u−

n ] −� ′(un)[u−
n ] ≤ C

(
1 + ‖un‖

n

)
‖u−
n ‖ .

We conclude that ‖un‖ ≤ C(1 + ‖un‖/n) and that ‖un‖ must be bounded. In
either case, from (4.3) and Lemma 3.6 we find that also c ≥ 0. ��
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Consider the action of Z
N on E given as follows: If m ∈ Z

N and u ∈ E set
(τmu)(x) = u(x −m). From (V1) it follows that ‖·‖ is invariant under this action,
and the same holds for �.

Lemma 4.5. Assume (V1
2) or (W3). For c ∈ R let (un) ⊆ E be a (PS)c-sequence

for �. Then either c = 0 and un → 0 or c ≥ α and there are k ∈ N, k ≤ [c/α],
and for each 1 ≤ i ≤ k a sequence (mi,n)n ⊆ Z

N and a function vi ∈ E \ {0} such
that, after extraction of a subsequence of (un),

∥∥∥∥un −
k∑
i=1

τmi,nvi

∥∥∥∥ → 0

�

( k∑
i=1

τmi,nvi

)
→

k∑
i=1

�(vi) = c

|mi,n −mj,n| → ∞ for i �= j

�′(vi) = 0 for all i.

Proof. By Lemma 4.4 (un) is bounded in E. If

lim
n→∞ sup

x∈RN

|un|2,BR(x) = 0 (4.5)

for some R > 0 then by the well known Lemma I.1 in [17] un → 0 in Lp for
p ∈ (2, 2∗). Using the splittings of W and f as in Sect. 3, from Lemma 3.6,
(3.7), and Lemma 3.4 it follows that ‖� ′(un)‖ → 0, and it is easily seen from
‖�′(un)‖ → 0 that then also ‖un‖ → 0 and thus c = 0.

If, on the other hand, (4.5) does not hold, extracting a subsequence there are
R, β > 0 and a sequence (xn) ⊆ R

N such that |un|2,BR(xn) ≥ β. Substituting R by
R + √

N/2 we can choose a sequence (m1,n) ⊆ Z
N such that |un|2,BR(m1,n) ≥ β.

Then τ−m1,nun ⇀ v1 ∈ E\{0} for a subsequence. From weak sequential continuity
and invariance of � under the action of Z

N we obtain that �′(v1) = 0. Moreover

lim
n→∞(‖u

±
n ‖2 − ‖u±

n − τm1,nv
±
1 ‖2)

= lim
n→∞(‖τ−m1,nu

±
n ‖2 − ‖τ−m1,nu

±
n − v±

1 ‖2)

= lim
n→∞ 2〈τ−m1,nu

±
n , v

±
1 〉 − ‖v±

1 ‖2

= ‖v±
1 ‖2 .

Here we have used that τm1,n commutes with the projections P±. Extracting subse-
quences as we go along, by Lemma 3.5 and the last calculation there is a sequence
v1,n → v1 in E such that

�(τ−m1,nun)−�(τ−m1,nun − v1,n) → �(v1)

�′(τ−m1,nun)−�′(τ−m1,nun − v1,n) → �′(v1) = 0

and thus, setting u2,n = un − τm1,nv1,n
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�(u2,n) → c −�(v1)

�′(u2,n) → 0

as n → ∞. By Lemma 4.3 and Lemma 4.4 c ≥ �(v1) ≥ α. We can repeat this
process for (u2,n). After at most k ≤ [c/α] iterations we find uk+1,n = un −∑k
i=1 τmi,nvi,n → 0 as n → ∞. Here we can replace vi,n by vi . Also we see that∑k
i=1�(vi) = c. Noting that (un) is bounded and that �′ maps bounded sets into

bounded sets, clearly

�(un)−�

( k∑
i=1

τmi,nvi

)
→ 0 .

To show the remaining assertion, assume that |mi,n − mj,n| is bounded as
n → ∞ for some 1 ≤ i < j ≤ k. We can assume that |mi,n − ml,n| → ∞
for any i < l < j . Suppose that (un) is the final extracted subsequence. Put
m∗
n = mi,n −mj,n. By construction τ−mi,nuj,n ⇀ 0 and thus τm∗

n
τ−mi,nuj,n ⇀ 0.

But we also have τ−mj,nuj,n ⇀ vj and τm∗
n
τ−mi,n = τ−mj,n , leading to vj = 0.

Contradiction. ��

4.3 Proof of the Main Theorems

Now we can prove Theorem 2.1 and Theorem 2.2. If (V1
2) or (W3) is satisfied, fix

z ∈ E+ with ‖z‖ = 1. By Lemma 4.2 there is r > ρ such that �(u) ≤ 0 for all
u ∈ E− ⊕ [z] with ‖u‖ ≥ r . Here [z] denotes the span of {z}. Consider

M = { y + tz | y ∈ E−, ‖y + tz‖ ≤ r, t ≥ 0 }
and letM0 be the boundary ofM inE− ⊕ [z]. Then sup�(M) < ∞ by Lemma 3.5
since M is bounded, and sup�(M0) ≤ 0 < inf �(SρE+) from the choice of r ,
since� ≤ 0 on E−, and by Lemma 4.1. In view of Lemma 3.5 and [28, Cor. 6.11]
we can apply the theorem of Kryszewski and Szulkin (cf. [28, Thm. 6.10] or [12])
to obtain a (PS)c-sequence (un) ⊆ E for �, with c > 0. For E− = {0} this is of
course the same as constructing a (PS)-sequence from the Mountain Pass Theorem.
By Lemma 4.5 there exists a nontrivial weak solution for (P+).

The proof of the multiplicity results for (P+) follows the proof of [4, Thm. 1.2].
It rests on [5, Thm. 5.2]. For the convenience of the reader we state the latter theorem
here.

Let us write E−
w for the subspace E− with the weak topology. Set �ba = { u ∈

E | a ≤ �(u) ≤ b }. Given an interval I ⊂ R, call a set A ⊂ E a (PS)I -
attractor if for any (PS)c-sequence (un) with c ∈ I , and any ε, δ > 0 one has
un ∈ Uε(A ∩�c+δc−δ) provided n is large enough. Consider the following hypothe-
ses on �:

(�1) � ∈ C1(E,R) is even and �(0) = 0.
(�2) There exist κ, ρ > 0 such that �(z) ≥ κ for every z ∈ E+ with ‖z‖ = ρ.
(�3) There exists a strictly increasing sequence of finite-dimensional subspaces

Zn ⊂ E+ such that sup�(En) < ∞ whereEn := E− ⊕Zn, and an increas-
ing sequence of real numbers rn > 0 with �(En \ Brn) < inf �(Bρ).
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(�4) �(u) → −∞ as ‖u−‖ → ∞ and ‖u+‖ bounded.
(�5) �′ : E−

w ⊕E+ → E∗
w is sequentially continuous, and� : E−

w ⊕E+ → R is
sequentially upper semicontinuous.

(�6) For any compact interval I ⊂ (0,∞) there exists a (PS)I -attractor A such
that inf{ ‖u+ − v+‖ | u, v ∈ A, u+ �= v+ } > 0.

Theorem 4.6 (Bartsch-Ding, 1999). If � satisfies (�1)–(�6) then there exists an
unbounded sequence (cn) of positive critical values.

Now we assume that either (V1
2) or (W3) holds and that (F3) is satisfied. Let F

consist of arbitrarily chosen representatives of the orbits in K under the action of
Z
N . By the evenness of � we can also assume that F = −F . Suppose that there

are only finitely many geometrically distinct solutions of (P+) or, equivalently, that
F is finite. To reach a contradiction we want to apply Theorem 4.6 and have to
show that hypotheses (�1)–(�6) are satisfied for �. From (F3) it follows that � is
even and thus (�1). (�2) is stated in Lemma 4.1. (�3) follows from Lemma 3.5
and Lemma 4.2. Condition (�4) holds since � ≥ 0.

The embedding E−
w ⊕ E+ ↪→ Ew is sequentially continuous. Therefore, by

Lemma 3.5, � ′ is sequentially continuous on E−
w ⊕ E+, and the same holds for

�′. For the same reason � is sequentially lower semicontinuous on E−
w ⊕ E+.

Moreover ‖·‖ is sequentially lower semicontinuous on E−
w . These facts together

give (�5).
Given any compact interval I ⊆ (0,∞) with d = max I we set k = [d/α] and

[F, k] =
{ j∑
i=1

τmi vi

∣∣∣∣ 1 ≤ j ≤ k,mi ∈ Z
N, vi ∈ F

}
.

By Lemma 4.5 [F, k] is a (PS)I -attractor. Since the projections P± commute with
the action of Z

N on E, it is clear from [9, Prop. 2.57] that (�6) is also satisfied. We
reach a contradiction, because now Theorem 4.6 provides us with infinitely many
geometrically distinct solutions.

It remains to prove the assertions pertaining to problem (P−). Consider the
functional

�−(u) = 1

2
(‖u+‖2 − ‖u−‖2)+�(u) .

Critical points of �− are in correspondence with solutions to (P−). If (V1
2) is sat-

isfied, for any critical point u of �− we have

‖u‖2 = −� ′(u)[u] ≤ 0

by Lemma 3.6, so there is no nontrivial solution in this case.
Note that we have nowhere used that σ(−�+V ) is bounded below. So if (W3)

and (V2
2) hold, for our discussion the subspaces E− and E+, both being infinite

dimensional separable Hilbert spaces, are equivalent. By this we mean that we
can apply the arguments from the existence proofs above to the functional �− by
interchanging the roles of E− and E+. The proof of the theorems is complete.
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Math. Phys. Stud., pp. 189–207, Dordrecht: Kluwer Acad. Publ. (2000)

12. Kryszewski, W., Szulkin, A.: Generalized linking theorem with an application to a
semilinear Schrödinger equation. Adv. Differential Equations 3, 441–472 (1998)

13. Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard’s non-
linear equation. Studies in Appl. Math. 57, 93–105 (1976/77)

14. Lions, P.L.: The Choquard equation and related questions. Nonlinear Anal. 4, 1063–
1072 (1980)

15. Lions, P.L.: Some remarks on Hartree equation. Nonlinear Anal. 5, 1245–1256 (1981)
16. Lions, P.L.: The concentration-compactness principle in the calculus of variations.

The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–145
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23. Pankov, A.A., Pflüger, K.: On a semilinear Schrödinger equation with periodic poten-
tial. Nonlinear Anal. 33, 593–609 (1998)



On a periodic Schrödinger equation with nonlocal superlinear part 443

24. Strauss, W.A.: Existence of solitary waves in higher dimensions. Comm. Math. Phys.
55, 149–162 (1977)

25. Stuart, C.A.: Bifurcation for variational problems when the linearisation has no
eigenvalues. J. Funct. Anal. 38, 169–187 (1980)

26. Troestler, C., Willem, M.: Nontrivial solution of a semilinear Schrödinger equation.
Comm. Partial Differential Equations 21, 1431–1449 (1996)

27. Weth, T.: Spectral and variational characterizations of solutions to semilinear eigen-
value problems. Ph.D. thesis, Universität Mainz, Germany (2002), download at
http://archimed.uni-mainz.de/pub/2002/0011/diss.pdf

28. Willem, M.: Minimax theorems. Progress in Nonlinear Differential Equations and
their Applications, 24, Boston, MA: Birkhäuser Boston Inc. 1996


