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1 Introduction

For an algebraic group G defined over a field F , let G(F)/R be the group of
R-equivalence classes introduced by Manin in [6]. The algebraic group G is called
R-trivial if G(L)/R = 1 for every field extension L/F . It was established by
Colliot-Thélène and Sansuc in [2] (see also [7, Proposition 1]) that the group G is
R-trivial if the variety of G is stably rational.

In this paper, we focus on the case where G is an absolutely simple classi-
cal group of adjoint type. Adjoint groups of type 1An or Bn are easily seen to be
rational (see [7, pp. 199, 200]). Voskresenskiı̆ and Klyachko [11, Cor. of Th. 8]
proved that adjoint groups of type 2An are rational if n is even, and Merkurjev [7,
Prop. 4] showed that adjoint groups of type Cn are stably rational for n odd. On
the other hand, Merkurjev also produced in [7] examples of adjoint groups of type
2A3 (= 2D3) and of type 2Dn for any n ≥ 4 which are not R-trivial, hence not
stably rational. Examples of adjoint groups of type 1D4 which are not R-trivial
were constructed by Gille in [3].

The goal of the present paper is to construct examples of adjoint groups of type
2An with n ≡ 3 mod 4 and of adjoint groups of type Cn or 1Dn with n ≡ 0 mod 4
which are not R-trivial. Our constructions are based on Merkurjev’s computation
in [7] of the group of R-equivalence classes of adjoint classical groups, which we
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now recall briefly. According to Weil (see [4, §26]), every absolutely simple clas-
sical group of adjoint type over a field F of characteristic different from 2 can be
obtained as the connected component of the identity in the automorphism group
of a central1 simple algebra with involution (A, σ ) over F . Let Sim(A, σ ) be the
algebraic group of similitudes of (A, σ ), defined (as a group scheme) by

Sim(A, σ )(E) = {u ∈ A ⊗F E | (σ ⊗ Id)(u)u ∈ E×}

for every commutative F -algebra E, and let PSim(A, σ ) be the group of projective
similitudes,

PSim(A, σ ) = Sim(A, σ )/RK/F (Gm,K )

where K is the center of A. The connected component of the identity in these groups
is denoted by Sim+(A, σ ) and PSim+(A, σ ) respectively. We let Sim(A, σ ),
PSim(A, σ ), Sim+(A, σ ) and PSim+(A, σ ) denote the corresponding groups of
F -rational points:

Sim(A, σ ) = Sim(A, σ )(F ), PSim(A, σ ) = PSim(A, σ )(F ), etc.

The group PSim+(A, σ ) is canonically isomorphic (under the map which carries
every similitude g to the induced inner automorphism Int(g)) to the connected
component of the identity in the automorphism group of (A, σ ). To describe the
group of R-equivalence classes of PSim+(A, σ ), consider the homomorphism

µ : Sim(A, σ ) → Gm

which carries every similitude to its multiplier

µ(g) = σ(g)g.

Let G+(A, σ ) = µ
(
Sim+(A, σ )

) ⊂ F× and NK× = µ(K×) ⊂ F× (so NK× =
F×2 if K = F ). Let also Hyp(A, σ ) be the subgroup of F× generated by the
norms of the finite extensions L of F such that (A, σ ) becomes hyperbolic after
scalar extension to L. In [7, Theorem 1], Merkurjev shows that the multiplier map
µ induces a canonical isomorphism

PSim+(A, σ )/R � G+(A, σ )/
(
NK× · Hyp(A, σ )

)
. (1)

For any positive integer d , let Hd(F, µ2) be the degree d cohomology group
of the absolute Galois group of F with coefficients µ2 = {±1}. In Section 4 we
consider the case where σ is of the first kind. If it is orthogonal, we assume fur-
ther that its discriminant is trivial. Assuming the index of A divides 1

2 deg A, we
construct a homomorphism

1 We use the same terminology as in [4]. In particular, the center of A is F if σ is of the
first kind; it is a quadratic étale extension of F if σ is of the second kind.
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�1 : PSim+(A, σ )/R → H 4(F, µ2),

and give examples where this homomorphism is nonzero, hence

PSim+(A, σ )/R �= 1.

Similarly, if σ is of the second kind and the exponent of A divides 1
2 deg A, we

construct in Section 5 a homomorphism

�2 : PSim+(A, σ )/R → H 3(F, µ2)

and show that this map is nonzero in certain cases. In all the examples where we
show �1 �= 0 or �2 �= 0, the algebra with involution has the form (A, σ ) =
(B, ρ) ⊗ (C, τ) where ρ is an orthogonal involution which admits improper simil-
itudes.

Throughout the paper, the characteristic of the base field F is different from 2.

2 Improper similitudes

Let (A, σ ) be a central simple F -algebra with orthogonal involution of degree
n = 2m. The group of similitudes Sim(A, σ ) is not connected. Its connected com-
ponent of the identity Sim+(A, σ ) is defined by the equation

NrdA(g) = µ(g)m,

where NrdA is the reduced norm. As mentioned in the introduction, we denote by
Sim(A, σ ) and Sim+(A, σ ) the group of F -rational points

Sim(A, σ ) = Sim(A, σ )(F ), Sim+(A, σ ) = Sim+(A, σ )(F ).

The elements in Sim+(A, σ ) are called proper similitudes, and those in the non-
trivial coset

Sim−(A, σ ) = {g ∈ Sim(A, σ ) | NrdA(g) = −µ(g)m}
are called improper similitudes.

For example, if m = 1 (i.e. A is a quaternion algebra), then every orthogonal
involution has the form σ = Int(q) ◦ γ , where γ is the canonical involution, q is
an invertible pure quaternion and Int(q) is the inner automorphism induced by q,
mapping x ∈ A to qxq−1. It is easily checked that

Sim+(A, σ ) = F(q)× and Sim−(A, σ ) = q ′F(q)×,

where q ′ is a unit which anticommutes with q. Therefore, Sim−(A, σ ) �= ∅.
If m > 1, the existence of improper similitudes is an important restriction on A

and σ , since it implies that A is split by the quadratic étale F -algebra F [
√

disc σ ],
where disc σ is the discriminant of σ , see [9, Theorem A] or [4, (13.38)]. In partic-
ular, the index of A satisfies ind A ≤ 2, i.e. A is Brauer-equivalent to a quaternion
algebra. Moreover, if m is even, then −1 ∈ NrdA(A), see [9, Corollary 1.13]. There
is no other restriction on A, as the following proposition shows.
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Proposition 1. Let H be an arbitrary quaternion F -algebra and let m be an arbi-
trary integer. If m is even, assume −1 ∈ NrdH (H×). Then the algebra Mm(H)

carries an orthogonal involution which admits improper similitudes.

Proof. Suppose first m is odd. Let i, j be elements in a standard quaternion basis
of H . We set

σ = t ⊗ (Int(i) ◦ γ ) on Mm(H) = Mm(F) ⊗F H,

where t is the transpose map on Mm(F) and γ is the canonical involution on H . It
is readily verified that 1 ⊗ j is an improper similitude of σ .

Suppose next m is even, and q ∈ H satisfies NrdH (q) = −1. We pick a
quaternion basis 1, i, j , k = ij such that i commutes with q, and set

σ = Int diag(j, i, . . . , i) ◦ (t ⊗ γ ) and g = diag(j, qj, . . . , qj).

Again, computation shows that g is an improper similitude of σ . 
�
Necessary and sufficient conditions for the existence of improper similitudes

for a given involution σ are not known if m ≥ 4. For m = 2 (resp. m = 3),
Corollary (15.9) (resp. (15.26)) in [4] shows that Sim−(A, σ ) �= ∅ if and only if
the Clifford algebra C(A, σ) has outer automorphisms (resp. outer automorphisms
which commute with its canonical involution). (For m = 2 another equivalent con-
dition is that A is split by the center of C(A, σ), see [4, (15.11)] or [9, Prop. 1.15].)
We use this fact to prove the following result:

Proposition 2. Let (A, σ ) be a central simple F -algebra with orthogonal involu-
tion of degree 4. Assume that A is not split and disc σ �= 1. Then there exists a field
extension L/F such that AL is not split and Sim−(AL, σL) �= ∅.

Proof. By hypothesis, F(
√

disc σ) is a quadratic field extension of F . We denote it
by K for simplicity and let ι be its nontrivial F -automorphism. The Clifford alge-
bra C = C(A, σ) is a quaternion K-algebra. Let X be the Severi-Brauer variety of
C ⊗K

ιC and let L be the function field of its Weil transfer:

L = F
(
RK/F (X)

)
.

Then (C⊗K
ιC)⊗K KL splits, so CKL is isomorphic to ιCKL, which means that

CKL has outer automorphisms. By [4, (15.9)], it follows that Sim−(AL, σL) �= ∅.
On the other hand, by [9, Corollary 2.12], the kernel of the scalar extension

map Br(F ) → Br(L) is generated by the corestriction of C ⊗K
ιC. Since this

corestriction is trivial, AL is not split. 
�

3 Trace forms

In this section, A is a central simple F -algebra of even degree with an involution
σ of the first kind. We consider the quadratic forms TA and Tσ on A defined by

TA(x) = TrdA(x2), Tσ (x) = TrdA

(
σ(x)x

)
for x ∈ A,
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where TrdA is the reduced trace on A. We denote by T +
σ (resp. T −

σ ) the restriction
of Tσ to the space Sym(σ ) of symmetric elements (resp. to the space Skew(σ ) of
skew-symmetric elements), so that

TA = T +
σ ⊥ −T −

σ and Tσ = T +
σ ⊥ T −

σ . (2)

Recall that if σ is orthogonal the (signed) discriminant disc T +
σ is equal to the

discriminant disc σ up to a factor which depends only on the degree of A, see for
instance [4, (11.5)]. In the following, we denote by InF the n-th power of the
fundamental ideal IF of the Witt ring WF .

Lemma 3. Let σ , σ0 be two involutions of the first kind on A.

– If σ and σ0 are both symplectic, then T +
σ − T +

σ0
∈ I 3F .

– If σ and σ0 are both orthogonal, then disc(T +
σ −T +

σ0
) = disc σ disc σ0. Moreover,

if disc σ = disc σ0, then T +
σ − T +

σ0
∈ I 3F .

Proof. The symplectic case has been considered in [1, Theorem 4]. For the rest of
the proof, we assume that σ and σ0 are both orthogonal. By [4, (11.5)], there is a
factor c ∈ F× such that

disc T +
σ = c disc σ and disc T +

σ0
= c disc σ0,

hence

disc(T +
σ − T +

σ0
) = disc T +

σ disc T +
σ0

= disc σ disc σ0.

To complete the proof, observe that the Witt-Clifford invariant e2(T
+
σ ) (or, equiva-

lently, the Hasse invariant w2(T
+
σ )) depends only on disc σ and on the Brauer class

of A, as was shown by Quéguiner [10, p. 307]. Therefore, if disc σ = disc σ0, then
e2(T

+
σ ) = e2(T

+
σ0

), hence T +
σ − T +

σ0
∈ I 3F by a theorem of Merkurjev. 
�

We next compute theArason invariant e3(T
+
σ −T +

σ0
) ∈ H 3(F, µ2) in the special

case where σ and σ0 decompose. We use the following notation: [A] ∈ H 2(F, µ2)

is the cohomology class corresponding to the Brauer class of A under the canonical
isomorphism H 2(F, µ2) = 2 Br(F ). For a ∈ F× we denote by (a) the cohomol-
ogy class corresponding to the square class of a under the canonical isomorphism
H 1(F, µ2) = F×/F×2.

Lemma 4. Suppose A = B ⊗F C for some central simple F -algebras B, C of even
degree. Let ρ and ρ0 be orthogonal involutions on B and let τ be an involution of
the first kind on C. Let also σ = ρ ⊗ τ and σ0 = ρ0 ⊗ τ .

If τ (hence also σ and σ0) is symplectic, then

e3(T
+
σ − T +

σ0
) =

{
0 if deg C ≡ 0 mod 4,

(disc ρ disc ρ0) ∪ [C] if deg C ≡ 2 mod 4.

If τ (hence also σ and σ0) is orthogonal, then

e3(T
+
σ − T +

σ0
) =

{
(disc ρ disc ρ0) ∪ (disc τ) ∪ (−1) if deg C ≡ 0 mod 4,

(disc ρ disc ρ0) ∪ (
(disc τ) ∪ (−1) + [C]

)
if deg C ≡ 2 mod 4.
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Proof. The decomposition

Sym(σ ) = (
Sym(ρ) ⊗ Sym(τ )

) ⊕ (
Skew(ρ) ⊗ Skew(τ )

)

yields

T +
σ = T +

ρ T +
τ + T −

ρ T −
τ in WF.

Since TB = T +
ρ − T −

ρ we may eliminate T −
ρ in the equation above to obtain

T +
σ = T +

ρ T +
τ + (T +

ρ − TB)T −
τ .

Similarly,

T +
σ0

= T +
ρ0

T +
τ + (T +

ρ0
− TB)T −

τ

and subtracting the two equalities yields

T +
σ − T +

σ0
= (T +

ρ − T +
ρ0

)T +
τ + (T +

ρ − T +
ρ0

)T −
τ = (T +

ρ − T +
ρ0

)Tτ .

Since deg C is even, we have Tτ ∈ I 2F (see [4, (11.5)]), hence

e3(T
+
σ − T +

σ0
) = (

disc(T +
ρ − T +

ρ0
)
) ∪ e2(Tτ ) in H 3(F, µ2).

By Lemma 3 we have

disc(T +
ρ − T +

ρ0
) = disc ρ disc ρ0.

The computation of e2(Tτ ) in [10, Theorem 1] or [5] completes the proof. 
�
Remark 5. If σ and σ0 are symplectic, the Arason invariant e3(T

+
σ − T +

σ0
) is the

discriminant �σ0(σ ) investigated in [1].

4 Involutions of the first kind

In this section, A is a central simple F -algebra of even degree, and σ is an involu-
tion of the first kind on A. We assume ind A divides 1

2 deg A, i.e. A � M2(A0) for
some central simple F -algebra A0, so that A carries a hyperbolic involution σ0 of
the same type as σ . If σ is orthogonal, we assume disc σ = 1 (= disc σ0), so that
in all cases T +

σ − T +
σ0

∈ I 3F , by Lemma 3.

Proposition 6. The map θ1 : Sim(A, σ ) → H 4(F, µ2) defined by

θ1(g) = (
µ(g)

) ∪ e3(T
+
σ − T +

σ0
)

induces a homomorphism

�1 : PSim+(A, σ )/R → H 4(F, µ2).

Moreover, for all g ∈ Sim(A, σ ), we have

θ1(g) ∪ (−1) = 0 in H 5(F, µ2).
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Proof. In view of the isomorphism (1), it suffices to show that for every finite field
extension L/F such that (A, σ ) ⊗F L is hyperbolic and for every x ∈ L×,

(
NL/F (x)

) ∪ e3(T
+
σ − T +

σ0
) = 0 in H 4(F, µ2).

The projection formula yields
(
NL/F (x)

) ∪ e3(T
+
σ − T +

σ0
) = corL/F

(
(x) ∪ e3(T

+
σ − T +

σ0
)L

)
.

Since σL is hyperbolic, the involutions σL and (σ0)L are conjugate, hence

e3(T
+
σ − T +

σ0
)L = 0.

For the last equality, observe that (2) yields the following equations in WF :

Tσ + TA = 〈1, 1〉T +
σ and Tσ0 + TA = 〈1, 1〉T +

σ0
,

hence

Tσ − Tσ0 = 〈1, 1〉(T +
σ − T +

σ0
).

Since σ0 is hyperbolic, we have Tσ0 = 0. Moreover, for g ∈ Sim(A, σ ) the map
x �→ gx is a similitude of Tσ with multiplier µ(g), hence

〈1, −µ(g)〉Tσ = 〈1, −µ(g)〉〈1, 1〉(T +
σ − T +

σ0
) = 0.

Since

e5
(〈1, −µ(g)〉〈1, 1〉(T +

σ − T +
σ0

)
) = θ1(g) ∪ (−1),

the proposition follows. 
�
Proposition 7. Let (A, σ ) = (B, ρ) ⊗ (C, τ), where B and C are central sim-
ple F -algebras of even degree and ρ, τ are involutions of the first kind. Sup-
pose ind B divides 1

2 deg B and ρ is orthogonal. For g ∈ Sim−(B, ρ), we have
g ⊗ 1 ∈ Sim+(A, σ ) and

θ1(g ⊗ 1) =
{

0 if deg C ≡ 0 mod 4,

[B] ∪ [C] if deg C ≡ 2 mod 4.

Proof. For g ∈ Sim(B, ρ), we have

σ(g ⊗ 1)g ⊗ 1 = ρ(g)g = µ(g)

and

NrdA(g ⊗ 1) = NrdB(g)deg C,

so g ⊗ 1 ∈ Sim+(A, σ ).
Since ind B divides 1

2 deg B, we may find a hyperbolic orthogonal involution
ρ0 on B, and set σ0 = ρ0 ⊗ τ , a hyperbolic involution on A of the same type as σ .
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If τ is symplectic, Lemma 4 yields

e3(T
+
σ − T +

σ0
) =

{
0 if deg C ≡ 0 mod 4,

(disc ρ) ∪ [C] if deg C ≡ 2 mod 4.

The proposition follows by taking the cup-product with
(
µ(g)

)
, since

(
µ(g)

) ∪ (disc ρ) = [B]

by [9, Theorem A] (see also [4, (13.38)]).
Suppose next τ is orthogonal. By Lemma 4,

e3(T
+
σ − T +

σ0
) =

{
(disc ρ) ∪ (disc τ) ∪ (−1) if deg C ≡ 0 mod 4,

(disc ρ) ∪ (
(disc τ) ∪ (−1) + [C]

)
if deg C ≡ 2 mod 4.

Using again the equation
(
µ(g)

) ∪ (disc ρ) = [B] and taking into account the
equation (−1) ∪ [B] = 0, which follows from [9, Corollary 1.13], we obtain the
formula for θ1(g ⊗ 1). 
�

Using Proposition 7, it is easy to construct examples where θ1 �= 0. For these
examples, the map �1 of Proposition 6 is not trivial, hence PSim+(A, σ ) is not
R-trivial.

Corollary 8. Let Q, H be quaternion F -algebras satisfying

(−1) ∪ [H ] = 0 in H 3(F, µ2) and [H ] ∪ [Q] �= 0 in H 4(F, µ2).

Let A = M2r (H) ⊗ Ms(Q), where r is arbitrary and s is odd. Let ρ be an orthog-
onal involution on M2r (H) which admits improper similitudes (see Lemma 1), and
let τ be any involution of the first kind on Ms(Q). Then PSim+(A, ρ ⊗ τ) is not
R-trivial.

To obtain explicit examples, we may take for F the field of rational fractions in
four indeterminates F = C(x1, y1, x2, y2) and set H = (x1, y1)F , Q = (x2, y2)F .
Note that the degree of A can be any multiple of 8 and that the conditions on Q

and H in Corollary 8 imply ind A = 4. Indeed, if there is a quadratic extension of
F which splits Q and H , then [H ] ∪ [Q] is a multiple of (−1) ∪ [H ].

Other examples can be obtained from Proposition 2.

Corollary 9. Let (B, ρ) be a central simple algebra of degree 4 and index 2 with
orthogonal involution of nontrivial discriminant over a field F0. Let F = F0(x, y)

be the field of rational fractions in two indeterminates x, y over F0, and let (C, τ)

be a central simple F -algebra with involution of the first kind such that

deg C ≡ 2 mod 4 and [C] = (x) ∪ (y) ∈ H 2(F, µ2).

Then PSim+(B ⊗ C, ρ ⊗ τ) is not R-trivial.

Proof. Proposition 2 yields an extension L0/F0 such that ρL0 admits an improper
similitude g and BL0 is not split. Set L = L0(x, y). By Proposition 7,

g ⊗ 1 ∈ Sim+(B ⊗ C, ρ ⊗ τ)(L) and θ1(g ⊗ 1) = [BL] ∪ (x) ∪ (y).

Since [BL0 ] �= 0, taking successive residues for the x-adic and the y-adic val-
uations shows that θ1(g ⊗ 1) �= 0. Therefore, PSim+(B ⊗ C, ρ ⊗ τ)(L)/R �= 1,
hence PSim+(B ⊗ C, ρ ⊗ τ) is not R-trivial. 
�
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5 Involutions of the second kind

We assume in this section that (A, σ ) is a central simple algebra with unitary invo-
lution over F . In this case, the group of similitudes is connected,

Sim+(A, σ ) = Sim(A, σ ) and PSim+(A, σ ) = PSim(A, σ ).

We denote by K the center of A and write K = F [X]/(X2 − α). We assume the
degree of A is even, deg A = n = 2m, and denote by D(A, σ) the discriminant
algebra of (A, σ ) (see [4, §10] for a definition).

Lemma 10. D(A, σ) is split if (A, σ ) is hyperbolic.

Proof. The lemma is clear if A is split, for then σ is adjoint to a hyperbolic her-
mitian form h and [D(A, σ)] = (α) ∪ (disc h) by [4, (10.35)]. The general case
is reduced to the case where A is split by scalar extension to the field of functions
L = F

(
RK/F

(
SB(A)

))
of the Weil transfer of the Severi-Brauer variety of A.

Indeed, A ⊗F L is split and the scalar extension map Br(F ) → Br(L) is injective
by [9, Corollary 2.12]. 
�
Proposition 11. Suppose A⊗m is split. The map

θ2 : Sim(A, σ ) → H 3(F, µ2)

defined by

θ2(g) = (
µ(g)

) ∪ [D(A, σ)]

induces a homomorphism

�2 : PSim(A, σ )/R → H 3(F, µ2).

Moreover, for any g ∈ Sim(A, σ ),

θ2(g) ∪ (α) = 0 in H 4(F, µ2).

Proof. In view of the isomorphism (1), it suffices to show that for every finite field
extension L/F such that (A, σ ) ⊗F L is hyperbolic and for every x ∈ L×,

(
NL/F (x)

) ∪ [D(A, σ)] = 0 in H 3(F, µ2),

and that for every λ ∈ K×,
(
NK/F (λ)

) ∪ [D(A, σ)] = 0 in H 3(F, µ2).

As in the proof of Proposition 6, we are reduced by the projection formula to prov-
ing that D(A, σ) is split by K and by every extension L/F such that (A, σ ) ⊗ L

is hyperbolic. The latter assertion follows from the lemma. On the other hand, by
[4, (10.30)] and by the hypothesis on B we have

[D(A, σ)K ] = [λmA] = m[A] = 0.
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To prove the last part, we use the trace form Tσ defined as in Section 3,

Tσ (x) = TrdA(σ(x)x) for x ∈ A,

and its restrictions T +
σ , T −

σ to Sym(A, σ ) and Skew(A, σ ) respectively. In the case
of involutions of unitary type we have

Tσ = T +
σ ⊥ T −

σ = 〈1, −α〉T +
σ .

The computation of the Clifford algebra of T +
σ in [4, (11.17)] shows that Tσ ∈ I 3F

and

e3(Tσ ) = (α) ∪ [D(A, σ)].

Now, for g ∈ Sim(A, σ ) the map x �→ gx is a similitude of Tσ with multiplier
µ(g), hence 〈1, −µ(g)〉Tσ = 0 in WF . Taking the image under e4 yields

0 = (
µ(g)

) ∪ e3(Tσ ) = θ2(g) ∪ (α). 
�
Remark 12. 1. If ind A divides 1

2 deg A, so that A carries a hyperbolic unitary
involution σ0, then [4, (11.17)] and Lemma 10 yield

[D(A, σ)] = e2(T
+
σ − T +

σ0
).

This observation underlines the analogy between θ2 and the map θ1 of Prop-
osition 6. Note however that no hypothesis on the index of A is required in
Proposition 11.

2. For g ∈ Sim(A, σ ), the equation θ2(g) ∪ (α) = 0 implies that θ2(g) lies
in the image of the corestriction map corK/F : H 3(K, µ2) → H 3(F, µ2),
by [4, (30.12)]. On the other hand, if the characteristic does not divide m,
Corollary 1.18 of [8] yields an explicit element ξ ∈ H 3(K, µ⊗2

m ) such that
corK/F (ξ) = θ2(g). In particular, if m is odd it follows that θ2 = 0.

The following explicit computation yields examples where θ2 �= 0.

Proposition 13. Let ι be the nontrivial automorphism of K/F , and assume

(A, σ ) = (B, ρ) ⊗F (K, ι)

for some central simple F -algebra with orthogonal involution (B, ρ) of degree
n = 2m. Assume m is even. For g ∈ Sim−(B, ρ) we have g ⊗ 1 ∈ Sim(A, σ ) and

θ2(g ⊗ 1) = (α) ∪ [B].

Proof. For g ∈ Sim−(B, ρ),

σ(g ⊗ 1)g ⊗ 1 = ρ(g)g = µ(g),

so g ⊗ 1 ∈ Sim(A, σ ). By [4, (10.33)], we have

[D(A, σ)] = m[B] + (α) ∪ (disc ρ).

Since m is even, the first term on the right side vanishes. The proposition fol-
lows by taking the cup-product with

(
µ(g)

)
, since [B] = (

µ(g)
) ∪ (disc ρ) by [9,

Theorem A] (see also [4, (13.38)]). 
�
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Remark 14. If m is odd in Proposition 13, then the definition of θ2 requires the extra
hypothesis that B is split by K . Computation then shows that θ2(g ⊗ 1) = 0 for all
g ∈ Sim−(B, ρ), as follows also from Remark 12.2 above.

Corollary 15. Let r be an arbitrary integer. Let H be a quaternion F -algebra,
α ∈ F×, K = F [X]/(X2 − α), and let ι be the nontrivial automorphism of K/F .
Assume

(−1) ∪ [H ] = 0 in H 3(F, µ2) and (α) ∪ [H ] �= 0 in H 3(F, µ2).

Let ρ be an orthogonal involution on M2r (H) which admits improper similitudes
(see Lemma 1). Then PSim(M2r (H) ⊗F K, ρ ⊗ ι) is not R-trivial.

As in the previous section (see Corollary 9), alternative examples can be constructed
from Proposition 2:

Corollary 16. Let (B, ρ) be a central simple algebra of degree 4 with orthogonal
involution over a field F0. Assume B is not split and disc ρ �= 1. Let F = F0(x) be
the field of rational fractions in one indeterminate over F0, let K = F(

√
x) and

let ι be the nontrivial automorphism of K/F . The group PSim(B ⊗F0 K, ρ ⊗ ι) is
not R-trivial.

Note that this corollary also follows from [7, Theorem 3].
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