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1 Introduction

For an algebraic group G defined over a field F, let G(F)/R be the group of
R-equivalence classes introduced by Manin in [6]. The algebraic group G is called
R-trivial if G(L)/R = 1 for every field extension L/F. It was established by
Colliot-Thélene and Sansuc in [2] (see also [7, Proposition 1]) that the group G is
R-trivial if the variety of G is stably rational.

In this paper, we focus on the case where G is an absolutely simple classi-
cal group of adjoint type. Adjoint groups of type ' A, or B, are easily seen to be
rational (see [7, pp. 199, 200]). Voskresenskii and Klyachko [11, Cor. of Th. 8]
proved that adjoint groups of type 2A, are rational if n is even, and Merkurjev [7,
Prop. 4] showed that adjoint groups of type C, are stably rational for n odd. On
the other hand, Merkurjev also produced in [7] examples of adjoint groups of type
2A3 (= %D3) and of type 2D, for any n > 4 which are not R-trivial, hence not
stably rational. Examples of adjoint groups of type ! D4 which are not R-trivial
were constructed by Gille in [3].

The goal of the present paper is to construct examples of adjoint groups of type
2 A, with n = 3 mod 4 and of adjoint groups of type C,, or ! D,, with n = 0 mod 4
which are not R-trivial. Our constructions are based on Merkurjev’s computation
in [7] of the group of R-equivalence classes of adjoint classical groups, which we
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now recall briefly. According to Weil (see [4, §26]), every absolutely simple clas-
sical group of adjoint type over a field F of characteristic different from 2 can be
obtained as the connected component of the identity in the automorphism group
of a central! simple algebra with involution (A, o) over F. Let Sim(A, o) be the
algebraic group of similitudes of (A, o), defined (as a group scheme) by

Sim(A,0)(E) ={u e A®r E | (0 @ Id)(u)u € E*}

for every commutative F-algebra E, and let PSim(A, o) be the group of projective
similitudes,

PSim(A, o) = Sim(A, U)/RK/F(Gm,K)

where K is the center of A. The connected component of the identity in these groups
is denoted by Sim™ (A, o) and PSim™ (A, o) respectively. We let Sim(A, o),
PSim(A, o), Sim* (A, o) and PSim™ (A, o) denote the corresponding groups of
F-rational points:

Sim(A, o) = Sim(A, 0)(F),  PSim(A, o) = PSim(A, 0)(F), etc.

The group PSim™ (A, o) is canonically isomorphic (under the map which carries
every similitude g to the induced inner automorphism Int(g)) to the connected
component of the identity in the automorphism group of (A, o). To describe the
group of R-equivalence classes of PSim™* (A, o), consider the homomorphism

w: Sim(A, o) — G
which carries every similitude to its multiplier

n(g) =o0(g)g.

Let GT(A, 0) = u(Sim*(A,0)) C F*and NK* = u(K*) C F* (so NK* =
F*2if K = F). Let also Hyp(A, o) be the subgroup of F* generated by the
norms of the finite extensions L of F such that (A, o) becomes hyperbolic after
scalar extension to L. In [7, Theorem 1], Merkurjev shows that the multiplier map
w1 induces a canonical isomorphism

PSim*(A,0)/R ~ G (A,0)/(NK* -Hyp(A, 0)). (1)

For any positive integer d, let H(F, i) be the degree d cohomology group
of the absolute Galois group of F' with coefficients > = {£1}. In Section 4 we
consider the case where o is of the first kind. If it is orthogonal, we assume fur-
ther that its discriminant is trivial. Assuming the index of A divides % deg A, we
construct a homomorphism

I'We use the same terminology as in [4]. In particular, the center of A is F if o is of the
first kind; it is a quadratic étale extension of F if o is of the second kind.
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®1: PSimT (A, 0)/R — H*(F, o),
and give examples where this homomorphism is nonzero, hence
PSim™ (A, 0)/R # 1.

Similarly, if o is of the second kind and the exponent of A divides %deg A, we
construct in Section 5 a homomorphism

©,: PSim*(A,0)/R — H(F, )

and show that this map is nonzero in certain cases. In all the examples where we
show ®1 # 0 or ®, # 0, the algebra with involution has the form (A, o) =
(B, p) ® (C, T) where p is an orthogonal involution which admits improper simil-
itudes.

Throughout the paper, the characteristic of the base field F is different from 2.

2 Improper similitudes

Let (A, o) be a central simple F-algebra with orthogonal involution of degree
n = 2m. The group of similitudes Sim(A, o) is not connected. Its connected com-
ponent of the identity Sim™ (A, o) is defined by the equation

Nrda(g) = n(g)™,

where Nrd 4 is the reduced norm. As mentioned in the introduction, we denote by
Sim(A, o) and Sim™ (A, o) the group of F-rational points

Sim(A, ¢) = Sim(A, 0)(F), Sim™ (A, o) = Sim™T (A, 0)(F).

The elements in Sim™ (A, o) are called proper similitudes, and those in the non-
trivial coset

Sim™ (A, 0) = {g € Sim(A, 0) | Nrda(g) = —u(g)"}

are called improper similitudes.

For example, if m = 1 (i.e. A is a quaternion algebra), then every orthogonal
involution has the form o = Int(q) o y, where y is the canonical involution, ¢ is
an invertible pure quaternion and Int(g) is the inner automorphism induced by ¢,
mapping x € A to gxg~!. It is easily checked that

Sim* (4, 0) = F(g)* and Sim™(A4,0) = q'F(g)™,

where ¢’ is a unit which anticommutes with g. Therefore, Sim™ (A, o) # .

If m > 1, the existence of improper similitudes is an important restriction on A
and o, since it implies that A is split by the quadratic étale F-algebra F[+/disc o],
where disc o is the discriminant of o, see [9, Theorem A] or [4, (13.38)]. In partic-
ular, the index of A satisfies ind A < 2, i.e. A is Brauer-equivalent to a quaternion
algebra. Moreover, if m is even, then —1 € Nrd 4 (A), see [9, Corollary 1.13]. There
is no other restriction on A, as the following proposition shows.
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Proposition 1. Let H be an arbitrary quaternion F-algebra and let m be an arbi-
trary integer. If m is even, assume —1 € Nrdy (H*). Then the algebra M,,(H)
carries an orthogonal involution which admits improper similitudes.

Proof. Suppose first m is odd. Let i, j be elements in a standard quaternion basis
of H. We set

o=1tQ(nt@i)oy) on My (H) = M, (F) Qr H,

where ¢ is the transpose map on M, (F) and y is the canonical involution on H. It
is readily verified that 1 ® j is an improper similitude of o.

Suppose next m is even, and ¢ € H satisfies Nrdg(q) = —1. We pick a
quaternion basis 1, i, j, k = ij such that i commutes with ¢, and set

o = Intdiag(j,i,...,i)o(t ®y) and g =diag(j,qj, ... ,qj)-
Again, computation shows that g is an improper similitude of o. O

Necessary and sufficient conditions for the existence of improper similitudes
for a given involution ¢ are not known if m > 4. For m = 2 (resp. m = 3),
Corollary (15.9) (resp. (15.26)) in [4] shows that Sim™ (A, o) # @ if and only if
the Clifford algebra C (A, o) has outer automorphisms (resp. outer automorphisms
which commute with its canonical involution). (For m = 2 another equivalent con-
dition is that A is split by the center of C(A, o), see [4, (15.11)] or [9, Prop. 1.15].)
We use this fact to prove the following result:

Proposition 2. Let (A, o) be a central simple F-algebra with orthogonal involu-
tion of degree 4. Assume that A is not split and disc o # 1. Then there exists a field
extension L/ F such that Ay is not split and Sim™ (A, o) # Q.

Proof. By hypothesis, F(+/disc ¢) is a quadratic field extension of F. We denote it
by K for simplicity and let ¢ be its nontrivial F-automorphism. The Clifford alge-
bra C = C(A, o) is a quaternion K -algebra. Let X be the Severi-Brauer variety of
C ®k ‘C and let L be the function field of its Weil transfer:

L = F(Rk/r(X)).

Then (CRk‘C)Qk K L splits, so Cgr is isomorphic to‘Ck 1, which means that
Ck 1 has outer automorphisms. By [4, (15.9)], it follows that Sim™ (A, o) # O.
On the other hand, by [9, Corollary 2.12], the kernel of the scalar extension
map Br(F) — Br(L) is generated by the corestriction of C ® ‘C. Since this
corestriction is trivial, Ay, is not split. O

3 Trace forms

In this section, A is a central simple F-algebra of even degree with an involution
o of the first kind. We consider the quadratic forms 74 and 7, on A defined by

Ta(x) = Trd(x2), Ty (x) = Trd4 (o (x)x) forx € A,
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where Trd 4 is the reduced trace on A. We denote by T, (resp. T,,") the restriction
of T, to the space Sym(o) of symmetric elements (resp. to the space Skew(o) of
skew-symmetric elements), so that

Tao=T5L-T, and T,=T)L1T,. (2)

Recall that if o is orthogonal the (signed) discriminant disc 7,7 is equal to the
discriminant disc o up to a factor which depends only on the degree of A, see for
instance [4, (11.5)]. In the following, we denote by I" F the n-th power of the
fundamental ideal I F of the Witt ring W F.

Lemma 3. Let o, oy be two involutions of the first kind on A.

— If o and oy are both symplectic, then T,” — T,\ € I 3F.

— Ifo and oy are both orthogonal, then disc(T(j' — T(;(’;) = disc o disc 0. Moreover,
ifdisco = discoy, then T," — T} € IF.

Proof. The symplectic case has been considered in [1, Theorem 4]. For the rest of

the proof, we assume that o and o¢ are both orthogonal. By [4, (11.5)], there is a
factor ¢ € F* such that

. + _ . . + _ .
disc T, = cdisco and disc T, = cdiscoy,
hence
disc(T,” — T,5) = disc T, disc T} = disc o disc 0y.

To complete the proof, observe that the Witt-Clifford invariant e>(7,;") (or, equiva-
lently, the Hasse invariant w2 (7,")) depends only on disc o and on the Brauer class
of A, as was shown by Quéguiner [10, p. 307]. Therefore, if disc o = disc oy, then
ex(T;H) = ex(T;), hence T,F — T e 1 3F by a theorem of Merkurjev. i

We next compute the Arason invariant e3 (7" — T(;g ) € H3(F, u») inthe special

case where o and oy decompose. We use the following notation: [A] € H 2(F , M2)
is the cohomology class corresponding to the Brauer class of A under the canonical
isomorphism H2(F, w2) = 2 Br(F). Fora € F* we denote by (a) the cohomol-
ogy class corresponding to the square class of a under the canonical isomorphism
HY(F, uy) = F*/F*2.

Lemma 4. Suppose A = B ®F C for some central simple F-algebras B, C of even
degree. Let p and po be orthogonal involutions on B and let T be an involution of
the first kind on C. Let also 0 = p ® T and o9 = py ® T.

If t (hence also o and oy) is symplectic, then

0 ifdeg C = 0 mod 4,

(T —TH =
3(T5" = Tg,) {(discpdiscpo)U[C] if deg C =2 mod 4.

If T (hence also o and oy) is orthogonal, then
ex(T;H = Tjh) =

(disc p disc pg) U (disc t) U (—1) ifdeg C = 0 mod 4,
(disc p disc pg) U ((disc U (—1)+ [C]) ifdeg C =2 mod 4.
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Proof. The decomposition
Sym(c) = (Sym(p) ® Sym(z)) @ (Skew(p) ® Skew(r))
yields
T, =T T +T,;T7 inWF.
Since Tp = Tp+ — T, we may eliminate 7" in the equation above to obtain
T, =TT + (T} —Tp)T,].
Similarly,
T =T T + Ty —Te)T,
and subtracting the two equalities yields
T, =T} = (T —THTS + (T —TOT =T, —THT:.
Since deg C is even, we have T, € I’F (see [4, (11.5)]), hence
e3(T,F — T,5) = (disc(T,7 — T,5)) Uea(Tr) in H>(F, 2).
By Lemma 3 we have
disc(T,” — T,) = disc p disc py.
The computation of e>(77) in [10, Theorem 1] or [5] completes the proof. O

Remark 5. If o and oy are symplectic, the Arason invariant e3(7," — T;g ) is the
discriminant Ay, (o) investigated in [1].

4 Involutions of the first kind

In this section, A is a central simple F-algebra of even degree, and o is an involu-
tion of the first kind on A. We assume ind A divides % deg A,i.e. A >~ M>(Ap) for
some central simple F-algebra Ao, so that A carries a hyperbolic involution o of
the same type as o. If o is orthogonal, we assume disco = 1 (= disc ap), so that
in all cases T} — T} € I°F, by Lemma 3.

Proposition 6. The map 0;: Sim(A, o) — H*(F, u») defined by
01(2) = () Ues(T,m = T,))
induces a homomorphism
©®1: PSimT(A,0)/R — H*(F, wo).
Moreover, for all g € Sim(A, o), we have

01(g) U(=1) =0  in H (F, o).
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Proof. In view of the isomorphism (1), it suffices to show that for every finite field
extension L/F such that (A, o) ®r L is hyperbolic and for every x € L*,

(NLyr@) Ues(T,F =Ty =0 in HY(F, o).
The projection formula yields
(Ne/r(x) Ues(T,m = T,5) = corpyr((x) Ues(T,” = T,5)1).
Since o7 is hyperbolic, the involutions o7 and (op) are conjugate, hence
es(T, =T )L =0.
For the last equality, observe that (2) yields the following equations in W F:
T, +Ta = (1, )T, and Toy+ Ta = (1, )T,
hence
Ty — Toy = (1, I(T,F = T,).

Since oy is hyperbolic, we have T, = 0. Moreover, for g € Sim(A, o) the map
X > gx is a similitude of 7, with multiplier u(g), hence

(1, = (@) Ty = (1, —u()) (1, IN(T,F = T,y = 0.
Since
es((1, —(@) (1, (T, = T,)) = 61(g) U (= 1),
the proposition follows. O

Proposition 7. Let (A,0) = (B, p) ® (C, 1), where B and C are central sim-
ple F-algebras of even degree and p, t are involutions of the first kind. Sup-
pose ind B divides %degB and p is orthogonal. For g € Sim™ (B, p), we have
g®1eSim™ (4, 0) and
ifdeg C = 0 mod 4,
[BJU[C] ifdegC =2 mod 4.

01(g®1) =
Proof. For g € Sim(B, p), we have
o(g®Deg®1=p(gg=ng
and

Nrda(g ® 1) = Nrdp(g)%e€,

sog®1 e Sim™(A, o).
Since ind B divides % deg B, we may find a hyperbolic orthogonal involution
poon B, and set op = pp ® 7, a hyperbolic involution on A of the same type as .
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If t is symplectic, Lemma 4 yields

0 if deg C = 0 mod 4,

Tr T =
e3(T, ao) {(disc p)U[C] ifdegC =2 mod 4.

The proposition follows by taking the cup-product with (u (g)), since

((g)) U (disc p) = [B]

by [9, Theorem A] (see also [4, (13.38)]).
Suppose next t is orthogonal. By Lemma 4,

(disc p) U (disct) U (—1) if deg C = 0 mod 4,

(T, =Ty =1 " . .
(disc p) U ((dlsc )U(—1)+ [C]) if deg C = 2 mod 4.

Using again the equation (u(g)) U (disc p) = [B] and taking into account the
equation (—1) U [B] = 0, which follows from [9, Corollary 1.13], we obtain the
formula for 01 (g ® 1). |

Using Proposition 7, it is easy to construct examples where 6; # 0. For these
examples, the map ®; of Proposition 6 is not trivial, hence PSim™ (4, o) is not
R-trivial.

Corollary 8. Let Q, H be quaternion F-algebras satisfying

(—DU[H]=0in H (F, i2)  and  [HIU[Q] #0in H*(F, u2).

Let A = M>,.(H) ® My(Q), where r is arbitrary and s is odd. Let p be an orthog-
onal involution on M, (H) which admits improper similitudes (see Lemma 1), and
let T be any involution of the first kind on Ms(Q). Then PSim™ (A, p ® 1) is not
R-trivial.

To obtain explicit examples, we may take for F' the field of rational fractions in
four indeterminates F = C(xy, yi, x2, y2) and set H = (x1, y1)F, QO = (x2, y2)F.
Note that the degree of A can be any multiple of 8 and that the conditions on Q
and H in Corollary 8 imply ind A = 4. Indeed, if there is a quadratic extension of
F which splits Q and H, then [H] U [Q] is a multiple of (—1) U [H].

Other examples can be obtained from Proposition 2.

Corollary 9. Let (B, p) be a central simple algebra of degree 4 and index 2 with
orthogonal involution of nontrivial discriminant over a field Fy. Let F = Fy(x, y)
be the field of rational fractions in two indeterminates x, y over Fy, and let (C, 1)
be a central simple F-algebra with involution of the first kind such that

degC =2 mod 4 and [Cl=x)U(y) € H2(F, na2).
Then PSim™ (B ® C, p @ 1) is not R-trivial.
Proof. Proposition 2 yields an extension Lo/ Fy such that oy, admits an improper
similitude g and By, is not split. Set L = L (x, y). By Proposition 7,
g®1eSim"(B®C,p®1)(L) and 01(g® 1) =[BL]U (x) U(y).

Since [By,] # 0, taking successive residues for the x-adic and the y-adic val-
uations shows that 0; (¢ ® 1) # 0. Therefore, PSim* (B ® C, p ® t)(L)/R # 1,
hence PSim* (B ® C, p ® ) is not R-trivial. ]
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5 Involutions of the second kind

We assume in this section that (A, o) is a central simple algebra with unitary invo-
lution over F'. In this case, the group of similitudes is connected,

Sim™ (A, o) = Sim(4, o) and PSim™ (A, o) = PSim(A, 0).

We denote by K the center of A and write K = F[X]/(X? — «). We assume the
degree of A is even, deg A = n = 2m, and denote by D(A, o) the discriminant
algebra of (A, o) (see [4, §10] for a definition).

Lemma 10. D(A, o) is split if (A, o) is hyperbolic.

Proof. The lemma is clear if A is split, for then o is adjoint to a hyperbolic her-
mitian form A and [D(A, 0)] = (@) U (disc k) by [4, (10.35)]. The general case
is reduced to the case where A is split by scalar extension to the field of functions
L = F(Rk/r(SB(A))) of the Weil transfer of the Severi-Brauer variety of A.
Indeed, A ® L is split and the scalar extension map Br(F) — Br(L) is injective
by [9, Corollary 2.12]. O

Proposition 11. Suppose A®™ is split. The map

6,: Sim(A, o) — H>(F, w2)
defined by

62(8) = (1(9)) UID(A, 0)]
induces a homomorphism

©®,: PSim(A,o)/R — H>(F, o).
Moreover, for any g € Sim(A, o),
62(9) U (@) =0 in H'(F, p2).

Proof. In view of the isomorphism (1), it suffices to show that for every finite field
extension L/F such that (A, o) ® L is hyperbolic and for every x € L*,

(NLyr())UID(A,0)1=0  in H(F, o),
and that for every A € K*,
(Nk/r(G)) UID(A,0)1 =0 in H(F, p).

As in the proof of Proposition 6, we are reduced by the projection formula to prov-
ing that D(A, o) is split by K and by every extension L/F such that (A,0) ® L
is hyperbolic. The latter assertion follows from the lemma. On the other hand, by
[4, (10.30)] and by the hypothesis on B we have

[D(A,0)g] = [A"A] = m[A] = 0.
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To prove the last part, we use the trace form T, defined as in Section 3,
Ty (x) = Trd s (o (x)x) forx € A,

and its restrictions T;r , T, to Sym(A, o) and Skew(A, o) respectively. In the case

of involutions of unitary type we have
T, =T LT, =(1,-a)T;".

The computation of the Clifford algebra of TU+ in[4, (11.17)] shows that T, € I°F
and

e3(Ts) = (@) U[D(A, 0)].

Now, for g € Sim(A, o) the map x +— gx is a similitude of T, with multiplier
n(g), hence (1, —u(g))Ty, = 0in W F. Taking the image under e4 yields

0= (u(9) Ves(Ty) = 62(g) U (). o

Remark 12. 1.1If ind A divides %deg A, so that A carries a hyperbolic unitary
involution oy, then [4, (11.17)] and Lemma 10 yield

[D(A,0)] = ex(T,) = T,).

This observation underlines the analogy between 6, and the map 6; of Prop-
osition 6. Note however that no hypothesis on the index of A is required in
Proposition 11.

2. For g € Sim(A, o), the equation 6(g) U (o) = 0 implies that 6,(g) lies
in the image of the corestriction map corg,/r: H>(K, u2) — H3(F, u2),
by [4, (30.12)]. On the other hand, if the characteristic does not divide m,
Corollary 1.18 of [8] yields an explicit element & € H3(K, ,u%z) such that
corg/r(§) = 62(g). In particular, if m is odd it follows that 6, = 0.

The following explicit computation yields examples where 6, # 0.
Proposition 13. Let ¢ be the nontrivial automorphism of K/ F, and assume
(A,0) = (B,p) ®r (K, 1)

for some central simple F-algebra with orthogonal involution (B, p) of degree
n = 2m. Assume m is even. For g € Sim™ (B, p) we have g ® 1 € Sim(A, o) and

th(g®1) = () U[B].
Proof. For g € Sim™(B, p),
o(g®Dg®1=p(g)g=n)),
50 g ® 1 € Sim(A, o). By [4, (10.33)], we have
[D(A, 0)] = m[B] + (a) U (disc p).

Since m is even, the first term on the right side vanishes. The proposition fol-
lows by taking the cup-product with (/L(g)), since [B] = (,u(g)) U (disc p) by [9,
Theorem A] (see also [4, (13.38)]). m]



Cohomological invariants and R-triviality of adjoint classical groups 323

Remark 14. If m is odd in Proposition 13, then the definition of 6, requires the extra
hypothesis that B is split by K. Computation then shows that 6,(g ® 1) = 0 for all
g € Sim™ (B, p), as follows also from Remark 12.2 above.

Corollary 15. Let r be an arbitrary integer. Let H be a quaternion F-algebra,
a € F*, K = F[X]/(X? — «), and let . be the nontrivial automorphism of K / F.
Assume

(~D)U[H]=0in H*(F, ) and () U[H]# 0in H(F, u2).

Let p be an orthogonal involution on Mo, (H) which admits improper similitudes
(see Lemma 1). Then PSim(M,, (H) @ K, p ® () is not R-trivial.

As in the previous section (see Corollary 9), alternative examples can be constructed
from Proposition 2:

Corollary 16. Let (B, p) be a central simple algebra of degree 4 with orthogonal
involution over a field Fy. Assume B is not split and disc p # 1. Let F = Fy(x) be
the field of rational fractions in one indeterminate over Fy, let K = F(\/x) and
let v be the nontrivial automorphism of K /F. The group PSim(B ®p, K, p @ 1) is
not R-trivial.

Note that this corollary also follows from [7, Theorem 3].
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