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Introduction

Let G be a Lie group and � a left invariant sub-Laplacian on G. If L2(G) denotes
the space of square integrable functions with respect to the right invariant Haar
measure onG, then� is a selfadjoint operator onL2(G). Therefore every bounded
Borel function f on R induces a continuous operator f (�) on L2(G).

It is now natural to ask, under which additional conditions on f the operator
f (�) is necessarily bounded on Lp(G), p �= 2. In this case we call f an Lp-multi-
plier for�. For more background information and various multiplier theorems we
refer to [1], [3], [2], [5], [10], [8] and the literature mentioned therein.

Here we focus our attention on amenable groups with exponential volume
growth and continuous functions f with compact support. Our aim is to show
for a reasonably large class of Lie groups and sub-Laplacians that a certain degree
of differentiability of f is sufficient for f (�) to extend to a bounded operator on
Lp(G), i. e. that � has differentiable Lp-functional calculus.

That this is not true on any group with exponential growth (in contrast to the
situation on Lie groups with polynomial growth, cf. [1]), was shown by M. Christ
and D. Müller in [2]. They gave examples of sub-Laplacians � on solvable Lie
groups, which are for any p �= 2 of holomorphic Lp-type, i. e., there exists some
non-isolated point λ in the L2-spectrum of� and an open complex neighbourhood
U of λ in C such that every continuous Lp-multiplier, which vanishes at infinity,
extends holomorphically to U . (More recent articles dealing with this topic are [8]
and [7].)

Therefore it is interesting to study new classes of groups and sub-Laplacians,
to find out whether they admit differentiable Lp-functional calculus or not.
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In Part I of this article we consider compact extensions of a class of solvable Lie
groups. We modify and extend some methods, which were used in [6], to show that
any sub-Laplacian on these groups possesses differentiable Lp-functional calculus
for each p ∈ [1,∞].

In Part II we turn to some semidirect products of the 3-dimensional Heisenberg
group H1 and the real line and study distinguished sub-Laplacians thereon. In fact,
up to some exceptional cases, the groups and operators here are treated in Part I
as well, namely when K is chosen to be the trivial compact group {1K}. But in
Part II we use different methods (introduced in [5] and again employed in [10]) to
derive differentiable Lp-functional calculus. From the quantitative point of view
our results here are better than the results about these special sub-Laplacians in
Part I.

Part I: Compact extensions of solvable groups

Preliminaries

Let n be a real m-dimensional nilpotent Lie algebra, and let N be n, endowed
with the Campbell-Hausdorff multiplication. Then, up to isomorphism, N is the
uniquely determined connected and simply connected nilpotent Lie group whose
Lie algebra is n. Although the exponential map expN of N is in fact the identity on
n, we will use the notation expN to make a clear distinction between the levels of
Lie group and Lie algebra.

LetD be a derivation on n with eigenvalues λi , i = 1, . . . , q, whose real parts
ρi are all strictly positive (or all strictly negative). We define ρ to be the real part
ρi , which has the smallest absolute value. The trace of D will be denoted by Q.
If D is diagonalizable over the field of complex numbers, we shall say that D is
semisimple.

Let θ : R → Aut(n) = Aut(N) be the group homomorphism defined by
θ(s) = esD . Thus we can consider the semidirect product H := N �θ R.

Furthermore, let K be a connected compact Lie group and γ : K → Aut(H) a
group homomorphism such that the mapping

H ×K → H , (h, k) �→ γ (k)h

is analytic. The group of main interest in this section is G := H �γ K .
The measures we would like to consider, are the Lebesgue measures on N and

R, dn and dr , as well as the biinvariant Haar measure dk on K . For simplicity we
may assume dk(K) = 1. The Lie algebra of the group K is denoted by k.

A right invariant Haar measure on H is given by drh := dn dr , and the mea-
sure dlh := e−rQ dn dr is left invariant. We shall denote by µ the modular factor
µ(n, r) := erQ. It is easy to verify that drg := dn dr dk is a right invariant
Haar measure on G. As K is compact, the modular function m on G is given by
m(n, r, k) = µ(n, r). Hence the left invariant Haar measure on G is of the form
dlg := e−rQ dn dr dk. For p ∈ [1,∞] let Lp(G) := Lp(G, drg).
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Since the modular functions µ and m are not trivial, the groups H and G are of
exponential volume growth (cf. [11], §IX.1).

Let Y1, . . . ,Yp be left invariant vector fields on G, which generate the Lie
algebra g of G. We are interested in the sub-Laplacian

� = −
p∑

j=1

Y2
j (1)

and its heat kernel (φz)z∈Hr
, where Hr denotes the right open complex halfplane.

The heat kernel is defined by e−z�f = f ∗ φz for all f ∈ C∞
c (G).

Results

In the situation described above the following two theorems hold:

Theorem 1. For any ε > 0 there exists a Cε > 0 such that for each s ∈ R

‖φ1+is‖L1(G) ≤ Cε(1 + |s|) Q2ρ+2+ε
. (2)

If D is semisimple, there exists a C0 > 0 such that for all s ∈ R

‖φ1+is‖L1(G) ≤ C0(1 + |s|) Q2ρ+2
. (3)

Theorem 2. Let f ∈ Cc(R), κ > Q
2ρ + 5

2 and p ∈ [1,∞]. If f lies in the Sobolev
space Hκ(R), the operator f (�) extends to a bounded endomorphism on Lp(G),
given by convolution from the right with the L1(G)-function

kf := 1

2π

∫

R

(f · exp)∧(ξ)φ1−iξ dξ .

Theorem 2 follows directly from Theorem 1: With Theorem 1 and the Cauchy-
Schwartz inequality it is easily verified, that for f ∈ Hκ(R) the function kf is
integrable on G. The Fourier inversion formula implies for all ϕ ∈ Lp ∩ L2(G)

f (�)ϕ = 1

2π

∫

R

(f · exp)∧(ξ)e−(1−iξ)�ϕ dξ ,

so we obtain f (�)ϕ = ϕ ∗ kf and ‖f (�)ϕ‖Lp(G) ≤ ‖kf ‖L1(G)‖ϕ‖Lp(G).
Remark 3. Consider the special case, where K is the trivial group {1K}, N a
stratified group and R is acting on N by the natural dilations. More precisely,
let Vi , i = 1, . . . , q, be vector spaces with n = V1 ⊕· · ·⊕Vq and [Vi, Vj ] = Vi+j
(with the convention Vl = {0} for l > q), and let Dvj = jvj for each vj ∈ Vj .

In this situation Theorem 1 and 2 were proved in [6] (with slight restrictions
on the form of the considered sub-Laplacians). In the Section Improvements and
open problems of that article W. Hebisch mentioned that his results can be extended
to any semidirect product H , defined as in our preceding section. So in the case
K = {1K} our proof of Theorem 1 serves as a rigorous verification of the statement
made by W. Hebisch.
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When K and γ are non-trivial our results are new.

Proof of Theorem 1
If all ρi are strictly negative, the mapping τ(n, r, k) = (n,−r, k) is a group

isomorphism between G and G̃ := (N �θ̃ R) �γ̃ K with θ̃ (r) = er(−D) and
γ̃ = τ ◦ γ ◦ τ−1. The operator �̃ := dτ(�) is a sub–Laplacian on G̃ and its heat
kernel is given by φ̃z = φz ◦ τ , which implies ‖φz‖L1(G) = ‖φ̃z‖L1(G̃)

.
So we just have to prove the case, where all real parts ρi , i = 1, . . . , q, are

strictly positive. We shall reduce the L1-estimate of the heat kernel to a weighted
L2-estimate in Proposition 6. But previously, we have to define a reasonable weight
function w and to prove two preparatory lemmas.

Let | · |D be a homogeneous norm on N with respect to D, i. e., a continuous
mapping |·|D : N → [0,∞[, which is smooth away from the origin and which fulf-
ils the conditions |x|D = 0 iff x = 0, |−x|D = |x|D and |esDx|D = es |x|D . (Such
a homogeneous norm exists iff all the ρi , i = 1, . . . , q, are strictly positive; see
e. g. [4], §2.5.) Fs shall denote the compact smooth surface {n ∈ N : |n|D = es}.
The weight function w : G → [0,∞[ is defined by w(n, r, k) = |n|QD .

We consider a left invariant Riemannian metric d on G. Let 1G be the unit
element in G. Then we define d(g) to be d(1G, g) for any g ∈ G.

Lemma 4. There is a constant C > 0 such that for all g = (n, r, k) ∈ G
|n|D ≤ CeCd(g) and |r| ≤ C(1 + d(g)) .

Proof. Let Br denote the Riemannian ball inG with centre 1G and radius r . As its
closure Br is compact, there are q, p ∈ N with

B1 ⊂ (Bq ∩H)×K and γ (K)(Bq ∩H) ⊂ Bp ∩H .

If g0 = (h0, k0) is in Bj , there exist gi = (hi, ki) ∈ B1, i = 1, . . . , j , with

g0 = g1 · ... · gj = (h1 · γ (k1)h2 · ... · γ (k1 · ... · kj−1)hj , k1 · ... · kj ) .
Thus h0 = (n0, r0) is in (Bp ∩ H)j , and we can find h′

i = (ni, ri) ∈ Bp ∩ H ,
i = 1, ..., j , with

h0 = h′
1 · ... · h′

j = (n1 · er1Dn2 · ... · e(r1+...+rj−1)Dnj , r1 + ...+ rj ) .

There is a C > 0 with Bp ∩ H ⊂ {(n, r) : |n|D ≤ C, |r| ≤ C}, which implies
|r0| ≤ Cj . For all n′, m′ ∈ N we have |n′ ·m′|D ≤ M · max{|n′|D, |m′|D}, where
M := max{|n ·m|D : |n|D, |m|D ≤ 1}. Hence

|n0|D ≤ Mj−1 max{|n1|D, ..., er1+...+rj−1 |nj |D} ≤ CMj−1eC(j−1) .

��
Lemma 5. There exists a C > 0 such that for each R > 0

∫

d(g)<R

(1 + w(g))−1drg ≤ C(1 + R)2 . (4)
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Proof. Lemma 4 ensures the existence of a constant C > 0 independent of
g = (n, r, k) such that |n|D ≤ CeCd(g) and 2|r| ≤ C(1 + d(g)) are satisfied.
That implies

∫

d(g)<R

drg

1 + w(g)
≤ C(1 + R)

∫

|n|D≤CeCR

dn

1 + |n|QD
.

For the sake of simplicity we confine our analysis to the situation, where F0 can be
parametrized up to a set with surface measure zero by one chart ϕ : U → R

m = n.
Here U is an open subset in R

m−1. Let R′ := (CR + ln(C))/Q. The mapping
esD ◦ ϕ is a parametrization of Fs and

� : U×] − ∞, R′[→ {n ∈ N \ {0} : |n|D < eR
′Q} , (u, s) �→ esD(ϕ(u))

is a diffeomorphism onto the range of � with Jacobian determinant

esQ| det(∂uϕ(u),D(ϕ(u)))| .

With a suitable C0 > 0 we obtain

∫

|n|D≤eR′Q

dn

1 + |n|QD
=

R′∫

−∞

( ∫

U

esQ| det(∂uϕ(u),D(ϕ(u)))|
1 + esQ

du
)
ds

= C0 ln(1 + eR
′Q) .

��

Proposition 6. There exists a C > 0 such that for every s ∈ R

‖φ1+is‖L1(G) ≤ C(1 + |s|)2(1 + ‖w1/2φ1+is‖) . (5)

Here and in the sequel, ‖ · ‖ shall denote the norm on L2(G) = L2(G, drg).

Because of inequality 4, the argument from [5], p. 160 (or [6], p. 438 – 439) can be
used to prove Proposition 6. Consequently, in order to prove Theorem 1 it suffices
to verify the following proposition:

Proposition 7. For given ε > 0 there exists a Cε > 0 such that for each s ∈ R

‖w1/2φ1+is‖ ≤ Cε(1 + |s|) Q2ρ+ε
. (6)

If D is semisimple, then there exists a C0 > 0, independent of s, with

‖w1/2φ1+is‖ ≤ C0(1 + |s|) Q2ρ . (7)
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For the proof of Proposition 7 it is useful to consider a distinguished basis of the
Lie algebra g. Let {X1, ...,Xm} be a basis of n, X0 = (0, 1, 0) ∈ n × R × k and
{X−1, ...,X−n} a basis of k. These Lie algebra elements induce left invariant vector
fields on G by

Xj f (g) = d

dt
f (g · expG(tXj ))|t=0 , j = −n, ..., 0, ..., m ,

which we will identify with the Lie algebra elements themselves. If j = 0, ..., m,
we can also consider left invariant vector fields XH

j on H , defined by

XH
j ϕ(h) = d

dt
ϕ(h · expH (tXj ))|t=0 .

Analogously, we define for j = 1, ..., m and a function ψ on N

XN
j ψ(n) = d

dt
ψ(n · expN(tXj ))|t=0 .

Then the vector fields XH
j , j = 0, ..., m, on H are given by

XH
0 = ∂r and XH

i = (erDXi )N for all i = 1, ..., m. (8)

For a given k ∈ K let now γ̃ (k) be the uniquely determined linear mapping, which
ensures commutativity in the diagram below:

H
γ(k)−−−−→ H

expH

�
�expH

h −−−−→
γ̃ (k)

h

(A maybe more common notation for γ̃ (k) would be dγ (k).) If γ̃ (k) will be
represented as a matrix in the sequel, this is always meant with respect to the
basis {X0, ...,Xm} of h. With this convention we obtain for each j ∈ {0, ..., m} and
n ∈ N \ {0}, r ∈ R, k ∈ K

(Xjw)(n, r, k) =
m∑

i=1

γ̃ (k)i,j [(erDXi )Nw](n) . (9)

The following statement can be calculated directly by transforming D into com-
plex Jordan normal form: There are functions Pi,l,ν : R → C, i, l = 1, ..., m;
ν = 1, ..., q, and constants C, µ > 0 independent of s ∈ R, satisfying

esDXi =
m∑

l=1

( q∑

ν=1

esρνPi,l,ν(s)
)
Xl and |Pi,l,ν(s)| ≤ C(1 + |s|µ) . (10)

If D is semisimple, each Pi,l,ν can be chosen as a bounded function.
Now we are going to establish a proposition, which is essential for our approach

to the proof of Proposition 7:
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Proposition 8. For any ε > 0 there exists a Cε > 0 such that for all i ∈ {1, ..., p},
n ∈ N \ {0}, r ∈ R and k ∈ K the following inequality holds:

|Yiw|(n, r, k) ≤ Cε

q∑

ν=1

{
er(ρν+ε)w(n)

Q−ρν−ε
Q + er(ρν−ε)w(n)

Q−ρν+ε
Q

}
. (11)

If D is semisimple, one can estimate

|Yiw|(n, r, k) ≤ C0

q∑

ν=1

erρνw(n)
Q−ρν
Q , (12)

with a constant C0 > 0 independent of i, n, r and k.

Proof. For i = −n, ...,−1 the functions Xiw are identically zero, as w does not
depend on the variable k.

Using formula (10), we get for n ∈ F0 and i = {1, ..., m}

[(erDXi )Nw](esDn) = esQ
d

dt
w(n · expN(te

(r−s)DXi ))|t=0

= esQ(e(r−s)DXi )Nw(n) =
q∑

ν=1

esQ+(r−s)ρν
m∑

l=1

Pi,l,ν(r − s)(XN
l w)(n) .

Hence there exists for any ε > 0 a constant cε > 0, fulfilling

|(erDXi )Nw|(esDn) ≤ cε

q∑

ν=1

esQ+(r−s)ρν+|r−s|ε
m∑

l=1

|XN
l w|(n) . (13)

Now define C := cε max{∑N
l=1 |(XN

l w)|(n) : n ∈ F0}. Because of w|F0 ≡ 1,
there holds for n ∈ F0, r ∈ R

|(erDXi )Nw|(esDn)

≤ CesQ
q∑

ν=1

{
e(r−s)(ρν+ε)w(n)

Q−ρν−ε
Q + e(r−s)(ρν−ε)w(n)

Q−ρν+ε
Q

}

= C

q∑

ν=1

{
er(ρν+ε)w(esDn)

Q−ρν−ε
Q + er(ρν−ε)w(esDn)

Q−ρν+ε
Q

}
. (14)

We have N \ {0} = {esDF0 : s ∈ R}. Furthermore, the functions γ̃i,j are bounded
on K and the Yis are linear combinations of the Xj s. Thus formulae (9) and (14)
imply inequality (11). If D is semisimple, (13) can be simplified to

|(erDXi )Nw|(esDn) ≤ c0

q∑

ν=1

esQ+(r−s)ρν
m∑

l=1

|XN
l w|(n)

with a suitable constant c0 > 0. Therefore inequality (12) follows. ��
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To simplify the proof of Proposition 7, we state two preliminary lemmas:

Lemma 9. For any δ > 0 there exists a C > 0 such that for each j ∈ {1, ..., p}
and each z ∈ C with �(z) ≥ δ the inequality ‖er Q2 Yjφz‖ ≤ C holds; here er

Q
2

denotes the function (n, r, k) �→ er
Q
2 .

Proof. Let z ∈ C with �(z) ≥ δ. If Yj has the form Yj = ∑m
i=−n ai,jXi with

ai,j ∈ R, then, by using the notation ηj := ∑m
i=0 ai,j γ̃0,i , we get

〈�φz, erQφz〉 =
p∑

j=1

(‖er Q2 Yjφz‖2 + 〈Yjφz, ηjQerQφz〉) .

The Cauchy-Schwarz inequality and the fact that φz solves the homogeneous heat
equation with respect to � imply

p∑

j=1

‖er Q2 Yjφz‖2 ≤ |〈er Q2 �φz, er
Q
2 φz〉| +

p∑

j=1

|ηj |∞Q〈|er Q2 Yjφz|, |er
Q
2 φz|〉

≤ ‖er Q2 ∂zφz‖‖er
Q
2 φz‖ +

p∑

j=1

1

2

(‖er Q2 Yjφz‖2 + |ηj |2∞Q2‖er Q2 φz‖2) .

From (e−z�)∗ = e−z∗� follows φz(g−1) = m(g)φz(g). As the modular functionm

is given by erQ, we get ‖er Q2 φz‖ = ‖φz‖. Sinceφz = e−(z−δ)�φδ , ‖er
Q
2 φz‖ ≤ ‖φδ‖

holds. By using Cauchy’s formula, it is easy to verify that

‖er Q2 ∂zφz‖ ≤ 2

δ
sup{‖er Q2 φζ‖ : |z− ζ | < δ

2 } .

��

Lemma 10. Let j ∈ {1, ..., p}, δ > 0, η > 0 and C̃ > 0.

(i) If Q ≥ 2η, there exists a C > 0 such that for α > 0 and z with �(z) ≥ δ

〈|Yjφz|, erηw
Q−η
Q |φz|〉 ≤ α

C̃
‖w1/2Yjφz‖2 + C

α
‖w1/2φz‖

2Q−4η
Q . (15)

(ii) If Q < 2η < 2Q, there exists a C > 0 with

〈|Yjφz|, erηw
Q−η
Q |φz|〉 ≤ α

C̃
‖w1/2Yjφz‖2 + Cα

η−Q
η (16)

for all α > 0 and z with �(z) ≥ δ.

Proof. Consider α, C̃, η, δ > 0. Let j ∈ {1, ..., p} and z with �(z) ≥ δ.
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(i) Q ≥ 2η implies

〈|Yjφz|, erηw
Q−η
Q |φz|〉 ≤ α

C̃
‖w1/2Yjφz‖2 + C̃

α
‖erηwQ−2η

2Q φz‖2 .

By using Hölder’s inequality, one gets

‖erηwQ−2η
2Q φz‖ ≤ ‖er Q2 φz‖

2η
Q ‖w1/2φz‖

Q−2η
Q ≤ ‖φδ‖

2η
Q ‖w1/2φz‖

Q−2η
Q .

(ii) Let Q < 2η < 2Q. By using Hölder’s inequality with exponents p =
Q/2(Q− η) and p′ = Q/(2η −Q), we can estimate

〈|Yjφz|, erηw
Q−η
Q |φz|〉 ≤ ‖er Q2 φz‖‖er(η−

Q
2 )w

Q−η
Q Yjφz‖

≤ ‖φδ‖‖er(η−
Q
2 )w

Q−η
Q Yjφz‖ ≤ ‖φδ‖‖w1/2Yjφz‖

2(Q−η)
Q ‖e rQ2 Yjφz‖

2η−Q
Q .

As there exists a constant C > 0 with ‖er Q2 Yjφz‖ ≤ C (cf. Lemma 9) and as
the inequality ab ≤ ar + br

′
, r ′ = r

r−1 holds for all a, b > 0 and r > 1, we
obtain inequality (16) with r = Q/(Q− η) and a suitable C > 0. ��

Proof of Proposition 7. Lemma 4 states the existence of a C > 0 with w(g) ≤
CeCd(g), and (e−z�)�(z)>0 is a holomorphic semigroup of operators on each
weighted L2-space L2(G, esd(g) drg), s ∈ R (cf. [5], Lemma 1.2). Hence z �→
w1/2φz is a holomorphic mapping from the right open complex halfplane into
L2(G). Therefore there exists a C > 0 such that ‖w1/2φ1+is‖ ≤ C for each
s ∈ [0, 1]. Since φ1−is = (φ1+is)∗, we have to consider only the case where s ≥ 1.
For 0 < α ≤ 1 we define

ψα(s) := ‖w1/2φ 1
2 +(i+α)s‖2 .

Further we define z := 1
2 + (i + α)s. Using this notation, we obtain

∂sψα(s) = 2�〈(i + α)∂zφz, wφz〉 = −2�(
(i + α)〈�φz,wφz〉

)

≤ 2
p∑

j=1

( − α‖w1/2Yjφz‖2 + 2〈|Yjφz|, |Yjw||φz|〉
)
. (17)

Case (1): dim n = 1. Here,D is given by the 1 × 1-matrix (Q). Estimate (12) leads
us to the inequality |Yjw|(n, r, k) ≤ C0e

rQ for j ∈ {1, ..., p}. Hence

〈|Yjφz|, |Yjw||φz|〉 ≤ C0‖er
Q
2 Yjφz‖‖er

Q
2 φz‖ ≤ C ,

with C > 0 independent of s, α (cf. Lemma 9). Thus there exists a C > 0 such that
∂sψα(s) ≤ C for all s and α. That implies (with α := 1

2s )

‖w1/2φ1+is‖ ≤ C
√

1 + |s| for s ≥ 1.
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Case (2): dim n ≥ 2. For j = 1, ..., p and ε > 0 we get from Proposition 8

〈|Yjφz|, |Yjw||φz|〉

≤ Cε

q∑

ν=1

〈|Yjφz|, (er(ρν+ε)w
Q−(ρν+ε)

Q + er(ρν−ε)w
Q−(ρν−ε)

Q )|φz|〉 .
(18)

(If D is semisimple, we can exchange ε by 0 in (18) and in the rest of this proof.)
For every ε < ρ, ρν + ε fulfills Q > ρν + ε for any ν ∈ {1, ..., q}. According
to (17), (18), (15) and (16) (with C̃ := 4qCε), ∂sψα is majorized by a sum over
η ∈ {ρν ± ε : ν = 1, ..., q}, consisting of terms of the form

C

α
‖w1/2φz‖

2Q−4η
Q = C

α
ψ

Q−2η
Q

α for Q ≥ 2η

and

Cα
η−Q
η ≤ C

α
for Q < 2η < 2Q.

Hence, there exists a C > 0 such that for all α ∈]0, 1], s ≥ 1 the function ψα is
majorized by the solution u of the initial value problem

u′(s) = C

α
(1 + u(s))

Q−2(ρ−ε)
Q , u(1) = ψα(1) ,

which is given by

u(s) =
(2(ρ − ε)C

Qα
(s − 1)+ (1 + ψα(1))

2(ρ−ε)
Q

) Q
2(ρ−ε) − 1 .

Hence, for α = 1
2s there exists a constant cε > 0, independent of s, with

‖w1/2φ1+is‖ =
√
ψα(s) ≤ cε(1 + |s|) Q

2(ρ−ε) .

��

Part II: Semidirect products of the Heisenberg group H1 and the real axis

Motivation

Noteworthy about Theorem 1 and 2 is, that the exponents in (2), (3) and the expo-
nent κ in Theorem 2 tend to infinity with the ratio Q/ρ. There are indications that
this phenomenon might be a consequence of our method of proof and does not
reflect any underlying mathematical reality.

In [10] e. g., groups of the form H = R
2

�θ R with θ(t) = etD , D any 2 × 2-
matrix, were studied and for distinguished sub-Laplacians and their heat kernels
the estimate

‖φ1+iξ‖L1(H) ≤ C(1 + |ξ |)5 (19)
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was proven. (In some cases the estimates are better; the method which handled the
most delicate case had been introduced in [5].) So the exponent of (19) is bounded,
regardless of the action etD .

If we consider semidirect products H1 �θ R of the 3-dimensional Heisenberg
group with the real axis, we can of course not expect such a result. The article
[2] shows that not even all of this semidirect products admit differentiable Lp-
functional calculus.

But if we confine ourselves to group homomorphisms θ , which are induced by
derivationsD in diagonal form with non-negative entries (or non-positive entries),
we are able to derive an estimate like (19) with exponent 6 for all θ by transferring
the methods from [5] and [10] to our situation.

Preliminaries

The Heisenberg group H1 is the set R
3 endowed with the multiplication

(x, y, u)(x′, y′, u′) =
(
x + x′, y + y′, u+ u′ + 1

2
(xy′ − yx′)

)
.

The Lie algebra of H1 is the Heisenberg algebra h1.
Let α, β ∈ R with αβ ≥ 0, and let D be the derivation on h1 defined by

D(p, q, t) = (αp, βq, (α+β)t). The traceQ ofD is then equal to 2(α+β). Here
our object of interest is the group G := H1 �θ R, where θ(r) = erD .

As in Part I the right invariant Haar measure drg is simply the Lebesgue
measure dx dy du dr on R

4 and the modular function is m(g) = m(x, y, u, r) =
e2(α+β)r .

The left invariant vector fields on G, induced by the Lie algebra elements
X1 := (1, 0, 0, 0), X2 := (0, 1, 0, 0), X3 := (0, 0, 1, 0) and X0 := (0, 0, 0, 1)
from g = h1 × R, are explicitly given by

X1 = eαr
(
∂x − 1

2
y∂u

)
, X2 = eβr

(
∂y + 1

2
x∂u

)
,

X3 = e(α+β)r∂u , X0 = ∂r .

The operator�S := − ∑2
j=0 X 2

j is a sub-Laplacian and�L := − ∑3
j=0 X 2

j a full

Laplacian onG. Let φSt and φLt denote the heat kernels of�S and�L, respectively.
Further let J (�S) := {0, 1, 2} and J (�L) := {0, 1, 2, 3}. In the sequel � shall
denote the sub-Laplacian �S as well as the full Laplacian �L, and (φt )t>0 shall
denote the heat kernel of �.

Results

Theorem 11. There exists a C > 0 such that for each ξ ∈ R the inequality

‖φ1+iξ‖L1(G) ≤ C(1 + |ξ |)κ (20)

holds; hereby we have
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κ =
{

α+β
min{α,β} + 2 if α

β
∈ [ 1

3 , 3],

6 otherwise.
(21)

Like Theorem 1 in the first part, Theorem 11 implies a multiplier theorem:

Theorem 12. Let p ∈ [1,∞], ε > 0 and κ as in (21). Then each f ∈ Cc ∩
Hκ+ 1

2 +ε(R) is an LP -multiplier for �.

Remark 13. (a) Extending the results of Theorem 11 and Theorem 12 to compact
extensionsG�γ K ofG and sub-Laplacians�K+dγ (�),�K a sub-Laplacian
on K , is more or less trivial:
If α �= β, it can be shown that any homomorphism γ : K → Aut(G) has to be
trivial, i. e., γ (k) is the identity on G for any k ∈ K . (One can e. g. calculate
the entries of the matrix γ̃ = dγ successively.) But then our sub-Laplacian is
of the form�K +� and its heat kernel is given by φKz ⊗φz, φKz the heat kernel
of �K .
If α = β �= 0, the extension of the results is contained in Part I.
If α = 0 = β, then G�γ K has polynomial growth, so we refer to [1].

(b) If φz = φSz is the heat kernel of the sub-Laplacian and if α = β �= 0, Inequality
(20) and Theorem 12 hold even with κ = 3/2 (cf. [9] or [4]).

Outline of the proof of Theorem 11

The general strategy for proving Theorem 11 is the same as in the proof of Theo-
rem 1. That is, we want to reduce the L1-estimate of the heat kernel to a weighted
L2-estimate. But this time we utilize a weight function w, which is independent of
the action θ : We define w : G → R by

w(x, y, u, r) = (1 + |x|)(1 + |y|)(1 + |u|) .
Then there exists a C > 0 such that for any R > 0

∫

d(g)≤R
w(g)−1 drg ≤ C(1 + R)4 .

Again, by using the same argument as in [5], we are able to find a constant C > 0
such that for each ξ ∈ R

‖φ1+iξ‖L1(G) ≤ C(1 + |ξ |)4(1 + ‖w1/2φ1+iξ‖) . (22)

Therefore we are interested in estimating the term |∂ξ‖w1/2φ1+iξ‖2|. We will do
this step by step, beginning with weights of low order in x, y, u (like |x|1/2 and
|y|1/2) and using the estimations of these terms to estimate higher order terms in
x, y and u. We start with the analogue of Lemma 9:

Lemma 14. For any δ > 0 there exists a C > 0 such that for each j ∈ J (�) and
each z ∈ C with �(z) ≥ δ the inequality ‖e(α+β)rXjφz‖ ≤ C holds.

Lemma 14 can be verified easily by mimicking the proof of Lemma 9.
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Lemma 15. For any compact set K ⊂]0,∞[ there exists a C > 0 with

‖ |x|1/2φρ+iξ‖ + ‖ |y|1/2φρ+iξ‖ ≤ C(1 + |ξ |)1/2 (23)

and

‖ |x|1/2Xjφρ+iξ‖ + ‖ |y|1/2Xjφρ+iξ‖ ≤ C(1 + |ξ |)1/2 (24)

for all ρ ∈ K , ξ ∈ R and all j ∈ J (�).
Proof. By using the notation z = ρ + iξ we get

〈�φz, |y|φz〉 =
∑

j∈J (�)
‖ |y|1/2Xjφz‖2 + 〈X2φz, e

βr sgn(y)φz〉 .

On the one hand, from this and Lemma 14 there follows

|∂ξ‖ |y|1/2φz‖2| = 2|�(i〈∂zφz, |y|φz〉)| = 2|�〈�φz, |y|φz〉|
≤ 2|〈X2φz, e

βr sgn(y)φz〉| ≤ 2‖φz‖ ‖eβrX2φz‖ ≤ C .

We obtain ‖ |y|1/2φz‖2 ≤ C(1+|ξ |), because the mappingK � ρ �→ ‖ |y|1/2φρ‖2

is in particular continuous and thus bounded.
On the other hand, it follows from (∂z +�)φz = 0 and Cauchy’s formula that
∑

j∈J (�)
‖ |y|1/2Xjφz‖2 ≤ C + ‖ |y|1/2φz‖ ‖ |y|1/2∂zφz‖ ≤ C(1 + |ξ |) .

The rest of the statement can be obtained analogously. ��
Lemma 16. For any compact set K ⊂]0,∞[ one can choose a C > 0 in such a
way that for each ρ ∈ K , ξ ∈ R and each j ∈ J (�)

‖e( α2 +β)r |x|1/2φρ+iξ‖ + ‖e(α+ β
2 )r |y|1/2φρ+iξ‖ ≤ C(1 + |ξ |)1/2 (25)

and

‖e( α2 +β)r |x|1/2Xjφρ+iξ‖ + ‖e(α+ β
2 )r |y|1/2Xjφρ+iξ‖ ≤ C(1 + |ξ |)1/2 . (26)

Proof. Let again z := ρ + iξ . With the notation γ (r) = exp((α + β
2 )r) we get

‖γ |y|1/2φρ+iξ‖ = ‖|y|1/2φρ+iξ‖, because of φz(g−1) = m(g)φz(g). Further

〈�φz, γ 2|y|φz〉 =
∑

j∈J (�)
‖γ |y|1/2Xjφz‖2 + 〈X2φz,m sgn(y)φz〉

+ 〈X0φz, (2α + β)γ 2|y|φz〉 .
Here the absolute value of the last term can be majorized by

1

2
‖γ |y|1/2X0φz‖2 + (2α + β)2

2
‖γ |y|1/2φz‖2 .
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Hence
∑

j∈J (�)
‖γ |y|1/2Xjφz‖2 ≤2‖γ |y|1/2φz‖ ‖γ |y|1/2∂zφz‖ + 2‖√mφz‖ ‖√mX2φz‖

+ (2α + β)2‖γ |y|1/2φz‖2 ≤ C(1 + |ξ |) .

��
Lemma 17. For any compact set K ⊂]0,∞[ there exists a C > 0 with

‖ |u|1/2φρ+iξ‖ + ‖ |u|1/2Xjφρ+iξ‖ ≤ C(1 + |ξ |) (27)

for every ρ ∈ K , ξ ∈ R and j ∈ J (�).
Proof. We consider just the case � = �L. (The proof for the heat kernel of the
sub-Laplacian �S is contained in the proof for the Laplacian �L – one has just to
ignore all terms in which X3 occurs.)

With z = ρ + iξ we get

〈�LφLz , |u|φLz 〉 =
3∑

j=0

‖ |u|1/2XjφLz ‖2 − 1

2
〈X1φ

L
z , e

αry sgn(u)φLz 〉

+ 1

2
〈X2φ

L
z , e

βrx sgn(u)φLz 〉 + 〈X3φ
L
z , e

(α+β)r sgn(u)φLz 〉 .

By proceeding as in the proof of (23) we obtain |∂ξ‖ |u|1/2φLz ‖2| ≤ C(1 + |ξ |),
and from this follows ‖ |u|1/2φLρ+iξ‖2 ≤ C(1 + |ξ |)2. As in the proof of (24) one

derives eventually
∑3
j=0 ‖ |u|1/2XjφLz ‖2 ≤ C(1 + |ξ |)2. ��

In Lemma 16 we got the same upper boundC(1+|ξ |1/2) for the terms‖e(α+ β
2 )r |y|1/2

φρ+iξ‖ and ‖e(α+ β
2 )r |y|1/2Xjφρ+iξ‖ (which we shall call related terms of ‖|y|1/2

φρ+iξ‖) as for the terms ‖|y|1/2φρ+iξ‖ and ‖|y|1/2Xjφρ+iξ‖ in Lemma 15.
Similarly, we get from Lemma 17 the estimate

‖e α+β
2 r |u|1/2φρ+iξ‖ + ‖e α+β

2 r |u|1/2Xjφρ+iξ‖ ≤ C(1 + |ξ |) (28)

for the sum of the related terms of ‖|u|1/2φρ+iξ‖. The last inequality holds again
for any compact K ⊂]0,∞[, ρ ∈ K , ξ ∈ R, j ∈ J and the constant C depends
just on K .

By using the same notation and just the same techniques that we have used so
far, we obtain

‖xφρ+iξ‖ + ‖yφρ+iξ‖ ≤ C(1 + |ξ |) (29)

and this upper bound holds also for the related terms ‖eβrxφρ+iξ‖, ‖eαryφρ+iξ‖,
‖eβrxXjφρ+iξ‖ and ‖eαryXjφρ+iξ‖.
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After this it is easy to derive that ‖|xu|1/2φρ+iξ‖, ‖|yu|1/2φρ+iξ‖ and the related
terms are bounded by C(1 + |ξ |)3/2.

In a similar way one establishes

‖x|y|1/2φρ+iξ‖ + ‖|x|1/2yφρ+iξ‖ ≤ C(1 + |ξ |)3/2 (30)

(and this bound holds also for the related terms). With this bunch of estimates we
are able to verify ‖w1/2φ1+iξ‖ ≤ C(1 + |ξ |)2. Therefore, with regard to inequality
(22) and Theorem 1, Theorem 11 holds.
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