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Abstract. Using vertex algebra techniques, we determine a set of generators for the cohomology
ring of the Hilbert schemes of points on an arbitrary smooth projective surface over the field of
complex numbers.
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1. Introduction

The Hilbert scheme ™! of points on a smooth projective surfakés a desingu-
larization of thez-th symmetric product ok (see [Fog]). An elemerstin X! is
alengthu O0-dimensional closed subscheme&oiRecently, there are two surpris-

ing discoveries, mainly due to the work ob@sche [Go1l], Nakajima [Nal,Na2]

and Grojnowski [Gro], that the sum of the cohomology groHRs= H*(X™)

with Q-coefficients of the Hilbert scheméd"! for » > 0 have relationships with
modular forms on the one hand and with representations of infinite dimensional
Heisenberg algebras on the other hand (see aslo the work of Vafa and Witten
[V-W] for connections with string theory). These results have been used by Lehn
[Leh] to investigate the relation between the Heisenberg algebra structure and the
cup product structure dfi,,. In particular, Lehn constructed the Virasoro algebra
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in a geometric fashion and studied certain tautological sheavestdveSome
other recent work on Hilbert schemes includes [dCM,EGL,Go2,Hai,K-T,LQZ,
Wanl].

In this paper, by using vertex algebra techniques (see [Bor,FLM,Kac]) and
generalizing the work of Nakajima, Grojnowski and Lehn [Nal,Gro,Na2,Leh],
we study the cohomology ring structure of the Hilbert schexiés We deter-
mine the ring generators &f*(X"!) for an arbitrary smooth projective surface
X over the field of complex numbers. In particular, we recover the result of
Ellingsrud and Strgmme [ES2] for = P?2. More precisely, we find a set of
(n - dim H*(X)) generators for the cohomology ririj,, and interpret the re-
lations among these generators in terms of certain operators ifflEmechere
H = 6p,.,H.,. Our results also clearly indicate that there are deep interplays
between the geometry of Hilbert schemes and vertex algebra structures which
go beyond the Heisenberg and Virasoro algebras.

To state our result, we establish some notations and refer the details to Defini-
tion 5.1. LetZ, be the universal codimension-2 subschem&6f x X, andp,
andp, be the projections oX "/ x X to X!"! and X respectively. Foy € H*(X)
andn > 0, letG;(y, n) be theH*+?% (X")-component of

G(y.n) & pr.(ch(Oz,) - p3td(X) - p3y) € H, (1.1)

(we refer to the Conventions at the end of this section for the conventions used
in the paper). Foy € H*(X) andi € Z, define an operatab; (y) € End(H)

which acts on the componeHt, = H*(X") by the cup product by the class
Gi(y,n).

Theorem 1.2. Let X be a smooth projective surface over the field of complex
numbers. Fon > 1, the cohomology rindl, = H*(X")) is generated by

Gi(y,n) = &;(y)(1xm)

where0 < i < n andy runs over a linear basis off *(X). Moreover, the rela-
tions among these generators are precisely the relations among the restrictions
&, (v)|m, of the corresponding operators; () to Hi,.

The above Theorem and its proof are inspired mainly by two sources. The first
one is Lehn’s approach of determining the cohomology ring structuf@?f*!
by using vertex operator techniques (the cohomology ring struct&yf! has
been first obtained by Ellingsrud and Stramme [ESZ2]). Lehn’s approach is very
instrumental and valuable to us. Our first result here is that although it is difficult
to describe completely the operata#s(y) as vertex operators or differential
operators, we are able to determine the leading terms of the opetatgrsas
the degree-0 components of some explicit vertex operators (see the paragrapt
preceding Theorem 4.12 for the definition of the leading term). These vertex
operators are natural generalization of the Virasoro operaidis) considered
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by Lehn [Leh]. Such descriptions of the leading terms allow us to use induction
to derive our Theorem above. As a byproduct, we also show that the commutator
between the operata@; (y) and the Heisenberg generatgi(«) depends only

on the cup producy«, which we refer to as thgansfer property We remark

that such a transfer property seems to be a general phenomenon among this typ
of commutation relations.

The second one is the work of Ellingsrud and Strgemme [ES1,ES2] (see also
the work of Beauville, Fantechi, @&tsche, Yoshioka and Markman [Bea, F-G,
Yos, Mar] on the cohomology ring structures of other moduli spaces of sheaves).
In [ES2], Ellingsrud and Strgmme proved that f6r= P2, the cohomology
ring H,, = H*(X'") is generated by the Chern classes of the tautological #ank-
bundles

P1+(0z, ® p3Op2(—j)) (13)
with j = 1, 2, 3. Equivalently, this says thal, is generated by th&? (X1)-
components with G&< i < n of the Chern characters of the three bundles in (1.3).
By the Grothendieck-Riemann-Roch Theorem [Har], we have

ch(p1(Oz, ® p30p2(—)))) = p1.(ch(Oz, ® p;0p2(—j)) - p5 td(X))

forj =1, 2, 3. Note thatchO z, ® p5Op2(—j)) = ch(Oz,)- ps ch(Op2(—j)) =
ch(Oz,) - p53([X]— jl€] + 72[x1/2) wheret (respectivelyx) stands for a line
(respectively, a point) it = IP2. So the result of Ellingsrud and Stremme says
that the cohomology ringl, is generated by th&/% (X"1)-components of

P1:(Ch(Oz,) - p5td(X) - p3y) € H,

where 0< i <n andy = [X], [£], [x]. Indeed, this is our motivation for (1.1).

We may also put our present work in a different perspective. From the pio-
neering work [Nal,Gro, Leh], itis clear that there are deep connections between
the geometry of Hilbert schemes and vertex operators. However, the structure of
a vertex algebra [Bor,FLM,Kac] is far more richer than the appearance of the
Heisenberg and Virasoro vertex operators which are of conformal weight one
and two respectively. Thus a natural question here, which is easy to post but dif-
ficult to answer, is to understand the full symmetry of vertex algebras in terms of
the geometry of Hilbert schemes. Our present work provides a strong evidence
that the vertex operators of higher conformal weights afford nice geometric in-
terpretations. In a work in progress, we will further clarify precise connections
between vertex algebras and the geometry of Hilbert schemes.

The paper is organized as follows. In Sect.2, we recall constructions and
results of Nakajima, Grojnowski and Lehn. In Sect. 3, we study the relation
between Lehn’s boundary operator and the Heisenberg generators, and introduce
the transfer property. In Sect. 4, we prove that the leading terms for certain linear
operators of geometric significance are the degree-0 components of some vertex
operators. Finally, we prove our main results in Sect. 5.
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Conventions: Throughoutthe paper, all cohomology groups afg-icoefficients.
The cup product between two cohomology classaadg is denoted by - 8 or
simply byaf. For a continuous map : Y1 — Y, between two smooth compact
manifolds and fow; € H*(Y1), the push-forwarg. («1) is defined by

p«(a1) = PDp,(PD(at1))

where PD stands for the Poineaduality. We make no distinction between an
algebraic cycle and its corresponding cohomology class so that intersections
among algebraic cycles correspond to cup products among the corresponding
cohomology classes. For instance, for two algebraic cygl¢and [6] on a
smooth projective variety, it is understood thdi] - [b] € H*(Y).

Acknowledgementsifter communicating this paper to M. Lehn, we were informed by him that
he and C. Sorger had a preprint on the cohomology ring structuké’éffor X = C2, and that

their methods could apply to the case whég = 0 by combining with the results in the paper
(see [LS1,LS2].) The authors thank J. Li, Y. Ruan and Y. Zhu for stimulating discussions, and M.
Lehn for helpful comments. Also, the first author thanks the University of Missouri at Columbia
for its hospitality during his visit in August 2000, and the second and third authors thank the Hong
Kong University of Science and Technology for its hospitality and financial support during their
visits in July 2000.

2. Results of Nakajima, Grojnowski and Lehn

In this section, we shall fix some notations, and recall some results of Nakajima,
Grojnowski and Lehn [Nal,Gro, Leh]. For convenience, we also review certain
basic facts for the Hilbert scheme of points in a smooth projective surface.

Let X be a smooth projective surface o¥grandX ! be the Hilbert scheme
of points inX. An element in the Hilbert scheni€”! is represented by a length-
0-dimensional closed subschegef X, which sometimes is called a length-
O-cycle. Forg € X!"! let I; and O be the corresponding sheaf of ideals and
structure sheaf respectively. For a paine X, let &, be the component df
supported at and/; , C Ox , be the stalk of; atx. It is known from [Fog] that
X'is smooth. InX™ x X, we have the universal codimension-2 subscheme:

Z, = {(&,x) C X" x X|x € Supp(€)} € X" x X.
In general, fom > m > 0, we have the closed subscheme
xtmh = (&, m) e XM x XM g 5 )

of X"l x X"l ety and¢ be the natural maps froai™ to X" and x'"! re-
spectively. ThenX!™ parametrizes the two flat famili@%;l(z,,) D ¢;1(Zm)
over X" »x X whereyy = ¥ x ldy : X" x X — XMW" x X and
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dx = ¢ x Ildy : Xt»ml o X — XUl » X, In addition, there exists an exact
sequence

0— Z,m = ¥xOz, - ¢x0z, — 0. (2.1

Whenm = n — 1, there is a morphism : X"~ — X which maps a point
(&, n) € XI""~1to the support ot/,/I). So we have the standard diagram

X £ xtrn-u L xin

% ¢1] (2.2)
Xin=H,

It is known from [Che, Tik, ES3] thak "~ is irreducible, smooth and of di-
mension 2. In fact, X"~ is isomorphic to the blowup ok~ x X along
Z,_1. Let E, be the exceptional divisor if"~%, Then, we have

E, = {(5,m) € X""!| Supp§) = Suppn))}.
Moreover, (2.1) can be simplified to the exact sequence (see p.193 in [Leh]):
0— ,O;EOAX ® pTOX[n,n—lJ(—En) — 1//;(')3” — (f)}(’)zﬂfl -0 (2.3

whereAy is the diagonal inX x X, andp, is the projection off"~11 x X to
Xxn=1 Finally, we letX” = X x --- x X be then-th Cartesian product, and
~———

n
xlaleoud — ylnal o 00 X[’lk]‘ (2.4)

We formulate below various notations and definitions which will be used
later.

Definition 2.5. (i) Let H = @, ;- H™ denote the double graded vector space

with componentd™! i (X", andH,, d=EfH*(X[”]) def @flo Hi(x™). The
element 1 inH°(X'%) = Q is called thevacuum vectoand denoted bj0);

(i) A linear operatorf € End(H) is homogeneous of bi-degrég m) if
f(Hn’i) C Hﬂ+l,i+m. (26)

Furthermoref € End(H) is even(respectivelyodd) if m is even (respectively,
odd).

(iif) For two homogeneous linear operatgrendg € End(H) of bi-degrees
(¢, m) and(£1, my) respectively, define thieie superalgebra brackef, g] by

[f, g] = fg — (=1)""™gf. (2.7)
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A non-degenerate super-symmetric bilinear f¢rimonH is induced from the
standard one oH, = H*(X"!). For ahomogeneous linear opergter End(H)
of bi-degree(?, m), we can define itadjoint ' € End(H) by

(), B) = (=D (a, §(B))

where|a| = s for « € H*(X!"!). Note that the bi-degree 6f is (—¢, m — 4¢).
Also,
(o' = D™ -g'f'  and [, g]' = ~[f", '] (2.8)

whereg € End(H) is another homogeneous linear operator of bi-degtgen1).
Next, we collect from [Nal, Leh] the definitions of the closed sulggét® !

in X"+ x X x X", the Heisenberg generatgy, the Virasoro generatat,,

the boundary operatar, and the derivativ§ of a linear operatof € End(H).

Definition 2.9. (see [Nal,Leh)) (i) For > 0, defineQ!"" = ¢. Forn > 0 and
¢ > 0, defineQ"*+41 ¢ xI"+8 « X x X"l to be the closed subset

{(€,x,n) € X" x X x X" & 5y and Suppl, /L) = {x}}; (2.10)

(i) For n € Z, define linear maps, : H*(X) — End(H) as follows. When
n > 0, the linear operataf, (o) € End(H) with « € H*(X) is defined by

dn(@)(@) = pr([Q" ™. p*a - p3a) (2.11)

forall a € H,, = H*(X"), where[Q!"+""] is (the cohomology class cor-
responding to) the algebraic cycle associate@t™, andp1, p, p, are the
projections ofx "+l x X x X"l to xlm+nl X X"l respectively. When < 0,
define the operatay, («) € End(H) with « € H*(X) by

u(@) = (=1)" - g_p(e); (212

(iii) For n € Z, define linear maps,, : H*(X) — End(H) by putting

1 .

E : Z Anln—mT2x, 1fn#0
g, =1 mez (2.13)
Z Umd—m T2x, ifn=0

m>0

wheret,, : H*(X) — H*(X?) is the linear map induced by the diagonal
embedding, : X — X2, and the operatay,,q, 7. («) Stands for

> (e0)ae(e;.2)
J

whent, o = Z,- oj1 ® aj 2 via the Kiinneth decomposition af*(X?);
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(iv) Define the linear operatar € End(H) by

0 =P a(pn0z,) = P-10x"/2) (2.14)

wherep, is the projection o x X to X1, § X"l is the boundary ok ! con-
sisting of allé € X" with | Supp&)| < n, and the first Chern class(p1.0z,)
of the ranks bundlep,,.Oz, acts onH, = H*(X""!) by the cup product.

(v) For a linear operatdr € End(H), define itsderivativef by

, def def

' =ad®)f=[o, fl. (2.15)

The higher derivativg® of f is defined inductively by® = [, j*-11.

We remark that the definition of the Virasoro generapwill be generalized
in Definition 4.3 (ii) below. Alsog, (@), £,(«), ando are homogeneous of bi-
degreesn, 2n — 2 + |a]), (n, 2n + |«|), and(0, 2) respectively.

Finally, we recall from [Nal,Leh] the formulas for the derivatiygo) as
well as the commutation relations among the Heisenberg genemgtansand
the Virasoro generataog,, (8). These formulas will be used frequently in the
sequel.

Theorem 2.16.LetKx andc,(X) be the canonical divisor and the second Chern
class ofX respectively. Let, m € Z anda, B € H*(X). Then,

(i) [0 (@), G (B)] =11 8y - [y (@B) - 1dm;

(i) [£n (), g (B)] = —m - Quim (@PB);

(i) [La(@), Ln(B)] = (n —m) - £y () — ”31—_2" St - [y (c2(X)apB) - 1dm;

(iv) g, () = n - £,(c) + “WLq, (Kxa);

V) [0, (@), 4u(B)] = —nm - { i (@B) + 252 - 8 - [y (KxaB) - 1}

We notice that Theorem 2.16 (i) was proved by Nakajima [Nal] subject to
some universal nonzero constant, which was determined subsequently in [ES3].
The otherfourformulasin Theorem 2.16 were obtained by Lehn[Leh]. Moreover,
as observed by Nakajima and Grojnowski in [Nal,Giid]js an irreducible
representation of the Heisenberg algebra generated by; thgs with |0) e
HO(X% being the highest weight vector. In particular, a linear basill o§
given by

Giy (@) dip (2) - - - g, () |0),

wherek > 0,i; > i, > --- > i; > 0, and each of the cohomology classes
a1, oo, ... , o runs over a fixed linear basis &f*(X) = Q}fzo H (X).
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3. The higher derivatives ofq, (a)

Inthis section, we study the higher derivativy€d(«) of the Heisenberg generator
q. (o) by computing their commutators with other Heisenberg generai@i® .

In addition, for two series of operatdigw), 5 (8) € End(H) depending linearly
on the cohomology classes 8 € H*(X), we introduce the transfer property
for the commutatorfd(«), B(B)], i.e., the property that

[U(e), B(B)] = [A(1x), B(ap)] = [Aap), B(1x)].

Then, we prove that the commutatés” (@), q,,(8)] satisfy the transfer prop-
erty.

Lemma3.1. Letk > 0,ng, ... ,n; € Z, anday, ... , o € H*(X). Then,

[[- .- [a%) (@0). quy (@D)], - - . 1, Qg ()] @2
=a - Quot.in (@0 ..0) + b+ [ (Kxag... o) - ldy
wherea andb are constants depending only g, ... , ny.

Proof. For simplicity, denote the left-hand-side of (3.2) Byk; no, ag; ... ;
ng, o). Note that (3.2) is trivially true fok = 0. By Theorem 2.16 (v), (3.2) is
true fork = 1. In the following, by assuming that (3.2) holds for some positive
integerk, we shall prove that (3.2) also holds for + 1). Recall the Jacobi
identity

[[f1. f21. F3] = (=D1)"2"3[[f1, f3l. f2] + [f1. [f2, fall (3.3)
if the bi-degree of; € End(H) is (¢;, m;). We have by the Jacobi identity that

C(k+ 1 no, ao; . .. 5 Miy1, Cgy1)

=I[.. [[qff;”) (0), Qs (@)1, dny(@2)], - - - 1, by (k42)]
=[.. [{[qu;) (@0), dny (@)1 — [q%) (@0). q, (@)1}, Ay (@21, . 1, by (g1)]
= [L. .- [[a{) (@0), Guy (@] dnp(@2)], - - 1, Qs (@i41)]

~[[. .- (gl (@0), dp, (@), dup @)1, -+ - 1, Gy (a1

(3.4
Repeating the above process, we conclude that
C(k + L no, a0 - .. 5 Mg1, Otky1)
= [C(k; o, @05 - - - 3 s &), Gy (s )] — b7 L [9%) (), g ()], - ..
LI ]7 qn[_l(ai—l)]a q;,l (ai)]v qn1+1(ai+l)]7 LI ]7 an+1(ak+l)]'
3.5

By the induction hypothesis dnand Theorem 2.16 (i), we get
[C(k; no, 03 - - - 5 ks k), Qg (r2)] = 0. (3.6)



Vertex algebras and Hilbert schemes 113

Using the Jacobi identity (3.3) again, we see that
[..[a%(@0), qu(@D)], - .. 1, gu,_y (@i-1)], g, ()],

C]ni+1(05i+1)], LIS ]v an+1(ak+l)]
k+1

2 loelle]
= (=D=+ [C(k; no, @0; ... 3 i1, Qi—1; M1, gt oo 5
Mg, 1)y Gy, ()]
+[... [qff;) (@0), quy (@)1, -+ 1, G,y (@i-1)], [qy, (@), Gy (@i 12)]],

QIzi+2(ai+2)]7 o ]7 an+1(ak+l)]

k+1
j—1
+ Y (=pZemaledal [ [q®) (ap). g, (@], -],
j=i+2

qni,]_(ai—l)]s qu,url(ai-l—l)]a ... ]a an,l(aj—l)]s [q;;, (ai)’ CInj (a])]]a
Qn_,+1 (aj+l)]v . ]’ an+1 (ak+l)]
1
= (DX [C ks ng, g ... ;
i 1, 0 13 Migd, it ds - - - 5 Mg d, Q1) G, ()]
+(—niniy1) - C(k; no, oto; ... 5 Mi—1, 0ti—1; Ry + Nig1, OGQ41;

Mig2, OQig2; oo 5 Nyd, Olkg1)
k1

+ 3 (~p Tl (g - ks no, s
j=i+2
i1, Q-1 Mi41, 015 ... S 1, 013
ni+nj, 00 Ny, @ 4as .. Mgl Okyl)
where we have used Theorem 2.16 (v) in the last step. By induction hypothesis,
[.. [qf,’f,)(ao), Any(@D], - 1, iy (@i )], gy, (@], Gy (@i )]s - 1,
Qg (k1)

k1 _
= (=Xl g, . Ayttt (@0 Q11 - Ckt), qy, ()]
k+1

+ Z (—ninj){ai,jCInoJr“.JrnkH(Olo o Q1) + by
j=i+1

. f(Kxao---OékH) - ldy }
X

k+1
=a; - (Z ne — n,-) ni {qno+‘..+nk+1(a0- - 0r1) + b

£=0

. f(Kxao---ak+1) -ldy }
X
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k+1
+ Z (_ninj){ai,jqno+...+nk+1(a0 cQpy1) + b
j=i+1
. f(Kxao---OtkH) - ldy }
X
where all the numbexs, b;, a; ;, b; ; depend only ok, ny, ... , n,. Combining

the above with (3.5) and (3.6), we obtain (3.2)z

Lemma3.7. Letk > 0,ng, ... ,n; € Z, anday, ... , o, € H*(X). Then,
[ [9%) (@), dny (@], - - - 1, Gy (0]

= ((—1)" k! n’é . nl...nk) “Qno+..+n, (0. . .0x) + b - / (Kxag...op) - ldg
b

whereb is a constant depending only @nno, ... , ny.

Proof. For simplicity, denote the constamtn (3.2) bya(k; no, ... , ny). In view
of (3.2), it remains to show that(k; no, ... ,n;) = (=% - k! - nb-ny...ng.

This is trivially true fork = 0. By Theorem 2.16 (v), this is true fér= 1. In
the following, assuming (k; no, ... ,ny) = (=1 - k! - n§ - n1...ni, we shall
prove

atk+1no, ..., n1) = (D k+ D -nk™ o0 omga. (3.8)

Indeed, we see from the proof of Lemma 3.1 th@t+ 1; no, ... , nxy1) is equal
to

k+1 k+1
- Z {a(k; nOy -+ v s M1, Mgl + v, Mpg) <an - ni) n;
i=1 =0
k+1
+ Z (=nin;) -alk;ng, ... ,nj_1, N1, ..., Nj_1, 0 +Nj,Njg1, ... ,nk+1)}.
j=i+1

So by using the induction hypothesis, we conclude that

atk+1;ng, ..., ngs1)

k+1 k+1
k k
= — Z{(—l} k! ng-ni..o.oni_anigr .. gy (Z ny — n,-) n;
i=1 =0
k+1
k k

+ Z (=nin;)-(=D%k!-ngny...ni_nip1...nj_1(ny +nj)nje. . ngga}

j=i+1

= (=DM k+ D ng™ ong g
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Lemma 3.9. Letk > 0, ng, ... ,niy1 € Z, andag, ... , ayr1 € H*(X). Then,

(k)
L4,

k+1

= k! ng- 1_[( ne) * Snottnpsn * /(Olo Ogy1) - ldg .

(o), Any (anl, ... 1, Uniia (ax41)]

Proof. Follows from Lemma 3.7 and Theorem 2.16 (i)a

Proposition 3.10. Letf € End(H) be an operator of bi-degre@®, i) withf = 0
andf’ = f. Assume thalf, q1(e)] = Zf 09y (1) for everya € H*(X),
wherek > 0, ¢, = 1/k!, andk,c; € Q, A; € H'~%/(X) depend only of. Then,

[[f qno(a0) Clnl(al)] .. ] an+1(ak+l)]

(3.11
= Hk+l( n[) 8no+ Angg1 fx()"kao ak-‘rl) . IdH

forall ng, ... ,m1 € Zand allay, ... , app 1 € H*(X).

Proof. (i) First, we show that (3.11) holds fap > 0. We shall use induction on
no. Whenng = 0, (3.11) is true sincgo(ag) = 0 for anyao. Whenng = 1, we
see from the assumptions pthat([f, q1(co)] = 3o ¢;q5” (A;0). SO

[[- . . [[f, qno (@) ], dny (@)1, - - - 1 Giyyq (ki 12)]

k

it (312
= j= Ocj[ ()\' OlO) qnl(al) ]a an+1(ak+1)]-

By Lemma 3.9[.... [q{ (A;0), quy (@D)]. .. ], uye (xrD)] = 0if 0 < j < k.
Also,

[.. [0 ) Qg (@], -+ . 1, Qo (@r4)]

= k! TI25(=10) - Sugttmns - Sy Ok @0 - - hy1) - 1d

by Lemma 3.9 again. It follows from (3.12) and (3.13) that (3.11) holds for
no = 1.

Next, assuming that (3.11) is true for some positive integewe shall prove
that (3.11) still holds ifzg is replaced byng + 1). Note from Theorem 2.16 (v)
thatgug+1(eo) = —1/no - [43(1x), dse(c0)]. Thus, we obtain

(3.13

1
[}, dno+1(0)] = o [, [42(Lx), dng (ct0)]]

1
= —— {[[f, 91101, dno(@0)] + [47(L1x), [f, dno ()11}
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Sincef’ = 0, [f, g3(1x)] = [. q1(10)] = X _g¢;a¢ ™V (1)). Therefore, we have

1 k
[ dnpta(@0)] = = iz cilay ™ (). uo(@0)] = [IF. dug (@0)]. 93 (1x)]
j=0
(3.19
Note that]. .. [qY " (1)), u(@0)], - . . 1, s (@xs1)] iS€QUal to 0if O< j < K,

and(k + 1)! - nk“( 1) Slangtoims * Jx Mi0. .. 1) - 1y if j = k. S0

[[. .. ([}, dnor1(@0) ], duy ()], - .. 1y Agyg (0 11)]
k+1

= ——{( Dk +1) - an 814 not.tngss * / (Mo . .. ogy1) - ldy
=0 X
[ I, dnp(@0)], 41(1x)], quy ()], ... 1, an+1(ak+l)]}
k+1
= ——{( Dk + D - [ [re - Srenottnis - / (Ao - . . ox11) - 1dy
=0
. f7 qno(aO) 5 qnl(al)]’ .. ]’ an+1(o{k+l)]a CI1(1X)
k+1
- Z[ . [[f’ qno(ao)]v LS ]9 qnj,l(aj—l)], [q1(1X), Clnj (a])]]’
j=1

anl (Olj-Q—l)]a .. ]7 an+1(ak+1)]}-

By induction hypothesis,. . . [[f, duo(@0)], duy (@)1, - - - 1, Gy ()], 97 (1x)]
= 0. By Theorem 2.16 (v) and induction hypothesis, we get

L. [Fs duo(@0)], -+ - 1 dny g (1)) g1 (Xx) G (@), Ay (@ )]s -
.H ClnHl(akH)]
=(—n;)-[.. [[f Ano(@0) ], - -+ 1ty (@)1, dnj 2 ()]s Gy (@4 2)], -
R an+1(0!k+1)]
k41
=1+nj) - l_[(—nz) 81y not.. Ay /X()»kao o Ogy1) - ldg .
£=0
It follows that([[. .. [[f, dno+1(0)], Gy ()], - - . 1, Gnys (0x41)] IS €QUA tO
k41
(@t o) [ [(=10) - Brinos s [ (o .. ayn) - I, (3.15)
=1

i.e., (3.11) is still true ifng is replaced by(ng + 1).
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(ii) Now we show that (3.11) holds far, < 0. Note thaty_, (o) = (—1)"q, ()T,
(9102)" = (=)™ - (g2)"(g1)" and[g1, g21" = —[(g2)". (g2)'] for g1, g2 €

End(H) of bi-degreest;, m1), (£2, m») respectively. Sincg = fby assumption,
[ .. [[f, dno(@0) ], duy ()]s - . 1, Gy g (ry2)]
= (—D Ot A WD T, g (@0)]: Gony @], - T Gy (D)

By what we have proved in (i) for the positive integetng), we have

[ .- [, dno (@)1, Gy ()], - - - 1, gy (i 1) ]

k+1 t
= (—1)no+...+nk+1+k.< l_[n@ O—no—.. —— /(Xkao LOt1) - |dH)

k+1

——l—[( 1) * Snottnpsr * /(Kkao o) - ldm .

O
£=0

Next, we shall define the transfer property for certain commutators, and verify
that the commutatdi ) (o), 4., (@1)] satisfies the transfer property.

Definition 3.16. Let2((«), B(B8) € End(H) be two series of operators depending
linearly ona, 8 € H*(X). Then, the commutatdfl(«), B(B8)] satisfiesthe
transfer propertyif [2l(«), B(B)] = [A(1x), B(aB)] = [A(«p), B(1yx)] for all

o, B.

Proposition 3.17. Letk be a nonnegative integer. Leg, ny € Z, andag, a1 €
H*(X). Then, the commutatég " («o). g, (21)] satisfies the transfer property:

(k)

[958 (0), quy (@)] = [a5) (Lx), g (@oa)] = [q1% (20er2), Gy (1)) (3.18)

Proof.By Theorem 2.16 (i) and (v), (3.18) is true fbor= 0, 1. In the following,

we assume that > 2. In addition, we may assume thap, o1) # (1x, 1x). Let

¢ be the difference of any of the two commutators in (3.18). By Lemma 3.1, we
have

[..[e, dny(e2)], - 1, dngy (=21, Gy ()] = O (3.19

forallny, ... ,ny € Zand allay, ..., a € H*(X). SinceH is irreducible (see
the last paragraph in Sect. 2), we see from Schur’s lemma that

et B e, Gy @)1, - . 1, Gy (1]

must be a scalar multiple of the identity operator. Now, the bi-degreg gfs

k-1 k-1
D 2%k 4+ (@ -2+ D) | -
j=0 j=0
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So Whenzk on; # 0, the bi- degree ofy_1 is nontrivial. WhenZ “on; =0,

the bi-degree ot;_; is (0, Z "0 |aj|) which again is nontrivial since we have
assumedag, a1) # (1x, 1x). ThIS forces,_; = 0, i.e., we have

[- .. [e’ %2(052)]7 s ]7 an_z(ak—Z)]v an_l(ak—l)] =0

for all the integersi,, ... ,ni_1 € Z and all the cohomology classes, ... ,
ar_1 € H*(X). Repeating the above process, we concludectead. O

4. The operatorsWk as the leading terms

In this section, we shall define certain operat¥#$(e) and determine their
commutation relations with the Heisenberg genergtaig). Our main result
(see Theorem 4.12 below) says thajt & End(H) satisfies the same conditions
as in Proposition 3.10, then the leading ternj f equal to— k“(k ).

First, we recall the normally ordered product: from [Bor, FLM, Kac]. Let

a(z) = Z a(n)zn—A

neZ

be a vertex operator of conformal weight that is, a generating function in a
formal variablez with a,) € End(H) of bi-degree(n, *). Put

(l+(Z) = Za(n)ZniA and a— (Z) = Za(n)zni

n>0 n<0

(note that our sign convention on vertex operators throughout this paper differs
from the standard one used in the vertex algebra literature [Bor, FLM, Kac]). If
b(z) is another vertex operator, we define a new vertex operator, which is called
the normally ordered produdf a(z) andb(z), to be:

ca()b(2) = ar(2)b(2) + (=1)b(2)a_(z) 4.1)

where(—1)“% is —1 if botha(z) andb(z) are odd and 1 otherwise. Inductively
we can define the normally ordered produckofertex operators from right to
left by

rar(z)az(z) - ar(z) 1= a1(2)(ax(z) - a(2) 2) - (4.2)
Definition 4.3. (i) Fora € H*(X), we define a vertex operatalz) by putting

a(@) =) qu(@)" (4.4)

nez
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(i) Letk > 1,n € Z, anda € H*(X). Letty, : H*(X) — H*(X*) be the linear
map induced by the diagonal embedding X — X*, and

Tpsll = E 0j1®...0«;

J

via the Kiinneth decomposition aff*(X*). We define the operatoV*(a) €
End(H) to be the coefficient of*~* in the vertex operator

1 def 1
o W@ =50 @) ) (4.5)
J
Note thatW* («) is a homogeneous linear operator of bi-degree
(n,2n 4+ 2k — 4+ |a]).

Also, Wl(«) coincides with the Heisenberg generajpte), and W2(«) coin-
cides with the Virasoro generatgy, (o). The next lemma generalizes Theorem
2.16 (i) and indicates that the commutal®r* («), q,,(8)] satisfies the transfer
property.

Lemma 4.6. Letk > 2. Letn, m € Z anda, 8 € H*(X). Then,

(W (@), dn(B)] = (=m) - Wy (aB). (4.7)
Proof. First of all, we rewrite the commutation relation Theorem 2.16 (i) as

@@, pw) = [ @) 32w,
X

nez

Assume thati,.a = Y~ 01 ® ... ® ajx € H*(X*). Then, we have

[(Tks0) (2), qm (B)]

= Res,—o w ™" [(tx) (2), B(w)]

=Res,ow™ 3 ;[: 1(2) -+ - 1 (2) 3, B(w)]

=Res,cow™ Y1 Y, (@) @) @) - (48)
(=PIl [y BY, pn

= (—mz Y. Yk > i@ @ @) o) ¢
(= 1) B Kl letiel [y @i.sB.
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To simplify (4.8), we fixs satisfying 1< s < k. Let p, (respectivelys,) be the
projection ofX* to thes-th factor (respectively, to the product of the remaining
(k — 1) factors). So we have a commutative diagram of morphisms:

ps

X 2 xk By
N
kal

Now, by the projection formula, we conclude that

(tk—1)«(a@f) = (75 o T)«(aP)

= Mo (Tes (@ - T P B)) = Ty (Tiit - P B)

=Y 1 ® @ @ @y (D) T / o;.B.
- X
J

Combining this with (4.8), we conclude that

[(T42@) (2), G (B)] = (=mz ™) - k- (Be-1) (@) 2). (4.9

Now comparing the coefficients ef ~* on both sides of (4.9), we obtain (4.7).
O

Proposition 4.10. Letk > 1, ng, ... ,n; € Z, andag, ... , a, € H*(X). Then,
() [[. .. [Wyy (@0), Guy (@D)], - .. 1, 4y, (1)1 i €qual to

k-1
[0 - dnotimr (@0 - te-1);
¢=1

(i) [[... [Wh (@0), Guy (@D)], ... ], 4u, ()] is €qual to
k
H(_nf) . 8n0+...+nk : / ((Xo ce Olk) . |dH .
=1 X

Proof. Applying Lemma 4.6 repeatedly, we see that

[.. (W) (@), quy ()], ... 1, Quy_y (0x—1)]

k-1
1
= 1_[(—”42) Wit (@0 0tg—1)
¢=1

k=1

= 1_[(—”/5) “no+.tnp_q (00« - Og_1).
=1
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This proves (i). Now (ii) follows from (i) and Theorem 2.16 (i)O

Letf € End(H) be a linear operator. We write the operaf@s a (possibly
infinite) linear combination of finite products of Heisenberg generators:

Gmy (B1) - - - A, (Bi) (4.11)

where thosey,,, (8;) with m; < 0 are put to the right. In other words, we regard

f as an element in the completion of the universal enveloping algebra of the
Heisenberg algebra. We can always do so bec#liseirreducible as a repre-
sentation of the Heisenberg algebra. Assume that the lengftall the product
terms (4.11) appearing ihhave a common upper bound (this is the case for
all the operatorg considered below). Then we define tfleading termof f to

be the sum of those products (4.11)isuch that is the largest. For example,
each product in the operatdr* («) hask factors ofg’s by Definition 4.3 (ii).

So the leading term oV («) is itself. Our next result says thatjfife End(IH)
satisfies the same assumptions as in Proposition 3.10, then the leading ferm of
is — W52 (M)

Theorem 4.12. Letf € End(H) be of bi-degre€0, i) with { = 0 andf! = f.
Assuméf, gu(e)] = Yi_q c;ay’ (A for everye € H*(X), wherek > 0, ¢, =
1/k!, andk, ¢; € Q, A; € H'=% (X) depend only of. Pute(f) = f+ WEH2().
Then,

(I) for all niy,...,Ng2 € Z and a”Ol]_, v, Opy2 € H*(X),

[- .- [é(f)5 qnl(al)L ce. ]7 an+2(ak+2)] = 07

(ii) for all ny, ... migy € Zwith Y54 n; # Oand allay, ..., a1 € H*(X),
[- .. [6 (f)a qnl(al)]’ o ]’ C|;1k+1(ak+1)] = O’
(iii) the leading term of is — W52 (1,).

Proof. (i) Follows from Proposition 3.10 and Proposition 4.10 (ii).

(i) Denote[...[e(f), qn ()], ... 1, dnyps (x+1)]1 DY g. Then, we see from (i)
that[g, q,, ,(x42)] = O for all n,» € Z and allogyo € H*(X). SinceH is
irreducible,g must be a scalar. Now, the bi-degregya$ equal to

k+1 k+1
D onji+ Y (2n =24+ o)

which is nontrivial since"{*1 n; # 0. Thereforeg = 0.
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(ii)Asin (4.11), we write the operatdias a (possibly infinite) linear combination
of finite products of the Heisenberg generators:

Ay (B1) - - - Qm; (Bi) (4.13
where those,, (8;) with m; < 0 are put to the right. Note that

f=e)— WE20u.

Now (i) says that () is a (possibly infinite) linear combination of finite products
of at most(k + 1) Heisenberg generators. Also, from the discussion in the para-
graph preceding Theorem 4.12, we see that each productin the op@géfmkk)
has(k + 2) factors ofg’s. Therefore, the leading term pfs —Wé‘*z(kk). O

5. The cohomology ring structure

In this section, we study the cohomology ring structurélipf= H*(X"). In
particular, we find the ring generatorsif (X!"). The basic idea is to introduce
certain operato®(y) € End(H) for y € H*(X), which generalizes the consid-
erations in [Leh]. We show th& (y) satisfies the assumptions in Theorem 4.12.
So the leading term a#(y) is related to the operatdv* (o) from Definition 4.3
(il). Then an inductive procedure proves our main result.

Definition 5.1. (i) For y € H*(X) andn > 0, define
G(y,n) = pr(ch(Oz,) - p3td(X) - p3y) € H*(X") (5.2)

where cliOz, ) is the Chern character of the sh€af , td(X) is the Todd class
of X, andp1, p» are the natural projections aft*! x X to X", X respectively.
We define the linear operatd¥(y) € End(H) by putting

6()=EPG.n

n>0
whereG(y, n) acts ont,, = H*(X"!) by the cup product;

(i) Fori € Z andy € H*(X), defineG,(y, n) to be the component @ (y, n)
in H+2 (X", We define the operata; (y) € End(H) by

&:(y) =P Giy.n)

n>0

where agairG; (y, n) acts onH,, = H*(X""!) by the cup product.
Notice that®;(y) € End(H) is homogeneous of bi-degré&6, |v| + 2i).
Moreover,
&(y)=0 and &) =6y). (5.3
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By comparing the degrees on both sides of (5.2), we see that

Gly.n) =) Gi(y.n).

i€’
Therefore, by the definition of the operat@$y ) and®;(y), we have
B(y) =) &) (5.4)
i€’

Wheny = 1y, we haveG(1ly,n) = p1.(ch(Oz,) - p;td(X)). So we see
from the Grothendieck-Riemann-Roch Theorem [Har] that

G(1x, n) = ch(p1.0z,) (5.9

where we have made no distinction between an algebraic cycle and its corre-
sponding cohomology class. In particular, we have the following two formulas:

Go(Lx) = P Go(Lx, n) = @ - Idxm) = Lo(=1y), (5.6)

61(1x) = P G1(1x, n) = P er(pr0z,) = 2. (5.7)

Our next lemma and its proof are parallel to the Theorem 4.2 and its proof in
[Leh]. Together with (5.3), this lemma enables us to apply Theorem 4.12.

Lemmab5.8. Lety, « € H*(X). Then, we have

[6(y), qi(e)] = exp(ad®))(q(ya));
or equivalently, using the compone®it(y) of &(y) (see (5.4)), we obtain

1
[B4(). ar(e)] = - 1 (ya). (5.9)

Proof. Recall the standard diagram (2.2) and the exact sequence (2.3). We have
¥y ch(Oz,) — ¢x ch(Oz, ;) = py ch(O4y) - p1 eXp(—LE.]D (5.10)
where we have used the fact thatehO s, ® p; Oxinn-u(—E,)) = p% ch(Oa,)-
Pi eh(Oxinn-1(—Ey,)) = pl ch(Oa,) - pi exp(—[E]).
Claim. ¥*G(y,n) = ¢*G(y,n — 1) + p*y - exp(=[E.]D.
Proof. Fori > 1, let p; 1 and p; » be the projections okl x X to X!"! and X
respectively. From the definition @f(y, n), we see that
UGy, n) = ¥ (pa.0)«(Ch(Oz,) - (pn2)" td(X) - (pn.2)*y)
= p1¥x(Ch(Oz,) - (pr,2)" td(X) - (Pn,2)*y)
= pu(¥x ch(Oz,) - potd(X) - p3v)
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wherep; is the projection off""~1 x X to X. Similarly,

¢*G(y,n —1) = pr(¢y ch(Oz, ) - p>td(X) - p37).

So combining these with the formula (5.10) above, we conclude that

V*G(y,n) —¢*G(y,n —1)
= p1((¥y ch(Oz,) — ¢ ch(Oz, ,)) - p3td(X) - p3y)
= p1(px Ch(O4y) - p1 €Xp(—[E,]) - p5td(X) - p5y)
= p1(px CN(O4y) - p3td(X) - p3y) - exp(—[E,])
= p1.px(Ch(Oay) - (p12)"td(X) - (p12)*y) - exp(—=[E,])
= p"(p11)+(Ch(Oay) - (p12)*td(X) - (pr2)*y) - exp(—[E,]).

Thus, it remains to show that ov&r x X, we have

(p1,1)+(€h(O4y) - (p12)" td(X) - (p12)*y) = v.

Indeed, applying the Grothendieck-Riemann-Roch Theorem to the diagonal em-
beddingr, : X — X x X, we getcliO,, ) - (p1.2)* td(X) = t2.[X]. SO

(p1,1)+(€h(O4y) - (p12)" td(X) - (p1.2)*Y)
= (p11)«(12:[X]- (p12)"Y) = . O

We continue the proof of the lemma. By (2.11), for ang H*(X"~11),

qi(@)(@) = pr.([O"™" M- 5*a - p3a).

Define: : X=Xl » x x X"=1 py putting.(&, n) = (&, p(&, n), n).
Then,: is an embedding. Moreovar,[ X"~ = [Q""~Y]. Thus, we have

q1(@) (@) = pr.(t[X"" 1] . 5*a - pia)
= Pt (X" 1] (% 0 %) - (1 0 p3)a)
= ¥ (X" 1] p*a - p*a).

Combining this with the above Claim, we conclude that

&()au(@)@) = Gy, n) - Y (X" p*a - ¢p*a)
=Y. (Y*G(y.n) - [ X" U] p*a - ¢*a)
=Y. (¢*G(y.n— 1) - [X"" U] p*a - ¢p*a)
+Yu(p*y - exp(=[E,]) - [X"" U] p*a - p*a)
= Y (X" M- ¢*G(y,n — Dp*a - ¢*a)
+¥.((exp (—[E,]) - [ X" 1)) - p*(ya) - ¢*a).

Thus,[(y), q1(e)](@) = Y. ((exp(—[E,]) - [X"" ] - p*(ya) - ¢*a) which
is equal to exgad(0))(q1(y«))(a) by the Lemma 3.9 in [Leh]. O
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Proposition 5.11. Assume that € Z andy, a € H*(X). Then, the commutator
[B(y), q. ()] satisfies the transfer property, i.e., we have

[E(), dn()] = [6(1x), qu(ya)] = [G(ya), 4. (1x)]. (5.12)

Proof. Since the operatab(y) is self-adjoint, we see from (2.8) and (2.12) that
we need only to prove (5.12) for positive integer#n the following, we shall use
induction on these positive integersBy Lemma 5.8, (5.12) is true for = 1.
Assume that (5.12) is true far. Since[®&(y), q1(1x)] = exp (ad(®))(q1(y)),
the same proof to (3.14) (replacing the operétibrere byd(y)) yields

+00

1 1 ;
[S(). dusae))=—> Zﬁ-[qif“)(y),qn<a)]—[[e5<y>,qn(an,q’l(lxn .
j=0 "

Now the transfer property df&(y), g,+1(«)] follows from the induction hy-
pothesis and the transfer property(gf ** (), g, (e)] in Proposition 3.17. 0

Theorem 5.13.Letk € Z be nonnegative; € H*(X) be a nonzero cohomology
class, and: (B, (y)) = & (y) + WET2(y). Then,

@) forall nq, ... ,np2 € Zand allay, ... , a2 € H*(X),

[.. [[e(Bk(¥)), qny (@], .. ], dugyn (@ks2)] = O

(ii) forall ny, ... .1 € Zwith Y27 n; # 0and alley, . .., oy i1 € H*(X),
[- .. [[E(®k(y))a qnl(al)]v LRI ]v an+1(ak+l)] - 07
(iii) the leading term o&(y) is — WP (p);
(V) Bo(y) = —W5(»);
(V) B1(y) = —WZ(y) if Ky is numerically trivial. In particular,

B1(lx) =0 = —W3(1x). (5.14)

Proof. The first three statements follow from (5.3), (5.9) and Theorem 4.12.
To prove (iv), recall from the definitions thait2(y) = £o(y). By (5.6), we
may assume that is not a scalar multiple of 1. So|y| > 0. Now,

[Go(y), gn(@)] = [Go(1x), du(ya)] = [—Lo(1x), qn (¥ )] (5.15
by (5.12) and (5.6). In view of Theorem 2.16 (ii), we have

[Bo(y) + W), du(@)] = [—Lo(1x), da(y@)] + [Lo(¥), qu(@)] = 0
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foralln € Z anda € H*(X). SinceH is irreducible &o(y) + Woz(y) must be a
scalar multiple of the identity operator, which has to be zero since the bi-degree
of (Go(y) + W(y)) is (0, |y ). So we havebo(y) = —WZ(y).

Finally, to prove (v), we notice from Lemma 4.6 that

[WS(), du(@)] = —nWi(ya) = —nL,(ya). (5.16)
Next, we have®1(1y) = 0 in view of (5.7). By (5.12) and Theorem 2.16 (iv),
[G1(y), du(@)] = [&1(1x), du(ya)] = q,(ya) = nL,(ya). (5.17)

Combining this with (5.16), we see tHa(y) + W(y), q.(e)] = Oforalln €
Zanda € H*(X).As argued in the proof of (iv), we hae (y) = —W3(y). O

We remark that a result parallel to Theorem 5.13 (v) has been proved by
Frenkel and Wang [F-W] within the framework of wreath products (compare
p.205 of [Leh]). Also,— W (y) is the degree-0 component of the vertex operator
in (4.5).

Definition 5.18. Fix a positive integer. DefineH, to be the subring off, =
H*(X!"ly generated by the following cohomology classes:

Gi(y,n) = &;(y)(xm) (5.19

where 0< i < n andy runs over a linear basis &*(X).

Note that the subringfl, is generated by - dim H*(X)) elements. Our goal
is to show thatl! = Hi,, i.e., the cohomology rintil, = H*(X")) is generated
by those(n - dim H*(X)) classes5;(y, n) in (5.19). We shall use induction on
the reverse lexicographic order of all the partitionsu = (w1, w2, ...) of n,
whereuw; denotes the number of parts in the partitioequal tai (compare with
the proof of Theorem 4.10 in [Leh]). Under this ordering, the partitior0, ...)
is the smallest. Our induction goes as follows. First of all, we prove that

[ Jar@)io) e H, (5.20)
j=1

forall«; € H*(X) in Lemma 5.23 below. Then, by assuming that

i
[T Ta 6010 € H, (5.21)

i>1j=1

forall g; ; € H*(X) and allu’ = (u}, us, ...) < n = (u1, u2, ...), we prove
that

Wi
[T] a0 e m, (5.22)

i>1j=1
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for all o; ; € H*(X). Now we begin with the statement and proof of Lemma
5.23.

Lemma 5.23. For all cohomology classes; € H*(X), we have

[ Jax(eni0) € H,. (5.24)
j=1
Proof.We shall use induction ohto show that for allyq, ... , o € H*(X),
k
[ [aw(@)ar(1)"7*10) € H,. (5.25)

j=1
First of all, we claim that (5.25) is true far= 0. Indeed, in view of (5.6),
q1(1x)"10) = n! - 1ym = (n — D! - Go(lx, n) € H,.

Next, assuming that (5.25) is true for soneith 0 < k < n, we shall verify
that (5.25) holds as well i is replaced by + 1). We may assume thaj,; is
homogeneous and;.1| = s. By (5.9), we havé®&o (e +1), q1(x)] = qa(ax100).
Taking the cup product of (5.25) witig(ax 1, n) € H' , we obtain

k
H, > Go(ot1. 1) - (l_[ ql(aj)ql(lX)nk|0>)

j=1

k
= Bo(tps1) 1_[ q1(e))q1(1x)"*|0)

j=1

k
= Z +q1(er1) - - - q1(eti—1)qa (o 110)q1(@i+1) - - - q1(e)q1(1x)"¥]0)
i=1

k
Nk X n—
+(= 22— k) - | | aa(e)anensn)aa(1o)" “H0)
j=1
k+1

= () D=l — k) - [T aa(ep)ar @)™~ *10)  (mod HL)
j=1

where we have used the induction hypothesis in the first and last steps. So (5.25)
holds ifk is replaced byk + 1). This completes the proof of (5.24).0

Lemma 5.26. Fix a, b with 1 < a < b. Letg € End(H) be of bi-degre€?, s),
and

A= le(ﬂl) tet qmb(IBb)l())
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Then,g(A) is equal to the sum of the following two terms:

a—1
DY T ameBOI - 19, Gy Bora)]s -1, Gy (Boi))1I0) (5.27)

i=0 o EEU,-O
and
Z(_l)ZZlé(HZLlIﬂoaw)I)Zaa<k)<,-<na<k+1> 16;1 1_[ G, (Be)-
Oq EGO‘}
[[ t [97 qm(,a(]_) (ﬂo’a(l))]’ e ]7 qm(,a(a) (ﬁoa(a))] 1_[ qm[ (ﬁl)|o> (528)
teo?

where for each fixedwith 0 < i < q, o; runs over all the maps
{(4,...,i}—={1,...,b}

satisfyingo; (1) < -+ < o;(i). Moreover,crl.0 ={|l<tl=<bt#0(),...,
oi()}, ol ={t|1 <€ <o, #0,(0),... 0.} andc? = {€|0,(a) <
¢ < b}.

Proof. Note that for alli with 0 < i < a and for all the above;, we move

[ [8s Dmy. 0y Bos @)1+ 1, Ay (Boy i)

all the way to the right. This produces (5.27). In doing so, we obtain (5.28) by
repeatedly applying the elementary fact that

0102 = [g1, g2 + (—1)"*2gog; (5.29

fortwo operatorgs, g € End(H) of bi-degrees?,, s1), (£2, s2) respectively. O

Theorem 5.30. For n > 1, the cohomology rindl, = H*(X"") is generated
by
Gi(y,n) = &;(y)(Lxm)

where0 < i < n andy runs over a linear basis off *(X). Moreover, the rela-
tions among these generators are precisely the relations among the restrictions
®;(y)|m, of the corresponding operatoes; (y) to H,.

Proof. Note that the second statement follows from the fact that the operators
®;(y)|m, are defined in terms of the cup products by the cohomology classes
G;(y,n). In the following, we prove the first statement.

Let H, be defined as in Definition 5.18. We want to show tHat= H,. As
indicated in the paragraph following Definition 5.18, we use induction on the
reverse lexicographic order of all the partitionsu = (w1, uo, ...) of n. By
Lemma 5.23, (5.20) is true. In the following, assuming that (5.21) is true for all
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Bij € H*(X)and allu’ = (uy, puh, ...) < = (u1, K2, ...), we shall prove
(5.22).
Sinceu = (1, n2,...) # (n,0,...), we leta be the smallest index such

thata > 1 andu, > 1 (i.e.,u = (u1,0,...,0, g, tas1, ...)). Also, some
of the classeg; ; in (5.22) might be (scalar multiples of)y1Without loss of
generality, we may assume that; = ... = a1,_, = 1x for somer > a and

that|oy ;| > Oforall j satisfying(r —a) < j < 1. Then (5.22) can be rewritten
as

n1 Ha i
w0 [] aer)da@ar) [ aal@a;) [T] ]ai(@iI0) € H,.
j=@r—a+1) j=2 i>a j=1

(5.31)
Puty' = (a + 11,0,...,0, g — 1, gy, ...) and

def L a Ui
A Z q(ly) S —asy Galan ) [T dalea ) Tisg TT721 qi(ei )10)

def

= qmy (B1) - - qm, (Br)10)
(5.32)
whereb = (a + 1) + (ta — 1) + as1 + ... is the length ofu’. We have

miy=...=mgpy, =1,m >1for (a+p) <i <b, (5.33)

Br=...=B-=1x,|Bil >0 for r <i < (a+ ). (5.34)
SinceA corresponds to the partitiqn' andu’ < , A € H), by induction.
Claim. (5.31) is true as long d&, 1| = 4.

Proof.Note thatz < n. So we see from the definition &f, thatG,_1(x, 1, n) €
H,. Taking the cup product of € H, with G,_1(x,.1, n) € H,, yields

H; > Ga—l(aa,lv l’l) A= 6a—l(O(tl,l)(A)-
Pute = €(,_1(00.1)) = By_1(a1) + Wi (e 1). Then,
H, 5 &4 1(aa1)(A) = —W5 ™ (aa1)(A) + e(A). (5.35)

Applying Lemma 5.26 to the operatamwe see that(A) consists of two parts
(5.27) and (5.28). By (5.33), the numberqfs in every nonvanishing term of
(5.27) is at leasta + 1) — (@ — 1) = pu1 + 1 > p1. So every nonvanishing
term in (5.27) corresponds to some partitioh< . By induction hypothesis,
(5.27) is contained iil,. By Theorem 5.13 (ii) (replacing the integethere by
(a — 1)), we see that (5.28) is 0. In summaeyA) € H,. By (5.35), we obtain

— W 1) (A) € H,. (5.36)
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Now we apply Lemma5.26 to the operatoW¢ (e, 1). SO— W (a4.1) (A)
consists of two parts (5.27) and (5.28). Again, (5.27) is containddinLet
N (o,) be the number aof,’s in a nonvanishing term in (5.28) corresponding to
0,. By (5.33),N(0,) > (a + 1) —a = u1. If N(o,) > w1, then by induction
hypothesis, this nonvanishing term in (5.28) correspondirg e contained in
H,. Also, N(o,) = pq ifand only if mg,q) = ... = mg,) =1, i.€.,

1<0,() <...<04(a) < (a+p1)
by (5.33). So this nonvanishing term in (5.28) is of the form:
(—DZi0@ Xl oa) Eeao<secaon il TT qu(By)-

1
teoy

A =W ) a1(Bo, )] -+ 1 01(Boy@)] [ | ame (B)10)

Eeaf

which can be simplified to the following by Proposition 4.10 (i):
(_1)22;(1)-(4"_2]2:1‘/50(4(@)‘) Zag(k)<j<aa(k+1) “Sll . 1_[ ql(ﬁl)

Eea}
(=D 0@ 1Bo, ) Bo@) | | ame (BOI0). (5.37)
Keaf
Sinceq, 1 € H*(X), the term (5.37) being nonzero forces
|Bouy| = - . = |Bou@| = 0. (5.38)

Since 1< o0,(1) < ... < o,(a) < (a + n1), we see from (5.34) that k
o,(D) < ... <o,(a) <r.So (5.37) can be further simplified to

(=1a+t. ngegal q1(1x)qa(eta,1) Hz>aa(u) dim, (Be)10)
= (—1>a+l - q1(L10)17 194 (00, 1)1 (L) 7!
(r a+1) qu(o, ;) H 2o qa(ag, ) Hl>a ;11 qi (o, ;)10) (5.39
= (—1)“+l'l11(1x)r T2 arp 9aen )
a(@a.1) [Tj22 da(@a, 1) 1oy T2 qi (@i )10).

Now there are exactl({l) such terms in (5.28). Therefore, by (5.36), we have

( ) (— 1)a+l qu(al/)qa(aa 1) l_[qa(aa /) an:(% ,)|O € H/

j=1 i>a j=1

It follows that (5.31) istrue as long &8,1| = 4. O
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We continue the proof of Theorem 5.30. In view of the above Claim, itremains
to prove that if there is an integesuch that O< s < 3 and (5.31) is true as long
asla, 1| > (s + 1), then (5.31) holds as well {t, 1| = 5. In view of Theorem
5.13, we put = €(B,_1(21)) = Gy (1) + W5t (a1). Then,

H, 5 B, 1(2a.1)(A) = =W (,1)(A) + E(A). (5.40)

As in the proof of the above Claim, we see from Lemma 5.26Hjatontains

Z(_1)22;3<S+Z'E:1 1Boa D Xout<j<oate+n 181 1_[ q1(Be)-

Oa ZEGI:ZI'
(=D 44 (@a1Bou * Bow(@) | | dme (B)I0) (5.41)
Zeof
whereo, runs over allthe mapil, ... ,a} — {1,... ,b}witho,(1) <--- <
o,4(a), and satisfiesi,, (1) = ... = mg, o = 1. So by (5.33), we have, (1) <

- < 0,(a) < (a+u1). Note that every nonvanishing termin (5.41) corresponds
to the partition. Moreover, if| o, 1) |+ - - + | Bo, )| > O, thenle, 1|+ |Bs, 1) |+
-+ 1B, @] = (s +1); so this nonvanishing term in (5.41) is already contained
in H/, by our assumption. Therefore, the subrifig contains

Z(_l)zz;é(x+zlz=l |ﬂ5a(e)|) Z(ra(k)<j<<m(k+1) ‘ﬂ/l . l_[ ql(,BE)

Oa (E(T‘}
(=D 40(@a1Bou *** Bow(@) | | dme (B)I0) (5.42
tea?
whereo, runs over allthe mapil, ... ,a} — {1,... ,b} witho,(1) < --- <
o.(a) < (a + p1), and satisfie$B,, )| = -+ = |Bo,@| = 0. So we have

o0,(D) <--- <o,(a) <rby(5.34). Now as in the last paragraph (starting from
the line below (5.37)) in the proof of the above Claim, we obtain

Mni Ma i
<;) (=D T Taaten da(@an) [ [ datea) T[] i (e )10) € H,.

j=1 j=2 i>a j=1

So (5.31) holds ife, 1| = s. This completes the proof of Theorem 5.3
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