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1 Introduction

Consider the weakly coupled semilinear elliptic system

∆u+ f (x, u, v) = 0,
∆v + g(x, u, v) = 0,

u, v ≥ 0 inΩ, (I)

together with the homogeneous Dirichlet boundary condition

u = v = 0 in ∂Ω,

whereΩ ⊂ R
n (n ≥ 3) is a bounded smooth domain. Recently, there have been

significant studies of (I), see [1–4, 6–7, 14–16, 20–23] and the references therein.
System (I) arises from studying various nonlinear phenomena, such as pattern
formation, population evolution, chemical reaction, etc., whereu andv represent
concentrations of different species in the process. Naturally positive solutions of
(I) is of particular interest.

In this paper, we are concerned with the question of existence of a pair of
smooth functionsu andv satisfying (I). Our interest partly lies in the fact that
semi-linear systems such as (I) need not have a variational structure (cf. the case
of single equations) nor be cooperative. Specifically, we shall establish a priori
estimates and existence of positive solutions to general semilinear elliptic system
(I). In particular, we do not require (I) be variational or cooperative.

It is well known that the (algebraic) growth of the nonlinearityf plays a
critical role in treating semilinear equations

∆u+ f (u) = 0.
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For instance, whenf = up (i.e., the celebrated Lane-Emden equation), the
Sobolev exponent(n+2)/(n−2) is the dividing number for existence of positive
solutions with homogeneous Dirichelt conditionu = 0 (at least for star-shaped
domain in some sense, see for instance [9, 10, 17, 19]), in terms of the exponent
p. Corresponding a priori estimates can also be established [11].

There are two natural variational structures associated with (I). That is, the
so called potential structure with

I (u, v) =
∫ {

(|∇u|2+ |∇v|2)− 2H(x, u, v)
}

(1.1)

and the Hamiltonian structure with

J (u, v) =
∫
{∇u · ∇v −H(x, u, v)} . (1.2)

A prototype model of (I) to exhibit the distinct nature resulting from the
structures (1.1) and (1.2), respectively, occurs when

H(x, u, v) = up+1

p + 1
+ vq+1

q + 1
.

For (1.1), (I) simply decouples to two single equations

∆u+ up = 0, ∆v + vq = 0

then there is no (significant) impact of the exponentsp andq on each other and
techniques used for single equations remain applicable. For (1.2), on the other
hand, (I) becomes

∆v + up = 0, ∆u+ vq = 0, (1.3)

which is a natural extension of the well-known Lane-Emden equation and thus
is referred to as the Lane-Emden system. This is the case where the exponents
p andq interplay, compensating each other. It has been known for certain cases
that the hyperbola

1

p + 1
+ 1

q + 1
= n− 2

n
, (1.4)

plays the role of dividing curve in terms of exponentsp andq for existence
for the Lane-Emden system, directly extending the well-known results for the
Lane-Emden equation, see Sects 3 and 5 for details.

Let a, b, c, d andp, q, r, s be non-negative numbers satisfying

p, q > 0, pq > 1, r, s > 1.

Put

α = 2(p + 1)

pq − 1
> 0, β = 2(q + 1)

pq − 1
> 0.

We first have the following a priori estimate for the dimensionn = 3.
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Theorem 1.1 Letn = 3 and(u, v) be a non-negativeC2-solution of(I) with

f (x, u, v) = aur + bvq, g(x, u, v) = cup + dvs. (1.5)

Then there exists a positive constantM = M(n, a, b, c, d, p, q, r, s) such that
||u||L∞(Ω) ≤ M, ||v||L∞(Ω) ≤ M,

provided that

(i) α + β > 1,
(ii) max{r, s} < 5, and
(iii) β �= 2/(r − 1) andα �= 2/(s − 1).

Theorem 1.1 is optimal in the sense that if either condition (i) or (ii) is violated,
the conclusion need no longer hold, in view of non-existence of positive solutions
for non-linearities withsuper-criticalgrowth on bounded star-shaped domains.
Moreover, the existence forsuper-criticalnon-linearities on the entire spaceR

n

shows that the proof of Theorem 1.1 breaks-down, see section 5 for details.
In Sect. 3, we extend Theorem 1.1 (Theorem 3.1) to systems with a general

non-linearity which satisfies a growth condition (G). The extension is clearly as
sharp in the same spirit. That is, Theorem 3.1 need not hold, if either condition
(i) or (ii) does not meet. Moreover, Theorem 1.1 extends to higher dimension
n > 3 for general non-linearities, see Theorem 3.2. However, the extension for
n > 3 is not sharp in the above sense, due to a lack of non-existence for the
Lane-Emden system in thefull sub-critical range, see Sect. 5 again.

The proof of Theorem 1.1 is based on a blow-up argument, see for example [1,
11, 24] and the references therein. The argument, in turn, relies on non-existence
theorems for positive solutions of the limiting system after blow-up (either a
system of equations or a single equation on the entire spaceR

n or on the half
spaceRn+).

We say a solution(u, v) of (I) is non-trivial if one of the componentsu andv
is non-trivial. With the help of Theorem 1.1, we are able to prove the following
existence result.

Theorem 1.2 Letn = 3and letf andg begivenby(1.5). Suppose theconditions
in Theorem1.1 are satisfied. We further assume that

p, q > 1, a + b > 0, c + d > 0.

Then the system(I) has a classical non-negative nontrivial solution.

The proof of Theorem 1.2, which does not require a variational structure, is
based on a fixed point theorem on positive cones as well as the a priori estimate
Theorem 1.1. In particular, Theorem 1.2 is sharp in the same sense of Theorem
1.1, see Sect. 5. One important feature of the proof of Theorem 1.1 is that it
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applies to general non-linearities with certain growth restriction inu andv at
infinity. Therefore, both Theorems 1.1 and 1.2 apply to a wide class of general
non-linearitiesf andg with suitable growth, see Sectis. 3 and 4. It is also worth
to point out that the non-linearities may depend on the independent variablex

and the gradients∇u and∇v, as well as change sign. Needless to say, suitable
conditions must be imposed and it is left to the reader .

When (I) is irreducible in the sense that

f (x,0, v) �= 0 for v > 0; g(x, u,0) �= 0 for u > 0,

then Theorem 1.2 can be strengthened.

Corollary 1.1 Letn = 3 and letf andg be given by(1.5). Suppose the condi-
tions in Theorem1.1 are satisfied. We further assume that

p, q > 1, b > 0, c > 0.

Then the system(I) has a classical positive(component-wise) solution.

This is an immediate consequence of Theorem 1.2 and the strong maximum
principles.

The following example shows that Theorems 1.1–1.2 and Corollary 1.1 can
still hold for nonlinearitiesf andg changing sign foru, v > 0.

Theorem 1.3 Letn = 3 and let

f (x, u, v) = ur − uavb + vq, g(x, u, v) = up − ucvd + vs,
wherea, b, c, d ≥ 1 are positive numbers. Suppose that(i)–(iii) of Theorem1.1
hold. Then the conclusion of Theorems1.1–1.2and Corollary1.1 continues to
hold, provided that

(iv) a < r, b < q, c < p, d < s and

max

{(a
r
+ b
q

)
,
( c
p
+ d
s

)}
< 1.

Clearly foru > 0 small, one has

f (u, ur/q) < 0; g(u, up/s) < 0.

That is, bothf andg are negative for some values of small positiveu andv.
Nevertheless Theorem 1.3 assures that (I) has a positive solution (component-
wise). Note particularly that (I) is neither variational nor cooperative.

The organization of the paper is as follows. In Sect. 2 we prove Theorem 1.1.
We extend Theorem 1.1 to general functionsf andg and to the dimensionn > 3
in Sect. 3. The existence will be established in Sect. 4. We finally discuss several
examples in Sect. 5.
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2 A priori estimates I: n = 3

In this section, we shall establish a priori estimates for positive solutions of (I)
when the dimensionn = 3.

Recall thatp, q > 0 with pq > 1, r, s > 1, and

α = 2(p + 1)

pq − 1
> 0, β = 2(q + 1)

pq − 1
> 0.

We first prove a special case of Theorem 1.1.

Theorem 2.1 Letn = 3 and(u, v) be a non-negativeC2-solution of(I) with

f (u, v) = ur + vq, g(u, v) = up + vs.
Then there exists a constantM = M(n, p, q, r, s) > 0 such that

||u||L∞(Ω) ≤ M, ||v||L∞(Ω) ≤ M, (2.1)

provided that

(i) α + β > 1,
(ii) max{r, s} < 5, and
(iii) β �= 2/(r − 1) andα �= 2/(s − 1).

As mentioned in the introduction, by a blow-up argument, the proof of The-
orem 2.1 reduces to one of Lemmas 2.1–2.3 below. The first two lemmas are
non-existence results for the Lane-Emden system.

Lemma 2.1 (Serrin and Zou [21])Letn = 3 and suppose thatp, q are positive
numbers such that eitherpq ≤ 1 or α + β > 1. Then the Lane-Emden system

∆u+ vq = 0, ∆v + up = 0, x ∈ R
n (2.2)

does not admit non-trivial non-negative solutions(u, v) with algebraic growth
at infinity.

WhenΩ = R
n+ = {xn > 0}, Lemma 2.1 was extended by Birindelli and

Mitidieri to arbitrary dimensionn ≥ 3 for bounded solutions.

Lemma 2.2 (Birindelli and Mitidieri [1]) Let n ≥ 3 andp, q > 1. Then the
Lane-Emden system

∆u+ vq = 0, ∆v + up = 0, x ∈ R
n
+ (2.3)

together with zero boundary conditionu = v = 0 on ∂Rn+ = {xn = 0} does not
admit bounded non-trivial non-negative solutions(u, v), provided

max(α, β) ≥ (n− 3).
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Remarks.1. Note that Lemma 2.2 holds for allp, q > 1 whenn = 3.

2. Whenn = 4, with the aid of Lemma 2.1, one slightly improves Lemma
2.2 under the condition

1

p + 1
+ 1

q + 1
>

1

3
.

The following non-existence result for the Lane-Emden equation is due to
Gidas and Spruck.

Lemma 2.3 (Gidas and Spruck [10, 11])Let p ∈ (1, (n + 2)/(n − 2)) and
suppose thatu is a non-negative solution of

∆u+ up = 0, x ∈ Ω. (2.4)

Thenu ≡ 0 if eitherΩ = R
n or Ω = R

n+ with u = 0 on ∂Rn+.

Remark.WhenΩ = R
n+, Dancer [5] extended the above rangep ∈ (1, (n +

2)/(n− 2)) to p ∈ (1, (n+ 1)/(n− 3)) for bounded solutions.

The following formula is by direct calculations.

Lemma 2.4 Let (u, v) be a positive solution of(I) with f (u, v) = ur + vq and
g(u, v) = up + vs . For ξ ∈ Ω andS, l1, l2 > 0, put

ū(y) = S−1u(x), v̄(y) = S−l1v(x), y = (x − ξ)Sl2. (2.5)

Then
∆ū+ Sr−1−2l2ūr + Sql1−1−2l2v̄q = 0,

∆v̄ + Sp−l1−2l2ūp + Ssl1−l1−2l2v̄s = 0.

After these preparations, we can prove Theorem 2.1.

Proof ofTheorem2.1.The proof is based on contradiction. Suppose thatTheorem
2.1 is false. Then there exists a sequence of solutions{uk(x), vk(x)}∞k=1 of (I) such
that

lim
k→∞(||uk||L∞(Ω) + ||vk||L∞(Ω)) = ∞. (2.6)

Fork = 1,2, · · · , put

Mk = sup
x∈Ωk

uk(x) = uk(τk), Nk = sup
x∈Ωk

vk(x) = vk(ζk),

whereτk, ζk ∈ Ω.
In Lemma 2.4, we take

l1 = α
β
> 0, l2 = 1

β
> 0,
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and
u = uk, v = vk, S = Sk = Mk +N1/l1

k →∞.
The choice ofξ will be determined later. Clearly

ql1− 1− 2l2 = p − l1− 2l2 = 0.

Moreover, the pair(ūk, v̄k) given by (2.5) satisfy

ūk ≤ 1, v̄k ≤ 1, (2.7)

and

∆ūk + Slkūrk + v̄qk = 0, ∆v̄k + ūpk + Smk v̄sk = 0, (2.8)

where

l = r−1−2l2 = r−1−2/β �= 0, m = sl1−l1−2l2 = (α(s−1)−2)/β �= 0

by assumption (iii).
We shall consider several cases in terms of the parameterl andm values.

Clearly (2.8) is symmetric inl andm (i.e., inu andv) and we shall only treat
differentl values in the following two cases.

Case 1. l > 0. We further divide the proof into two subcases.

(i). m > 0. We first show

lim
k→∞

Mk

N
1/l1
k

= 0. (2.9)

Takingξ = τk, then obviously it is equivalent to show

lim
k→∞ ūk(0) = 0.

Suppose for contradiction this is not true. Then there existε0 > 0 and a subse-
quence (still using same subscripts) such that

ūk(0) ≥ ε0, k = 1,2, · · · . (2.10)

Put
ũk(z) = ūk(y), ṽk(z) = v̄k(y), z = ySl/2k .

Therefore, by (2.8)1, ũk(z) andṽk(z) are bounded and satisfy

ũk(0) ∈ [ε0,1), ∆ũk + ũrk + S−l/2k ṽ
q

k = 0.

For eachk, denote

dk = dist(τk, ∂Ω), nk = S−l2−l/2k → 0.
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There are two possibilities. First, assume that the sequence{dk/nk} is unbounded.
Then, by standard elliptic theory, the sequence{ũk} (extracting a subsequence
if necessary) converges uniformly to a non-negative functionũ ∈ C2(Rn) on
any compact subsetΣ ⊂ R

n. Moreover,ũ satisfies (2.4) withΩ = R
n since

obviously by (2.7) and the assumptionl > 0

lim
k→∞ S

−l/2
k ṽk(z) = 0

uniformly onR
n. Thusũ ≡ 0 by Lemma 2.3 sincer ∈ (1,5) by assumption (ii),

an immediate contradiction in view of (2.10).
Next suppose that{dk/nk} is bounded. Thanks to the smooth (C1) boundary

condition, the sequence{dk/nk} is bounded away from zero (standard by elliptic
estimates, see [11] or [12]). In this case, there exists > 0 and a non-negative
functionũ ∈ C2(Rns ), satisfying (2.4) with

Ω = R
n
s = R

n ∩ {xn > −s}, ũ = 0 on ∂Rns .

Thus ũ ≡ 0 by Lemma 2.3, which yields a contradiction again. And (2.9) is
proved.

Next, sincem > 0, we utilize (2.8)2 and takeξ = ζk to derive

lim
k→∞

N
1/l1
k

Mk

= 0.

This is impossible, in view of (2.9).

(ii). m < 0. Sincel > 0, thus (2.9) holds. Now takingξ = ζk, then clearly one
has

v̄k(0)→ 1, ūk(y) ≤ ūk((τk − ζk)Sl2k ) = maxūk → 0 (2.11)

ask → ∞. Proceeding as in (i), with the aid of the factm < 0 and (2.11), we
pass to a limit in (2.8)2 to infer that there exists̄v ∈ C2(Rn) such that

∆v̄ = 0, x ∈ R
n, v̄(0) = 1,

provided the sequence{dk/nk} is unbounded, and for somes > 0

∆v̄ = 0, x ∈ R
n
s , v̄(0) = 1, v̄

∣∣∣
∂Rns

= 0,

provided{dk/nk} is bounded, where

dk = dist(ζk, ∂Ω), nk = S−l2k → 0.

The second case cannot happen, since the Phragm`en-Lindelöf principle [18] im-
pliesv̄ vanishes identically, contradicting the factv̄(0) = 1. If the first possibility
occurs, then

v̄ ≡ v̄(0) = 1,
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since all bounded harmonic functions onR
n must be constant. In turn,

lim
k→∞ v̄k(y) = 1

uniformly for y ∈ B = B1(0). Moreover, by (2.9)

lim
k→∞ ūk(y) = 0

uniformly onB. On the other hand, applying Green’s formula to (2.8)1 on B
yields

0← ūk(0) =
∫
∂B

ūk(x)
∂G

∂ν
(x,0)dσ +

∫
B

[Slkūrk + v̄qk ]G(x,0)dx

≥
∫
∂B

ūk(x)
∂G

∂ν
(x,0)dσ +

∫
B

v̄
q

kG(x,0)dx →
∫
B

G(x,0)dx = cn
ask→∞, whereG(x, y) is the Green function onB, an absurdity.

Case 2. l < 0. Again we consider two cases.

(i). m > 0. The proof is essentially the same as that of (ii) of Case 1 (being a
mirror image) and the detail is left to the reader.

(ii). m < 0. Plainly,
MkS

−1
k +NkS−l1k ≥ c > 0.

In turn, without loss of generality (by takingξ = τk or ξ = ζk accordingly), we
may assume

ūk(0)+ v̄k(0) ≥ c > 0.

Letting k → ∞ in (2.8), similarly as in Case 1, one deduces that there exist
ū ≥ 0 andv̄ ≥ 0 satisfying either (2.2) or (2.3). Moreover

ū(0)+ v̄(0) ≥ c > 0, ū+ v̄ ≤ 1.

This is impossible, in view of either Lemma 2.1 or Lemma 2.2.
It follows that (2.6) cannot hold and the proof is complete.

We conclude the section with the following proof of Theorem 1.1.

Proof of Theorem 1.1.The proof essentially reduces to that of Theorem 2.1. We
shall consider different possibilities for the values ofa, b, c andd.

Case 1.Eitherb = 0 orc = 0. It simply reduces to the case of single equations
and the conclusion is well known.

Case 2.a = 0. Thusb, c, d > 0. Sincea = 0, the term involvingl does not
appear and therefore one simply treats it asl < 0. If m > 0, (i) of Case 2 of
Theorem 2.1 applies. Ifm < 0, one then proceeds exactly as (ii) of Case 2 of
Theorem 2.1.
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Case 3.d = 0. Thusa, b, c > 0. Sinced = 0, the term involvingm does not
appear and thus one simply treats it asm < 0. It follows that arguments in Case
2 above (a = 0) apply.

Case 4.a = d = 0. Thusb, c > 0. Sincea = d = 0, the terms involvingl or
m do not appear and thus one simply treats it asl < 0 andm < 0. It follows that
arguments in (ii) of Case 2 of Theorem 2.1. apply.

This completes the proof of Theorem 1.1.

3 A priori estimates II: general cases

In this section, we consider system (I) with general functionsf andg for n ≥ 3,
which may also depend on the independent variablex.

Suppose that

f : Ω × R× R→ R; g : Ω × R× R→ R

are continuous functions and that

a : Ω → R; b : Ω → R; c : Ω → R; d : Ω → R

are non-negative continuous functions. We further assume thata(x), b(x), c(x)
or d(x) is either strictly positive or identically zero onΩ. We shall be needing
the following growth condition off andg at infinity.

(G) There exist positive numbersp, q with pq > 1 andr, s > 1 such that for
u, v ≥ 0 and fixedx ∈ Ω

lim
u+v→∞

f (x, u, v)

a(x)ur + b(x)vq = 1, lim
u+v→∞

g(x, u, v)

c(x)up + d(x)vs = 1.

We first generalize Theorem 1.1 to general functionsf andg for n = 3.

Theorem 3.1 Let n = 3 and (u, v) be a non-negativeC2-solution of(I). Sup-
pose that the assumption(G) holds. Then there exists a positive constantM =
M(n, a, b, c, d, p, q, r, s) such that

||u||L∞(Ω) ≤ M, ||v||L∞(Ω) ≤ M, (3.1)

provided that

(i) α + β > 1,
(ii) max{r, s} < 5, and
(iii) β �= 2/(r − 1) andα �= 2/(s − 1).
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Remark.As pointed in the introduction, Theorem 3.1 is optimal, see Sect. 5.

Proof. The proof is essentially the same as before, here we only sketch it for the
casel > 0 andm > 0. Suppose for contradiction that (3.1) is false. Then there
exists a sequence of solutions{uk(x), vk(x)} of (I) such that

lim
k→∞(||uk||L∞(Ω) + ||vk||L∞(Ω)) = ∞. (3.2)

We want to derive a contradiction to (3.2). In the light of Theorem 1.1, we shall
assume that all functionsa(x), b(x), c(x), d(x) are strictly positive.As in Sect. 2,
we use the same transform given in Lemma 2.4 with the same notation and want
to show

lim
k→∞

Mk

N
1/l1
k

= 0. (3.3)

Suppose the contrary. That is (up-to a subsequence, again),

ξk = τk, ūk(0) ≥ ε0. (3.4)

Put
ũk(z) = ūk(y), ṽk(z) = v̄k(y), z = ySl/2k ,

and
ak(z) = a(ξk + S−l2−l/2k z), bk(z) = b(ξk + S−l2−l/2k z)

and
ck(z) = c(ξk + S−l2−l/2k z), dk(z) = b(ξk + S−l2−l/2k z).

Without loss of generality, we may assumeξk → ξ0. In turn

a0 = lim
k→∞ ak(z) = a(ξ0) > 0, b0 = lim

k→∞ bk(z) = b(ξ0) > 0

and
c0 = lim

k→∞ ck(z) = c(ξ0) > 0, d0 = lim
k→∞ dk(z) = d(ξ0) > 0

uniformly on any compact subset ofΓ (Γ is eitherR3 or R
3
s , see below also)

sinceSk →∞ andl2+ l/2> 0.
By direct calculations,̃uk(z) andṽk(z) are bounded globally and satisfy

∆ũk + S−1−2l2−l
k f (ξk + S−l2−l/2k z, Skũk(z), S

l1
k ṽk(z)) = 0. (3.5)

Using (G), there existsM > 0 such that foru, v ≥ 0

|f (x, u, v)| ≤ 2[a(x)ur + b(x)vq] +M.
It follows that∣∣∣S−1−2l2−l

k f (ξk + S−l2−l/2k z, Skũk(z), S
l1
k ṽk(z))

∣∣∣ ≤ (akũrk + bkS−l/2k ṽ
q

k )+ o(1)
≤ M̄. (3.6)
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Therefore, via standard elliptic theory and with the aid of (3.5) and (3.6), we
deduce that there existsũ ∈ C1,α(Γ ) (up-to a subsequence) such that

lim
k→∞ ũk(z) = ũ(z)

uniformly on any compact subset ofΓ in C1,α-topology for anyα ∈ (0,1).
Moreover,

ũ(0) ≥ ε0 (3.7)

by (3.4). Hence clearly the condition (G) implies that (note 1+ 2l2+ l = r)
lim
k→∞ S

−1−2l2−l
k f (ξk + S−l2−l/2k z, Skũk(z), S

l1
k ṽk(z))

= lim
k→∞

f (ξk + S−l2−l/2k z, Skũk(z), S
l1
k ṽk(z))

akS
r
k ũ
r
k(z)+ bkSpl1k ṽqk (z)

· [akũrk(z)+ bkS−l/2k ṽ
q

k (z)]

= lim
k→∞[akũ

r
k(z)+ bkS−l/2k ṽ

q

k (z)] = a0ũ
r (z)

uniformly on any compact subset ofΓ (up to a subsequence). It follows thatũ(z)
satisfies (in weak sense)

∆ũ+ a0ũ
r = 0 in Γ

with appropriate boundary condition. It follows thatũ(z) ≡ 0 as before and
yields a contradiction to (3.7). Thus (3.3) holds.

Proceeding similarly and using the factm > 0 (takingξk = ζk) to derive

lim
k→∞

N
1/l1
k

Mk

= 0.

Apparently this is impossible in view of (3.3) and the proof is complete.

Whenn > 3, the Liouville type non-existence results for positive solutions of
the Lane-Emden system are not available for all subcritical(p, q)′s, see Lemmas
3.1–3.3 below. Consequently, we have similar but weaker results than the case
n = 3.

Theorem 3.2 Letn > 3and let(u, v) be a non-negativeC2-solution of(I). Sup-
pose that(G)holds.Then thereexists apositive constantM = M(n, a, b, c, d, p,
q, r, s) such that

||u||L∞(Ω) ≤ M, ||v||L∞(Ω) ≤ M, (3.8)

provided that all the following three conditions hold.

(i) max(α, β) ≥ n − 2, or, max(p, q) ≤ (n + 2)/(n − 2) andmin(p, q) <
(n+ 2)/(n− 2),
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(ii) max{r, s} < (n+ 2)/(n− 2), and
(iii) β �= 2/(r − 1) andα �= 2/(s − 1).

The proof is essentially the same as that of Theorem 3.1. However, we shall
also be using the following non-existence results forn > 3.

Lemma 3.1 Suppose thatn ≥ 3andp, q are positive numbers satisfying either
pq ≤ 1 or

max(α, β) ≥ n− 2.

Then the Lane-Emden system(2.2) does not admit any non-negative and non-
trivial solutions.

The lemma was first proved by Mitidieri [15] forp, q > 1, and later extended
to general cases in [21].

Lemma 3.2 (de Figueiredo and Felmer[7])Letn ≥ 3and Suppose thatp, q are
positive numbers satisfying

max(p, q) ≤ n+ 2

n− 2
and min(p, q) <

n+ 2

n− 2
.

Then the Lane-Emden system(2.2) does not admit any non-negative and non-
trivial solutions.

Finally, one has a half-space version of Lemma 3.2 for bounded solutions.

Lemma 3.3 Letn > 3 and suppose

max(p, q) ≤ n+ 1

n− 3
and min(p, q) <

n+ 1

n− 3
.

Then the Lane-Emden system(2.3) does not admit any non-negative and non-
trivial bounded solutions.

The proof is the same as that of Lemma 2.2, using an argument of Dancer [5]
and the nonexistence Lemma 3.2.

Remark. The approach applies to non-linearities depending on the gradients
∇u and∇v. Indeed, the gradient part with suitable growth restrictions can be
blown-out, i.e., disappearing from the limiting equation(s), and the proof carries
over with little change.

4 Existence

In this section, we prove the existence result Theorem 1.2. First, we establish
existence for system (I) under suitable assumptions on general functionsf and
g. Throughout this section, we usew to denote a pair of functionsu andv, that
is,

w = (u, v), with ||w|| = ||u|| + ||v||,
and assume thatf andg satisfy the following hypotheses.
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(H1) f, g ∈ C1(Rn × R× R) with f, g �≡ 0.
(H2) There exist constantsλ,µ ≥ 0 such that foru, v ≥ 0

f (x, u, v)+ λu ≥ 0, g(x, u, v)+ µv ≥ 0.

(H3) Foru, v ≥ 0

f (x, u, v) = o(u+ v), g(x, u, v) = o(u+ v),
asu+ v→ 0 uniformly onΩ.

(H4) There existsM > 0 such that foru, v ≥ 0 andx ∈ Ω
f (x, u, v)+ g(x, u, v) ≥ λ1(u+ v)−M,

whereλ1 is the first eigenvalue of(−∆,H0).

We say that system (I) has property (AP), provided that the following holds.

(AP) For(φ(x), ψ(x)) ∈ C(Ω), letw = (u, v) be a non-negative solution of

∆u+f (x, u, v) = φ, ∆v+g(x, u, v) = ψ, in Ω; u = v = 0, on ∂Ω.

Then there exists a positive constantC = C(||(φ, ψ)||L∞(Ω)) > 0 (inde-
pendent ofw) such that

||w||L∞(Ω) ≤ C.

Remark.Property (AP), via standard elliptic theory, implies

||w||C2,α(Ω) ≤ C1

for all α ∈ (0,1).
We have the following existence result.

Theorem 4.1 The system(I) admits a classical non-negative non-trivial solution
w, provided that(I) has the property(AP).

We shall apply the fixed point theory on a (positive) cone to prove Theorem
3.1. Forα ∈ (0,1), put

E = C2,α
0 (Ω)× C2,α

0 (Ω), H = Cα(Ω)× Cα(Ω), (4.1)

where
C

2,α
0 (Ω) = C2,α(Ω) ∩ C0(Ω)

is the usual Banach space equipped with a standard norm. Consider the operator

T =
(−∆+ λ 0

0 −∆+ µ
)
: E→ H,
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with λ,µ given before. It is obvious thatT has a bounded inverseT −1 : H → E.
Set

T0(w) =
(
f (x, u, v)+ λu
g(x, u, v)+ µv

)
: H → H, w = (u, v) ∈ H.

Now consider
F = T −1 ◦ T0 : H → H.

It is by standard elliptic theory that the operatorF is compact.

The following fixed point theorem on a (positive) cone is due to de Figueiredo,
Lions and Naussbaum [8], which is a modified version of a theorem of Kras-
nosel’skii [13].

Proposition 4.1 Let C be a cone in a Banach spaceX and T : C → C a
compact mapping such thatT (0) = 0. Suppose that there exist numberst0 > 0
and0< r < R and a vectorv ∈ C − {0} such that
1. x �= tT (x) for 0 ≤ t ≤ 1 and‖x‖ = r,
2. x �= T (x)+ tv for t ≥ 0 and‖x‖ = R.
3. x �= T (x)+ tv for t ≥ t0 and‖x‖ ≤ R.
Then ifU = {x ∈ C : r < ‖x‖ < R} andBρ = {x ∈ C : ‖x‖ < ρ}, one has

iC(T , BR) = 0, iC(T , Br) = 1, iC(T , U) = −1.

In particular, T has a fixed point inU .

Proof. We refer the readers to [8] for a proof.

Proof of Theorem4.1.We want to apply Proposition 4.1 to the operatorF . Define

C = {(u, v) ∈ H | u, v ≥ 0}.
ClearlyC is a (positive) cone. We divide the proof into several steps.

Step 1.F : C → C is compact withF(0) = 0. ClearlyT0(0) = 0 since

f (x,0,0) = g(x,0,0) = 0

by (H3). ThusF(0) = T −1 ◦ T0(0) = T −1(0) = 0. By standard elliptic theory,
F is compact. Finally, we want to use a maximum principle to showF : C → C.
Forw0 ∈ C, consider

w = Fw0, i.e., Tw = T0w0,

that is,
∆u− λu+ [f (x, u0, v0)+ λu0] = 0,
∆v − µv + [g(x, u0, v0)+ µv0] = 0,

x ∈ Ω.
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By (H2), we have

f (x, u0, v0)+ λu0 ≥ 0, g(x, u0, v0)+ µv0 ≥ 0

sincew0 ∈ C. It is immediate thatu ≥ 0 andv ≥ 0 by the maximum principle,
that is,w ∈ C.

Step 2.For t ∈ [0,1], there exists a positive numberr such that

w �= tF (w) (4.2)

for ||x|| = r. Consider
w = tF (w)

for t ∈ [0,1], that is,

−∆u+ λu = t[f (x, u, v)+ λu]
−∆v + µv = t[g(x, u, v)+ µv]. (4.3)

Multiply (4.3)1 byu and (4.3)2 by v respectively, and integrate overΩ to obtain∫
Ω

(|∇u|2+|∇v|2)+ (1− t)
∫
Ω

(λu2+µv2) = t
∫
Ω

(f (x, u, v)u+g(x, u, v)v).

In turn,

λ1

∫
Ω

(u2+ v2) ≤
∫
Ω

|f (x, u, v)u+ g(x, u, v)v|,
sincet ∈ [0,1] andλ,µ ≥ 0. Therefore by (H3), there existsσ > 0 such that
||(u, v)||H > σ or (u, v) = 0, and consequently (4.2) holds with the choice
r = σ .

Step 3. There exist positive numberst0 andR and a vectorw0 = (u0, v0) ∈
C − {0} such that

w �= F(w)+ tw0 (4.4)

for t ≥ t0 and||x|| ≤ R.
Let φ1 be a (normalized) first eigenfunction of(−∆,H0) and take

w0 = (φ1, φ1) ∈ C − {0}.
We shall show that (4.4) holds for thisw0. Consider

w = F(w)+ tw0,

that is,
∆u+ t (λ1+ λ)φ1+ f (x, u, v) = 0,
∆v + t (λ1+ µ)φ1+ g(x, u, v) = 0,

x ∈ Ω. (4.5)
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Multiply both of (4.5) byφ1 and integrate overΩ to obtain

t (2λ1+ λ+ µ)
∫
Ω

φ2
1 +

∫
Ω

φ1[f (x, u, v)+ g(x, u, v)] = λ1

∫
Ω

φ1(u+ v).
By (H4), there existsM > 0 such that

f (x, u, v)+ g(x, u, v) ≥ λ1(u+ v)−M
for (u, v) ∈ C. Therefore,

t ≤ M
∫
Ω
φ1

2λ1+ λ+ µ.
It follows immediately that (4.4) holds by taking anyR > 0 and

t0 = 2M
∫
Ω
φ1

2λ1+ λ+ µ.
Note particularly the choice ofR > 0 can be arbitrary.

Step 4.There exists a positive numberR such that

w �= F(w)+ tw0 (4.6)

for t ≥ 0 and||x|| = R, where the vectorw0 = (u0, v0) ∈ C − {0} is given in
Step 3. Consider

w = F(w)+ tw0. (4.7)

Then t ≤ t0/2 for all w ∈ C by Step 3. By the assumption (AP), there exists
K > 0 (depending ont0) such that

||(u, v)||H ≤ K
since(u, v) satisfies (4.7). It follows that (4.6) holds for allt ≥ 0 with the choice
of R = 2K.

Step 5. Now we can finish the proof applying Proposition 4.1 withX = H .
Plainly, all conditions of Proposition 4.1 are satisfied. Therefore the mappingF

has a fixed pointw ∈ C with ||w|| ∈ [r, R], which is a non-negative non-trivial
solution of (I). And the proof is complete.

Remarks. 1. As we remarked at the end of Sect. 3, our approach applies to
nonlinearities depending on the gradients∇u and∇v with suitable restriction.

2. It is easy to see that the componentsu andv are either strictly positive or
identically zero, via strong maximum principle.

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2.This is a special case of Theorem 4.1 since one readily
verifies thatf andg satisfy (H1)–(H4) and (I) has property (AP) (Theorem 3.1).

Corresponding to Theorems 3.1 and 3.2, we have the following existence
theorems.
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Corollary 4.1 Letn = 3 and supposef andg satisfy the condition(G)with

(i) α + β > 1,
(ii) max{r, s} < 5, and
(iii) α �= 2/(s − 1) andβ �= 2/(r − 1).

Then the system(I) admits a classical non-negative non-trivial solutionw.

Corollary 4.2 Letn > 3 and supposef andg satisfy the condition(G)with

(i) max(α, β) ≥ n − 2, or, max(p, q) ≤ (n + 2)/(n − 2) andmin(p, q) <
(n+ 2)/(n− 2),

(ii) max{r, s} < (n+ 2)/(n− 2), and
(iii) α �= 2/(s − 1) andβ �= 2/(r − 1).

Then the system(I) admits a classical non-negative non-trivial solutionw.

The proofs are essentially the same as before and are left to the reader.
When (I) is irreducible, namely,

f (x,0, v) �= 0 for v > 0; g(x, u,0) �= 0 for u > 0,

Then the solutions of (I) obtained in Theorem 4.1 are necessarily positive.

Theorem 4.2 Suppose the conditions given in Theorem4.1hold. Then the solu-
tions of(I) obtained in Theorem4.1are necessarily positive, provided that(I) is
irreducible.

Proof. We need to show thatw is strictly positive. Following the argument in
step 1 of the proof of Theorem 4.1, a strong maximum principle argument shows
that the componentsu andv are either strictly positive or identically zero. We
claim neither componentu or v can vanish identically. For otherwise, suppose
u ≡ 0. Then we have

f (x,0, v) = 0, i.e., v ≡ 0

since (I) is irreducible. Thereforeu = v ≡ 0. This impossible since(u, v) is a
non-trivial solution.

Proof of Corollary 1.1.By Theorem 1.2, (I) has a non-trivial and non-negative
solutionw. By Theorem 4.2,w is strictly positive since one readily sees that (I)
is irreducible.

Proof of Theorem 1.3.(i). A priori estimates. By Theorem 3.1, we only need
to verify thatf andg satisfy the property (G). By (iv), we can choose positive
numbersl ∈ (1, r/a) andm ∈ (1, a/b) such that

1

l
+ 1

m
= 1.
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By the Young inequality, we have foru, v ≥ 0,

uavb ≤ ula + vmb.
It follows that

lim
u+v→∞

f (x, u, v)

ur + vq = 1,

sincela < r andmb < q. Similarly, one readily checks that

lim
u+v→∞

g(x, u, v)

up + vs = 1.

That is,f andg satisfy the property (G) and Theorem 3.1 applies. The first
conclusion is proved.

(ii). Existence of a positive solution. We shall apply Theorem 4.1 and need
to verify (H1)–(H4) and (AP).

Verification of (H1): Obvious.

Verification of (H2): Foru, v ≥ 0, takel = q/(q − b) andm = q/b and apply
the Young inequality,

uavb ≤ (q − b)uaq/(q−b) + bvq/q.
It follows that

f (x, u, v) ≥ ur − (q − b)uaq/(q−b) + (1− b/q)vq ≥ ur − (q − b)uaq/(q−b),
sinceb < q. Similarly,

g(x, u, v) ≥ (1− c/p)up − (p − c)vdp/(p−c) + vs ≥ −(p − c)vdp/(p−c) + vs,
sincec < p. Therefore one can chooseλ,µ ≥ 0 such that

f (x, u, v)+ λu ≥ ur − (q − b)uaq/(q−b) + λu ≥ 0

sinceaq/(q − b) ∈ [1, r), and

g(x, u, v)+ µv ≥ µv − (p − c)vdp/(p−c) + vs ≥ 0,

sincedp/(p − c) ∈ [1, s) and (H2) is verified immediately.

Verification of (H3): Obvious.

Verification of (H4): Obvious.

Verification of (AP): Obvious by (i).

Therefore Theorem 4.1 applies. That is (I) has a non-trivial and non-negative
solution(u, v). Plainly (I) is irreducible under our assumption and whence(u, v)

must be positive by Theorem 4.2. The proof is complete.
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5 Concluding remarks

Concerning existence as well as a priori estimates for positive solutions, it is well
known that the Sobolev exponent

2∗ = n+ 2

n− 2

is the dividing number for the celebrated Lane-Emden equation. For the system
(I), the a priori estimates and existence results forn = 3 (Theorems 1.1–1.3)
established in this paper are also optimal in a similar spirit. We shall include
several examples here to demonstrate the point.

The first example is the classical existence result of Fowler for the Lane-
Emden equation with a super-critical growth.

Theorem 5.1 (Fowler [9])Letn ≥ 3and supposep ≥ 2∗. Then theLane-Emden
equation

∆u+ up = 0

has infinitely many positive solutions on the entire spaceR
n.

In [22], the authors extended the above result to the Lane-Emden system.

Theorem 5.2 (Serrin and Zou [22])Letn ≥ 3 and suppose

1

p + 1
+ 1

q + 1
≤ n− 2

n
. (5.1)

Then the Lane-Emden system

∆u+ vq = 0, ∆v + up = 0

has infinitely many positive solutions on the entire spaceR
n.

On bounded domains, non-existence is known when the domain is star-shaped
for super-critical non-linearities.

Theorem 5.3 (Pohozaev [17])Letn ≥ 3 and letΩ ⊂ R
n be a bounded smooth

star-shaped domain. Then the Lane-Emden equation has no non-trivial non-
negative solution providedp ≥ 2∗.

Theorem 5.4 (Mitidieri [14] and van der Vorst [23])Letn ≥ 3 and letΩ ⊂ R
n

be a bounded smooth star-shaped domain. Then the Lane-Emden system has no
non-trivial non-negative solution provided that(5.1)holds.
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Theorems 5.1-5.4 clearly show that all a priori estimate and existence results
for n = 3 are best possible whenn = 3 in the sense that either condition (i) or
(ii) is violated, then the conclusion can fail to hold.

Indeed, suppose that condition (i) is violated. That is,α + β ≤ 1, which is
equivalent to (5.1) forn = 3 and thus Theorem 5.4 applies. Takea = d = 0,b =
c = 1 andp, q > 1.Then (I) reduces to the Lane-Emden system andTheorem 5.4
says that (I) cannot have non-trivial non-negative solutions on bounded smooth
star-shaped domains. Hence Theorem 1.2 and Corollaries 1.1 and 4.1 (note (I)
is irreducible) do not hold. Plainly Theorems 1.1 and 3.1 must not hold either.
For otherwise, system (I) would possess the (AP) property and Theorems 4.1
and 4.2 would apply, indicating (I) with a positive solution. This is of course
impossible. A closer examination also reveals that the blow-up procedure breaks
down. In fact, the blown-up equation in this case is precisely the Lane-Emden
system, which does have positive solutions on the entire spaceR

n by Theorem
5.2 since (5.1) is satisfied.

Next, assume that condition (ii) is violated, say,r ≥ 5. Takeb = c = 0,
a = d = 1 ands > 1. Apparently (I) reduces to the case of single equations and
Theorems 5.1 and 5.3 apply.ThereforeTheorems 1.1–1.2 and 3.1, and Corollaries
1.1 and 4.1 must fail, argued as above.

Whenn > 3, Theorem 3.2 and Corollary 4.2 are not optimal in the sense
above, as shown by the following example.

Theorem 5.5 (Clement, de Figueiredo and Mitidieri [3])Let n ≥ 3 and let
Ω ⊂ R

n be a bounded smooth domain. Then the Lane-Emden system has a
positive solution provided thatp, q ≥ 1 satisfies

1

p + 1
+ 1

q + 1
>
n− 2

n
.

For the Lane-Emden system, the curve

1

p + 1
+ 1

q + 1
= n− 2

n
(5.2)

is precisely the dividing curve for existence (at least for star-shaped domains)
by Theorems 5.4–5.5. However, both Theorem 3.2 and Corollary 4.2 only cover
the region below the curve given by

max(α, β) = n− 2, or, max(p, q) ≤ n+ 2

n− 2
and min(p, q) <

n+ 2

n− 2
.

(5.3)

There is a gap between the lower curve (5.3) and the so called critical (higher)
curve (5.2).

When system (I) isfully irreducible(in the sense below, see Theorem 5.6), it is
not known if Theorems 1.1–1.3 are still optimal even forn = 3. Nevertheless, the
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following non-existence result for a prototypefully irreduciblef andg should
shed some light on this issue.

Theorem 5.6 (Reichel and Zou [20])Letn ≥ 3 and letΩ ⊂ R
n be a bounded

smooth star-shaped domain. Suppose

f (x, u, v) = ur + vq, g(x, u, v) = up + vs

withmin(p, q, r, s) ≥ 2∗. Then system(I) has no non-trivial non-negative solu-
tion.

Acknowledgements.The author wishes to thank both referees for their carefully reading the
manuscript and useful comments.
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