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1 Introduction

Consider the weakly coupled semilinear elliptic system

Au+ f(x,u,v) =0,

Av+gx,u,v) =0 u, v=0 ing, O

together with the homogeneous Dirichlet boundary condition
u=v=0 inds,

wheref2 c R” (n > 3) is a bounded smooth domain. Recently, there have been
significant studies of (1), see [1-4, 6—7, 14-16, 20-23] and the references therein.
System (I) arises from studying various nonlinear phenomena, such as pattern
formation, population evolution, chemical reaction, etc., wireaadv represent
concentrations of different species in the process. Naturally positive solutions of
() is of particular interest.

In this paper, we are concerned with the question of existence of a pair of
smooth functions: andv satisfying (I). Our interest partly lies in the fact that
semi-linear systems such as (I) need not have a variational structure (cf. the case
of single equations) nor be cooperative. Specifically, we shall establish a priori
estimates and existence of positive solutions to general semilinear elliptic system
(). In particular, we do not require (I) be variational or cooperative.

It is well known that the (algebraic) growth of the nonlinearjtyplays a
critical role in treating semilinear equations

Au+ f(u) =0.

H. Zou*

Department of Mathematics, University of Alabama, Birmingham, AL 35294-1170, USA

* Research supported in part by NSF Grant DMS-9418779 and DMS-9622937, by a grant from
Alabama EPSCoR and by a faculty research grant from University of Alabama at Birmingham



714 H. Zou

For instance, wherf = u? (i.e., the celebrated Lane-Emden equation), the
Sobolev exponent +2) / (n — 2) is the dividing number for existence of positive
solutions with homogeneous Dirichelt conditien= 0 (at least for star-shaped
domain in some sense, see for instance [9, 10, 17, 19]), in terms of the exponent
p. Corresponding a priori estimates can also be established [11].

There are two natural variational structures associated with (I). That is, the
so called potential structure with

Iwﬂo=/¥qvmﬂva%—2H@Jhw} (1.2
and the Hamiltonian structure with
J(u,v) = / {(Vu-Vv—H(x,u,v)}. (1.2)

A prototype model of (I) to exhibit the distinct nature resulting from the
structures (1.1) and (1.2), respectively, occurs when

p+1 pitt
+ .
p+1l qg+1
For (1.1), () simply decouples to two single equations

Hx,u,v) =

Au+u? =0, Av+v9=0

then there is no (significant) impact of the expongntndg on each other and
techniques used for single equations remain applicable. For (1.2), on the other
hand, (I) becomes

Av +uf =0, Au+v? =0, (1.3)

which is a natural extension of the well-known Lane-Emden equation and thus
is referred to as the Lane-Emden system. This is the case where the exponents
p andg interplay, compensating each other. It has been known for certain cases
that the hyperbola

1 1 n—2
+ =
p+1 g+1 n
plays the role of dividing curve in terms of exponeptsaand g for existence
for the Lane-Emden system, directly extending the well-known results for the

Lane-Emden equation, see Sects 3 and 5 for details.
Leta, b, ¢, d andp, ¢, r, s be non-negative numbers satisfying

, (1.4)

p, g >0, pqg > 1, r, s > 1

Put 2 1
o= ﬂ > 0, Bp=———>>0.
pqg—1 pqg—1
We first have the following a priori estimate for the dimensios 3.
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Theorem 1.1 Letn = 3 and (u, v) be a non-negativ€ 2-solution of(l) with
f,u,v) =au" +bv?, g(x,u,v) =cu’ +dv’. (1.5)
Then there exists a positive constdit= M (n, a, b, ¢, d, p, g, r, s) such that
[lull Loy <M, [lV||Lo2) < M,

provided that

O a+p>1,
(i) max{r,s} <5, and
(i) B#£2/(r—1) anda # 2/(s — 1).

Theorem 1.1is optimalinthe sense thatif either condition (i) or (ii) is violated,
the conclusion need no longer hold, in view of non-existence of positive solutions
for non-linearities withsuper-criticalgrowth on bounded star-shaped domains.
Moreover, the existence fauper-criticalnon-linearities on the entire spaké
shows that the proof of Theorem 1.1 breaks-down, see section 5 for details.

In Sect. 3, we extend Theorem 1.1 (Theorem 3.1) to systems with a general
non-linearity which satisfies a growth condition (G). The extension is clearly as
sharp in the same spirit. That is, Theorem 3.1 need not hold, if either condition
() or (ii) does not meet. Moreover, Theorem 1.1 extends to higher dimension
n > 3 for general non-linearities, see Theorem 3.2. However, the extension for
n > 3 is not sharp in the above sense, due to a lack of non-existence for the
Lane-Emden system in thHell sub-criticalrange, see Sect. 5 again.

The proof of Theorem 1.1 is based on a blow-up argument, see for example [1,
11, 24] and the references therein. The argument, in turn, relies on non-existence
theorems for positive solutions of the limiting system after blow-up (either a
system of equations or a single equation on the entire SR4a# on the half
spaceR’} ).

We say a solutioriu, v) of () is non-trivial if one of the componenisandv
is non-trivial. With the help of Theorem 1.1, we are able to prove the following
existence result.

Theorem 1.2 Letn = 3andletf andg be given by1.5). Suppose the conditions
in Theoreml.1 are satisfied. We further assume that

P, qg>1 a+b>0, c+d > 0.
Then the systeift) has a classical non-negative nontrivial solution.

The proof of Theorem 1.2, which does not require a variational structure, is
based on a fixed point theorem on positive cones as well as the a priori estimate
Theorem 1.1. In particular, Theorem 1.2 is sharp in the same sense of Theorem
1.1, see Sect. 5. One important feature of the proof of Theorem 1.1 is that it



716 H. Zou

applies to general non-linearities with certain growth restriction endv at
infinity. Therefore, both Theorems 1.1 and 1.2 apply to a wide class of general
non-linearitiesf andg with suitable growth, see Sectis. 3 and 4. It is also worth
to point out that the non-linearities may depend on the independent variable
and the gradient¥u andVv, as well as change sign. Needless to say, suitable
conditions must be imposed and it is left to the reader .

When (1) is irreducible in the sense that

f(x,0,v) #0forv > 0; g(x,u,0) £#0foru > 0,
then Theorem 1.2 can be strengthened.

Corollary 1.1 Letn = 3and letf andg be given by(1.5). Suppose the condi-
tions in Theorem..1 are satisfied. We further assume that

p, q>1, b >0, c>0.
Then the systelfh) has a classical positivecomponent-wisesolution.

This is an immediate consequence of Theorem 1.2 and the strong maximum
principles.

The following example shows that Theorems 1.1-1.2 and Corollary 1.1 can
still hold for nonlinearitiesf andg changing sign for, v > 0.

Theorem 1.3 Letn = 3 and let
f(x,u,v):u’—u”vb—i—vq, g(x,u,v):up—ucvd—i—vs,

wherea, b, ¢, d > 1 are positive numbers. Suppose tfigt(iii) of Theoreni.l
hold. Then the conclusion of Theoreh4—1.2and Corollaryl1.1 continues to
hold, provided that

(iv) a<r,b<gq,c<p,d<sand

max{(cr—l-l—g), (%4—?)} < 1

Clearly foru > 0 small, one has
flu,u’?) <0; g(u, u?’*) < 0.

That is, bothf andg are negative for some values of small positivandv.
Nevertheless Theorem 1.3 assures that (I) has a positive solution (component-
wise). Note particularly that (1) is neither variational nor cooperative.

The organization of the paper is as follows. In Sect. 2 we prove Theorem 1.1.
We extend Theorem 1.1 to general functighandg and to the dimensiom > 3
in Sect. 3. The existence will be established in Sect. 4. We finally discuss several
examples in Sect. 5.
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2 A priori estimates|: n = 3

In this section, we shall establish a priori estimates for positive solutions of (1)
when the dimension = 3.
Recall thatp, ¢ > Owith pg > 1,r, s > 1, and
2(p+1) 2g+1
a=—->7->0 f=—7F>
pq—1 pq —1
We first prove a special case of Theorem 1.1.

0.

Theorem 2.1 Letn = 3 and(u, v) be a non-negativ€2-solution of(l) with
fu,v)y=u"+v4, gu,v)=u’+v.
Then there exists a constait = M (n, p, ¢, r, s) > 0such that
[lullpoy < M,  |[vlli=~@) < M, (2.2)
provided that

i) a+p8>1,
(i) max{r, s} <5, and

(i) B #2/(r — 1 anda # 2/(s — 1).

As mentioned in the introduction, by a blow-up argument, the proof of The-
orem 2.1 reduces to one of Lemmas 2.1-2.3 below. The first two lemmas are
non-existence results for the Lane-Emden system.

Lemma 2.1 (Serrin and Zou [21]Letrn = 3 and suppose that, ¢ are positive
numbers such that eitherg < 1 or ¢ + 8 > 1. Then the Lane-Emden system

Au+v?9=0, Av+u’=0, xeR" (2.2)

does not admit non-trivial non-negative solutiams v) with algebraic growth
at infinity.

When2 = R’ = {x, > 0}, Lemma 2.1 was extended by Birindelli and
Mitidieri to arbitrary dimensiom > 3 for bounded solutions.

Lemma 2.2 (Birindelli and Mitidieri [1]) Letn > 3 and p,g > 1. Then the
Lane-Emden system

Au+v?1 =0, Av+u? =0, x e R} (2.3)

together with zero boundary condition= v = 0O ondR", = {x, = 0} does not
admit bounded non-trivial non-negative solutiqas v), provided

max(a, B8) = (n — 3).
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Remarks.1. Note that Lemma 2.2 holds for gil ¢ > 1 whenn = 3.

2. Whenn = 4, with the aid of Lemma 2.1, one slightly improves Lemma

2.2 under the condition
1 1

—_—t — > -
p+1 g+1 3
The following non-existence result for the Lane-Emden equation is due to
Gidas and Spruck.

Lemma 2.3 (Gidas and Spruck [10, 11Detp € (1, (n + 2)/(n — 2)) and
suppose that is a non-negative solution of

Au+u? =0, xe€f2. (2.4)
Thenu = Oif either 2 = R" or 2 = R, withu = 0ondR’,.
RemarkWhen 2 = R, Dancer [5] extended the above ranges (1, (n +
2)/(n—2)top e, (n+1)/n — 3)) for bounded solutions.

The following formula is by direct calculations.

Lemma 2.4 Let (u, v) be a positive solution df) with f (u, v) = u” + v? and
glu,v)y =uP +v°'.Foré € 2 ands, 11, I > 0, put

i(y) =Su(x), () =S"vx), y=x-§S52 (2.5)
Then
Ail + Sr—l—2l2b—tr + Sqll—l—lel—)q — 0’
AD 4 Sp_ll_ZIZI/_tp + Ssll—ll—lel—)s = 0.
After these preparations, we can prove Theorem 2.1.

Proof of Theorem 2.1The proofis based on contradiction. Suppose that Theorem
2.1isfalse. Thenthere exists a sequence of solufinis), vy (x)}72,; of (I) such
that

kILmoo(”ukHLOO(Q) + [Jvkl| Lo (2)) = 00. (2.6)
Fork=1,2,---, put

My = supug(x) = up(te), Ni = SUPvk(x) = vr(&r),
XE xX€Ey
wherery, ¢, € £2.
In Lemma 2.4, we take
o 1

l]_=—>0, 12:—>O,
p p
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and
u = uyg, V= Vg, S:Sk:Mk—i-N]j-/ll—)OO.

The choice ot will be determined later. Clearly
glhh—1—2l,=p—1,— 2, =0.
Moreover, the paitiy, v;) given by (2.5) satisfy
u <1, y <1, (2.7)

and

Aity + Sty + 0] =0,  Avg+al + SP'vs =0, (2.8)
where
l=r—-1-2l,=r—1-2/8 #0, m=slhh—11—2l = (a(s—1)—2)/8 #0

by assumption (iii).

We shall consider several cases in terms of the parametedm values.
Clearly (2.8) is symmetric ith andm (i.e., inu andv) and we shall only treat
different/ values in the following two cases.

Case 1/ > 0. We further divide the proof into two subcases.

(. m > 0. We first show
kILmOO % =0. (2.9)
Takingé = i, then obviously it is equivalent to show
kILmoo i (0) =0.
Suppose for contradiction this is not true. Then there exist 0 and a subse-
guence (still using same subscripts) such that
i (0)>e, k=212 ---. (2.10)

Put .
W@ = (), 0@ =%, 2=y
Therefore, by (2.8) i (z) anduy(z) are bounded and satisfy
ix(0) € [e0, 1),  Aiig + ity + S;*5! = 0.
For eachk, denote

dp = dist(r, 2), e =8.27"* = 0.
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There are two possibilities. First, assume that the sequépte, } is unbounded.
Then, by standard elliptic theory, the sequekfitg (extracting a subsequence
if necessary) converges uniformly to a non-negative funciica C?(R") on
any compact subsef c R". Moreover,u satisfies (2.4) with2 = R” since
obviously by (2.7) and the assumptibs- O

Jim S %(z) =0
uniformly onR”. Thusiz = 0 by Lemma 2.3 since € (1, 5) by assumption (ii),
an immediate contradiction in view of (2.10).

Next suppose thdti; /n;} is bounded. Thanks to the smootitj boundary
condition, the sequendé, /n;} is bounded away from zero (standard by elliptic
estimates, see [11] or [12]). In this case, there exist 0 and a non-negative
functioni € C2(R"), satisfying (2.4) with

=R =R"N{x" > —s}, u=0 on 9R].

Thusi = 0 by Lemma 2.3, which yields a contradiction again. And (2.9) is
proved.
Next, sincen > 0, we utilize (2.8) and taket = ¢, to derive

1/11

lim =~ — =0.
k— 00 Mk

This is impossible, in view of (2.9).

(ii). m < 0. Sincel > 0, thus (2.9) holds. Now taking = ¢, then clearly one
has

50) = 1, () < iix((zh — &) SP) = maxiy, — 0 (2.11)

ask — oo. Proceeding as in (i), with the aid of the fagt< 0 and (2.11), we
pass to a limit in (2.8)to infer that there exists € C2(R") such that

Ab=0, xeR', 0 =1,
provided the sequendé,/n;} is unbounded, and for some> 0

Ab=0, xeR', ©0=1 | =0,
IR~

s

provided{d, /n,} is bounded, where
dp = dist(g, 02),  np =582 0.

The second case cannot happen, since the Plaadnmdebf principle [18] im-
pliesv vanishes identically, contradicting the fa¢0) = 1. If the first possibility
occurs, then

v

v(0) =1,
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since all bounded harmonic functions BfA must be constant. In turn,
lim o(y) =1
k—00
uniformly for y € B = B1(0). Moreover, by (2.9)
lim u(y) =0
k—o00

uniformly on B. On the other hand, applying Green’s formula to (2@&) B
yields

0 < i (0) =/

0B

3G
it () 7= (x, 0)do +f[5£ﬁ;+ag]e(x,0)dx
v B

0G
z/ ﬁk(x)—(x,O)da—i—/ 17,’3G(x,0)dx—> / G(x,0)dx = ¢,
9B dv B B

ask — oo, whereG(x, y) is the Green function oB, an absurdity.
Case 2! < 0. Again we consider two cases.

(). m > 0. The proof is essentially the same as that of (ii) of Case 1 (being a
mirror image) and the detail is left to the reader.

(il). m < 0. Plainly,
M ST+ NS = e > 0.

In turn, without loss of generality (by takifg= 7, or & = ¢; accordingly), we
may assume
ur(0) + 9:(0) > ¢ > 0.

Lettingk — oo in (2.8), similarly as in Case 1, one deduces that there exist
i > 0 andv > 0 satisfying either (2.2) or (2.3). Moreover
u(0)+v0)>c>0, ua+v=<1Ll
This is impossible, in view of either Lemma 2.1 or Lemma 2.2.
It follows that (2.6) cannot hold and the proof is complete.
We conclude the section with the following proof of Theorem 1.1.

Proof of Theorem 1.1The proof essentially reduces to that of Theorem 2.1. We
shall consider different possibilities for the valuesiob, ¢ andd.

Case 1.Eitherb = 0 orc = 0. It simply reduces to the case of single equations
and the conclusion is well known.

Case 2.a = 0. Thusb, ¢, d > 0. Sincea = 0, the term involving does not
appear and therefore one simply treats it as 0. If m > 0, (i) of Case 2 of
Theorem 2.1 applies. H: < 0, one then proceeds exactly as (ii) of Case 2 of
Theorem 2.1.
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Case 3.d = 0. Thusa, b, ¢ > 0. Sinced = 0, the term involvingn does not
appear and thus one simply treats itras< 0. It follows that arguments in Case
2 above ¢ = 0) apply.

Case 4.a =d = 0. Thush, ¢ > 0. Sincea = d = 0, the terms involving or
m do not appear and thus one simply treats it asO andm < 0. It follows that
arguments in (ii) of Case 2 of Theorem 2.1. apply.

This completes the proof of Theorem 1.1.

3 A priori estimates Il: general cases

In this section, we consider system (1) with general functigramdg forn > 3,
which may also depend on the independent variable
Suppose that

f: 2xRxR—->R; g: 2xRxR—-R
are continuous functions and that
a: >R, b: 2->R: ¢c:2—>R;, d: 2 >R

are non-negative continuous functions. We further aLssumez(baatb(x), c(x)
or d(x) is either strictly positive or identically zero a@. We shall be needing
the following growth condition off andg at infinity.

(G) There exist positive numbeys ¢ with pg > 1 andr, s > 1 such that for
u, v > 0and fixedx € 2

fou,v) 1 im glx,u,v)
urv—=o0 a(X)u" +b(x)v? T wtv—oo c(X)uP +d(x)vS

We first generalize Theorem 1.1 to general functigrendg for n = 3.

Theorem 3.1 Letn = 3 and (u, v) be a non-negative ?-solution of(l). Sup-
pose that the assumptidf®) holds. Then there exists a positive constéht=
M@m,a,b,c,d, p,q,r,s)suchthat

lullp=2) < M, [lv]|Lo2) < M, (3.1)

provided that

i) a+pB>1,
(i) max{r,s} <5,and

(i) B #2/(r — 1) anda # 2/(s — 1).
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Remark.As pointed in the introduction, Theorem 3.1 is optimal, see Sect. 5.

Proof. The proof is essentially the same as before, here we only sketch it for the
casel > 0 andm > 0. Suppose for contradiction that (3.1) is false. Then there
exists a sequence of solutiofig (x), v (x)} of (1) such that

lerT;O(HMklle(m + vl Lo (2y) = o0. (3.2)

We want to derive a contradiction to (3.2). In the light of Theorem 1.1, we shall
assume that all functiongx), b(x), c(x), d(x) are strictly positive. As in Sect. 2,
we use the same transform given in Lemma 2.4 with the same notation and want
to show

M

Suppose the contrary. That is (up-to a subsequence, again),

& =1,  ur(0) > eo. (3.4)
Put
W) = (y), %@ =00, z=y8%
and
a () = a + S, 27"%2),  bu(z) = b+ S.%2)
and

a@ =c@E+S82"%),  d&) =bE+ S,
Without loss of generality, we may assuge— &o. In turn

ap = k|Lmoo a(z) =ao) >0, bo= lemoo bi(z) = b(&) > 0

and
co = k|Lmoo ck(z) =co) >0, do= k”moo di(z) =d(§0) > 0

uniformly on any compact subset &f (I" is eitherR3 or R3, see below also)
sinceS; — oo andly +1/2 > 0.
By direct calculationsi, (z) andv,(z) are bounded globally and satisfy

Aiig + 772 &+ 57772, Sudin(2), SEB() =0, (3.5)
Using (G), there exist8/ > 0 such that foi, v > 0
| f(x,u,v)] <2ax)u” +bx)vi]+ M.
It follows that
S e+ S0 P2, Sk (2), SEB(R))| < (et + biSy 25 + o(D)
<M. (3.6)
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Therefore, via standard elliptic theory and with the aid of (3.5) and (3.6), we
deduce that there exisfise C1*(I") (up-to a subsequence) such that

Nim it (2) = i(2)
uniformly on any compact subset &f in C“-topology for anya € (0, 1).
Moreover,
u(0) > € 3.7)
by (3.4). Hence clearly the condition (G) implies that (note 2I, +1 = r)
fim 772 f g+ Sy 27?2, Spiin(z), S (2))

_ i LGt ST S @), S0 @)
o0 S () + bS] (2)

= lim [ayii} @) + biS, 5 (2)] = aoii’ (2)

laxit} (z) + b S, %57 (2)]

uniformly on any compact subset bf(up to a subsequence). It follows thdt)
satisfies (in weak sense)
A +aon" =0 inl’

with appropriate boundary condition. It follows thafz) = 0 as before and
yields a contradiction to (3.7). Thus (3.3) holds.

Proceeding similarly and using the faet> 0 (taking&, = ¢;) to derive

1/
lim =~ — =0.
k— 00 Mk

Apparently this is impossible in view of (3.3) and the proof is complete.

Whenn > 3, the Liouville type non-existence results for positive solutions of
the Lane-Emden system are not available for all subcritiead)'s, see Lemmas
3.1-3.3 below. Consequently, we have similar but weaker results than the case
n=3.

Theorem 3.2 Letn > 3and let(u, v) be a non-negative 2-solution of(l). Sup-
pose tha{G) holds. Then there exists a positive constdnt M (n, a, b, ¢, d, p,
q,r,s) such that

ullpoy <M,  |vllroe) <M, (3.8)

provided that all the following three conditions hold.

) max(e,B) =n—2,0or,max(p,q) < (n+2)/(n —2) andmin(p, q) <
(n+2)/(n—2),
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(i) max{r,s} < m+2)/(mn— 2),and
(i) B #2/(r — 1) anda # 2/(s — 1).

The proof is essentially the same as that of Theorem 3.1. However, we shall
also be using the following non-existence resultsifor 3.

Lemma 3.1 Suppose that > 3andp, g are positive numbers satisfying either
pg <1lor

max(a, 8) > n — 2.
Then the Lane-Emden systé®2) does not admit any non-negative and non-
trivial solutions.

The lemma was first proved by Mitidieri [15] for, ¢ > 1, and later extended
to general cases in [21].

Lemma 3.2 (de Figueiredo and Felmer[Aetn > 3 and Suppose that, g are
positive numbers satisfying

n+2 . n+2

and min(p, ¢) < ——.

n—2 n—2

Then the Lane-Emden systé®2) does not admit any non-negative and non-
trivial solutions.

max(p, q) <

Finally, one has a half-space version of Lemma 3.2 for bounded solutions.
Lemma 3.3 Letn > 3 and suppose
n+1 . n+1
and min(p, _
3 (p.q) < p—
Then the Lane-Emden systéth3) does not admit any non-negative and non-
trivial bounded solutions.

max(p, q) <

The proof is the same as that of Lemma 2.2, using an argument of Dancer [5]
and the nonexistence Lemma 3.2.

Remark. The approach applies to non-linearities depending on the gradients
Vu and Vv. Indeed, the gradient part with suitable growth restrictions can be

blown-out, i.e., disappearing from the limiting equation(s), and the proof carries
over with little change.

4 Existence

In this section, we prove the existence result Theorem 1.2. First, we establish
existence for system (I) under suitable assumptions on general fungtiand
g. Throughout this section, we useto denote a pair of functions andv, that
is,
W= (u,v), with[|w]| = [[u]| + [lv]],
and assume that andg satisfy the following hypotheses.
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(H1) f, g € CY(R" x R x R) with f, g # 0.
(H2) There exist constants i > 0 such that fow, v > 0

f,u,v) +2u >0,  glx,u,v)+pv>0.
(H3) Foru, v>=0
fx,u,v) =0 +v), gkx,u,v)=o0u-+v),

asu + v — 0 uniformly ons2.
(H4) There exist/ > 0 such that fou, v > 0 andx € 2

f,u,v) +gx,u,v) > ru+v)—M,
wherea; is the first eigenvalue af- A, Hp).
We say that system (1) has property (AP), provided that the following holds.
(AP) For(¢(x), ¥ (x)) € C(R2), letw = (u, v) be a non-negative solution of
Au+f(x,u,v) =¢, Av+gx,u,v) =1, iIn2; u=v=0, onods2.

Then there exists a positive constéht= C([|(¢, ¥)||L~2)) > 0 (inde-
pendent ofv) such that
[IW]|L=2) < C.

Remark. Property (AP), via standard elliptic theory, implies
[IWllc2e@) < C1
foralla € (0, 1).
We have the following existence result.

Theorem 4.1 The syster{l) admits a classical non-negative non-trivial solution
w, provided thaf(l) has the propertyAP).

We shall apply the fixed point theory on a (positive) cone to prove Theorem
3.1. Fora € (0, 1), put

E=C(R2)x C5*(2), H=C"2)xCR), (4.1)

where
Co*(2) = C**(2) N Co(R)

is the usual Banach space equipped with a standard norm. Consider the operator

_(—A+A 0 )
T_( 0 —A—}—/L)'E_)H’
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with A, u given before. Itis obvious thathas abounded inver§e! : H — E.
Set
f(x,u,v)+ Au

To(w) = (g(x, u,v)+ uv

>:H—>H, W= (u,v) € H.
Now consider

F=T"'oTy: H— H.
It is by standard elliptic theory that the operafois compact.

The following fixed point theorem on a (positive) cone is due to de Figueiredo,
Lions and Naussbaum [8], which is a modified version of a theorem of Kras-
nosel’skii [13].

Proposition 4.1 Let C be a cone in a Banach spacéand7 : C —- C a
compact mapping such th@t0) = 0. Suppose that there exist numbeys- O
and0 < r < R and a vectow € C — {0} such that

l.x#tTx)forO<r<land|x| =r,
2. x #T(x)+tvfort >0and|x| = R.
3. x #T(x)+tvfort >pand| x| < R.

ThenifU ={x e C:r < ||x|| < R}andB, = {x € C : | x|l < p}, one has
ic(T,Bgr) =0, ic(T,B)=1, ic(T,U)=-1

In particular, T has a fixed point if/.

Proof. We refer the readers to [8] for a proof.

Proof of Theorem 4.1We want to apply Proposition 4.1 to the operatoDefine
C={(u,v) e H|u,v>0}.

Clearly C is a (positive) cone. We divide the proof into several steps.

Step 1. F : C — C is compact withF (0) = 0. ClearlyT(0) = O since
f(x,0,00=¢(x,0,00=0

by (H3). ThusF(0) = T~ o Tp(0) = T~1(0) = 0. By standard elliptic theory,
F is compact. Finally, we want to use a maximum principle to siiowC — C.
Forwg € C, consider

W= Fwg, i.e., Tw = Towp,

that is,
Au — du + [ f(x, ug, vo) + Aug]l =0,

$2.
Av — pv + [g(x, ug, vo) + uvo) =0, <
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By (H2), we have
f(x,uo, vo) +Auo >0,  g(x, uo, vo) + pvo > 0

sincewp € C. Itis immediate that: > 0 andv > 0 by the maximum principle,
thatis,w € C.

Step 2.Forr € [0, 1], there exists a positive numbesuch that
W £ t F(w) (4.2)

for ||x|| = r. Consider
W =1tF(W)

forz € [0, 1], that is,

—Au+ Au=t[f(x,u,v)+ Aul

—Av+ pv =t[g(x, u, v) + pvl. (4.3)

Multiply (4.3): by u and (4.3) by v respectively, and integrate overto obtain

/(qu|2—|—|Vv|2)+(l—t)/(Au2+uv2):t/(f(x,u,v)u+g(x,u,v)v).
2 2 2

In turn,
Al/(u2+v2)§/ F Gyt v+ g5 1, V)0,
2 2

sincet € [0, 1] andx, u > 0. Therefore by (H3), there exists > 0 such that
[|(w, v)||lg > o or (u,v) = 0, and consequently (4.2) holds with the choice
r =a0.

Step 3. There exist positive numbers and R and a vectowg = (ug, vg) €
C — {0} such that

W # F (W) + tWg (4.4)

fort > roand||x|| < R.
Let ¢, be a (normalized) first eigenfunction 6f A, Hp) and take

Wo = (¢1, ¢1) € C —{0}.
We shall show that (4.4) holds for thig. Consider
w = F (W) + tWp,

that is,
Au~+t(A1+ A1+ f(x,u,v) =0,

Av+tOa+ W+ g u,v) =0, * 2 4.5
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Multiply both of (4.5) by, and integrate ove®2 to obtain

t(2k1+/\+u)/ ¢f+f $alf(x,u,v) +g(x, u, v)] =k1/ $1(u +v).
2 2 2
By (H4), there existd/ > 0 such that

fOo,u,v) +glx,u,v) > A@u+v)—M
for (u, v) € C. Therefore,
< Mf.o $1

T 2uti+u
It follows immediately that (4.4) holds by taking al®y> 0 and
B 2M fg b1

v +A+u
Note particularly the choice a® > 0 can be arbitrary.

fo

Step 4. There exists a positive numbgrsuch that
W # F(W) + tWg (4.6)

for+ > 0 and||x|| = R, where the vectowy = (ug, vg) € C — {0} is given in
Step 3. Consider

w = F(W) 4 rwp. 4.7)

Thent < 19/2 for allw € C by Step 3. By the assumption (AP), there exists
K > 0 (depending omy) such that

[, v)Ilg < K

since(u, v) satisfies (4.7). It follows that (4.6) holds for al> 0 with the choice
of R = 2K.

Step 5. Now we can finish the proof applying Proposition 4.1 wkh= H.
Plainly, all conditions of Proposition 4.1 are satisfied. Therefore the magping
has a fixed pointv € C with ||w]|| € [r, R], which is a non-negative non-trivial
solution of (I). And the proof is complete.

Remarks. 1. As we remarked at the end of Sect. 3, our approach applies to
nonlinearities depending on the gradieWis and Vv with suitable restriction.

2. Itis easy to see that the componentndv are either strictly positive or
identically zero, via strong maximum principle.

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2This is a special case of Theorem 4.1 since one readily
verifies thatf andg satisfy (H1)—(H4) and (I) has property (AP) (Theorem 3.1).

Corresponding to Theorems 3.1 and 3.2, we have the following existence
theorems.



730 H. Zou

Corollary 4.1 Letn = 3 and suppos¢g andg satisfy the conditioiG) with

) a+p8>1,
(i) max{r,s} <5, and
(i) o #2/(s—1)andp # 2/(r —1).

Then the systeih) admits a classical non-negative non-trivial solutian

Corollary 4.2 Letn > 3 and suppos¢g andg satisfy the conditioG) with

O max(a,B) >n-—2,0o,max(p,q) < (n+ 2)/(n — 2) andmin(p, g) <
(n+2)/(n-2),

(i) max{r,s} < m+2/@mn — 2),and

(i) @ #2/(s—DandB #2/(r — 1).

Then the systeifh) admits a classical non-negative non-trivial solution

The proofs are essentially the same as before and are left to the reader.
When (1) is irreducible, namely,

f(x,0,v) #0forv > 0 g(x,u,0) A#0foru > 0,
Then the solutions of (1) obtained in Theorem 4.1 are necessarily positive.

Theorem 4.2 Suppose the conditions given in Theorkihhold. Then the solu-
tions of(l) obtained in Theorem.1 are necessarily positive, provided th#tis
irreducible.

Proof. We need to show thaw is strictly positive. Following the argument in
step 1 of the proof of Theorem 4.1, a strong maximum principle argument shows
that the components andv are either strictly positive or identically zero. We
claim neither component or v can vanish identically. For otherwise, suppose

u = 0. Then we have

f(x,0,v) =0, ie., v=0

since (1) is irreducible. Therefore = v = 0. This impossible sincéy, v) is a
non-trivial solution.

Proof of Corollary 1.1. By Theorem 1.2, (1) has a non-trivial and non-negative
solutionw. By Theorem 4.2 is strictly positive since one readily sees that (1)
is irreducible.

Proof of Theorem 1.3(i). A priori estimates. By Theorem 3.1, we only need
to verify that f andg satisfy the property (G). By (iv), we can choose positive
numberd € (1, r/a) andm € (1, a/b) such that

1 1

-+ —=1
l+m
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By the Young inequality, we have far, v > 0,

uavb < ula + vmb'

It follows that ( )
. X, U,V
lim f— =1,
ut+v—oo y" + v4

sincela < r andmb < ¢g. Similarly, one readily checks that

. X, U, V)
lim g(— =1
utv—o0 Yyl + v’

That is, f and g satisfy the property (G) and Theorem 3.1 applies. The first
conclusion is proved.

(ii). Existence of a positive solution. We shall apply Theorem 4.1 and need
to verify (H1)—(H4) and (AP).

Verification of (H1): Obvious.

Verification of (H2): Foru, v > 0, takel = ¢g/(q¢ — b) andm = ¢ /b and apply
the Young inequality,

uv® < (g — byu’ 40 4 pyi/q.
It follows that
fOu,v)=u" = (g —bu’ P 4+ L—b/g? > u" — (g — b)u®/™"),
sinceb < g. Similarly,
g u,v) = (L—c¢/pu? — (p = WP 1 0° = —(p — Q"7 v,
sincec < p. Therefore one can chooseu > 0 such that
F,u,v)+au>u" —(g—bu4 ™ 41y >0
sinceaq /(g — b) € [1,r), and
glx, u,v) + pv = pv — (p — PP 40 > 0,
sincedp/(p — ¢) € [1, s) and (H2) is verified immediately.
Verification of (H3): Obvious.
Verification of (H4): Obvious.
Verification of (AP): Obvious by (i).

Therefore Theorem 4.1 applies. That s (I) has a non-trivial and non-negative
solution(u, v). Plainly (1) is irreducible under our assumption and whe@ce)
must be positive by Theorem 4.2. The proof is complete.
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5 Concluding remarks

Concerning existence as well as a priori estimates for positive solutions, itis well
known that the Sobolev exponent

_n—|—2
T n-=2

2*

is the dividing number for the celebrated Lane-Emden equation. For the system
(), the a priori estimates and existence resultsifee 3 (Theorems 1.1-1.3)
established in this paper are also optimal in a similar spirit. We shall include
several examples here to demonstrate the point.

The first example is the classical existence result of Fowler for the Lane-
Emden equation with a super-critical growth.

Theorem 5.1 (Fowler [9])Letn > 3and suppos@ > 2*. Thenthe Lane-Emden
equation

Au+u? =0
has infinitely many positive solutions on the entire sfgite
In [22], the authors extended the above result to the Lane-Emden system.

Theorem 5.2 (Serrin and Zou [22]).etrn > 3 and suppose

1 1 n—2
+ < . (5.1)
p+1 g+1 n

Then the Lane-Emden system
Au +v? =0, Av+u? =0

has infinitely many positive solutions on the entire sdte

Onbounded domains, non-existence is known when the domain is star-shaped
for super-critical non-linearities.

Theorem 5.3 (Pohozaev [17])etn > 3and lets2 C R" be a bounded smooth
star-shaped domain. Then the Lane-Emden equation has no non-trivial non-
negative solution provideg > 2*.

Theorem 5.4 (Mitidieri [14] and van der Vorst [23]).etn > 3 and let2 Cc R”
be a bounded smooth star-shaped domain. Then the Lane-Emden system has no
non-trivial non-negative solution provided thi. 1) holds.
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Theorems 5.1-5.4 clearly show that all a priori estimate and existence results
for n = 3 are best possible when= 3 in the sense that either condition (i) or
(i) is violated, then the conclusion can fail to hold.

Indeed, suppose that condition (i) is violated. Thatvis; 8 < 1, which is
equivalentto (5.1) for = 3 and thus Theorem 5.4 applies. Take- d = 0,b =
¢ =landp, g > 1.Then(I)reducestothe Lane-Emden systemand Theorem 5.4
says that (I) cannot have non-trivial non-negative solutions on bounded smooth
star-shaped domains. Hence Theorem 1.2 and Corollaries 1.1 and 4.1 (note (1)
is irreducible) do not hold. Plainly Theorems 1.1 and 3.1 must not hold either.
For otherwise, system (I) would possess the (AP) property and Theorems 4.1
and 4.2 would apply, indicating (I) with a positive solution. This is of course
impossible. A closer examination also reveals that the blow-up procedure breaks
down. In fact, the blown-up equation in this case is precisely the Lane-Emden
system, which does have positive solutions on the entire SRaty Theorem
5.2 since (5.1) is satisfied.

Next, assume that condition (ii) is violated, say> 5. Takeb = ¢ = 0,
a =d = 1lands > 1. Apparently (I) reduces to the case of single equations and
Theorems5.1and 5.3 apply. Therefore Theorems 1.1-1.2 and 3.1, and Corollaries
1.1 and 4.1 must fail, argued as above.

Whenn > 3, Theorem 3.2 and Corollary 4.2 are not optimal in the sense
above, as shown by the following example.

Theorem 5.5 (Clement, de Figueiredo and Mitidieri [3Detn > 3 and let
2 C R" be a bounded smooth domain. Then the Lane-Emden system has a
positive solution provided that, ¢ > 1 satisfies

1 1 n—2
+ > .
p+1 g+1 n
For the Lane-Emden system, the curve
1 1 n—2
+ =
p+1 g+1 n

is precisely the dividing curve for existence (at least for star-shaped domains)
by Theorems 5.4-5.5. However, both Theorem 3.2 and Corollary 4.2 only cover
the region below the curve given by

(5.2)

2 2
maxa, B) =n—2, or, maxp,q) < n > and min(p, q) < nte >
n — n —
(5.3)

There is a gap between the lower curve (5.3) and the so called critical (higher)
curve (5.2).

When system (1) ifully irreducible(in the sense below, see Theorem 5.6), itis
not known if Theorems 1.1-1.3 are still optimal evervfoe 3. Nevertheless, the
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following non-existence result for a prototypdly irreducible f andg should
shed some light on this issue.

Theorem 5.6 (Reichel and Zou [20]Letr > 3 and let2 ¢ R” be a bounded
smooth star-shaped domain. Suppose

fx,u,v) =u" +v?,  gx,u,v) =u’+v°

withmin(p, ¢, r, s) > 2*. Then syster{l) has no non-trivial non-negative solu-
tion.

AcknowledgementsThe author wishes to thank both referees for their carefully reading the
manuscript and useful comments.
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