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Abstract. We show that for any > 0 and any regioit; whose outer boundary equdls: |z| =
1}, there is a sequend@,}°° ; of pairwise disjoint closed disks i@ such thafz : |z| = 1} is
the set of accumulation points cm,,}gozl, Z;’lozlradius(A,,) < ¢ andwg (harmonic measure
on the boundary of2 := {z : |z] < 1} \ (U2 A,) for evaluation at some, in ©2) is supported
onu ;1 (3An).
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1 Introduction

Let A = {z,}°2, be a sequence of distinct pointsh:= {z : |z| < 1}, and

let A’ be its set of accumulation points l We assume here thatn A’ = ¢

and thatD N A’ is finite. Choose a sequenpg}°° ; of positive real numbers so
that the closed diska,, ;== {z : |z — z,| < r,} (n = 1, 2,3,...) are pairwise
disjoint and are contained D. Then := D\ (U2, A,) is called achampagne
(bubble$ subregion oD. Notice that is a Dirichlet region and thatD C 0;

we letwg denote harmonic measure 6 for evaluation at some point ife.

If {r,}°°, tends to zero sufficiently fast, then, by various methods, including an
argument involving the Maximum Principle and estimates concetlog\@ (z)|,
whereB(z) is a finite Blaschke product, one finds thaf(dD) > 0. In the other
direction, if the points ofA are sufficiently dispersed and if they do not tend
to aD too quickly, then one may choose the radii(n = 1,2, 3,...) so that
wq(dD) = 0. What we mean by “dispersed” and “not tendingBtoo quickly"”
relate closely to conditions that characterize so-called sampling sequences for
Bergman spaces. Recall that a sequdngg? ; in D that has no accumulation
points inD is said to be &ampling sequender the Bergman spack?(D) :=

{f : fisanalyticinD and [ | f|?dA < oo} — A denotes area measure Pr- if
there is a constar > 1 and there is a summable sequefigg;° ; of positive
constants such that
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%npnmm < {Z%cnm(zmz}% < MlIplizaay
for all polynomials p. This notion of sampling sequences extends to a wide
variety of Banach spaces of analytic functionshinSequences i that are
interpolating forH>° (D) have already been interpreted in terms of champagne
subregions oD (see [GGJ]). Most of our methods make a case for a strong
link between sampling sequences and champagne subre&gioh® for which
wq(@D) = 0. Yet, rather than focusing on this link, our primary objective in
this paper is to establish the existence of champage subre@iohb such that
wq(0D) = 0, even under the strictest conditions; that is, whenis rectifiable
and the bubbles dR are forced to reside in some prescribed subregiarf D
whose outer boundary equal® (Theorem 3.4). Recall that the outer boundary
of G (denotedi,, G) is the boundary of the unbounded componer@ §. This
result has consequences in the contexts of potential theory, sampling sequences
and cyclic vectors for the shift on Hardy spaces; we explore some of these in
Proposition 4.2 and Corollaries 4.3 and 4.4.

2 Preliminaries

Let G be a bounded Dirichlet reglon and tgtbe a point inG. If & € Cr(3G),
then there is a continuous extensionf 4 to G such thath is harmonic inG.

By the Maximum Principlef(z,) < ||hll«. Evidently,z, —> h(z,) defines a
bounded linear functional (of norm one) 6 (dG). So, by the Riesz Represen-
tation Theorem, there is a unique probability measufe G, z,) with support
in 3G suchthafi(z,) = [, h(z)dw(z, G, z,) (forall hin CrR(G)); o (-, G, z,)

is calledharmonic measuren dG for evaluation at,. If z; is any other point
in G, then, by Harnack’s Inequality (-, G, z1) andw(-, G, z,) are boundedly
equivalent. For this reason, we often suppress the pgimt our notation and
abbreviatew (-, G, z,) by wg(-). Notice that ifE is a Borel subset oG, then

7z — w(E, G, ) is harmonic inG and has “boundary valueyr a.e.wg. We
end this section with two results concerning harmonic measure that are useful
to us later in the paper. For any compact sulisetf the complex plan€, we
follow convention and lek” denote thepolynomially convex hulbf K — that
is, {z € C: |p(z)| < sup|p(w)| for all polynomials p. If K = K, thenK is

wek
said to bepolynomially convex

Lemma 2.1. LetG be abounded Dirichlet region and I&t be a compact subset
of G suchthatt := G\ K isaDirichletregion. Thewg,,, andwg are boundedly
equivalent as measures 6.

Proof. Choosez, in E. SinceE C G, it follows from the Maximum Principle
thatw(-, E, z,) < w(-, G, z,) ondG. For a reverse inequality, we first observe
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that(dE) \ (0G) = dK. By our hypothesis, there is a Jordan cupvim E such
thatk € y € G; y can be constructed from a grid of sufficiently small diameter
— see [C1], Chapter VIII, Proposition 1.1 for a similar construction. Chdose
in Cr(3G) such that 0< i < 1; we leth denote the continuous extension of
h to G that is harmonic orG. By the Maximum Principle, there exisis, in y
such thatz(w,) > h(w) for all w in 3. Therefore,

/h(z)dw(z,G,wo)=fl(wo)
G
= / h(z)do(z, E, w,)
0E

= / h(z)dw(z, E, w,) +/ fz(z)da)(z, E,w,)
3G

0K

< / h(2)dw(z, E, w,) + h(w,)w K, E, w,)
G

< / h(z)dw(z, E, w,) + ¢ - / h()dw(z, G, w,),
3G 3G

wherec := max{w (3K, E, w) : w € y} < 1. So,

1
/h(Z)dw(Z,G,wo)S—-/ h()do(z, E, w,).
G 1-c Jic

By Harnack’s Inequality, we can now find a positive const@htindependent
of h; 0 < h < 1) such that

/ h()dw(z, G,z,) <M / h()dw(z, E, z,).
3G 3G

Consequentlyw (-, G, z,) < Mw(-, E, z,) 0ndG. O

Lemma 2.2. Choose inD (z # 0), letw = 5 < andlet[z, w] = {(1—H)z+tw :
0<r<1}.Thenw(lz,w].D\ [z,w],0) < 1— [z].

Proof. Under a rotation oD, we may assume that=r (0 < r < 1). Letn
denote the sweep af, := w(-, D\ [r, 1], 0) to aD. Then, by definition,

dn = dw,|yp + hdm,
wherem denotes normalized Lebesgue measuré@mand

1 1—l2
o) = [ .

Sincew, is harmonic measure for evaluation at 0, it follows that m. Notice
thath is continuous 0dD and since) = m, we musthave: G 4 < 1. Therefore,

1> h(l) = /—dwro_? o, ([, 1)),
-7

and saw,([r,1]) <1—r. O
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3 Champagne subregions of the disk

The first result of this section is an important ingredient in the proof of our main

result and is derived from the properties of a function that was developed by
K. Seip (see [S]) to establish sets of sampling and interpolation in Bergman
spaces.

Theorem 3.1. For anye > 0, there is a sequende\, }>° ; of pairwise disjoint
closed disks irD such thataD is the set of accumulation points @A} ;,
Zsil radius(A,) < ¢ andwg(0D) = 0, whereQ2 := D \ (U2, A,).

Proof. Following [S], we letl'(2, 1) = {2"(rn + i) : m and n are integeysand
defineh on H* := {z : Im(z) > O} by:

hz) = ﬁ sz:n(n(z: — 2:’;z)) _ ﬁ o2 sl:n(n(zmz — l:)) .
=0 sin(mw(i + 27%z)) i} sin(m(2"z 4+ 1))
As was observed in [S} is analytic inH™ and its zero-set there 13(2, 1). For
nonnegative integers, leto,, 0 = {z : [z —i2"| = —} and for negative integers
m, leta,, o = {z : |z —i2"| = 4""1}. Replicate these circles horizontally for all
integers n by letting,, , = a,,.0 + n2"; notice thaty,, , has center2(n + i)

and{o[m,,1 : m and n are integeyss a pairwise disjoint collection of closed disks
in H™ whose set of accumulation points@nis R. We letW = H™ \ {U 0‘;1,;1}

m,n

Let ¢ be the Mobius transformation front* ontoD given byg(z) = % and
let .. = @(am.n). A brief analysis ofyp’ (or, instead, an application of [Go],
Theorem 4, page 52) gives a positive constdnindependent of: andn) such
thatradius(B,.,) < Ml¢'(2"(n +i))|radius(a,, ). So, form < 0, there are
positive constant€';, C,, C3, andC4 (independent ofz) such that

o0

Z radius(Bu.,) < 2- Zradlus(ﬂm n)
n=—00 n=0

4m

<(Ci _—
- §|2"’(n+1)+1|2
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And, form > 0, there are positive constarfg andCg such that

e¢]

. S 1
> radius(Bun) < Cs- Yy 12 (n + i) + i[]2

= C647-
Evidently, thereforeZZradius(ﬂm,n) < 00. S0,V = ¢(W) is a cham-

pagne subregion db, 'g\ndnv has rectifiable boundary.
Claim. wq(dD) = 0.

Forn =123, ..,letW,={z=x+iy:—n<x<nand O<y <n}NW.

By the conformal invariance of harmonic measure an@gaustio{ W, }°2 ; of

W, the proof of our claim reduces to showing that, ([—n, n]) = 0. To this end,
we defineW, ,, (for negative integers m)to e e W, : Im(z) > 3-2"?} and
(for the same m) we let, , = {z = x +iy:—n <x <n and y= 3-2"2};
notice thatl,,, € W,. By [S], estimate (3) on page 214, there is a positive

constan® such that
-2
|h(2)| = 80(z,T'(2,1)y"@,

where 0< y = Im(z) ando(-, -) denotes the pseudohyperbolic metric/gm.
Thus, there is a positive constanthat depends only om, such thati(z)| > A
whenevet € W, .. And, by the same estimate, there is another positive constant
C (independent of: andn) such thath(z)| > C4*%™ forall z in 1, ,. Select

Zo In W, _1 and letw, () = o(-, Wy, 20). Sincelogl|h| is continuous and
harmonic onW,, ,,,,

loglh(z,)] = / loglhldwnnm

= 1og(A) - wpm (OWy ) \ Inm) + [10g(C) + 7 (2 — m))wn m (In,m)
> log(h) + [[0g(C) + 7 (2 — m)]wn m(In,m)-

Evidently, thereforeg, ,, (1,.,) —> 0, asm — —oo. Since, by the Maximum
Principle,w ([—n, nl, W,, z,) < w,.m(I,.») (independent ofz andn), we con-
clude thatwy, ([—n, n]) = 0. And so our claim holds. To this point, we have
produced a champagne regign= D\ (2, A,), where{A,}>, is a pairwise
disjoint sequence of closed disksinsuch thatD is the set of accumulation
points of{A, 1521, Y™, radius(A,) < oo andwy (D) = 0. So, forany > 0,
there is a positive intege¥ such that >~ | radius(A,) < . By Lemma 2.1,
Q:=D\ (U2 yA,) satisfies the conclusion of our theorem. i
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Corollary 3.2. Supposé) < r < %1 and letG = D\ A, where A := {z :
lz— 2| < r}.Then, forany > Oandanyp,r < p < %, thereis afinite, pairwise
disjiont collection{A,}_, of closed disks im, :== {z : r < |z — §1| < p} such
that:

@ Z,iv:l radius(A,) < ¢ and
(i) w(@A, W,0) <&, whereW := G \ (UY_ A,).

Proof. Chooses > 0 andp,r < p < ;11. By Theorem 3.1 and the application
of a Mdbius transformation, there is a sequefitg}°2, of pairwise disjoint
closed disks i, such that A is the set of accumulation points oA},
Y > radius(A,) < ¢ andwy (3A) = 0, whereV := G\ (U22,A,). By the
Maximum Principle, if we choose a positive integeN so that
Yoo ns1@(0A,,V,0) < g, thenW := G \ (U)_,A,) satisfies the conclusion
of our corollary. O

Lemma 3.3. LetG = D\ K, whereK is a compact, connected, polynomially
convex subset d that contains more than one point. Suppaeses G and

0 < § < dist(z,, K),and letGs; = {z € G : dist(z, K) < §}. Then, for any
e > 0, there are finitely many pairwise disjoint closed digks }_; in G5 such
that}"™ . radius(A,) < e andw (3K, W, z,) < &, whereW := G\ (UY_ A,).

Proof. Placing a square grid of sufficiently small diameter on the complex plane
C, we can find finitely many closed square};_; (of equal sidelength) i

so thatS; shares a side with,_; and a side witt§,,, (for2 < k <m — 1), and

S1 ands,, also share a side. Moreover, these are the only sides that are common
to two squares in the collectidi,};";, andC \ (U7, Sx) has two components

— the bounded component contaikis So, {S;};; forms a collar inGs about

K. Let D; be the closed disk of largest areaSp (1 < k < m); notice that
UL, Dy disconnectC and X is in the bounded component Gf\ (U ; Dy).
Slightly reduce the radius of each diBk (1 < k < m) to get a pairwise disjoint
collection of closed disk§D; };*_, — each of the same radius —@#. There are
small “gaps” between successive disks in the collectidfy};’ ;, and also there

is a small gap between; andD;;, all produced by this reduction of the radii. By
the Maximum Principle and majorants for harmonic measure derived from the
notion of extremal length (see [B], pages 361-385), if the reduction of the radii is
sufficiently slight, then we hawe (3K, E, z,) < 5, whereE := G \ (UL, D).

By the proof of Corollary 3.2 applied to each diBK (1 < k < m) successively,

we can produce a finite collectiom,}Y_; of pairwise disjoint closed disks

. &
in £ N Gs such thaty""_, radius(A,) < ¢ andw (Ul 0D}, F,z,) < >

whereF := E \ (UX_;A,). From the Maximum Principle, it now follows that
0K, W, z,) <&, whereW := G \ (UV_ A,). o

We are now in a position to establish the main result of this paper.
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Theorem 3.4. LetG be aregion whose outer boundaryi® and choose > 0.

Then there is a sequenga, }°° ; of pairwise disjoint closed disks {6 such that
dD is the set of accumulation points p&,}°°,, 3> radius(A,) < ¢ and

wq(dD) = 0, whereQ := D \ (U2, A,).

Proof. We first produce a sequengg, ;} of pairwise disjoint Jordan arcs
such that any compact subseiniias nonempty intersection with at most finitely
many of the arcs and such tha§ (D) = 0, whereV :=D\ (U Vu.k)s SO,y

n,k

is supported ot J v, .

n,k

The construction of {y, «}

By a Mobius transformation fronD onto D, we may assume that @ G.
Forn = 5,6,7,...andk = 1,2,3,...., 2"} letR,; = {re!? : 1 - 27" <
r < land®2" < ¢ < k) Notice thatR, )2 is a pairwise disjoint collec-

2n+1

tion of open Carleson rectangles a@ Riy =1{z:1-2" < |z] <1}
k=1

we call {R,,,k},f'jl1 the rib generation of rectangles. Far = 5,6, 7, ..., let

F,={z:]zl =1- %}. We construct the sequence of afgs} inductively,
starting withh = 5andk = 1. Now sincé),,G = dD, 0 € G andG is connected,

it follows thatG N Rs ;1 # @ and thaiG NI's # @. So, there is a rectifiable Jordan
arcys ; contained irG that has one endpoint irs and the other endpoint iRs 5 ;

we may assume thig| > é forallzinys ;. LetGsy1 = G\ ys.1; notice thatGs 3

is a subregion oD, 9,,Gs1 = dD and O€ Gs ;. Consequentlys 1N Rs 2 # ¢
andGs 1N Ts # 0. So, there is a rectifiable Jordan g&e contained inGs ; that
has one endpoint iflrs and the other endpoint iRs »; again, we may assume
that|z| > g‘ forall zin y5,. LetGs2 = Gs1 \ ys52 and proceed as before. Once
the arcsss 1, 5.2, ..., ¥5.64 have been chosen, 160 = G563\ ¥5.64. SinCeGe o

is a subregion 0D, 9,,Gso = dD and O€ G o, it follows thatGeo N Re 1 # ¥
and thatGeo N I'e # @. So, there is a rectifiable Jordan ag; contained in
Ge,o that has one endpoint i and its other endpoint iRs 1; we may assume
that|z] > g for all zin y61. Let Ge1 = Geo \ ¥6.1 @and proceed as before to
defineys 2, ..., ¥6.128. Continuing in this way, we get a pairwise disjoint sequence
{yax :n =5,6,7,...andk= 1,2 3, ..., 2"} of rectifiable Jordan arcs i
such thay, , has one endpointifi, and its other endpointiR,, ;, and|z| > 1—%

forall ziny, ;. Observe thaV := D\ (U ya.x) is @ Dirichlet region, = V and
n,k

8V = @D) U ((J mw-

n,k
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Claim. wy (D) = 0.

By Harnack’s Inequality, we may assume that(-) = w(-, V, 0). Now, since

V C D, the Maximum Principle gives usiy|s;p < w(-, D, 0) = m (normalized
Lebesgue measure @b). So, to establish our claim, it is sufficient (by [R],
Definitions 8.2 and 8.3, and Theorem 8.6) to show that, forehin 9D, there

is a sequencéE, 2, of Borel subsets 0§D that “shrink toe’® nicely” such
that ‘”V((fk)) —> 0 ask — oo. We show this in the case tha’ = 1; the
argument for any other? proceeds in a similar way. Now choose a sequence
of (Carleson) rectangles — one from each generation — such that the closure of
each contains 1; we may choose the sequé¢Rge} . Corresponding to this
sequence of rectangles is the sequence of Jordar)argls recall thaty, 1 has

one endpoint i, and has its other endpoint ®, 1, such thafz| > 1 — 1 for

all zin y, 1. Sincey, 1 N R,1isa compact subset &, there is a pomt,, in
Yna N R,.1suchthat - |¢,| = dist((Yn1 N Rn 1), 0D); leta, = \; -

¥a.1 from its endpoint i, until one first encounters, and lety,”; denote that
Jordan subarc of, ;. Let 7, be the Jordan arc consisting gf, along with the
radial segmengz,, a,] := {(1 — )¢, + ta, : 0 <t < 1}; we can by no means
assert thafr,}>2, is a palrW|se disjoint collection or that, \ {a,} € G. Now
a,€ Ry1Clz:lz—1 < }(smcen > 5), and furthermorer, has an endpoint
in T',,. Thereforeg, mtersects the circlgz : |z — 1] = i} Traverser, froma,
until one first intersect$z : |z — 1] = %} and leto,, denote that subarc af,.
LetA, =D\ yu1,l€tB, =D\ y;, let0, =D\ 7, and letP, = D\ o,.
Now,V C A, C B,, O, C P, and 1—|¢,| < 27". Therefore, by the Maximum
Principle and Lemma 2.2, i is any Borel subset afD, then

wy(E) < w(E, Ay, 0) < w(E, By, 0) 1)

=CU(E, Onvo)+/ a)(EaBl’hZ)da)(Za Onvo)
[¢nsan]

< w(E, 0,,0) + w([&, al, O,,0)

< w(E, 0,,0) + 27

<w(E, P00+ 27"

To finish the proof of our claim, it is helpful to divide the problem into two cases,
based on whether or not certain portions of the arc¢n = 5,6,7,...) are
contained in one of a particular class of lens-shaped regions. Ear &< 7, let
W) = {re' :r > 0and— o < 6 < «}. Lety be the Mobius transformatlon
from {z : Re(z) > 0} ontoD given byg(z) = ﬁ and letS(a) = o(W(a)).
Notice thatS(«) is a lens-shaped region iy S(«) is symmetric with respect to

R anda(S(«)) consists of two arcs of circles that form an angle @fa both -1
and 1. Now, either:
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Case 1. there existg such that{z € 0, : 7 < |1 —z| < %} C S() for
n=>56,7,..,0r

Case 2. there is a subsequerfeg, }7°; of {0,}°2c and a sequence of points
{21}, (zk € 0, and|1 -z > &) such that"% — 0 ask — oo;

—zkl
let Wi = | ‘

We first address Case 2. LE}, be the shortest arc @D that has endpoints,,
andwy; notice that, shrinks to 1 nicely a& — oo. By the Maximum Principle
and Lemma 2.2p (Ey, P,,,0) < 1 — |z|. Therefore, by (1), ik is sufficiently
large, then

wy(Ey) _ 21— |z¢]) +27"]
m(Ey) — |1 — z¢l

2(1
§M+——>O as k— oo.
|1 — zl ng

We now turn to Case 1. For = 5,6, 7, ..., let E, be the subarc 08D that
extends fronu, counterclockwise until one first encountgrs: |1 — z| = 2,1};
notice thatt, shrinks to 1 nicely a8 — oo. Forthe samenanf} <r < = L et
B.(r) = {1+ re'? : 6, <0 < 6}, whered; andd, are the smallest numbers in
[0, 277) such that ¥re'® € 9D and I+-re'®2 € o,. By our hypothesis for Case 1,
there is a constamt> 1 (independent of andr) such thatength(B,(r)) < Zr.
So, we can apply [B], pages 361-385, and find a positive con&tdimdependent
of n) such that

n 1
w(ErHPI’l’O)SM'exp —7'[/ —dr

2 length(B,(r))
Tl

<M -exp —c-f Zdr
nr

J— M n2 ¢

= > ) -

It now follows from (1) that

wy(E) _ M) +2

E) = ) — 0, as h— oo.
m(E, n2—"-

By Cases 1 and 2, our claim is established. Now, sipge} is countable, we
can rename these Jordan arcs and enumerate{thgfi_,. Chooses > 0. By
applying Lemma 3.3 td/,, := D\ y,, successively (fom = 1,2, 3,...), we
can produce a sequenga, }°° ; of pairwise disjoint closed disks ify € G :
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|z] > %} \ (US_;vm) such thab D contains the accumulation points{af, }°° ,,
Y o2 radius(A,) < € and

1
w(ym:Um,o) S 2_mv (2)

whereU,, = V, \ (U2, A,);, weletU = N> U, (=V \ (U2;A,)). By
our claim and the Maximum Principle;(dD, U, 0) = 0. So, by Lemma 2.1,
w(@D, U, 00 =0(forn =1,2,3,...),whereU; := N}_, U,. Moreover, by (2)
and the Maximum Principley (U%°_ v,,, U*, 0) < 217", Once again applying
the Maximum Principle, we can now conclude tha®D, 22, 0) < 2" (for
n=1273,..),whereQ =D\ (U2 ,A,). Consequentlyy(dD, 2,0) = 0.0

In the proof of Theorem 3.1 we used estimates of K. Seip and a special
sampling sequence to construct a champagne subregairD with rectifiable
boundary such thabo(dD) = 0. The next result shows that this construction is
somewhat dependent on the nature of sampling sequences; Blaschke sequences
are zero sets foH>°(D) and therefore cannot be sampling. We conclude this
paper with applications of Theorem 3.4 in the contexts of sampling sequences
and cyclic vectors for the shift on Hardy spaces.

Proposition 3.5. Let @ := D \ (U2, A,) be a champagne subregion Df If
there is a Blaschke sequenge:= {z;}72, in D and there exists, 0 < ¢ < 1,
such thatp(z, A) < cforall zin U2, A, thenwg(dD) > 0.

Proof. By adding some disks to the collectioa,,};2;, or by slightly expanding
some of the existing disks, we may assume thanh Q2 = . Let B be the
Blaschke product corresponding to the sequefic®low there existg, in

such thatB(z,)| > c; let f,,(z) = [%]m (form = 1,2,3,...). Sincez —>

log| f,n(z)| is harmonic inQ and has boundary values In'(dwg), it follows
that 0= log| f,n(z0)| = fasz log|fn(2)ldw(z, 2, z,). Therefore, sinceg,, — 0
uniformly onUg2 ; A, asn — oo, we conclude thabg(0D) > 0. O

4 Applications

We now turn to an application that involves some rather standard sampling tech-
nigues. To develop the subject properly, we first need to discuss point evaluations.
We assume here thatis a finite, positive Borel measure with compact support

in C and for 1< r < oo, we let P'(du) denote the closure of the polynomials

in L' (dp) and letBall(P'(dw)) = {f € P'(dw) : || fll a0 < 1}. A pointz in

C is called abounded point evaluatiofor P’ (d ) if there is a positive constant

C suchthatp(z)| < C| pllL ayu for all polynomials p; the collection of all such
points is denotedpe(P’(dw)). A point z in C is called ananalytic bounded
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point evaluationfor P’(du) if there are positive constangsand M such that
Ip(w)| < M| pllLi@u Whenevep is a polynomial antk —w| < §; the collection
of all such pointg is denotedibpe(P'(di)). Nowabpe(P'(dw)) is the largest
open set irC to which every functiory in P/(dw) has an analytic continuation
and, moreover, each componentdpe (P’ (dw)) is simply connected.

Lemma 4.1. Let 1 be a finite, positive Borel measure with supporGrsuch
thatD = abpe(P'(dw)). Then, for0 < r < 1, there is a positive constant
M, such that‘f(“ju)—j@‘ < M, wheneverf € Ball(P'(dw)) andz andw are
distinct points of moduli no greater than

Proof. LetT', = {¢ : [¢] = %}. Now sinceabpe(P'(dw)) = D, there is a
positive constanC, such that f(¢)| < C, for all f in Ball(P'(dw)) and all
¢ inT,. So, ifz andw are distinct points of moduli no greater tharthen, by
Cauchy’s Integral Formula,

‘f(w)—f(Z) Si/ [f (O] \dz|
-z 2 Jr, 1§ = zl1E — w]
4c,
< .
~— (1-r)2

O

The proof of the next result follows a well-known technique that was pointed
out to the author by D. Luecking. The result itself answers, in the affirmative,
Question 3.4 of [AS]. However, the sampling methods presented here are by no
means “sharp” enough to give the results found in [AS]. In what follows, we will
be considering a finite, positive Borel measuraith support inD. For the sake
of convenience, we let, = u|p and letuy, = wl;p.

Proposition 4.2. Let u be a finite, positive Borel measure with supportOn
such thatD = abpe(P'(dw)). Then there exist an at most countable collection
of points{z,} in D Nsupport (), where{z,} has no accumulation point i, a
summable collectioft,} of positive constants and a constadt> 1 such that
ViI= oo + D, €6, Satisfies:

1
M”pHU(dW < \plici@avy < Mlplleiaw

for all polynomialsp.

Proof. We assume that is a probability measure; the general result follows
immediately from the proof of this case. By Lemma 4.1, we can partidianto
setsR, (k =1, 2, 3, ...) of the form{re’® : a <r < banda < 6 < B} and with
the properties:
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() O < dy:=diameter(Ry) < dist(Ry, dD) — 0 ask — oo, and
(i) for eachk there existsy, 0 < r, < 1, such thatz| < r; for all z in R, and
diM,, < % whereM,, is the constant provided by Lemma 4.1.

Let f be a ploynomial of norm 1 i’ (du) and choosay, in R, (k =1, 2, 3, ...);
we choosew, in support () N Ry if w(Ry) # 0. Then, by Lemma 4.1,

|f(2) = flw)] = My |z — wi| <

NI =

foranyz in Ry. Therefore|f(z)| < % + | f(wy)] for all z in R,. Consequently,
|f(@I" < 27127+ f(wp)|") and hencgf (2)|" — 22| f (wy)|* < 3 forall zin
Ry. Since we are assuming thats a probability measure and thgt || .+ 4,) = 1,
it follows that

1 1
flfl‘duo—Z"l-/lfl’da < oD = Ef|f|fdu,

o
whereo = Zu(Rk)(ka. Therefore,

k=1
t t—1 t 1 t
|fldu—27"- IfIdVSE |fl'dw,

wherev := s + 0. And thus,

I f e < 20t @av-

In a similar fashion we obtain the inequalitf:f /@y < 2l flli -
The proof is now complete. m]

Corollary 4.3. LetG be region whose outer boundaryaB. Then there exist a
sequencdz,};°, in G and a summable sequengg}:° , of positive constants
oo

such that{z, )32, has no accumulation point i@ ando := ) " c,s, satisfies:
n=1

abpe(P'(do)) =D forl <t < oo.

Proof. By Theorem 3.4, there is a sequerieg, }2 ; of pairwise disjoint closed
disks inG such that{A,}52 ; has no accumulation point D andwe (dD) = 0,
whereQ := D\ (U}2;A,); SO wg is supported o2 ,(dA,). Sincelp| is
subharmonic irC for any polynomialp, it follows from Harnack’s Inequality
thatQ C abpe(Pl(dwg)) (S D). Since the components obpe(P(dwg)) are
simply connected, we in fact have thdtpe(P1(dwg)) = D. An application of
Proposition 4.2 and Jensen’s Inequality completes the proof. O
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Taking the sweep of (o as defined in Corollary 4.3) t8G and using the
properties of this sweep (see [C2], Chapter V, Sect. 9), we have:

Corollary 4.4. LetG be asimply connected region whose outer boundaiipis
Thenthere existg in H(G) such thatf og is anouter functiong is a conformal
mapping fromD onto G) andabpe(P'(| f|dwg)) = Dforl <t < o0} | fldwg
is the measure with support #G that is “carried" by ¢ fromaD as|]75/<p|dm,
Wherem denotes the boundary values 66 ¢ onaD.

Question 4.5.Let{z,}°°, be a sampling sequence for the Bergman sp3¢p).
Then does there exist a summable sequgngé€” ; of positive constants such
thatA, .={z:|lz—z, <r,} (mn = 1,2, 3,...) are pairwise disjoint id and
Q:=D\ (U2,A,) satisfieswg(dD) = 0?

In a recent communication with the author, P. Poggi-Corra has shown evidence
of making some progress with this question.
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