
Digital Object Identifier (DOI) 10.1007/s002080100303

Math. Ann. 323, 267–279 (2002) Mathematische Annalen

Champagne subregions of the disk
whose bubbles carry harmonic measure

John R. Akeroyd

Received: 10 March 2000 / Revised version: 6 November 2001/
Published online: 28 February 2002 –c© Springer-Verlag 2002

Abstract. We show that for anyε > 0 and any regionG whose outer boundary equals{z : |z| =
1}, there is a sequence{�n}∞n=1 of pairwise disjoint closed disks inG such that{z : |z| = 1} is
the set of accumulation points of{�n}∞n=1,

∑∞
n=1 radius(�n) < ε andω� (harmonic measure

on the boundary of� := {z : |z| < 1} \ (∪∞
n=1�n) for evaluation at somezo in �) is supported

on∪∞
n=1(∂�n).

Mathematics Subject Classification (1991):30C85, 31A15, 30D55; 30E10, 46E15

1 Introduction

Let � = {zn}∞n=1 be a sequence of distinct points inD := {z : |z| < 1}, and
let�′ be its set of accumulation points inD. We assume here that� ∩ �′ = ∅
and thatD ∩�′ is finite. Choose a sequence{rn}∞n=1 of positive real numbers so
that the closed disks�n := {z : |z − zn| ≤ rn} (n = 1,2,3, ...) are pairwise
disjoint and are contained inD. Then� := D \ (∪∞

n=1�n) is called achampagne
(bubbles) subregion ofD. Notice that� is a Dirichlet region and that∂D ⊆ ∂�;
we letω� denote harmonic measure on∂� for evaluation at some point in�.
If {rn}∞n=1 tends to zero sufficiently fast, then, by various methods, including an
argument involving theMaximumPrinciple and estimates concerninglog|B(z)|,
whereB(z) is a finite Blaschke product, one finds thatω�(∂D) > 0. In the other
direction, if the points of� are sufficiently dispersed and if they do not tend
to ∂D too quickly, then one may choose the radiirn (n = 1,2,3, ...) so that
ω�(∂D) = 0.What wemean by “dispersed" and “not tending to∂D too quickly"
relate closely to conditions that characterize so-called sampling sequences for
Bergman spaces. Recall that a sequence{zn}∞n=1 in D that has no accumulation
points inD is said to be asampling sequencefor the Bergman spaceL2

a(D) :=
{f : f is analytic inD and

∫ |f |2dA < ∞} –A denotes area measure onD – if
there is a constantM > 1 and there is a summable sequence{cn}∞n=1 of positive
constants such that
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1

M
||p||L2(A) ≤ {

∞∑
n=1

cn|p(zn)|2} 1
2 ≤ M||p||L2(A)

for all polynomialsp. This notion of sampling sequences extends to a wide
variety of Banach spaces of analytic functions inD. Sequences inD that are
interpolating forH∞(D) have already been interpreted in terms of champagne
subregions ofD (see [GGJ]). Most of our methods make a case for a strong
link between sampling sequences and champagne subregions� of D for which
ω�(∂D) = 0. Yet, rather than focusing on this link, our primary objective in
this paper is to establish the existence of champage subregions� of D such that
ω�(∂D) = 0, even under the strictest conditions; that is, when∂� is rectifiable
and the bubbles of� are forced to reside in some prescribed subregionG of D
whose outer boundary equals∂D (Theorem 3.4). Recall that the outer boundary
ofG (denotedd∞G) is the boundary of the unbounded component ofC \G. This
result has consequences in the contexts of potential theory, sampling sequences
and cyclic vectors for the shift on Hardy spaces; we explore some of these in
Proposition 4.2 and Corollaries 4.3 and 4.4.

2 Preliminaries

LetG be a bounded Dirichlet region and letzo be a point inG. If h ∈ CR(∂G),
then there is a continuous extensionĥ of h toG such thatĥ is harmonic inG.
By the Maximum Principle,̂h(zo) ≤ ‖h‖∞. Evidently,zo −→ ĥ(zo) defines a
bounded linear functional (of norm one) onCR(∂G). So, by the Riesz Represen-
tation Theorem, there is a unique probability measureω(·,G, zo) with support
in ∂G such that̂h(zo) = ∫

∂G
h(z)dω(z,G, zo) (for all h in CR(∂G)); ω(·,G, zo)

is calledharmonic measureon ∂G for evaluation atzo. If z1 is any other point
in G, then, by Harnack’s Inequality,ω(·,G, z1) andω(·,G, zo) are boundedly
equivalent. For this reason, we often suppress the pointzo in our notation and
abbreviateω(·,G, zo) by ωG(·). Notice that ifE is a Borel subset of∂G, then
z −→ ω(E,G, z) is harmonic inG and has “boundary values”χE a.e.ωG. We
end this section with two results concerning harmonic measure that are useful
to us later in the paper. For any compact subsetK of the complex planeC, we
follow convention and letKˆ denote thepolynomially convex hullof K — that
is, {z ∈ C : |p(z)| ≤ sup

w∈K
|p(w)| for all polynomials p}. If K = K ,̂ thenK is

said to bepolynomially convex.

Lemma 2.1. LetG be a boundedDirichlet region and letK be a compact subset
ofG such thatE := G\K is aDirichlet region.ThenωE|∂G andωG areboundedly
equivalent as measures on∂G.

Proof. Choosezo in E. SinceE ⊆ G, it follows from the Maximum Principle
thatω(·, E, zo) ≤ ω(·,G, zo) on ∂G. For a reverse inequality, we first observe
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that(∂E) \ (∂G) = ∂K. By our hypothesis, there is a Jordan curveγ in E such
thatK ⊆ γˆ ⊆ G; γ can be constructed from a grid of sufficiently small diameter
— see [C1], Chapter VIII, Proposition 1.1 for a similar construction. Chooseh

in CR(∂G) such that 0≤ h ≤ 1; we let ĥ denote the continuous extension of
h toG that is harmonic onG. By the Maximum Principle, there existswo in γ
such that̂h(wo) ≥ ĥ(w) for all w in γ .̂ Therefore,∫
∂G

h(z)dω(z,G,wo) = ĥ(wo)

=
∫
∂E

ĥ(z)dω(z,E,wo)

=
∫
∂G

h(z)dω(z,E,wo)+
∫
∂K

ĥ(z)dω(z,E,wo)

≤
∫
∂G

h(z)dω(z,E,wo)+ ĥ(wo)ω(∂K,E,wo)

≤
∫
∂G

h(z)dω(z,E,wo)+ c ·
∫
∂G

h(z)dω(z,G,wo),

wherec := max{ω(∂K,E,w) : w ∈ γ } < 1. So,∫
∂G

h(z)dω(z,G,wo) ≤ 1

1− c ·
∫
∂G

h(z)dω(z,E,wo).

By Harnack’s Inequality, we can now find a positive constantM (independent
of h;0 ≤ h ≤ 1) such that∫

∂G

h(z)dω(z,G, zo) ≤ M ·
∫
∂G

h(z)dω(z,E, zo).

Consequently,ω(·,G, zo) ≤ Mω(·, E, zo) on ∂G. ��
Lemma 2.2. Choosez inD (z �= 0), letw = z

|z| and let[z,w] = {(1− t)z+ tw :
0 ≤ t ≤ 1}. Then,ω([z,w],D \ [z,w],0) ≤ 1− |z|.
Proof. Under a rotation ofD, we may assume thatz = r (0 < r < 1). Let η
denote the sweep ofωr := ω(·,D \ [r,1],0) to ∂D. Then, by definition,

dη = dωr |∂D + hdm,
wherem denotes normalized Lebesgue measure on∂D and

h(ζ ) =
∫ 1

r

1− t2
|ζ − t |2dωr(t).

Sinceωr is harmonic measure for evaluation at 0, it follows thatη = m. Notice
thath is continuouson∂Dand sinceη = m, wemust have: 0≤ h ≤ 1.Therefore,

1≥ h(1) =
∫ 1

r

1+ t
1− t dωr(t) ≥ 1+ r

1− r · ωr([r,1]),
and soωr([r,1]) ≤ 1− r. ��
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3 Champagne subregions of the disk

The first result of this section is an important ingredient in the proof of our main
result and is derived from the properties of a function that was developed by
K. Seip (see [S]) to establish sets of sampling and interpolation in Bergman
spaces.

Theorem 3.1. For anyε > 0, there is a sequence{�n}∞n=1 of pairwise disjoint
closed disks inD such that∂D is the set of accumulation points of{�n}∞n=1,∑∞
n=1 radius(�n) < ε andω�(∂D) = 0, where� := D \ (∪∞

n=1�n).

Proof. Following [S], we let,(2,1) = {2m(n + i) : m and n are integers} and
defineh onH+ := {z : Im(z) > 0} by:

h(z) =
( ∞∏
k=0

sin(π(i − 2−kz))
sin(π(i + 2−kz))

)
·
( ∞∏
m=1

e2π
sin(π(2mz− i))
sin(π(2mz+ i))

)
.

As was observed in [S],h is analytic inH+ and its zero-set there is,(2,1). For
nonnegative integersm, letαm,0 = {z : |z− i2m| = 1

4} and for negative integers
m, letαm,0 = {z : |z− i2m| = 4m−1}. Replicate these circles horizontally for all
integers n by lettingαm,n = αm,0 + n2m; notice thatαm,n has center 2m(n + i)
and{αm̂,n : m and n are integers} is a pairwise disjoint collection of closed disks
inH+ whose set of accumulation points inC isR.We letW = H+ \ {

⋃
m,n

αˆ
m,n}.

Let ϕ be the Möbius transformation fromH+ ontoD given byϕ(z) = z−i
z+i and

let βm,n = ϕ(αm,n). A brief analysis ofϕ′ (or, instead, an application of [Go],
Theorem 4, page 52) gives a positive constantM (independent ofm andn) such
that radius(βm,n) ≤ M|ϕ′(2m(n + i))|radius(αm,n). So, form < 0, there are
positive constantsC1, C2, C3, andC4 (independent ofm) such that

∞∑
n=−∞

radius(βm,n) < 2 ·
∞∑
n=0

radius(βm,n)

≤ C1 ·
∞∑
n=0

4m

|2m(n+ i)+ i|2

≤ C2 ·
∞∑
n=0

1

|n+ i2−m|2

≤ C3 ·
∞∑
n=0

1

(n+ 2−m)2

≤ C42
m.
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And, form ≥ 0, there are positive constantsC5 andC6 such that

∞∑
n=−∞

radius(βm,n) ≤ C5 ·
∞∑
n=o

1

|2m(n+ i)+ i|2

≤ C6
1

4m
.

Evidently, therefore,
∑
m

∑
n

radius(βm,n) < ∞. So,V := ϕ(W) is a cham-

pagne subregion ofD, andV has rectifiable boundary.

Claim. ω�(∂D) = 0.

Forn = 1,2,3, ... , letWn = {z = x + iy : −n < x < n and 0< y < n} ∩W.
By the conformal invariance of harmonicmeasure and theexhaustion{Wn}∞n=1 of
W , the proof of our claim reduces to showing thatωWn([−n, n]) = 0. To this end,
we defineWn,m (for negative integers m) to be{z ∈ Wn : Im(z) > 3 · 2m−2} and
(for the same m) we letIn,m = {z = x + iy : −n < x < n and y= 3 · 2m−2};
notice thatIn,m ⊆ Wn. By [S], estimate (3) on page 214, there is a positive
constantδ such that

|h(z)| ≥ δ9(z, ,(2,1))y −2π
ln(2) ,

where 0< y = Im(z) and9(·, ·) denotes the pseudohyperbolic metric onH+.
Thus, there is a positive constantλ that depends only onn, such that|h(z)| ≥ λ
wheneverz ∈ Wn,m.And, by the sameestimate, there is another positive constant
C (independent ofm andn) such that|h(z)| ≥ C4π(2−m) for all z in In,m. Select
zo in Wn,−1 and letωn,m(·) = ω(·,Wn,m, zo). Sincelog|h| is continuous and
harmonic onWn,m,

log|h(zo)| =
∫
log|h|dωn,m

≥ log(λ) · ωn,m((∂Wn,m) \ In,m)+ [log(C)+ π(2−m)]ωn,m(In,m)
≥ log(λ)+ [log(C)+ π(2−m)]ωn,m(In,m).

Evidently, therefore,ωn,m(In,m) −→ 0, asm → −∞. Since, by the Maximum
Principle,ω([−n, n],Wn, zo) ≤ ωn,m(In,m) (independent ofm andn), we con-
clude thatωWn([−n, n]) = 0. And so our claim holds. To this point, we have
produced a champagne regionV = D \ (⋃∞

n=1�n), where{�n}∞n=1 is a pairwise
disjoint sequence of closed disks inD such that∂D is the set of accumulation
points of{�n}∞n=1,

∑∞
n=1 radius(�n) < ∞ andωV (∂D) = 0. So, for anyε > 0,

there is a positive integerN such that
∑∞
n=N radius(�n) < ε. By Lemma 2.1,

� := D \ (∪∞
n=N�n) satisfies the conclusion of our theorem. ��
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Corollary 3.2. Suppose0 < r < 1
4 and letG = D \ �, where� := {z :

|z− 3
4| ≤ r}. Then, for anyε > 0and anyρ, r < ρ ≤ 1

4, there is a finite, pairwise
disjiont collection{�n}Nn=1 of closed disks inAρ := {z : r < |z − 3

4| < ρ} such
that:

(i)
∑N
n=1 radius(�n) < ε and

(ii) ω(∂�,W,0) < ε, whereW := G \ (∪Nn=1�n).

Proof. Chooseε > 0 andρ, r < ρ < 1
4. By Theorem 3.1 and the application

of a Möbius transformation, there is a sequence{�n}∞n=1 of pairwise disjoint
closed disks inAρ such that∂� is the set of accumulation points of{�n}∞n=1,∑∞
n=1 radius(�n) < ε andωV (∂�) = 0, whereV := G \ (∪∞

n=1�n). By the
Maximum Principle, if we choose a positive integerN so that∑∞
n=N+1ω(∂�n, V,0) < ε, thenW := G \ (∪Nn=1�n) satisfies the conclusion

of our corollary. ��
Lemma 3.3. LetG = D \ K, whereK is a compact, connected, polynomially
convex subset ofD that contains more than one point. Supposezo ∈ G and
0 < δ < dist (zo,K), and letGδ = {z ∈ G : dist (z,K) < δ}. Then, for any
ε > 0, there are finitely many pairwise disjoint closed disks{�n}Nn=1 inGδ such
that

∑N
n=1 radius(�n) < ε andω(∂K,W, zo) < ε, whereW := G\(∪Nn=1�n).

Proof. Placing a square grid of sufficiently small diameter on the complex plane
C, we can find finitely many closed squares{Sk}mk=1 (of equal sidelength) inGδ
so thatSk shares a side withSk−1 and a side withSk+1 (for 2 ≤ k ≤ m− 1), and
S1 andSm also share a side. Moreover, these are the only sides that are common
to two squares in the collection{Sk}mk=1, andC \ (∪mk=1Sk) has two components
– the bounded component containsK. So,{Sk}mk=1 forms a collar inGδ about
K. Let Dk be the closed disk of largest area inSk (1 ≤ k ≤ m); notice that
∪mk=1Dk disconnectsC andK is in the bounded component ofC \ (∪mk=1Dk).
Slightly reduce the radius of each diskDk (1≤ k ≤ m) to get a pairwise disjoint
collection of closed disks{D∗

k }mk=1 – each of the same radius – inGδ. There are
small “gaps” between successive disks in the collection{D∗

k }mk=1, and also there
is a small gap betweenD∗

1 andD
∗
m, all produced by this reduction of the radii. By

the Maximum Principle and majorants for harmonic measure derived from the
notion of extremal length (see [B], pages 361-385), if the reduction of the radii is
sufficiently slight, then we haveω(∂K,E, zo) < ε

2, whereE := G \ (∪mk=1D
∗
k ).

By the proof of Corollary 3.2 applied to each diskD∗
k (1≤ k ≤ m) successively,

we can produce a finite collection{�n}Nn=1 of pairwise disjoint closed disks

in E ∩ Gδ such that
∑N
n=1 radius(�n) < ε andω(∪mk=1∂D

∗
k , F, zo) <

ε

2
,

whereF := E \ (∪Nn=1�n). From the Maximum Principle, it now follows that
ω(∂K,W, zo) < ε, whereW := G \ (∪Nn=1�n). ��

We are now in a position to establish the main result of this paper.
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Theorem 3.4. LetG be a region whose outer boundary is∂D and chooseε > 0.
Then there is a sequence{�n}∞n=1 of pairwise disjoint closed disks inG such that
∂D is the set of accumulation points of{�n}∞n=1,

∑∞
n=1 radius(�n) < ε and

ω�(∂D) = 0, where� := D \ (∪∞
n=1�n).

Proof. We first produce a sequence{γn,k} of pairwise disjoint Jordan arcs inG
such that any compact subset ofD has nonempty intersectionwith atmost finitely
many of the arcs and such thatωV (∂D) = 0, whereV := D \ (

⋃
n,k

γn,k); so,ωV

is supported on
⋃
n,k

γn,k.

The construction of {γn,k}

By a Möbius transformation fromD onto D, we may assume that 0∈ G.
For n = 5,6,7, ... and k = 1,2,3, ...,2n+1, let Rn,k = {reiθ : 1 − 2−n <
r < 1and(k−1)π

2n < θ < kπ
2n }. Notice that{Rn,k}2n+1

k=1 is a pairwise disjoint collec-

tion of open Carleson rectangles and
2n+1⋃
k=1

Rn,k = {z : 1 − 2−n ≤ |z| ≤ 1};

we call {Rn,k}2n+1

k=1 the nth generation of rectangles. Forn = 5,6,7, ... , let
,n = {z : |z| = 1− 1

n
}. We construct the sequence of arcs{γn,k} inductively,

startingwithn = 5andk = 1.Nowsince∂∞G = ∂D, 0 ∈ GandG is connected,
it follows thatG∩R5,1 �= ∅ and thatG∩,5 �= ∅. So, there is a rectifiable Jordan
arcγ5,1 contained inG that has one endpoint in,5 and the other endpoint inR5,1;
wemay assume that|z| ≥ 4

5 for all z in γ5,1. LetG5,1 = G\γ5,1; notice thatG5,1

is a subregion ofD, ∂∞G5,1 = ∂D and 0∈ G5,1. Consequently,G5,1 ∩R5,2 �= ∅
andG5,1∩,5 �= ∅. So, there is a rectifiable Jordan arcγ5,2 contained inG5,1 that
has one endpoint in,5 and the other endpoint inR5,2; again, we may assume
that|z| ≥ 4

5 for all z in γ5,2. LetG5,2 = G5,1 \ γ5,2 and proceed as before. Once
the arcsγ5,1, γ5,2, ..., γ5,64 have been chosen, letG6,0 = G5,63\γ5,64. SinceG6,0

is a subregion ofD, ∂∞G6,0 = ∂D and 0∈ G6,0, it follows thatG6,0 ∩R6,1 �= ∅
and thatG6,0 ∩ ,6 �= ∅. So, there is a rectifiable Jordan arcγ6,1 contained in
G6,0 that has one endpoint in,6 and its other endpoint inR6,1; we may assume
that |z| ≥ 5

6 for all z in γ6,1. LetG6,1 = G6,0 \ γ6,1 and proceed as before to
defineγ6,2, ..., γ6,128. Continuing in this way, we get a pairwise disjoint sequence
{γn,k : n = 5,6,7, ...and k= 1,2,3, ...,2n+1} of rectifiable Jordan arcs inG
such thatγn,k hasoneendpoint in,n and its other endpoint inRn,k, and|z| ≥ 1− 1

n

for all z in γn,k. Observe thatV := D \ (
⋃
n,k

γn,k) is a Dirichlet region, 0∈ V and

∂V = (∂D) ∪ (
⋃
n,k

γn,k).
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Claim. ωV (∂D) = 0.

By Harnack’s Inequality, we may assume thatωV (·) = ω(·, V ,0). Now, since
V ⊆ D, the Maximum Principle gives us:ωV |∂D ≤ ω(·,D,0) = m (normalized
Lebesgue measure on∂D). So, to establish our claim, it is sufficient (by [R],
Definitions 8.2 and 8.3, and Theorem 8.6) to show that, for anyeiθ in ∂D, there
is a sequence{Ek}∞k=1 of Borel subsets of∂D that “shrink toeiθ nicely” such
that ωV (Ek)

m(Ek)
−→ 0 ask → ∞. We show this in the case thateiθ = 1; the

argument for any othereiθ proceeds in a similar way. Now choose a sequence
of (Carleson) rectangles – one from each generation – such that the closure of
each contains 1; we may choose the sequence{Rn,1}∞n=5. Corresponding to this
sequence of rectangles is the sequence of Jordan arcs{γn,1}; recall thatγn,1 has
one endpoint in,n and has its other endpoint inRn,1, such that|z| ≥ 1− 1

n
for

all z in γn,1. Sinceγn,1 ∩ Rn,1 is a compact subset ofD, there is a pointζn in
γn,1 ∩ Rn,1 such that 1− |ζn| = dist ((γn,1 ∩ Rn,1), ∂D); let an = ζn

|ζn| . Traverse
γn,1 from its endpoint in,n until one first encountersζn and letγ ∗

n,1 denote that
Jordan subarc ofγn,1. Let τn be the Jordan arc consisting ofγ ∗

n,1 along with the
radial segment[ζn, an] := {(1− t)ζn + tan : 0 ≤ t ≤ 1}; we can by no means
assert that{τn}∞n=1 is a pairwise disjoint collection or thatτn \ {an} ⊆ G. Now
an ∈ Rn,1 ⊆ {z : |z−1| < 1

n
} (sincen ≥ 5), and furthermore,τn has an endpoint

in ,n. Therefore,τn intersects the circle{z : |z − 1| = 1
n
}. Traverseτn from an

until one first intersects{z : |z − 1| = 1
n
} and letσn denote that subarc ofτn.

Let An = D \ γn,1, let Bn = D \ γ ∗
n,1, letOn = D \ τn and letPn = D \ σn.

Now,V ⊆ An ⊆ Bn,On ⊆ Pn and 1− |ζn| < 2−n. Therefore, by the Maximum
Principle and Lemma 2.2, ifE is any Borel subset of∂D, then

ωV (E) ≤ ω(E,An,0) ≤ ω(E,Bn,0) (1)

= ω(E,On,0)+
∫

[ζn,an]
ω(E,Bn, z)dω(z,On,0)

≤ ω(E,On,0)+ ω([ζn, an],On,0)
≤ ω(E,On,0)+ 2−n

≤ ω(E, Pn,0)+ 2−n.

To finish the proof of our claim, it is helpful to divide the problem into two cases,
based on whether or not certain portions of the arcsσn (n = 5,6,7, ...) are
contained in one of a particular class of lens-shaped regions. For 0< α < π

2 , let
W(α) = {reiθ : r > 0 and− α < θ < α}. Let ϕ be the Möbius transformation
from {z : Re(z) > 0} ontoD given byϕ(z) = z−1

z+1 and letS(α) = ϕ(W(α)).
Notice thatS(α) is a lens-shaped region inD, S(α) is symmetric with respect to
R and∂(S(α)) consists of two arcs of circles that form an angle of 2α at both -1
and 1. Now, either:
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Case 1. there existsα such that{z ∈ σn : n
2n ≤ |1 − z| ≤ 1

n
} ⊆ S(α) for

n = 5,6,7, ... , or
Case 2. there is a subsequence{σnk }∞k=1 of {σn}∞n=5 and a sequence of points

{zk}∞k=1 (zk ∈ σnk and|1− zk| ≥ nk
2nk ) such that

1−|zk |
|1−zk | −→ 0 ask → ∞;

letwk = zk
|zk | .

We first address Case 2. LetEk be the shortest arc of∂D that has endpointsank
andwk; notice thatEk shrinks to 1 nicely ask → ∞. By theMaximumPrinciple
and Lemma 2.2,ω(Ek, Pnk ,0) ≤ 1− |zk|. Therefore, by (1), ifk is sufficiently
large, then

ωV (Ek)

m(Ek)
≤ 2[(1− |zk|)+ 2−nk ]

|1− zk|
≤ 2(1− |zk|)

|1− zk| + 2

nk
−→ 0, as k→ ∞.

We now turn to Case 1. Forn = 5,6,7, ... , let En be the subarc of∂D that
extends froman counterclockwise until one first encounters{z : |1− z| = n

2n };
notice thatEn shrinks to 1 nicely asn → ∞. For the same n andn2n ≤ r ≤ 1

n
, let

βn(r) = {1+ reiθ : θ1 ≤ θ ≤ θ2}, whereθ1 andθ2 are the smallest numbers in
[0,2π) such that 1+reiθ1 ∈ ∂D and 1+reiθ2 ∈ σn. By our hypothesis for Case 1,
there is a constantc > 1 (independent ofn andr) such thatlength(βn(r)) ≤ π

c
r.

So,wecanapply [B], pages361-385, and findapositive constantM (independent
of n) such that

ω(En, Pn,0) ≤ M · exp
(

−π ·
∫ 1

n

n
2n

1

length(βn(r))
dr

)

≤ M · exp
(

−c ·
∫ 1

n

n
2n

1

r
dr

)

= M
(
n2

2n

)c
.

It now follows from (1) that

ωV (En)

m(En)
≤ M(n

2

2n )
c + 2−n

n2−n−1
−→ 0, as n→ ∞.

By Cases 1 and 2, our claim is established. Now, since{γn,k} is countable, we
can rename these Jordan arcs and enumerate them{γm}∞m=1. Chooseε > 0. By
applying Lemma 3.3 toVm := D \ γm successively (form = 1,2,3, ...), we
can produce a sequence{�n}∞n=1 of pairwise disjoint closed disks in{z ∈ G :
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|z| > 1
2} \ (∪∞

m=1γm) such that∂D contains the accumulation points of{�n}∞n=1,∑∞
n=1 radius(�n) < ε and

ω(γm,Um,0) ≤ 1

2m
, (2)

whereUm := Vm \ (∪∞
n=1�n); we letU = ∩∞

m=1Um (= V \ (∪∞
n=1�n)). By

our claim and the Maximum Principle,ω(∂D, U,0) = 0. So, by Lemma 2.1,
ω(∂D, U ∗

n ,0) = 0 (forn = 1,2,3, ...), whereU ∗
n := ∩∞

m=nUm. Moreover, by (2)
and the Maximum Principle,ω(∪∞

m=nγm,U ∗
n ,0) < 21−n. Once again applying

the Maximum Principle, we can now conclude thatω(∂D, �,0) < 21−n (for
n = 1,2,3, ...), where� := D \ (∪∞

n=1�n). Consequently,ω(∂D, �,0) = 0.��
In the proof of Theorem 3.1 we used estimates of K. Seip and a special

sampling sequence to construct a champagne subregion� of D with rectifiable
boundary such thatω�(∂D) = 0. The next result shows that this construction is
somewhat dependent on the nature of sampling sequences; Blaschke sequences
are zero sets forH∞(D) and therefore cannot be sampling. We conclude this
paper with applications of Theorem 3.4 in the contexts of sampling sequences
and cyclic vectors for the shift on Hardy spaces.

Proposition 3.5. Let� := D \ (∪∞
n=1�n) be a champagne subregion ofD. If

there is a Blaschke sequence� := {zk}∞k=1 in D and there existsc, 0 < c < 1,
such thatρ(z,�) < c for all z in ∪∞

n=1�n, thenω�(∂D) > 0.

Proof. By adding some disks to the collection{�n}∞n=1, or by slightly expanding
some of the existing disks, we may assume that� ∩ � = ∅. Let B be the
Blaschke product corresponding to the sequence�. Now there existszo in �

such that|B(zo)| > c; let fm(z) =
[
B(z)

B(zo)

]m
(for m = 1,2,3, ...). Sincez −→

log|fm(z)| is harmonic in� and has boundary values inL1(dω�), it follows
that 0= log|fm(zo)| = ∫

∂�
log|fm(z)|dω(z,�, zo). Therefore, sincefm −→ 0

uniformly on∪∞
n=1�n, asn → ∞, we conclude thatω�(∂D) > 0. ��

4 Applications

We now turn to an application that involves some rather standard sampling tech-
niques.To develop the subject properly, we first need to discuss point evaluations.
We assume here thatµ is a finite, positive Borel measure with compact support
in C and for 1≤ t < ∞, we letP t(dµ) denote the closure of the polynomials
in Lt(dµ) and letBall(P t (dµ)) = {f ∈ P t(dµ) : ‖f ‖Lt (dµ) ≤ 1}. A point z in
C is called abounded point evaluationfor P t(dµ) if there is a positive constant
C such that|p(z)| ≤ C‖p‖Lt (dµ) for all polynomials p; the collection of all such
points is denotedbpe(P t(dµ)). A point z in C is called ananalytic bounded
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point evaluationfor P t(dµ) if there are positive constantsδ andM such that
|p(w)| ≤ M‖p‖Lt (dµ)wheneverp is a polynomial and|z−w| < δ; the collection
of all such pointsz is denotedabpe(P t(dµ)). Nowabpe(P t(dµ)) is the largest
open set inC to which every functionf in P t(dµ) has an analytic continuation
and, moreover, each component ofabpe(P t(dµ)) is simply connected.

Lemma 4.1. Letµ be a finite, positive Borel measure with support inD such
that D = abpe(P t(dµ)). Then, for0 < r < 1, there is a positive constant

Mr such that
∣∣∣f (w)−f (z)w−z

∣∣∣ ≤ Mr wheneverf ∈ Ball(P t (dµ)) andz andw are

distinct points of moduli no greater thanr.

Proof. Let ,r = {ζ : |ζ | = 1+r
2 }. Now sinceabpe(P t(dµ)) = D, there is a

positive constantCr such that|f (ζ )| ≤ Cr for all f in Ball(P t (dµ)) and all
ζ in ,r . So, if z andw are distinct points of moduli no greater thanr, then, by
Cauchy’s Integral Formula,∣∣∣∣f (w)− f (z)w − z

∣∣∣∣ ≤ 1

2π
·
∫
,r

|f (ζ )|
|ζ − z||ζ − w| |dζ |

≤ 4Cr
(1− r)2 .

��
The proof of the next result follows a well-known technique that was pointed

out to the author by D. Luecking. The result itself answers, in the affirmative,
Question 3.4 of [AS]. However, the sampling methods presented here are by no
means “sharp” enough to give the results found in [AS]. In what follows, we will
be considering a finite, positive Borel measureµ with support inD. For the sake
of convenience, we letµo = µ|D and letµ∞ = µ|∂D.
Proposition 4.2. Let µ be a finite, positive Borel measure with support inD
such thatD = abpe(P t(dµ)). Then there exist an at most countable collection
of points{zn} in D∩ support (µ), where{zn} has no accumulation point inD, a
summable collection{cn} of positive constants and a constantM > 1 such that
ν := µ∞ +∑

n cnδzn satisfies:

1

M
‖p‖Lt (dµ) ≤ ‖p‖Lt (dν) ≤ M‖p‖Lt (dµ)

for all polynomialsp.

Proof. We assume thatµ is a probability measure; the general result follows
immediately from the proof of this case. By Lemma 4.1, we can partitionD into
setsRk (k = 1,2,3, ...) of the form{reiθ : a ≤ r < b andα ≤ θ < β} and with
the properties:
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(i) 0 < dk := diameter(Rk) < dist (Rk, ∂D) −→ 0 ask → ∞, and
(ii) for eachk there existsrk, 0< rk < 1, such that|z| ≤ rk for all z in Rk and

dkMrk ≤ 1
2, whereMrk is the constant provided by Lemma 4.1.

Letf be a ploynomial of norm1 inP t(dµ) and choosewk inRk (k = 1,2,3, ...);
we choosewk in support (µ) ∩ Rk if µ(Rk) �= 0. Then, by Lemma 4.1,

|f (z)− f (wk)| ≤ Mrk |z− wk| ≤ 1

2

for anyz in Rk. Therefore,|f (z)| ≤ 1
2 + |f (wk)| for all z in Rk. Consequently,

|f (z)|t ≤ 2t−1(2−t +|f (wk)|t ) and hence|f (z)|t −2t−1|f (wk)|t ≤ 1
2 for all z in

Rk. Sinceweareassuming thatµ is a probabilitymeasureand that‖f ‖Lt (dµ) = 1,
it follows that∫

|f |t dµo − 2t−1 ·
∫

|f |t dσ ≤ 1

2
µo(D) ≤ 1

2

∫
|f |t dµ,

whereσ :=
∞∑
k=1

µ(Rk)δwk . Therefore,

∫
|f |t dµ− 2t−1 ·

∫
|f |t dν ≤ 1

2

∫
|f |t dµ,

whereν := µ∞ + σ . And thus,
‖f ‖Lt (dµ) ≤ 2‖f ‖Lt (dν).

In a similar fashion we obtain the inequality:‖f ‖Lt (dν) ≤ 2‖f ‖Lt (dµ).
The proof is now complete. ��
Corollary 4.3. LetG be region whose outer boundary is∂D. Then there exist a
sequence{zn}∞n=1 in G and a summable sequence{cn}∞n=1 of positive constants

such that{zn}∞n=1 has no accumulation point inD andσ :=
∞∑
n=1

cnδzn satisfies:

abpe(P t(dσ )) = D f or 1≤ t < ∞.
Proof. By Theorem 3.4, there is a sequence{�n}∞n=1 of pairwise disjoint closed
disks inG such that{�n}∞n=1 has no accumulation point inD andω�(∂D) = 0,
where� := D \ (∪∞

n=1�n); so ω� is supported on∪∞
n=1(∂�n). Since|p| is

subharmonic inC for any polynomialp, it follows from Harnack’s Inequality
that� ⊆ abpe(P 1(dω�)) (⊆ D). Since the components ofabpe(P 1(dω�)) are
simply connected, we in fact have thatabpe(P 1(dω�)) = D. An application of
Proposition 4.2 and Jensen’s Inequality completes the proof. ��
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Taking the sweep ofσ (σ as defined in Corollary 4.3) to∂G and using the
properties of this sweep (see [C2], Chapter V, Sect.9), we have:

Corollary 4.4. LetG be a simply connected regionwhose outer boundary is∂D.
Then there existsf inH 1(G) such thatf ◦ϕ is an outer function (ϕ is a conformal
mapping fromD ontoG) andabpe(P t(|f̃ |dωG)) = D for 1≤ t < ∞; |f̃ |dωG
is the measure with support in∂G that is “carried" byϕ from∂D as|f̃ ◦ ϕ|dm,
wheref̃ ◦ ϕ denotes the boundary values off ◦ ϕ on ∂D.
Question 4.5.Let {zn}∞n=1 be a sampling sequence for the Bergman spaceL2

a(D).
Then does there exist a summable sequence{rn}∞n=1 of positive constants such
that�n := {z : |z − zn| ≤ rn} (n = 1,2,3, ...) are pairwise disjoint inD and
� := D \ (∪∞

n=1�n) satisfies:ω�(∂D) = 0?

In a recent communication with the author, P. Poggi-Corra has shown evidence
of making some progress with this question.
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