
Digital Object Identifier (DOI) 10.1007/s002080100292

Math. Ann. 323, 31–39 (2002) Mathematische Annalen

On symplectic cobordisms

John B. Etnyre · Ko Honda
Received: 26 March 2001 / Revised version: 1 May 2001 /
Published online: 28 February 2002 – © Springer-Verlag 2002

Abstract. In this note we make several observations concerning symplectic cobordisms. Among
other things we show that every contact 3-manifold has infinitely many concave symplectic fillings
and that all overtwisted contact 3-manifolds are “symplectic cobordism equivalent”.
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1. Introduction

In this note we make several observations concerning (directed) symplectic
cobordisms, Stein cobordisms, andconcavesymplectic fillings for contact 3-
manifolds. Symplectic and Stein cobordisms have recently come to the fore-
ground of symplectic and contact geometry, largely due to the introduction of
symplectic field theory (SFT) by Eliashberg, Hofer and Givental [12]. The goal
of SFT is to associate an algebraic structure to a given symplectic cobordism.
Though clearly a central notion in symplectic and contact geometry, there is
surprisingly little concerning symplectic cobordisms in the literature.

We will assume our 3-manifolds are closed and oriented, and our contact
structures are oriented and positive. A contact 3-manifold(M1, ξ1) is symplecti-
cally cobordantto another contact manifold(M2, ξ2), if there exists a symplectic
4-manifold(X, ω) with ∂X = M2 −M1 and a vector fieldv defined on a neigh-
borhood of(M1 ∪M2) ⊂ X for which Lvω = ω, v � (M1 ∪M2), the normal
orientation ofM1 ∪M2 agrees withv and the 1-formα = ιvω is a contact from
for ξi when restricted toMi, i = 1,2. If there is, moreover, an almost complex
structureJ on X and a strictly plurisubhamonic functionφ : X → R such
thatω = −dJ ∗dφ andMi, i = 1,2, are non-critical level sets ofφ, then we
say(M1, ξ1) is strictly complex cobordantto (M2, ξ2). Such cobordisms have
been studied in [9] [13] and can be thought of as the cobordism analog of a
Stein manifold. Hence we shall abuse terminology and refer to strictly complex
cobordisms as “Stein cobordisms”. We say(M1, ξ1) is theconcave endof the
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cobordism, while(M2, ξ2) is theconvex end. We denote the existence of such
a cobordism by(M1, ξ1) ≺ (M2, ξ2) — in the paper we implicitly assume that
≺ refers to a Stein cobordism, unless specified otherwise. Note that symplectic
(and Stein) cobordism is not an equivalence relation. For example, aStein fillable
contact structure(M, ξ) (= one satisfying∅ ≺ (M, ξ)) cannot be symplectically
cobordant to an overtwisted contact structure, but the opposite is possible. Our
first result is:

Theorem 1.1 Let (M1, ξ1) be a contact 3-manifold. Then there exists a Stein
fillable contact 3-manifold(M2, ξ2) and a Stein cobordism(M1, ξ1) ≺ (M2, ξ2).

Though this result indicates the overall structure of the “partial order” on
contact 3-manifolds induced by cobordisms, there is very little control over the
target contact manifold(M2, ξ2). On the other hand, when(M1, ξ1) is overtwisted,
there is complete freedom in choosing(M2, ξ2):

Theorem 1.2 Let (M1, ξ1) be an overtwisted contact 3-manifold and(M2, ξ2)

any contact 3-manifold, tight or overtwisted. Then there exists a Stein cobordism
(M1, ξ1) ≺ (M2, ξ2).

In particular, all overtwisted contact structures are equivalent under symplec-
tic or Stein cobordism!

It is interesting to compare the previous two theorems with recent work
of Epstein-Henkin [13] and de Oliveira [5] which deal with cobordisms be-
tween CR-structures. (Here “CR-structure” will mean “strictly pseudoconvex
CR-structure”.) On any 3-manifoldM, there is a 1-1 correspondence between
CR-structures and pairs(ξ, J ) consisting of a contact structureξ and an almost
complex structureJ on ξ . We say a CR-structure(ξ, J ) on M is fillable, if
there is a compact, connected, complex manifoldX with ∂X = M, so that the
complex tangencies toM areξ and the induced complex structure onξ is J.
In [13] it was shown that if a CR-manifold(M1, ξ1, J1) is Stein cobordant to
a fillable CR-manifold(M2, ξ2, J2), then(M1, ξ1, J1) is also fillable. Here we
assume Stein cobordisms of CR-manifolds respect complex structures. Thus, if
(M1, ξ1, J1) ≺ (M2, ξ2, J2) is a Stein cobordism but(M1, ξ1) is not Stein fillable,
then(M2, ξ2, J2) cannot be a fillable CR-structure, even if(M2, ξ2) is a Stein
fillable contact structure. De Oliveira [5] gave some interesting examples of com-
plex (but not Stein) cobordisms from non-fillable CR-structures to fillable ones,
thus showing the necessity of having a Stein cobordism in the Epstein-Henkin
result.

Our last result is:

Theorem 1.3 Any contact 3-manifold has infinitely many concave symplectic
fillings which are mutually non-isomorphic and are not related to each other by
a sequence of blow-ups and blow-downs.
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A convex (resp. concave) symplectic fillingof (M, ξ) is a symplectic cobor-
dism(X, ω) from ∅ to (M, ξ) (resp. from(M, ξ) to ∅). The phrase “symplectic
filling”, without modifiers, is usually reserved for “convex symplectic filling”.
Having a (convex) filling is quite restrictive for a contact 3-manifold — for in-
stance, it implies the contact structure is tight. (Note, however, that there are
many tight contact structures without such fillings due to Eliashberg [11], Ding-
Geiges [6], and Etnyre-Honda [14].) We show that, on the contrary, concave
fillings are not restrictive at all. Though this was believed for a long time, and
specific isolated contact manifolds with infinitely many such fillings are easy to
come by, the degree to which concave fillings are not restrictive is perhaps a little
surprising.

We assume the reader is more or less familiar with contact geometry and
hence we do not include any background material here. We refer the reader to
[2] for the basics of contact geometry, [8] for Lutz twisting, and [1] [12] [9] for
the notions of Stein and symplectic cobordisms.

2. Legendrian surgeries

In this section we give a description ofLegendrian surgery, both on the 3-
manifold level and as a source of Stein filling on the 4-manifold level. There
is some related material in [21] for Legendrian surgeries.

Let (M, ξ) be a contact manifold andL ⊂ M a closed Legendrian curve.
LetN(L) be astandard tubular neighborhoodof the Legendrian curveL, with
convex boundary and two parallel dividing curves. Choose a framing forL (and
a concomitant identification∂N(L) 
 R

2/Z2) so that the meridian has slope 0
and the dividing curves have slope∞. With respect to this choice of framing,
a Legendrian surgery is a−1 surgery, where a copy ofN(L) is glued toM \
N(L) so that the new meridian has slope−1. Here, even though the boundary
characteristic foliations may not exactly match up a priori, we use Giroux’s
Flexibility Theorem [15] [20] and the fact that they have the same dividing set to
make the characteristic foliations agree. This gives us a new manifold(M ′, ξ ′).

The following proposition describes Legendrian surgery on the 4-manifold
level.

Proposition 2.1 Let (M ′, ξ ′) be a contact manifold obtained by Legendrian
surgery alongL in (M, ξ), in a 3-dimensional manner. Then there exists a Stein
cobordism from(M, ξ) to(M ′, ξ ′), obtainedbyattachinga2-handlealongN(L).

Proof. We apply Lemma 2.2 below to obtain a Stein cobordismX = M×[0,1].
Then Legendrian surgery corresponds to attaching a 2-handle alongN(L) ⊂ M×
{1} in a Stein (resp. symplectic) manner, which yields a Stein (resp. symplectic)
cobordism from(M, ξ) to (M ′, ξ ′). (See Eliashberg [9].)



34 J.B. Etnyre, K. Honda

Lemma 2.2 Let (M, ξ) be a contact structure. Then there exists a thickening of
M toX = M × [0,1] and a Stein cobordism from(M, ξ) to itself.

A proof of this fact appears in [7].

3. Open book decompositions

Recall anopen book decompositionof a 3-manifoldM consists of a linkK,
called thebinding, and a fibrationf : (M \ K) → S1 such that each fiberF
in the fibration is a Seifert surface forK. The manifoldM \ K is obtained by
takingF × [0,1] with coordinates(x, t) and identifying(x,0) ∼ (φ(x),1) via
the monodromy mapφ : F ∼→ F . Following Thurston and Winkelnkemper [26],
we construct a contact structure onM from an open book decomposition: Letλ
be a primitive for an area form onF and letλt = t · λ+ (1− t) · φ∗λ, t ∈ [0,1].
The 1-formα = dt + λt is a contact 1-form onF × [0,1] which glues to give a
contact structure onM \K. One easily checks thatα extends overK. If (M, ξ)
is obtained in this manner, then we say that the open book decomposition ofM

is adapted toξ . We now have the following recent result of Giroux [16]:

Theorem 3.1 Any contact structureξ on a closed 3-manifoldM admits an open
book decomposition ofM which is adapted toξ .

The following lemma (and more importantly its converse) is due to the efforts
of many people, beginning with the work of Loi and Piergallini [23] (also see
[25] for an earlier effort), and recently culminating in the work of Giroux [16]
(see also [3] [24]).

Lemma 3.2 If the monodromyφ : F → F for an open book can be expressed
as a product of positive Dehn twists, then the adapted contact structure is Stein
fillable.

Proof. If a manifoldMn has an open book decomposition with fiberF, anm-
times punctured genusg surface, and monodromyφ = id, then the manifold
is the connected sum ofn = 2g + m − 1 copies ofS1 × S2. (To see this, note
thatMn with the binding removed isF × S1 and the co-core of each 1-handle
in F gives rise to an annulus. Now, when the binding is replaced, these annuli
become essential 2-spheres.) This open book decomposition can be seen as the
boundary of a (positive) Lefschetz fibration on a 4-manifoldX thatMn bounds.
From this one may easily conclude that the contact structureξn, adapted to the
open book decomposition, is Stein filled byX (cf. [3] [23]).

Assumeφ consists of a single positive Dehn twist along a closed curveγ ⊂ F .
Then the manifoldM is obtained fromMn by a Dehn surgery alongγ with surgery
coefficient one less than the framing induced onγ by the fiber. But we can also
makeγ a Legendrian curve inF so that the framings given by the contact structure
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and the fibers agree. (In other words, the twisting number ofγ relative toF is
zero.) This is made possible by applying (a variant of) the Legendrian Realization
Principle (for details see [20]). Although∂F is not Legendrian, for the purposes
of the Legendrian Realization Principle we may assume that∂F is the dividing set
of the convex surfaceF and realize any closed curveγ ⊂ int F as a Legendrian
curve, providedγ is non-isolating, i.e., every component ofF \ γ nontrivially
intersects∂F . Thus(M, ξ) is obtained from(Mn, ξn) by a Legendrian surgery
and hence is Stein fillable, providedγ is non-isolating. The only way ourγ could
be isolating is if it were separating but then we use the argument in Lemma 1 of
[23] and write a positive Dehn twist about the separating curveγ as a product
of positive Dehn twists about non-separating curves. Thus we are left with the
case whereφ is the product ofk > 1 positive Dehn twists about non-separating
curves and we just performk Legendrian surgeries on different leaves.

We are now ready to prove Theorem 1.1. It should be pointed out that the
strategy of proof is similar to the proof strategy in [6], where it is proved that
“most” universally tight contact contact structures on torus bundles over the
circle are not (strongly) symplectically fillable.

Proof (Proof of Theorem 1.1).If (M1, ξ1) is Stein fillable, then we are done by
Lemma 2.2. Therefore, let(M1, ξ1) be a contact structure which is not Stein
fillable. By Theorem 3.1, there exists an open book decomposition forM1 which
is adapted toξ1. LetK be the binding,f : (M1 \ K) → S1 the fibering of the
complement,F the fiber, andφ the monodromy map. Since(M1, ξ1) is not Stein
fillable, any product decomposition ofφ into Dehn twists must contain some
negative Dehn twists. We view each Dehn twist as being done on a separate
fiber. On a fiber just after one on which a negative Dehn twist was done along
γ , we can take a parallel copy ofγ and perform a positive Dehn twist, which
is tantamount to a Legendrian surgery. If a compensatory positive Dehn twisted
is added whenever there is a negative Dehn twist, then we will have a new
monodromy mapφ′ with only positive Dehn twists. Of courseφ′ will define a
different manifoldM2 and a different contact structureξ2. However, since the
difference in between the monodromy forM1 and forM2 is just several positive
Dehn twists, we can get from(M1, ξ1) to (M2, ξ2) by a sequence of Legendrian
surgeries. Thus we have a Stein cobordism from(M1, ξ1) to (M2, ξ2).

4. Overtwisted contact structures

In this section we prove Theorem 1.2. The proof will be broken down into two
propositions.

Proposition 4.1 Any overtwisted contact manifold is Stein cobordant to any
overtwisted contact manifold.
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Proof. Let (Mi, ξi), i = 1,2 be two overtwisted contact manifolds. It is a well-
known fact in 3-manifold topology that we can find a linkL in M1 such that a
certain integer Dehn surgery onL will yield M2. Thus we can construct a topo-
logical cobordismX fromM1 toM2 by attaching 2-handles with the appropriate
framing toM1 × [0,1]. Moreover, one can adapt the proof of Lemma 4.4 in
[19] to show that we may assume thatX has an almost complex structure with
complex tangenciesξi onMi.We now apply the following theorem of Eliashberg
(Theorem 1.3.4 in [9]):

Theorem 4.2 (Eliashberg)Let (X, J ) be a compact, almost complex (real) 4-
manifold with boundary∂X = M2 −M1. AssumeM1 is J -concave,J is inte-
grable nearM1, and the corresponding contact structure(M1, ξ1) is overtwisted.
If the cobordism(X, J ) fromM1 toM2 consists of only 2-handle attachments,
then there exists a deformation ofJ (relM1) to an integrable complex structure
J̃ onX for whichM2 is J̃ -convex.

Using this theorem, we obtain a Stein structure onX for which the complex
tangencies onM1 areξ1 and onM2 are some contact structureξ ′ homotopic to
ξ2 as a 2-plane field. Now, we are done ifξ ′ is overtwisted, since overtwisted
contact structures are classified by their 2-plane field homotopy type [8]. But
we can easily ensure that the contact structure onM2 is overtwisted by adding
some extra Lutz twists to(M1, ξ1) that are disjoint from the regions where the
2-handles are attached.

Proposition 4.3 Given a tight contact manifold(M, ξ), there exists an over-
twisted contact structureξ ′ onM in the same homotopy class asξ and which
satisfies(M, ξ ′) ≺ (M, ξ).
Proof. Given (M, ξ), take a Legendrian curveL ⊂ M and its standard neigh-
borhoodN(L). Choose a framing as in Sect. 2 so that the slope of the dividing
set of∂N(L) is ∞. Now, identify slopess ∈ R ∪ {∞} with their respective
“angles”,[θs] ∈ R/πZ. In order to distinguish the different amounts of “wrap-
ping around”, we will choose a liftθs ∈ R instead. There exists an exhaustion
of N(L) by concentricT 2, where the angles of the dividing curves on the tori
monotonically increase over the interval[π2 , π) as theT 2 move towards the core.

Now, let (M, ξ ′) be the overtwisted 3-manifold obtained by performing a
full Lutz twist alongL. This replacesN(L) by the solid torusN , where the
angles of the dividing curves of an exhaustion by tori monotonically increase

over the interval[π2 ,3π). We claim that a full Lutz twist(M, ξ)
L� (M, ξ ′) is

the inverse process of a sequence of Legendrian surgeries along the same core.
To see this, take a Legendrian curveK in (M, ξ ′) in the same isotopy class
asL, whose standard neighborhoodN(K) ⊂ N has an exhausting set of tori
which spans the interval[3π − 3π

4 ,3π). Note this implies thattb(K) = 1 (when
measured with respect to the trivialization ofN we are using). Thus Legendrian
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surgery onK corresponds to 0-Dehn surgery. Moreover after Legendrian surgery,
the newN “rotates” in the interval[π2 , 5π

2 ). Repeated application (total of 4
times) of Legendrian surgery will get us back to(M, ξ). Note, however, that the
intermediate manifolds are not necessarily diffeomorphic toM. We leave it to
the reader to check that the four surgeries correspond to Dehn surgery on the link
K0∪K1∪K2∪K3,whereK0 isK, eachKi is a meridian toKi−1 for i = 1,2,3,
(and not linked withKj if |j − i| > 1) and the surgery coefficients are all 0.

Combining Propositions 4.1 and 4.3, we immediately get Theorem 1.2.

5. Concave fillings

In this section we prove Theorem 1.3. Before we set out on the proof, we give a
straightforward proof of this theorem for overtwisted contact structures.

Lemma 5.1 Theorem 1.3 is true for any overtwisted contact structure.

Proof. Given any overtwisted contact structure(M, ξ), we know by Theorem
1.2 that there is a Stein cobordism(X, ω) from (M, ξ) to (S3, ξstd). Let (Y, ω′)
be any closed symplectic 4-manifold. Use Darboux’s theorem to excise a small
standard ball around a point inY and obtain a manifoldY ′ with concave bound-
ary (S3, ξstd). We then obtain a concave filling of(M, ξ) by gluing (X, ω) to
(Y ′, ω′|Y ′). It is clear that there are infinitely many choices for(Y, ω′) that will
yield infinitely many different concave fillings for(M, ξ).

Lemma 5.2 Theorem 1.3 is true for any Stein fillable contact structure.

Proof. Let (M, ξ) be Stein filled by(X, ω).According to Corollary 3.3 in [22],
there is a symplectic embedding of(X, ω) into a compact K¨ahler minimal sur-
faceS of general type. If we takeY = S \X, then(Y, ω|Y ) will be a concave
symplectic filling of(M, ξ).

A slight modification of the above argument will produce infinitely many
concave fillings. Specifically, in a small standard 3-ball(B3, ξstd) ⊂ (M, ξ),
there exist a right-handed Legendrian trefoil knot withtb = 1 and a linking
Legendrian unknot withtb < 0. If we add 2-handles toX along these Legendrian
knots, we obtain a new Stein manifold(X′, ω′). EmbedX′ in a compact K¨ahler
surfaceS and removeX to obtain a concave symplectic filling(Y ′, ω′) of (M, ξ).
In the layerX′ \X in Y ′ there exists a symplectically embedded torusT . To see
this note that the manifoldN obtained fromB3 by attaching a 2-handle along a
right-handed trefoil knot with framing 0 is a “cusp neighborhood”, see [17], and
thus it supports a symplectic structure containing may symplectic tori. Now our
manifoldX′ is symplectomorphic toX∪N with a 2-handle attached to an unknot
inN and a 1-handle attached to connectN andX (this can be done in a symplectic
fashion [9]). LetE(n) be the elliptic surface obtained by taking the normal sum
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[18] of n ≥ 1 copies of the rational elliptic surface along regular fibers. Then
consider the symplectic manifoldYn = E(n)#T Y ′, obtained by taking the normal
sum ofY ′ alongT andE(n)along a regular fiber.These concave fillings of(M, ξ)

are not related by blowing up and down, since if they were, then the compact
manifoldsSn, obtained fromS by normal summing withEn, would also be
so related. However, this is not the case, asb+

2 (Sn) = b+
2 (S) + 2n andb+

2 is
unchanged by blowing up and down.

Theorem 1.3 now follows from Lemma 5.2 and Theorem 1.1.
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