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Abstract. We classify singular fibres over general points of the discriminant locus of projective
Lagrangian fibrations over 4-dimensional holomorphic symplectic manifolds. The singular fibre
F is the following either one:F is isomorphic to the product of an elliptic curve and a Kodaira
singular fibre up to finite unramified covering orF is a normal crossing variety consisting of
several copies of a minimal elliptic ruled surface of which the dual graph is Dynkin diagram of
typeAn, Ãn or D̃n. Moreover, we show all types of the above singular fibres actually occur.

Mathematics Subject Classification (1991):14E35, 14D05

1. Introduction

We begin with the definition ofLagrangian fibrations.

Definition 1.1. Let (X, ω) be a Kähler manifold with ad-closed holomorphic
symplectic two formω andS a normal variety. A proper surjective morphism
f : X → S is said to be a Lagrangian fibration if a general fibreF of f is a
Lagrangian submanifold with respect toω, that is, the restriction of 2-formω|F
is identically zero anddimF = (1/2)dimX.

Remark. A general fibreF of a Lagrangian fibration is a complex torus by
Liouville’s theorem.

The plainest example of a Lagrangian fibration is an elliptic fibration ofK3
surface overP1. In higher dimension, every fibre space of a projective irreducible
symplectic manifold is a Lagrangian fibration ( [7, Theorem 2] and [8, Theorem
1] ). When the dimension of fibre is one, a Lagrangian fibration is a minimal
elliptic fibration and whose singular fibre is completely classified by Kodaira
[6, Theorem 6.2]. In this note, we investigate singular fibres of a projective
Lagrangian fibration whose fibre is 2-dimensional.
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Fig. 1.Figures of singular fibres of type III or type IV

Theorem 1.2. Letf : X→ S be a Lagrangian fibration andD the discriminant
locus off . Assume thatf is projective anddimX = 4. Then there exists finite
setD0 ofD andf −1(x) is the following one forx ∈ D \D0:

(1) There is a morphism fromf −1(x) to an elliptic curveC and anétale mor-
phismC̃ → C such thatf −1(x) ×C C̃ is isomorphic to the product of an
elliptic curveC̃ and a Kodaira singular fibre of typeI0, I ∗0 , II , II ∗, III ,
III ∗, IV or IV ∗. Such af −1(s) is classified as 18 types (see Tables 4, 5).

(2) f −1(x) is isomorphic to a normal crossing variety consisting of several
copies of a minimal elliptic ruled surface. The dual graph off −1(x) is the
Dynkin diagram of typeAn, Ãn or D̃n. If the dual graph is of typẽAn or D̃n,
each double curve is a section of the ruling. In the other cases, the double
curve on each edge components is a bisection and other double curve is a
section (see Figs.2 and 3).

Moreover, all types of the above singular fibres actually occur.

Combining Theorem 1.2 with [7, Theorem 2] and [8, Theorem 1], we obtain the
following corollary.

Corollary 1.3. Let f : X → B be a fibre space of a projective irreducible
symplectic manifold. Assume thatdimX = 4. Then, for a general pointx of the
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The direction of ruling

Fig. 2.Figures ofÃn andD̃n case

The direction of ruling

Fig. 3.Figures ofAn case. Bold line represents bisection and line represents section

discriminant locus off , f −1(x) satisfies the properties of Theorem 1.2 (1) or
(2).

Remark. Let S be aK3 surface andπ : S → P
1 an elliptic fibration. The

induced morphismf : Hilb2S → P
2 gives examples of singular fibres above

except whose dual graphs areAn. The author does not know whether a normal
crossing variety whose dual graph isAn occur as a singular fibre of a fibre space
of an irreducible symplectic manifold.

This paper is organized as follows. In section 2, we set up the proof of Theorem
1.2. The key proposition is stated and proved in section 3. Section 4 and 5 are
devoted to the proof of the classification of singular fibres. Examples of all types
of singular fibres are constructed in Section 6.
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2. Preliminary

(2.1) In this section, we collect definitions and some fundamental material which
are necessary for the proof of Theorem 1.2.

Definition 2.1. Let f : X → ∆1 be a proper surjective morphism from alge-
braic variety to an unit disk.f is said to be semistable degeneration iff satisfies
the following two properties:

(1) f is smooth over∆1 \ 0.
(2) f ∗{0} is a reduced normal crossing divisor.

Definition 2.2. Let f : X → ∆1 and f ′ : X′ → ∆1 be proper surjective
morphisms from algebraic varieties to unit disks. We callf is isomorphic to
f ′ (resp. birational) if there exists an isomorphism (resp. a birational map)
g : X→ X′ such thatf ′ ◦ g = f .

(2.2) We review the fundamental properties of an Abelian fibration.

Lemma 2.3. Letf : (X, ω)→ S beaLagrangian fibration,F bean irreducible
component of a fibre off andj : F̃ → F a resolution ofF . Assume thatf is
flat. Thenj ∗(ω|F ) is identically zero.

Proof. LetA be a Kähler form onX. We consider the following function:

λ(s) :=
∫
Xs

ω ∧ ω̄AdimS−2,

whereXs := f −1(s) (s ∈ S). Sincef is flat,λ(s) is a continuous function onS
by [3, Corollary 3.2]. Thusλ(s) ≡ 0 onS and

∫
F

ω ∧ ω̄AdimS−2 = 0.

SinceF andF̃ is birational,j ∗ω is identically zero onF̃ . ✷

(2.3) We review basic properties of the mixed hodge structure on a simple normal
crossing variety.

Lemma 2.4. LetX := ∑
Xi be a simple normal crossing variety. Then

F 1H 1(X,C) = {(αi) ∈ ⊕H 0(Xi,Ω
1
Xi
)|αi |Xi∩Xj = αj |Xi∩Xj }.
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Proof. Let

X[k] := ∪i0<···<ikXi0 ∩ · · · ∩Xik (disjoint union).

For an index setI = {i0, · · · ik}, we define an inclusionδIj

δIj : Xi0 ∩ · · · ∩Xik → Xi0 ∩ · · · ∩Xij−1 ∩Xij+1 ∩ · · ·Xik (0 ≤ j ≤ k).

We consider the following spectral sequence [4, Chapter 4]:

E
p,q

1 = Hq(X[p],C) �⇒ Ep+q = Hp+q(X,C),

whereD : Ep,q1 → E
p+1,q
1 is defined by the

⊕
|I |=p

p∑
j=0

(−1)j (δIj )
∗.

Since this spectral sequence degenerates atE2 level ([4, Chapter 4.8]), we deduce

GrW1 (H
1(X,C)) = Ker(⊕iH 1(Xi,C)

D→⊕i<jH 1(Xi ∩Xj,C)).

MoreoverF 1 ∩ W0 = 0, F 1H 1(X,C) = F 1GrW1 (H
1(X,C)). Thus we obtain

the assertion of Lemma 2.4 from the definition ofD. ✷

Lemma 2.5. Letf : X′ → X be a birational morphism between smooth alge-
braic varieties. Assume that there exists a simple normal crossing divisorY onX
such thatf is isomorphic onX\Y and thepull backof ofY off is a simplenormal
crossing divisor onX′. LetY ′ := (f ∗Y )red. ThenF 1H 1(Y ′,C) ∼= F 1H 1(Y,C).

Proof. We consider the following exact sequence of morphisms of Mixed
Hodge structures.

H 0(Y ′,C) α→ H 1(X,C)→ H 1(X′,C)⊕H 1(Y,C)→ H 1(Y ′,C)
β→ H 2(X,C)→

Note that each morphism has weight(0,0). SinceHi(X,C) carries the pure
Hodge structure of weighti, α andβ are 0-map. MoreoverF 1H 1(X,C) ∼=
F 1H 1(X′,C). Thus we deduce thatF 1H 1(Y ′,C) ∼= F 1H 1(Y,C). ✷
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3. Kulikov model

(3.1) In this section, we prove the key proposition of the proof of Theorem 1.2.
First we refer the the folloing theorem due to Kulikov, Morrison [9, Classification
Theorem I] and Persson [11, Proposition 3.3.1].

Theorem 3.1. Let g′ : T ′ → ∆ be a semistable degeneration whose general
fibre is an abelian surface. Then there exists a semistable degenerationk : K →
∆ such thatk andg′ is birational andKK ∼k 0. Moreover, exactly one of the
following cases occurs:

(1) K0 is an abelian surface.
(2) K0 consists of a cycle of minimal elliptic ruled surfaces, meeting along

disjoint sections. The selfintersection number of each double curve is0.
(3) K0 consists of a collection of rational surfraces, such that the double curves

on each component form a cycle of rational curves; the dual graphΓ of Y
′
0

is a triangulation ofS1 × S1.

We callK a Kulikov model of type I, II or III according to the case occurs (1),
(2) or (3).
(3.2) We state the key propositon.

Proposition 3.2. Let f : (X, ω) → S be a projective Lagrangian fibration on
4-dimensional symplectic manifoldX andD the discriminant locus off . Then
there exists finite setsD0 ofD which has the following three properties.

(1) For a pointx ∈ D \D0, there exists an unit disk∆1 onS such that∆1 and
D intersects transversally atx andT := X ×S ∆1 is smooth.

(2) t : T → ∆1 is birational to the quotient of Kulikov modelK of Type I or
Type II by a cyclic groupG.

(3) There exists a nonzeroG-equivariant element ofF 1H 1(K,C).
(3.3) For the proof of Proposition 3.2, we need the following Lemmas.

Lemma 3.3. Letν : Y → X be a birational morphism such that(f ◦ ν)∗D is a
simple normal crossing divisor. Then there exists finite setsD0 ofD and

F 1H 1(Yx,C) �= 0

for all x ∈ D \D0, whereYx := f −1(x).

Proof. LetE := ((f ◦ ν)∗D)red andE = ∑
Ei . We take an open setU of S

which satisfies the following three conditions:

(1) U is smooth.
(2) D|U is a smooth curve.
(3) f ◦ ν|U : (E|f−1(U))

[k] → D|U is a smooth morphism for everyk.
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Note that dimS \ U = 0 sinceS is normal and dimS = 2. We consider the
following exact sequences:

0 → F → Ω2
Ei
→ Ω2

Ei/D
→ 0

0 → (f ◦ ν)∗Ω2
D → F α→ (f ◦ ν)∗Ω1

D ⊗Ω1
Ei/D

→ 0

Sinceω is nondegenerate,ν∗ω �= 0 on a nonν-exceptional divisorEi . By
condition (3),f ◦ ν|U is flat. Therefore the restriction ofω on every irreducible
component of a fibre off is zero by Lemma 2.3 andν∗ω = 0 inΩ2

Ei/D
. On the

contrary,(f ◦ ν)∗Ω2
D = 0, we deduceα(ν∗ω) �= 0 for nonν-exceptional divisor

Ei . Thus, for an element of∂/∂t ∈ H 0((f ◦ ν)∗TD),

ν∗ω
(
∂

∂t
, ∗

)
�= 0

inH 0(Ω1
Ei/D

). Hence, for a general pointx ofD∩U ,H 0(Ei,x,Ω
1
Ei,x
) �= 0 where

Ei,x is the fibre ofEi → D overx. We denote byαi the restrictionν∗ω(∂/∂t, ∗)
to Ei,x . By the construction, ifEi,x ∩ Ej,x �= ∅, αi = αj onEi,x ∩ Ej,x . Thus
there exists finite setsD0 ofD such thatF 1H 1(Yx,C) �= 0 for x ∈ D \D0 from
Lemma 2.4. ✷

Lemma 3.4. Let k : K → ∆1 be a Kulikov model of type I or type II. Assume
thatk is birational to a projective abelian fibrationt ′ : T ′ → ∆1. Then

(1) k is a projective morphism.
(2) Every birational mapΦ : K ��� K which commutes withk is a birational

morphism.
(3) If K is Kulikov model of type II, then every component of the central fibre of

K is isomorphic to each other.

Proof. (1) Taking the resolution of indeterminancy, we may assume that there
is a morphismν : T ′ → K such thatk ◦ ν = t ′. LetH ′ be at ′-ample divisor
onT ′ andH := ν∗H ′. ThenH is k-big. We will prove thatH is k-ample. Since
every big divisor on abelian surface is ample,H is k-ample ifK is of type I. In
the case thatK is of type II, we investigate the nef cone of each component of the
central fibre ofK. LetV be a component of the central fibre. ThenKV ∼ −2e,
wheree is a double curve. Sincee is a section ande2 = 0, the nef cone ofV is
spanned bye and a fibrel of the ruling ofV . Therefore every big divisor onV
is ample andH is k-ample.
(2) From (1),k : K → ∆1 is a relative minimal model over∆1. SinceΦ is com-
mutes withk andK is a relative minimal model,Φ is isomorphic in codimension
one. Moreover,K has no flopping curve. ThereforeΦ is an isomorphism.
(3) Let

K◦ := K \ (double curves on the central fibre).
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ThenK◦ is a Neron model of the abelian schemek|∆1\{0} : K\k−1(0)→ ∆1\{0}
and there exists a multiplication morphism

K◦ ×∆1 K◦ → K◦.

Thus for a section ofK◦ → ∆1, we obtain the birational mapK ��� K which
commutes withk. From (2) of Lemma, the above birational map is an isomor-
phism. Thus there exists an action ofK◦ on K. Since the action ofK◦ on K◦ is
transitive, every component of the central fibre is mapped to each other by this
action. Hence every component is isomorphic each other. ✷

(3.4)Proof of Proposition 3.2. Let ν : Y → X be a birational morphism such
that(f ◦ ν)∗D is a simple normal crossing divisor. By Lemma 3.3, there exists a
finite setsD0 ofD such thatF 1H 1((ν∗T )0,C) �= 0 forx ∈ D\D0, where(ν∗T )0
is the central fibre ofν∗T → ∆1. Let (ν∗T )0 = ∑

eiEi ande = L.C.M.(ei).
We define a cyclic coverd : ∆1(s) → ∆1(t) by t = se and we denote the
Galois group ofd byG. Let T ′′ be the normalization ofν∗T ×∆1(t) ∆

1(s). By
[5, Theorem 11∗], if we take a suitable resolution ofT ′′, we obtain a semistable
degenerationT ′.

Claim. LetT
′
0 be the central fibre oft ′ : T ′ → ∆1. Thenη∗ : H 1((ν∗T )0,C)→

H 1(T
′
0,C) is injection, whereη : T ′ → ν∗T .

Proof. Sinceν∗T andT ′ are deformation retract to each central fibre, it is
enough to show thatη∗ : H 1(ν∗T ,C)→ H 1(T ′,C) is injective. SinceT ′′/G ∼=
ν∗T , H 1(ν∗T ,C) ∼= H 1(T ′′,C)G andH 1(ν∗T ,C) → H 1(T ′′,C) is injective.
Moreover,T ′′ has only quotient singularities,T ′′ is a homology manifold by [12,
Proposition 1.4]. HenceH 1(T ′′,C)→ H 1(T ′,C) is injective by [2, Théorème
8.2.4].  !

We go back to the proof of Proposition. By Theorem 3.1, there exists the
Kulikov model k : K → ∆1 which is birational tot ′. We denote byK0 the
central fibre ofK. By Claim 3 and Proposition 3.2,F 1H 1(T

′
0,C) �= 0. Due to

Lemma 2.5,F 1H 1(K0,C) ∼= F 1H 1(T
′
0,C). HenceF 1H 1(K0,C) �= 0 andK

is of type I or type II. Letg be a generator ofG. SinceT ′ is a resolution of
T ′′, there is a birational actionG of T ′ which commutest ′. Thus there exists
a birational mapΦg : K ��� K correponding tog which commutes withk,
becausek is birational tot ′. By Lemma 3.4 (2),Φg is an isomorphism andG
acts onK holomorphically. ThereforeT is birational to the quotientK/G. We
claim thatF 1H 1(K0,C) carries a nonzeroG-equivariant element. LetZ be a
G-equivariant resolution of indeterminancy ofT ′ ��� K. ThenF 1H 1(T

′
0,C)

∼=
F 1H 1(Z0,C) ∼= F 1H 1(K0,C) by Lemma 2.5, whereZ0 is the central fibre of
Z → ∆1. Let α be a nonzero element ofF 1H 1((ν∗T )0,C). The pull back ofα
in F 1H 1(Z0,C) is an non zero element by Claim 3 and hence aG-equivariant
element. Thus there exists a nonzeroG-equivariant element inF 1H 1(K0,C). ✷
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4. Classification of type I degeneration

(4.1) In this section, we prove the following proposition.

Proposition 4.1. Let t : T → ∆1 be an abelian fibration which is birational to
the quotient of a Kulikov modelK of type I by a cyclic groupG. Assume that

(1) T is smooth.
(2) KT ∼t 0.
(3) There exists a nonzeroG-equivariant element ofF 1H 1(K0,C).

Then the central fibreT0 satisfies the properties of Theorem 1.2(1).

(4.2) For a proof of Proposition 4.1, we will construct a suitable resolutionZ

of K/G and a relative minimal modelW of Z over∆1. If the representation
ρ : G → AutH 1(K0,C) is trivial, thenK/G is smooth and it contains no
rational curve. HenceK/G is the unique minimal model over∆1. SinceT is a
relative minimal model over∆1, T ∼= K/G. However,KK/G �∼ 0, becauseKK
is notG-equivariant. Thus we may assume that the representationρ is not trivial.
We need the following lemma to prove Proposition 4.1.

Lemma 4.2. There is aG-equivariant elliptic fibrationK0 → C ′ which satisfies
the following diagram:

K0 → K0/G

↓ ↓
C ′ → C,

whereC andC ′ are elliptic curves andC ′/G ∼= C.

Proof. SinceK0 is an Abelian surface, it is enough to show that there is a
G-equivariant fibration onK0. Let N be a representation matrix ofρ : G →
AutH 0(K0,Ω

1
K0
). By Proposition 3.2, one of eigenvalues ofN is one. Since

G is a finite cyclic group, there exists a basis ofH 0(K0,Ω
1
K0
) under which

N = diag(1, ζ ), whereζ is an-th root of unity. Note thatζ �= 1 becauseρ is
not trivial. Around a fixed pointp of K0, the action ofG on K0 can be written
(x, y) #→ (x, ζy), wherex, y are local coordinates ofp. Hence the finite map
K0 → K0/G is branched along smooth curves andK0/G is a smooth surface.
Since dimH 0(K0,Ω

1
K0
)G = 1, the irregurality ofK0/G is one and there is the

Albanese mapK0/G→ C over an elliptic curve. This morphism is not constant,
namely, this morphism is surjective. We consider the composition morphism
K0 → K0/G → C. If we take the stein factorizationK0 → C ′ of the above
morphism, we obtain desired morphisms.  !
(4.3) Proof of Proposition 4.2. By Lemma 4.2, there exists aG-equivariant
elliptic fibrationK0 → C ′. SinceC andC ′ are elliptic curves, the action ofG on
C ′ is translation. Letg be a generator ofG andm the minimal integer such that
the action ofgm onC ′ is trivial. We define the subgroupH of G byH := 〈gm〉.
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(4.3.1) First we consider the case thatH = {1}. In this case,K/G is smooth.
MoreoverK/G is the unique relative minimal model over∆1 since it has no
rational curves. On the contrary,T is a relative minimal model over∆1, T ∼=
K/G. By the construction, the central fibreK0/G of K/G is a hyperelliptic
surface. Since every hyperelliptic surface is the ´etale quotient of the product of
elliptic curves,T0

∼= K0/G is type ofI0.
(4.3.2) Next we consider the case thatH �= {1}. Since the action ofH on C ′
is trivial, π ′ : K0/H → C ′ is aP

1-bundle and singular locus ofK/H consists
of several copies of the products of a surface quotient singularity and an elliptic
curve. Moreover each connected component of Sing(K/H) forms a multisection
of π ′ andK/H is equisingular along each connected component of Sing(K/H).
By definition, the action ofG/H onC ′ is non trivial translation. Thus the quotient
morphismK/H → K/G is anétale morphism. Therefore singularities ofK/G
also consists of several copies of the products of a surface singularity and an
elliptic curve,π : K0/G → C is a P

1-bundle, each connected component
of Sing(K/G) forms a multisection ofπ andK/G is equisingular along each
connected component of Sing(K/G). The list of surface quotient singularities
which occur above is found in [1, Table 5]. According to this table, the possibily
of singulaties ofK/G is one of Table 1 and Table 2. Note thatC

3/Zn(a, b, c)

stands for the cyclic quotient singularityC3/Z whose character is(a, b, c) in
the above tables. We construct the minimal resolutionZ of K/G by the minimal
resolution of surface quotient singularities. If the singularities ofK/G consists
of the product of Du Val singularities and an elliptic curve only,Z is a relative
minimal model over∆1 and we putW = Z. In other cases, we obtain a relative
minimal modelW after birational contractions ofZ. (cf. [1, pp 158]) In both
cases,W has no flopping curve. Namely,W is the unique minimal model over∆1.
SinceW is birational toT andT is a relative minimal model over∆1, T ∼= W .
By construction, it is easy to see that the singular fibre ofW is isomorphic to one
of singular fibres in Table 4 and Table 5 according to the type of singularities
of K/G. The remain object what we will show is that there is an ´etale covering
C̃ → C such thatW0 ×C C̃ is isomorphic to the product of a Kodaira singular
fibre andC̃. Sinceπ : K0/G→ C is aP

1-bundle and every fibre ofπ intersects
Sing(K/G) with at least 3 points, there is an ´etale morphismC̃ → C such
thatK0/G×C C̃ ∼= P

1 × C̃ and the pull back of each connected component of
Sing(K/G) forms a section of second projection. Note thatK0/G ∼= P

1 × C
if singularities of Sing(K/G) is of typeI ∗0 − 0, II , II ∗, III − 0, III ∗ − 0,
IV − 0 or IV ∗ − 0. Every exceptional divisorZ → K/G is isomorphic to the
product of an elliptic curve andP1, because this resolution is the product of the
minimal resolution of a surface singularity and an elliptic curve. ThusZ0 ×C C̃
is isomorphic to the product of a tree ofP

1 andC̃, whereZ0 is the central fibre
of Z. SinceZ→ W is a composition of contractingP1-bundle along its ruling,
W0 ×C C̃ is isomorhpic to the product of a Kodaira singular fibre andC̃.  !
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Table 1.List of sigularities 1

TypeI∗0 − 0 Sing(K/G) has 4 connected components. Every irreducible component
is a section ofπ . Analytic locally, (p,K/G) ∼= C

3/Z2(1,1,0) for all
pointsp of Sing(K/G).

TypeI∗0 − 1 Sing(K/G) has 3 connected componentsCi (1 ≤ i ≤ 3). C1 is a
2-section ofπ andCi (i = 2,3) are sections ofπ . Analytic locally,
(p,K/G) ∼= C

3/Z2(1,1,0) for all pointsp of Sing(K/G).
TypeI∗0 − 2 Sing(K/G) has 2 connected componentsCi (i = 1,2). Ci (i = 1,2)

are 2-section ofπ . Analytic locally,(p,K/G) ∼= C
3/Z2(1,1,0) for all

pointsp of Sing(K/G).
TypeI∗0 − 3 Sing(K/G)has 2 connected componentsCi (i = 1,2).C1 is 3-section of

π andC2 is a section ofπ .Analytic locally,(p,K/G) ∼= C
3/Z2(1,1,0)

for all pointsp of Sing(K/G).
TypeI∗0 − 4 Sing(K/G) has 1 connected components. It forms a 4-section ofπ .Ana-

lytic locally, (p,K/G) ∼= C
3/Z2(1,1,0) for all pointsp of Sing(K/G).

TypeII Sing(K/G) has 3 connected componentsCi (i = 1,2,3). Every ir-
reducible component is a section ofπ . Analytic locally, (p,K/G) ∼=
C

3/Z6(1,1,0) for all pointsp of C1, (p,K/G) ∼= C
3/Z3(1,1,0) for

all pointsp of C2 and(p,K/G) ∼= C
3/Z2(1,1,0) for all pointsp of

C3.

TypeII∗ Sing(K/G) has 3 connected componentsCi (i = 1,2,3). Every ir-
reducible component is a section ofπ . Analytic locally, (p,K/G) ∼=
C

3/Z6(5,1,0) for all pointsp of C1, (p,K/G) ∼= C
3/Z3(2,1,0) for

all pointsp of C2 and(p,K/G) ∼= C
3/Z2(1,1,0) for all pointsp of

C3.

TypeIII − 0 Sing(K/G) has 3 connected componentsCi (i = 1,2,3). Every ir-
reducible component is a section ofπ . Analytic locally, (p,K/G) ∼=
C

3/Z4(1,1,0) for all points p of C1 and C2 and (p,K/G) ∼=
C

3/Z2(1,1,0) for all pointsp of C3.

TypeIII − 1 Sing(K/G)has 2 connected componentsCi i = 1,2.C1 is a 2-section of
π andC2 is a section ofπ .Analytic locally,(p,K/G) ∼= C

3/Z4(1,1,0)
for all pointsp of C1 and(p,K/G) ∼= C

3/Z2(1,1,0) for all pointsp
of C2.

TypeIII∗ − 0 Sing(K/G) has 3 connected componentsCi (i = 1,2,3). Every ir-
reducible component is a section ofπ . Analytic locally, (p,K/G) ∼=
C

3/Z4(3,1,0) for all points p of C1 and C2 and (p,K/G) ∼=
C

3/Z2(1,1,0) for all points ofp of C3.

TypeIII∗ − 1 Sing(K/G)has 2 connected componentsCi i = 1,2.C1 is a 2-section of
π andC2 is a section ofπ .Analytic locally,(p,K/G) ∼= C

3/Z4(3,1,0)
for all pointsp of C1 and(p,K/G) ∼= C

3/Z2(1,1,0) for all pointsp
of C2.
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Table 2.List of sigularities 2

TypeIV − 0 Sing(K/G) has 3 connected componentsCi (i = 1,2,3). Every ir-
reducible component is a section ofπ . Analytic locally, (p,K/G) ∼=
C

3/Z3(1,1,0) for all pointsp of Sing(K/G).
TypeIV − 1 Sing(K/G)has 2 connected componentsCi i = 1,2.C1 is a 2-section of

π andC2 is a section ofπ .Analytic locally,(p,K/G) ∼= C
3/Z3(1,1,0)

for all pointsp of Sing(K/G).
TypeIV − 2 Sing(K/G) has one connected componentsC1. It forms a 3-section of

π . Analytic locally, (p,K/G) ∼= C
3/Z3(1,1,0) for all pointsp of

Sing(K/G).
TypeIV ∗ − 0 Sing(K/G) has 3 connected componentsCi (i = 1,2,3). Every ir-

reducible component is a section ofπ . Analytic locally, (p,K/G) ∼=
C

3/Z3(2,1,0) for all pointsp of Sing(K/G).
TypeIV ∗ − 1 Sing(K/G)has 2 connected componentsCi i = 1,2.C1 is a 2-section of

π andC2 is a section ofπ .Analytic locally,(p,K/G) ∼= C
3/Z3(2,1,0)

for all pointsp of Sing(K/G).
TypeIV ∗ − 2 Sing(K/G) has one connected componentsC1. It fomrs a 3-section of

π . Analytic locally, (p,K/G) ∼= C
3/Z3(2,1,0) for all pointsp of

Sing(K/G).

Table 3.The list of actions

Type I∗0 − 1 I∗0 − 2 I∗0 − 3 I∗0 − 4

G Z6 Z
⊕2
2 Z4 Z

⊕3
2

τ arbitrary arbitrary arbitrary arbitrary

Action g : (ζ6,0; 1
3τ, ζ

−1
6 ) g1 : (ζ2,0;0, ζ2) g : (ζ4,0; 1

2τ, ζ
−1
4 ) g1 : (ζ2,0;0, ζ2)

g2 : (1, 1
2; 1

2,1) g2 : (1, 1
2; 1

2,1)

g3 : (1, 1
2τ ; 1

2,1)

Type III − 1 III∗ − 1 IV − 1 IV ∗ − 1

G Z4 ⊕ Z2 Z4 ⊕ Z2 Z12 Z6

τ ζ4 ζ4 ζ3 ζ3

Action g1 : (ζ4,0;0, ζ4) g1 : (ζ4,0;0, ζ−1
4 ) g : (ζ5

6 ,0; 1
4, ζ12) g : (ζ6,0; 1

2, ζ
−1
6 )

g2 : (1, 1
2 + 1

2ζ4; 1
2,1) g2 : (1, 1

2 + 1
2ζ4; 1

2,1)

Type IV − 2 IV ∗ − 2 I0

G Z
⊕2
3 Z

⊕2
3 Zm

τ ζ3 ζ3 arbitary

Action g1 : (ζ3,0;0, ζ3) g1 : (ζ3,0;0, ζ−1
3 ) g : (ζm,0; 1

mτ, ζ
−1
m )

g2 : (1, 1
3 + 2

3ζ3; 1
3,1) g2 : (1, 1

3 + 2
3ζ3; 1

3,1)
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Table 4.Classification Table 1

f−1(s)∼ is a product of a Kodaira singular fibre of typeI0 andC̃.

TypeI0 f−1(s) = mE, whereE is a hyperelliptic surface.

f−1(s)∼ is a product of a Kodaira singular fibre of typeI∗0 andC̃.

TypeI∗0 − 0 f−1(s) is isomorphic to the product of the Kodaira singular fibre of type
I∗0 and an elliptic curve.

TypeI∗0 − 1 f−1(s) = m(2E0 + E1 + E2 + E3). Every component is a minimal
elliptic ruled surface.E3 ∩E0 is 2-section of the ruling ofE0,Ei ∩E0
(i = 1,2) are sections.

TypeI∗0 − 2 f−1(s) = m(2E0 + E1 + E2). Every component is a minimal elliptic
ruled surface.Ei ∩ E0 (i = 1,2) are 2-sections of the ruling ofE0.

TypeI∗0 − 3 f−1(s) = m(2E0 + E1 + E2). Every component is a minimal elliptic
ruled surface.E1 is a 3-section of the ruling ofE0 andE2 is a section.

TypeI∗0 − 4 f−1(s) = m(2E0 + E1). Every component is a minimal elliptic ruled
surface.E1 ∩ E0 is 4-section of the ruling ofE0.

f−1(s)∼ is a product of a Kodaira singular fibre of typeII andC̃.

TypeII f−1(s) is isomorphic to the product of the Kodaira singular fibre of type
II and an elliptic curve.

f−1(s)∼ is a product of a Kodaira singular fibre of typeII∗ andC̃.

TypeII∗ f−1(s) is isomorphic to the product of the Kodaira singular fibre of type
II∗ and an elliptic curve.

f−1(s)∼ is a product of a Kodaira singular fibre of typeIII andC̃.

TypeIII − 0 f−1(s) is isomorphic to the product of the Kodaira singular fibre of type
III and an elliptic curve.

TypeIII − 1 f−1(s) = mE,The normalization ofE is a minimal elliptic ruled surface
(see Fig.1).

If f−1(s)∼ is a product of a Kodaira singular fibre of typeIII∗ andC̃

TypeIII∗ − 0 f−1(s) is isomorphic to the product of the Kodaira singular fibre of type
III∗ and an elliptic curve.

TypeIII∗ − 1 f−1(s) = m(E0 + 3E11+ 2E12+E13+E21). Every component is a
minimal elliptic ruled surface.E11∩E0 is 2-section of the ruling ofE0
(see Fig.1).

f−1(s)∼ is a product of a Kodaira singular fibre of typeIV andC̃.

TypeIV − 0 f−1(s) is isomorphic to the product of the Kodaira singular fibre of type
IV and an elliptic curve.

TypeIV − 1 f−1(s) = m(E1 + E2). The normalization ofEi is a minimal elliptic
ruled surface (see Fig.1).

TypeIV − 2 f−1(s) = mE.The normalization ofE is a minimal elliptic ruled surface
(see Fig.1).
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Table 5.Classification Table 2

f−1(s)∼ is a product of a Kodaira singular fibre of typeIV ∗ andC̃.

TypeIV ∗ − 0 f−1(s) is isomorphic to the product of the Kodaira singular fibre of type
IV ∗ and an elliptic curve.

TypeIV ∗ − 1 f−1(s) = m(E0+
∑2
i=1(2Ei1+Ei2)). Every component is a minimal

elliptic ruled surface.E11 ∩ E0 is 2-section of the ruling ofE0 (see
Fig.1).

TypeIV ∗ − 2 f−1(s) = m(E0 + 2E1 + E2). Every component is a minimal elliptic
ruled surface.E1 ∩ E0 is 3-section of the ruling ofE0 (see Fig.1).

5. Classification of type II degeneration

(5.1) In this section, we prove the following proposition and Theorem 1.2.

Proposition 5.1. Let t : T → ∆1 be an abelian fibration which is birational to
the quotient of a Kulikov modelK of type II by a cyclic groupG. Assume that

(1) T is smooth.
(2) KT ∼t 0.
(3) There exists a nonzeroG-equivariant element ofF 1H 1(K0,C).

Then the central fibreT0 of T satisfies the properties of Theorem 1.2(2).

(5.2) For the proof of Proposition 5.1, we investigate the action ofG on the
central fibre ofK.

Lemma 5.2. Let g be a generator ofG andm the smallest positive interger
such that every component is stable under the action ofH . We denote byH the
subgroup ofG generated bygm. Then

(1) Every element ofF 1H 1(K0,C) isG-invariant.
(2) The action ofH is free and the central fibre of the quotientK/H is a cycle

of mininal elliptic ruled surfaces.

Proof.

(1) By Proposition 2.5, there exists aG-equivariant element inF 1H 1(K0,C).
Since dimF 1H 1(K0,C) = 1, every element ofF 1H 1(K0,C) isG-invariant.

(2) From the assumption there exists an action ofH on each component of the
central fibre ofK. LetV be a component of the central fibre andπ : V → C

the ruling. Since every fibre ofπ is P
1 andC is an elliptic curve,π is H -

equivariant. From Lemma 5.2 (1) and Lemma 2.4, holomorphic one forms
on V are invariant under the action ofgm. Thus, the action ofH on C is
translation. Therefore the action ofH onV is free andV/H is a minimal
elliptic ruled surface. From the assumption that each component is stable
under the action ofH , the central fibre of the quotientK/H is a cycle of
minimal elliptic ruled surfaces. ✷
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(5.3) Proof of Proposition 5.1. From Lemma 5.2,K/H is smooth and the
central fibre ofK/H is a cycle of minimal elliptic ruled surfaces. LetΓ be the
dual graph of the central fibre ofK andg a generator ofG. ConsideringK/H
instead ofK, we may assume that the action ofgm is trivial if the action ofgm

onΓ is trivial.
(5.3.1) If the action ofG is free,K/G is smooth and this is a relative minimal
model over∆1. SinceΓ is a Dynkin diagram of typẽAn andG is a cyclic group,
the action ofG onΓ is either rotation or reflection.

(1) If the action ofG on Γ is rotation, the central fibreK0/G of K/G is a
cycle of minimal elliptic ruled surfaces. Each double curve is a section of a
minimal elliptic ruled surface.

(2) If the action ofG on Γ is reflection, the central fibreK0/G of K/G is
a chain of minimal elliptic ruled surfaces. We denote each component of
K0/G by V̄i . Sinceτ : K/H → K/G is anétale morphism of degree 2,
every component ofK0/G is a minimal elliptic ruled surface andK0/G =
2m

∑
V̄i . We investigate double curves ofK0/G. It is obvious that double

curves forms a section on non edge components ofK0/G. We will show
that double curves forms a bisection on edge components. LetV̄0 be one
of the edge component and̄V1 the next component. By adjuction formula,
KV̄0

≡ −V̄1|V̄0
. SinceV̄0 is a minimal elliptic ruled surface,KV̄0

is linearly
equivalent to two sections. Combining with that the double curveV̄0∩ V̄1 is
connected,̄V0 ∩ V̄1 is a bisection.

In both cases,K/G has no flopping curve. ThusK/G is the unique relative
minimal model and we obtainT ∼= K/G.
(5.3.2) If the action ofg is not free, we need the following lemma.

Lemma 5.3. If the action ofG has fixed points, then the action ofG on Γ is
reflection and it preserves two vertices. Furthermore, the fixed locus consists of
four sections of the ruling or two bisections of the ruling.

Assuming this Lemma, the central fibre of the quotientK/G is a chain of minimal
elliptic ruled surfaces. The singularities ofK/G consists of several copies of the
product ofA1 singlarity and an elliptic curve. Thus a relative minimal modelW

over∆1 is obtained by blowing up along singlar locus. SinceW has no flopping
curve,W is the unique relative minimal model and we obtainW ∼= T . From the
construction ofW and the above Lemma, the dual graph of the central fibre ofW

isAn or D̃n, the double curve on the edge component is a bisection or a section.
and every other double curve is section.
(5.4)Proof of Lemma 5.2. If the action ofG onΓ is rotation, there exists no
fixed points. Thus the action ofG onΓ is reflection. We derive the contradiction
assuming thatG fixes one of edges ofΓ . LetC be the elliptic curve corresponding
to the edge which is fixed byG. From Lemma 2.4 and Lemma 5.2, the action
of G onC preserves holomorphic one form onC. ThereforeC is fixed locus of
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the action ofG. The singularities of the quotientK/G consist of several copies
of the product ofA1 singularity and an elliptic curve. Letw : W → K/G be
the blowing up alongC. The central fibreW0 of w : W → ∆1 is a chain of
minimal ellitic ruled surfaces. We denote byVi each components ofW0. LetV0,
V1 andV2 be the exceptional divisor coming from the blowing up alongC, the
next component ofV0 and the next component ofV1 respectively.

V0◦ − V1◦ − V2◦ − · · ·

ThenW0 = m(V0+2V1+2V2+ (Other components)). SinceW is smooth along
V1 andKW is numerically trivial,

KV1 ≡ KW + V1|V1 ≡ (−
1

2
V0 − V2)|V1.

by adjunction formula. Letl be a fibre of ruling ofV1. Then

Kl ≡ KV1 + l|l ≡ (−
1

2
V0 − V2).l.

Since every double curve ofW0 is a section, degKl = −3/2. However this is a
contradiction becausel ∼= P

1. ThereforeG fixes two vertices. In the following,
we investigate the fixed locus onK/G. By Lemma 3.4 (3), every component
of the central fibre ofK is isomorphic to each other, it is enough to investigate
the fixed locus on one of the components correponding to the fixed vertices. We
denoteV this component andπ : V → C the ruling ofV . SinceC is an elliptic
curve and every fibreπ is P

1, π isG-equivariant. By Lemma 5.2 (1), the action
of G onV preserves a one form onV . Since the action ofG is not free,G acts
onC trivially. Thus there exists two fixed points on each fibre of the ruling ofV .
If V is not isomorphic toP1×C, then there exist only two sections of the ruling
and these curves are double curves. Since no dobule curve is stable under the
action ofG , we obtain the fixed locus consists of a bisection. IfV is isomorphic
toP

1×C, there exist no bisection of the ruling. Therefore the fixed locus consists
of sections. Thus we obtain the rest of assertion of Lemma 5.2. ✷

The proof of Proposition 5.1 is completed. ✷

(5.5)Proof of Theorem 1.2. Let f : (X, ω) → S be a projective Lagrangian
fibration over 4-dimensional holomorphic symplectic manifold. By Proposition
3.2, there exists a finite setsD0 of D which has the following properties: For
x ∈ D\D0, there exists an abelian fibratonT → ∆1 which satisfies assumptions
of Proposition 4.1 or 5.1 and∆1 ∩ D = {x}. ThenT0 = f −1(x) satisfies the
assertions of Theorem 1.2 by Proposition 4.1 and 5.1. All types of singular fibre
actually occur by Propsition 6.1.  !
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6. Examples

Proposition 6.1. All types of singular fibre actually occur.

Proof. First we construct examples of singular fibre in Proposition 4.1. We fix
some notations. LetE := C/Z + Zτ be an elliptic curve andζn a n-th root of
unity. Since the singular fibre of typeI ∗0 −0,II , II ∗, III −0,III ∗ −0,IV −0
or IV ∗−0 is isomorphic to the product of a Kodaira singular fibre and an elliptic
curve, it is easy to construct examples. We concentrate the construction of other
types of singular fibres. We consider the quotient ofE ×E ×∆2 by an Abelian
groupG. The list ofG and its action is Table 3. In this table, action(a, b; c, d)
means

E × E ×∆2 g→ E × E ×∆2

(z1, z2, t1, t2) #→ (az1 + b, z2 + c, dt1, t2).
We will show a relative minimal modelW over∆2 of E × E × ∆2/G gives a
desired example. By direct calculation, singularities ofE × E × ∆2/G is one
of types of Table 1 and Table 2. According to the proof of Proposition 4.1, each
singular fibre ofW is isomorphic to a singular fibre which we want to construct.
Thus it is enough to show thatW is a Lagrangian fibration. If the action ofG is
of typeI0, I ∗0 − 1,2,3,4, III ∗ − 1 andIV ∗ − 1,2, singularities of the quotient
E ×E ×∆2/G consists of several copies of the product of a Du Val singularity
and an elliptic curve. Thus the minimal resolution ofE×E×∆2/G is a relative
minimal model over∆2. Moreover the symplectic formdz1∧ dt1+ dz2∧ dt2 is
G-invariant and it vanishes on a general fibre of projectionE ×E ×∆2 → ∆2.
ThusE × E × ∆2/G has a nondegenerate holomorphic 2-formω. SinceKW
is nef, the pull back ofω is nondegenerate. HenceW is a symplectic manifold
andW → ∆2 is a Lagrangian fibration. If the action ofG is of typeIII − 1,
IV − 1,2, we consider the blowing up̃ν : Z̃ → E × E × ∆2 along the fixed
locus ofG. Then the action ofG can be lifted onZ̃ and the minimal resolution
Z of E × E ×∆2/G is isomorphic toZ̃/G. LetD be the discriminat locus of
w : W → ∆2, γ the quotient morphism̃Z → Z, ν the birational morphism
Z→ E×E×∆2/G,F the proper transform onZ ofw−1(D) andF̃ := γ−1(F ).
Note thatF is theν-exceptional divisor coming from the minimal resolution of
the quotient singularityC4/Zm(1,−1,0,0), wherem = 4, (resp.m = 3.) if the
action ofG is of typeIII −1. (resp. typeIV −1,2.) (cf. [1, pp 158].) We define
the holomorphic 2-formω onE×E×∆2 by tm−2

1 dz1∧dt1+dz2∧dt2. Thenω
isG-invariant and it vanishes on a general fibre of projectionE×E×∆2 → ∆2.
Thusω induces a holomorpic 2-formω′ onE×E×∆2/G. Moreover,∧2(ν̃∗ω)
has orderm−1 zero along each irreducible component ofF̃ . On the contrary, the
order of isotorpie group of each irreducible component ofF̃ ism, the branching
order of the quotient morphism̃Z→ Z along each irreducible component ofF
ism. Hence∧2(ν∗ω′) is nonzero alongF andν∗ω′ is non degenerate alongF .
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Thereforeν∗ω′ defines a symplectic form onW andW → ∆2 is a Lagrangian
fibration. Next we construct an example of singular fibre which satisfies the
properties of Theorem 1.2 (2). We begin with the construction of an elliptic
fibration whose singular fibre is a Kodaira singular fibre of typeI2n according to
[10, Section 2]. LetRk be a subring ofC[v±1, t±1] defined by

Rk := C[vt−k, v−1tk+1].
We define a smooth scheme

M :=
⋃
k∈Z

SpecRk.

Note that there is a morphismM → C[t]. Let M′ := M ×C[t] ∆1. We define
the action ofm ∈ Z onM′ by

Rk → Rk+2nm

m : (vt−k, v−1tk+1) #→ (vt−k−2nm, v−1t k+1+2nm)

Then this action is properly discontinuous and fixed point free by [10, Theorem
2.6]. The quotients : S → ∆1 is an elliptic fibration whose singular fibre is a
Kodaira singular fibre of typeI2n. We define two involutionsηi , (i = 1,2) on
C[v±1, t±1] by

C[v±1, t±1] → C[v±1, t±1]
η1 : (v, t) #→ (1/v,−t)
η2 : (v, t) #→ (−v, t).

Then these actions induce involutions onRk andM′. Moreover, these involutions
are compatible with the action ofZ onM′. Therefore,ηi , (i = 1,2) defines an
involution ofS. We denote these involutions by same character, The symplectic
form onM′ defined bydv/v∧ dt is Z-invariant and preserved byηi , (i = 1,2).
Thus the induced symplectic formω on S is preserved by induced involutions.
Note thatω vanishes on a general fibre ofS → ∆1. Now we construct examples
of a Lagrangian fibration such that its singular fibre is a normal crossing variety
whose dual graph isAn. We consider the following action ofZ2 onS×E×∆1:

S × E ×∆1 → S × E ×∆1

(v1, z2, t2) #→ (η1(v1), z2 + 1
2, t2).

Then this action is fixed point free and a symplectic formω + dz2 ∧ dt2 is Z2-
invariant. Sinceω+ dz2∧ dt2 vanishes on a general fibre ofS×E×∆1 → ∆2,
the quotient ofS×E×∆1/Z2 gives a desired example (see left one of Fig.3). We
construct another example. The minimal resolutionS̄ of S/τ1 admits an elliptic
fibration s̄ : S̄ → ∆1 whose singular fibre is a Kodaira singular fibre of type
I ∗n . Sinceη1 andη2 are compatible,η2 induces an involution onS/η1 andS̄. We
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denote this induced involution bȳη2. Then the action of̄η2 on the dual graph
of the singular fibre of̄s interchange edge vertices with each other. (Note that
the dual graph of the singular fibre ofs̄ is the Dynkin diagram of typẽDn.) We
consider the following action ofZ2 on S̄ × E ×∆1.

S̄ × E ×∆1 → S̄ × E ×∆1

(v1, v2, t) #→ (η2(v1), z2 + 1
2, t).

Then this action is fixed point free and every singular fibre of the quotientS̄ ×
E×∆1/Z2 is a normal crossing variety whose dual graph is the Dynkin diagram
of typeAn (see right one of Fig.3). We will show thatS̄×E×∆1/Z2 → ∆2 is a
Lagrangian fibration. There is an induced symplectic formω′ fromω on S̄. Then
the symplectic formω′ + dz2 ∧ dt2 is Z2-invariant and it vanishes on a general
fibre of S̄ × E ×∆1 → ∆2. ThereforeS̄ × E ×∆1/Z2 → ∆2 is a Lagrangian
fibration.  !
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