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Abstract. We classify singular fibres over general points of the discriminant locus of projective
Lagrangian fibrations over 4-dimensional holomorphic symplectic manifolds. The singular fibre
F is the following either onef is isomorphic to the product of an elliptic curve and a Kodaira
singular fibre up to finite unramified covering &ris a normal crossing variety consisting of
several copies of a minimal elliptic ruled surface of which the dual graph is Dynkin diagram of
type A,,, A, or D,,. Moreover, we show all types of the above singular fibres actually occur.
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1. Introduction

We begin with the definition ofagrangian fibrations

Definition 1.1. Let (X, w) be a Kdhler manifold with ad-closed holomorphic
symplectic two formw and S a normal variety. A proper surjective morphism
f : X — Sis said to be a Lagrangian fibration if a general fibfeof f is a
Lagrangian submanifold with respectdg that is, the restriction of 2-form| »

is identically zero andlim F = (1/2) dim X.

Remark. A general fibreF of a Lagrangian fibration is a complex torus by
Liouville’s theorem.

The plainest example of a Lagrangian fibration is an elliptic fibratiork 8f
surface oveP. In higher dimension, every fibre space of a projective irreducible
symplectic manifold is a Lagrangian fibration ([7, Theorem 2] and [8, Theorem
1] ). When the dimension of fibre is one, a Lagrangian fibration is a minimal
elliptic fibration and whose singular fibre is completely classified by Kodaira
[6, Theorem 6.2]. In this note, we investigate singular fibres of a projective
Lagrangian fibration whose fibre is 2-dimensional.
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Type I11-1 Type |11*-1 Type V-1

Type IV*-1 Type |V*-2 Type 1V-2

The direction of ruling

Fig. 1. Figures of singular fibres of type Il or type IV

Theorem 1.2. Let f : X — S be aLagrangian fibration and the discriminant
locus of f. Assume thaf is projective anddim X = 4. Then there exists finite
setDg of D and f~1(x) is the following one fox € D \ Dy:

(1) There is a morphism froni—(x) to an elliptic curveC and anetale mor-
phismC — C such thatf~1(x) x¢ C is isomorphic to the product of an
elliptic curveC and a Kodaira singular fibre of typ#,, I5, 11, 11*, 111,

IIT*, 1V or IV*. Such af ~1(s) is classified as 18 types (see Tables 4, 5).

(2) f~(x) is isomorphic to a normal crossing variety consisting of several
copies of a minimal elliptic ruled surface. The dual graphfof'(x) is the
Dynkin diagram of typel,,, A, or D,. If the dual graph is of typd,, or D,,,
each double curve is a section of the ruling. In the other cases, the double
curve on each edge components is a bisection and other double curve is a
section (see Figs.2 and 3).

Moreover, all types of the above singular fibres actually occur.

Combining Theorem 1.2 with [7, Theorem 2] and [8, Theorem 1], we obtain the
following corollary.

Corollary 1.3. Let f : X — B be a fibre space of a projective irreducible
symplectic manifold. Assume tlgin X = 4. Then, for a general point of the
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— The direction of ruling
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Fig. 2. Figures of4,, andD,, case

— The direction of ruling
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Fig. 3. Figures ofA, case. Bold line represents bisection and line represents section

discriminant locus off, f~1(x) satisfies the properties of Theorem 1.2 (1) or

).

Remark. Let S be ak3 surface andr : S — P! an elliptic fibration. The
induced morphisny : Hilb2S — P2 gives examples of singular fibres above
except whose dual graphs atg. The author does not know whether a normal
crossing variety whose dual graphds occur as a singular fibre of a fibre space
of an irreducible symplectic manifold.

This paper is organized as follows. In section 2, we set up the proof of Theorem
1.2. The key proposition is stated and proved in section 3. Section 4 and 5 are
devoted to the proof of the classification of singular fibres. Examples of all types

of singular fibres are constructed in Section 6.
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2. Preliminary

(2.1) In this section, we collect definitions and some fundamental material which
are necessary for the proof of Theorem 1.2.

Definition 2.1. Let f : X — A! be a proper surjective morphism from alge-
braic variety to an unit diskf is said to be semistable degenerationf atisfies
the following two properties:

(1) f is smooth over\!\ 0.
(2) f*{0}is areduced normal crossing divisor.

Definition 2.2. Let f : X — Aland f/ : X’ — A be proper surjective
morphisms from algebraic varieties to unit disks. We galis isomorphic to

f’ (resp. birational) if there exists an isomorphism (resp. a birational map)
g:X — X' suchthatf’og = f.

(2.2) We review the fundamental properties of an Abelian fibration.

Lemma 2.3. Letf : (X, w) — S bealagrangian fibrationf” be anirreducible
component of a fibre of andj : F — F aresolution ofF. Assume thay is
flat. Thenj*(w|r) is identically zero.

Proof. Let A be a Kéhler form onX. We consider the following function:
A(s) i= / w A DAIMS2,
X5

whereX, := f~1(s) (s € S). Sincef is flat, A(s) is a continuous function ofi
by [3, Corollary 3.2]. Thus.(s) = 0 onS and

/ o A @AYMS—2 _ 0,
F

SinceF andF is birational,j*w is identically zero onF. m

(2.3) We review basic properties of the mixed hodge structure on a simple normal
crossing variety.

Lemma 2.4. LetX := )_ X; be a simple normal crossing variety. Then

F'HY(X,C) = {(a) € ®H(X;, 23)eilx,nx; = &jlx,nx; )
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Proof. Let
XM=y X, N---N X, (disjoint union)
For an index set = {ig, - - - it }, we define an inclusiofs\j’

8 XN NX; = Xip NN Xy, NXiyy N Xy (0= j <k

fj+1
We consider the following spectral sequence [4, Chapter 4]:

EPY = HI(XP), C) = EP*9 = H'TI(X, C),

whereD : EPY — EP™ s defined by the

P
P> niehH

H=p j=0

Since this spectral sequence degenerateslaiel ([4, Chapter 4.8]), we deduce

GrY (HY(X, C)) = Ker(@®; H'(X;,C) 3> &,_;HY(X; N X;, C)).

Moreover F1 N Wy = 0, F1HY(X,C) = F'Gr}(H(X, C)). Thus we obtain
the assertion of Lemma 2.4 from the definition/of O

Lemma 2.5. Let f : X’ — X be a birational morphism between smooth alge-
braic varieties. Assume that there exists a simple normal crossing di¥isoX
suchthatf isisomorphic orX \ Y and the pull back of df of f isa simple normal
crossing divisor orX’. LetY’ := (f*Y)eq. ThenF*HY(Y',C) = F*H(Y, C).

Proof. We consider the following exact sequence of morphisms of Mixed
Hodge structures.

H(Y',C) S HYX,C) - HYX',C)® H(Y,C) — H (Y, C)
£ H2(X,C) >
Note that each morphism has weiglt 0). Since H(X, C) carries the pure

Hodge structure of weight, « and g8 are 0-map. MoreoveFH(X,C) =
FYHY (X', C). Thus we deduce tha&*H(Y’, C) = FtH(Y, C). O
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3. Kulikov model

(3.1) In this section, we prove the key proposition of the proof of Theorem 1.2.
First we refer the the folloing theorem due to Kulikov, Morrison [9, Classification
Theorem I] and Persson [11, Proposition 3.3.1].

Theorem 3.1. Letg’ : T — A be a semistable degeneration whose general
fibre is an abelian surface. Then there exists a semistable degenetation—

A such thatk and g’ is birational andKx ~; 0. Moreover, exactly one of the
following cases occurs:

(1) Ko is an abelian surface.

(2) Ko consists of a cycle of minimal elliptic ruled surfaces, meeting along
disjoint sections. The selfintersection number of each double cuéve is

(3) Ko consists of a collection of rational surfraces, such that the double curves
on each component form a cycle of rational curves; the dual g Y,
is a triangulation ofs* x St.

We call IC a Kulikov model of type I, Il or lll according to the case occurs (1),
(2) or (3).
(3.2) We state the key propositon.

Proposition 3.2. Let f : (X, w) — S be a projective Lagrangian fibration on
4-dimensional symplectic manifold and D the discriminant locus of . Then
there exists finite set®y of D which has the following three properties.

(1) For a pointx € D \ Dy, there exists an unit disk® on S such thatA! and
D intersects transversally atand 7 := X xg Al is smooth.

(2) t : T — Alis birational to the quotient of Kulikov modé&l of Type | or
Type Il by a cyclic groupd.

(3) There exists a nonze@-equivariant element aftH(K, C).

(3.3) For the proof of Proposition 3.2, we need the following Lemmas.

Lemma 3.3. Letv : Y — X be a birational morphism such thaf o v)*D is a
simple normal crossing divisor. Then there exists finite Sgtef D and

FHYY,,C) #£0
forall x € D\ Do, whereY, := f~1(x).

Proof. LetE := ((f ov)*D)rega@ndE = ) _ E;. We take an open sét of S
which satisfies the following three conditions:

(1) U is smooth.
(2) D|y is a smooth curve.
(3) fovly : (Elf-1p)™ — Dy is a smooth morphism for every
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Note that dimS \ U = 0 sincesS is normal and din§ = 2. We consider the
following exact sequences:

0—>§’:—>S2§.i—>.{2125i/D—>0

0= (fov)'R5 > F > (fon)' R, ® 2% p — 0

Sincew is nondegenerate;*w # 0 on a nonv-exceptional divisorE;. By
condition (3),f o v|y is flat. Therefore the restriction af on every irreducible
component of a fibre of is zero by Lemma 2.3 angdfw = 0 in .Qé_/D. Onthe
contrary,( f ov)*22 = 0, we deduce (v*w) # 0 for nonv-exceptional divisor
E;. Thus, for an element @f/dr € HO((f o v)*Tp),

va)(aa )750

in H°(2¢. ). Hence, for ageneral pointof DNU, HO(E; ., 2}, ) # Owhere
E;,is theflbre ofE; — D overx. We denote by; the restriction* w(0/0t, *)
to E; .. By the construction, if; , N E; . # ¥, o; = «; ONE; , N E; . Thus
there exists finite set®y of D such thatF*H(Y,, C) # 0forx € D\ Dgfrom
Lemma 2.4. O

Lemma 3.4. Letk : K — A?! be a Kulikov model of type | or type Il. Assume
thatk is birational to a projective abelian fibratiori : 7" — A'. Then

(1) k is a projective morphism.

(2) Every birational map® : K --» K which commutes withk is a birational
morphism.

(3) If K is Kulikov model of type I, then every component of the central fibre of
K is isomorphic to each other.

Proof. (1) Taking the resolution of indeterminancy, we may assume that there
is a morphismv : T — K such thatk o v = ¢'. Let H' be ar’-ample divisor
onT’andH := v,H'. ThenH is k-big. We will prove thatH is k-ample. Since
every big divisor on abelian surface is amptgjs k-ample if C is of type I. In
the case that is of type Il, we investigate the nef cone of each component of the

central fibre oflC. Let V be a component of the central fibre. ThEp ~ —2e,
wheree is a double curve. Sinceis a section and? = 0, the nef cone of’ is
spanned by and a fibre of the ruling of V. Therefore every big divisor ol
is ample and{ is k-ample.
(2) From (1)« : K — Alis arelative minimal model ovet?. Since® is com-
mutes withk and/C is a relative minimal modefp is isomorphic in codimension
one. MoreoverC has no flopping curve. Therefode is an isomorphism.
(3) Let

K° := K\ (double curves on the central fibre)
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ThenK* is a Neron model of the abelian schekig:, (g, : KC\k~1(0) - AL\ {0}
and there exists a multiplication morphism

K x.n K — K°.

Thus for a section 0k° — A, we obtain the birational majg --» X which
commutes withk. From (2) of Lemma, the above birational map is an isomor-
phism. Thus there exists an action/of on K. Since the action ok° on £° is
transitive, every component of the central fibre is mapped to each other by this
action. Hence every component is isomorphic each other. O

(3.4) Proof of Proposition 3.2. Letv : Y — X be a birational morphism such
that(f o v)*D is a simple normal crossing divisor. By Lemma 3.3, there exists a
finite setsDg of D such thatF* H((v*T)o, C) # Oforx € D\ Do, where(v*T)g

is the central fibre of*T — Al Let (v*T)o = Y e E; ande = L.C.M.(¢;).

We define a cyclic coved : Al(s) — Al(r) byt = s and we denote the
Galois group off by G. Let T” be the normalization of*T x 51,y A'(s). By

[5, Theorem 11], if we take a suitable resolution @f’, we obtain a semistable
degeneratio”.

Claim. Let T, be the central fibre of : 7" — AL Theny* : HYX((v*T)o, C) —
H(T,, C) is injection, where) : T" — v*T.

Proof. Sincev*T andT’ are deformation retract to each central fibre, it is
enough to show that* : H*(v*T,C) — HY(T’, C) is injective. Since” /G =
viT, H'(v*T,C) = HYT”,C)¢ and H*(v*T, C) — HY(T", C) is injective.
Moreover,T” has only quotient singularitieg,” is a homology manifold by [12,
Proposition 1.4]. Henc& X(T", C) — H(T’, C) is injective by [2, TlEoEme
8.2.4]. O
We go back to the proof of Proposition. By Theorem 3.1, there exists the

Kulikov modelk : K — A?! which is birational tor’. We denote by, the
central fibre ofiC. By Claim 3 and Proposition 3.Z*H(T,, C) # 0. Due to
Lemma 2.5,F*H* (Ko, C) = F*HY(T,, C). HenceF*H'(Ko, C) # 0 andk
is of type | or type Il. Letg be a generator of;. SinceT’ is a resolution of
T”, there is a birational actio of 7’ which commutesg’. Thus there exists
a birational map®, : £ --» K correponding tog which commutes withk,
becauseé is birational tor’. By Lemma 3.4 (2)@, is an isomorphism and
acts onkC holomorphically. Thereforé is birational to the quotient/G. We
claim that F*H(ICo, C) carries a nonzerG-equivariant element. LeX be a
G-equivariant resolution of indeterminancy Bf --» K. ThenF*HY(T,, C) =
FHY(Zy, C) = F*H(Ko, C) by Lemma 2.5, wherg is the central fibre of
Z — A Leta be anonzero element ¢t H((v*T)o, C). The pull back ofx
in FYH(Z,, C) is an non zero element by Claim 3 and hendag-aquivariant
element. Thus there exists a nonzér@quivariant element it H1(kCo, C). O
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4. Classification of type | degeneration

(4.1) In this section, we prove the following proposition.

Proposition 4.1. Letr : T — A! be an abelian fibration which is birational to
the quotient of a Kulikov modél of type | by a cyclic grougr. Assume that

(1) T is smooth.
(2) Kr ~ 0.
(3) There exists a nonzeG-equivariant element af  H(/Cy, C).

Then the central fibr@, satisfies the properties of Theorem {12

(4.2) For a proof of Proposition 4.1, we will construct a suitable resolution
of K/G and a relative minimal modéV of Z over A%, If the representation
p : G — AutHY (Ko, C) is trivial, then /G is smooth and it contains no
rational curve. Hencf/ G is the unique minimal model ovet®. SinceT is a
relative minimal model oven!, T = K/G. However,Ki,c 7 0, becaus& k.

is notG-equivariant. Thus we may assume that the representatsnot trivial.
We need the following lemma to prove Proposition 4.1.

Lemma 4.2. There is aG-equivariant elliptic fibrationlCo — C’ which satisfies
the following diagram:

ICO — Ko/G
\: A
' - C,

whereC andC’ are elliptic curves and”’/G = C.

Proof. SinceKy is an Abelian surface, it is enough to show that there is a
G-equivariant fibration orkCq. Let N be a representation matrix of : G —
AutHO(ICo, Qzlco)- By Proposition 3.2, one of eigenvalues 8fis one. Since

G is a finite cyclic group, there exists a basis P (Ko, .Q,lco) under which

N = diag1, ¢), where¢ is an-th root of unity. Note that # 1 because is

not trivial. Around a fixed poinp of Ko, the action ofG on Kg can be written
(x,y) — (x,¢y), wherex, y are local coordinates gf. Hence the finite map
Ko — Ko/ G is branched along smooth curves d@g/ G is a smooth surface.
Since dimH° (Ko, 225,)¢ = 1, the irregurality 0fCo/ G is one and there is the
Albanese map’y/ G — C over an elliptic curve. This morphism is not constant,
namely, this morphism is surjective. We consider the compaosition morphism
Ko — Ko/G — C. If we take the stein factorizatioky — C’ of the above
morphism, we obtain desired morphisms. O

(4.3) Proof of Proposition 4.2. By Lemma 4.2, there exists @-equivariant
elliptic fibrationCo — C’. SinceC andC’ are elliptic curves, the action ¢f on
C'is translation. Leg be a generator air andm the minimal integer such that
the action ofg™ on C’ is trivial. We define the subgroufi of G by H := (g™).
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(4.3.1) First we consider the case tlfat= {1}. In this case/C/G is smooth.
Moreover/C/G is the unique relative minimal model ove¥® since it has no
rational curves. On the contrary, is a relative minimal model oven!, T =
KC/G. By the construction, the central fibt&,/G of /G is a hyperelliptic
surface. Since every hyperelliptic surface is ¢talé quotient of the product of
elliptic curves, Ty = Ko/ G is type of I.

(4.3.2) Next we consider the case thfat# {1}. Since the action o on C’

is trivial, 7’ : Ko/H — C’ is aP'-bundle and singular locus &/ H consists

of several copies of the products of a surface quotient singularity and an elliptic
curve. Moreover each connected component of @iifd? ) forms a multisection

of #” and/C/ H is equisingular along each connected component of(Ring ).

By definition, the action of; / H onC’ is non trivial translation. Thus the quotient
morphism/C/H — K /G is anétale morphism. Therefore singularitiestof G
also consists of several copies of the products of a surface singularity and an
elliptic curve,n : Ko/G — C is aP'-bundle, each connected component
of Sing(XC/G) forms a multisection ofr and/C/G is equisingular along each
connected component of Si¢i§/ G). The list of surface quotient singularities
which occur above is found in [1, Table 5]. According to this table, the possibily
of singulaties ofC/ G is one of Table 1 and Table 2. Note ttat/Z, (a, b, c)
stands for the cyclic quotient singulari§?/Z whose character i&z, b, ¢) in

the above tables. We construct the minimal resoludiaf /G by the minimal
resolution of surface quotient singularities. If the singularitie€ @t consists

of the product of Du Val singularities and an elliptic curve orlyis a relative
minimal model overA® and we putW = Z. In other cases, we obtain a relative
minimal modelW after birational contractions df. (cf. [1, pp 158]) In both
casesW has no flopping curve. Namely, is the unique minimal model over®.
SinceW is birational toT and7 is a relative minimal model oveAl, T = W.

By construction, it is easy to see that the singular fibr&ag isomorphic to one

of singular fibres in Table 4 and Table 5 according to the type of singularities
of K/G. The remain object what we will show is that there iseaalé covering

C — C such thatWy x¢ C is isomorphic to the product of a Kodaira singular
fibre andC. Sincer : Ko/G — C is aP!-bundle and every fibre of intersects
Sing(K/G) with at least 3 points, there is atale morphismC — C such
thatko/G x¢ C = P! x C and the pull back of each connected component of
Sing(K/G) forms a section of second projection. Note thayG = P! x C

if singularities of Sing/C/G) is of typel§ — O, 11, I1*, 111 —0,11I* — 0,

IV —0orIV* — 0. Every exceptional divisa — /G is isomorphic to the
product of an elliptic curve anf*, because this resolution is the product of the
minimal resolution of a surface singularity and an elliptic curve. Thys ¢ C

is isomorphic to the product of a tree Bt andC, whereZ, is the central fibre

of Z. SinceZ — W is a composition of contractingt-bundle along its ruling,
Wo x¢ C is isomorhpic to the product of a Kodaira singular fibre ahd o
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Table 1. List of sigularities 1

Typel§ —0

Sing(K/G) has 4 connected components. Every irreducible component

is a section ofr. Analytic locally, (p, £/G) = (C3/Zz(l, 1, 0) for all
points p of SinglK/G).

Typel§ —1

Sing(K/G) has 3 connected componerds (1 < i < 3). C1is a
2-section ofr andC; (i = 2,3) are sections ofr. Analytic locally,
(p. K/G) = C3/Z»(1, 1, 0) for all points p of Sing(X/G).

Typel§ —2

Sing(KC/G) has 2 connected componeriis i = 1,2).C; (i = 1,2)
are 2-section ofr. Analytic locally, (p, K/ G) = C3/Z»(1, 1, 0) for all
points p of Sing(K/G).

Typel§ —3

Sing(lC/ G) has 2 connected componet}s(i = 1, 2). C1 is 3-section of
7 andCy is a section ofr. Analytic locally,(p, K/G) = C3/Z»(1, 1, 0)
for all points p of Sing(\C/ G).

Typel§ — 4

Sing(/C/ G) has 1 connected components. It forms a 4-sectian ha-
lytic locally, (p, K/G) = C3/Z(1, 1, 0) for all pointsp of Sing(k/ G).

Typell

Sing(K/G) has 3 connected componertts (i = 1,2, 3). Every ir-
reducible component is a section of Analytic locally, (p, £/G) =
C3/Zg(1, 1, 0) for all points p of C1, (p, K/G) = C3/Z3(1, 1, 0) for
all points p of Co2 and(p, K/G) = (C3/Zz(1, 1, 0) for all points p of
Cs.

Typell*

Sing(K/G) has 3 connected componertts (i = 1,2, 3). Every ir-
reducible component is a section of Analytic locally, (p, £/G) =
C3/7Zg(5, 1, 0) for all points p of C1, (p, K/G) = C3/Z3(2, 1, 0) for
all points p of C2 and(p, K/G) = (C3/Zz(1, 1, 0) for all points p of
C3.

Typelll — 0

Sing(K/G) has 3 connected componertts (i = 1,2, 3). Every ir-
reducible component is a section of Analytic locally, (p, K£/G)
C3/Z4(1,1,0) for all points p of C1 and C» and (p, K/G)
C3/Z5(1, 1, 0) for all points p of C3.

111

Typelll —1

Sing(KC/ G) has 2 connected componegts = 1, 2.C4 is a 2-section of
7 andCy is a section ofr. Analytic locally,(p, K/G) = C3/Z4(1, 1, 0)
for all pointsp of C1 and(p, £/G) = (C3/Zz(l, 1, 0) for all points p
of Co.

Typelll* -0

Sing(C/G) has 3 connected componer@s (i = 1,2, 3). Every ir-
reducible component is a section »of Analytic locally, (p, K/ G)
C3/74(3,1,0) for all points p of C; and C» and (p, K/G)
C3/Z5(1, 1, 0) for all points of p of Cs.

1111

Typelll* -1

Sing(K/ G) has 2 connected componegts = 1, 2.C4 isa 2-section of
7 andC» is a section ofr. Analytic locally,(p, £/ G) = <C3/Z4(3, 1,0
for all points p of C1 and(p, K/G) = C3/Z5(1, 1, 0) for all points p
of C».
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Table 2. List of sigularities 2

TypelIV —0 | Sing(K/G) has 3 connected componer@s (i = 1,2, 3). Every ir-
reducible component is a section of Analytic locally, (p, £/G) =
C3/7Z3(1, 1, 0) for all points p of Sing(K/ G).

TypelV —1 | Sing(K/G) has 2 connected componeats = 1, 2.Cq is a 2-section of
7 andCa is a section ofr. Analytic locally, (p, K/ G) = (C3/Zg(l, 1,0
for all points p of Sing(K/G).

TypelV — 2 | Sing(K/G) has one connected componeats It forms a 3-section of
7. Analytic locally, (p, K/G) = (C3/Zg(1, 1, 0) for all points p of
SingK/G).

TypelV* —0 | Sing(K/G) has 3 connected componers (i = 1,2, 3). Every ir-
reducible component is a section f Analytic locally, (p, £/G) =
C3/73(2, 1, 0) for all points p of Sing(kC/ G).

TypelV* —1 | SingK/G) has 2 connected componefis = 1, 2.C1 is a2-section of
7 andCy is a section ofr . Analytic locally, (p, K/G) = C3/Z3(2, 1, 0)
for all points p of Sing(KC/ G).

TypelV* — 2 | SingK/G) has one connected componegts It fomrs a 3-section of

7. Analytic locally, (p, K/G) = C3/Z3(2, 1,0) for all points p of
SingK/G).

Table 3.The list of actions

Type |l§ —1 1§ -2 15 —3 15 —4

G |Zg 782 Za 23

T |arbitrary arbitrary arbitrary arbitrary
Actionlg : (¢6.0: 37,26 ) [e1:(62.0:0.82) g1 (¢4, 0: 37,5, ) [g1: (£2.0:0.82)

g2:(L 331 g2:(13:3.1)
g3: (L 37:3.1)

Type|IIl —1 1 -1 v -1 v —1

G |Za®Zo Z4® 7Ly Z12 Zg

T |4 la {3 3

Actiongy : (¢4,0:0,¢a)  |g1:(64.0:0,¢, D) [g: (.03 612 [e: (603,560
g2 (L3430 5. Dlg2: (L 3+ 304 5.1)

Type|lIV — 2 Iv* -2 Io
G |z§° 73° Zm
T |3 ’3 arbitary

Actiongy : (¢3,0:0,¢3)  |g1:(¢3.0:0,¢3D)  [g: (&m0 27,500

g2:(L3+503 3. Dlgo: L 3+5633. D
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Table 4. Classification Table 1

F~1(s)™ is a product of a Kodaira singular fibre of typgandC.
Type Iy \ £~1(s) = mE, whereE is a hyperelliptic surface.

f‘l(s)” is a product of a Kodaira singular fibre of typé andC.
Typel§ —0 £~1(s) is isomorphic to the product of the Kodaira singular fibre of type
15 and an elliptic curve.
Typel§ —1 F~Ys) = m(2Eqg + E1 + E2 + E3). Every component is a minimal
elliptic ruled surfaceEz N Eq is 2-section of the ruling oEg, E; N Eg
(i =1, 2) are sections.
Typel§ —2 F~Ys) = m(2Eg + E1 + E2). Every component is a minimal elliptic
ruled surfaceE; N Eg (i = 1, 2) are 2-sections of the ruling dp.
Typelg —3 F~Y(s) = m(2Eq + E1 + E>). Every component is a minimal elliptic
ruled surfaceE1 is a 3-section of the ruling atg andE» is a section.
Typel; — 4 F~1(s) = m(2Eg + E1). Every component is a minimal elliptic ruled
surface.E1 N Eg is 4-section of the ruling ofg.

)~ isa product of a Kodaira singular fibre of typé andC.
Typell £~ 1(s) is isomorphic to the product of the Kodaira singular fibre of type
I'1 and an elliptic curve.
F~1(s)™ is a product of a Kodaira singular fibre of typé* andC.

Typell* f‘l(s) is isomorphic to the product of the Kodaira singular fibre of type
I1* and an elliptic curve.

F~1(s)™ is a product of a Kodaira singular fibre of typé/ andC.
Typelll — 0 f‘l(s) is isomorphic to the product of the Kodaira singular fibre of type
111 and an elliptic curve.
Typelll —1 | f~1(s) = mE, The normalization of is aminimal elliptic ruled surface
(see Fig. 1).

If £~1(s)~ is a product of a Kodaira singular fibre of typé/* andC
Typelll* —0 | f~1(s)isisomorphic to the product of the Kodaira singular fibre of type
I117* and an elliptic curve.
Typelll* -1 _f'*l(s) =m(Eg+ 3E11+ 2E12+ E13+ E21). Every componentis a
minimal elliptic ruled surfaceE11 N Eq is 2-section of the ruling ofg
(see Fig. 1).

f~1(s)~ is a product of a Kodaira singular fibre of typ& andC.
TypelV —0 | f~1(s)isisomorphic to the product of the Kodaira singular fibre of type
IV and an elliptic curve.
TypelV —1 _f'*l(s) = m(E1 + E2). The normalization of; is a minimal elliptic
ruled surface (see Fig. 1).
TypelV —2 | f~1(s) = mE.The normalization of is a minimal elliptic ruled surface
(see Fig. 1).
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Table 5. Classification Table 2

F~1(s)™ is a product of a Kodaira singular fibre of typ&* andC.
TypelV* —0 | £~1(s)isisomorphic to the product of the Kodaira singular fibre of type
1V* and an elliptic curve.
TypelV* —1 | f~1(s) = m(Eg+ Z,-Zzl(ZEil + E;2)). Every componentis a minimal
elliptic ruled surfaceE11 N Eg is 2-section of the ruling oEq (see
Fig.1).
TypelV* —2 | f~1(s) = m(Eqg + 2E1 + E>). Every component is a minimal elliptic
ruled surfaceEq N Eg is 3-section of the ruling oEq (see Fig. 1).

5. Classification of type Il degeneration

(5.1) In this section, we prove the following proposition and Theorem 1.2.

Proposition 5.1. Letz : T — A! be an abelian fibration which is birational to
the quotient of a Kulikov modél of type Il by a cyclic groug;. Assume that

(1) T is smooth.
(2) Kr ~; 0.
(3) There exists a nonzeG-equivariant element af  H(/Cy, C).

Then the central fibr@, of T satisfies the properties of Theorem (22

(5.2) For the proof of Proposition 5.1, we investigate the actio;ain the
central fibre ofC.

Lemma 5.2. Let g be a generator ofz and m the smallest positive interger
such that every component is stable under the actiati.0lMe denote by the
subgroup ofG generated by™. Then

(1) Every element of *H(Ky, C) is G-invariant.
(2) The action ofA is free and the central fibre of the quotidGy H is a cycle
of mininal elliptic ruled surfaces.

Proof.

(1) By Proposition 2.5, there exists@&equivariant element if* H(Ko, C).
Since dimF*H (Ko, C) = 1, everyelementaft H(/Cy, C) is G-invariant.

(2) From the assumption there exists an actioi/ain each component of the
central fibre ofC. Let V be a component of the central fibreand V — C
the ruling. Since every fibre of is P! andC is an elliptic curve;r is H-
equivariant. From Lemma 5.2 (1) and Lemma 2.4, holomorphic one forms
on V are invariant under the action gf'. Thus, the action oH on C is
translation. Therefore the action &f on V is free andV/H is a minimal
elliptic ruled surface. From the assumption that each component is stable
under the action of, the central fibre of the quotieif/H is a cycle of
minimal elliptic ruled surfaces. a
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(5.3) Proof of Proposition 5.1. From Lemma 5.2/C/H is smooth and the
central fibre ofC/ H is a cycle of minimal elliptic ruled surfaces. LEtbe the
dual graph of the central fibre & andg a generator of5. ConsideringC/H
instead oflC, we may assume that the actiongif is trivial if the action ofg™
on I is trivial.

(5.3.1) If the action ofG is free, K/ G is smooth and this is a relative minimal
model overAl. Sincel is a Dynkin diagram of typd,, andG is a cyclic group,
the action ofG on I is either rotation or reflection.

(1) If the action ofG on I' is rotation, the central fibré&o/G of £/G is a
cycle of minimal elliptic ruled surfaces. Each double curve is a section of a
minimal elliptic ruled surface.

(2) If the action ofG on I' is reflection, the central fibr&y/G of /G is
a chain of minimal elliptic ruled surfaces. We denote each component of
Ko/G by V;. Sincer : K/H — K/G is anétale morphism of degree 2,
every component o€,/ G is a minimal elliptic ruled surface and,/G =
2m Y V;. We investigate double curves &%/ G. It is obvious that double
curves forms a section on non edge components@iG. We will show
that double curves forms a bisection on edge componentsVd_be one
of the edge component anld the next component. By adjuction formula,
Ky, = —Vily,. SinceVy is a minimal elliptic ruled surfacek y, is linearly
equivalent to two sections. Combining with that the double ciie V3 is
connected}, N V4 is a bisection.

In both cases/C/G has no flopping curve. Thu§/G is the unique relative
minimal model and we obtaifi = K/G.
(5.3.2) If the action of is not free, we need the following lemma.

Lemma 5.3. If the action ofG has fixed points, then the action 6fon I' is
reflection and it preserves two vertices. Furthermore, the fixed locus consists of
four sections of the ruling or two bisections of the ruling.

Assuming this Lemma, the central fibre of the quoti€pG is a chain of minimal
elliptic ruled surfaces. The singularities/6f G consists of several copies of the
product ofA; singlarity and an elliptic curve. Thus a relative minimal model
over A is obtained by blowing up along singlar locus. Singéhas no flopping
curve,W is the unique relative minimal model and we obt&in= 7. From the
construction o and the above Lemma, the dual graph of the central fibV& of
is A, or D, the double curve on the edge component is a bisection or a section.
and every other double curve is section.

(5.4) Proof of Lemma 5.2. If the action ofG on I is rotation, there exists no
fixed points. Thus the action of on I" is reflection. We derive the contradiction
assuming that fixes one of edges df. LetC be the elliptic curve corresponding
to the edge which is fixed bg. From Lemma 2.4 and Lemma 5.2, the action
of G on C preserves holomorphic one form 6nh ThereforeC is fixed locus of
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the action ofG. The singularities of the quotieit/ G consist of several copies
of the product ofA; singularity and an elliptic curve. Lat : W — K/G be
the blowing up alongC. The central fibréWy of w : W — Al is a chain of
minimal ellitic ruled surfaces. We denote byeach components d¥,. Let Vj,
V1 andV, be the exceptional divisor coming from the blowing up al@hghe
next component o¥p and the next component & respectively.

Vo 1 V2
O— 0 —0 —---

ThenWy = m(Vo+ 2V1 + 2V, + (Other components)). Sind€ is smooth along
V1 andKy is numerically trivial,

1
Ky, = Kw + V1ly, = (_EVO — V2w,
by adjunction formula. Let be a fibre of ruling ofv;. Then
1
K[ = KV1 +l|[ = (_EVO - Vz)l

Since every double curve & is a section, deq; = —3/2. However this is a
contradiction because= P*. ThereforeG fixes two vertices. In the following,

we investigate the fixed locus dG/G. By Lemma 3.4 (3), every component

of the central fibre ofC is isomorphic to each other, it is enough to investigate
the fixed locus on one of the components correponding to the fixed vertices. We
denoteV this componentang : V — C the ruling of V. SinceC is an elliptic
curve and every fibre is P!, 7 is G-equivariant. By Lemma 5.2 (1), the action

of G onV preserves a one form dn. Since the action of; is not free,G acts

onC trivially. Thus there exists two fixed points on each fibre of the rulingj of

If V is notisomorphic td®* x C, then there exist only two sections of the ruling
and these curves are double curves. Since no dobule curve is stable under the
action of G , we obtain the fixed locus consists of a bisectiorV, i isomorphic

to P! x C, there exist no bisection of the ruling. Therefore the fixed locus consists
of sections. Thus we obtain the rest of assertion of Lemma 5.2. ]

The proof of Proposition 5.1 is completed. O

(5.5) Proof of Theorem 1.2. Let f : (X, w) — S be a projective Lagrangian
fibration over 4-dimensional holomorphic symplectic manifold. By Proposition
3.2, there exists a finite sef3, of D which has the following properties: For

x € D\ Do, there exists an abelian fibratdn— A* which satisfies assumptions

of Proposition 4.1 or 5.1 and® N D = {x}. ThenT, = f~%(x) satisfies the
assertions of Theorem 1.2 by Proposition 4.1 and 5.1. All types of singular fibre
actually occur by Propsition 6.1. O
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6. Examples

Proposition 6.1. All types of singular fibre actually occur.

Proof. First we construct examples of singular fibre in Proposition 4.1. We fix
some notations. Lek := C/Z + Zz be an elliptic curve and, an-th root of
unity. Since the singular fibre of tygg — 0,71, 11*,111 —0,111*—-0,1IV -0
or I V*—0isisomorphic to the product of a Kodaira singular fibre and an elliptic
curve, it is easy to construct examples. We concentrate the construction of other
types of singular fibres. We consider the quotienEat E x A? by an Abelian
groupG. The list of G and its action is Table 3. In this table, acti@n b; ¢, d)
means

ExExA?S E x E x A2

(21,22, 11, t2) > (az1 + b, 22 + ¢, diy, ).

We will show a relative minimal modeV over A of E x E x A?/G gives a
desired example. By direct calculation, singularitiesfok E x A2/G is one

of types of Table 1 and Table 2. According to the proof of Proposition 4.1, each
singular fibre ofW is isomorphic to a singular fibre which we want to construct.
Thus it is enough to show thal¥ is a Lagrangian fibration. If the action 6f is
oftypelo, I —1,2,3,4,111* —1andlV* — 1, 2, singularities of the quotient
E x E x A?/G consists of several copies of the product of a Du Val singularity
and an elliptic curve. Thus the minimal resolution®k E x A%/ G is a relative
minimal model overA?. Moreover the symplectic formiz, A dt1 + dzo A dt iS
G-invariant and it vanishes on a general fibre of projecior E x A% — A2
ThusE x E x A?/G has a nondegenerate holomorphic 2-fapmSince Ky

is nef, the pull back o is nondegenerate. Hen&g is a symplectic manifold
andW — A?is a Lagrangian fibration. If the action 6f is of typeII1 — 1,

IV — 1,2, we consider the blowing up: Z — E x E x A2 along the fixed
locus of G. Then the action o& can be lifted oriZ and the minimal resolution
Z of E x E x A%/G is isomorphic toZ/G. Let D be the discriminat locus of
w: W — A2 y the quotient morphisni¥ — Z, v the birational morphism
Z — E x E x A2/ G, F the proper transform ofi of w=1(D) andF := y ~1(F).
Note thatF is thev-exceptional divisor coming from the minimal resolution of
the quotient singularitf?/Z,, (1, —1, 0, 0), wherem = 4, (respm = 3.) if the
action ofG is of typel 11 — 1. (resp. typd V — 1, 2.) (cf. [1, pp 158].) We define
the holomorphic 2-fornw on E x E x A? by tin_zdzl Adti+dzo Adts. Thenw

is G-invariant and it vanishes on a general fibre of projecion E x A% — A2,
Thuse induces a holomorpic 2-for@’ on E x E x A?/G. MoreoverA?(v*w)
has ordem — 1 zero along each irreducible componenfoOn the contrary, the
order of isotorpie group of each irreducible component @ m, the branching
order of the quotient morphism — Z along each irreducible componentBf

is m. HenceA?(v*w') is nonzero along® andv*w’ is non degenerate alorfg.
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Thereforev*«’ defines a symplectic form oW andW — A2 is a Lagrangian
fibration. Next we construct an example of singular fibre which satisfies the
properties of Theorem 1.2 (2). We begin with the construction of an elliptic
fibration whose singular fibre is a Kodaira singular fibre of typeaccording to

[10, Section 2]. LetR, be a subring o [v*?, t*1] defined by

Ry = Clvt =%, v~ 151,
We define a smooth scheme

M :=|_] Spe,.

keZ

Note that there is a morphisit — C[z]. Let M’ := M x ¢y AL, We define
the action ofn € Z on M’ by

Rk - Rk+2nm
m: vtk vl s (pp ko2 =Lkt L2nm)

Then this action is properly discontinuous and fixed point free by [10, Theorem
2.6]. The quotient : S — Al is an elliptic fibration whose singular fibre is a
Kodaira singular fibre of typé,,. We define two involutions;, (( = 1, 2) on
C[Uil, t:l:l] by
(C[vil, til] N (C[vil’ til]
m: (o = 1/v,-1)
n2:  (v,t) = (—v,1).

Thenthese actions induce involutions®nandM’. Moreover, these involutions
are compatible with the action @ on M’. Thereforey;, (i = 1, 2) defines an
involution of S. We denote these involutions by same character, The symplectic
form on M’ defined bydv /v A dt is Z-invariant and preserved hy, (i = 1, 2).

Thus the induced symplectic formon S is preserved by induced involutions.
Note thatw vanishes on a general fibre §f— A'. Now we construct examples

of a Lagrangian fibration such that its singular fibre is a normal crossing variety
whose dual graph id,,. We consider the following action @, on S x E x A

Sx Ex Al —» S x E x At
(v, 22.12) > (V1) 22+ 3. 12).

Then this action is fixed point free and a symplectic fasm dz; A dt; is Z,-
invariant. Sincev + dz, A dt, vanishes on a general fibre & E x AT — A2,

the quotient of§ x E x A'/Z, gives a desired example (see left one of Fig. 3). We
construct another example. The minimal resolutionf S/z; admits an elliptic
fibrations : § — A! whose singular fibre is a Kodaira singular fibre of type
I*. Sincen; andn, are compatibley, induces an involution o /71 andS. We
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denote this induced involution by. Then the action ofj, on the dual graph

of the singular fibre of interchange edge vertices with each other. (Note that
the dual graph of the singular fibre dis the Dynkin diagram of typ®,..) We
consider the following action df, on § x E x A%,

SxEx Al - SxExA!
(v1, v2,1) > (2(v1), 22 + 3, 1).

Then this action is fixed point free and every singular fibre of the quoient

E x A')Z,is anormal crossing variety whose dual graph is the Dynkin diagram
of type A, (see right one of Fig. 3). We will show théitx E x A'/Z, — AZisa
Lagrangian fibration. There is an induced symplectic fafrfrom  on S. Then

the symplectic formw’ + dz, A dt, is Zy-invariant and it vanishes on a general
fibre of § x E x AY — A2 ThereforeS x E x A'/Z, — A?is a Lagrangian
fibration. O
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