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Abstract. For a variety where a connected linear algebraic group acts with only finitely many
orbits, each of which admits an attractive slice, we show that the stratification by orbits is perfect
for equivariant intersection cohomology with respect to any equivariant local system. This applies
to provide a relationship between the vanishing of the odd dimensional intersection cohomology
sheaves and of the odd dimensional global intersection cohomology groups. For example, we
show that odd dimensional intersection cohomology sheaves and global intersection cohomology
groups vanish for all complex spherical varieties.

0. Introduction

This paper should be viewed as a continuation of the paper [J-1] by the second
author. There equivariant intersection cohomology was applied to provide a ge-
ometric proof of the vanishing of odd dimensional local and global intersection
cohomology for Schubert varieties and also certain other varieties. We briefly
recall this situation as follows. Let denote a projective variety provided with
the action of a torug’ and such that the odd dimensional middle intersection
cohomology groups oX are trivial. We showed that now the odd dimensional
middle intersection cohomology sheavesXoélso vanish provided the follow-

ing criteria are satisfied: there exist§ sstable decomposition df into locally
closed smooth strata so that (i) each stratum hdsfixed point and (ii) the
middle intersection cohomology sheaves are locally constant on each stratum.

Unfortunately condition (i) is not satisfied in many situations: for example
complete toric or spherical varieties and orbit closures of symmetric subgroups in
flag manifolds. In the latter case, the vanishing of all odd dimensional intersection
cohomology sheaves was obtained by Lusztig and Vogan, see [L-V]. The proof
is rather involved, using a generalization of the Kazhdan-Lusztig theory and also
representation theory of real reductive groups. Another proof, using an analysis
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of the orbit structure, has been obtained recently by Mars and Springer; see
[M-S].

One of the original motivations for this paper was to give a general geometric
explanation of this vanishing phenomenon using equivariant intersection coho-
mology (see [Bryl] and [J-1]) which is a variant of intersection cohomology that
incorporates the group action into its very definition. One of our main results
(Theorem 2) is that the the stratification by orbits is perfect for equivariant inter-
section cohomology of certain varieties. Using this as a tool, we obtain several
general results relating the vanishing of the global odd dimensional intersection
cohomology with the vanishing of the odd dimensional intersection cohomol-
ogy sheaves with respect to equivariant local systems. For example we show the
vanishing of the odd dimensional intersection cohomology sheaves with respect
to the constant local system (up to taking certain invariants) for the orbit closures
of symmetric subgroups on flag manifolds (Theorem 5). Using the local struc-
ture of spherical varieties, we also show that the odd dimensional intersection
cohomology sheaves vanish for these varieties and all local systems (Theorem 4).

All the results in this paper extend to arbitrary characteristics. However, the
proofs of Theorems 1 and 4 are much simpler over the field of complex numbers,
whereas given Theorem 1, the proofs of Theorem 2, Corollary 3 and Theorem
5 adapt to positive characteristics with minor modifications. Theorem 1 is ex-
tended to positive characteristics in the paper [J-4] by the second author; (modulo
atechnical condition) Theorem 4 is extended to positive characteristics in a forth-
coming paper [J-5]. Most of our results are stated explicitly only in characteristic
0; however we provide all the definitions in arbitrary characteristics so that the
statements make sense in full generality.

We thank the referee for several valuable suggestions.

Notation and conventions

(0.1) Throughout this papérwill denote an algebraically closed field of arbitrary
characteristipp > 0. We denote by a linear algebraic group, and 6P the
connected component of the identity ¢h A separated reduced scherkeof
finite type overk will be called avariety; observe that varieties need not be
irreducible. IfX is provided with an algebraic action 6f, we will say thatX is
aG-variety.

A G-variety will be calledocally linearif it is a union of G-stable open sub-
varieties, each of them admitting&equivariant locally closed embedding into
the projectivization of &-module. For example, amormalG-variety is locally
linear (this follows from [Su] Theorem | and Lemma &ifis connected, and it
is shown in [J-3] (1.9) that the hypothesis tiiabe connected may be dropped.)
We will only consider varieties which are locally linear amguidimensional
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(0.2) Consider &-variety X and a poinik € X; let Gx be itsG-orbit andG, its
isotropy group. Asliceto Gx atx is alocally closed subvariety of X containing
x and satisfying the following two conditions:

() There exists a maximal tordg of G, such thatS is stable under,.

(i) The mapG x S — X sending(g, x) to gx is smoothat (e, x), and the
dimension ofS is the codimension ofrx in X.

Note thatS exists if and only if the orbit magy — Gx is separable. In
particular,S always exists in characteristic 0; then it may be chosen stable under
a maximal reductive subgroup 6f,. Moreover, by shrinking if necessary, we
may assume that the mépx S — X is smooth everywhere and thais affine.

(0.3) LetT denote atorus acting on a varigtywith a fixed pointc. We say thak

is attractiveif there exists a one parameter subgraupG,, — T such that, for
all y in a Zariski neighborhood of, we have lim_oA(z)y = x. Equivalently,
all weights ofT" acting on the Zariski tangent spacecatre contained in an open
half-space. In the situation of (0.2), we say t§éds anattractive sliceif x is an
attractive fixed point for the action @i, on S. (See Appendix (A.1) for further
details on attractive fixed points.)

(0.4) LetX be a variety. We denote b *(X) the cohomology ring of with
rational coefficients in characteristic O (thadic cohomology o in positive
characteristics). I is alocal system (see Section 1) on a smooth open subvariety
of X, thenI H*(X; £) will denote the corresponding intersection cohomology
for the middle perversity. If moreovel is constant, we simply writé H*(X)
for IH*(X; L).

For aG-equivariant local system (see Section 1), we will denot&pyX; £)
(I H}.(X; L)) the corresponding equivariant cohomology (the equivariant inter-
section cohomology for the middle perversity, respectively); these are discussed
in Section 1. BotH/;(X) andl H.(X; £) are modules ovelf *(BG), the equiv-
ariant cohomology ring of the point.

For any integer, we denote by{" (IC(X; £)) then-th cohomology sheaf
of the middle intersection cohomology complex &n The stalk of the sheaf
H"(IC(X; L)) at a pointx will be denotedH"(IC(X; £))., while the local
intersection cohomology with support inwill be denoted! H!! (X; £). They
are related as followsl H!'(X; £) is the dual space of"(IC(X; LY)),[2d]
whereL" denotes the dual of andd denotes the dimension &f.

(0.5) In characteristip > 0, we will assume all the varieties we consider are
obtained by base extensions from varieties defined over some finite extension of
F,.

(0.6) Throughout the paper we adopt the cohomology notation for perverse
sheaves as in [J-1]i.e. a complex of sheavek on a varietyX of dimen-
siond is perverse if the dimensions of the supports of the shei¥¢X ) and



402 M. Brion, R. Joshua

H"(D(K)[—2d]) are< d —n forall n. (In [B-B-D] a complexk is defined to be
perverse if the dimensions of the supports of the sheil¢x ) andH" (D(K))
are< —n forall n.)

Now we begin with the following basic result that will be used repeatedly.
(See section 1 for the notations. The equivariant derived cateB§igk) is
defined in (1.2.1) and (1.3.2) while equivariant hypercohomoldigys defined
in (1.3.6).)

Theorem 1 Let H be a closed normal subgroup 6f such that the quotient
G = G/H is finite. LetX be aG-variety and letk € DZ (X).

(i) Identifying K with its restriction toD/ (X), there exists an action @
onHj}, (X; K) that is natural ink .

(i) Moreover one has an identificatidii, (X; K) = H,(X; K)C.

(iii) In case H = G°, one has an action @ on H%o(X; K) thatis natural in
K. If moreoverG = G° x F for some finite grougF’ = G/G°, F acts trivially
on X andK is aG-equivariant sheaf o, thenk ” is a G%-equivariant sheaf
and one has the isomorphisms

HA(X; K) = Hio(X; KDY = Hi(X; KT = HY(BGY) ® HY(X; kD).

(iv) In caseH, (X; K) is a free module oveH*(B H), one has the identifi-
cation )
HE (X; D(K)) = (Homps»m (Hy(X; K), H*(BH)))°.

whereD(K) denotes the Verdier dual &f. O

The proof of this theorem is considerably simpler in characteristic 0 where
one has éibrationBH — BG — BG. The extension to positive characteristics
requires the use of new techniques and is discussed in detail in the accompanying
paper [J-4].

The following is our first main result.

Theorem 2 Let X denote a-variety containing only finitely many orbits, each
of which admits an attractive slice. L&tdenote aG-equivarianiocal systenon

the union of all open orbits in cage is connectedand aconstantiocal system
in caseG is not connected. Then the following hold.

(i) The H*(BG)-module I H}.(X; £) admits a filtration with subquotients
LH}, ;(X; £) whereO runs through thé -orbits in X andIH(’f))G(X; L) denotes
the equivariant intersection cohomology with support®in

(i) For O = Gx, the group of component, /G acts onH*(BG?) and on
IH*(X; L), and one has an isomorphism:
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One may interpret statement (i) as saying that the stratification by orbits
is perfect for equivariant intersection cohomologsovided the hypotheses in
Theorem 2 are satisfied. (This is analogous to a result of Kirwan: the stratifica-
tion by “instability type” of any projective nonsingul&r-variety is perfect for
equivariant cohomology, see [K].)

Corollary 3. (i) Assume in addition to the hypotheses of Theorem 2krEY (X ;
L) = 0 for all oddn. Then(H*(BG®) ® I H*(X; £))G+/6% vanishes in all odd
degrees and for all € X.

(ii) If, in addition, G, is connected, thehH! (X; £) vanishes for all oda.

(iif) Suppose in addition to the hypotheses in (i) tidat is the semi-direct
product of a connected solvable group and a finite grBuprhen F, acts on
ITH*(X; £) and(I H*(X; L))" vanishes in all odd degrees. O

Observe that the hypotheses of (i) and (ii) are satisfied by all toric varieties (in
fact, all their isotropy groups are connected). Therefore the above corollary es-
tablishes the vanishing of the odd dimensional intersection cohomology sheaves
for toric varieties. (See also [B-B-F-K].)

The following are the remaining results of the paper.

Theorem 4 Assume the ground field is of characteristic 0. LeG denote a
connected reductive group and ltdenote a sphericdl-variety. LetL denote
a G-equivariant local system on the opéhorbit in X. Then/H!(X; L) =0
for all oddn and allx € X. O

For the next statement, we assume thag 2. Let G denote a connected
reductive group and le? be an automorphism of ordéwo of the algebraic
groupG. Let K denote the fixed point subgroup ®&fand letB denote a Borel
subgroup ofG. ThenkK acts on the flag manifold /B with finitely many orbits
each of which admits an attractive slice by [M-S]. Our geometric methods yield
the following theorem in Section 4.

Theorem 5. Let X denote the closure of K-orbit onG/B. ThenI H"(X) and
(I H"(X))X*/%? vanish for alloddn and allx € X. O

(Infact, I H! (X; £) vanishes for alK -equivariant local system$on X and
for all oddn, see [L-V] and also [M-S].)

The organization of the paper is as follows. We begin with a brief review
of equivariant derived categories and equivariant intersection cohomology in
Section 1. (Some of the material here is available in the literature: but this is often
stated only in characteristic 0 and for constant local systems, and the extension
to positive characteristics is not straightforward.) We conclude this section with
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a technigue whereby we are able to reduce consideration of local systems to the
constant system, at least for the action of connected groups. Section 2 is devoted
to the proof of Theorem 1. The main result of Section 3 is Theorem 2. Corollary

3 is also established there. In Section 4 we prove Theorems 4 and 5. We discuss
some details on actions of the multiplicative group in an Appendix.

1. Equivariant intersection conomology and equivariant derived categories

We begin with the following definition of equivariant derived categories that
is valid in characteristic) only.

(1.1.1) We letEG denote thenfinite join of G with itself, otherwise called
the Milnor constructionThis is a contractible space on whichacts freely and
is functorial inG. Now BG will denote the quotienEG/G. If X is aG-variety,
we IetEGéX = (EG x X)/G where we identify(p, x) with (pg~1, gx). Now

we obtain a fibratiolX - EGxX — BG.
G

(1.1.2) What will be of crucial importance in the proof of Theorem 1 is the
following observation. Lep : G — G denote a surjective homomorphism of
algebraic groups with kernél. Now one obtains an induced locally trivial fibra-
tion B¢ : BG — BG with fiber BH. This follows readily from the definition
of Milnor construction.Since the existence of such a fibration is important for
us, we will adopt this definition df G and BG in characteristicO, throughout
the paper(In positive characteristics, sucHiaration does not exist and calls
for the use of subtler techniques in [J-4]. See also (2.1.1).)

(1.2.1)Equivariant derived categories (characteris@ (See, for example,
[B-L].) Let D,(EG x X) denote the derived category of bounded complexes of
G

sheaves of)-vector spaces oAG x X. Let D, (X) andD,(EG x X) denote the
G
corresponding derived categories¥@andEG x X.Letnr : EGxX — EGxX
G

be the quotient, an¢r : EG x X — X the second projection. For an interval
I = [a,b] wherea < b are integers, we leD%(X) be the category whose
objects are triplesk, Kg, ¢) whereK ¢ D,(EG x X), Ko € D,(X) such that

G

H"(K)=0forn <aorn > b, and
¢ 1*(K) = ¢Y*(Kp) is an isomorphism iD,(EG x X).

A morphism between two such tripleX’, Ko, ¢) and(K’, K|, ¢') is given
by a pair of morphism& — K’ in D,(EGxX), Ko — K;in Dy(X) which
G

are compatible with the given isomorphisghandg’. We letDY (X) denote the
union of all the full sub-categorie®? (X) for all intervals/. In caseX is a point,
Df (X) is equivalent to the full sub-category of complextéss D, (BG) such
that all the cohomology sheaveég' (K) arelocally constantIf moreoverG is
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connected one may in fact require the cohomology shefd¥€k ) to be constant,
becaus& G is simply connected. In caséis a point, we will denote the resulting
equivariant derived category @y° (pt). One may define the equivariant derived
categoryD% (X) similarly, by using intervalg with b = oc.

(1.2.2)Equivariant local systems (characteris@} A local system orX will
denote a locally constant sheaf@fvector spaces. &-equivariant local system
onX, L, is alocally constant sheaf @f-vector spaces oA G x X which belongs

G

to the equivariant derived categoBf (X) defined above.

The local systems oX correspond to representations of the fundamental
groupm1(X, x,) Wherex, is a fixed point ofX. Similarly, the G-equivariant
local systems on &-variety X correspond to representations of the fundamental
groupnl(EG>6<X, Xo)-

If X is connected, the fundamental groups above are independent of the
choice of the base point. The only occasion where we consider non-connected
varieties in the above context will be as the connected components of the orbits
of a non-connected grou@: in this case, the connected components are all
isomorphic and hence once again the fundamental group above is independent
of the choice of the base point.

(1.2.3) Supposer1(EGx X, x,) acts on the stallC, of a local systemC
G

through a finite quotient group. This representation af splits into the sum
of irreducible representations: therefore, in this cases semi-simple as &'-
equivariant local system. For example, supp&sis a unique orbitGx, ; then
nl(EGéX, X,) = m(BG,,) = GxO/Ggo. Thus, everyG-equivariant local sys-

tem £ on X corresponds to a representation of the finite ngUp/GSO and is
therefore semi-simple.

(1.3.1) Next we will consider the corresponding situatiopasitive charac-
teristics so as to provide the correct context for formulating the main results in
the paper in that setting. The main difference will be that we adopt the definition
of EG, BG andEG x X as simplicial schemes defined in the usual manner. (See

G
[Fr] pp. 8-9.) Observe that noB Gy = Spec(k) and we will call this the base
point of BG: this will be denoted:. The above simplicial schemes will be pro-
vided with the followingetale topology. Lek, denote a simplicial scheme. Now
Et(X,) will denote the category whose objects atalé maps : U — X, for
somen; amorphisme : U — X, tov:V — X, willdenoteamam : U — V
lying over some structure mayp, — X,,. Now a sheaf on ET (X,) is given
by a collection of sheavegF,|n}, with F, a sheaf onEt¢(X,) provided with
mapse¢, : «*(F,) — F, for any structure map : X, — X,,. (These maps
are required to satisfy an obvious compatibility condition. See [Fr] p.14.) This
definition applies to abelian sheaves as well-adic sheaves.
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(1.3.2) Equivariant derived categories (positive characteristi¢Sge [J-2]
section 6). Next assumkg, is the simplicial schem& G x X associated to the

G
action of G on X. A sheafF on EG x X will be calledequivariantif the above

G
structure map$p, |a} are isomorphisms. The category of equivariant sheaves is
an abelian sub-category closed under extensions in the category of all sheaves on
EG x X ; therefore one defind3{ (X) to be the full sub-category d@b, (E G x X)
G G

consisting of complexe& whose cohomology sheaves are all equivariant.

(1.3.3) G-equivariant local systems in positive characteristidsG-equi-
variant local system oX is aG-equivariani-adic shea¥ = {F,|n} on EG x X
G

so that Fp is alisse sheaf onX i.e. each term of the inverse systefy =
{Fo.,|v} is locally constant. These correspond/tadic representations of the
étale fundamental group (EG x X, x) (wherex is a geometric point oX): this

G

correspondence sendssaequivariant local system to its stalk at the geometric
point x. To keep the notation uniform, we will identify geometric points with
points: i.ex will be denotex as well.

(1.3.4) LetL be aG-equivariant/-adic local system oi£G x X such that
G
m(EGxX, x,) acts on the stalk,, through a finite quotient group. Then the
G

local systenC corresponds to a representatiorfobn the(Q;-vector space asso-
ciated toL,,, which splits up into the sum of irreducible representations. Since
the groupF is finite, one may show by standard arguments that each of the sum-
mands corresponds to an irreducibigdic representation df and therefore to a
G-equivariant irreducible local system &G >G< X. (The key observations are the

following: let V denote a finite dimension@l, vector space with a representation
of F. SinceF is finite, one may find a finitely generat&g-submoduleM of V
that is stable by and that generatég as aQQ;-module. NowM defines ari-
adic representation df whose inverse limit tensored wit}, is the given vector
spaceV . Recall also that thél om between twd-adic local systems = {L,|v}
andL’ = {L!|v} is defined byHom (L, L") = I|m Hom(Lv, L )®@1 so that

local systems that are torsion are identified W|th the local system 0.)

(1.3.4.7)t follows that, under the hypothesis that(E G x X, x,) acts on the
G
stalkL,, through afinite group, th&-equivariant local systerg is semi-simple

The above discussion should serve as a dictionary for translating the main results
and proofs to positive characteristics.

(.35 If f : X — Y is aG-equivariant map, the induced m&G x X —
G

EGxY will be denotedf ¢ or often simply byf.
G
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(1.3.6) We definequivariant hypercohomologs follows. Letk € DY (X).
We letH; (X; K) = H*(EG x X; K), whereH* denotes hypercohomology.
G

(1.3.7) Perverser-structures and perverse cohomolo@ne defines per-
verset-structureon equivariant derived categories as in [B-B-D]. See [B-L] or
[J-2] section 6 for details. Observe that the heart ofrtiséructure defines an
abelian category and cohomology computed with values in this abelian cate-
gory will be denotedH?,,: if K € DY(X), then#?,, (K) is then-th perverse
cohomology object, which is an equivariant perverse sheaf. The cohomology
truncation functor that kills the perverse cohomology in degrees abaxitbe

denoted:Z,"".

(1.4.1) We will presently recall the definition of equivariant intersection
cohomology from [J-1] p. 242. LeK be a G-variety of dimensiond. Let
=X 1CXoC X1CX,C...C X, = X denote afiltration by closed-
invariant subvarieties such that ea&h is closed inX and eachX; — X;_1
is smooth,i = O,...,d. Next one considers the complementary filtration

v, % v, & U, 2 Ugq = X whereU; = X — Xy and ji; de-
notes the inclusion. Now one applies the construction in (1.1.1) (or (1.3.1) in
positive characteristics) to this filtration to obtain the following diagram:

.G G
EGxU; —*> EGxU, ", EGxX
G G G
1.4.2) ﬂll ﬂzl ﬂcll
BG —5 BG M, ., BG

Let £ denote aG-equivariant local system oG x U;. We extendC to EG x X
G G
to obtain a compleX C(X; £) in Df (EGxX), defined byIC%(X; £) =
G

T<q-1Rj$ -+ - T<0Rjo« (L) (See [J-1] for details). This is treguivariant intersec-
tion cohomology complex (with respect to the middle pervershtgined from
L. In caseL is the constant shedp (@1 in positive characteristics), we will

denote the corresponding complex hg¢ (X). We define
(L4.3) [HL(X; L) =H5L(X; ICY(X; L)) = H(EGxX; IC%(X; L))
G

This is a module oveH /. (pt) = H*(BG).

We will presently summarize the main properties of equivariant intersection
cohomology in the following results. (See also (1.7.1) and (1.7.2).)

(1.4.4)ICY(X; L) is the complex inDY (X) characterised by the following
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in the situation of (1.2.1)7*(IC%(X; £)) ~ ¥*(IC(X; £)) and in the sit-
uation of (1.3.2)/C%(X; L)o = IC(X; L) . HereI C(X; L) is the intersection

cohomology complex oX obtained by starting with the locally constant sheaf
L on U;. This is clear from the definition of the equivariant intersection coho-
mology complex.

(1.4.5)Theorem. (Localization theorem in the equivariant derived category for
torus action$. Let 7 denote a torus acting on a varietyand letk € D] (X).

Let Ty denote a sub-torus df and letp be the kernel of the restriction map
H*(BT) — H*(BTy); this is a prime ideal ofd*(BT). Leti : X — X
denote the inclusion of the fixed point subschem@®fThen one obtains the
following isomorphism after localization at the ideal

H(X; K)p = H(XT0; RiT'K),.

Proof. This is a generalization of the localization theorem in [J-1] (17) and [Bryl],
but the proof is essentially the same. We consider the localization sequence:

c = HR (X RiTK) — Hp (X5 K) — Hp (X — X0 K) — -

Since localization at the primgis exact, it suffices to show that the last term
is trivial after localization ap. Now observe thatl} (X — XTo; K) is a module
over Hx(X — X™). Therefore it suffices to show that the latter is trivial after
localization atp. This follows for example from [Br-2] Appendix, Proposition
5. O

(1.5) Let T denote a maximal torus i, let Ng(T) (Cs(T)) denote its
normalizer (centralizer, respectively) thand letW = N (T)/Cs(T)°. Then
W is a finite group, sinc&/s(T)/Cs(T) andCg(T)/Cs(T)° are finite groups.
We will call W theWeyl groupof (G, T).

(1.5.1) Proposition. Let X be aG-variety and letZ be aG-equivariant local
system on an ope@-stable smooth subvariety af.

(i) ThenNg(T) acts onl H; (X; £), the action oiC;(T)C is trivial, and one
has the following isomorphisms:

TH (X £) = THy o (X: £) = THF(X; L)Y
as modules oveH*(BG) = H*(BT)".

(i) If moreoveriy : Y — X is the inclusion of aG-stable closed subvariety,
one has the isomorphisms

H (Y; Riy ICC(X; £)) = Hyy oy (Vs Riy ICN T (X L))
= H5.(Y; Riy ICT (X; L))"
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Proof. The map
T:EGXx(G x X)— EGXX
G Ng(T)
is a fibration with fiberG/Ng(T). Thereforer*1C%(X; £) is isomorphic to
IC%(G x X; L) which may be identified with CN¢")(X; L), see [J-2] or
Ng(T)

[J-4] (4.2). Moreover, we claim that the fibers ofare acyclic; then the first
isomorphism in (i) and the first isomorphism in (ii) will follow from the Leray

spectral sequence and the projection formula.

For the claim, we firstreduce to the case wh&iie connected, as follows. The
connected componer® containsT. We check that the map frodi®/ Ngo(T)
to G/Ng(T) is an isomorphism. Since this map factors G&/ Ngo(T) —
G/Ngo(T) — G/Ng(T), itis clearly étale. It is also obviously injective. We
show the surjectivity as follows. Letin G, thengTgtis a maximal torus of
G°. Thus, there exists in G° such thagTg™* = hTh=%. Soh~1gisin Ng(T).
This shows thatG = G°N(T) and therefore our map is surjective, i.e. it is an
étale bijective map and hence an isomorphism of varieties.

Now we reduce to the case whe¥ds (connected and) reductive. LR} (G)
be the unipotent radical af, with quotientG = G/R,(G), a connected re-
ductive group. We identify” with its image inG. Since the compositio —
G — G/Ng(T) is surjective and clearly factors through — G/Ng(T), it
follows that the induced ma@i/Ns(T) — G/Ng(T) is also surjective. Clearly
it is smooth with fibersR,(G)/Ng,)(T). As a homogeneous space under a
unipotent group, the latter is isomorphic to an affine space and hence is acyclic.

Now we can assume thatis connected and reductive, or even semi-simple
becauseN(T) contains the center of;. Let B be a Borel subgroup of;
containing T'; then the map fronG/T to G/B has acyclic fibers and thus
H*(G/T) isisomorphic toH*(G/B). The latter is the regular representation of
W = Ng(T)/T, and moreovelH*(G/Ng(T))) = H*(G/T)" which proves
our claim.

To prove the second isomorphismin (i), note thaty ., (X; £) is isomor-
phictol H. ;. 0(X; L)Y . (This follows from Theorem 1.) Moreover, the quotient
CG(T)O/T is unipotent. Thus/ H. (TO(X L) is isomorphic tol H}(X; L£).

Now one may invoke Theorem 1 again to complete the proof. (Observe that
ICT(X; L) is the restriction of CN¢™ (X; £) and similarlyRi}, ICT (X; £) is

the restriction oRRi}, 1CNe™) (X; £). Therefore the hypotheses of Theorem 1 are
satisfied.) O

(1.5.2) Theorem. (Degeneration of the spectral sequence in equivariant inter-
section cohomologyLet X be aprojective G-variety, whereG is connected
Let £ denote aG-equivariant local system on an open demsstable smooth
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subvariety ofX such thatZ is semi-simple as a local system. L&E¢(X; £)
denote the corresponding equivariant intersection cohomology complex. Then
the spectral sequence:

Ey' = H'(BG; R'm.(IC%(X; L)) = THS™ (X; L)

degenerates, where: EGxX — BG isthe obvious map. Thus 5 (X; £) =
G
H*(BG) ® IH*(X; L) asH*(BG)-modules.

Proofis essentially the same as in [J-1] Proposition (13) where only thatase
aone dimensional torus is considered. T connected is necessary to ensure
that all local systems 0BG are in fact constant. L&t denote an open smooth
stable subvariety aX on which/ is a local system. Sinck is equidimensional,

U isthe disjoint union of its connected compondiitsll of which are of the same
dimension. Sincé& is connected thé/; are stable under the group action. Let
L; denote theG-equivariant local system dii defined byﬁiluj =Ly, if j=1i,
andc,-wj = 0 otherwise. Then one may see th&t® (X; £) = ®;IC°(X; L;).
Clearly eachZ; is a semi-simple local system; therefore edch X; £;) and
hencel C(X; L) is a pure perverse sheaf. Therefore, the Hard Lefschetz theorem
holds for7 H*(X; £) and the same proof as in [J-1] Proposition (13) applies.

(1.5.3) Theorem. Let X denote a projective variety provided with the action
of a torusT and let£ denote ar-equivariant local system on an open smooth
T -stable subvariety ok. Assume that’ is semi-simple as a local system. Let

i : XT — X denote the inclusion of the fixed point subscheme. Now one
obtains the isomorphisms after inverting all non-zero elemenis*oBT) (i.e.

on localization at the prime idedD)):

IH;(X, »C)(O) = H*(BT)(O) %) IH*(X, ,C)
(1.5.3.%) ‘
= H*(BT)o @ H*(X"; Ri'IC(X; L)).

In particular, if T H"(X; £) = 0 for all oddn andx is anisolatedfixed point of
T,thenlH!(X; £) = 0 for all oddn. O

Proof. The first isomorphism follows from (1.5.2) by localizing @. By the
localization theorem in (1.4.5), one has the isomorphism:

(1.5.3.1) THX(X; L)) =HH(XT; Ri'ICT (X £))0).-

Now H: (XT; Ri*ICT (X; £)) o) = H*(BT) 0 ® H*(XT, Ri'ICT(X; L)) (o).

Next leti, : x — XT be the inclusion of an isolated fixed point Bf Then
Ri‘ICT(X; £) breaks up into the sum of two complexes one of which is

RiLICT(X; L) = Di*D(ICT(X; £)) = (¥ ICT(X; L))" [—2d]
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whered is the dimension ok . This proves the last assertion of the theorem.

We will now recall a few results from equivariant derived categories as in
[J-2].

Let H denote a closed subgroup@fand letX be aH -variety. Then we have
a closed immersion
Jjx tEHXxX — EGX(GxX)
H G H
induced by the magx — sz sendingx to the class of(e, x). Let K €

Df(GxX). Thenj;(K) is a complex of sheaves dbH x X. Now j}; induces
H H
an isomorphism:

(1.6.1) HE, (X 3 (K)) — HE(GxX: K).
H

See [J-2] section 6 for a proof.

(1.6.2) Assume in addition to the hypothesis in (1.6.1) tkais a point

x. In this case the cohomology sheaveskbfare equivariant on thé&-orbit

G xx = G/H and hence locally constant. Therefore, we may idernify with
H

Rj!K[2d,] whered, is the dimension of th&-orbit G xx. Now (1.6.1) provides
H
the isomorphism:

H**%:(BH; Rj:K) = H " (x; Rj'K) =, H:(G/H; K).
(1.7.0)Reduction to the constant local system by normalization

In the rest of this section we discuss a technique whereby we are able to
reduce consideration of arbitrary local systems to a constant local system; this
simplifies much of the discussion in Section 3.

LetG beconnected@nd letr : X — X be aG-equivariant finite map between
G-varieties. There will be two main examples of this situation we consider:

(i) 7 is the normalization oX and

(i) G has a dense orbifx on X (so thatX is irreducible) andX is the
normalization ofX in the function fieldk(G/G?).

(1.7.1)Proposition. Assume the situation of (1.7.0). Then the following hold:
(a) If G has finitely many orbits oiX, the same holds for thé-action onX.

(b) If S is any affine locally closed subvariety ¥ its inverse image in X
is affine and locally closed.

(c) LetS be asin (b). If, moreove§ is invariant under the action of a subtorus
T of G, soisS. If x is an attractive fixed point for thE-action onS, andx is a
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lift of x to X, theni is an attractive fixed point on the connected component of
S containingx.

(d) Assume the situation as in (a). If, moreover, ev@rgrbit in X admits an
attractive slice, then the same holds for

Proof. The first assertion is clear since the mmais finite. (In fact the inverse
image of aG-orbit in X is the disjoint union of finitely many;-orbits in X.)
Now we consider the second assertion.xet S — S denote the restriction of
the mapr. Then the morphism is finite, and hence affine. Sincgis affine,
it follows thatS is affine as well. ThaS is locally closed is clear.

Now we consider the third assertion. Clearly each connected component of
S is stable under the action @f. Let » denote a one-parameter subgroup chosen
as in (0.2). Then the action af on the ring of regular functions[S] defines
a non-negative grading such that the degree O component is one dimensional.
Sincek[S] is integral ovek[S], it has a non-negative grading and the degree 0
component is finite dimensional. This proves (c). WeSledenote the connected
component ofS containingi. Observe that the mag x S; — X factors
throughG x & — G x 7~1(S), an open immersion, followed by the map
G x 171(S) — X. The last map is obtained by base change from the smooth
mapG x § — X and therefore is smooth. This proves the last assertiona

(1.7.2)Proposition (i) Let 7 : X — X denote the normalization ofG-variety.
Let £ denote aG-equivariant local system on an opéhstable smooth sub-
variety of X and letZ = n*(£). ThenRx, IC%(X; L) = IC%(X; L) and
therefore

IHg (X L) = 1H (X: L)
for any G-stable closed sub-variety of X andY = 7~1(Y).

(ii) Assume thatX contains a dense orhitx and letr : X — X denote the
normalization ofX in the function field oﬂc(G/GS). Then

. (ICY(X)) = @dim(x) IC%(X; L,) and
X

TH} ;(X) = ?dim(x) TH (X5 L)

HereL, is the irreducible local system agix corresponding to the irreducible
charactery of GX/GS and the sum varies over all such characters. Moreover,
this decomposition of the local intersection cohomology is natural with respect
to locally closedG-stable subvarietieg of X andY = 7 ~1(Y).

(iii) In the situation of (i) or (ii), letS be an attractive slice iX at the fixed
point x under a subtorug. Let 7 ~1(x) = {%1, ..., ¥,} and letS = uS;, with
L
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S);l. denoting the connected componentbtontainings;. Leti, : ET xx —
T

ET>T<S, i : ET>T<)E,~ — ET);S)?" denote the inclusion maps. Then
i*ICT(S; L) = iqai;f’_ICT(g);i; L)

in the situation of (i), whereas
®dim(x) i*ICT(S; L) ~ gai;,ICT(Sm

in the situation of (ii).

Proof (i) Observe that the mapis birational. It follows readily thak, I CY (X;
L) = ICY%(X : L). By taking G-equivariant hypercohomology ok (with
supports int), we therefore obtain the isomorphism:

THE ,(X; £) = TH J(X; £)

This proves (i). Next we consider (ii). Lety : U = 7 1(Gx) — Gx de-

note the map induced by, and letQ denote the constant local system @n
Observe thatr. (Q) = @ dim(x) £, whereL, is the irreducible local system
- X

on Gx corresponding to the characterof G, /G°. ThereforeRn, 1CS(X) =
@ dim(x) IC%(X; L,). The remaining assertions in (ii) are clear by takéig
X

equivariant hypercohomology ox.
Now we consider (iii) in the situation of (ii). Consider the cartesian square
EGx(Gx8) —> EGxX
G T G
EGx(GxS) > EGxX
G T G

where the mag is induced byr. Therefore, by proper base change, one obtains
that

(1.7.2.1) #,(1C%(Gx8)) = ®dim(x) ICC(GxS; L))
T X T

(Here we have used, to also denote the pull-back of the local systémto
G x8).) Under the equivalence of derived categoiE¥s(G xS) ~ D’ (S) and
T T

D% (GxS8) ~ DT(S), the isomorphism in (1.7.2.1) corresponds to
T

(1.7.2.2) 7. (CT(S)) = @dim(x) ICT(S; L)
X
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where : ETxS — ET xS is the map induced by. Now the conclusion of
T T
(iii) will follow by applying base change to the cartesian square:

ETxn 1(x) —— ET xS
T T

| |
ET xx —— ETxS
T T

The argument in the situation of (i) is similar. (In the place of (1.7.2.1) ((1.7.2.2))
we obtainz, (ICYGxS; L)) = ICYGxS; L) (m.(ICT(S; L)) = ICT(S; L),

T T
respectively ). O

We will consider only the case of characteristic zero explicitly throughout the
rest of the paper.

2. Proof of Theorem 1

We will prove the first three statements of Theorem 1 first.Xet DS (X) and

let7 : EGxX — BG denote the obvious map. We will presently show that
G

R"m,.(K) is alocally constant sheaf &G for all n. Letzy : EHxX — BH,
H

ng : EGxX — BG andw : BG — BG denote the maps in (1.1.1) and

G
(1.1.2). Observe that factors ast o ng. By replacingK by Rng.K we may
assumeX is a pointi.e.EHxX = BH, EGxX = BG andr = 7. Now let
H G

y : I =[0,1] — BG denote a path; leF;, Fy and F1 denote the pull backs
underr over, 0 and 1 respectively . Now one obtains spectral sequences:

EY'(I) = H*(F1, H'(K)|r,) = BV (F1, K)F,),
Ey'(0) = H*(Fo, H'(K)|r,) = H'™™ (Fo, K|Ry),

Ey' (1) = H* (F1, H'(K)jr) = B (F1, Kiy).

Clearly the inclusions ofy and Fy in F; induce maps of these spectral se-
guences. Since the cohomology sheavek afre locally constant, (by choosing
the path to lie in a small enough open seBiF) and the fibrationr is locally
trivial, it follows that one obtains an isomorphism at thg terms and thereby
an isomorphism of the abutments. Thus, e&éh, (K) is locally constant.

Now it suffices to obtain the identification of the stalks of the above sheaf at
the base poinp in BG. We go back to the general case wh&rés no longer a
point.
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SinceRn.K = Rm,Rns.(K), we have

RnT[*(K)p = RnT_[*(RT[G*K)p = Hn(BH, RTL’G*K“;H)
= H"(BH; RT[H*(K|EHI>;X)) = Hy (X; K\EH;;X)-

The second isomorphism follows from the observation that thestrigja locally
trivial fibration with fibersB H. The third isomorphism is clear by observing that
that bothrs andzy are locally trivial fibrations with fibeX'. The equivalence
of categories between locally constant sheaves®6hand representations of
m1(BG) = G, now provides an action af on the stalks ofR"7,(K) that is
natural inK. Finally the Leray spectral sequence for the maprovides the
spectral sequence:

Ey' = H*(BG; R'm.(K)) = HI (X; K).
This spectral sequence degenerates _s{_l’ﬂde a finite group and provides the
isomorphisni (X; K) = (Hj (X; K))°.

The last statement in (iii) may be obtained as follows. SiAcacts trivially

on X, we obtainEGxX = BF x (EG°x X) and therefore an induced map
G GO
7 :EGxX — EG°x X. Now
G GO

H(X; K) = HY(BF; Rm.(K)) = Ho(X; RT.(K)).

Observe thatll*(BF; Rm.(K)) = Ho(X; K)f while H%o(X; R7.(K)) =
HEo (X K ). This completes the proof of (iii) in Theorem 1.

(2.1.0) Observe from the above proof that edh,(K) is a local system
on BG.

(2.1.1) It will become necessary to develop the techniques in (2.1.1) through
(2.2.5) in order to establish the last statement in Theorem 1. Establishing the
corresponding results in positive characteristics involves defining the derived
functor R, so that its stalks may be identified with the equivariant hypercoho-
mology with respect to the grouli. Therefore we leave this to the paper [J-4]
by the second author.

(2.1.2) Recall thatthe map : BG — BG is a fibration with fibetB H. If Q
is the constant sheaf G, thenR7,(Q) is a complex of sheaves BG. The
multiplicationQ®Q — Qinduces an associative pairingz.(Q) ® Rr.(Q) —
R7.(Q). This showsk7,(Q) is a sheaf of differential graded algebraspé.

(2.1.3) Let BiMod(BG; Rm,(Q)) denote the category of sheaves of bi-
modules over the sheaf of differential graded alge®ag Q) onBG. An object

in this category is a complex of sheavifson BG provided with (coherently)
associative pairings R7,(Q) ® M — M andM ® Rm,(Q) — M that make
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the obvious diagrams commute. (See [K-M] for details on differential graded
algebras and modules over them.)

(2.1.4) GivenK € D{(BG), the associative pairing® ® K — K and
K ® Q — K show thatR7,(K) belongs toBi Mod (BG; R7.(Q)).

(2.1.5) LetA[1] ® Q denote the normalization of the simplicial abelian
group given byn — A[1], ® Q. We will define two mapsf, g : K — K’
in BiMod(BG; R7,(Q)) to be homotopic if there exists amap: K @ A[1]®
Q — K’'sothatf = Hodpandg = H ody, withd; : K = K ® A[0]® Q —
K ® A1l ® Q,i = 0,1, being the obvious map. The associated homotopy
category is denote# Bi Mod(BG; R7,(Q)). The corresponding derived cate-
gory is obtained fromH Bi Mod(BG; R7.(Q)) by inverting maps that induce
isomorphisms on cohomology. Its full sub-category consisting of complexes that
are bounded below (and whose cohomology sheaves§ @guivariant) will be
denotedD, (BiMod(BG; R7.(Q))) (D¢ (Bi — Mod(BG; R7,(Q))), respec-
tively ).

NextletM, N in Df(BiMod(B(_}; R7,(Q))). Then there exists a spectral
sequence:

(221 Ey' = Sxt;,,Y{’i(RJ_T*@))(H*(M), H*(N)) = H T (RHom gz, (M, N)

If moreover at each pointof BG, H*(M); is afree module ovel* (R, @)=
H*(BH; Q), then the above spectral sequence degenerates;dne 0 for all
s > 0. The spectral sequence is established in [K-M] Theorem (7.3), Part V.

Next we define functors

(2.2.2) L7*: DS(BiMod(BG; R7.(Q))) — DS(BG)

by Lz*(M) = @-—;L;:-Q?Q))ﬁ_l(M)' The same definition yields a functor

L7* : Dy(BiMod(BG; R, (Q))) — D, (BG).

(See [K-M] part I1I for a definition of the above derived functors in a somewhat
more general setting.)

(2.2.3)Proposition. Assume in addition to the above hypotheses that the group
H is connected

() If K € DZ(BG), there exists a mapa*R(7.K) — K that is a quasi-
isomorphism and is natural iK .

(i) The functor R7, : DbG(BG) — Df(BiMod(B(_};Rﬁ*(@))) is fully
faithful.
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(i) If K, K’ € Df(BG), the map in (i) induces a quasi-isomorphism:
R, (RHom(K,K")) — RHom gz, @) (R7.(K), Rm.(K").
(The twoRHom denote derived functors of the appropriate internal Homs.)

Proof. Observe thal.7* is the left adjoint to the functoRm,. Therefore the
naturality of the map in (i) is clear. To show it is a quasi-isomorphism one
proceeds as follows. From the proofs of (i) through (iii) of Theorem 1 above,
it follows that eachR” 7, (K) is a local system oBG. Let x denote a point of
BG, letiz : ¥ — BG and leti; : BH — BG denote the corresponding closed
immersions. (Observe that the fiberfver any pointc of BG is isomorphic

to BH and that the sheavd®' . (K) are locally constant oRG. Therefore we
may in fact assume the poiiitis the base point of BG.)

LetLi* =i-': D,(BG) — Dy(BH) and

Ly
Lit =i7': D.(BiMod(BG; R7,(Q))) — Dy (BiMod(%; R, (Q)x))

denote the obvious functors. Finally lef : BH — x denote the projection in-
duced by . Now it suffices to show that the induced ngﬁ(Lﬁ*(Rﬁ*(K)) —
i-(K) is a quasi-isomorphism. One may readily identify the above map to be:
Laf(i;}(R.(K)) — i;1(K). Now iz }(R7.(K)) = (R7.(K))z = H*(BH;

K) by the proof of (i) of Theorem 1 whilé;l(K) is the restriction ofK to
BH, the geometric fiber ofr at x. In other words, we reduce to proving the
theorem in casé is replaced byH . In this case the naturality of the map in (i)
shows that it suffices to prove it whek is replaced by one of its cohomology
sheaves. These cohomology sheaves are constahHofsinceH is connected
and thereforeB H simply connected); therefore (i) is clear in this case. Now (i)
follows immediately from (i).

In order to prove (iii), it suffices to show that i < Df(BiMod(B(_};
R7,(Q))), thenHom(P, -) applied to the above terms is an isomorphism. (Here

Hom denotes thédom in the derived category)f(BiMod(BG; R7,(Q))).)
This follows readily in view of the adjunction between tRe&Hom rz, ) and

L
® (see [K-M] part V) and completes the proof. O
R7.(Q)

(2.2.4) GivenM e DS (BiMod(BG; R.(Q))), we define the dual aff to
be
R?—lomRﬁ*@)(M, RT_[*(Q))

This will be denOtECDRﬁ*(@) (M).
Now one may re-interpret (2.2.3) (iii) withk’ = D(Q) = Q as
(2.2.5) Dz, (R7.(K)) = R, (D(K))
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whereD(K) denotes the Verdier dual &f.

We may now complete the proof of statement (iv) in Theorem 1 as follows.
LetK € D,?(X) be as in the hypothesis of Theorem 1 andllet Rms.(K).

One may now identifyil" (B H; D(L))® with
H"(RT'(BG; R7.D(L))) = H"(RT (BG; Dz, (R7.(L)))

where the last isomorphism follows from (2.2.5). By definition, the last term
equalsH"(RI"(BG; RHom gz, (RT.(L), R7.(Q)). Taking X a point,G the

finite groupG and H the trivial subgroup, Theorem 1 (i) shows that the last
term may be identified wittH" (RHom gz, ) (R7«(L), R7.(Q)))°. Now the
degeneration of the spectral sequence in (2.2.1) applies to identify this with
(Hom'yy. 1.0, (H* (BH; L), H*(BH; Q)))C. SinceH*(BH; L) = H*(BH;
Rmg.K) = Hj, (X; K) this completes the proof of Theorem 1. ]

3. Filtration of global equivariant intersection cohomology by local
equivariant intersection cohomology

We begin the proof of Theorem 2 with the following.

(3.1) Proposition. Let X be aG-variety and letO be a closed5-orbit in X.
Assume that) admits an attractive slic8 atx, stable by a maximal torus, of
G,. Now O+ is aunion of connected componemtsX ’x. Equivalently,0: is
open and closed ix’~,

Proof. The normalizeiNg (T,) acts onX”* and onO’+. Moreover, the quotient
Ng(T,)/Cs(Ty) is afinite group.

Itis well known thatO”s = N (T,)x. (Indeed, leg € G suchthagx € O+,
ThenT, andg~17, g are maximal subtori of; . Thus, there exists € G, such
thatg='T,g = hT.h~1. Now gh € Ng(T,) andgx = ghx € Ng(Ty)x.)

It follows thatO’= is a finite union of closed orbits @f; (7, )°. Thus, it suffices
to check thaC (T, ) is the connected component ¥f+ throughx. Because
Cs(T,)°x is smooth, it is enough to check that the Zariski tangent spaces of
Cs(T,)°x and of X™+ atx coincide. For a schemiéand a point € Y, we denote
by 7,Y the corresponding Zariski tangent space. Because theGnapS —
X is smooth at(e, x), its differential Lie(G) x T,S§ — 7T.X is asurjective
linear T,-equivariant map. (Indeed, the differential of a smooth morphism is
surjective, as follows e.g. from [A-K] IV (4.5) and V (1.8)). Moreover, because
S is attractive, the fixed point s€f, S)’x consists of the origin. Thus, the natural
map Lie(G)"* — (7.X)™ is surjective. ButLie(G)™> = Lie((G™)?), and
T (X ™) is contained in(7; X) ™. This proves our claim. m]
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In the situation of (3.1), leT’ denote a maximal torus @f containing?, and
let W = Ng(T)/Cs(T)°, W, = Ng, (T:)/Cq,(T,)° denote the corresponding
Wey! groupsBy (1.5.1), we may identify/ *(BG) with H*(BT)Y andH*(BG,)
with H*(BT,)"~.

Let q, be the kernel of the restriction map*(BT) — H*(BT,); similarly,
let po be the kernel of the restriction map*(BG) — H5(O) = H*(BGy).
Sincethemapl*(BG,) — H*(BT,)isinjective and sincé/*(BG) identifiesto
H*(BT)Y, this identifiep» with the kernel of the restriction mag*(BT)" —
H*(BT,). Therefore

(3.2) po =q. N H*(BT)".

Lety : O — X denote the inclusion. Lef denote aG-equivariant locally
constant sheaf on an opénstable smooth sub-variety af.

(3.4) Proposition. In the above situation, the long exact sequenag-equiva-
riant hypercohomology

oo = HE(O; RY'ICY(X; L)) — HE(X; ICY(X; L))
— HL(X — O, ICO(X; L)) — - -

breaks up into split short exact sequences after localizing at thepigeal

Proof. Recall thatH*(BG) identifies with the subspace d¥-invariants in
H*(BT). More generallyHy (X; 1C%(L)) identifies with the subspace & -
invariants inH:.(X; 1CT (L)), by (1.5.1). Thus, our statement means that the
long exact sequence

+ = H(O; RYICT (X L)Y — H(X; 1CT(X; L)Y
(3.4.1)
— WX -0 1CT(X; L)Y — ---
breaks up into short exact sequences after inverting all elemehts(&7)" —
bo.
Letyr, : O - X, ¢ : (X —O) — X andn : X& — X denote
the inclusion maps. By the localization theorem (1.5.4), we have the following
isomorphisms:

H5(O, RY'ICT (X; £)q, = H; (O™, Ry ICT (X; L)),

Hi (X — O; ICT(X; £))gq, = HL((X — O)*; R$'ICT (X; £))q,,
H3(X; ICT(X; £))g, = HH (X5 Rp'ICT (X; £))g,-

Moreover, by (3.1) X+ is the disjoint union of the closed subséis— 0)% and
O™« Thus, the mapl} (O; Ry ICT (X; £)) — Hi(X; ICT (X; L)) isinjective
after localizing atq,; in other words, the kernelf of this map is killed by
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localizing atg,. To conclude the proof, it is enough to check thatthig BT)" -
moduleM " is killed by localizing atpe.

Letm € MY. We can findf € H*(BT) — q, such thatfm = 0. Letn
be the cardinality of the orbi# f and lete;(f), ... , e,(f) be the elementary
symmetric functions of thev(f) (w € W). Then eacte;(f) is in H*(BT)"
ande; (f)m = 0. Moreover, sincg” — e1(f) f* 1+ --- + (=1)"e,(f) = 0, it
follows that somez; (f) is not inpe: otherwise, we would havg” € pp and
thus f” € q,, a contradiction. O

RemarkThe results in (3.5) through (3.8) will show that the long exact sequence
above breaks up into short exact sequengdsoutlocalization at a prime ideal
as in (3.4). Clearly this would prove Theorem 2(i).

(3.5)Proposition. Assume the hypotheses of Theorem 2 and denoig by —
X the inclusion. Then we obtain isomorphisms

H*(BCG(T,)% i*1CC™°(X; £)) = H*(BT,; i*IC™ (X; L))
= H*(BT,) @ i*H*(IC(X; L)) = H*(BCs(T,)°) @ i* H*(IC(X; L))

These isomorphisms are equivariant for the natural actiti.oh H*(BC (T,)%
ijICC<?(T-*'>°(X; £)) and onH*(BCs(T,)?), and for an induced action ¥, on
PH(IC(X; L)).

Proof. The first and last isomorphisms are clear si@g&7,)°/ T, is a unipotent
group. The hypotheses of Theorem 2 imply tG&thas also only finitely many
orbits onX and therefore on the open denSestable subvariety/;. SinceX
is assumed to be equidimensional, all the connected componebtitsare of
the same dimension and each contains an open d&hsebit. By our hypothe-
ses,U; is the union of the correspondin@-orbits, all of which are also of the
same dimension. Lefx, denote one of these orbits. Now the local systém
corresponds to a representation of

11 (EGxGx,, x,) = m1(BG,,) = G,,/G° .
G (4

Then one sees by (1.2.3) thafs semi-simple as &-equivariant local system.

LetS be aslice ak. (See (0.2).) Recall that the mépx S — X is smooth;

thus, the induced ma@ xS %, X is smooth as well. Now th&-equivariant
T,

local system( pulls back to aG-equivariant local system on an opénstable
subvariety ofG xS. Since the representation of the corresponding equivariant
T,

fundamental gr)(()up is induced from the actionmaf EG xGx,, x,) and this
G
group is finite, this local system is also semi-simple as-aquivariant local
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system. Under the equivalence of categories betvxl@ﬁ(‘GxS) andD (S),

this correspondgo a semi-simpler’, equivariant local system on an opén
stable subvariety$, of S — x. We will denote this local system bgs. Since

BT, is simply connected, one may see that this local system restricted to each
connected component 6§, is also semi-simple (i.e. on forgetting the group ac-
tion). Since the map is smooth, one observes that(/ C° (X ; £)) corresponds

to IC™x(S; Ls) under the equivalence of categories betwééf'(G?S) and

D[ (S).

(3.5.1) In other words, if, : x — S denotes the inclusion, one may observe
thati*1C™T*(X; £) = j*IC™(S; Ls) in Dy(BT,).

Now consider the spectral sequence
Ey' =W (BT; H'G*IC™(X; £))) = W'Y (BT,; i*(IC™ (X; L))).

We will first prove that this spectral sequence degenerates. For this, one may
invoke (1.7.2) (iii) to reduce to the case whefds the constant local system
(specifically, one first normalizeX, obtaining a disjoint union of irreducible
normal varietiest;. Then one normalizes eadh in the function field ofG/ G0

whereG3; is open inX;.) Now (3.5.1) shows that we may replakeby S and
the equivariant intersection cohomology compleX’s (X; £) on X by the cor-
responding complexC’(S; Ls) onS. Therefore, in (3.5.2) through (3.5.10),
we will replaceX by S, and assume thdt is constant.

Next, let7,S be the tangent spacefoat x; then there exists &, -equivariant
closed immersion : S — 7T,S. Moreover, there exists an injective one pa-
rameter subgroup : G,, — T, such that the action d&,, on 7,S through
A has only positive weights. (See (0.2) and (A.1) for the definition and basic
properties of slices.) For simplicity, denot€G,,) by 7’. Now the quotients
Y = (S —x)/T"andP = (7,8 — 0)/ T’ exist and the latter is weighted pro-
jective spacesontaining the former as a closed subvariety. Moredvés also
equidimensional. Further, the map: S — x — Y is the restriction of the map
7 : T.§ — 0 — P, both with fibers isomorphic té,,. (We will refer to both
these maps a&,,-quasi-fibrations, for want of a better term.) The first Chern
class of theG,,-quasi-fibrationz exists as the class iH?(P) of a hypersurface.
To see this, observe thitis the Proj of a finitely generated graded algebra and
therefore there exists a positive integgrsuch that, for any positive integer
the shea®p (nno) is invertible and very ample. (See [Dolg].) Liet P — P be
the closed immersion defined B (n0), whereP” denotes the usual projective
space of dimensioV overk. Then the Hard Lefschetz theorem (as in [B-B-D]
Théoreme (5.4.10)) applies to the class of a hyperplari We will denote this
class bycy (7).
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Observe thafl, acts onY through the action of’, /T’ and the mapr :
S—x — YisT,-equivariant. Clearly the constdht-equivariant local systef@
on an operf,-stable subvariety af — x descends to the constmt-equivariant
local systen), on an operf;-stable subvariety, of Y. LetY,(i),i = 1,.
denote the connected componentg'pf (Observe that these are stable by the
action of7, and of the same dimension.) We defifie-€quivariant) local systems
@Y(i) ony, by@Y(i)lYo(j) equalsgym(j) if i = j, and is trivial otherwise.
Now @Y is the sum of the local syster@y(i) each of which is aimple local
systenony,.

If ICT(Y) (IC™(S — x)) denotes the equivariant intersection cohomology
complex onY with respect tdQ, (onS — x with respect taQ 5 respectively ),
then
(3 5.2)

(R, (ICT"(S —x))) = ICT(Y)if n=0,1ad is trivial otherwise.

perv

This follows from (A.3) in the appendix; he#,,,, denotes the-th perverse co-
homology. Moreover] CT(Y)= @, ICTx(Y; Q N, ICMH=E,IC(Y; Q @)

and each/ C(Y; Q (1)) is a mixed simple perverse sheaf (or rather a simple
perverse sheaf of geometric origin, in characteriftjcon Y and therefore the
corresponding perverse sheaf defined over a finite figldris (See (0.5), [B-B-

D] p. 136 and p. 163. The hypothesis (0.5) shows that, in positive characteristics,
the above intersection cohomology complex (vitiheplaced byQ,) is obtained

from the corresponding one defined over a finite field. Therefore the argumentsiin
[B-B-D] p. 136 apply in this case. In characteristic 0, the arguments in [B-B-D]
p. 163 enable one to reduce to the case of varieties defined over finite fields.) It
follows thatI C(Y) is alsopure.

One now obtains the following commutative diagram:

ET,x(S —x) ——> ET,xY
T, T,

pl lﬁ
id
BT, —> BT,

If Fe D,,T (S — x), Rp«F € D,(BT,) will denote the corresponding complex.
Next we show that there exists a spectral sequence:

ES' = R py(Hpy (RT(ICT(S = x)))) = H V' (Rp(ICT(S — x)))
For this we use the perversestructure to obtain a distinguished triangle:
(35.3) &I (Rm.(IC™(S — x))) = 4" (Rr . (IC™*(S — x)))

— H! (R (ICT™(S — x)))[—t].

perv
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The above spectral sequence is obtained by applipgto the above distin-

guished triangle. Sincg;"’ = 0 for ¢ different from O or 1 (see (A.3)) we obtain

a long exact sequence:
RN Rn—2p*(/H1

perv

(R, (ICT(S — x)))(—1)

Ucl(ﬂ)

er —* (HO

perv

(R (IC™(S —x))))
(3.5.4) — H"(Rp(Rr.(IC™(S — x))))

N Rn—1p>‘< (Hl

perv

(R (IC™(S — x))))(=1)

Ucl(n) Rn+l (HO

perv

(R, (IC (S = x)))) = -~

Moreover, for any geometric poigtof BT, and for any integet:, we have the
identifications:

R™ —* (%n

perv

(R (ICT(S — x))))e = R" p.(IC(Y))e
(3.5.5) =JH™(Y) (n=0,1),
R"p,(IC™™(S — x))e = TH™(S — x).

The first follows from (A.3) and the second is clear. Therefore, on taking stalks
at, the long exact sequence in (3.5.4) providesWang exact sequengsee
[K-L] p. 194):

UCl(ﬂ)

(35.6) --- — IH"?(Y)(-1) — IH"(Y) - IH"(S — x)

— TH"NY)(=) 28 TH YY) — -

The Hard Lefschetz theorem in intersection cohomology shows that the first
and last maps are injective for all< dimY = dimS — 1. Therefore, the long
exact sequence in (3.5.4) breaks up into short exact sequencesifer dim Y.

In particular it shows that for alt < dimY,

(35.7) R'p.(IC™(8 = x)) = H"(Rp.(RT.(IC" (S — x))))

isacomplementto the image ofthe mag () i.e. inthe above rang&p.(1 C™x
(S — x)) isthe primitive partof R" p.(1C”x(Y)) for the action ofc1 (7).

Observe further tha#{" (1C*(S)), = 0 for alln > dimY. (This follows
from the axioms of intersection cohomology, see (1.4.4)(ii).) One may observe
exactly as in [K-L] p. 194, that one obtains the isomorphism for all (geometric)
pointsé € BT,:

(358) R'p.(IC™(S —x))e = IH"(S—x) = TH"(S) =H"(IC(S)).,

foralln <dimY.
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Next recall thak is a fixed point for thel, -action onX.. Therefore (1 C(S))
is a complex inD, (BT,) whose cohomology sheave (i*(1C*+(S))) are con-
stant onBT,. Similarly Rp, 1C™+(S — x) andR p, IC™*(Y) belong toD,(BT,).
The constant sheaf aBT, with stalks isomorphic t6{" (i*1C(S)) is H"(IC*x
(S)),. Therefore, combining (3.5.7) and (3.5.8), we obtain the identification:

H(i*ICT(8S)) is the primitive partof R" p..(ICT(Y)).

Now consider the cohomological functér — H*(BT,; F), D,(BT,) —
(abelian groups) obtained by taking the cohomology @f with respect to the
complexF.According to [De] Theorem (1.5) (see (1.5.2)), the spectral sequence:

(3.5.9) Ey' = H*(BT,; H'(F)[s]) = H*(BT,; Fls +t])

degenerates whehR = Rp,IC"<(Y). Moreover the differentials are all trivial.
Therefore one may conclude that the differentials in the corresponding spectral
sequence fof = i*(1C"<(S)) are also trivial and that it degenerates. Thus, one
obtains the identification:

(3.5.10 H*(BT,; i*(IC™(S))) = H*(BT,) @ i*H*(I1C(S)).

In view of (1.7.2) (iii) the last identification holds with the local syst€min the

place of the constant local system. Now (3.5.1) shows that the same isomorphism
holds and the spectral sequence in (3.5.9) degenerates Wherthe original
variety and with the local systefin the place ofZs.

It follows from Theorem 1 that there exists an action of the Weyl gragyp
on H*(BT,; K) for any K € D,°"(pr) and that this action is natural i.
Therefore there exists an action @f. on H*(BT,; 1, (IC*(X; L£)),) that is
natural inm. It follows that theW,-action is compatible with the differentials of
the spectral sequence in (3.5.9). Since the above spectral sequence degenerates,
the isomorphism of the abutment wih£>" is one of W,-modules.

To complete the proof of Proposition (3.5), we must show that there exists an
action of W, oniiH*(I1C(X; £)) such that the second and third isomorphism
of this proposition are equivariant. But this results from the following standard
result below withA = H*(BT,), M = H*(BT,; i*H*(IC™(X; £))) and
V=iHUCX; L))

(3.6) Lemma. Let A be a positively graded-algebra with an action of a finite
groupF and letM be a positively graded-module endowed with a compatible
action of F. If the A-module M is free, then there exists a gradédstable
subspacé’ of M such that the natural map® V — M is an isomorphism.

Proof. Let A*™ be the maximal graded ideal @f. Consider the surjectivef -
equivariant mag : M — M/ATM. SinceF is a finite group, there exists a
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gradedF-stable subspace of M which is mapped isomorphically td /A* M
by p. ThenA® V — M isanisomorphism, by the graded Nakayama lemrma.
m|

Remarks(i) Observe that exactly the same proof holds in positive characteristics
by replacing the constant she@fwith Q,.

(ii) The existence of the Wang exact sequence as in (3.5.6) is stated in [K-L]
p. 194 without proofs.

(3.7) Corollary . Assume the hypotheses of Theorem 2. Then we obtain the
isomorphisms: (i)
H*(BNg(T,); Ri\ 1CNe")(X; L))

= H*(BNG(T); H*(Ri, ICVo(X; L))

= (H*(BCo(T)% H*(Ril 1CST° (X £))™s

= (H*(BT.; H* (Ri, IC™(X; £))™
and
(iiy ~ H*(BT,; Ri‘IC™(X; L)) = H*(BT,) ® H*(Ri: IC(X; L)).

Proof. Recall that
Ri.ICN")(X; £) = DitDICN " (X; £)) = Dit(1CN ™ (X; £Y)[2d])
= pit(IcNe"(X; £Y))[—-2d]
whered is the dimension ok . We apply Theorem 1 (iv) witk = i*1CNoT¥) (X;
LY), G = Ng(T,) andH = Cg(TX). It follows by (3.5) that the hypothesis that
H*(BCX(T,); K) be a free module oveld*(BC2(T,)) is satisfied. Next recall
thatC2(T,)/ T, is unipotent. Therefore one obtains the isomorphism
H*(BCA(T,); K) = H*(BT,; K)).
Thus: '
H*(BNg(T,); Ri.1CYe ™) (X; L))

= H*(BNg(T,); D@F1CNe")(X; £Y)[2d]))
(3.7.1)
= (Homp«pr,))(H* (BT i*IC™(X; £Y)[2d])); H*(B(T,)))"*

= (Hompg+pr,) (H*(BT,; H*GFICT™(X; £LY)[2d])); H*(BT,))"*.

Observe that the dualizing sheaf MG(T*)(x; Q) is in fact the constant sheaf
Q. Moreover the complext 1 CV¢™~)(X; £V) has locally constant cohomology
sheaves oB N (T;). Therefore one may readily obtain the quasi-isomorphism
D(H* i 1CN T (X; L)) [—2d] = HH (D ICN T (X; £Y)[2d)))
= H*(Ri ICN (X L)).
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Now we apply Theorem 1 (iv) wittG = Ng(T,), H = Cg(Tx) and K =
H* (¥ 1CNe T (X; £Y))[2d] (observe that this applies here since
H*(BC2(T,); H* (X ICT(X; L)) = H*(BCA(T,)) @ H* (i ICT(X; L))
to obtain:

H*(BNg(T); H*(D(@:1CNe")(X; LY))[2d]))
(3.7.2) = H*(BNg(Ty); D(H*(i*1CNeTO(X; £V))[2d]))

= (Homp+sr,) (H" (BT H* (i3 1C™ (X; £Y)[2d)); H*(BT))™
Since the termsin (3.7.1) and (3.7.2) are the same we obtain the isomorphism in
(). The proof of (ii) is similar and is skipped. O
Now we are in a position to complete the proof of Theorem 2.

(3.8) Proof of Theorem 2Let O be a closed5-orbit in X with inclusion map
¥ O — X and let£ denote aG-equivariant local system on the union of all
openG-orbits. Consider the long exact sequencéfdéf BG)-modules:

- — H5(O; RY'ICY(X; L)) — HE(X; ICY(X; L))
(3.8.1)
- HL(X —O; ICY(X; L)) — -

We will show that this sequence splits into short exact sequences and that the
H*(BG)-moduleH: (O; Ry I1CY(X; L)) is isomorphic to(H*24MO) (BT, ;
H*(RiLIC(X; £))))Wr for x € O. Then our assertion will follow by induction

on the number of orbits.

Next we observe that
JERYICE(X; L) = RiLICS(X; £)[2dim(0O)]
wherei, : BG, = EG,xx — EGxX andj, : EG, xx — EGx(G/G )
Gy

denote the obvious inclusions. (To see this recall the equwalence of derived
categories:

D% (x) —2 D9*G(G x x) «—=— DY(G/G,)

wherep; : G xx — xandp, : G xx — G/G, are the obvious maps. Then the
complex inD%: (x) that corresponds t8v'1CC (X; L) is j*(RY'ICP(X; L)).
(Use the fact the map, has a (non-equivariant) section.) Next observe jhat
aregular closed immersion of codimension diM and the cohomology sheaves
of Ry'(ICY(X; £)) areG-equivariant and hence locally constant@nThere-
fore j*(Ry'1CY(X; L)) identifies canonically wittRi' 1 C% (X; £)[2 dim(O)].
See also (1.4.4).)



Vanishing of odd dimensional intersection cohomology I 427

Therefore (see (1.6.2) witH = G,) one obtains the isomorphism:
(3.82) HL(O; RY'ICY(X; £)) = H29MON(BG,; RiL1C% (X; L)).
By (1.5.1)(ii) one may identiffi* (BG,; Ri11CC%*(X; £)) with

H*(BNg(Ty); Ri\1CNeT)(X; £)) = H*(BT,; Ri\ 1C™(X; £))"~.
Moreover (3.7) shows that one may identify the latter with
H*(BT,; H*(RiLIC™ (X; L))" = (H*(BT,) ® T H*(X; L)".
i.e. we obtain the identification:
TH} (X; £) = Hg(O; RY'ICC(X; L))
= (H*P29™ONBT,) ® TH}(X; L))"

In order to prove the first statement of the theorem, observe that it suffices to
show that the map

HE(O; RY'ICO(X; L)) — HE(X; ICY(X; L))
is injective. For this, observe that, by (3.4), the map
HE(O; RYTCY (X5 £))po — HE(X; ICY(X; L))o

is injective. Now the commutative square

HE(O; RY'ICO(X; L)) —— HE(O; RY'ICO(X; L))po

l l

HL(X; ICC(X; L) ——  HE(X;ICY(X; £))py
shows that it suffices to check injectivity of the map

HE (O; RY'ICY (X; L)) — HE(O; RY'TICE (X L)) po-
In view of the above observations, this map may be identified with the map

HH2dmO) (BT H*(RiLICT (X L))
— H 2OV (BT H*(RiVICT (X; L))

Now the commutative square
H*(BT,; H*(RiLICT(X; L))" —— H*(BT,; H*(Ri: ICT(X; c))),‘,f“(;

l l

H*(BT,) @ H*(Ri\IC(X; L)) —> (H*(BT,) @ H*(Ri: IC(X; L)))q,
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shows that the top row is indeed injective. (Observe that the right vertical map
exists sinceH*(BG) — po is contained inH*(BT) — q,. The left vertical map
and the bottom map are clearly injective. Therefore so is the top horizontal map.)

It remains to obtain the second statement of Theorem 2.W®tenote
Ngo(T,)/Cgo(T). Now W? is the kernel of the obvious majy, — G./GY.
This map is surjective: indeed, §f € G,, thengT,g~! is a maximal torus of
GY. Thus, changing in its G%-coset, we may assume thglf, g~ = T, i.e.g
normalizesT,. It follows that we obtain an exact sequence

1 W > W, > G,/G%— 1
of groups. Therefore,
(H*(BT,) ® I H*(X; L))" = (H*(BT,; H*(Ri 1CT (X; £)))"") %/
~ (H*(BG%; H*(RiLIC (X; £))6+/

where the first isomorphism follows from the short exact sequence above, and
the second one from Theorem 1 (i) wih= Ngo(Ty), H = Cgo(Ty), X = x

andkK = H*(RichCNGE*(T’”)(X; £)); one also needs to use the isomorphism
H*(BGY H*(RiLICO¥(X; £))) = H*(BNgo(Ty); H*(RiL1CN™ (X 1)),

a consequence of (1.5.1). Finally, sinB&° is simply connected, we have an
isomorphism

H*(BG% H*(RiLIC% (X; £))) = H*(BG®) ® IH*(X; L).
And this isomorphism is equivariant fét, / G° by Lemma (3.6).

Proof of Corollary 3 The first assertion is clear. Now the second assertion is
also clear sinceH*(BGS) is trivial in odd degrees. To obtain the third assertion
one proceeds as follows. One may identif§f* (x) with D, *™ (x) and one may
replace the sheave®*(Ri'IC% (X; £)) with H*(Ri\ICT>*Fx(X; L£)). Now
Theorem 1 (jii) withX replaced by the point, K by H*(Ri' ICT>*Fx(X; L))
andG by T, x F, applies to complete the proof of Corollary 3. O

4. Spherical varieties and orbit closures in flag manifolds

(4.1) A G-variety X is sphericalif G is a connected reductive group aid
contains a dense orbit of a Borel subgragipf G. (Usually spherical varieties

are assumed to be normal but we do not require this; see Lemma (4.2) below.)
For G atorus, we see that any toric variety is spherical.
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Given a spherical variety, letz : X — X denote the normalization. Then
the G-action onX extends to an action ok making it a spherical variety and
making the mapr equivariant. Recall that any spherical variety contains only
finitely many G-orbits; as a consequence, it contains only finitely many fixed
points of a maximal torug of G.

(4.2)Lemma. Let X denote a spherical variety and l2tenote a local system on
the openG-orbit. Let : X — X denote the normalization and tet (L) =

Let IC(X: L) (IC(X; £)) denote the intersection cohomology complexXof
with respect tol (of X with respect tol, respectively ). Then the intersection
cohomology sheavég" (1 C(X; £)) vanishfor all odd: if and only if the sheaves
H"(IC(X; L)) vanish for all oddh.

Proof Recall from (1.7.2) (i) thaRx=,(IC(X; £)) = IC(X: £). Now consider
the Leray spectral sequence:

Ey' = Rr,H' (IC(X; L)) = RMm,(IC(X; L)) = HY (Rm, . (IC(X; £)))
= HT(IC(X; L)).

Sincer is a finite map,E;" = 0 for all s > 0 in this spectral sequence;
therefore one obtains the isomorphisnH' (IC(X; £)) = EY' = E% =
H!'(IC(X; £)). Now the lemma follows readily. O

(4.3.1) Next we review the local structure of spherical varieties. By the above
lemma we may assum¥ is a normal spherical variety. Now we recall the
following from [Br-1] p. 399. Letx ¢ X; choose a Borel subgroup of G such
that the orbitBx is open inGx. Set

(4.3.2) X ={ye€ X | By D Bx}.

ThenXjp, is affine, B-stable and Zariski open i, and X, N Gx equalsBx.
Set

(4.3.3) P={geG|gXp: = Xp:}

ThenP is a parabolic subgroup ¢f containingB; let R, (P) denote its unipotent
radical. Moreover, there exists a Levi subgrdupf P, and arnL-invariant closed
subvarietyX of X, containingx, such that

(4.3.4) the maR,(P) x ¥ — Xp,, (g, x) — g.x is an isomorphism.

Then X is an affine spherical-variety that meet&;x along Lx. Finally, the
isotropy groupL, contains the derived subgroupbfin particular,L, is reduc-
tive. Thus, we can write

(4.3.5) y=Lxk§
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whereS is a L,-spherical affine variety containingas the unique fixed point,
andL x%+ S denotes the quotient df x S by the diagonal ,-action. Then the
natural mapl. x** S — L/L, = Lx is a fibration with fibetS. It follows that
Sis aslice toGx atx for the B-action onX. BecauseX is normal,X andS are
normal as well.

(4.4) Next we recall that any spherica@lvariety X admits an equivariant
resolution of singularities, i.e., there exists a smc@tharietyf( together with
a proper birationat;-equivariant morphismr : X — X. Then theG- -variety
X is also spherical; if moreoveX is complete, we may arrange so thatis
projective.

(4.5) Proposition. If X is a complete spherical variety afids a G-equivariant
local system on the ope@i-orbit of X, then/ H"(X; £) = 0 for all oddn.

Proof. We will first use (1.7.2) (ii) to reduce to the case of the constant local
system. We may first assume tiis normal by (4.2). Next leGx, = G/G,,
denote the ope@-orbitin X . Let X denote the normalization &f in the function
field k(G/GY ). By (1.7.2)(ii)

[H"(X) = &dim(x) TH" (X, L)
X

for all n, where the sum on the right hand side is over all the irreducible characters
of the finite groupG,./ G°. Thus, it suffices to considef with the constant local
system.

Next, letx : X — X denote aG-equivariant resolution of singularities,
where X is projective. Then, sinc& acts onX with only finitely many fixed
points, we havé{"(X) = 0forall oddx. (This follows e.g. from Theorem (1.5.3)
since the the left-hand-side of (1.5.3.*) is nd# (BT) ® H*(X).) Now the
decomposition theorem in intersection cohomology shows Eii#t(X) is a
summand of{" (X) for anyn. The latter is trivial for all odd:; this completes
the proof of the Proposition. O

(4.6) Lemma. Let X be a spherical variety; be aG-equivariant local system
on the operG-orbit and letx € X be a fixed point of a maximal torus. Then
the stalks ak of the cohomology sheavés$' (IC(X; £)) vanish for all oddz.

Proof. By Lemma 4.2, we may assume thats normal. Thernx admits an open
G-stable quasi-projective neighborhoéd (see [Su]). Thus, we may replace
X by the closure ot/,, and assume thaf is projective. Now we conclude by
Theorem (1.5.3) applied t6" in the place ofZ, together with Proposition (4.5).
(Observe that the fundamental group of the open aebil;; x,) acts on the stalks
of £ through its image iml(EG>G<Gx{,) which is finite. Thereforel is semi-

simple as a local system, and Theorem (1.5.3) applies.) O
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(4.7) Proof of Theorem A\e argue by induction on the dimensionXof So we

may assume that the theorem is true for all spherical varieties of strictly smaller
dimension. Moreover, in view of (4.2), we may assume fias normal Now,

if x is fixed byG, thenH"(I1C(X; L)), = O for all oddr, by Lemma (4.6).

The G-equivariant local systerd restricts to aP-equivariant local system
on a P-stable open subvariety df . Under the isomorphisms in (4.3.4) and
(4.3.5), this corresponds to dn-equivariant local systemi s on the operni,-
orbit onS. (Observe that the isomorphism in (4.3.4)Yisquivariant, wherL
acts on the left hand side by, s) = (lul~*,1s),l € L,u € R,(P) ands ¢ X.)

If x is not fixed byG, then dimS) < dim(X) and (4.3.4), (4.3.5) imply that

(4.7.1) HYIC(X; £)x = H'IC(S; L&)

for all n. Now we conclude by the inductive hypothesis in this case. O

In the rest of this section we considie orbit closures of symmetric sub-
groups in flag manifolds

(4.8) LetG denote a connected reductive group and ke¢ an automorphism
of ordertwo of the algebraic grou. Let K denote the fixed point subgroup
of 6 and letB denote a Borel subgroup ¢f. Now K acts on the flag manifold
G/B. It follows from [Sp] and [M-S] that the hypotheses of Theorem 2 are
satisfied by the closures of th&-orbits onG/B. The main result of this section
is that the global odd dimensional intersection cohomology groups of these orbit
closures with respect to the constant local system are trivial. Now one may
apply Theorem 3 (ii) which provides the vanishing of an invariant part of odd
dimensional intersection cohomology sheaves.

(4.9) First recall thak need not be connected in general; by a theorem of
Steinberg K is connected iz is semi-simple and simply connected (see [St].)
The following are now standard examples of the above situation.

ExampleqSee [R-S] section 10.)

(4.9.1) LetG denote a connected reductive group & Borel subgroup
of G. Now letG = G x G with the involutiond interchanging the two factors.
ThenK = G and, by the Bruhat decomposition, tkeorbits onG/B x G/B
are parameterized by the Weyl group®fIn this case each stratum has a fixed
point for the action of a maximal torus & and therefore the theorem in (1.5.3)
applies.

(4.9.2) LetG = GL, and letd be defined by (g) = ‘g~*. Now the fixed
point group off is the orthogonal group,.. We may also leG = PGL, and
let® on PGL, beinduced by the involutiof onGL,.

(4.9.3) LetG = SL, and letd be defined by (g) = 'g~1. Now the fixed
point group of9 is the special orthogonal groufo,.
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(4.9.4) LetG = SL;, and letJ ¢ G be defined by/(e) = —e,,; and
J(€.i) =¢€,i =1,..,nwheree, ..., &, is the standard basis &f". Define
6 by 6(g) = J('g)~1J 1. Now the fixed point grouik is the symplectic group
SPZn-

The following result is a consequence of [R-S] Theorem 4.6.

(4.10) Proposition. Let © denote the closure of K-orbit in G/B. If O is not
closed, then there exists a minimal parabolic subgrBup B (P # B) and a
K-orbit closureO’" C O such that

(i) O =717 (O")) and
(i) the mapn’ = 7|0’ : O’ — n(O') is generically finite,

wherer : G/B — G/P is the projection. Them|© : O — 7(O)) is a
projective line bundle. O

(4.11)Theorem. Let© denote the closure of&-orbitin G/B. Now I H" (O) =
0 for all oddn.

Proof. We will prove this theorem using ascending induction on the dimension
of the orbitO, so that the induction starts with a closed oitldentify O with

K /(K N gBg~') for someg € G. Because) is projective andB is solvable,

(K N gBg~1)%is a Borel subgroup ok°. Thus,O is a finite union of disjoint
copies of the flag manifold ok °; therefore,l H"(©)) = H"(0O) vanishes for

all oddn.

Next consider & -orbit closure® in G/B such that for all orbit closure8’
properly contained i0, I H"(O') = 0 if n is odd Now choose an orbit closure
O’ as in (4.10). Observe that(O) = 7(0) = 7(O') = 7(O’) and therefore
7(0) = 7 (O).

Consider the proper, generically finite map: O’ — 7(@’). Nown’ (0
= O andx 7w ’*(Q) is a K-equivariant local system on(®). Let IC(O")
(IC((O); m *n/*@))) denote the intersection cohomology complex @h
obtained by starting witl on O’ (on 7(O') obtained by starting withr 7 Q
onx (0", respectively.) The decomposition theorem in intersection cohomology
showsthal C (7 (O'); "' (Q)) isadirectsummand @t L(IC(O; 7 (Q))).

However the trace magp *7[’*(@) — Q shows that C (7 (0")) is a direct sum-
mand of/ C (r (0"); 7', w"* (Q)). It follows that! C (r (0")) is a direct summand
of Rn',IC(O'; 7" (Q)), whence

[H"((®")) is a direct summand dfH" (O’) for all .

Sincel H"(O') = 0 for all oddn, it follows that/ H" ( (©')) = 0 for all oddn
as well.
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Next recall from (4.10) thaD = n—_l(n(@’)) is a projective line bundle over
7(O"). Therefore it follows thaf H"(O) = 0 for all oddn as well. O

To complete the proof of Theorem 5, we now apply Theorem 2 to the closure
of a K-orbit in G/B. Then the hypothesis on the existence of attractive slices is
satisfied by [M-S] (6.4). Moreover, each stabilizer is the semi-direct product of
a connected solvable group and a finite group, as shown in [Sp] (4.8). Therefore
Corollary 3 completes the proof of Theorem 5. O

Appendix

Now we return to the setting of (0.3) and (0.4).

(A.1) Lemma. For a torusT acting on a varietyX with a fixed pointx, the
following conditions are equivalent:

() x is attractive, that is, there exists a one parameter subgro, — T
such that, for any in a Zariski open neighborhood ofwe have lim_g A(¢)y =
X.

(i) The weights ofT in the Zariski tangent spacg X are contained in an
open half space.

Moreover, if (i) or (ii) holds, then: admits a unique open affirie-stable neigh-
borhood inX, and the latter admits a closed equivariant embeddingfinka

Proof. BecauseX is locally linear,x admits an open affin&-stable neighbor-
hood inX. To prove the equivalence of (i) and (ii), we may replacdy this
neighborhood, and assume thatis affine. ThenX admits a closed equivariant
embedding into & -moduleV'.

Now we will prove that (i) implies (ii). Indeed, (i) implies thatis contained
in the sum of all positive eigen spacesioffor the induced action dk,,). Thus,
G,, acts with negative weights on the maximal idealXoét x, and (ii) follows.

Next we will prove (ii) implies (i). LetA be the algebra of regular functions
on X and letm be the maximal ideal oA associated witlr. Then there exists
a one parameter subgroupsuch that all weights ofs,, in m/m? (the dual
of 7, X) are negative when evaluated anLet gr m be the direct sum of the
m" /m"*+1 over all positiven. Then the weights ofr m are negative, too. Buk
is isomorphic taer m as ar -module, becausE is linearly reductive. It follows
that lim, .o f(A(¢#)y) = O forall f € m andy € X. This implies (i).

Now we consider the last assertion: L&t be the set of aly € X such that
lim,oA(t)y = x. ThenX, is contained in any opefi-stable neighborhood
of x in X. If moreoverU, is an affineT -stable neighborhood, thexi, = U,
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(otherwiseU, — X, is closed and -stable, hence contains a closeerbit; but
this is absurd because dltinvariant regular functions ofi, are constant.)

So we may assume that= X,. Then the algebra of regular functions on
X is negatively graded, by the actioniafChoose & -stable complemen¥ to
m?in m. ThenM generates the algebra(by the graded version of Nakayama’s
lemma). Thus, the corresponding morphi&m— M* is a closed immersion.
This morphism isT-equivariant, and/ is isomorphic tan/m? whenceM* is
isomorphic to7, X. O

(A.2) Let G,, act linearly on an affine spac®” with positive weights. Now
the geometric quotientA” — 0)/G,, is aweighted projective spacaghich is a
rationally smooth variety (see [Do] (2.3.6) for example). We will denote this by
P. The quotient map’ : A" —0 — P has fibers all isomorphic t6,,. Moreover
one obtains a commutative square

A" —0 2 prt
(A.2.1) ¢/l l‘”/
A0 2 P

where the mapg’ andy,’ denote taking the quotients with respect to a suitable
finite group.

Now let Y denote a closed sub-variety Bfand letY = P"1xy, §' =
P

(A" —0)xY andS’ = (A" — 0)x S denote their inverse images by the maps
P P

-~ =/ ~
7’ and the composition’ o ¢’. Let S = S’ (§ = §') denote the closure &f (S,
respectively ). We now obtain another commutative square:

(A.2.2) ¢l P,
S—0—"—7Y

(A.3) Proposition. Assume the above situation.
(i) Now R*"m(Q) = Qif n = 1,2 andR"n,(Q) = Qif n =0, 1.

(i) Let £ denote a local system on an open smooth subvariely arid let
Lg denote the pull-back of to an open smooth subvariefyg of § — 0. Let
IC(Y, £L)andIC(S—0, Ly) denote the corresponding intersection cohomology
complexes. Then

H  (Rm(IC(S —0; L)) = IC(Y; L)if n=1,2and

perv
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H:, (R, (IC(S—0; L) =1C(Y;L)ifn=0,1

perv

whereH{”  denotes thperverse cohomology objedtsomputed using the per-

verset—s{tlructure ory).

Proof. The first statement is clear since the fibers of the mage isomorphic
to G,,. Now we consider the second statement. Ldte defined on the open
subvarietyYy of Y. Let £ (£;) denote the pull-back of to an open smooth
subvarietyY, of ¥ (S of § — 0, respectively ). (We may assume thatis the
quotient of Yy and S is the quotient ofSy by the finite groups in (A.2.1).) We
will denote by : Yo — Yo andey : So — So the corresponding finite maps.

Let IC(Y; L) and IC(S — O; Zg), denote the corresponding intersection
cohomology complexes. Now observe that the Migp smooth. Therefore
(A.3.1) FIC(Y; L) =1C(S —0; L3).

Now we applyRm o ¢, = Rm o Ry = Ry o Ry = ¥, o R, to both sides of
(A.3.1). By the projection formula:

(A.3.2) RH(IC(S —0; L3)) = IC(Y; E)%Rm(@)

The distinguished triangle
IC(Y; £)®T1Rm(Q) — IC(Y; £YQRmM(Q) — IC(Y; L)®T-2Rm(Q)
Q = Qe = Q =

provides us with a long exact sequenceémnverse cohomologysing which one
readily computes

(A.3.3) 12, ,(RF(IC(S — 0; L)) = IC(Y; L) if n = 1,2 and is trivial
otherwise.

Observe that), and ¢, aret-exact, and therefore preserve perverse objects.
Therefore

H oy (RM,(IC(S — 0; Lg))) = H

perv

(Y RT(IC(S — 0; L3)))

n
perv

(A.3.4) L ~
=¥ (ICY; L) = IC(Y; Yo.(L))

if n =1, 2 and is trivial otherwise.

Now the local systemyy, (L) = Yo« (g (L)) equalsC @ L' for some other
local system.’. This follows from the observation that the composition—
Yo. (W (L)) — Lis the identity. Similarlygo.(L£3) = do.(95(Ls)) = Ls D L
whereL? is another local system o$y. Therefore

G (IC(S = 0; L)) = IC(S — 0; ¢o. (L5)) = IC(S — 0; Lg) ® IC(S; L)
and
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IC(Y; Y0.(L) = IC(Y; L) ® IC(Y; L).

Now the left hand-side of (A.3.4) becoméé;erv(RmIC(S —0; L) @
Hpery (RMIC(S — 0; L5)) while the right hand side of (A.3.4) becombS(Y';
LYBIC(Y; L) forn = 1, 2. Since the perversestructure on the smooth stratum
is the usuad-structure and the projection formula shows tRat(/ C (S—0; Ls))
agrees withl C(Y; £) ® Rm(Q) on the smooth stratum, we may conclude that

My (RTIC(S — 0; Ls)) =IC(Y; L) forn =1, 2 andis trivial otherwise.

This proves the second statement fot,. The second statement f&, now

follows by taking Verdier duals. ]
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