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1 Introduction

To a large extent, algebraic representation theory of Lie algebras, algebraic
groups and related finite groups deals with finite dimensional algebras which
are cellular or quasi—hereditary. Group algebras of symmetric groups and
their Hecke algebras are known to be cellular as well as various general-
izations (e.g. Brauer algebras, cyclotomic Hecke algebras, Temperley—Lieb
algebras, partition algebras). Several of these algebras also have been used
in other contexts like topology (invariants of knots or manifolds) or statisti-
cal mechanics. Schur algebras associated with semisimple algebraic groups
in any characteristic and blocks of the Bernstein—Gelfand-Gelfand cate-
gory O associated with semisimple complex Lie algebras are cellular as
well, but they also satisfy the stronger condition to be quasi—hereditary. A
quasi—hereditary structure comes both with desirable numerical properties
(decomposition matrices are square matrices, the number of simple mod-
ules can be read off from a defining chain of ideals) and with homological
structure (finite global dimension, vanishing results on certain cohomol-
ogy groups, stratification of derived module categories, existence of 'tilting
modules’ and derived equivalences, possibility to define 'Kazhdan-Lusztig’
theory), and also there is a categorical definition (which cannot exist for cel-
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lular algebras, see [8]). Many cellular algebras, in particular Brauer algebras
and partition algebras, are known to be quasi—hereditary for some choice
of parameters and not quasi—hereditary for some other choice (typically 'at
zero’).

The subject of this note are the following problems arising from this
situation.

Problem 1. How to characterize among the cellular algebras the quasi—
hereditary ones by a structural property?

Problem 2. How to characterize among the cellular algebras the quasi—
hereditary ones by a numerical property?

Problem 3. Given a cellular algebra with a cell chain of ideals, how to
decide whether it is quasi—hereditary?

Problem 4. Determine precisely for which choice of parameters a Brauer
algebra or a partition algebra is quasi—hereditary.

We give full answers to these problems. More precisely, problem 1is an-
swered by the equivalence of (a) and (b) in 1.1 below, problem 2 is answered
by the equivalence of (a) and (c), problem 3 is answered by the equivalence
of non—(a) and non—(e) in the more technical Theorem 3.1 (which extends
Theorem 1.1 by adding another two equivalent statements). Problem 4 is
answered by Theorems 1.3 and 1.4, which are applications of 3.1.

Theorem 1.1 Let &k be a field andA4 a cellular k—algebra (with respect to
an involution:). Then the following are equivalent:

(a) The algebrad is a quasi—hereditary algebra.

(b) A has finite global dimension.

(c) The Cartan matrix oA has determinant one.

Given ak—algebraA, it may be difficult to show thatl is not cellular
since the definition involves the choice of a basis. Our proof of Theorem 1.1
provides us with an invariant of cellular algebras as follows:

Proposition 1.2 Let £ be a field andA a cellular k—algebra. Then the
determinant of the Cartan matrix of is a positive integer.

A more detailed version of Proposition 1.2 is Proposition 3.2 below.

We note that our result is in accordance with the socalled 'Cartan deter-
minant conjecture’ which states that a finite dimensional algebra of finite
global dimension should have Cartan determinant one (not just plus or minus
one, as Eilenberg had shown).

Applying the equivalence of (a) and (b) in the theorem, we can solve
problem 4, namely we give a precise description for which parameters the
Brauer algebras and partition algebras are quasi—hereditary.
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Theorem 1.3 Letk be any field, fix € k£ and denote byB(r, ¢) the Brauer
algebra on2r vertices and with parametet.

ThenB(r, d) is quasi—hereditary if and only if

(1) 4 is not zero orr is odd; and

(2) the characteristic ok is either zero or strictly bigger than.

This extends previous results by Graham and Lehrer; they proved the
'if—partin [6], 4.16. and 4.17.

For partition algebras we have

Theorem 1.4 Letk be anyfield, fid € & and denote by (r, d) the partition
algebra on2r vertices and with parametet.

Then P(r, ) is quasi—hereditary if and only i is not zero and the
characteristic ofk is either zero or strictly bigger than.

Martin [11] had shown this in case of characteristic zero @a#l 0. In
[15], the "if part” of 1.4 is proved.

In section two we recall the definitions of cellular and quasi—hereditary
algebras and then we collect a few auxiliary statements about such algebras.

In section three we prove Theorem 1.1, or actually the more detailed
Theorem 3.1, and also Proposition 1.2.

In section four we deal with applications. In particular we recall the
relevant definitions and prove theorems 1.3 and 1.4 and a few other results on
related classes of algebras like Temperley—Lieb algebras and Jones’ annular
algebras.

2 Background

First we recall the two equivalent definitions of cellular and the definition
of quasi—hereditary. Then we collect several facts to be used in the proofs
later on.

For simplicity we stick to the ground ring being an (arbitrary) fieldy
algebra we always mean a finite dimensional associative algebra with unit.

Definition 2.1 (Graham and Lehrer, [6]) An associativie-algebra A is
called acellular algebra with cell datum(Z, M, C, i) if the following con-
ditions are satisfied:

(C1) The finite sef is partially ordered. Associated with eache T
there is a finite sed/ (\). The algebrad has ak:—basisC'g’T where(S,T)
runs through all elements @ff (A\) x M () forall A € I.

(C2) The map s ak—linear anti—automorphism of with ;> = id which
sendsCy - to CF g.
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(C3) For eachh € I andS,T € M()\) and eacha € A the product
aC3 - can be written @)~ y(y 7a(U, S)Cp) 1) + 1 wherer’ is a linear
combination of basis elements with upper ingdestrictly smaller than\,
and where the coefficientg (U, S) € k do not depend off.

In the following we shall call &—linear anti—automorphisinof A with
i?> = id an involution ofA. In [7] it has been shown that this definition is
equivalent to the following one.

Definition 2.2 Let A be ak—algebra. Assume there is an antiautomorphism
i on A with 2 = id. A two-sided ideal/ in A is called acell ideal if
and only ifi(J) = J and there exists a left ideal C J such thatA
has finitek—dimension and that there is an isomorphismdetbimodules
a:J >~ A®,i(A) (wherei(A) C Jis thei—image ofA) making the
following diagram commutative:

J —2 A®pi(A)
1l lr®yﬂi(y)®i(fv)
J —2 o A®,i(A)

The algebraA (with the involution:) is calledcellular if and only if
there is a vector space decompositidn= J; © J, © ... © J, (for some
n) with i(.J7) = J} for each;j and such that setting; = @;_, J; gives a
chain of two sided idealsot: 0= Jy,c J; Cc J, C ... C J, = A (each
of them fixed by) and for eachj (j = 1, ..., n) the quotient/} = J;/.J;_1

is a cell ideal (with respect to the involution induceddgn the quotient)
of A/Jj_l.

The modulesA(j),1 < 5 < n, are called standard modules of the
cellular algebra, and the above chain iA is called a cell chain. (Standard
modules are called cell modules in [6]).

Let us also recall the definition of quasi-hereditary algebras introduced
in [3].

Definition 2.3 (Cline, Parshall and Scott [3]) Le#d be ak-algebra. An
ideal J in A is called aheredity ideal if J is idempotent/(rad(A))J = 0
andJ is a projective left (or, rightyd-module. The algebrd is calledquasi-
hereditary provided there is a finite chaih = Jy Cc J; C Jo C ... C

J, = A ofideals inA such that/;/J;_, is a heredity ideal inA/.J;_, for

all j. Such a chain is then called a heredity chain of the quasi-hereditary
algebra A.

We also need the notion of@artan matrix in the following abstract
sense (which coincides with the one used in group theatyisf the group
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algebra of a finite group over a splitting field). Denote the simplenodules
by L(1),...,L(m) and their projective covers b¥(1),..., P(m). The
entriesc;;, of the Cartan matrixC(A) are the composition multiplicities
[P(j) : L(h)]. The determinant of’(A) is called the Cartan determinant.
In general this can be any integer.

Now we collect a number of auxiliary statements for later use.

For the first three assertions we fix a cellular algetraith involution
tandcellchaim=JyCc J; C...C J, = A.

Lemma 2.1 Let A be a cellular algebra with involutior and cell chain
0O=JycJiC...CcJ,=A.Then:

(1) There is a natural bijection between isomorphism classes of simple
A-modules and indicelse {1,...,n} such that/? ¢ J,_;. The inverse
of this bijection is given by sending suchiao A(l)/rad(A(l)) (which in
this case is simple).

In the following we index the simple modules in this way by a subset of
the set{1,...,n}.

(2) If I is the index of a simple modulg(!) as in (1), then the compo-
sition factorsL(j) of the standard modulé\(]) satisfy; > landj = [
occurs with multiplicity one (and this factor is the unique simple quotient
A(l) /rad(A(1)).

(3) The given cell chain ol is a heredity chain (making into a quasi—
hereditary algebra) if and only if all/; satisnyl2 ¢ J;_q ifand only ifn
equals the number of isomorphism classes of simple modules.

Proof. (1) is implicit in Theorem 3.4 in [6] and it is given another proof in

Proposition 4.1 in [7]. (2) is Proposition 3.6 in [6] and it also follows from
Proposition 4.1 of [7]. (3) is implicit in remark 3.10 in [6] and stated as
Corollary 4.2 in [7].m

Note that we will have to prove the stronger statement that if one given
cell chain is not a heredity chain then there is no heredity chain at all.

We also will make use of the following three statements.

(4) A quasi—hereditary algebra has finite global dimension (Parshall and
Scott [13]), which actually is bounded k2y. — 2 wheren is the length of
the heredity chain (Dlab and Ringel [4]).

(5) A quasi—hereditary algebra has Cartan determinant one. This has been
shown by Burgess and Fuller [2]. It also follows from (a slight modification
of) the computation of the Cartan determinant of a cellular algebra which
we give in the next section.

(6) If an algebraA has finite global dimension, then its Cartan deter-
minant has absolute value one. This has been observed by Eilenberg [5].
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It also follows directly from the observation that the Grothendieck group

of A—-mod is free abelian of finite rank, both the simple modules and the
projective modules form a basis, and the Cartan matrix transforms one of
these bases into the other.

A key ingredient in the proof below is the following property of sym-
metric matrices with real entries. The identity matrix is denoted.lfyor a
matrix X, we denote byX " the transposed matrix of .

Proposition 2.2 Let X be a positive definite matri¥; a positive semidefi-
nite matrix andZ a 'square root’ ofX, thatis,Z? = X andZ = Z" andZ
is positive definite. Then the matlix= Z~'Y Z~! is positive semidefinite
and has the same eigenvalues as the mafrix X 1Y,

Proof. The existence of is an easy exercise in linear algebra.

Under our assumptiona,. X — Y equals (for any\ € k) the product
Z(M — Z=YY Z=1)Z. Hence a vector satisfiesAX — Y)z = 0 if and
only if the vectoru = Zz satisfie§A\I —U)u = 0. Moreover the eigenvalue
A of V which corresponds to the eigenvectaran be written ag = jj,f:}/(g,
hence it is a non—negative real numher.

3 The criterion

A more detailed version of Theorem 1.1 is the following.

Theorem 3.1 Let &k be a field and4 a cellular k—algebra (with respect to
an involution:). Then the following are equivalent:

(a) Some cell chain ot (with respect to some involution, possibly differ-
ent frony) is a heredity chain as well, i.e. it makdsnto a quasi—hereditary
algebra.

(&) There is a cell chain ofA (with respect to some involution, possibly
different fromi) whose length equals the number of isomorphism classes of
simpleA—modules.

(b) A has finite global dimension.

(c) The Cartan matrix ofA has determinant one.

(d) Any cell chain ofA (with respect to any involution) is a heredity
chain.

We remark that the equivalence of non—(a) and non—(e) answers problem
3 from the introduction.

We also note that the length of a cell chain in general is not an invariant
of the algebra (see [9] for an example). This forces us to formulate condition
(a") as depending on the choice of a cell chain.

The key to the proof is the following refinement of Proposition 1.2.
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Proposition 3.2 Letk be a field andA a cellular k—algebra. Denote byn
the number of isomorphism classes of simplanodules.

Then the determinant of the Cartan matrix4fs a positive integer. It
equals one if and onlyl has a cell chain of lengtim.

Proof of Proposition 3.2.

We fix a base field: and a cellular algebrd with an involution; and a cell
chain0 = Jy C J1 C ... C J, = A. Each subquotienf;/J;_; in the chain
has the formA(l) ®i(A(l)). Denote the number of isomorphism classes of
simpleA—modules byn. Asin [6], 3.5, we form the 'decomposition matrix’
D of A (with respect to the given cell chain). It is anx m—matrix with
integer entried, , = [A(a) : L(b)], the composition multiplicity of.(b) in
A(a). By assertion (1) in Lemma 2.1, the indices of simple modules can be
naturally identified with the indices of those ided]$atisfyingjl2 Z Jp_1.
Hence we may assume, possibly after rearranging the roils tifat D is

of the form <gi) where bothD; and D, are integer matrices anf,
(whose rows correspond to those indi¢ssich that/? ¢ J,_;) is a square
matrix. In casen = m we considerD; as a matrix of sizé® x 0. We note
that D equalsD; if and only if n equalsm. By assertion (3) of Lemma 2.1,
this happens if and only if the given cell chain is a heredity chain.

By assertion (2) of Lemma 2.1), actually is lower triangular with all
diagonal entries equal to one.

The Cartan matri>xC' of A satisfiesC = D" D (see [6]). In fact, the
composition multiplicity|A(j) : L(h)] equalsdimy(e(h)A(5)) if e(h) is a
primitive idempotent generating a projective cover /) of L(h). This pro-
jective module is filtered byye(h) C Jie(h) C ... C Jpe(h) = Ae(h).
The subquotients in this filtration are of the fori(l) @y i(A(1))e(h).
HenceA(j) occurs in this filtration with multplicitydimg (i(A(j))e(h))
which equalsiimy(e(h)A(7)), which is the desired claim.

Next we are going to compute the determinantofvhich by definition
of C' must be an integer. We havé = (D!, Di") (g;) = (Di"Dy +
D! Ds). Denote byC the productD” Do. The unitriangularity oD, gives
det(Cy) = 1. Hencedet(C) = det(C;'C) = det(I + C; ' D{" D;) where
I denotes the identity matrix. Clearty, is positive definite and}" D is
positive semidefinite. Of cours®!” D, is zero if and only ifn = m.

The positive definite symmetric matri¥ can be written a&’2 for some
symmetricCy. Proposition 2.2 implies thatthe matti = C, ' Di" D, C;!
has the same eigenvalues as the mdf‘qTiD?Dl. By construction(; is
symmetric and its eigenvalues are non—negative real numbers. Moreover,
all eigenvalues are zero precisely in the case- m. Going back to the
matrix I + Cl‘lD?Dl we conclude that all its eigenvalues are of the form
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1+ A, where) are eigenvalues of the mati@ ' D'" D; and therefore non—
negative real numbers, and alequal zero if and only, = m. We note that
this implies statement (5) mentioned after Lemma 2.1 (under the assump-
tion that the algebra is cellular — for quasi—hereditary algebras without an
involution i one has to slightly modify the argument).

Altogether we have showrdet(C') is a positive integer and it is equal to
one if and only if for the given cell chain we hawe= m.n

Proof of Theorem 3.1.
We keep the notations from Proposition 3.2 and its proof.
The equivalence of (a) and (a’) follows from assertion (3) in Lemma 2.1.
From Proposition 3.2 we get thdtt(C) is equal to one if and only if
for the given cell chain we have = m. But of coursedet(C') does not
depend on the choice of the cell chain. Hence we have shown: if the length
n of some cell chain satisfies = m, then the same must be true for any
cell chain. This proves the equivalence of (a) (or (2")) (c) and (d).
Assertion (4) (made after Lemma 2.1) shows that (a) implies (b).
Assertion (6) finally tells us that (by Proposition 1.2, which has been
proved already) we can conclude (c) from (@).

We remark that the computationdft(C') goes through inamore general
situation:

Proposition 3.3 Let A be a finite dimensional—algebra with a chair) =
JocC Ji C...cC J, = Aoftwo-sided ideals whose subquotients are of the
form A(l) ® V(1) such that for all primitive idempotentsc A there is an
isomorphism of vector spaceg\(l) ~ V(l)e. Then the Cartan determinant
of A is a positive integer.

4 Applications

First we discus8rauer algebras. They have been introduced by Brauer
[1] in order to extend classical Schur—Weyl duality to semisimple algebraic
groups of typesB andC. More precisely, Schur—Weyl duality means the
following double centraliser property: Fix a fieldand two natural numbers
n andr. Then the general linear groWpL,, (k) acts (diagonally) from the
left on the vector spacg:™)®" whereas the symmetric group. acts from
the right by permuting places of tensors. These two actions centralise each
other. Replacing in this setup the algebraic gréup, (k) by a subgroup of
type B or C, one has to replace the symmetric group by the Brauer algebra
if one wants to keep the double centraliser property.

For the definition of the Brauer algebra, we fix a figldan indetermi-
natex, and a natural number. ThenB(r, z) has a basis consisting of all
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diagrams, which consist @f- vertices, divided int@ ordered sets, thetop
vertices and the bottom vertices, anél edges such that each edge belongs
to exactly2 vertices and each vertex belongs to exactly one edge. Multipli-
cation of basis elements is defined by concatenating diagrams: Assume we
are given two basis elements, sagndb. First, draw an edge from bottom
vertex: of a to top vertex; of b (for eachi = 1,...,r). This produces a
diagram which is almost of the desired form except that there may be cycles
not attached to any of the (new) top and bottom vertices. Denote the number
of these cycles by. Then delete all cycles; the result is a basis element, say
c. Now the product:b is by definitionz?c.

Of course, for afield element, saythe Brauer algebrB(r, 9) is defined
by usingd instead ofz, that is, by forming the quotient d8(r, ) modulo
x — 4. (For Brauer's application to orthogonal or symplectic groups one has
to choose) to be an integer.)

Let usillustrate this definition by an example. We multiply two elements
in B(4,96):

5t

A

Proof of Theorem 1.3.

It has been shown in [6] (and later on in a different way also in [10]) that
Brauer algebras are cellular for any choice-@ndsd. In the following we

are going to use the notation of [8], where cell structures are written as
'inflations’, that is, by data of linear algebra. The cell chain exhibited both
in [6] and in [10] shows that as a frée-module,A is equal to

EX, @ (Viea@ Vo @EkX, 2)® (Vica®@ Vg @kX_4) D ...,
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and the iterated inflation starts with¥,., inflates it alongV,, o ® V,_o ®
kX, _o and so on, ending with an inflation & = k3, or k = kX, as
bottom layer (depending on whetheis odd or even).

Now we have to distinguish several cases.

If ris even and equals zero, then the above cell chain contains a nilpotent
ideal, namely the laydry ® Vp ® k, whose elements are the scalar multiples
of the diagrami

whose square is zero. Hence this chain is not a heredity chain. By Theorem
1.1, the algebra cannot be quasi—hereditary.

For any choice of parameters, the Brauer algebra has a quétignt
the group algebra of the symmetric group ©oietters, and this quotient
actually arises a®(r,0)/.J for some ideal in the cell chain. In particular,
factoring out.J of the cell chain ofB(r, ¢) yields a cell chain o&X). If
the characteristic of divides the order of,, that is, if2 < char(k) < r,
the group algebr& X’ has infinite global dimension. By Theorem 1.1, the
length of the cell chain ¢t X, and hence also that &f(r, 6) must be strictly
bigger than the number of simple modules. Therefore, again by Theorem
1.1, the algebr@(r, §) cannot be quasi—hereditary.

If the characteristic o is zero or bigger tham, then all the above
group algebrag X, _,; are semisimple and the subquotients in the cell chain
of B(r,0) are inflations of the simple components of these algebras. The
multiplication in such a subquotient is non—-zero if and only if there is an
idempotentin this layer (see e.g. Proposition 4.1 of [7]). Hence the given cell
chain is already a heredity chain (aBdr, 0) is quasi—hereditary), provided
we can show that the multiplication in each layer is non—zero. To do this,
we fix a layer in the filtration, say coming frof._o; ® V,_o; ® kX, _o
for somel. DenoteV,_o by V. By the construction in [6] or [10], the
chosen layer has the ford @ V' ® J, where thek—spacel” has a basis
consisting of configurations formed lyconnecting2! out of 2r vertices.

And J is some subquotient in a cell chain/al’,. _,;, hence by our present
assumption,/ is just a full matrix algebra ovek. Multiplication in this
layer (i.e. neglecting terms in lower layers of the cell chain) is of the form
(b)) (c®d®y) = a®d® zpb, c)y, wherea,b,c,d are inV,

x,y are inJ and the bilinear formp : V' x V — J assigns to a pai, ¢

of configurations a scalar multiple of a some elemen{.inf r is strictly
bigger tharkl, than we choose:
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b= e ° ° ° ° ° ° °
N J L J N J
cC:— @ ] ] [ | J o ) J °

Then (see e.g. [10], proof of Lemma 53)b, ¢) is a non—zero element
in J and we can choose elementandy in the simple algebrd such that
the whole producte ® b ® z)(c ® d® y) = a ® d ® z¢(b, c)y becomes
non-zero. This gives us a non—zero structure constant inrcasel. In
the remaining case = 2/ we have to use the assumption thas not zero.
Then choosing the above diagraifor bothb andc we still get a non—zero
structure constant. This finishes the praof.

Now we turn to the partition algebras defined in [11]. These algebras are
of interest in statistical mechanics [12]. Let us recall some definitions from
[11].

Let M be afinite set. We denote iy, the set of all equivalent relations
on, or equivalently all partitions of the sgf:

By i={p = (Ma)(Ma) -+~ (My) ) | 0 % M; € M,UM; = M,
M;NM;=00G#j)}

For example, we také/ = {1, 2, 3}, then

En = {(123), (1)(23), (12)(3), (13)(2), (1)(2)(3) }-

if u € Epyandv € En,thenwe defing.- v € Fj;un to be the smallest
pin Eyun such thap contains both: andv.
To definine the partition algebras, we put

M={1,2,---,n, 12 ..o/}, M ={12 ... n 1" 2" .. 2"}

Let f : Eyr x Epy — Z be such thaf (i, v) is the number of parts of
w-v € Eyuye (note that M U M| = 3n) containing exclusively elements
4’ with a single prime.

Forexample, incase= 3, ((123)(1'2)(3'))-((1")(2'3")(1")(2")(3"))
= ((123)(1'2'3)(1”)(2")(3")) and f (u, v) = 1.

LetC : Ey x Eyy — Ejy be suchtha€(p, v) is obtained by deleting
all single primed elements ¢f - v (discarding thef(u, v) empty brackets
so produced), and replacing all double primed elements with single primed
ones.

The partition algebra(n, ¢) is defined as follows.
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Letk be afieldg € k, and letn be a natural number. We define a product
on Ey,:

Ey X Eyp — Eyy (1, v) — pv = ¢/, v)

This product is associative. Lét(n, ¢) denote the vector space ovewith
the basisE),,. Then, by linearly extending the product éh,, the vector
spaceP(n, q) becomes a finite dimensional algebra okewrith the above
product.P(n, q) is called thepartition algebra.

If we take By; = {p € Ejr| each part op has exactly two elements
of M} and define the product of two elements3g;, in the same way as in
P(n, q), thenthe subspade(n, q) of P(n, q) with the basisB,; becomes a
finite dimensional algebra. This is just the Brauer algébfa, ¢). Similarly,
if we take Py = {p € By | pis planat, then we get the Temperley-Lieb
algebraA,, (¢q) with the basisP,,.

The proof of Theorem 1.4s quite similar to that of Theorem 1.3. The
partition algebras have been shown to be cellular in [15], and the proof given
there contains all the ingredients for adapting the above proof.

Along similar lines (using again [6] or adapting [10]) one also can show
the following extensions of results of Westbury [14] and of Graham and
Lehrer [6].

Proposition 4.1 Let A,,(0) be a Temperley—Lieb algebra of type Then
A, (9) is quasi—hereditary if and only & # 0 or n odd.

Proposition 4.2 Let J,,(6) be the Jones’ annular algebra. Theh (0) is
qguasi—hereditary if and only if # 0.

Finally we give an example of an application of Proposition 1.2.

Proposition 5.3 of [7] states that a Brauer tree algebra is cellular if and
only if the Brauer tree is a straight line. For example, associated with a
straight line consisting of three edges there is an algdbvehich as left
module over itself looks as follows:

1 2 3
AA=2d1 3@2
1 2 3

Slightly changing (not: deforming) the structure constants we get another
algebra, say3, which looks as follows:

1 2 3
pB=201 3®2
3 2 1
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Both algebrasi andB are self-injective. Bud is cellular as mentioned

before, wherea® has Cartan determinant zero, hence by 1.2 it cannot be
cellular.
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