
Math. Ann. 315, 281–293 (1999) Mathematische
Annalen
c© Springer-Verlag 1999

When is a cellular algebra quasi–hereditary ?

Steffen König1, Changchang Xi2
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1 Introduction

To a large extent, algebraic representation theory of Lie algebras, algebraic
groups and related finite groups deals with finite dimensional algebras which
are cellular or quasi–hereditary. Group algebras of symmetric groups and
their Hecke algebras are known to be cellular as well as various general-
izations (e.g. Brauer algebras, cyclotomic Hecke algebras, Temperley–Lieb
algebras, partition algebras). Several of these algebras also have been used
in other contexts like topology (invariants of knots or manifolds) or statisti-
cal mechanics. Schur algebras associated with semisimple algebraic groups
in any characteristic and blocks of the Bernstein–Gelfand–Gelfand cate-
gory O associated with semisimple complex Lie algebras are cellular as
well, but they also satisfy the stronger condition to be quasi–hereditary. A
quasi–hereditary structure comes both with desirable numerical properties
(decomposition matrices are square matrices, the number of simple mod-
ules can be read off from a defining chain of ideals) and with homological
structure (finite global dimension, vanishing results on certain cohomol-
ogy groups, stratification of derived module categories, existence of ’tilting
modules’ and derived equivalences, possibility to define ’Kazhdan–Lusztig’
theory), and also there is a categorical definition (which cannot exist for cel-
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lular algebras, see [8]). Many cellular algebras, in particular Brauer algebras
and partition algebras, are known to be quasi–hereditary for some choice
of parameters and not quasi–hereditary for some other choice (typically ’at
zero’).

The subject of this note are the following problems arising from this
situation.

Problem 1. How to characterize among the cellular algebras the quasi–
hereditary ones by a structural property?

Problem 2. How to characterize among the cellular algebras the quasi–
hereditary ones by a numerical property?

Problem 3. Given a cellular algebra with a cell chain of ideals, how to
decide whether it is quasi–hereditary?

Problem 4. Determine precisely for which choice of parameters a Brauer
algebra or a partition algebra is quasi–hereditary.

We give full answers to these problems. More precisely, problem 1 is an-
swered by the equivalence of (a) and (b) in 1.1 below, problem 2 is answered
by the equivalence of (a) and (c), problem 3 is answered by the equivalence
of non–(a) and non–(e) in the more technical Theorem 3.1 (which extends
Theorem 1.1 by adding another two equivalent statements). Problem 4 is
answered by Theorems 1.3 and 1.4, which are applications of 3.1.

Theorem 1.1 Let k be a field andA a cellular k–algebra (with respect to
an involutioni). Then the following are equivalent:

(a) The algebraA is a quasi–hereditary algebra.
(b) A has finite global dimension.
(c) The Cartan matrix ofA has determinant one.

Given ak–algebraA, it may be difficult to show thatA is not cellular
since the definition involves the choice of a basis. Our proof of Theorem 1.1
provides us with an invariant of cellular algebras as follows:

Proposition 1.2 Let k be a field andA a cellular k–algebra. Then the
determinant of the Cartan matrix ofA is a positive integer.

A more detailed version of Proposition 1.2 is Proposition 3.2 below.

We note that our result is in accordance with the socalled ’Cartan deter-
minant conjecture’ which states that a finite dimensional algebra of finite
global dimension should have Cartan determinant one (not just plus or minus
one, as Eilenberg had shown).

Applying the equivalence of (a) and (b) in the theorem, we can solve
problem 4, namely we give a precise description for which parameters the
Brauer algebras and partition algebras are quasi–hereditary.
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Theorem 1.3 Letk be any field, fixδ ∈ k and denote byB(r, δ) the Brauer
algebra on2r vertices and with parameterδ.

ThenB(r, δ) is quasi–hereditary if and only if
(1) δ is not zero orr is odd; and
(2) the characteristic ofk is either zero or strictly bigger thanr.

This extends previous results by Graham and Lehrer; they proved the
’if’–part in [6], 4.16. and 4.17.

For partition algebras we have

Theorem 1.4 Letk be any field, fixδ ∈ k and denote byP (r, δ) the partition
algebra on2r vertices and with parameterδ.

ThenP (r, δ) is quasi–hereditary if and only ifδ is not zero and the
characteristic ofk is either zero or strictly bigger thanr.

Martin [11] had shown this in case of characteristic zero andδ 6= 0. In
[15], the ”if part” of 1.4 is proved.

In section two we recall the definitions of cellular and quasi–hereditary
algebras and then we collect a few auxiliary statements about such algebras.

In section three we prove Theorem 1.1, or actually the more detailed
Theorem 3.1, and also Proposition 1.2.

In section four we deal with applications. In particular we recall the
relevant definitions and prove theorems 1.3 and 1.4 and a few other results on
related classes of algebras like Temperley–Lieb algebras and Jones’ annular
algebras.

2 Background

First we recall the two equivalent definitions of cellular and the definition
of quasi–hereditary. Then we collect several facts to be used in the proofs
later on.

For simplicity we stick to the ground ring being an (arbitrary) fieldk. By
algebra we always mean a finite dimensional associative algebra with unit.

Definition 2.1 (Graham and Lehrer, [6]) An associativek–algebraA is
called acellular algebra with cell datum(I, M, C, i) if the following con-
ditions are satisfied:

(C1) The finite setI is partially ordered. Associated with eachλ ∈ I
there is a finite setM(λ). The algebraA has ak–basisCλ

S,T where(S, T )
runs through all elements ofM(λ) × M(λ) for all λ ∈ I.

(C2) The mapi is ak–linear anti–automorphism ofA with i2 = id which
sendsCλ

S,T to Cλ
T,S .
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(C3) For eachλ ∈ I and S, T ∈ M(λ) and eacha ∈ A the product
aCλ

S,T can be written as(
∑

U∈M(λ) ra(U, S)Cλ
U,T )+ r′ wherer′ is a linear

combination of basis elements with upper indexµ strictly smaller thanλ,
and where the coefficientsra(U, S) ∈ k do not depend onT .

In the following we shall call ak–linear anti–automorphismi of A with
i2 = id an involution ofA. In [7] it has been shown that this definition is
equivalent to the following one.

Definition 2.2 LetA be ak–algebra. Assume there is an antiautomorphism
i on A with i2 = id. A two–sided idealJ in A is called acell ideal if
and only if i(J) = J and there exists a left ideal∆ ⊂ J such that∆
has finitek–dimension and that there is an isomorphism ofA–bimodules
α : J ' ∆ ⊗k i(∆) (wherei(∆) ⊂ J is the i–image of∆) making the
following diagram commutative:

J
α−−−→ ∆ ⊗k i(∆)

i

y
yx⊗y 7→i(y)⊗i(x)

J
α−−−→ ∆ ⊗k i(∆)

The algebraA (with the involutioni) is calledcellular if and only if
there is a vector space decompositionA = J ′

1 ⊕ J ′
2 ⊕ . . . ⊕ J ′

n (for some
n) with i(J ′

j) = J ′
j for eachj and such that settingJj = ⊕j

l=1J
′
l gives a

chain of two sided ideals ofA: 0 = J0 ⊂ J1 ⊂ J2 ⊂ . . . ⊂ Jn = A (each
of them fixed byi) and for eachj (j = 1, . . . , n) the quotientJ ′

j = Jj/Jj−1
is a cell ideal (with respect to the involution induced byi on the quotient)
of A/Jj−1.

The modules∆(j), 1 ≤ j ≤ n, are called standard modules of the
cellular algebraA, and the above chain inA is called a cell chain. (Standard
modules are called cell modules in [6]).

Let us also recall the definition of quasi-hereditary algebras introduced
in [3].

Definition 2.3 (Cline, Parshall and Scott [3]) LetA be ak-algebra. An
idealJ in A is called aheredity ideal if J is idempotent,J(rad(A))J = 0
andJ is a projective left (or, right)A-module. The algebraA is calledquasi-
hereditary provided there is a finite chain0 = J0 ⊂ J1 ⊂ J2 ⊂ . . . ⊂
Jn = A of ideals inA such thatJj/Jj−1 is a heredity ideal inA/Jj−1 for
all j. Such a chain is then called a heredity chain of the quasi-hereditary
algebraA.

We also need the notion of aCartan matrix in the following abstract
sense (which coincides with the one used in group theory ifA is the group
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algebra of a finite group over a splitting field). Denote the simpleA–modules
by L(1), . . . , L(m) and their projective covers byP (1), . . . , P (m). The
entriescj,h of the Cartan matrixC(A) are the composition multiplicities
[P (j) : L(h)]. The determinant ofC(A) is called the Cartan determinant.
In general this can be any integer.

Now we collect a number of auxiliary statements for later use.

For the first three assertions we fix a cellular algebraA with involution
i and cell chain0 = J0 ⊂ J1 ⊂ . . . ⊂ Jn = A.

Lemma 2.1 Let A be a cellular algebra with involutioni and cell chain
0 = J0 ⊂ J1 ⊂ . . . ⊂ Jn = A. Then:

(1) There is a natural bijection between isomorphism classes of simple
A–modules and indicesl ∈ {1, . . . , n} such thatJ2

l 6⊂ Jl−1. The inverse
of this bijection is given by sending such anl to ∆(l)/rad(∆(l)) (which in
this case is simple).

In the following we index the simple modules in this way by a subset of
the set{1, . . . , n}.

(2) If l is the index of a simple moduleL(l) as in (1), then the compo-
sition factorsL(j) of the standard module∆(l) satisfyj ≥ l and j = l
occurs with multiplicity one (and this factor is the unique simple quotient
∆(l)/rad(∆(l)).

(3) The given cell chain ofA is a heredity chain (makingA into a quasi–
hereditary algebra) if and only if allJl satisfyJ2

l 6⊂ Jl−1 if and only ifn
equals the number of isomorphism classes of simple modules.

Proof. (1) is implicit in Theorem 3.4 in [6] and it is given another proof in
Proposition 4.1 in [7]. (2) is Proposition 3.6 in [6] and it also follows from
Proposition 4.1 of [7]. (3) is implicit in remark 3.10 in [6] and stated as
Corollary 4.2 in [7].

Note that we will have to prove the stronger statement that if one given
cell chain is not a heredity chain then there is no heredity chain at all.

We also will make use of the following three statements.
(4) A quasi–hereditary algebra has finite global dimension (Parshall and

Scott [13]), which actually is bounded by2n − 2 wheren is the length of
the heredity chain (Dlab and Ringel [4]).

(5) A quasi–hereditary algebra has Cartan determinant one. This has been
shown by Burgess and Fuller [2]. It also follows from (a slight modification
of) the computation of the Cartan determinant of a cellular algebra which
we give in the next section.

(6) If an algebraA has finite global dimension, then its Cartan deter-
minant has absolute value one. This has been observed by Eilenberg [5].
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It also follows directly from the observation that the Grothendieck group
of A–mod is free abelian of finite rank, both the simple modules and the
projective modules form a basis, and the Cartan matrix transforms one of
these bases into the other.

A key ingredient in the proof below is the following property of sym-
metric matrices with real entries. The identity matrix is denoted byI. For a
matrixX, we denote byXtr the transposed matrix ofX.

Proposition 2.2 LetX be a positive definite matrix,Y a positive semidefi-
nite matrix andZ a ’square root’ ofX, that is,Z2 = X andZ = Ztr andZ
is positive definite. Then the matrixU = Z−1Y Z−1 is positive semidefinite
and has the same eigenvalues as the matrixV = X−1Y .

Proof. The existence ofZ is an easy exercise in linear algebra.
Under our assumptions,λX − Y equals (for anyλ ∈ k) the product

Z(λI − Z−1Y Z−1)Z. Hence a vectorx satisfies(λX − Y )x = 0 if and
only if the vectoru = Zx satisfies(λI −U)u = 0. Moreover the eigenvalue
λ of V which corresponds to the eigenvectorv can be written asλ = vtrY v

vtrXv ,
hence it is a non–negative real number.

3 The criterion

A more detailed version of Theorem 1.1 is the following.

Theorem 3.1 Let k be a field andA a cellular k–algebra (with respect to
an involutioni). Then the following are equivalent:

(a) Some cell chain ofA (with respect to some involution, possibly differ-
ent fromi) is a heredity chain as well, i.e. it makesA into a quasi–hereditary
algebra.

(a’) There is a cell chain ofA (with respect to some involution, possibly
different fromi) whose length equals the number of isomorphism classes of
simpleA–modules.

(b) A has finite global dimension.
(c) The Cartan matrix ofA has determinant one.
(d) Any cell chain ofA (with respect to any involution) is a heredity

chain.

We remark that the equivalence of non–(a) and non–(e) answers problem
3 from the introduction.

We also note that the length of a cell chain in general is not an invariant
of the algebra (see [9] for an example). This forces us to formulate condition
(a’) as depending on the choice of a cell chain.

The key to the proof is the following refinement of Proposition 1.2.
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Proposition 3.2 Letk be a field andA a cellulark–algebra. Denote bym
the number of isomorphism classes of simpleA–modules.

Then the determinant of the Cartan matrix ofA is a positive integer. It
equals one if and onlyA has a cell chain of lengthm.

Proof of Proposition 3.2.
We fix a base fieldk and a cellular algebraA with an involutioni and a cell
chain0 = J0 ⊂ J1 ⊂ . . . ⊂ Jn = A. Each subquotientJl/Jl−1 in the chain
has the form∆(l)⊗k i(∆(l)). Denote the number of isomorphism classes of
simpleA–modules bym. As in [6], 3.5, we form the ’decomposition matrix’
D of A (with respect to the given cell chain). It is ann × m–matrix with
integer entriesda,b = [∆(a) : L(b)], the composition multiplicity ofL(b) in
∆(a). By assertion (1) in Lemma 2.1, the indices of simple modules can be
naturally identified with the indices of those idealsJl satisfyingJ2

l 6⊂ Jl−1.
Hence we may assume, possibly after rearranging the rows ofD, thatD is

of the form

(
D1
D2

)
, where bothD1 andD2 are integer matrices andD2

(whose rows correspond to those indicesl such thatJ2
l 6⊂ Jl−1) is a square

matrix. In casen = m we considerD1 as a matrix of size0 × 0. We note
thatD equalsD2 if and only if n equalsm. By assertion (3) of Lemma 2.1,
this happens if and only if the given cell chain is a heredity chain.

By assertion (2) of Lemma 2.1,D2 actually is lower triangular with all
diagonal entries equal to one.

The Cartan matrixC of A satisfiesC = DtrD (see [6]). In fact, the
composition multiplicity[∆(j) : L(h)] equalsdimk(e(h)∆(j)) if e(h) is a
primitive idempotent generating a projective coverAe(h) of L(h). This pro-
jective module is filtered byJ0e(h) ⊂ J1e(h) ⊂ . . . ⊂ Jne(h) = Ae(h).
The subquotients in this filtration are of the form∆(l) ⊗k i(∆(l))e(h).
Hence∆(j) occurs in this filtration with multplicitydimk(i(∆(j))e(h))
which equalsdimk(e(h)∆(j)), which is the desired claim.

Next we are going to compute the determinant ofC, which by definition

of C must be an integer. We haveC = (Dtr
1 , Dtr

2 )
(

D1
D2

)
= (Dtr

1 D1 +

Dtr
2 D2). Denote byC1 the productDtr

2 D2. The unitriangularity ofD2 gives
det(C1) = 1. Hencedet(C) = det(C−1

1 C) = det(I + C−1
1 Dtr

1 D1) where
I denotes the identity matrix. ClearlyC1 is positive definite andDtr

1 D1 is
positive semidefinite. Of course,Dtr

1 D1 is zero if and only ifn = m.
The positive definite symmetric matrixC1 can be written asC2

2 for some
symmetricC2. Proposition 2.2 implies that the matrixC3 = C−1

2 Dtr
1 D1C

−1
2

has the same eigenvalues as the matrixC−1
1 Dtr

1 D1. By construction,C3 is
symmetric and its eigenvalues are non–negative real numbers. Moreover,
all eigenvalues are zero precisely in the casen = m. Going back to the
matrix I + C−1

1 Dtr
1 D1 we conclude that all its eigenvalues are of the form
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1+λ, whereλ are eigenvalues of the matrixC−1
1 Dtr

1 D1 and therefore non–
negative real numbers, and allλ equal zero if and onlyn = m. We note that
this implies statement (5) mentioned after Lemma 2.1 (under the assump-
tion that the algebra is cellular – for quasi–hereditary algebras without an
involution i one has to slightly modify the argument).

Altogether we have shown:det(C) is a positive integer and it is equal to
one if and only if for the given cell chain we haven = m.

Proof of Theorem 3.1.
We keep the notations from Proposition 3.2 and its proof.

The equivalence of (a) and (a’) follows from assertion (3) in Lemma 2.1.
From Proposition 3.2 we get thatdet(C) is equal to one if and only if

for the given cell chain we haven = m. But of course,det(C) does not
depend on the choice of the cell chain. Hence we have shown: if the length
n of some cell chain satisfiesn = m, then the same must be true for any
cell chain. This proves the equivalence of (a) (or (a’)) (c) and (d).

Assertion (4) (made after Lemma 2.1) shows that (a) implies (b).
Assertion (6) finally tells us that (by Proposition 1.2, which has been

proved already) we can conclude (c) from (b).

We remark that the computation ofdet(C)goes through in a more general
situation:

Proposition 3.3 LetA be a finite dimensionalk–algebra with a chain0 =
J0 ⊂ J1 ⊂ . . . ⊂ Jn = A of two–sided ideals whose subquotients are of the
form∆(l) ⊗ ∇(l) such that for all primitive idempotentse ∈ A there is an
isomorphism of vector spacese∆(l) ' ∇(l)e. Then the Cartan determinant
of A is a positive integer.

4 Applications

First we discussBrauer algebras. They have been introduced by Brauer
[1] in order to extend classical Schur–Weyl duality to semisimple algebraic
groups of typesB andC. More precisely, Schur–Weyl duality means the
following double centraliser property: Fix a fieldk and two natural numbers
n andr. Then the general linear groupGLn(k) acts (diagonally) from the
left on the vector space(kn)⊗r whereas the symmetric groupΣr acts from
the right by permuting places of tensors. These two actions centralise each
other. Replacing in this setup the algebraic groupGLn(k) by a subgroup of
typeB or C, one has to replace the symmetric group by the Brauer algebra
if one wants to keep the double centraliser property.

For the definition of the Brauer algebra, we fix a fieldk, an indetermi-
natex, and a natural numberr. ThenB(r, x) has a basis consisting of all
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diagrams, which consist of2r vertices, divided into2 ordered sets, ther top
vertices and ther bottom vertices, andr edges such that each edge belongs
to exactly2 vertices and each vertex belongs to exactly one edge. Multipli-
cation of basis elements is defined by concatenating diagrams: Assume we
are given two basis elements, saya andb. First, draw an edge from bottom
vertexi of a to top vertexi of b (for eachi = 1, . . . , r). This produces a
diagram which is almost of the desired form except that there may be cycles
not attached to any of the (new) top and bottom vertices. Denote the number
of these cycles byd. Then delete all cycles; the result is a basis element, say
c. Now the productab is by definitionxdc.

Of course, for a field element, sayδ, the Brauer algebraB(r, δ) is defined
by usingδ instead ofx, that is, by forming the quotient ofB(r, x) modulo
x− δ. (For Brauer’s application to orthogonal or symplectic groups one has
to chooseδ to be an integer.)

Let us illustrate this definition by an example. We multiply two elements
in B(4, δ):

• • • •
@

@
@@


 	 �����������
� �• • • •

·
• • • •
@

@
@@


 	�
�

��
� �• • • •

=

δ1·
• • • •


 	 �������
� �• • • •

Proof of Theorem 1.3.
It has been shown in [6] (and later on in a different way also in [10]) that
Brauer algebras are cellular for any choice ofr andδ. In the following we
are going to use the notation of [8], where cell structures are written as
’inflations’, that is, by data of linear algebra. The cell chain exhibited both
in [6] and in [10] shows that as a freek–module,A is equal to

kΣr ⊕ (Vr−2 ⊗ Vr−2 ⊗ kΣr−2) ⊕ (Vr−4 ⊗ Vr−4 ⊗ kΣr−4) ⊕ . . . ,
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and the iterated inflation starts withkΣr, inflates it alongVr−2 ⊗ Vr−2 ⊗
kΣr−2 and so on, ending with an inflation ofk = kΣ1 or k = kΣ0 as
bottom layer (depending on whetherr is odd or even).

Now we have to distinguish several cases.
If r is even andδ equals zero, then the above cell chain contains a nilpotent

ideal, namely the layerV0 ⊗V0 ⊗k, whose elements are the scalar multiples
of the diagramd

d :=

• • • • . . . • •

 	 
 	 
 	

� � � � � �• • • • . . . • •

whose square is zero. Hence this chain is not a heredity chain. By Theorem
1.1, the algebra cannot be quasi–hereditary.

For any choice of parameters, the Brauer algebra has a quotientkΣr,
the group algebra of the symmetric group onr letters, and this quotient
actually arises asB(r, δ)/J for some ideal in the cell chain. In particular,
factoring outJ of the cell chain ofB(r, δ) yields a cell chain ofkΣr. If
the characteristic ofk divides the order ofΣr, that is, if2 ≤ char(k) ≤ r,
the group algebrakΣr has infinite global dimension. By Theorem 1.1, the
length of the cell chain ofkΣr and hence also that ofB(r, δ) must be strictly
bigger than the number of simple modules. Therefore, again by Theorem
1.1, the algebraB(r, δ) cannot be quasi–hereditary.

If the characteristic ofk is zero or bigger thanr, then all the above
group algebraskΣr−2l are semisimple and the subquotients in the cell chain
of B(r, δ) are inflations of the simple components of these algebras. The
multiplication in such a subquotient is non–zero if and only if there is an
idempotent in this layer (see e.g. Proposition 4.1 of [7]). Hence the given cell
chain is already a heredity chain (andB(r, δ) is quasi–hereditary), provided
we can show that the multiplication in each layer is non–zero. To do this,
we fix a layer in the filtration, say coming fromVr−2l ⊗ Vr−2l ⊗ kΣr−2l

for somel. DenoteVr−2l by V . By the construction in [6] or [10], the
chosen layer has the formV ⊗ V ⊗ J , where thek–spaceV has a basis
consisting of configurations formed byl connecting2l out of 2r vertices.
And J is some subquotient in a cell chain ofkΣr−2l, hence by our present
assumption,J is just a full matrix algebra overk. Multiplication in this
layer (i.e. neglecting terms in lower layers of the cell chain) is of the form
(a ⊗ b ⊗ x)(c ⊗ d ⊗ y) = a ⊗ d ⊗ xϕ(b, c)y, wherea, b, c, d are inV ,
x, y are inJ and the bilinear formϕ : V × V → J assigns to a pairb, c
of configurations a scalar multiple of a some element inJ . If r is strictly
bigger than2l, than we choose:
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b :=

c :=

• • • • . . . • • • • . . .� � � � � �

� � � � � �• • • • • . . . • • • . . .

Then (see e.g. [10], proof of Lemma 5.3)ϕ(b, c) is a non–zero element
in J and we can choose elementsx andy in the simple algebraJ such that
the whole product(a ⊗ b ⊗ x)(c ⊗ d ⊗ y) = a ⊗ d ⊗ xϕ(b, c)y becomes
non–zero. This gives us a non–zero structure constant in caser > 2l. In
the remaining caser = 2l we have to use the assumption thatδ is not zero.
Then choosing the above diagramd for bothb andc we still get a non–zero
structure constant. This finishes the proof.

Now we turn to the partition algebras defined in [11]. These algebras are
of interest in statistical mechanics [12]. Let us recall some definitions from
[11].

LetM be a finite set. We denote byEM the set of all equivalent relations
on, or equivalently all partitions of the setM :

EM := {ρ = ((M1)(M2) · · · (Mi) · · ·) | ∅ 6= Mi ⊂ M, ∪iMi = M,
Mi ∩ Mj = ∅ (i 6= j)}

For example, we takeM = {1, 2, 3}, then

EM = {(123), (1)(23), (12)(3), (13)(2), (1)(2)(3)}.

if µ ∈ EM andν ∈ EN , then we defineµ ·ν ∈ EM∪N to be the smallest
ρ in EM∪N such thatρ contains bothµ andν.

To definine the partition algebras, we put

M = {1, 2, · · · , n, 1′, 2′, . . . , n′}, M ′ = {1′, 2′, · · · , n′, 1′′, 2′′, . . . , n′′}.

Let f : EM × EM −→ Z be such thatf(µ, ν) is the number of parts of
µ ·ν ∈ EM∪M ′ (note that|M ∪M ′| = 3n) containing exclusively elements
j′ with a single prime.

For example, in casen = 3, ((123)(1′2′)(3′))·((1′)(2′3′)(1′′)(2′′)(3′′))
= ((123)(1′2′3′)(1′′)(2′′)(3′′)) andf(µ, ν) = 1.

LetC : EM ×EM −→ EM be such thatC(µ, ν) is obtained by deleting
all single primed elements ofµ · ν (discarding thef(µ, ν) empty brackets
so produced), and replacing all double primed elements with single primed
ones.

The partition algebraP (n, q) is defined as follows.
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Letk be a field,q ∈ k, and letn be a natural number. We define a product
onEM :

EM × EM −→ EM (µ, ν) 7−→ µν = qf(µ,ν)C(µ, ν)

This product is associative. LetP (n, q) denote the vector space overk with
the basisEM . Then, by linearly extending the product onEM , the vector
spaceP (n, q) becomes a finite dimensional algebra overk with the above
product.P (n, q) is called thepartition algebra .

If we takeBM = {ρ ∈ EM | each part ofρ has exactly two elements
of M} and define the product of two elements inBM in the same way as in
P (n, q), then the subspaceB(n, q) of P (n, q) with the basisBM becomes a
finite dimensional algebra. This is just the Brauer algebraB(n, q). Similarly,
if we takePM = {ρ ∈ BM | ρ is planar}, then we get the Temperley–Lieb
algebraAn(q) with the basisPM .

The proof of Theorem 1.4is quite similar to that of Theorem 1.3. The
partition algebras have been shown to be cellular in [15], and the proof given
there contains all the ingredients for adapting the above proof.

Along similar lines (using again [6] or adapting [10]) one also can show
the following extensions of results of Westbury [14] and of Graham and
Lehrer [6].

Proposition 4.1 Let An(δ) be a Temperley–Lieb algebra of typeA. Then
An(δ) is quasi–hereditary if and only ifδ 6= 0 or n odd.

Proposition 4.2 Let Jn(δ) be the Jones’ annular algebra. ThenJn(δ) is
quasi–hereditary if and only ifδ 6= 0.

Finally we give an example of an application of Proposition 1.2.
Proposition 5.3 of [7] states that a Brauer tree algebra is cellular if and

only if the Brauer tree is a straight line. For example, associated with a
straight line consisting of three edges there is an algebraA which as left
module over itself looks as follows:

AA =
1 2 3
2 ⊕ 1 3 ⊕ 2
1 2 3

Slightly changing (not: deforming) the structure constants we get another
algebra, sayB, which looks as follows:

BB =
1 2 3
2 ⊕ 1 3 ⊕ 2
3 2 1
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Both algebrasA andB are self–injective. ButA is cellular as mentioned
before, whereasB has Cartan determinant zero, hence by 1.2 it cannot be
cellular.
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