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Abstract. We consider holomorphic linear foliations of dimensianof C" (with n > 2m)
fulfilling a so-called weak hyperbolicity condition and equip the projectivization of the leaf space
(for the foliation restricted to an adequate open dense subset) with a structure of compact, complex
manifold of dimensiom — m — 1. We show that, except for the limit-case= 2m + 1 where

we obtain any complex torus of any dimension, this construction gives non-symplectic manifolds,
including the previous examples of Hopf, Calabi-Eckmann, Haefliger (linear case), Loeb-Nicolau
(linear case) anddpez de Medrano-Verjovsky. We study some properties of these manifolds, that
is to say meromorphic functions, holomorphic vector fields, forms and submanifolds. For each
manifold, we construct an analytic space of deformations of dimemsian- m — 1) and show

that, under some additional conditions, it is universal. Lastly, we give explicit examples of new
compact, complex manifolds, in particular of connected sums of products of spheres and show
the existence of a momentum-like map which classifies these manifolds, up to diffeomorphism.

Mathematics Subject Classification (199835J18, 58F18, 32G05

Introduction

The aim of this article is to construct and study a class of compact, complex man-
ifolds, which are not algebraic and even nattiérian nor symplectic, except for

a particular case. Unlike the Riemann surfaces, which are all algebraic, compact
complex manifolds of dimension bigger than one have to satisfy very particular
properties in order to be algebraic (see [We]). Moreover, if we except dimension
2, for which the Kodaira classification keeps close links with the classification
of algebraic surfaces (see [B-P-V]), the set of compact, complex, non algebraic
manifolds is much larger than that of algebraic manifolds: for example, Taubes’
theorem [Ta] on conformal anti-self-dual structures implies that every finitely
presented group is the fundamental group of a compact complex 3-manifold.
These manifolds are twistor spaces over real 4-manifolds, so areatnbéan
(except for the simply-connected case) by a theorem of Hitchin [Hi].
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However, there are few explicit examples of such manifolds. This is particu-
larly due to the fact that they admit holomorphic embeddings neith&F ifby
compacity), nor in the complex projective space”~* (otherwise, by Chow’s
theorem, they would be algebraic). Besides, surgery is much trickier in the com-
plex domain (see [M-K]). Thus, the connected sum of complex manifolds does
not have a natural complex structure: the almost complex structures do not gen-
erally even extend to the entire connected sum and there are many examples of
connected sums of complex manifolds which do not admit any almost complex
structure (see [Au]). The class of manifolds that we consider here is obtained by
generalizing a construction of Santiagod€z de Medrano and Alberto Verjovsky
[LdM-Ve], which follows other works recalled now.

The first example of compact, complex, noatiérian manifolds is Hopf’s
example [Ho] of complex structures on products of sph&fést x S for every
n, which are obtained by taking the quotient@f — {0} by a holomorphic,
totally discontinuous action df. The second de Rham cohomology group of
these manifolds is trivial, so they are not symplectic, therefore abté¢ian and
finally not algebraic (see [We] for these implications).

The second example is the existence of complex structuré$oh x $%-1
by Calabi and Eckmann [C-E]. The process here is different from Hopf’s one:
it is a matter of putting a conformal structure on the torus fiber of the bundle
(8§21 x §2-1y — (CP*1 x CP'71) in order to get, in association with the
complex structure of the projective space, a complex structure on the products
of spheres.

Haefliger [Ha] has generalized Hopf's construction (see also [Bor]) by using
the following trick, which is the key fact of the construction presented in this
paper:a smooth manifold embedded inC" transversely to a holomorphic
foliation is in fact a complex manifold; transverse holomorphic foliated charts
form, when restricted to the transverse embedding, a complex atlas for the mani-
fold. Following this trick, Loeb and Nicolau give in [L-N1] a unified description
of the construction of Hopf and that of Calabi-Eckmann and thus find a much
larger class of complex structures on products of odd dimensional spheres. To
achieve that, they consider a holomorphic vector field in the neighbourhood of
0 € CV whose linear part is in Jordan normal form and whose diagonal linear
part belongs to the Poin@adomain (i.e. 0 does not belong to the convex hull of
the coefficients of the linear part), and show that, if this field satisfies a so-called
weak hyperbolicity(m, n) condition, there is an embedding §" x §%—1
in CV transverse to the flow, and inducing a complex structure on this manifold.
Moreover, this description allows them to study Dolbeault’s cohomology and the
deformations of these manifolds.

Lastly, Lopez de Medrano and Verjovsky [LdM-Ve] have used a linear holo-
morphic diagonal vector field @” in the Siegel domain this time (i.e. 0 belongs
to the convex hull of the linear coefficients) and have shown that, under a weak
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hyperbolicity condition, the projectivization of the leaf space, when restricted
to the closed leaves of the induced flow, is a compact complex manifold. They
find again the linear examples of Loeb-Nicolau, but other non-symplectic exam-
ples with a more complicated topology too, which they classify. Besides, they
construct a smooth space of deformations and show that, in some cases, it is
universal.

Inthis paper, we generalize the latter construction to the caseettor fields
inC", withn > 2m. The first goal is to obtain and study numerous new examples
of compact, complex, non algebraic manifolds, in particular of connected sums of
products of spheres, something which is not achieveddpek de Medrano and
Verjovsky (they find manifolds which are the basis of a non trivial circle-bundle
whose total space is a connected sum of products of spheres). In the first part, we
adaptthe construction. Then we show that, in the limit-ease2m +1, we obtain
complex tori and that every complex torus can be obtained in this way. The third
part is devoted to demonstrate that, fioe- 2m + 1, the constructed manifolds
are not symplectic, therefore not algebraic, and do not admit aatyefian
modification. The fourth part studies meromorphic functions and holomorphic
1-forms: we compute, under a generic condition, for which we give a geometric
meaning, the degree of transcendence of the field of meromorphic functions and
the dimension of the space of global holomorphic 1-forms on these manifolds.
The fifth part describes holomorphic vector fields and submanifolds. The sixth
part contains the description of an analytic deformation space and we show
that this space is universal in some cases. Lastly, the seventh part gives some
elements about the classification up to diffeomorphism, showing in particular
the existence of a momentum-like map. The article ends with new examples of
compact, complex, non symplectic manifolds, including examples of connected
sums of products of spheres. Theorems 2, 10 and 11 are generalizations, to the
casem > 1, of similar statements in [LdM-Ve]. In the same way, Theorems 7
and 8 refer to [L-N2]. In the two cases, when the demonstration is an immediate
generalization of the one of these articles, we content ourselves with referring
the reader to them. On the contrary, Theorems 1, 3, 4, 5, 6, 9, 12 and 13 do not
have any equivalent, either in [LdM-Ve], or in [L-N2], and thus their application
to the casen = 1 (except for Theorem 1 which reduces in these conditions
to a remark and Theorems 12 and 13) specifies the properties of the manifolds
of [LdM-Ve]. Lastly, Theorems 14 and 15 describe new families of compact,
complex manifolds, which are not obtained in [LdM-Ve]. Some of these results
are stated, with a sketch of the proof, in [Me].

Let us indicate that a particular example of compact, complex manifold ob-
tained by a construction very close to this one can be found in [Le2].

I would like to thank my advisor, Alberto Verjovsky, for having guided me
so well all over these years, Santiagodez de Medrano and Etienne Ghys for
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their advice, as well as Fraais Lescure for having made me discover another
aspect of this construction.

|. Construction of the manifolds N

In this section, we generalize and adapt the construction of [LdM-Ve¢
notations that we use here will be maintained throughout the article.
Letm andn be two positive integers such that- 2m. Let (A4, ..., A,) be

ann-uple of vectors ofC™ and A; = (A}, ..., Al") for i between 1 ana. Let
H(Aq, ..., A,) be the convex hull ofAq, ..., A,) In C™.
Definition. We call admissible configuration anuple (A4, ..., A,) fulfiling

() the Siegel condition® € H(Aq, ..., Ay);

(i) the weak hyperbolicity condition: for everym-uple of integers
(i1,...,0iz,) such thatl < i1 < ... < iy < n, we have
0¢ H(Aiy, ..., Asy,).

This definition can be reformulated geometrically in the following way: the
convex polytopeH (A, ..., A,) contains 0, but neither external nor internal
facet of this polytope (that is to say hyperplane passing througlvettices)
contains 0. An admissible configuration satisfies the following regularity property
(we omit the proof)

Lemma I.1. Let A} = (A;, 1) in C™+1, for i betweenl andn. For all set of

integersJ betweenl and n such that0 € H((A))jes), the complex rank of
the matrix whose columns are the vecto,rg)jej is equal tom + 1, therefore

maximal.

To anadmissible configuratiga,, . . ., A,), we associate the linear foliation
of C" generated by ther holomorphic commuting vector fields € j < m)

0

n
(21,20 € CT > )u'»/Z'—,
S.I (1 n) ; i laZi

and corresponding to the following holomorphic action
(T, Z) e (Cm % Cn — (Zle<A1,T>’ o Zne<A,1,T>) = (Cn ,

where< A;, T > means thecalar product and not the Hermitian one.

The so-defined foliation is degenerate, in particular 0 is a singular point.
Such foliations have been studied in [C-K-P] and [Ku]. The behaviour in the
neighbourhood of 0 determines two different sorts of leaves.

Definition. Let L be a leaf of the previous foliation. f belongs to the closure
of L, we say that. is a Poincak leaf. In the opposite case, we talk of a Siegel
leaf.
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The Poincae’leaves do not suit us for, their closure having a common point,
they cannot be separated in the quotient space (for the quotient topology). Let us
consider the Siegel leaves. A direct generalization of [C-K-P] (see also [LdM-
Ve], Sect. 2) shows that the functidia||> on C" has a unique minimum when
restricted to a Siegel leaf and that the Fedf these minima can be written

T=1{zeC"—{0} | ) Alzf>=0¢.

i=1
From this, the unior§ of the Siegel leaves is
S={zeC"—{0} | 0 H(Aj)jer,} With jel, < z; #0,

and the Siegel condition implies th&icontains(C*)", therefore is dense 1G".
A more flexible presentation of consists in writingS = C" — E with E an
analytic set, whose different components correspond to subspaC&sndfere
some coordinates vanish.

Besides, the leaf space of the foliation restricteds{dhat we callM, is
identified with7". But the weak hyperbolicity condition implies that the system
of equations which defines it is non-degenerate at each poihi(sge Lemma
[.1) and7 is thus aC*-manifold, so, in particularM is Hausdorff.

As M is Hausdorff and as its embeddifigs transverse to the foliation, a fact
that can be proven by a direct computation, we may use transverse holomorphic
foliated charts as atlas 81, making ita complex manifold (see the introduction).

Remark now that the previous construction can be projectivized. We may
consider the vector fields in CP" 1, defineV = §/C*, as well as the transverse
submanifold to the foliation

N={lzeCP™™ | Y Ailzu|*=0¢.
i=1

This transverse submanifold is identified with the leaf space of the pro-
jectivized foliation restricted td’, but, by the same argument, we put a complex
structure onV turning it a compact, complex manifold of dimension m — 1.
The manifoldN is the object we wanted to construct.

Remark.The projectivization can be seen as resulting from the action induced
by the vector field

S
R@ =) zi5—, forzeC’—{0)
i=1 i

which commutes with the vector fields, ...,&,,.
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RemarkThe manifoldN appears as a differentiable submanifaldtransverse

to a holomorphic foliation ofC P”~ and equipped with the complex structure
inherited from this foliation. By a conjecture of Bogomolov [Bo], every compact,
complex manifold can be obtained in this way, and this sort of construction seems
to be general.

Remark (I would like to thank Blaine Lawson for suggesting the following con-
struction).Let X be a compact, complex manifold apd: £ — X a holo-
morphic vector bundle with fibe€”. As previously described;”™ x C* acts

on the fiber. Moreover, suppose ttiaadmits a decomposition as Whitney sum
E=E &®...® E, of holomorphic line bundles. Then, this action can be ex-
tended to the whole bundle (locally defined as an action on the fiber), so that we
may thus construct a (locally trivial) holomorphic fiber bunglle E — X with

fiber the manifoldV defined above.

We now give an alternate description of the manifdldTlo achieve that, note
that the algebraic torug€*)" acts holomorphically o with a dense orbit

D:(u,z2) e (CH" xS (u1.z21,...,Uy.2,) € 8.
This action commutes with the previous ones, according to the diagram

Cyxs 25 5

| |

(CH"1)C"x N —— N,

wherer is the natural projection f onto the leaf spac¥; itis in fact a principal
bundle with fibelC* x C™. From this, there is an action of the complex Abelian
Lie groupG = (C*)"~1/C™ on the compact manifol&/ with a dense orbit, so
that N is an equivariant compactification 6f (see [Lel]). Notice that, in the
same way, there is an action of the complex abelian Lie g@up (C*)"/C™"
on M with a dense orbit.

LetnowM; = TNS?~1. AsT is acone, itintersects transverséf/—* and
M, is a compact, differentiable manifold. We have the following commutative
diagram of principal bundles

s 25 M

N(n—lMl,

whererny is the natural projection of onto M, andr; the natural projection of
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M ontoN (see the remark above about the vector fie)dt is easy to verify that
1o is a principal bundle with fibe€™ and thatr is a principal bundle with fiber
S1. Observe that the existence of the transverse submarfifataplies that the
bundlery is differentiably trivial. Nevertheless, it is not holomorphically trivial.
We have in fact

Lemma I.2. The bundlgC*)" — G, restriction ofrg to G, is not holomorphi-
cally trivial.

Proof.As G is a complex, connected Abelian Lie group, it is isomorphic (in the
sense of Lie) to (see [Mor])

C? x (C*)? x C for somep andq ,

whereC is a Cousin group, i.e. a connected complex Abelian Lie group which
does not have any non constant global holomorphic function.

Suppose now that the bundi@*)"” — G is holomorphically trivial, then we
have a biholomorphism

(C*' =~ C"*P x (C*? x C,

thereforeC admits a holomorphic embedding (@*)", so, asC does not have
any non constant holomorphic function, is reduced to 0, and the biholomorphism
is

((C*)n ~ Cm+p X ((C*)n—m—p

which is absurdd]

RemarkThe same lemma works for the bundie V = (S/C*) — N and the
Lie groupG.

On the contrary, the bundles and; are not always differentiably trivial
when(Ay, ..., A,) varies. It depends on the existence of an indispensable point
(see the definition below).

The action of equivariant compactification of the algebraic torus,amhen
restricted to the maximal compact subgroup of this torus, is transformed into an
action of the real torus oM, namely

€?,2) € (SH" x M1+ (.21, ..., €% z,) € My.

The quotient ofM; by this action can be written

K = re(R+)” | ZI’,’A,’:O, Zri=1 .
i=1 i=1
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The setK is defined as the set of coefficients of the convex hull of
(Ag, ..., A,),soitisafull convex polytope of dimensian-2m — 1. Above the
interior of any face of codimensiom of this polytope, the projectiod; — K
is a trivial fibration with fiber an(n — p)-dimensional torus.

We call this polytope the associate polytop@ff Remark thatthe knowledge
of this polytope is sufficient to reconstrust its different faces correspond to
the orbits of different dimensions of the action, and therefore to the different
components of.

We finish this part with the following definition.

Definition (see [LdM1] and [LAMZ2]). Let(A4, ..., A,) be an admissible con-
figuration, and letS be the corresponding union of the Siegel leaves. We say that
the coordinate; is an indispensable point of the configuration if the openSset

is contained in{z € C" | z; # 0}. We denote by the number of indispensable
points of a configuration.

The associate polytope has- k facets.

Il. Thecasen =2m + 1

In the limit-casen = 2m + 1, we shall show that we obtain any complex torus
of any dimension. In [LdM-Ve] and [L-N1], only elliptic curves were obtained.
Let L L
A=A ... A =AY
A = . .
)‘;%1+1 - )‘% e Ay — A
and(A); ; be the minors associated to the matfixLet us set

m

Y (=Ditidet (A); j (A 414, — A1)
j=1
o = )
detA

p=1

which are well defined by weak hyperbolicity: the rank &fis maximal by
application of Lemma I.1.

Theorem 1.Let(Aq, ..., Az,.1) be an admissible configuration. Then

(i) The manifoldN is a complex torus of complex dimensian

(i) Thelatticeis(e, ..., ey, a1, ..., ay,) Withe; vectors of the canonical basis
of C™ and with thew; as previously defined;

(iii) Any complex torus of any dimension can be obtained in this way.
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Proof.

(i) By weak hyperbolicity, we haves = (C*)?"*1, and the manifoldV can
be identified with the Lie grougs in the presentation oV as an equivariant
compactification ofG (see Sect. ). This means thitis a connected, compact,
complex, Abelian Lie group, therefore a complex torus.

(i) Let us compute the intersection between a leaf and a transverse plane of
dimensiorm + 1. The action is given by

(@, T, w) e C* x C" x S+ (ae=T>wyq, ..., qe="2+0T>y, e §.

Letw e (C*)?"+1. The orbit ofw under the action of the subgroup@f x C™"
which fixes itsm first coordinates can be identified with the lattice of the torus.
But («, T) belongs to this subgroup as soon as it verifies

< Ar— AN, T > =2i7‘[k1

< Am+1 — A]_, T >= 2i7‘[km
o — e—<A1,T>

with (kq, ..., k,) any relative integers. The last equation determinesiceT

is fixed. The others equations form a Cramer system whose determinant is not
zero by Lemma I.1. Le#; be the matrix obtained from by deleting the-th
column and by putting as last column theuple (2irky, ..., 2i7k,,). Thus the
solution is, with the notations introduced above,

> 2imk;(—1)/*det (A);,
detA; _j=1

T, = (-1 detA = JotA for 1<i<m.

By reinjecting this in the coordinates which are left, one finds that the ex-
ponentiale?™ realizes a biholomorphism (in fact a Lie isomorphism) between
N and the complex torus of dimensienwith lattice (eq, ..., ey, @1, ..., o)
where thee; are vectors of the canonical basis anddhas previously defined.

(iif) We now show that we can obtain any lattice. Lletbe a lattice inC™ and

let (e, ..., en, a1, ...,a,) be generators of this lattice. We may assume that
(e1, ..., en) is the canonical basis @ (see [M-K] p. 22). We have to find an
admissible configuration which gives this lattice.
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Let us choosed, = e1, ..., A1 = e,. NOw, detA and det(A); ; are
functions ofA; only. Leta; j(A1) = (—1)'t/det(A); ;. Consider the system

detA x a; = (Z azi(Myyy, — )Ji))
p=1

i=1

detA x a,, = (Z i G140 — Ni))
i=1 p=1

ForalmostallA,, thislinear vectoriak: xm system, with A,,52, ..., Azpt1)
as unknowns, has a non zero determinant, and therefore a unique solution.
Choosesuchdq.As(eq, ..., en, a1, ..., oy) has real rank2, we obtain a
solution of rank 1. Then, changing\; if necessary, we may obtain an admissible
configuration

Remark that, from this theorem, we may theoretically give a new description
of the Siegel moduli space ai-dimensional complex tori: the quotient of the set
of admissible configurations far= 2m + 1 by a group which can be computed
by using the explicit expression of the lattice can be identified with this space.

lll. For n > 2m + 1, the manifold N is not symplectic

The aim of this section is the generalization, to the case of several vector fields,
of the following proposition (see [LdM-Ve] p. 258)

Theorem 2.For n > 2m + 1, the manifoldN is not symplectic, therefore not
algebraic.

Proof.Let S = C" — E and letd be the minimal complex codimension Bf

1st case Suppose! > 1. Then, by transversality, any sphefeembedded in

S can be contracted to a point i Thus, S is a 2-connected open set, and by
the exact sequence in homotopy of the fibrattbr> M3, the manifoldM; is
2-connected too. We may apply the proof of [LdM-Ve].

2nd caseWe havel = 1 and the proof of [LdM-Ve] cannot be used. Under these
conditions, the bundle, : M1, — N is differentiably trivial. Indeed, ag = 1,
this means that there is at least an indispensable point, for examled the
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action of the torugS*)” can be concentrated on the first coordinate. This gives,
up to diffeomorphism

M;~N xSt and N ~{re®)), (z2,...,2,) € C"71 |

rAi+ ) AdzlP=0r+) |z =1).

i=2 i=2

Besides, if we assume that théndispensable points atg, .. ., zx, there is
an identificationMy ~ (SH)* x My, with

Mo >~ {(Fl, v t) € RDY, (zigay v z0) € CF |

ZrlA + Z |Z[ ZA —O Zrl+ Z |Zl|2 :l}

i=k+1 =1 i=k+1

By Lemma I.1,My is a differentiable manifold. This decomposition corre-
sponds to the decompositish= (C*)* x SowhereSy = C** — F andF is an
analytic set of complex codimension at least two at each point. But then, using
the same argument as in the first case, we deduce from this that, by transversality,
So and thereforeMy are 2-connected.

Moreover, as the two decompositionsMf are compatible, we have in fact
N =~ (8YH*=1 x My. This diffeomorphism implies an isomorphism between the
de Rham cohomology groups

H?(N,R) ~ H?*((SH* 1, R) .

Let w be a closed non exact real 2-form o If "1 is a volume form
on N, thenw and thereforev are symplectic. But, according to the last equality,
this is possible only if

2n—2m—2<k—-1.

Now, using the fact that the associate polytope is a polytope of dimension
n — 2m — 1 with n — k facets (see Sect. I), and that such a polytope has at least
n — 2m facets (it is the simplex case), we conclude that this inequality can never
be satisfied]

As a consequence of Theorem 2, the manifdidare not algebraic. More-
over, we shall now prove that they do admit neither algebraic rednldtian
modifications, so that they cannot be obtained from an algebraic alolekan
manifold by a finite sequence of blows-up along analytic sets of codimension 2.
Thus, the manifold#v are far from being Khlerian.

Theorem 3.For n > 2m + 1, the manifoldsN do not admit any khlerian
modification.
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Proof. Let 110 = dimc HO(N, £21) andh®! = dime HY(N, O), where2?
is the sheaf of germs of holomorphic 1-forms &nand© the sheaf of germs
of holomorphic functions onv. By a theorem of Lescure ([Lel]), a smooth
equivariant compactification of a connected complex Abelian Lie group has a
Kahlerian modification if and only #%° = 4%1.

We shall first prove that®* is greater than or equal te. Let us consider the
following short exact sequence éh= S/C*

. LgléBA..GBLém
0— 0P - Oy —— Oy —> 0,

whereQy is the sheaf of germs of holomorphic functionsjthe vector fields
&1, ..., &, arethe projections onté of &, . . ., £, andOi" is the sheaf of germs
of holomorphic functions orVV which are constant along the linear foliation
generated by, .. ., &,. Besides/; denotes the Lie derivative with respect to
& and0,,, is the image 00y in (9%?’” by the linear operatat = L; ®...®L;, .

Remark that, from this exact sequence, we have

(I HY(N,O) ~ HY(V, Oi")

AclassinH(V, Oi}“’) is represented by an open cov&t,).c4 (WhereA is
a finite set of integers; we will omit to write the subscripe A from now on)
together with holomorphic functiong,s defined on the intersectidn, N Vs and
satisfying

8ap +g,3a = OonVa N Vﬁ
8ap +g,3,, +gya =00nVa N Vﬁ N V)/
the invariance conditions:Lz .gep = ... = Lg .gap =0

the cocycle conditions: {

©

In particular, the invariance conditions imply that eagh is the pullback
by 7 : V — N of a functiong,s defined on a open set &, so that the set
(7T (Vy), 8ap) defines a class i# (N, ©). This explains relation (1).

Reciprocally, a&C-principal bundle oveW is defined by an open covét/,)
of N together with a cocyclg,s whose pull back byt, that is to sayw ~*(U,),
T*8ap), IS an open cover of together with a cocycle verifying (C). Observe that
this cocycle is trivial if and only if the corresponding principal bundle is trivial.

We shall construct: non trivial cocycles of this type and show that there is
no linear relation between them. This shall prove that they define a free system
of classes iFH*(N, ©), whose dimension is then greater than or equal to

Let ¥ be a linear combination:&; + ... + a,&,. By weak hyperbolicity,

there is a vector field .
0
= iliT—

on C" such that



Compact complex manifolds 91

M (w1, ..., u,) is an admissible configuration,
(i) The projection ofy ontoV is y,
(iif) There existsx € C such that

1<i<m uizalkl-l+...+aml;"+a.

To this admissible configuration is associated an open set of Siegel I¢aves
Remark that, from the characterization of this set given in part I, if we choose
wisely « in the previous definition of¢, we have an inclusior§ c §’ and
thereforeV c V', whereV’ = §'/C*. Besides, we have an action gfon
V’ whose quotient space is a compact complex manifgldAnd there is aC-
principal bundlep : V' — N’. This bundle is defined by an open cover/of
and a cocycle. If we pull back the cover and the cocycletand restrict them
to V, we obtain an open covéi,) of V and a cocycléig. As ¥ commutes
(as a diagonal linear vector field) witlgs, ..., £,), this cocycle verifies (C),
so represents a classHit(V, Oi'Y), as explained above. Now this class is non
trivial, because, by Lemma .2, the corresponding bundle (the restrictipi of
is non trivial.

In particular, using théj, we get in this waym non trivial elements of
H(N, O) represented by cocycl@% satisfying (C) and an open covéy,) of
V (which we assume to be the same forgll

Lethqs be alinear combinaticnzhg;ﬂ +.. . Fan8ap defined onthe covél,,).

By a direct computation, it may be verified that this cocycle, via the construction
explained above, comes from the vector field

1

- ~ b
X = bi&y + ... + b, where a;
b; = 0 otherwise.

if @; # 0.

But, as noticed above, this means that the cocygleis not trivial. As a
consequence, the fami()gollﬁ, .-+ 8up) Injects as a free family iV, Oy
and we havé:®! > m.

On the other hand, lét;(N) be the first Betti number aV. We have

2h*0 < py(N) <maxk —1,0) <2m — 1, (M)

where the first inequality comes from [BI] and from the fact that every 1-form
on N is closed (see [Lel]), the second from the exact sequence in homotopy of
the fibrationz : S — N, and the third from the proof of Theorem 2.

Thereforeh® < 1%1, which achieves the prodf]

RemarkLet & be the Lie algebra ofi. Then the sheaD,;, may be identified
with a subsheaf of (&, ©), the set of 1-cochains @ with values inO (see
[Le3)).
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IV. Meromorphic functions and holomorphic 1-forms on N

Theorem 3 has as a consequence that the manNoisl not Maishezon, and
therefore that the degree of transcendence of the field of meromorphic functions
onN is strictly lower than its complex dimension (see [Mo]). We may prove more.
Let(Ay, ..., A,) beanadmissible configuration andddie the dimension over

Q of the vector space of the rational solutions of the system

is,'/\i =0
i=1
ZS,‘ =0
i=1

Recall thatd is the minimal codimension df with § = C" — E. We have

(S)

Theorem 4.

(i) The degree of transcendence of the field of meromorphic functionsien
greater than or equal ta.
(i) Moreover, ifd > 1, this degree is equal to.

Proof. (i) Let s* = (s{, ..., s¥), for u between 1 and, be a basis of the vector
space of the rational solutions of the system (S) satisfying

s € Nforalli and allu
GCD(s{, ...,sy) = 1forallu .

Let us associate to this basis the meromorphic functidns= ziﬁ .. .zf{l’l on
S, for 1 < u < a. These functions verify

VzeS, Va e C*, VT € C™,

A1, T Ay, T
M (e~ zq, o ae™ " 7)) = My (21, ..., Z0)

and therefore can be projected onto meromorphic function®' ofihe ratio-

nal independence of the exponegtsimplying the algebraic independence of
the monomialsM,, the degree of transcendence of the field of meromorphic
functions on\ is at least equal to.

(ii) Let fo be a meromorphic function olv. It can be lifted to a meromor-
phic function f on S, which is constant along the leaves. &s> 1, we have
S = C" — E with E of complex codimension strictly greater than one at each
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point. Therefore, by Levi’'s theoreny, can be extended 6" as a meromorphic
function, and by continuityf is constant along the leaves of the singular folia-
tion defined on the whol€”. The functionf is in particular invariant under the
action ofC*, and projects onto a meromorphic function@®”*. But, accord-
ing to a classical result, we then haye= P/Q with P and Q homogeneous
polynomials withn variables of the same degrge

Let
P@) =) ay and Q@)= Y by,
Ipl=¢ Ipl=¢
where we writez instead of(z4, .. ., z,), as well asp instead of(py, ..., p,)

andz” instead o&{* ... z}". Lastly,| p| meansp; + . .. + p,. Moreover, remark
that, in this notation, the, andb, cover all the indexes and only a finite number
of them are not zero. The polynomiatsand Q must verify

SO = 5T,
that is to say
> (ap () — P(z)bp)zf’e<f’A’T> =0. (E)

Ipl=¢
Let us consider the finite sé&t = {(p1,..., p») | |p| = g} and the equiva-
lence relation

p~q ZPiAiZZ%‘Ai-
i=1 i=1

We may then decompose into equivalence classe® = P u ... u P",

generated by?, ..., p" and rewrite (E) as
h N
212 ((aPQ(Z) - pr(Z)>Z”> <P AT =0,
i=1 \pep!

By induction on the number of classes, it can be shown that (E) implies
vpleP, Y (4,00 —b,P@)e =0,
pePo
where Py denotes the equivalence class8fe P. This can be written

)4
D@z

E(z) = b

0 Z b,z?

PePo

(F)
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for a p° satisfyingb,o # 0.
Recall that an integer basis of the space of solutions of (S) is given by

(s, ..., s%. In Equation (F), each equivalence cla&sis constituted by ele-
ments
p°+ integer linear combination af?, .. ., 59).
This means that if we factoriz¢’ in the numerator and denominator of P,
we may findP; andQ, elements ofC[z4, .. ., z,] such that
Z apz(p—po)
P pe P Pi(Myq,...,M,)
fO=-@) == =

0 3> bz PP Q1(Ma, ... M)

pePy

As a consequencg, is algebraically dependent 814, . .., M,, which com-
pletes the proof]

Definition. We say that an admissible configuratiofy, ..., A,) fulfills condi-
tion (H) if a is equal to0, i.e. if it verifies

i: AiSi =0
i=1

Xn:si =0
i=1

s; € Qforalli

= s1=...=5,=0.

Remarklt is a generic condition.

Underthe generic condition (H), the manifolsidhave very few meromorphic
functions. In particular,

Corollary. Let(Ay, ..., A,) be an admissible configuration fulfilling condition
(H). Supposé > 1. Then any meromorphic function @his constant.

This gives a correction to Theorem 4 of [Me] where the generic condition is
missing.

On the contrary, note that if we take a configuration with rational coordinates,
the dimensiom is maximal and equal to— 2m — 1. As any linear Loeb-Nicolau
manifold can be obtained by an admissible configuration fulfilking= 1 and
d > 1 (see [LdM-Ve] p. 261), we may specify a result of [L-N1]

Corollary. The degree of transcendence of the field of meromorphic functions
on $%-1 x §2-1 equipped with a linear Loeb-Nicolau complex structure (with
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k > land! > 1) is contained betweedandk + I — 2, and these two values
can be obtained.

The following proposition gives the geometric meaning of condition (H).
Recall that the manifol@/ is the compactification of a complex Lie groGpand
that a Cousin group is a complex connected Lie group without any non-constant
global holomorphic functions (see part I).

Proposition IV.1. Let (A4, ..., A,) be an admissible configuration. Then the
configuration(Ay, ..., A,) fulfills condition (H) if and only ifG is a Cousin
group.

Proof. Notice that we may apply the proof of Theorem 1Gcand have thus a
Lie isomorphism betwee& = (C*)"~1/C™ andC"~"~! quotiented by the lat-
tice generated bges, ..., ey m_1, @1, ..., ay), With (e, ..., e,_,_1) Canonical
basis ofC*~”~! and, as in Theorem 1, one has

n—m—1

> (=D det (A);j (A papp — A1)
j=1
o =

detA

p=1

From now on, we take this model as definition®@fRemark that we assume
for this identification that A4, ..., A2,.1) is an admissible subconfiguration,
in order to have det not zero. This assumption is always possible by Lemma
I.1. Suppose that is not a Cousin group. This means it is isomorphiGto=
(C*? x C with p > 0 andC a Cousin group (see [Mor]; the presence of the
canonical basis in the lattice definirig proves that there is n@-factor in its
decomposition). We may identifg’ with the quotient ofC"~"~! by the lattice
involving the canonical basis ama vectors whose first coordinates are zero.
Taking this model as definition @', we then have

(Cnfmfl L Cnfmfl

l l

G —— G,

whereL is a Lie isomorphism of2”"~1 carrying the lattice defining' onto
the lattice definings’. This implies thatl. is a linear transformation ¢8” 1
completely determined by a matrikof PSL,_;(Z) which gives the coordinates
of the vectors(er, . .., e,_m_1, 01, . .., a,,) In the basis ofC"~! given by the
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vectors(es, ...e,_n_1, B1. ..., Bn), then — 1 vectors generating the lattice of
G'.
Let (a; ;) be the integer coefficients &f. Then, for 1< s < m, we have

L(ay) =at Lie)) + ...+ " *L(ey 1)
L(os) = Olsl (ar1e1+ ... +arn-1Bm) +...+
Ot;'_m_l(anfl)]_e]_ + ...+ anfl,nfl/gm) .

Projecting onta;, as the first coordinate of eaghis zero, one gets

n—m—1

1
l<s=<m a0y + ...+ ay,—m—10 = A1n—m—1+s >

and there are others similar relations for the projections gnta ., z,,.
Now, it is straightforward to verify that the solutions of these equations are
given by the solutions of the system

a11(A2— A+ ...+ arp—m-1(Apy — A1) =
ain—m (An—m+l - Al) +...+ al,n—l(An — A1),

that is to say that there are integer solutions if and only if condition (H) is not
satisfied

Remark.f (A4, ..., A,) does not satisfy condition (H), then, by Theorem 4,
the manifoldNV has rational meromorphic functions. The restrictions of these
functions toG give global non constant holomorphic functions@pwhich thus
cannot be a Cousin group.

As a consequence of this proposition, we state

Theorem 5. Let (A, ..., A,) be an admissible configuration fulfilling
condition (H). Then we have

ht0 =dime HO(N, 21 = max(©0, k —m — 1).

Proof. Under condition (H), the grou is a Cousin group. The holomorphic
1-forms onG can then be written, in the model given in proposition 1V.1,

n—m—1

2= Z a;dz;

i=1
where theg; are constants. Now, using the Lie isomorphism betw&eand
(C*)"~1/C™ and pulling back byr, these forms are transformed into

n—m—1
Z i 1
i=1 !
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with a; constants verifying

iai/l,- =0
i=1

Za,-:O.

i=1

If z; is not an indispensable point of the configuration, the ferextends to
Sifand only ifg; is zero. Therefore, if we assume that thiedispensable points
of the configuration are thiefirst coordinates, the 1-forms @f are projection
by r of the 1-forms

with a; constants verifying

By weak hyperbolicity, this system has maximal rank, so the space of solu-
tions has dimension m&®, k —m — 1). O

Corollary. Let (Ay, ..., A,) be an admissible configuration. In the following
cases, there are no global holomorphic forms of any degre¥ on

(i) n>2m+landk < 3.
(i) (A, ..., A, fulfills condition (H) andk < m + 2.

Proof. For 1-forms, this is an immediate consequence of majoration (M) in case
() and of Theorem 5 in case (ii). But in the case of an equivariant compactifi-
cation, this implies that there are no holomorphic forms of greater degree (see
[Lel]). O

RemarkThe conditionk < 3 is always fulfilled for the manifolds of [LdM-Ve].
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V. Holomorphic vector fields and complex geometry ofV

Throughout this section, we denote Bythe foliation induced by the vector
fields(&q, ..., &,, R) On S, and use the decomposition of the tangent bundle of
S

where the normal bundle to the foliatidhF is defined as amoothorthogonal
complement t@" F for the standard Hermitian product &f. Observe thatv F
is holomorphic abovéC*)" C S, where the foliation is holomorphically trivial.
Lastly, we call® the sheaf of germs of holomorphic vector fields/én

Theorem 6.Let (A4, ..., A,) be an admissible configuration, and I€tbe the
corresponding manifold.

() The manifoldV has at leasiz — m — 1 globally linearly independent holo-
morphic vector fields, i.e. we hadémc HO(N,®) >n —m — 1.

(i) If d > 1andiftheA; are all different, one has an equalitymc HO(N, ©)
=n—m-—1

Proof. (i) By commutation withéy, ..., &, and R, every diagonal linear vector

field
= iZi
g i=1 0zi

on C" defines a global holomorphic vector fieldon N.

Let(x1, ..., x»—m—1) be holomorphic diagonal linear vector fieldsSoform-
ing a basis ofNF at each point ofC*)", and let(x1, ..., X,—m—1) be their
projections. The vector fielda, ..., xp—m-1, &1, ..., En, R) are linearly inde-
pendent at each point ¢C*)", therefore globally linearly independent ¢n
From the fibrationr : S — N and the isomorphisrw.F ~ TN for all
z € §, we deduce the global linear independencéaf ..., x,_._1) On N.
Thus, we construat —m — 1 globally linearly independent holomorphic vector
fields onN.

(ii) Let x be aglobal holomorphic vector field @h In the following commutative
diagram
NF ——> TN

Ll

s X5 N,
the bundleN F — § is isomorphic to the pullback of the tangent bundllly —
N by . This property allows us to liff to a smooth vector fielg on S, which
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commutes wittg,, ..., &, andR. Moreover, this vector field is holomorphic on
(C*H™ c §, sois in fact holomorphic of.

Asd > 1, this vector field can be extended holomorphicalltg and this
extension, by density of and continuity ofy, commutes wittgq, ...,&,, andR
on the whole ofC". In particular, the commutation witR implies thaty defines
a global holomorphic vector field o P"1, therefore is linear (see [C-K-P]).
Moreover, the commutation with, ...,&,, implies then, as thel; are different,
that x is diagonal linear and that it is one of the vector fields constructed in part
. O

We now generalize the results of [L-N2].

Definition (see [L-N2]).Let N be a complex manifold equipped with a regular
holomorphic foliationG. Letw be a closed real 2-form oN. The foliationg is
called transversely Hfilerian with respect ta if and only if

(i) the formw is J-invariant (whereJ is the almost complex structure &),

(i) forall z € N, the kernel ofv (z) is the tangent space to the foliatidhg,

(i) the quadratic forma(uy, u) = w(Ju1, up) +iw(us, uy) is positive definite
on NG, the normal bundle to the foliation.

Theorem 7.Let (A4, ..., A,) be an admissible configuration and Istbe the
corresponding compact, complex manifold. There exist®/ anregular holo-
morphic foliation of dimensiom:, which is transversely #&ilerian with respect
to the Euler class of the bundig : M; — N.

Proof.As in [L-N2], we consider the vector fields f*

i=1 !

By Lemma l.1, the vector fieldsyy, . .., 7, &1, ..., ..., &, R) are linearly
independent at each point 6f so their projectiongs, ..., 17,) are linearly
independent at each point &f and generate a regular holomorphic foliation of
dimensiorm.

A direct generalization of the proof given in [L-N2] shows that the so-defined
foliation is transversely Khlerian with respect t@, the projection ontav of
the standard Khilerian 2-form ofC".

Finally, the bundler; : M; — N is the pullback of the bundl§?~1 —
CP"! by the smooth embedding & into the projective space (see part ).
Therefore its Euler class is the restriction of that#er form of C P~ to this
embedding, that is to say, ig2[]
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As in [L-N2], this allows us to describe analytic sets and holomorphic sub-
manifolds of N in a generic case. To achieve that, recall tNatontains holo-
morphic submanifolds, that we shall call standard, which are constructed in the
following way: to every subsef of {1, 2, ..., n} fulfilling the Siegel condition
0 € H((A));es), We associate the standard submanifdldof N obtained as
leaf space for the foliation restricted to

Sj={Z€S|Zj=Of0rj¢J}.

Theorem 8.Let (A4, ..., A,) be an admissible configuration fulfilling condi-
tion (H). Then any analytic set (respectively holomorphic submanifold) of
dimension greater than or equaldot+ m — 1is a union of standard submanifolds
(respectively a standard submanifold).

Recall that/ is the minimal codimension d in § = C" — E. The proof of
this theorem is rigorously identical to that of [L-N2], once we have established
the following modification of Proposition 1 of [L-N2].

Proposition V.1. Let Y be an analytic set oV of dimension greater than or
equal tod + m — 1. ThenY is tangent ta7, the foliation of Theorem 7: for al
regular point ofY, we haveT,G C 7,Y.

Proof. Let w represent the Euler class of the bundie: M; — N, therefore of
the transversely &filerian 2-form onV. From this, the exterior produes? is
exact (see [LdM-Ve] p. 259), and, ass closedg' is exact for every > d. Now,
it is sufficient to show the result for an analytic $ebf dimensiond + m — 1.
Let Y be the regular part df, and let

¢ = min(dim(7,Y N T,G)) .

yeY
Let K be a holomorphic distribution or of c-planes such that
ForallyeY, K, CT,YNT,G.

We want to show thak = TGy, therefore that = m. Let us suppose the
contrary. AsK is holomorphic, there is a volume fork on it. Let

wy = dermflfc AV

Thisi_s an exact form of dimensiah+m — 1 onY of dimensiord +m — 1.
LetyeY.

1st casedim(7,Y N 7,G) > c.
Thenw,(y) = 0.
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2nd casedim(7,Y N 7,G) = c.
Thenw1(y) is strictly positive.

By exactness ab,, Stokes theorem for analytic sets implies
/a)1=0,henceVy €Y, wi(y)=0.
Y

But this is absurd, because this implies that, at each poirﬁt?, we are in
the first case. This finishes the prof.

RemarkThis proposition is not specific to our construction and is still valid in the
case of a compact, complex manifdidequipped with a transverselyalerian
foliation G with respect to a 2-form, such that? is exact for a fixed integef.

We close this part with a short study of the quotient space of the transversely
Kahlerian foliation onV. This study is not contained in [L-N2].

Definition. We say that an admissible configuratiofy, ..., A,) fulfills condi-
tion (K) if and only if, for the space of solutions of System (S),

n

ZS,‘AI' =0

(S) -

n

Z.S'i =0

i=1

we may choose a basis with rational coordinates.

RemarkCondition (H) can be restated as: there is no rational solution of System
(S), so is totally opposite to condition (K).

We now have

Theorem9.Let(A4, ..., A,) be anadmissible configuration fulfilling condition
(K), let N be the corresponding manifold and {¢be the transverselyadilerian
foliation of Theorem 7. Then

(i) All leaves ofG are complex tori of complex dimension
(i) The quotient spac&/ /G is a Kéahlerian orbifold.

We will not prove this theorem and state it as an announcement, as we intend
to show it in another paper where we shall study more extensively the quotient
spaceN/G.
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VI. Affine equivalence and deformation space oV

This part deals with the generalization of the results of [LdM-Ve] on the defor-
mation space oN.

Definition. We say thatAq, ..., A,) and (A1, ..., A)) are equivalent configura-
tions if there is a continuous mag : [0, 1] — (C™)" such that

() HO) = (A, ..., 4,),

(i) H(1) = (A7, ..., A)), where the configuratiotA], ..., A)) is an arbitrary
permutation o{ A7, ..., A)),

(i) forall ¢ of [0, 1], the setH (¢) is an admissible configuration.

Remark that two equivalent configurations give diffeomorphic manififegs
and diffeomorphic manifold#v. Indeed, by definitionH (¢) is an admissible
configuration, therefor@f,(¢) (respectivelyN (¢)) is a differentiable manifold
for all 7. The union of these manifolds fibers over the interval, and this fibration
is a submersion at each point of the interval. Therefore it is locally trivial by
Ehresmann’s lemma (see [M-K] p.19-21 for a direct proof)3£@0) andM1(1)
(respectivelyN (0) andN (1)) are diffeomorphic.

However, the converse is false. There are diffeomorphic manifdildsom-
ing from non equivalent admissible configurations (see [LdM1] p. 242 for an
example).

If two admissible configurations can be obtained one from the other by an
affine transformation o™ and are equivalent, the two manifolt¥sare biholo-
morphic. In fact, there is a biholomorphism between the operssgtsch sends
leaf onto leaf. Ifd > 2, the converse is true. It is a generalization of Theorem 5
of [LdM-Ve] (the proof is the same).

Theorem 10.Let (A4, ..., A,) and (A7, ..., A}) be two equivalent admissible
configurations, and lev and N’ be the corresponding compact complex mani-
folds. Supposé > 2. ThenN and N’ are biholomorphic if and only if the two
configurations can be obtained one from the other by an affine transformation
of C™, i.e. if and only if there existgA7, ..., A)) an arbitrary permutation of
(AL, ..., A)) and

A € GL,,(C)andB € C" such that
(A’l’,...,A,’;):(AA1+B,...,AA,,+B).

Now let (A4, ..., A,) be an admissible configuration and fetbe the set of
admissible configurations equivalent ¢d, ..., A,), quotiented by the affine
equivalence relation of Theorem 10.

Lemma VI.1. The sefE is a finite quotient or an open set @&" 1),
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Proof. By Lemma I.1, we may assume thaty, ..., A,,), them first vectors of
the base point oF, have complex rank: and that there existd € GL,,(C)
andB € C™ mapping then + 1 first vectors of the configuration onto

(AA1+B9"'5AAm+l+B):(elv""emvo)v

where(es, ..., e,) is the canonical basis d@”. The vectordA,,12, ..., A,)
are sent by this transformation onto a 8¢t= (M., ..., M,_,,_,) of vectors of
cm,

Let A" = (A}, ..., A)) represent a class if. As A’ is equivalent toA,

there exists a permutatiof” such thatA and A” are homotopic (that is to say,
according to the definition of equivalent configurations, that there is a continuous
path of admissible configurations joining to A”). Now, as above, there is a
unique affine transformation mapping’, ..., A;, ;) onto(es, ..., ey, 0). By

this transformation the vecto(s\,, . ,. ..., A,) are sent onta — m — 1 vectors

of C™", letus call themM' = (M3, ..., M, _, ).

Itis clear that the matrid4’ does not depend on the choice of the representant
and that two different classes i give different setsM’. Therefore we have
identified E with a finite quotient of a seP of (C"~"~1)"” up to permutation.

Finally, observe that ifA’ is close enough tot (for the product topology
on C" x ... x C™), it is equivalent toA. So it defines a class i whose
corresponding point irP is close toM. Therefore,P is open]

Thus, for each manifoldv, we have constructed an analytic deformation
space of dimension (n—m —1). Ford > 2, two different points oE correspond
to different complex structures on the same manifgldup to diffeomorphism.
From this,E is a reduced moduli space, and there is a holomorphic injection of
E into the Kuranishi space a¥ .

Theorem 11 (see [LdM-Ve], Theorem 6)Let (A4, ..., A,) be an admissible
configuration, letV be the corresponding compact complex manifold, and'let
be defined as above. Suppeke- 3 and suppose that tha; are all different.
Then the open sdi is a universal deformation space (a moduli spacelof

Proof. As in [LdM-Ve], we shall prove that the dimension & and that of
H(N, ©) are the same. Since the dimension of the Kuranishi spasg, st

us callK, is smaller than or equal to that &f'(N, @) (because of the Kodaira-
Spencer map, see [Su] p. 160), thisimplies thahdK have the same dimension.
Now, asE injects holomorphically irK, in a regular point, the Kodaira-Spencer
map is an isomorphism. This is sufficient to prove, by a theorem of Kodaira-
Spencer, thak is a versal deformation space df, like K (see [Su] p. 160).
Finally, as two points of correspond to two different complex structuresdn

it follows from all this thatE is a universal deformation space®f To compute
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the dimension of, we consider, in addition to the exact sequence of Theorem
3, the two following short exact sequencesior= S/C*

H E P ... ~mv_
0— O" — Oy Lo, 718 Ol 7] O, — 0,

e

0— Oi"”.gl D...0 O"”“ém - " e, -0,

where the sheaby is the sheaf of germs of holomorphic vector fields¥dn
and the sheab,;, C (®y)®" is the image sheaf b, by the linear operators
corresponding with Lie brackefé,, — 1@ ... ® (&, —]. Lastly, the shea@"
is the sheaf of germs of holomorphic vector fieldsWrwhich commute with
&1, ...,&, and®, is defined by these sequences.
Then we have
H'(V,©,) ~ H (N, ®) foralli.

Asd > 3, by Scheja’s results [Sc] we have the following identifications

HO(V,®y) = HY(CP" 1, Ocpn-1) =~ s1,(C)
= {matrices ofM,, (C) of trace Q
and HYV,0y) = H3V,0Oy) = H(V,0y) = H*(V,0y) =0.

The exact sequence of Theorem 3 gives the long exact sequence in cohomol-
ogy

0— C"— HYV,0™) - 0
0— HYV,Ou) - H*(V,0™) - 0,

and thereforgd*(V, ©'"?) = C™ andH?(V, O"™) = HY(V, O,,,).

As the vectorsA; are all different H%(V, @) can be identified with the di-
agonal matrices modulo the scalar ones, and, by Theorem 6, wétfave ©,)
— Cn—m—l_

The two long exact sequences in cohomology are thus

0— C" 1= s5,(C) —» HV, 0,,) - HY{(V,0™) - 0,
00— Cm D...0 (QUINN Hl(V, @inv) N Hl(V, @b) _p) HZ(V, (Oinv)@m)
—_ ..

L)

_Using the previous isomorphism betwegf(V, O,,,) andH?(V, O""*) and
Cech cocycles, it is straightforward to verify that the melpas 0 as image. The
second long exact sequence turns to be

0->C"®...C" - HYV,0®"™) > HY(V,0,) > 0.
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As the tangent space éfinjects intoH(V, ©,), the dimension of this space
is greater than or equal t@(n — m — 1). We have to know the dimension of
HO(V,®,,) in order to say more. An element of this space is a collection of
m linear vector fielddM., ..., M,,) of C" verifying locally that there exists a
germ of vector fieldy overC” such that

[X’R]ZOa [ngi]:Mi’ 1Sl5m
In particular, by the Jacobi identity, one has
(M, ] =[M;,&] for 1<k, [ <m.

Let us denote bym})! ;_, the coefficients of the matrix which characterize
the linear vector fieldZ,. We have

I vk k ko (y1 !
my; (A — A7) =m0 — &) for 1<k, l<m.

As theA; are all different, we thus obtain(n — 1) (m — 1) non trivial relations
between the coefficients of the vector fields, ..., M,,. Therefore

dime H(V, Ouy) < (n = D +m) .
But the exact sequences imply then
dime¢ H%(V,0,,) = (n —1)(n+m) and dimc HY(V, ) =m(mn —m — 1)

which achieves the proadfl

RemarkSome manifoldgv have a disconnected moduli space. (4t, ..., A,)

and (A, ..., A)) be two admissible configurations, non equivalent but giving
diffeomorphic manifoldsM;. Suppose! > 2. Then, by Theorem 10, we have
two reduced moduli spacés and E’, whose union is not connected: it is not
possible to go continuously from a complex structurgEodn N to a complex
structure ofE’.

Remark As in Theorem 3, we have an identification betwegn. and a sub-
sheaf ofC1(&, ©), the set of 1-cochains of the Lie algel#awith values in®.
Moreover, the map — ©,,, is the Koszul differential (see [Le3]).
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VIl. Some elements of classification o,

In this section, we give some results on the classificatiomgfup to diffeo-
morphism. We choose to classi®y; rather thanv, because we have a powerful
classification tool foM;: the explicit smooth action of the real torus on it. We
begin this section by a reduction theorem.

Theorem 12.Let (A4, ..., A,) be an admissible configuration. #f > 1 and

m > 1, then there is an admissible configurationy, ..., A, _,) such that
M, is diffeomorphic toM; x St x S, where M; and M, are the manifolds
corresponding respectively (ol4, ..., A,) and (A%, ..., A)_,).

RemarkThe configurationiAg, ..., A,) corresponds to an action@f’, but the
configuration(A’, ..., A, _,) to an action ofcm—1,

This theorem is a reduction theorem in the sense that it allows us to restrict
the configurations to study in order to give a classificatioMef up to diffeo-
morphism. The following immediate corollary specifies this.

Corollary. To establish the classification of the manifolds up to diffeomor-
phism, it is sufficient to use the configurations with one or without an indispens-
able point.

This corollary is the motive for the following definition.

Definition. We call reduced admissible configuration an admissible configura-
tion with only one or without an indispensable point.

Proof of the theoremLet (A4, ..., A,) be an admissible configuration with
k > 1. We then have

M ~ {w eCn | ZAilwi|2=0}.
i=1

In order to simplify, we shall suppose thatandz, are indispensable points.
As in the proof of Theorem 2, we may write the following diffeomorphism

M~ St x st

x {w eC'2, (r1.ra) € RY)? | Arra+ Agra+ Y Ailwiof* = 0] :
i=3

Let us callM’ the manifold on the righthand side of this expression. By
Lemma I.1, the system which definds has maximal rank, and, using the last
two equations for example, is equivalent to
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lwil?Af + ...+ |w,—2]?Al_, =0,

where theA! are vectors oC~1, We must now verify thatA’, ..., Al is
an admissible configuration.

To achieve that, remark that the associate polytopa$ ahdM’ are combi-
natorially equivalent (there is a bijection between them which maps a face onto a
face and respects the inclusion of faces - see [B-L] or [Gr]) and can be identified
with

K = {I’ S (R+)n | iri/l,- =O, ii’i =1;.
i=1 i=1

Equality of the associate polytope means that S’ x (C*)2. Now, let us
suppose thatthe weak hyperbolicity condition is not satisfied for the configuration
(AL, ..., A _,), for example let us suppose that O belongs to the convex hull of
(A}, ..., A%, ,). Then

P={wy-1=...=w, =0, wj #0forl<j <2m—2}

is included inS’, and therefore? x (C*)? is included inS. Thus 0 belongs to
the convex hull of A4, ..., Ay,), which is absurd]

Corollary. Let(Aq, ..., A,) beanadmissible configurationif> 2andm > 1,
then there is an admissible configurationy, ..., A/ _,) such thatV is diffeo-
morphic toN’ x S* x S, whereN and N’ are the manifolds corresponding
respectively tqAq, ..., A,) and(Ay, ..., A _,).

Remark.Theorem 12 is a reduction theorem only for the classification up to
diffeomorphism. It is completely different for the classificationMfup to bi-
holomorphism. To have for examplé diffeomorphic toS* x S x N’ may

have an interest, because the complex structure obtained may not respect this
decomposition. In particular, as a consequence of Theorem 5, we have

Proposition VII.1. Let(Aq, ..., A,) be an admissible configuration satisfying
condition (H). Suppose
3<k<m-1.

Then,N is diffeomorphic but not biholomorphic ®° x N’, whereT,C is a
1-dimensional complex torus ard’ is defined as in the previous corollary.

The proof of Theorem 12 uses the associate polytope. In fact this polytope
plays, as we shall now see, a fundamentéde i the classification oM. To
achieve that, remark that this polytope has the following property: its dimension
isn — 2m — 1 and from each of its vertices come exacilyedges (this is a
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direct consequence of the fact that the different facets of the associate polytope
describe the different components $f therefore it is a simple polytope (see
[Gr]). There is a natural map from the set of admissible configurations into the set
of simple convex polytopes: the one that to an admissible configuration assigns
its associate polytope.

Two equivalent admissible configurations give two diffeomorphic manifolds
M., therefore two diffeomorphic open sefs and lastly two combinatorially
equivalent associate polytopes, so that the previous map projects onto.&A map
from the setC of admissible configurations modulo equivalence into thePset
of simple polytopes modulo combinatorial equivalence

J: [(Ag, ..., A €C > |:{re(]R+)” | ZriAi:O, Z‘r,-:l” cP,
i=1 i=1

where brackets are used to denote the equivalence classes. This map can, in some
way, be compared with the momentum map in symplectic geometry, because it
reflects the action of the real torus #fy and its image is a convex polytope (see
[De]); it has also to be compared with the abstract moment map defined in [Ka].
Remark now that the equivalence class of a reduced admissible configuration
contains only reduced configurations, so that the chapan be restricted to the
setCrequceqOf reduced admissible configurations modulo equivalencefllm

this restriction.

Theorem 13.The mapf . Creduced — P is a bijection: to every simple con-
vex polytope (modulo combinatorial equivalence), we may associate a unigque
reduced admissible configuration (modulo equivalence) having this polytope as
associate polytope.

Remark This result emphasizes the closeness between the/naeydl the mo-
mentum map in symplectic geometry (the reader can compare with the results
of [De], for example).

Remark.In order to make this theorem work for simplexes, it is necessary to
consider the case = 0 too. This case can be thought in the following way:
we haveS = C" — {0} and we consider only the action f on S, so we have

M; = §?"landN = Cp" L.

Proof. We need a definition of convex geometry. lét= {vs, ..., v,} be a set
of n points inR?, andW = {wy, ..., w,} a set ofn points inR"~9~1, Then
considerH (vy, ..., v,) andH (ws, ..., w,) the convex polytopes formed by the
convex hulls of the elements df andW respectively. For a sdt= {i1, ..., i,}

of integer indexes between 1 andwe shall denote by¢ the complementary
indexes set, that is to say

IC={1<j<n|jé&l}.
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Lastly, we denote byRelint H(vi,...,v,) the relative interior of
H(vy, ..., Uy).

Definition (see [B-L], p.511).The setW is a Gale diagram oV if and only if,
for all I set of indices, we have

0 € Relint H(w;);e;c <= H(vi)ies is aface of the polytop® (vy, ..., v,) .

The notion of Gale diagram allows us to bind the associate polytope to the
convex hullH(Aq, ..., A,).

LemmaVIl.2. Let(Aq, ..., A,) beanadmissible configuration. Thenthe convex
polytopeH (Ay, ..., A,)is a Gale diagram of the dual of the associate polytope.

Proof.First, letus remark that the dimension of the associate polytope is adequate.
Let now! be a set of indexes of dimensign If 0 € Relint H(A;);er, then, by
definition, the subspace

{zi=0,ie€l z; #0, jel}

isincluded inS. Besides, as the different faces of the associate polytope describe
the different components ¢f, there is a numbering of the facets of the associate
polytope such that the intersection of the facets indexed by is a face of
this polytope. Dualizing, the facets transform imte- k verticesvy, ..., v,_x
(wherek is the number of indispensable points), and the previous property means
that? (v;);¢,c is a face of the dual of the associate polytope. It is then sufficient
to add the vertices, ;.1 = ... = v, = 0 (corresponding té& indispensable
points) in order to verify the definition of a Gale diagram.

Conversely, the demonstration is still valid. Finally, the weak hyperbolicity
condition implies that if 0= H(A;);cs, then in fact Oc Relint H(A;);e;. U

Given a seV/, a Gale diagram o¥ is obtained by a Gale transform bf(see
[B-L], p. 511, [Gr] p. 85): considev, .. ., v,) as a matrix, to which you add a
column of one in order to have@ + 1) x n matrix. The kernel of this matrix
viewed as a linear map is the space of affine relations betwean. thdasis of
this space is called a Gale transformiaf This shall allow us to construgt .

Let P be a simple polytope of dimensignwith ¢ facets. We have

n—2m—1=p and n—k=gq.

As we want a reduced configuratioh,is equal to 0 or 1. This gives two
possible values for, but only one of them gives an integer value for The
dimensiongm, n, k) are thus determined completely. Like in Lemma VI1.2, if
k =1, we add 0 as a vertex df to represent the indispensable point and have
the required dimension.
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A Gale transform of the dual of this polytope, extended if necessary, shall give
a configuration(Ag, ..., A,) in C™. We now have to verify that it is admissible.

By definition of a Gale transform, 8 H(A;, ..., A,) sothe Siegel condition
is fulfilled. Suppose that the weak hyperbolicity condition is not fulfilled, for
example suppose that® H(A4, ..., Az,). Moreover, as thel; are not zero,
we may assume that @ Relint H(Ay, ..., Ay,), restricting ourselves to a
subconfiguration if necessary. Therefore, by the definition of a Gale diagram,
there is a face of the dual of the polytopecorresponding to the complementary
set of indexes, therefore a face of dimension 2m — 2 with n — 2m vertices.
Such a face cannot be a simplex. But,Rass simple, its dual is simplicial, so
there is a contradiction. The configuration is admissible.

Finally, if we consider two combinatorially equivalent polytopes, the Gale
transformg(vy, ..., v,) and(vy, ..., v)) of these polytopes are isomorphic (see
[Gr]) in the following way

forall 7, we have Oc H((vi)icr) <= 0€ H((V))ier) -

Now, the equivalence between two admissible configurations means that you
may homotopé&As, ..., A,) to (a permutation ofj A7, ..., A)) without, at any
step, making 0= C™ pass through an internal facet of the convex hull of the
vectors, therefore such as 0 always stays in the same "chamber" of the convex
hull, which implies that the two configurations are isomorphic in the previous
way. []

From J~1, we may construct a map which sends a simple polytope into a
manifold My, but this map, according to the remark at the beginning of section
VI, is not injective.

In the particular case where the associate polytope is a polygon and where the
manifold M, is simply connected, a complete classification up to diffeomorphism
is given in [McG]. One obtains connected sums of products of spheres (see next
section). The proof by induction on the number of vertices of Mac Gavran cannot
be generalized, even in the case of polyhedrons. However, we conjecture

Conjecture. Let (A4, ..., A,) be an admissible configuration, and 1&t; be
the corresponding manifold. TheM, is diffeomorphic toP x C, whereP is

a product of odd dimensional spheres afich 2-connected connected sum of
products of spheres.

This conjecture istrue in the case of a single vector field. A direct computation
of the homology classes is done in [LdM2] (see [LdM1] and [LdM-Ve] p. 263),
but it cannot be generalized. In the general case, we have the following result.

LemmaVIl.3. The manifoldV; is diffeomorphic taP x C, whereP is a product
of odd-dimensional spheres ada 2-connected manifold.
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Proof. Let us decompose the open Sets
S = (CH x (C*2— {0 x ... x So.

with Sp a 2-connected open set. By a slight adaptation of the diffeomorphisms
used in the proof of Theorem 2, this decomposition gives the following splitting
of M,

My~ (SH* x (83" x...x C

with C a 2-connected manifold and the lemma is proved.

Therefore the conjecture consists in proving thais a connected sum of
products of spheres.

Remark As the bundleS — M; has a contractible fibei/; and S have the
same homology. AS is a subspace arrangement, it is theoretically possible to
compute its homology by the formula of Goresky-Mac Pherson (see [G-McP],
and [J-O-S] too). However, as there are subspaces of different codimensions, it
is not clear that the homology is even only free (see [Je] for an example of a
subspace arrangement with homology containing torsion terms).

VIIl. Examples of compact complex manifolds

First, recall that the case = 1 is the construction of [LdM-Ve], so we thus
obtain all their examples, including in particular those of Hopf, Calabi-Eckmann,
Haefliger (linear case), Loeb-Nicolau (linear case).

We now give the examples corresponding to an actiof%6n C® andC’.
Following Theorem 13, the classification is made using the number of indispens-
able pointsk and the combinatorial type of the associate polytope.

actionon | k | associate polytope| manifold N
C8 4 | segment S3x T3
C’ 4 | triangle S5 % T3
C’ 3 | square S3 x §% x T2
5
ol 2 | pentagon ( 1 5% x 54) x 81
i=1
8 9
C’ 1 | hexagon g 5%xS*1 S8xs°
i=1 i=1
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whereT? is the real torus of dimensiop. Whenk = 0, we obtain

14 35
My~ # S3x 8% 18 §%xs°,
i=1 i=1
andN is the basis of a non trivial circle bundle, whose total space is this manifold.
In the same way, we have, for an action@f on C2 (the classification is not
complete)

k | associate polytope manifold N

4 | tetrahedron S”x T3

3 | prism (triangular basis) | S° x §3% x T?

2 | cube 3 x §%x §3x st

2 | pentagonal book

i=

3
S4x S° 4 S3xSG>xSl
i=1

1 | prism (pentagonal basis

- N N
[ =3, &nm

S8 x 54) x §3

=

6 8
1 | hexagonal book £ 83x 874 54x 86
= .

i=1 i= i

; S% % §5(2)
=1

where the pentagonal (respectively hexagonal) book denotes the polyhedron
obtained from the prism with pentagonal (respectively hexagonal) basis by con-
tracting a rectangular face to a segment.

The expressions @¥ in these two arrays are obtained by combining Theorem
12 and Theorem 13 and the complete classification for themgasel of [LdM-
Ve] (see p. 257), except for the case of the hexagonal book. In this last case, we
have computed the homology by the formula of [G-McP] and given the class of
N up to diffeomorphism, according to the conjecture of Sect. VII.

Remark.In some cases (for example in the case of the hexagon in the first
array), the manifolaV is a connected sum of products of spheres, including even
dimensional spheres. This has to be stressed, for there does not exist any almost
complex structure on products of even dimensional spheres, excefst fos*

and products using§? ands® (see [D-S]).

Combining Theorem 12 and Theorem 13 and the results of [LdM-Ve] (The-
orem 1; see [LdM1] and [LdMZ2] too), we obtain:

Theorem 14.Letn € Nandp = 2/ +1 < n. Letn = n1 + ... +n, be
any decomposition of into integers. Lastly, lethy = n1 + ... +ny, ...,d, =
flp+l’l1+...+n1_1.
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Then, there exists a complex structure on the manifold

(ﬁ §2hi-1 SZn—2—2a’,-> s
i=1

Let us denote byw) S’ x §™ the connected sum efcopies ofS’ x §™. Using
the results of [McG] and Theorem 13 for polygons, we prove

Theorem 15.Let p > 3. Then there exists a complex structure on

_3 _ ) )
() the manifold(ptt (j (é’ . i)) §2+j % Sp—1) x St for every oddp,
j=1

(i) the manifoldpﬁ3 <j (p R 2)) §%+J x SP=J for every everp.
j=1 J+ 1

Therefore, this theorem gives a family of compact complex manifalds
which are diffeomorphic to connected sums of products of spheres. Notice that,
if the conjecture of part VIl is true, every admissible configuration with only one
indispensable point and such that the openSsebes not have components of
type CP — {0} (for p > 1) will produce a compact complex manifol which
is a connected sum of products of spheres. Besides, it is possible to elaborate a
computer program which gives the manifalff once the associate polytope is
known, using first a numbering of the facets of the polytope to comfyuteen
computing the homology of andM; by the formula of Goresky-Mac Pherson
and finally describing the diffeomorphic type #f; according to the conjecture.
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