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The Kleinian singularitie€?/G associated to finite subgrous c SL,(C),

are of fundamental importance in algebraic geometry, singularity theory and
other branches of mathematics. Despite the very classical nature of the subject,
new remarkable properties continue to be discovered. One such discovery was
the McKay correspondence [9] and its interpretation by Gonzalez-Springberg
and Verdier [3] in terms of the minimal resoluti®@?//G. Their results give
identifications

Ko(C?//G) ~ RepG) =~ hy,

wherekKj is the Grothendieck group, Rep is the representation ring?@rimithe
root lattice of the affine Lie algebra (of type A-D-E) associated’to

Our first goal in this paper is to extend the above results by describing the
derived category of coherent sheaves3ii/ G, instead of jusk,. Theorem 1.4
identifies it with the derived category 6f-equivariantC[x, y]-modules, i.e., of
modules over the crossed product algebfa, y1[G]. It is surprising that such a
basic fact has not been noticed before. Our approach can be seen as a refinement,
in a purely algebraic setting, of the techniques of Kronheimer and Nakajima [7]
in that we get rid of Dolbeault complexes with growth conditions at infinity,
stability conditions for vector bundles and so on.

We then definéd, an Euler-characteristic version of the Hall algebra [12] of
the category of coherent sheaves33i/ G and apply the constructed equivalence
to exhibit a subalgebra iH isomorphic toU (g ). Hereg(; is the nilpotent part
of the finite-dimensional Lie algebra (of type A-D-E) correspondingstoAs
a consequence, we get a result about any algebraic susfacgiipped with
a configurationC = [ J, P! of (-2)-curves intersecting transversally. Namely,
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taking the intersection graph of tf&} as a Dynkin graph, we get a possibly
infinite-dimensional Kac-Moody Lie algebra, and the theorem is that the positive
part of this algebra acts in the space of functions on isomorphism classes of
coherent sheaves ifl. This partly extends the results of Nakajima [10] to a
wider geometric context.

The work of the first author was partly supported by an NSF grant and a
large part of it was carried out during a visit to Univeesitérgy-Pontoise, whose
hospitality is gratefully acknowledged. The work of the second author was partly
supported by EEC grant no. ERB FMRX-CT97-0100.

1. Equivalence of derived categories

1.1.For a smooth algebraic variey and an integem > 0 we denote by
themth symmetric power oX and byX ! the Hilbert scheme parametrizing 0-
dimensional subschemésc X of lengthm. Given such &, the corresponding
point of X" is denoted£]. We denote by the tautologicalz-dimensional
bundle onX™!, whose fiber ai&] is HO(&, ©). Let G be a finite group acting
on X. Letm = |G|. The quotientX/G can be viewed as a closed subvariety
in X Suppose that the action is free on an ojgginvariant setU c X.
Define the Hilbert quotienX//G as the closure of//G in X", cf. [6]. The
Chow morphismx!l — x™ gives a mapp : X//G — X/G. Let X C
(X//G) x X be the incidence subscheme. gt: (X//G) x X — X//G,

p2 . (X//G) x X — X, be the projections angh, g> be the restrictions of
p1, p2 to X. The restriction of the tautological bundleX¢'/ G is denoted again
by &; it is a bundle ofG-modules isomorphic to the regular representation. If
p, V are representations of, with p irreducible, we sevV, = Homg(p, V).

1.2.LetCohg (X) be the category ofi-equivariant coherent sheaves ¥nand
Coh(X//G) be the category of coherent sheavesXfy G. Define two func-
tors @ : D’(Cohg(X)) — D’(Coh(X//G)) and¥ : D’(Coh(X//G)) —

D’ (Cohg (X)) by

@ (F) = (Rq1Lq3F)¢ = (Rp1(p5F ®" 05))° and

¥ (G) = Rp2. RHOM(Ox, piG).
The functors? and® are adjoint, i.eHHom(® (F), G) ~ Hom(F, ¥ (G)).
1.3.Let Z, W be algebraic varieties, equipped with actions of finite grodps
H respectively. Lepy, pz be the projections frod x W to W, Z respectively.
Let £ be an object oD?(Cohg .z (Z x W)), such that each of the cohomology

sheaves{' (£) has proper support with respect pg,. Taking £ as a “kernel"
defines a functor

Fr : D*(Cohs(Z2)) — DP(Cohy(W)), F — (Rpw.(psF ®F L))°.
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If Z, W, T are varieties with actions of grougs, H, K respectively, andC €
D’ (Cohgxx(Z x W)), M € D*(Cohy,x (W x T)), the compositiorFy o Fr.
is isomorphic toF r .. Where

M % L = (Rp1a.(piL " praMNT,

and thep;; are the projections of x W x T onto the pairwise products. In
the case (1.2) of the produck//G) x X x (X//G) let ¥1, = p (%) and
2= p2‘31(2’), whereX’ ¢ X x (X//G) is the transpose variety of .

Proposition. In the situation of (1.2) the following is true:
(a) The compositio@ ¥ has the kernel

L = (Rp1a.(RHOM(O 5y, O5)))¢ € D"(CONX//G x X//G)).
(b) The compositiow @ has the kernel
M = Rs13.(RHOM Oy, Orxy,)) € D’ (Cohgxg(X x X)),
wheres;; are the projections ok x (X//G) x X to pairwise products. O
RemarkNote that that the restriction of the projection
p13: Z12N Xy — (X//G) x (X//G)
is a finite morphism, so we can replak@i3. by pis..

Thus, the functore, ¥ are mutually inverse equivalences of categories if and
only if

(a) the kernell is quasi-isomorphic to the structure sheaf of the diagonal on
(X//G) x (X//G),

(b) the kernelM is quasi-isomorphic to the structure sheaf of diagofnat

X x X tensored with the regular representatida= C[G] of G.

1.4. Suppose now thaX is a smooth surface. Thexi™! is smooth andX//G
is an irreducible component of the fixed point set of thection onX!™!, so
it is also smooth. Thug is a resolution of singularities 0f/G. The following
theorem is the main result of the section.

Theorem. Let X be a surface equipped with a holomorphic symplectic ferm
and suppose that th@-action onX preservesy. Then® and ¥ are mutually
inverse equivalences of categories.

From the definitions it is clear that all the cohomology sheaveg afre
supported onthg &1, [n]) such that sup@) Nsupfn) # @, and the cohomology
sheaves of\ are supported otheG(l x g)(A). Thus it is enough to work in
the neighborhoods of fixed points of subgroupsGofwhere the action can be
replaced by the linear one. We now assume this to be the case.
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1.5.Given afinite subgrour C SL»(C) lett be the natural representation®@f
on C2. For any irreducible representatiomsp of G letm,, be the multiplicity
of 7 in p ®c . We how assum& = t andG C SL,(C). SetA = C[x, y]. Let
M be anyA-module. Then, we have the (Koszul) free resolutionoby

y
(x,y) ®2 (—x)
A®cM—>(A®CM) —" AQcM.

Constructing this resolution simultaneously far = O; and all[¢] € X//G,
we get a resolution a5 by the complex ortX//G) x X :

K ={pif — (pi&)®* — pi€).
Thus

@ (F) = (Rp1(p5F @ K))°
= {(Rp1:p5F) ® € = (Rp1.p3F)
®E®? - (Rpr.p3F) ® £)°.

Note thatRp1, p3F is just the trivial bundle orX//G with fiber I" (X, F) (the
higher cohomology vanishes oti = t). Moreover, if F is a G-equivariant
sheaf, them” (X, F) is aA-module withG-action and can be split (X, F) =

D, 7 ®c I'(X, F)r, S0P (F) can be rewritten as

®(F) = (P T X, Pz &c & > P T X, F)x ®c &

7,0
— P X, Fz &c &l
Similarly we get

W(G) = {R['(X//G.G®E") ®c O; — RI'(X//G,G®E") ®c O
— RI'(X//G,GQE") @c O,}.

By using the Koszul resolutiokl, we find thatC is quasi-isomorphic to
L' = (Rp1a.(RHOM(p1,K, 0:53)))6

= (£*RE — (£*QE)P? — £*RE)°

= Degs — D™ — PEge .
T TP T
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where® is the external tensor product. The quasi-isomorphiZm~ O, is
provedin[11,Lemma4.10]. By using the Koszul resolutior(fgs, we represent
M by the quasi-isomorphic complex

M ={0,QRq2.q;E" — (Of@qu*qi“S*)@Z
- Or@RQZ*QIg*}-

To show thatM’ is quasi-isomorphic t@, ®c R, it is enough to show that
Rg2.(q1E*) = O; @c R. Then M’ will be identified with the tensor product of
R and the Koszul resolution of the diagonaldd x C2:

080 — OR0%? — 0R0.

Applying the Koszul resolution one more time, we are reduced to the following
fact.

Proposition.We havel" (X//G, £* ® £) = R[x, yland H (X//G,E* ® &) =
0 Vi>0.

Proof. Recall thatl" (X // G, £) = A (see [3]) and thus for any € Coh(X//G)
the spacd™(X//G, £ ® G) is aA-module. We define a morphism Afmodules
u:R[x,yl > I'(X//G,E" @ &) by

u(g)=geHom(E&, & =rX//G,E*QE), Vg € G.

Since thaG-action orr is free outside 0, the spa¢qa X// G, £*®E) is atorsion
free A-module, and: is an isomorphism outside © . Thus the first assertion
follows from the following lemma.

Lemma. Letu : M — N be a homomorphism @&-modules such that:
(a) M is free, andN has no torsion;

(b) u is an isomorphism outside a point (in particular, it is injective).
Thenu is an isomorphism.

Proof. Let us regard, N as coherent sheaved, A" onC?, let U be the com-
plement of the point, so that ovéf the mapu : M — N is an isomorphism.
Let j : U — C? be the embedding. Then, taking the direct image, we find a
homomorphism

Jeju s juj M — N
It is an isomorphism sincg¢*u is. SinceM is free, j, j*M = M. On the other
hand, sinceV is torsion free, the natural mag’ — j,j*\ is an embedding.
But its image contains the image ffi*u, so itis an isomorphism. So= j, j*u
is an isomorphism, as claimed. |

To prove the second assertion of the proposition it is enough to show that
Rip.(£*®E) = 0ifi > 0. The mapp is an isomorphism everywhere except for
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0 € X/G. The proposition follows from the vanishing &f (p~1(0), £* ® &) if
i > 0, proved in Remark 2.1 below. |

2. Detailled analysis of the equivalence

In this section we always assume tlat= t and G is a finite subgroup in
SL»(C).

2.1.The quotient surfac& /G has an isolated singularity at 0. The mafs the
minimal desingularization ok /G (see [5]). The vector bundles, on X//G
were introduced and studied in [3]. Recall that finite subgratips SL,(C) are
classified by Dynkin diagrams of finite type A-D-E as follows. It= p~1(0)
and letE, ., be the reduced variety.

Proposition. Let I"° be the Dynkin diagram of. LetI” be the affine extension

of I'°.

(a) Vertices of"? are in bijection with components &f. Two vertices are joined

by an edge if and only if the corresponding components intersect. This intersec-
tion is transverse and consists of one point.

(b) Vertices off” are in bijection with irreducible representations 6f The ver-

tices corresponding ta and p are joined if and only ifn, , # 0. |

Let P! C E,., be the component corresponding to a nontrivial irreducible rep-
resentationr. Putd, =rk &, =dimmr.

Lemma. The restriction of,; to P}) is trivial (isomorphic toO%) if = # p and
is isomorphic ta®(1) @ 0% 1, if r = p.

Proof. Consider the (infinite-dimensional) spakeg. By construction of,;, we
have a surjective map of sheavesR%n:

Az @c Opt — Exlpt.

This implies that in the splittin§ﬂ|p}7 ~ P, O(m;) eachm; > 0. Since the
degree is) _, m;, our statement follows from the following result of [2] : the
degree of the restriction &k, to P; isOifr # pandlifr = p. ]

RemarkBy Lemma 2.1, we know that for att # C there exist integers, b, c,
such that
E* @O = O(=D* & 00)* & O(D)*".

HenceH! (P, £*® £) = O foralli > 0. The irreducible components, of E
may be non reduced but have the self intersection nurfib2y. Therefore, for
any vector bundler on X//G the restrictionF |z, = F ® O, has a filtration
with quotients of the fornd|p: ® Op1 (2), j > 0. Applying thistaF = £*®¢,
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we find that its restriction to each componéht has no higher cohomology. As
a consequence, we get

HY(E,E*®¢&) =0, Vi > 0.

2.2. Lemma.(a) If [£] € E thenToro(Og, Og) = C, Tor1(O¢, Og) = C @
Disepr 7 @andTor 2(O¢, Oo) = Pgyepr -

(b) The line bundles onP}T formed by the Tor1(Os, Og), and the
Toro(O¢, 0p)¢ are isomorphic ta?(—1) and O respectively.

Proof. Let m = (x,y) C A and letn € m be the ideal generated by®.

If [£] € E, then the ideall; C A containsn (the G-moduleO; = A/I;
is isomorphic to the regular representation, in particular, (d?n: 1. If an
invariant f € n does not lie ins, then f mod I; € O, gives aG-invariant on
O¢ not proportional to 1, so the dimension(@f is at least 2, a contradiction).
If W c m/nisG-invariantsetf (W) =A - W +n.

Theorem [5]. Letx be a nontrivial irreducible representation 6f. Then :

(a) There exist two different irreducible submodutész” c m/n, isomorphic
tor and such thatif§] € P — U,pr P} thenl, = (W), whereW C 7' @& n"
is a proper nonzerd@;-submodule.

(b) If m, , # Othen the point£] € P: N P! has the ideal; = I (7' @ p”). O

Part(a) for Torg and the second claim of pai®) of Lemma follow from the
equalityO; ® Og = C. Since

Tor; (Og, Og) = Tor;_1(I¢, Op), i=1,2,

we get Tor (O, Og) = I;/ml:. If [§] € E thenl; = I(W) whereW C

m/n and W; = ¢icpr 7. Now observe thaW = I¢/(ml; + n) and that
((mlz +n)/mlg), = 0foranyr # Csince(ml; +n)/ml; ~n/(nNml)isa
quotientofn/mn. Thus, ifr # C, Tor1(O¢, Op), is 1-dimensional fofé] € P},

and vanishes otherwise. It remains to study;[6¥:, Op), and Tor (O, Do)°.

The Tor’s in question are the cohomology of the Koszul complex

OE—>O§®CT—>O§.

Since TorR(Of, Op) € A/I: and(A/I:)¢ = C+1, we get ToL(Of, Og)° = 0.
Part(a) follows since the equivariant Euler characteristic of the complex is O
(note thatD; ®c =~ O ®c C? sinceO; is the regular representation 6. To

see partb), notice thanl) ~ PHomg(p, o' ® p”), and that the bundle formed

by the Tory (O, Og), = (I:/mI), on thisPtis justW — W,,i.e.O(=1). O

2.3.Any finite-dimensional representatiohof G gives rise to two equivariant
sheaves oiX : the skyscraper sheaf' whose fiber at 0 i9/ and all the other
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fibers vanish, and the locally free shaaf= V ®c Oy. If 7 is irreducible, then
@ (7) = &,. The sheafr' is quasi isomorphic to the (Koszul) complex

T Q®c AT > 7 QcT > 7.

Theorem.We havep (C') = O and® (') = Op1 (—D)[1] if 7 # C.

Proof.Let F = & (x'). Let us view it as the complex of locally free sheaves on
X//G (see (1.5))
F={& > @™ — &)
P

Thenfor[é] € X//G

(2.3.1) Tor:(O¢, Oo)r = H ' ([€], Fiey)-
Recall that we have a spectral sequence

(2.3.2) Tor;(H ™/ (F), Op)) = H™' 7/ (€], Figy).

Lemma 2.2(2.3.1) and(2.3.2) imply that#°(F) = 0 if = # C. Moreover, if
m = C,if Aisanyring and ifé] € (X//G)(A) is the A-point corresponding
to the subscheme C X x SpecA) then

HO(F)je) = Torg(Og, Og)¢ = Tore(Oz, Op) = O ¢,

whereg and0 are the projection of and 0 inX/G. Thus,H°(F) = Ok.
By (2.3.1), (2.3.2) and Lemma 2.2,1f # C then{~1(F) is supported on
P! and its restriction ont®? is

H N F) /It HHF) > Ope (D).

This does not yetimply tha&{~1(F) is actually a sheaf oR! rather than on some
infinitesimal neighborhood. For this, we need to show#at(F) is annihilated

by the sheaf of idealf: . Observe that in the category Gfequivariant sheaves

we have Eng;(r') = C, so all the endomorphisms ¢f in D’(Coh(X//G))

are scalar. BuP! is a(—2)-curve, so it possesses a lot of functions regular in
an entire neighborhood & and vanishing of. So if #~1(F) actually is not
annihilated bylp:, there will be a sectiorf of /. on some neighborhood &t

which is not annihilating{~*(F). Since all the homology af is supported on

P1, the multiplication by such ayi defines an endomorphism&fin the derived
category. This endomorphism is not scalar, since the induced endomorphism on
H~L(F) is not scalar. This contradicts the assumption. So we have established
that#~*(F) = Ops (1) if 7 # C. If 7 = C then Tor, (O, 0p)® = C and

Tor 1(H%(F), O)) = O(—E)g = C. Since Tor (O, Og)¢ is composed from

Tor 1(HO(F), O)) and Torg(H~1(F), Oj)) we haveH1(F) = 0.
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Finally, H=2(F) = 0. More precisely, ifr # C then Tory(O¢, Op), = C is
composed from Tog(H~1(F), Op) (which is nonzero) an@{ —2(F) ® Oy. If
7 = C then Tor(Of, Op)¢ = 0. O

3. Hall algebras and double quivers

3.1. Let us describe a version of the Hall algebra construction [12] based on
Euler characteristic. Le#l be aC-linear Abelian category of finite type (i.e.
the extension groups between pairs of objectgliare finite dimensional). If

A, B, C are three objects of,, the setG$, = {A' € C: A’ ~ A, C/A' ~ B}

has the structure of a complex variety. To see this, let {;0and E¢, be the

set of all complexes and all exact sequences respectively of the fesmA0—>

ctBo Clearly, Conj, is a closed algebraic subvariety in the affine
space HontA, C) @ Hom(C, B), andE€, is a Zariski open subset in Cdpp.

Now, the algebraic group AYA) x Aut (C) acts onE§, freely. The quotient

is therefore equipped with a structure of a complex variety. But as a set, this
quotient is nothing buGS ;. Since the heart of a triangulated category is stable
by extensions, we get

Proposition. Let A4, B be two Abelian categories as above, aid D’(A) —
D’(B) be an equivalence of triangulated categoriesAlfB, C are objects of

A such thatF (A), F(B) € Band if G, # ¥, thenF(C) € Band F is an
isomorphism of complex varieti€s; — Gr.(;) r(s)- O
3.2.The characteristic function of a closed subvarigtyf an algebraic variety

Z isdenoted byl . By Fun(Z) we denote the space of all constructible functions
onZ.If f € Fun(Z) its integral is:

/Zde:ZCiX(Wi), f:ZCilw,--

Here x is the Euler characteristic with compact support. More generaldy,:if
Zy, — Zyis any regular map and € Fun(Z,), then its direct image.(f) €
Fun(Z,) is (cf.[2]):

W= [ rax.

¢~ 1(z2)

Similarly letS be an algebraic stacks of locally finite type. The se€Cgfoints
S(C) islocally represented as the quotient of an algebraic variety by an action of
an algebraic group. A constructible function on a stééka functionS(C) — C
which can be represented as a finite linear combination of functions of the form
L), whereW is a closed substack of finite type dh Letyp : S — T be a
morphism of stacks whose every fiber (over &point) is an algebraic variety.
Then we have the direct image map: Fun(S) — Fun(7) defined as above.
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3.3.We now assume thad comes from a stack of Abelian categories over the
category of algebraic varieties, and that the moduli stack of objectsaénoted
by A*°, is an algebraic stack of locally finite type.

Examples.(1) A is the category of representations of a finite-dimensi@hal
algebra.

(2) A is the category of coherent sheaves on an algebraic variety with support in
a projective subvariety.

The setA’**(C) is the set of isomorphism classes of objects4ofThe space
Fun(A’*°) is made into an associative algebra, called the Hall algehrharid
denoted byH(A), as follows. LetG 4 be the stack formed by pait, B) of
objects of A4, with A a subobject ofB, and morphisms of such pairs. There
are three morphismg, po, p3 : G4 — A*° which associate t9A, B) the
objectsA, B, andB/ A respectively. The fibers gf, are algebraic varieties. The
multiplication onH(A) is

f*g=p2((p1f) - (P38)).

Let[A] € H(A) be the characteristic function of the objectTheny (GS ) is
the multiplicity of [C] in [A] * [B].

3.4.Let I' be any finite graph without loops and multiple edges. A double rep-
resentation of” is a rule which assigns to each vertea vector spac#;, and

to any edgdi, j} two operators;; : V; — V; andx;; : V; — V; such that for
every vertex we haved _; x;;x;; = 0. Finite dimensional double representations
of I form an Abelian category of finite type and global dimension 2 iis of
affine type, denote® .

Proposition. LetI" be an affine Dynkin graph of type A-D-E, corresponding to
a finite subgroups c SL,(C). The categornR i is equivalent t@Cohg (7).

Proof.Let{r;};c; be the setofsimple representation&aind let/ = {(i, j) | 7; C
m; ® T} be the set of edges of the graph A G-equivariant coherent sheaf en
is a pair(V, ¢) whereV is a finite dimensional;-module and is aG-invariant
linear mapV ® C[t] — V. Such a pai(V, ¢) may be viewed as

(i) al-graded vector spad®, ., Vx,,

(ii) a collection of mapgb; j)c; : Vo, ® T = Dy jyes Vs
Then the reIatioan x;jxjj = 0 means precisely that the maps(ii) glue
togetherina may ® C[t] — V. |

LetC(i) be the simple object iR - located at the vertexof I'. Putd; = [C(i)] €
H(Rr). As usual, seb"’ = 6% /k! for anyk € N*. Denote byA - the Cartan
matrix of I, such that the index set is the set of vertice$of;; = 2, and—a;;
is the number of edges joiningandj if i # j. Letgr be the Kac-Moody Lie
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algebra associated tor. The “nilpotent" subalgebrg;: C gr is generated by
the Chevalley generatoes subject to the Serre relations

Vi # j, Z(_l)kelﬁc<k>%¢e?:<l—aij—k> _o
k

The following is a reformulation of a result from [8].

Theorem. The correspondence — 6; defines a homomorphishi(g)-) —
H(R[‘) O

4. Applications to algebraic surfaces

Let S be a smooth surface ov& andC C S be a reducible curve of which
every component is a rational redudeeR)-curve, such that these curves meet
transversely and not more than in one point. B&ti € I, be the irreducible
components of. Let A be the negative of the intersection matrix of the com-
ponents ofC and letgc be the Kac-Moody Lie algebra with Cartan matAx.
Denote byCoh(S, C) the category of coherent sheavesSwith support inC.
This category has finite type. LEk(S, C) be its Hall algebra.

Theorem. The correspondenag — [Op:] defines an algebra homomorphism
U(ge) — H(S, O).
Corollary. If S is a projective surface thed(g/) acts onFun(Coh(S)). |

Proof. It is enough to consider the case whérhas typeAs,. It is well-known
(see [1], Theorem 7.3) thatdf is a configuration of—2)-curves onS such that
Ac has type A-D-E then the formal neighborhood®in S is isomorphic to the
formal neighborhood of the exceptional fibErin the Hilbert quotienC?//G
whereG C SL,(C) is the finite subgroup with Cartan mati. Then we have
the equivalence of categoriésh(S, C) ~ Coh(C?//G, E). Now, Theorem 1.4
and Propositions 3.1 and 3.4 imply that the subalgebk(iR ) generated by
the6,, = # C, is isomorphic to the subalgebralt(C?//G, E) generated by
the[Op1]. Thus our theorem follows from Theorem 3.4. ]
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