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The Kleinian singularitiesC2/G associated to finite subgroupsG ⊂ SL2(C),
are of fundamental importance in algebraic geometry, singularity theory and
other branches of mathematics. Despite the very classical nature of the subject,
new remarkable properties continue to be discovered. One such discovery was
the McKay correspondence [9] and its interpretation by Gonzalez-Springberg
and Verdier [3] in terms of the minimal resolutionC2//G. Their results give
identifications

K0(C2//G) ' Rep(G) ' ĥZ,

whereK0 is the Grothendieck group, Rep is the representation ring andĥZ is the
root lattice of the affine Lie algebra (of type A-D-E) associated toG.

Our first goal in this paper is to extend the above results by describing the
derived category of coherent sheaves onC2//G, instead of justK0. Theorem 1.4
identifies it with the derived category ofG-equivariantC[x, y]-modules, i.e., of
modules over the crossed product algebraC[x, y][G]. It is surprising that such a
basic fact has not been noticed before. Our approach can be seen as a refinement,
in a purely algebraic setting, of the techniques of Kronheimer and Nakajima [7]
in that we get rid of Dolbeault complexes with growth conditions at infinity,
stability conditions for vector bundles and so on.

We then defineH, an Euler-characteristic version of the Hall algebra [12] of
the category of coherent sheaves onC2//Gand apply the constructed equivalence
to exhibit a subalgebra inH isomorphic toU(g+

G). Hereg+
G is the nilpotent part

of the finite-dimensional Lie algebra (of type A-D-E) corresponding toG. As
a consequence, we get a result about any algebraic surfaceS equipped with
a configurationC = ⋃

i P1
i of (-2)-curves intersecting transversally. Namely,

M. Kapranov
Department of Mathematics, Northwestern University, Evanston, Illinois 60208, USA
(e-mail: kapranov@math.nwu.edu)

E. Vasserot
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taking the intersection graph of theP1
i as a Dynkin graph, we get a possibly

infinite-dimensional Kac-Moody Lie algebra, and the theorem is that the positive
part of this algebra acts in the space of functions on isomorphism classes of
coherent sheaves inS. This partly extends the results of Nakajima [10] to a
wider geometric context.

The work of the first author was partly supported by an NSF grant and a
large part of it was carried out during a visit to Universit´e Cergy-Pontoise, whose
hospitality is gratefully acknowledged. The work of the second author was partly
supported by EEC grant no. ERB FMRX-CT97-0100.

1. Equivalence of derived categories

1.1.For a smooth algebraic varietyX and an integerm ≥ 0 we denote byX(m)

themth symmetric power ofX and byX[m] the Hilbert scheme parametrizing 0-
dimensional subschemesξ ⊂ X of lengthm. Given such aξ , the corresponding
point of X[m] is denoted[ξ ]. We denote byE the tautologicalm-dimensional
bundle onX[m], whose fiber at[ξ ] is H 0(ξ, O). Let G be a finite group acting
on X. Let m = |G|. The quotientX/G can be viewed as a closed subvariety
in X(m). Suppose that the action is free on an openG-invariant setU ⊂ X.
Define the Hilbert quotientX//G as the closure ofU/G in X[m], cf. [6]. The
Chow morphismX[m] → X(m) gives a mapp : X//G → X/G. Let Σ ⊂
(X//G) × X be the incidence subscheme. Letp1 : (X//G) × X → X//G,
p2 : (X//G) × X → X, be the projections andq1, q2 be the restrictions of
p1, p2 to Σ . The restriction of the tautological bundle toX//G is denoted again
by E ; it is a bundle ofG-modules isomorphic to the regular representation. If
ρ, V are representations ofG, with ρ irreducible, we setVρ = HomG(ρ, V ).

1.2.Let CohG(X) be the category ofG-equivariant coherent sheaves onX, and
Coh(X//G) be the category of coherent sheaves onX//G. Define two func-
tors Φ : Db(CohG(X)) → Db(Coh(X//G)) and Ψ : Db(Coh(X//G)) →
Db(CohG(X)) by

Φ(F) = (Rq1∗Lq∗
2F)G = (Rp1∗(p∗

2F ⊗L OΣ))G and

Ψ (G) = Rp2∗RHom(OΣ, p∗
1G).

The functorsΨ andΦ are adjoint, i.e.Hom(Φ(F), G) ' Hom(F, Ψ (G)).

1.3.Let Z, W be algebraic varieties, equipped with actions of finite groupsG,
H respectively. LetpW, pZ be the projections fromZ ×W toW, Z respectively.
Let L be an object ofDb(CohG×H(Z × W)), such that each of the cohomology
sheavesHi(L) has proper support with respect topW . TakingL as a “kernel"
defines a functor

FL : Db(CohG(Z)) → Db(CohH(W)), F → (RpW∗(p∗
ZF ⊗L L))G.
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If Z, W, T are varieties with actions of groupsG, H, K respectively, andL ∈
Db(CohG×H(Z × W)), M ∈ Db(CohH×K(W × T )), the compositionFM ◦ FL
is isomorphic toFM∗L where

M ∗ L = (Rp13∗(p∗
12L ⊗L p∗

23M))H ,

and thepij are the projections ofZ × W × T onto the pairwise products. In
the case (1.2) of the product(X//G) × X × (X//G) let Σ12 = p−1

12 (Σ) and
Σt

23 = p−1
23 (Σt), whereΣt ⊂ X × (X//G) is the transpose variety ofΣ .

Proposition. In the situation of (1.2) the following is true:
(a) The compositionΦΨ has the kernel

L = (Rp13∗(RHom(OΣ12, OΣt
23
)))G ∈ Db(Coh(X//G × X//G)).

(b) The compositionΨ Φ has the kernel

M = Rs13∗(RHom(OΣt
12
, OΣ23)) ∈ Db(CohG×G(X × X)),

wheresij are the projections ofX × (X//G) × X to pairwise products. ut
Remark.Note that that the restriction of the projection

p13 : Σ12 ∩ Σt
23 → (X//G) × (X//G)

is a finite morphism, so we can replaceRp13∗ by p13∗.

Thus, the functorsΦ, Ψ are mutually inverse equivalences of categories if and
only if
(a) the kernelL is quasi-isomorphic to the structure sheaf of the diagonal on
(X//G) × (X//G),
(b) the kernelM is quasi-isomorphic to the structure sheaf of diagonal∆ ⊂
X × X tensored with the regular representationR = C[G] of G.

1.4.Suppose now thatX is a smooth surface. ThenX[m] is smooth andX//G

is an irreducible component of the fixed point set of theG-action onX[m], so
it is also smooth. Thusp is a resolution of singularities ofX/G. The following
theorem is the main result of the section.

Theorem. LetX be a surface equipped with a holomorphic symplectic formω,
and suppose that theG-action onX preservesω. ThenΦ andΨ are mutually
inverse equivalences of categories.

From the definitions it is clear that all the cohomology sheaves ofL are
supported on the([ξ ], [η]) such that supp(ξ)∩supp(η) 6= ∅, and the cohomology
sheaves ofM are supported on

⋃
g∈G(1 × g)(∆). Thus it is enough to work in

the neighborhoods of fixed points of subgroups ofG, where the action can be
replaced by the linear one. We now assume this to be the case.
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1.5.Given a finite subgroupG ⊂ SL2(C) let τ be the natural representation ofG

onC2. For any irreducible representationsπ, ρ of G let mπρ be the multiplicity
of π in ρ ⊗C τ . We now assumeX = τ andG ⊂ SL2(C). SetA = C[x, y]. Let
M be anyA-module. Then, we have the (Koszul) free resolution ofM by

A ⊗C M
(x,y)→ (A ⊗C M)⊕2

(
y

−x

)
→ A ⊗C M.

Constructing this resolution simultaneously forM = Oξ and all[ξ ] ∈ X//G,
we get a resolution ofOΣ by the complex on(X//G) × X :

K = {p∗
1E → (p∗

1E)⊕2 → p∗
1E}.

Thus

Φ(F) = (Rp1∗(p∗
2F ⊗L K))G

= {(Rp1∗p∗
2F) ⊗ E → (Rp1∗p∗

2F)

⊗E⊕2 → (Rp1∗p∗
2F) ⊗ E}G.

Note thatRp1∗p∗
2F is just the trivial bundle onX//G with fiber Γ (X, F) (the

higher cohomology vanishes onX = τ ). Moreover, ifF is a G-equivariant
sheaf, thenΓ (X, F) is aA-module withG-action and can be splitΓ (X, F) =⊕

π π ⊗C Γ (X, F)π , soΦ(F) can be rewritten as

Φ(F) = {
⊕

π

Γ (X, F)π ⊗C Eπ →
⊕
π,ρ

Γ (X, F)π ⊗C Emπρ
ρ

→
⊕

π

Γ (X, F)π ⊗C Eπ }.

Similarly we get

Ψ (G) = {RΓ (X//G, G ⊗ E∗) ⊗C Oτ → RΓ (X//G, G ⊗ E∗) ⊗C O2
τ

→ RΓ (X//G, G ⊗ E∗) ⊗C Oτ }.
By using the Koszul resolutionK, we find thatL is quasi-isomorphic to

L′ = (Rp13∗(RHom(p∗
12K, OΣt

23
)))G

= {E∗⊗E → (E∗⊗E)⊕2 → E∗⊗E}G

=
{⊕

π

E∗
π⊗Eπ →

⊕
π,ρ

E∗
π⊗Emπρ

ρ →
⊕

π

E∗
π⊗Eπ

}
,
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where⊗ is the external tensor product. The quasi-isomorphismL′ ' O∆ is
proved in [11, Lemma 4.10]. By using the Koszul resolution forOΣt

12
we represent

M by the quasi-isomorphic complex

M′ = {Oτ⊗Rq2∗q∗
1E∗ → (Oτ⊗Rq2∗q∗

1E∗)⊕2

→ Oτ⊗Rq2∗q∗
1E∗}.

To show thatM′ is quasi-isomorphic toO∆ ⊗C R, it is enough to show that
Rq2∗(q∗

1E∗) = Oτ ⊗C R. ThenM′ will be identified with the tensor product of
R and the Koszul resolution of the diagonal inC2 × C2:

O⊗O → O⊗O⊕2 → O⊗O.

Applying the Koszul resolution one more time, we are reduced to the following
fact.

Proposition.We haveΓ (X//G, E∗ ⊗ E) = R[x, y] andHi(X//G, E∗ ⊗ E) =
0 ∀i > 0.

Proof.Recall thatΓ (X//G, E) = A (see [3]) and thus for anyG ∈ Coh(X//G)

the spaceΓ (X//G, E ⊗G) is aA-module. We define a morphism ofA-modules
u : R[x, y] → Γ (X//G, E∗ ⊗ E) by

u(g) = g ∈ Hom(E, E) = Γ (X//G, E∗ ⊗ E), ∀g ∈ G.

Since theG-action onτ is free outside 0, the spaceΓ (X//G, E∗ ⊗E) is a torsion
freeA-module, andu is an isomorphism outside 0∈ τ . Thus the first assertion
follows from the following lemma.

Lemma. Letu : M → N be a homomorphism ofA-modules such that:
(a) M is free, andN has no torsion;
(b) u is an isomorphism outside a point (in particular, it is injective).
Thenu is an isomorphism.

Proof.Let us regardM, N as coherent sheavesM, N onC2, let U be the com-
plement of the point, so that overU the mapu : M → N is an isomorphism.
Let j : U → C2 be the embedding. Then, taking the direct image, we find a
homomorphism

j∗j ∗u : j∗j ∗M → j∗j ∗N .

It is an isomorphism sincej ∗u is. SinceM is free,j∗j ∗M = M. On the other
hand, sinceN is torsion free, the natural mapN → j∗j ∗N is an embedding.
But its image contains the image ofj∗j ∗u, so it is an isomorphism. Sou = j∗j ∗u
is an isomorphism, as claimed. ut
To prove the second assertion of the proposition it is enough to show that
Rip∗(E∗ ⊗E) = 0 if i > 0. The mapp is an isomorphism everywhere except for
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0 ∈ X/G. The proposition follows from the vanishing ofHi(p−1(0), E∗ ⊗ E) if
i > 0, proved in Remark 2.1 below. ut

2. Detailled analysis of the equivalence

In this section we always assume thatX = τ andG is a finite subgroup in
SL2(C).

2.1.The quotient surfaceX/G has an isolated singularity at 0. The mapp is the
minimal desingularization ofX/G (see [5]). The vector bundlesEπ on X//G

were introduced and studied in [3]. Recall that finite subgroupsG ⊂ SL2(C) are
classified by Dynkin diagrams of finite type A-D-E as follows. LetE = p−1(0)

and letEred be the reduced variety.

Proposition. LetΓ 0 be the Dynkin diagram ofG. LetΓ be the affine extension
of Γ 0.
(a) Vertices ofΓ 0 are in bijection with components ofE. Two vertices are joined
by an edge if and only if the corresponding components intersect. This intersec-
tion is transverse and consists of one point.
(b) Vertices ofΓ are in bijection with irreducible representations ofG. The ver-
tices corresponding toπ andρ are joined if and only ifmπ,ρ 6= 0. ut
Let P1

π ⊂ Ered be the component corresponding to a nontrivial irreducible rep-
resentationπ . Putdπ = rk Eπ = dimπ .

Lemma. The restriction ofEπ to P1
ρ is trivial (isomorphic toOdπ ) if π 6= ρ and

is isomorphic toO(1) ⊕ Odπ−1, if π = ρ.

Proof.Consider the (infinite-dimensional) spaceAπ . By construction ofEπ , we
have a surjective map of sheaves onP1

ρ :

Aπ ⊗C OP1
ρ

→ Eπ |P1
ρ
.

This implies that in the splittingEπ |P1
ρ

' ⊕
i O(mi) eachmi ≥ 0. Since the

degree is
∑

i mi , our statement follows from the following result of [2] : the
degree of the restriction ofEπ to P1

ρ is 0 if π 6= ρ and 1 ifπ = ρ. ut
Remark.By Lemma 2.1, we know that for allπ 6= C there exist integersa, b, c,

such that
(E∗ ⊗ E)|P1

π
= O(−1)⊕a ⊕ O(0)⊕b ⊕ O(1)⊕c.

HenceHi(P1
π , E∗ ⊗ E) = 0 for all i > 0. The irreducible componentsEπ of E

may be non reduced but have the self intersection number(−2). Therefore, for
any vector bundleF onX//G the restrictionF |Eπ

= F ⊗ OEπ
has a filtration

with quotients of the formF |P1
π
⊗OP1

π
(2j), j ≥ 0.Applying this toF = E∗⊗E ,
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we find that its restriction to each componentEπ has no higher cohomology. As
a consequence, we get

Hi(E, E∗ ⊗ E) = 0, ∀i > 0.

2.2. Lemma.(a) If [ξ ] ∈ E thenTor 0(Oξ , O0) = C, Tor 1(Oξ , O0) = C ⊕⊕
[ξ ]∈P1

π
π andTor 2(Oξ , O0) = ⊕

[ξ ]∈P1
π
π .

(b) The line bundles onP1
π formed by the Tor 1(Oξ , O0)π and the

Tor 0(Oξ , O0)
G are isomorphic toO(−1) andO respectively.

Proof. Let m = (x, y) ⊂ A and letn ⊆ m be the ideal generated bymG.
If [ξ ] ∈ E, then the idealIξ ⊂ A containsn (the G-moduleOξ = A/Iξ

is isomorphic to the regular representation, in particular, dimOG
ξ = 1. If an

invariantf ∈ n does not lie inIξ , thenf mod Iξ ∈ Oξ gives aG-invariant on
Oξ not proportional to 1, so the dimension ofOG

ξ is at least 2, a contradiction).
If W ⊂ m/n is G-invariant setI (W) = A · W + n.

Theorem [5]. Letπ be a nontrivial irreducible representation ofG. Then :
(a) There exist two different irreducible submodulesπ ′, π ′′ ⊂ m/n, isomorphic
to π and such that if[ξ ] ∈ P1

π −⋃ρ 6=π P1
ρ thenIξ = I (W), whereW ⊂ π ′ ⊕π ′′

is a proper nonzeroG-submodule.
(b) If mπ,ρ 6= 0 then the point[ξ ] ∈ P1

π ∩ P1
ρ has the idealIξ = I (π ′ ⊕ ρ ′′). ut

Part(a) for Tor 0 and the second claim of part(b) of Lemma follow from the
equalityOξ ⊗ O0 = C. Since

Tor i(Oξ , O0) = Tor i−1(Iξ , O0), i = 1, 2,

we get Tor1(Oξ , O0) = Iξ/mIξ . If [ξ ] ∈ E then Iξ = I (W) whereW ⊂
m/n andWπ = ⊕

[ξ ]∈P1
π
π . Now observe thatW = Iξ/(mIξ + n) and that

((mIξ +n)/mIξ )π = 0 for anyπ 6= C since(mIξ +n)/mIξ ' n/(n∩mIξ ) is a
quotient ofn/mn. Thus, ifπ 6= C, Tor1(Oξ , O0)π is 1-dimensional for[ξ ] ∈ P1

π

and vanishes otherwise. It remains to study Tor2(Oξ , O0)π and Tor1(Oξ , O0)
G.

The Tor’s in question are the cohomology of the Koszul complex

Oξ → Oξ ⊗C τ → Oξ .

Since Tor2(Oξ , O0) ⊆ A/Iξ and(A/Iξ )
G = C+Iξ , we get Tor2(Oξ , O0)

G = 0.
Part(a) follows since the equivariant Euler characteristic of the complex is 0
(note thatOξ ⊗C τ ' Oξ ⊗C C2 sinceOξ is the regular representation ofG). To
see part(b), notice thatP1

ρ ' PHomG(ρ, ρ ′ ⊕ ρ ′′), and that the bundle formed
by the Tor1(Oξ , O0)ρ = (Iξ/mIξ )ρ on thisP1 is justW 7→ Wρ , i.e.O(−1). ut
2.3.Any finite-dimensional representationV of G gives rise to two equivariant
sheaves onX : the skyscraper sheafV ! whose fiber at 0 isV and all the other
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fibers vanish, and the locally free sheafṼ = V ⊗C OX. If π is irreducible, then
Φ(π̃) = Eπ . The sheafπ ! is quasi isomorphic to the (Koszul) complex

π̃ ⊗C Λ2τ → π̃ ⊗C τ → π̃ .

Theorem.We haveΦ(C!) = OE andΦ(π !) = OP1
π
(−1)[1] if π 6= C .

Proof.Let F = Φ(π !). Let us view it as the complex of locally free sheaves on
X//G (see (1.5))

F = {Eπ →
⊕

ρ

Emπρ
ρ → Eπ }.

Then for[ξ ] ∈ X//G

(2.3.1) Tor i(Oξ , O0)π = H−i([ξ ], F[ξ ]).

Recall that we have a spectral sequence

(2.3.2) Tor i(H−j (F), O[ξ ]) ⇒ H−i−j ([ξ ], F[ξ ]).

Lemma 2.2,(2.3.1) and(2.3.2) imply thatH0(F) = 0 if π 6= C. Moreover, if
π = C, if Λ is any ring and if[ξ ] ∈ (X//G)(Λ) is theΛ-point corresponding
to the subschemeξ ⊂ X × Spec(Λ) then

H0(F)[ξ ] = Tor0(Oξ , O0)
G = Tor0(Oξ̄ , O0̄) = OE,[ξ ],

whereξ̄ and0̄ are the projection ofξ and 0 inX/G. Thus,H0(F) = OE.

By (2.3.1), (2.3.2) and Lemma 2.2, ifπ 6= C thenH−1(F) is supported on
P1

π and its restriction ontoP1
π is

H−1(F)/IP1
π
H−1(F) ' OP1

π
(−1).

This does not yet imply thatH−1(F) is actually a sheaf onP1
π rather than on some

infinitesimal neighborhood. For this, we need to show thatH−1(F) is annihilated
by the sheaf of idealsIP1

π
. Observe that in the category ofG-equivariant sheaves

we have EndG(π !) = C, so all the endomorphisms ofF in Db(Coh(X//G))

are scalar. ButP1
π is a (−2)-curve, so it possesses a lot of functions regular in

an entire neighborhood ofP1
π and vanishing onP1

π . So ifH−1(F) actually is not
annihilated byIP1

π
, there will be a sectionf of IP1

π
on some neighborhood ofP1

π

which is not annihilatingH−1(F). Since all the homology ofF is supported on
P1

π , the multiplication by such anf defines an endomorphism ofF in the derived
category. This endomorphism is not scalar, since the induced endomorphism on
H−1(F) is not scalar. This contradicts the assumption. So we have established
thatH−1(F) = OP1

π
(−1) if π 6= C. If π = C then Tor1(Oξ , O0)

G = C and
Tor 1(H0(F), O[ξ ]) = O(−E)[ξ ] = C. Since Tor1(Oξ , O0)

G is composed from
Tor 1(H0(F), O[ξ ]) and Tor0(H−1(F), O[ξ ]) we haveH−1(F) = 0.
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Finally, H−2(F) = 0. More precisely, ifπ 6= C then Tor2(Oξ , O0)π = C is
composed from Tor1(H−1(F), O[ξ ]) (which is nonzero) andH−2(F) ⊗ O[ξ ]. If
π = C then Tor2(Oξ , O0)

G = 0. ut

3. Hall algebras and double quivers

3.1. Let us describe a version of the Hall algebra construction [12] based on
Euler characteristic. LetA be aC-linear Abelian category of finite type (i.e.
the extension groups between pairs of objects inA are finite dimensional). If
A, B, C are three objects ofA, the setGC

AB = {A′ ⊆ C : A′ ' A, C/A′ ' B}
has the structure of a complex variety. To see this, let ComC

AB andEC
AB be the

set of all complexes and all exact sequences respectively of the form 0→ A
α→

C
β→ B → 0. Clearly, ComC

AB is a closed algebraic subvariety in the affine
space Hom(A, C) ⊕ Hom(C, B), andEC

AB is a Zariski open subset in ComCAB .
Now, the algebraic group Aut(A) × Aut (C) acts onEC

AB freely. The quotient
is therefore equipped with a structure of a complex variety. But as a set, this
quotient is nothing butGC

AB . Since the heart of a triangulated category is stable
by extensions, we get

Proposition. Let A, B be two Abelian categories as above, andF : Db(A) →
Db(B) be an equivalence of triangulated categories. IfA, B, C are objects of
A such thatF(A), F (B) ∈ B and if GC

AB 6= ∅, thenF(C) ∈ B and F is an
isomorphism of complex varietiesGC

AB → G
F(C)

F(A),F (B). ut
3.2.The characteristic function of a closed subvarietyW of an algebraic variety
Z is denoted by1W . By Fun(Z) we denote the space of all constructible functions
onZ. If f ∈ Fun(Z) its integral is:∫

Z

f dχ =
∑

ciχ(Wi), f =
∑

ci1Wi
.

Hereχ is the Euler characteristic with compact support. More generally, ifϕ :
Z1 → Z2 is any regular map andf ∈ Fun(Z1), then its direct imageϕ∗(f ) ∈
Fun(Z2) is (cf.[2]):

(ϕ∗f )(z2) =
∫

φ−1(z2)

f dχ.

Similarly let S be an algebraic stacks of locally finite type. The set ofC-points
S(C) is locally represented as the quotient of an algebraic variety by an action of
an algebraic group.A constructible function on a stackS is a functionS(C) → C
which can be represented as a finite linear combination of functions of the form
1W(C), whereW is a closed substack of finite type inS. Let ϕ : S → T be a
morphism of stacks whose every fiber (over anyC-point) is an algebraic variety.
Then we have the direct image mapϕ∗ : Fun(S) → Fun(T ) defined as above.
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3.3.We now assume thatA comes from a stack of Abelian categories over the
category of algebraic varieties, and that the moduli stack of objects ofA, denoted
by Aiso, is an algebraic stack of locally finite type.

Examples.(1) A is the category of representations of a finite-dimensionalC-
algebra.
(2) A is the category of coherent sheaves on an algebraic variety with support in
a projective subvariety.

The setAiso(C) is the set of isomorphism classes of objects ofA. The space
Fun(Aiso) is made into an associative algebra, called the Hall algebra ofA and
denoted byH(A), as follows. LetGA be the stack formed by pairs(A, B) of
objects ofA, with A a subobject ofB, and morphisms of such pairs. There
are three morphismsp1, p2, p3 : GA → Aiso which associate to(A, B) the
objectsA, B, andB/A respectively. The fibers ofp2 are algebraic varieties. The
multiplication onH(A) is

f ∗ g = p2∗((p∗
1f ) · (p∗

3g)).

Let [A] ∈ H(A) be the characteristic function of the objectA. Thenχ(GC
AB) is

the multiplicity of [C] in [A] ∗ [B].
3.4.Let Γ be any finite graph without loops and multiple edges. A double rep-
resentation ofΓ is a rule which assigns to each vertexi a vector spaceVi , and
to any edge{i, j} two operatorsxij : Vj → Vi andxji : Vi → Vj such that for
every vertexi we have

∑
j xij xji = 0. Finite dimensional double representations

of Γ form an Abelian category of finite type and global dimension 2 ifΓ is of
affine type, denotedRΓ .

Proposition. LetΓ be an affine Dynkin graph of type A-D-E, corresponding to
a finite subgroupG ⊂ SL2(C). The categoryRΓ is equivalent toCohG(τ).

Proof.Let{πi}i∈I be the set of simple representations ofGand letJ = {(i, j) | πj ⊂
πi ⊗ τ } be the set of edges of the graphΓ . A G-equivariant coherent sheaf onτ

is a pair(V , φ) whereV is a finite dimensionalG-module andφ is aG-invariant
linear mapV ⊗ C[τ ] → V . Such a pair(V , φ) may be viewed as

(i) a I -graded vector space
⊕

i∈I Vπi
,

(ii) a collection of maps
⊕

(i,j)∈J : Vπi
⊗ τ → ⊕

(i,j)∈J Vπj
.

Then the relation
∑

j xij xji = 0 means precisely that the maps in(ii) glue
together in a mapV ⊗ C[τ ] → V . ut
LetC(i) be the simple object inRΓ located at the vertexi of Γ . Putθi = [C(i)] ∈
H(RΓ ). As usual, setθ(k)

i = θk
i /k! for anyk ∈ N×. Denote byAΓ the Cartan

matrix ofΓ , such that the index set is the set of vertices ofΓ , aii = 2, and−aij

is the number of edges joiningi andj if i 6= j . Let gΓ be the Kac-Moody Lie
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algebra associated toAΓ . The “nilpotent" subalgebrag+
Γ ⊂ gΓ is generated by

the Chevalley generatorsei subject to the Serre relations

∀i 6= j,
∑

k

(−1)ke± (k)
i e±

j e
± (1−aij −k)

i = 0.

The following is a reformulation of a result from [8].

Theorem. The correspondenceei → θi defines a homomorphismU(g+
Γ ) →

H(RΓ ). ut

4. Applications to algebraic surfaces

Let S be a smooth surface overC andC ⊂ S be a reducible curve of which
every component is a rational reduced(−2)-curve, such that these curves meet
transversely and not more than in one point. LetP1

i , i ∈ I , be the irreducible
components ofC. Let AC be the negative of the intersection matrix of the com-
ponents ofC and letgC be the Kac-Moody Lie algebra with Cartan matrixAC .
Denote byCoh(S, C) the category of coherent sheaves onS with support inC.
This category has finite type. LetH(S, C) be its Hall algebra.

Theorem.The correspondenceei 7→ [OP1
i
] defines an algebra homomorphism

U(g+
C) → H(S, C).

Corollary. If S is a projective surface thenU(g+
C) acts onFun(Coh(S)). ut

Proof. It is enough to consider the case whenC has typeA2. It is well-known
(see [1], Theorem 7.3) that ifC is a configuration of(−2)-curves onS such that
AC has type A-D-E then the formal neighborhood ofC in S is isomorphic to the
formal neighborhood of the exceptional fiberE in the Hilbert quotientC2//G

whereG ⊂ SL2(C) is the finite subgroup with Cartan matrixAC . Then we have
the equivalence of categoriesCoh(S, C) ' Coh(C2//G, E). Now, Theorem 1.4
and Propositions 3.1 and 3.4 imply that the subalgebra inH(RΓ ) generated by
theθπ , π 6= C, is isomorphic to the subalgebra inH(C2//G, E) generated by
the[OP1

π
]. Thus our theorem follows from Theorem 3.4. ut
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