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Abstract. From Wajnryb'’s presentation, we extract a simple presentation of the mapping class
group of the genug surface as a quotient of an Artin group by simple relations among the centers
of sub-Artin groups.

Topological meanings are given by using deformation of simple singularities.
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1. A presentation of mapping class groups by Artin groups
1.1. Artin groups

Let n be a positive integer and létbe {1, 2, ..., n}. By aCoxeter matrixwe
mean a symmetrie x n matrix M = (m;;) with m;; being an integer 2 oroo
forl <i # j <n,andm;; = 1for1l<i < n.ItsArtin groupis defined by
generatorgy, - - -, a, andrelations;a;a; - - - = aja;a; - - -, where both sides are
words of lengthm;;, for eachm;; < co, 1 <i # j < n. If we add the relation
a? = 1 for eachi, then we get th&Coxeter groupof M. In the following, we
consider only the case where ai]; are finite.
The Coxeter matrix can be conveniently described by a gfaplhere the
vertex set ig and two distinct vertices j are joined bym;; — 2) edges (hence
no loops but multiple edges are allowed; from now on only such graphs are
considered). This coincides with the classical notation of Dynkin diagrams.
Conversely, any graph' yields a Coxeter matrix. Its Artin group is denoted
by A(I"). For example, if we denote b, a straight path consisting afvertices
with n — 1 edges, therd (P,) is isomarphic to the braid group af+ 1 strings.
Let I be any connected simple (i.e. no multiple edges) graph. It is easy to see
that the abelianization of (I") induces a natural surjection

deg: A(I") — Z,
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which we call thedegreeof an element ofA (I").

For an induced (i.e., every edge In with its ends inH is also an edge
of H, sometimes also callefilll) subgraphH of I', there exists an obvious
homomorphismA(H) — A(I"). Since this is proved to be injective by Van der
Lek[10], we callA(H) thesub-Artin groupassociated with subgra.

For general, the structure ofA(I") is not well understood. However, if
is a Dynkin diagram of classical root systems, namely, i one ofA,,, B, D,

Es, E7, Eg, F4, G2, H3, Hs, I2(p), then the group structure is well analyzed by
Brieskorn-Saito [8] and P. Deligne[9] independently.

For the proof of the next theorem, see Sections 4-7 in [8], Satz 7.1, Satz 7.2
and Zusatz below Satz 7.2. (Note that their proofs are rather group theoretic. P.
Deligne’s arguments are more geometric.) We say a wodl finite (possibly
empty) product of;; (i C I) is positive if the word contains ncj‘l.

Theorem 1.1 (Brieskorn-Saito, Deligne)Let I be a Dynkin diagram. Con-
sider the following properties of an elemeante A(I").

— w has a presentation as a positive wordapf
— For anya;, ai‘lw has a positive word presentation afs.

Then, there exists a unique elemen(tl") satisfying these properties, which is
minimal in the sense thatif satisfies the above properties, thaa/") 1w has
a positive word presentation by’s. A(I") has the following properties.

(i) A(I') is mapped to the longest length elemeptin the Coxeter group and
its degree is the same as the lengthugf(i.e. the number of positive rogts

(i) The center ofA(I") is free cyclic with a generatar(I"), defined by (I") =
A(M? =" if wg # —landc(I") = A(I") = IT"? if wg = —1, whereh
is the Coxeter number and is a product of allz;'s with an arbitrary order.

They also obtained a Garside-type[11] normal-form theorem. See Section 6,
Satz 6.6 in [8].

1.2. Mapping class groups

Let E;»<b> denote a compact oriented gengisurface withn ordered points
specified and witth boundary components.

Its mapping class grouM[’;"’> is defined to be the group of isotopy classes
of orientation preserving self-diffeomorphismsXf-<*> which fix then points
pointwise, and are identity on the boundary.

We denotex >~ = x><0>, zr = y»<0> ¥, = £2<% and simi-
larly for corresponding mapping class groups. These groups were proved to be
finitely presented[20]. The explicit presentationslubgl’<l> and M, were given
by Hatcher-Thurston[13], Harer[12], and finally by Wajnryb[22] (with an error
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Fig. 1. Dehn-Lickorish-Humphries generators of mapping class groups

corrected by Birman-Wajnryb [4]). The result is the following theorem [22] (see
the notation in [2]). LeCy, Cy, ..., Cy, be the simple closed curves dr;b as

in Figure 1. Letc, c1, . . ., ¢z, denote the corresponding Dehn twistsMi;fb.

Theorem 1.2 (Wajnryb). The mapping class grouMg<1> admits a presenta-
tion with generatorsig, as, . . ., az,, Which are mapped tog, c1, .. ., c2¢, and
relations:

(A) a;a; = a;a; if C; N Cj =0, andaiajai = a;a;aqa; if C; N Cj consists of one
point.
(B) (For g > 2.) (a1azaz)* = ao(asazazaraiazazas) ~ao(asazazaiarazazas).
(C) (Forg > 3)
apb1by = ajazasbs,

where
) -1
b1 := (asazasas)ao(asazasas)” -,
) -1
by := (azaiazaz)bi(araiazaz)™ ",

1 1

. -1 -1 -1 -1 -1 -1 -1 -1 -1
b3 := (a, a3z a, ~aj “uarazasasae)” ao(a, ~az-a, aj “Uaxazasasds),

and
u := (asae)bi(asas) .
Here,q; is mapped te; in the mapping class group.

Moreover, we obtain the presentation Mf, by adding a relation(D) (omitted
here, see [22][4]. Note that the error corrected in [4] lies in this relatipn

For the topological meanings of these relations, see Birman'’s survey [2].
Because of the pictorial descriptions, the relations (A), (B), (C), (D) are called
braid, chain, lantern, hyperellipticrelations, respectively. (Note that (D) in her
survey has again a small mistake in (7) on P.20., compare with the relation in
[22](4].)

Let T, be the graph shown in Figure 2. Itis clear from the relation (A) that we
have a surjective homomorphisa(7,) — Mg<1>. It is natural to consider how
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Fig. 3. Sub-Artin groups whose centers give (b) and (c)
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Fig. 4. Sub-Artin groups whose centers give (d) and (e)

the other relations can be interpreted in terms of Artin groups of finite types. It
turns out that the relations (B), (C), (D) are equivalent to very simple relations
amonge(I") for severall”. Let H be an induced subgraph 6f of Dynkin type.
Then, we denote by the same symb@¥ ) theimage ot (H) € A(H) — A(T,)

in A(T,). We consider only the following subgraphd: = one of A4, As, E¢
andE-; as shown in Figure 3, f = A’zg, Do, _1 asin Figure 4.

Theorem 1.3. Under the relationA), the relation(B) in Theorem 1.2 is equiv-
alentto

(b) c(As) = c(Ag)%.



Mapping class groups in terms of Artin groups 405

Under the relationgA) and (b) the relation(C) is equivalent to
(©) c(E7) = c(Ee).

Under the relationgA), (b) and(c), the relation(D) is equivalent to

(d) a7 = ¢(Dyg_1).

A presentation oMél is obtained by the relation@), (b), (c),and
(e) c(Ah)? = 1.
For the casez = 3, we may replacéd) with
) c(Ag)A(Eg) = A(Eg)c(Ap),

and (e) with

9 c(E7) =1
Thus, we have presentatioAsT,)/[(b), (0)] = Mg<1>, A(T,)/[(b), (0), (8] =
M, andA(T,)/[(b), (C), (d)] = M.

Remark 1.1.Explicitly, we have the following.

c(Ag) := (aoazasas)®
c(As) := (aparazazas)°
c(Eg) := (aoazazasasas)™?
c(E7) := (aoa1a2a3asasae)®
c(Ahy) = (a1a2a3as - - - azg) ¥+
c(D2g—1) = (aoazasas - - - azy) ™ ™*
A(Eg) 1= (aoazazasasag)*(aoazasasas)(aoazazas) (asasas)

Here,c(I") does not depend on the order of the elements in the parenthesis.

Remark 1.2.For genus three, the new presentation by (b), (c), (f), (g) is useful to
realize the Hecke algebra representation of the mapping class g (17],

where Jones succeeded in the genus two case). K. Nishiyama and the author are
preparing an article for this.

Remark 1.3.1t would be an interesting future work to obtain a purely algebraic
geometric proof (independent of Hatcher-Thurston) of the presentation in Theo-
rem 1.3 forM3. Remarkably, E. Looijenga gave another beautiful presentation of
the mapping class group of genus 3 surface using the affine Artin gﬁ“ﬂapd the
orbifold fundamental group of the moduli space of plane quartic curves[18][19].

The topological meaning of these relations are as follows.
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F3

Fig. 5. The image of centers of sub-Artin groups

Theorem 1.4. The image of(A4)?, c(As), c(Es), c(E7) in M5% is, respec-
tively, f2, fofi, fa» f&fa wheref; is the Dehn twists along; shown in Fig-
ure 5. The image ofA(E) is the half twist alongF,, that is, rotate the genus
three surface bounded bf, anticlockwiser radian so that the left and right
holes exchange positions.

Theorem 1.5. The image ot(Aj,) is the hyperelliptic involution, and that of
c(Dge_1) is f52g_3f5, shown in Figure 6.

These theorems may be shown by direct calculation of Dehn twists, but here
we shall use geometry of deformation of singularities, see Sect. 2.

1.3. Chain and lantern relations by Artin groups

The equivalence of (B) and (b), (C) and (c) in Theorem 1.3 is shown by a computer
program implementing the Brieskorn-Saito Algorithm [8] of Garside type[11]
to obtain theimormal form Here the transformation is briefly explained so that
the reader may reproduce the calculation by using a computer.
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Fig. 6. The image of centers of sub-Artin groups

Computational result fo(B) The relation (B) can be written as
(a1a2a3)* (aaasazararazazas) " tag  (asasazararazasas)ag ™ = 1.

The computer program showed that the normal form of the conjugate of the left
hand side
(a1a2a3a4)[(a102a3)*(asazazararazasas) ~tag (asazazararazasas)ag 'l
(a1a2a3a4) ™"
is
-2
A12340Ag340
(hereA; ji..denotesA (H) with H the induced subgraph by the vertiées, .. . .,)

i.e., this is equivalent to
c(As) = c(Ag)>.

Computational result fo(C) This is the hard part. First, note that (B) is equiv-
alenttoA2,,,,= A3, Which can be rewritten as

2
a1a2a304000004030201 = A5z,

SINCEAZ,5,0= a1a2a3a4a0d0asa3a2a1A3,,, (€asy to check by drawing braids).
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After eliminatingby, by, bz, u from (C), put
L := [the left hand side of (C)][the right hand side of (C)]

Let W be the positive word which is a product of the following 182, whose
suffix is in the order
53042 33425 30645 30642

53042 53106 42534 00453
64253 10425 30642 53064
53042 33425 31064 25306
42531 06425 31064 25306
45306 42313 42530 45306
42531 42304 56

This word was found by trial and error. In the following, we shall denote simply
Jj instead ofs;, for such long words. Then,

WLW™t
has its normal form
A_l
0123456 »
whereKk turns out to bel’; 7,73 with

T, = (5304232342530645306425304253

T, = (064561234004321564p3
T3 = (04253064253064

Then we replace 1234004321 Th by A3,,, by using (B), to obtairT;. Then,
the normal form off;1 7,75 turns out to beAZ,,-, Thus, under the relation (b),
it is proved that (C) is equivalent tdg1a,568 22456 = 1, i-€., 10 (C).

1.4. Other relations

Since it is proven that (7,)/[(b), (C)] = Mg<1>, we may use the topological
relations among Dehn twists for other relations under (b) and (c). The next is
well known.

Lemma 1.1. Let ¢ be the Dehn twist along a curvg, and leto € Mg’<b>.
Then, The conjugateco —* is the Dehn twist along (C).

Lemma 1.2. The kernel oM;l> — Mg} is generated by the Dehn twigt,, and

the kernel ofM ;> — M, is normally generated by, *d;, shown in Figure 7.
Thus, the relatiofD) is equivalent tal, = d,.
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genus g

fo
Fig. 7. Curves for the relation (D)

Proof. If o isinthe kernel of the first map, thencan be isotopically deformed to

be identity on the left side of... Theno is a mapping class group of the annulus,
whichis knownto be generated by the Dehn twfist The latter statement follows
from that the kernel oM; — M, is 71(%,), and is generated by the move of
the marked point, or the difference of a pair of Dehn twists which separates this
point. See Wajnryb[22] for the details.

Proof of the rest of the Main TheorerNote that( f5, f5) in Figure 7 is, as a pair
of curves, the image a¥/;, d;) by a mapping class, so by Lemma 1.1 it suffices
to prove that (d) is equivalent ts = f5. If we plug the last picture in Figure 6
into Figure 7, then the left boundary is filled and= f5. Now (d) is equivalent
to f5 = fs, and by Theorem 1.5itis equivalentfg® > = 2472 fs = c(Do,_1).
This proves the equivalence between (D) and (d).

Sincec(A/zg)2 is the Dehn twistf,,, the relation (e) giveMg1 by Lemma 1.2.

Suppose = 3. Thenc(E7) = c(Ay)? by Theorems 1.4 and 1.5. It is obvious
that A(Es) andc(Az) commute inM3, being horizontal and vertical involutions.
It suffices to prove that; = dj is derived from this commutativity. F@r= 3, ds
is A(Eg)a1A(Es) ™ and hencely = c(Ag)dsc(Ag)~L, by Lemma 1.1. Thus the
problem is reduced to the commutativityafdg) with d3 = A(Eg)a1 A(Es) 2,
which is a direct consequence of the assumption and the commutativity of
andajy.

Now, Theorem 1.3 is proved, assuming Theorems 1.4 and 1.5. In the next
section, we prove these theorems.

2. Geometric monodromy of simple singularities

2.1. Topology

An Artin group with 2 < m;; < 3 (i # j) is calledsmall We shall show that
a homomorphism from a small Artin groupMSg‘b> that maps each generator
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to a Dehn twist has a simple geometric configuration. This topological result is
interesting by itself, and will be used to prove that the geometric monodromy
action on the Milnor fiber coincides with those given by the Dehn twists along
the vanishing cycles. This is classically known as the action on cohomology, and
could be directly proved by using ACampo’s real cut theory[1], but here we give
an elementary independent proof, considering a possible future application for
higher genus cases.
A key lemma is the following topological statement by Ishida[15].

Theorem 2.1. Let C, C’ be two closed curves in a surfa&g"”, homotopi-
cally shifted so that the number of intersections is minimizedcL€&tbe the
corresponding two Dehn twists. Then,
(i) candc¢’ commute if and only i€ N C' = @,
(ii) ¢ and ¢’ satisfy the braid relatiorcc¢’'c = ¢’cc’ if and only if C N C" =
one point,
(iii) c andc’ satisfy no relation, i.e., generate a free group, otherwise.

Then, the following proposition immediately follows.

Proposition 2.1. Let I" be a simple graph. Suppose that there exists a group
homomorphism

AT) —> M},
which maps each generatay to a Dehn twist;. Take a simple closed curég
which represents; for eachi, so that the number of the geometric intersections
is minimal.(For example, take the geodesjcs.

Then,C; N C; = @, = one point, respectively holds, for anda; are nonad-

jacent, adjacent, respectively.

There are several homeomorphic types for the tubular neighborNganf
the union ofC;. However, ifI" is acyclic, thenV is unique up to homeomor-
phism. This can be shown as follows. Take one curve Gayhen its tubular
neighborhood is a ribbod;. Since it is orientable, its homeomorphic type is
uniquely determined. Take another curve which crosses @itht one point,
say C,. A part of C, appears orCy. There is a unique way to fattef, such
that its orientation is compatible witth. This can be iterated until all curves are
fattened, since there is no cycle ihand every time when a curve is fattened,
there is only one point intersecting with already fattened curves. Thus, we obtain

Proposition 2.2. Supposel” is acyclic in Proposition 2.1. Then, the tubular
neighborhoodV,- of the union ofC;’s is uniquely determined up to homeomor-
phism.

2.2. Geometric monodromy of simple singularities

Brieskorn[6] gave an explicit construction of the miniversal deformation of a
simple singularity on a curve.
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Theorem 2.2. Let I be a Dynkin diagram of typd,,, D,, E,, with rank n.
LetT = Spe®[zy, ..., z,] be the associatead-dimensional affine spac® C

G L(T) the Weyl groufti.e. the Coxeter grodpLet P, ..., P, be the polynomial
generator of the invariant rindR[z1, ..., z,]". Then, there exists a miniversal
deformation

F - T%/W = Spe€|[Py, ..., P,

defined by a weighted homogeneous polynomial
F(x,y, Pj_, ey P]).

Brieskorn also showed that the fundamental group of the smooth-fiber locus
in TC/ W is the corresponding Artin group [7].

Theorem 2.3. Let® C T be the set of roots. For a roet € @, lett, € W be
the reflection with respect @, and H,, (¢ € @) the reflection hyperplane. Fix a
fundamental root systefii and letC be the corresponding Weyl chamber. Since
C is contractible, we can tak€ as a base point of the fundamental group. Then,

AN Z (T = | Ho)®/ W, ©)

aed

holds, if eachu,, a € IT, is mapped to the path frodi to 7, (C), which goesr
radian around the hyperplanB® adjacent toC. (l.e., if we take the quotient of

(T — H,)© by the translation alongi,,, then we get a projection td—{0}. Under

this projection,C is projected to the positive real line ang(C) is projected to

the negative real line. Take a path from the positive line to the negative line given
bye™ =Y ¢ :0— 1. Lift this path, then divide by to obtain a closed path.

Let us take aMilnor fiber F,, with x € C. (Here we say by a Milnor fiber
the intersection of the fiber an with a ball centered at the origin in the total
space.) Then, the fundamental group of the smooth-fiber locus with base point
i.e.,A(I"), acts onF, modulo isotopy. This yields a morphism callgelometric
monodromyr : A(I") — Mg<”>, where(g, b) is the homeomorphic type of the
Milnor fiber. It is well known that, is a Dehn twist. Thus, by Proposition 2.2,
we can prove the following.

Theorem 2.4. The geometric monodronpy- is obtained by mapping each gen-
erator of A(I") to the Dehn twist along the corresponding vanishing cycle.

If we take the abelianization
AT) > M;"” — M, — AutH*(3,),

then we get the well-known Picard-Lefschez formula.
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Proof. By Proposition 2.2, from the Dynkin diagram one can reproduce the
tubular neighborhood of the union of tiig. Assumel” = A,. If k is odd, then

it is well known that the Milnor fiberFr is homeomorphic t02g<2>, where

g = (k—1)/2, and ifk is even, then homeomorphic Ebg<1>, whereg = k/2.

Itis easy to check by induction that the tubular neighborhgdf C4, ..., C;
given in Proposition 2.2 is homeomorphic k. If k = 1, then obviously the
neighborhood isZ52>, and fork = 2, then we add one ribbon to this, yielding
»:1>, and so on.

Thus, the monodromy - is determined if we know how - is embedded in
Fr. Since the genus is the same, we may consider only the boundaky. df
one boundary component &f- is contractible inF-, then the other boundary
component oV cuts off the two boundary componentsiaf. This means that
any set of vanishing cycles does not separate the two boundary components of the
Milnor fiber, which is a contradiction. (C.f. The calculation of the monodromy
of the center, independently given§.4, manifests this.)

Thus, each boundary component\f cuts off one boundary component of
Fr, i.e., the embedding is homotopically isomorphic. This proves Theorem 2.4
for the A, case, since obviously the theorem is tru&jif = N.

Other cases follow by the same argument, by checking the following two
points: (1) Tubular neighborhood is homeomorphic to the Milnor fiber. (2) The
boundary components of the Milnor fiber are separated in the complement of
Nr. O

2.3. Calculation of the monodromy of the center

Here we follow the notation in Theorems 2.2 and 2.3. The following is well
known (c.f. [5]).

Lemma 2.1. Let f,(z1, ..., z,) be the linear polynomial corresponding to the
root «r, and put
D:=(]] f%
acdt

where® is the set of positive roots. Theh,defines
(T - JH)®/W — C — {0},

and by takingr; we get the degree map.

Proof. Obviously D is invariant byW. By the definition ofz,, its image byD
is a circle around the origin.o



Mapping class groups in terms of Artin groups 413

Lemma 2.2. Letwg be the longest length elementiin, i.e.,wg mapsC to —C.
Let A’ be a path fronC to —C in T, given by

tef0,1] — @V Yz, ... eV Yy e TC,

Then,
A" e m((T = J Ha) /W, C)

satisfies
A/aa = Ayp(a) A/.

Proof. SinceT®, H® hasC*-action, we have a homotopy
™ Vay(s) 1 [0,1] x [0, 1] > (T — |_J H)".

Since —a,(s) defines a path from-C to —z,(C) along the rootwg(«), after
divided by W, we obtain the desired formulao

Proposition 2.3.
A= A(I") € A(D).

Proof. By [8],
A(IMNa, = awo(ot)A(F)

holds. Thus,A’A(I")~! lies in the center. SinceA’)? is given byr : 0 > 2

in Lemma 2.2, its degree is the same as the degre® a6 a homogeneous
polynomial, i.e., twice the number of positive roots. Thus, the degret’ oé
the number of positive roots, the same&d™). Since the degree map restricts
to an injection on the center, we have the resuit.

2.4. The relations between the center and the boundary Dehn twists

Brieskorn gave the weight of the variablesrofx, y, P(z)) as the homogeneous
polynomial, when the weight of eachis considered to be one (see the table on
P.281 and the second corollary on the next page in [6]).

Letwq, w, bethe weight o, y, respectively. Each fiber is naturally compacti-
fied by filling one, two, or three points at infinity. We can choose alocal parameter
u; of the formx™ y™i, n;, m; € 7Z, at each point of infinityoo; (j = 1,2, 3).
This is a homogeneous polynomial with weight,; = n;jw; + m;wy.

Let ¥ - B := (T — | H,)® be the smooth fibration of curves defined
by F(x,y, P(2)) »> z := (21,...,2,). Letb = (by, ..., b,) be a point in the
Weyl chambelC C B, and letF, be the fiber abové, i.e., the curve defined by
F(x,y, P(b)) = 0. We lift the pathA’ to a homotopy

Fp x [0,1] — F
(x,y) Xt = (E(x, 1), n(y, 1), P(e™Yb))
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so that each boundary component corresponding to each point of infinity is
fixed pointwise. This homotopy yields at= 1 a diffeomorphismF, — F_,.
By taking pullback byw, we obtain a selfdiffeomorphism of,,, which is by
definition the monodromy corresponding4o

If we forget about the boundary, then

E(x,t) = eUJlﬂletx, n(x,t) = ewzﬂ\/jlty

will give such a homotopy lift. This lifting gives the isomorphism given by
x > eIy s ew2mV=1y)y b s —p. Then pullback bywo. Note that the
given automorphism : F, — Fj,isanautomorphism as an algebraic curve, with
each point at infinity fixed. Algebraicity is obvious. Preservation of the infinity
is becauses — B is a pullback of a family oveB/ W, and the monodromy
of the equatiorn¥ (x, y, P(z)) = 0 with P(z) € B/ W near the origin does not
exchange the points at infinity.

During the homotopy lift, the algebraic structure ®f does not change. So
we may use the hyperbolic structureiof.

Since each fundamental root is pullbackeduayto wo(e), SO is the corre-
sponding hyperplane, and so is each Dehn twist. From this, the algebraic auto-
morphismy is determined uniquely except fdr, as follows. Take the geodesics
for the representative of the vanishing cycles, cut these, then take a model in the
upper half plane. Being homotopic to the tubular neighborhood of the cycles,
the model of each connected component is a geodesic polygon with one point of
infinity inside. This polygon must have a symmetry correspondinggtavhere
the map on edges of this polygon is strongly restricted from the actian oh
the diagram. That is, each edge of the polygon on a vanishing €yoleist be
mapped to an edge amy(C).

The action ofwg on the Dynkin diagram is known to be the following (c.f.
[5]): the identity forwo = —1 (cases oD, n: even,E; andEg), the horizontal
exchange of the two ends of the longest path4grand Eg, and the vertical
involution (it's unique) forD, with n odd.

If wg = —1, it acts as the identity on each polygon (easily checked for each
case). For the cases af, and D, (both with oddr) and Eg, thenwg acts byr
radian rotation on each components of the model (it is determined by the move
of edges without ambiguity). In the case &f (n: even),C is mapped taCy,
in Figure 1. The upper half plane model igdax 4g — 2)-gon (each curve gives
four edges, except far, andC,,, each of which gives two edges). There is an
ambiguity ofrr/2 radian right rotation or left. This ambiguity is eliminated by
the consideration of boundary in the following.

Now we shall see the boundary. The local coordingtéor each point at
infinity has weightw;, and the corresponding monodromy around the boundary
luj] = ¢ (¢ > 0) is thew; x m radian Dehn twist. So, to fix the boundary, we
need to compose the inverse Dehn twists along the boundary. For the chse of
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(n: even), the weight at infinity is-1/2 and hence the boundary is twisted by
/2 radian clockwise if we do not modify. Thusy must be right rotation. So
the monodromy is to rotate the model by2 radian clockwise, then twist the
boundary anticlockwise with same radian.

Thus, we get the following

Proposition 2.4. The geometric monodromyaf ™) onthe curve (x, y, P (b))
with open disks around points atinfinity removed is obtained as foIIow§3t’é‘t
denote the obtained real two-dimensional surface.

(i) Cut off2g<”> along the vanishing cycles. Then one gets a disjoint union of
polygons each of which has a unique boundary component inside. Identify
each polygon with a regular polygon, with an open disk at the center of the
polygon removed.

(i) Rotate each polygon hyradian clockwise, where

0 for D, withn even,E; and Eg
a=1{ m forA,andD, (both withn odd), andEg
/2 for A, withn even

(i) Twist the j-th boundary by—w. ;7 radian counter-clockwise, where this
value is seen in the following table.

In the last step, we have to specify which polygon contains a point at infinity of
weightw ;. The set ofw,,; can be easily obtained by looking at the ramification
overx-line (see an argument below). The ambiguity occuts.if; depends on
j,i.e., inthe cases dP, and E;. Here we chose the numbering p&o that the

first polygon (i.e.j = 1), after gluing the edges, constitutes pants (i.e. a sphere
minus three disks). Then we have Table | o ;. Note that for the other cases
the choice of numbering does not matter.

The explicit monodromy is easily obtained from the following table. The
weights are copied from the table in [6], and the other values follow by a sim-
ple calculation of the ramification indices. (See an example below.) The row
“automorphism” denotes the automorphism on the upper half plane model.

In particular, this table gives the proof of Theorems 1.4 and 1.5. Here we shall
prove the latter theorem (i.e. the casemf n odd). It shows how to determine
W« iN this case. The other cases are similarly proved.

ConsiderD, with n odd. The corresponding singular curve is the union of
the smooth linec = 0 and a cusped ling"~2 + y? = 0. The picture of Dehn
twists is as in Figure 8. Now we see the boundary component 1 came from the
point at infinity in the linex = 0, by observing that two vanishing cycles cut
out one pants at the left. (More precisely, if we deform only the cusped line to
one-punctured hyperelliptic cury€ + x"~2 + ¢ = 0, then the one-punctured
projective linex = O intersects with this curve normally at two points. This shows



416 M. Matsumoto

Table 1.Weight at infinities of simple singularities

Type Ap Dy,
equation o+l y2 x(x"2 4 y2)
w1, W 1, n+1)/2 2,n—2)
n=even n=o0dd n=even n=0dd
# of components 1 2 3 2
—(Wools Woo2s Weo3) | (w1/2) (w1, wy) | (w2, w1, wi) (w2, w1/2)
1/2) 11 n—2,22) n-21
Description ofA
Boundary twists /2 rad. T, T (n—2)m, 21,21 n—2m,
automorphism —7 rotation| 7 rotation identity 7 rotation for each
c(IN) hyp. ell. inv.| (1,1) twists| as above (n-2,1) twists
Type Eg E7 Eg
equation x4 y3 [y 4+ 9D [ x5+ 3
w1, w2 (3,4) (4,6) (6,10)
# of components 1 2 1
(Wool, Woo2s Woo3) || (w1/3) | (w1, w1/2) | (w1/3)
D 4,2 2
Description ofA
Boundary twists T A, 2 21
automorphism || 7 rotation| identity | identity
c(I) 1 twist as above | as above

that two vanishing cycles cut out one pants containing the boundary component
numbered 1.) The local parameter corresponding to the componentXi(@nce

x = 0 is they-line), hence its weight is-w, = —(n — 2). For the component

2, the local parameter is ramified with index two abavé, sincen — 2 is odd.

Thus it has weight-w,/2 = —1. SinceA(I") acts on the Dynkin diagram by a
vertical involution, its monodromy is the vertical involution of the surface with
twists at boundaries b§: — 2)zr, 7 radian, anticlockwise respectively, so that
the boundary is fixed. Then(I") corresponds to the products of the Dehn twists
on the boundary with these weights, i.B;‘zDz. By puttingn = 2g — 1, we

get Theorem 1.5.

Remark 2.1.ltis interesting to observe that some of these center-boundary rela-
tions also played important roles in classical literatures. For example, the chain
relation (c.f. [2]) is exactly same with the relation fefAz). Humphries’ rela-
tion[14] used to get the minimal generating set is essentially equivalent to the
relation aboutA (Eg). See the end dfl.4, whereA(Eg) mapsa; to ds.
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Fig. 8. Configuration ofDj,,, n odd
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