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Hyperkahler metrics in dimensiodn with n commuting tri-holomorphic
Killing vector fields form a large class of explicitly known Ricci-flat metrics.
The flatH", the Taub-NUT, and the Eguchi-Hanson metric are of this form.
So are the multi-Eguchi-Hanson metrics (a.k.a. ALE-spaces of #jpe
and their Taub-NUT-like deformations, both due to Gibbons and Hawking.
Higher dimensional examples include the Calabi metric§6d P and the
asymptotic metrics on moduli spaces of magnetic monopoles.
A powerful method of constructing such metrics was given by Liriufstr
and Raek [17] (see also [14,18]). It associates a hypht&r metric having
a local tri-Hamiltonian (meaning Hamiltonian for all threéler forms)
action of R™ to every real-valued function on an open subseRdfx R™
which ispolyharmonigi.e. harmonic on any affingdimensional subspace
of the forma + R? ® Ru, a € R? ® R", v € R™. This construction gives
locally all hyperkahler metric with a local effective tri-Hamiltonian (hence
isometric) action ofR™. On the other hand, the global properties of the
resulting metrics - in particular completeness - have not been investigated.
Thereisanother construction - that of hyganler quotient - which, while
in this case more restrictive, has the advantage that the global properties of
the resulting manifold are accessible. In particular, a hygddee quotient of
a complete manifold by a compact Lie group is complete. A basic example
is the hyperkhler quotient ofl x (S x R?) by the diagonal circle action
which yields the Taub-NUT metric. More generally, we obtain complete hy-
perkahler4n-manifolds with a tri-Hamiltonian (hence isometri€y-action
by taking hyperk&hler quotients of quaternionic vector spaces by tori. This
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class of manifolds has been investigated in detail in [6]. They are closely
related to projective toric varieties. In particular, they are diffeomorphic to
a union of cotangent bundles of finitely many such varieties glued together.
There is an interesting relation to symplectic geometry and Delzant’s
theorem [10] which states that a compact sympleztiemanifold with a
Hamiltonian T"-action is completely determined, as a Hamiltoni&f
manifold, by the image of the moment map. Hy#rler4n-manifolds with
a tri-HamiltonianT™-action can be thought of as the quaternionic analogue
of that situation. Since now we cannot have compactness, we impose the
next best thing: completeness of the metric.
By the above-mentioned construction of Lindsirand Raek there are
plenty of hyperk&hler manifolds with a local tri-Hamiltonian action Bf*.
We shall see that the situation is very different if we require the manifold to
be complete (and Riemannian). On such a manifold any Killing vector field
is complete and so an effective local tri-Hamiltonian actioRBfgives rise
to an effective tri-Hamiltonian action of the connected abelian Lie group
G = RP x T""P. We make the following definition.

Definition 1. Let M, M’ be two hyperk&hler manifolds with tri-Hamilton-
ian actions of a Lie grou@ and letu, 1/ be the chosen moment maps. We say
thatM andM’ are isomorphic as tri-Hamiltonian hypétierG-manifolds,

if there is a triholomorphi&-equivariant isometry : M — M’ such that

p=yp'of.
The main result of this paper is:

Theorem 1. Let M*" be a connected complete hypéhker manifold of
finite topological type with an effective tri-Hamiltonian action®f= RP x
TP, Then

(i) If M is simply connected and = 0, thenM is isomorphic, as a tri-
Hamiltonian hyperkhler T™-manifold, to a hyper&hler quotient of
some flafl? x H™, m < n, byT4 " x R™,

(i) If M is simply connected and > 0, then) is isomorphic, as a tri-
Hamiltonian hyperk&hler G-manifold, to the product of a fl&f” and
a4(n — p)-dimensional manifold described in part (i).

(i) If M is notsimply connected, théd is the product of a flatS* x R3)l,
1 <1 < n,anda4(n —l)-dimensional manifold described in part (ii).

Remarksl. By a finite topological type we mean that the total Betti number
is finite. There are examples [2,12] of compl&té-invariant hyper&hler
manifolds not satisfying this condition.

2. In part (i), 7% acts onH¢ as a subtorus of the diagonal maximal torus

77 in Sp(d), while R™ acts onH™ ~ (R™)" by translations on the first
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factor and oriH? via an injective linear map : R™ — Lie (T%) = R%. In

parts (i) and (iii), the actions dk? andT" are defined analogously, except
thatp does not have to be injective.

3. Any tri-symplecticT™-action on a simply-connected is tri-Hamilton-

ian.

4. In part (i), we can assume that the level set of the moment map used to
obtainM fromH*™ is smooth (this condition is always assumed in [6] and
by no means follows from the smoothness\éf see [8] for the3-Sasakian
case).

Corollary 2. Let M be a simply connected-dimensional complete hy-
perkahler manifold with a nontrivial tri-Hamiltonian vector field. 8 (M)

= k > 0, then M is isometric either to an ALE-space of tyge (i.e. a
multi-Eguchi-Hanson space) or to its Taub-NUT-like deformation (i.e. to
the hyperihler quotient byR of the product of such a space with). If
bay(M) = 0, thenM is the flatH.

Here, ifbe (M) > 0, we obtain ars!-action, while ifby (M) = 0, the vector
field gives rise either to the standard circle action or to translations in the
first factor of R*.

We emphasize that, fot > 1, the n-dimensional toral hypeéhler
quotients ofH? are also quite well understood [6]. We know their integer
cohomology, their homotopy type, generic complex structure and we have
explicit formulas for the Khler potential and the metric.

The previous corollary suggests the following definition.

Definition 2. Let M " be as in Theorem 1. A Taub-NUT deformation (of
orderm) of M is the hyperk&hler quotient of\/ x H™ by R™ whereR™
acts onM via an injective linear map : R™ — Lie (17") = R™.

Such a deformatiod/’ is canonicallyT™-equivariantly diffeomorphic to
M by a diffeomorphismf which respects the hypeikler moment maps
o'y i.ep=p'o f.

We have the following hype#hler analogue of Delzant’s theorem.

Theorem 3. Complete connected hypétier tri-Hamiltonian 7" -mani-
folds of finite topological type and dimensidn are classified, up to Taub-
NUT deformations, by arrangements of codimensi@ffine subspaces in
R3 ® R™ of the form

Hyp = {(z', 22, 23) e R3QR"; (z',up) = A\, i=1,2,3}

for some finite collection of vectoisg, in R™ and scalarsA};,, 1 =1,2,3,
such that, for any € R3 ® R", the sef{uy;p € Hy} is part of aZ-basis
of Z".
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This arrangement is the image of singul&t-orbits by the hyper&hler
moment map. Taub-NUT deformations of different order are distinguished
by the volume growth of the metric. In particular we have:

Theorem 4. LetM be asin Theorem 1. ¥/ has Euclidean volume growth,
thenM ~ HP x N,whereN isisomorphic, as atri-Hamiltonian hypeikler
T™~P-manifold, to a hyperkhler quotient of a flatl? by a(d — n + p)-
dimensional subtorus’ of Sp(d), i.e. to one of the toric hypeékler man-
ifolds of [6].

Remark 4 after Theorem 1 holds here as well.

Sometimes one is interested in having®i(2) action which preserves
the metric but not the complex structures. This is the situation for the Taub-
NUT and for the metrics which are cones ov¥eBasakian manifolds [7,

6].

Theorem 5. Let M be as in Theorem 1 and suppose, in addition, that there
is an effective isometric action &fU (2) or SO(3) rotating the complex
structures and commuting with the action @f Then M is isometric to

H! x (S x R*)"~L, for somd < n, or its Taub-NUT deformation.

Our last two results deal with compact Einstein manifolds which admit
some sort of quaternionic structure.

We recall that a Riemannian manifald, g) is 3-Sasakian if the metric
cone(R~q x S, dr? 4 r2g) is hyperkhler. Such a manifold is Einstein of
positive scalar curvature and examples of comp&e®asakiai™-manifolds
were given and studied in [7,9,6,5]. These examples were obtaingd as
Sasakian quotients (see [7]) of spheres. We shall prove:

Theorem 6. Let N*"~! be a connected simply connected comBasa-
sakian manifold admitting an effectiZ& -action by3-Sasakian isometries
(equivalently: the isometry group d¥f has rank at least: + 1). Then NV
is isomorphic, as &-Sasakiaril™-manifold, to a3-Sasakian quotient of a
sphere by a torus.

In fact, the isomorphism can be required to preserve3tgasakian
moment map for th&™-action.

A 3-Sasakian manifold fibers over a quaternioakiier (i.e. having holo-
nomy inSp(n—1)Sp(1)) orbifold. Theorem 6 in conjunction with Corollary
3 of [5] gives:

Corollary 7. A4n-dimensional compact connected quaternicihler ma-
nifold with positive scalar curvature and isometry group of rank at leaist
is isometric toH P™ or Gro(C™2) with their symmetric metrics.
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The idea behind the proof of Theorem 1 is quite transparent. We shall
first show (Sect. 3) that it is sufficient to consider actions by tori. Then we
observe that it is essentially sufficient to prove the result in dimengion
since, were there any new compl&té-invariant hyperk&hler manifolds in
higher dimensions, we would get new examples in dimensiby taking
hyperkahler quotients by subtori. In dimensidnunder the assumption of
finiteness of the Betti numbers, the action$f has finitely many fixed
pointsmy, ..., mgq and the hyper&hler moment map induces a conformal
immersiong : (M — {m1,...,mq})/S" — R3. Furthermore the local
conformal factors are harmonic functions which implies that the metric on
(M —{my,...,mq})/S" has nonnegative scalar curvature. We modify this
metric so that it becomes a complete metric(d — {my, ..., mq})/S*
with nonnegative scalar curvature. Then the results of Schoen and Yau [19]
imply thatz is injective andu.(M ) has Newtonian capacity zero (meaning
thatou (M) is removable for bounded harmonic functionsy(f\/) = R?,
then we are done, since positive harmonic functions with finitely many
isolated singularities at(m;), ..., u(my) are easily classified. To show
that the boundary ofi()/) is indeed empty, we prove an estimate which
implies that a metric, given by a harmonic conformal factor on a complement
of a setE’ of Newtonian capacity zero, is complete if and onlyifs empty.

1. The Legendre transform andR™-invariant hyperk ahler metrics

The fundamental idea of Lindétm and Rdéek [17] is that hyper&hler
manifolds of dimensiodn with a local effective tri-Hamiltonian action of
R™ can be constructed from real-valued functiégfen an open subsét of
R3@R™ which are harmonic off N L for any3-dimensional affine subspace
L of the formR? ® Rv, v € R™. If we identify R? ® R with R" x C?»
with coordinates;;, z;, i = 1, ..., n, then Lindstdm and R@ek show that
the Legendre transform with respect to thagives a Kahler potentialK of

a hyperkahler metric. The local holomorphic coordinates for this metric are
given by thez; and some:; and we have

K=F-2) (u+ 1)z (1.1)
=1

where thex; are determined by
oF
8I‘i

The vector field®/dy; = v/ —1(0/0u; —90/0u;) are triholomorphic isome-
tries and the moment map for their action is simply, %z;, 3z;).
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An important observation of Pedersen and Poon [18] is that the metric
has the form

g = Z(@Zj(dl'ldwj + dzidfj) + (é_l)ij(dyi + Al)(dyj + AJ)) (13)

]

where®;; = 1F, . andA4; 2‘1 S (Fy,zd% — Fy, 2 dz). In particular,
the quotient metrlc ol is given by

> &ij(drida; + dzdz;). (1.4)

4,3
Thed;; are also polyharmonic functions and, in fact, the métbix|] deter-
mines (locally) the hypeiéhler and tri-Hamiltonian structure of the man-
ifold. Indeed, if we have another functioh’ with Féwj = 49;;, then
G = F — F'is of the form)_ x;g;, where they; are polyharmonic functions
of z;, z; only. Computing the difference of the two connection 1-forhs
andA’, we see that it is given by

891 692
Z 6ZJ dz])

Since the functiong; are polyharmonic, this form is closed and so it gives
rise to a local equivariant isometty Moreover¢ respects the Ehler po-
tentials given by (1.1) and so the complex structlyrdt also respects the
coordinates;, z; (hence the moment map) and so, by the formula (2.8) in
[14], ¢ respectd, and /3.

The two basic examples of this construction areSfainvariant metrics
onS' x R3 and onH. In the first case we have

F(z,2,2) = 22° — 2% (1.5)
and consequentkp = 1, while in the second case
F(z,z,z)=xIn(zx+7r) —7r (1.6)

wherer? = 22 + 2z. This time® = 1/4r. More general forms are given

[11] and [6]. In the latter, the functions and the metrics for hyped#hler
quotients of flat vector spaces are computed. They are essentially obtained
by taking linear combinations and compositions with linear maps of the
solution (1.6) (see also the proof of Theorem 1 in Sect. 6). Our aim is to
show that, in the case of a complete metric, the only other possibility is
adding a linear combination of (1.5), which corresponds to a Taub-NUT
deformation (see definition 2).
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For a metric of the form (1.3) taking hypeikler quotients by subtori is
very simple. Indeed, the moment map equations are now linear; (i),
and the hyper&hler quotient corresponds to restricting the functiomno
an appropriate affine subspacefof @ R™. In fact, the requirement that
be polyharmonic is a consequence of the fact that we must be able to take
hyperléhler quotients by any subtorus.

An explanation of this construction in terms of twistors was given by
Hitchin, Karlhede, Lindstsim and Ra@ek [14]. In particular, they have shown
that any hypertihler 4n-manifold with a free tri-HamiltoniarR™-action
which extends to &£"-action with respect to each complex structure and
such thatthe moment map is surjective is given by the Legendre transform. In
the next section we shall show that any hygdtler4n-manifold with a free
local tri-HamiltonianR™-action islocally given by the Legendre transform.

2. Potentials for hyperkahler metrics

Let X2" be a Kahler manifold with the hler form. It is well known that
¢ can be always written in a local holomorphic chart as

=__ Z 8,21(92] clzZ N dZ; (2.1)

for a real-valued functior .

We now wish to show that a hypéikler structure is also locally deter-
mined by a single real-valued functidd. Before proceeding we remark
that the situation when there is a simultaneo@asl€r potential for all three
Kahler forms is very rigid [21] - it is equivalent to the hypahter manifold
being locally a cone over & Sasakian manifold.

Let M*" be an arbitrary hype#éhler manifold and leb;, ws, w3 be the
three Kahler forms. Themw = w- + iws is holomorphic for the complex
structurel;. The Darboux theorem holds for complex symplectic forms and
we can find a local;-holomorphic chart;, z;, i = 1, ..., n such that

w=Y_du; Ndz. (2.2)

=1
In this local chartv; can be written as in (2.1):
wi=—3 D (Kua,dui A dity + Koz, du; A dz;
1,J

VB, dz A dig + Kz, dz A dz) (2.3)
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for a real-valued functiod. We see that the complex structukeis given
by:

0 = 0 0
IZ (au1> - Z <Kzlu]aa] + Kzifj a%)

j=1
0 - 0 0
7=1
Thus the conditior{/3)? = —1 gives a system of nonlinear PDE'’s féf.
This system is equivalent to the following condition:
Kuiﬂ- K’U,if'
(szj Kzlzj> € Sp(n,C), (2.5)

where the symplectic group is defined with respect to the form (2.2).
Conversely, suppose that in some local coordinate systemwe have
a Kahler formw, given by a Kahler potentialK’ such that this system of
PDE's is satisfied. Then, if we defing + iws by the formula (2.2), we ob-
tain a hyperhermitian structure. However andws are closed, and so, by
Lemma4.1in[1]/; andls = I I are integrable and we have locally a hy-
perlkahler structure. Therefore there is 1-1 correspondence betwadek
potentials satisfying the above system of PDE’s and local hybeek struc-
tures.
Forn = 1 the condition (2.5) reduces to the Monge-A@ng equation

KuﬂKzi - KuZKzﬂ = 1. (26)

In higher dimensions, narrowing the situation from Ricci-fld@ther to hy-
perlkahler is equivalent to replacing a single equation with high-order non-
linearities by a system of equations with quadratic nonlinearities.

We now go back to the main subject of this paper and we assume that there
is a free local tri-Hamiltonian action & on M. This action will extend
to a localC™-action with respect td; (or any other complex structure).
Since there is a moment map for tifi§-action, we can locally identify/
with a neighbourhood df in C™* x C™, where the first factor corresponds
to the action and the second one is given by the moment map. Since we
have now an equivariant holomorphic retraction ofitox {0}, the proof
of the equivariant Darboux theorem, as given in [13], goes through fer
wy + iwsz. Therefore we identify locally/, as a complexC™-Hamiltonian
manifold, withT*C™ ~ C™ x C™ with coordinatesu;, z; in such a way
that theu,; correspond to the action & and thez; give the moment map
for this action. Furthermore has the form (2.2). The &hler formw; is
given by a Kahler potentials’ which we can assume to B&"-invariant, i.e.
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independent ofi; — u;,7 = 1, ..., n. Letz; denote the moment map for the
action of/—1(a; — u;) with respect tav;. From the formula (2.3) (using
the fact thati,,, = Ky,):

We define a functior’ by

=1

In particularF' is independent of; — u;,7 = 1, ..., n. Differentiating (2.8)

with respect ta;, i = 1, ..., n, yields the system of equations:
n
oOF _\ Oz; .
Z((%—zuj—zuj> a—uzzo, i=1,...,n.
j=1 J

We claim that the matrif0x;/0u;] is everywhere nonsingular. Indeed sup-
pose that at some poifit, z) we have) a;0z;/0u; =0,i=1,...,n,for
some scalarsy, ..., a,. The expression}  a;z; is the moment map for a
Hamiltonian vector field’,. If we restrict to theC™-orbit O of (z, z) we con-
clude that the moment map fo}, has a critical point in the Ehler manifold
O. Thisimplies that, vanishes atz, z) and saz; = --- = a,, = 0. There-
fore the above equations imply equations (1.2). Thus we have shown that the
Kahler potential of a hype#éhler metric with a free local tri-Hamiltonian
R™-action can be written in the form (1.1) for a functidnsatisfying (1.2).
We wish to show thak' is polyharmonic. Let us take locally any hypéatier
quotient of M by an (n — 1)-dimensional subgroup dR™. This corre-
sponds to restricting’ to a3-dimensional affine subspacel? ® R” of the
form a 4+ R3 ® Ro. Similarily, by identifying the hyper&hler and complex-
symplectic quotient, we restriéf to an appropriate subspace. The restricted
K is still of the form (1.1) for the restricted’. Therefore to show that, in
the general case, the functidhis polyharmonic it is enough to show that
for n = 1 such a function is harmonic. In this case, formula (3.143) of [14],
gives:

00K = O(F,) A dz + 2du A O(x).

This yields
oz

KZZ =r.z+ Fzz%

We also have, from (2.7),

Ky = _27_1 Ky;=-2—.
u
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Now, from (1.2),

_ O(u+a) ox i
O_T_FMEJFFM and
1_8(u+@)_} 8733

- du 2 "ou

Therefore
Kuﬂ = _4(Fa:a:)717 KuZ = 2(Fxx)7lFx27 Kzé = 22_(wa)71Fw2sz

and we see that the equation (2.6) is equivalediig + F., = 0 which is
the same ag\F' = 0. Thus we have proved

Proposition 2.1. Let A/*" be a hyperkhler manifold with a free local tri-
Hamiltonian action ofR™. Then) is locally given by the Legendre trans-
form of Lindstdm and Roek. O

Remark 2.2 It follows from the above arguments that(if/4", I, w;) is a
Kahler manifold which also has a complex-symplectic fesrand a free
local action ofR™ which is Hamiltonian for bothv; andw, then M is

locally given by the Legendre transform for some functian his function
is polyharmonic if and only if\ is hyperkahler.

3. Reduction to torus actions

In this section, we shall show that, in order to prove Theorem 1, itis enough
to consider actions by tori. Suppose that we have a complete a @perk
manifold M 4™ with an effective tri-Hamiltonian action @f = 7" P x RP,

p < n. First we claim

Lemma 3.1. The groupG is closed in the full isometry grouf M).

Proof. Consider the closuré&’ of GG in I(M). Let i be the hyperéhler
moment map foiGi. Sincey is G-invariant, it isG-invariant. Letm be a
point at whichG acts freely and such that= p(m) is a regular value of
w. Thenp=1(s) is ann-dimensional submanifold af/ which is a union of
n-dimensional orbits ofy. ThereforeD = Gm is closed inu~!(s) and so
it is also an orbit of. ThusO = G andO = G/H whereH is closed in
G. Let Hy be the identity component df. Since is abelian, there is a
closed subgroug’ of G such thaiG = Hy x F, and soO = F/E where
E = H N F is discrete. Sinc® = G is a subgroup of, we have that
E = 1andG = Fis closed inG. O

Corollary 3.2. The factorR? in G = T" P x RP acts freely on\/.
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Proof. This follows from the above lemma and the fact that isotropy groups
of I(M) are compact. 0

We shall now show

Lemma 3.3. Any discrete subgroup & acts properly discontinuously on
M.

Proof. By Proposition 4.4 in [15], it is enough to show that such a subgroup
L acts discontinuously, i.e. for any sequehagf distinct elements of and
anyx € M, l;z does not have a limit point if/.

We shall prove several simple statements from which this claim will
follow.

Claim 1). If the action ofG is locally free atr, thenz does not belong to
the closure of any7-orbit other tharGx.

Indeed, ifz belongs to the closure of an orlity, thenu(y) = u(x), but
Gz is an open neighbourhood ofin 1! (u(z)), and soGy = Ga.

Claim 2). If [;z converges tg for some sequendeg of distinct elements of
L, thendim Gy < n.
Indeed, the previous claim shows tlfatannot act locally freely aj.

Claim 3). If ;2 — vy, thenl;y also has a limit point.
To show this we observe the following estimates, whedenotes the
distance onV/ induced by the Riemannian metric:

d(liy, ly) < d(Liy, Liliz) +d(Liliz, Ll ) +d(Lilz, Lle) +d(Lle, Ly)
=d(y, lix) + 2d(l;x, ljz) + d(ljz,y) < 3d(y, liz) + 3d(ljz, y)

where we have used the fact thais an abelian group of isometries. The
claim follows now from completeness of the metric.

Claim 4). If H is the stabilizer of a poiny € M, then the sef/? of H-
fixed points ofM is a closed hype#ghler submanifold ofi/ of dimension
4n — 4dim H with a tri-Hamiltonian action of 7 /H x RP.

This is obvious, given that the tangent spacéfd aty is spanned by
vectors{X,, I X,, [,X,, I3X,; p € f} where Li€G) = Lie(H) & { and
X, is the Killing vector field corresponding o We also use here Corollary
3.2.

We can now show thal acts discontinuously of/. Suppose, by con-
tradiction, that there is a sequen(dg} of distinct elements of. and a point
x € M such that;x converges to a point € M. Then, using claims 2), 3)
and 4), we conclude that there is a completedimensionalp < s < n,
hyperkahler manifoldV with a free tri-Hamiltonian action 6f*~? x R? and
suchthat;z has alimit point for some € N. This contradicts Claim 1). O
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Therefore we can quotiedt’ by a maximal latticd. in R? and obtain a
complete hyper&hler4n-manifold with a tri-Hamiltonian action ¢f™.

4. Local structure of the moment map

We shall prove some facts about Hamiltonian torus actions on hghknk
manifolds which we shall need in the sequel. We start with a simple

Lemma 4.1. Let M*" be a hyper&hler manifold equipped with an effective
tri-Hamiltonian action of7. Thenm < n.

Proof. At any pointp € M let V' denote the subspace of the tangent space
spanned by the vector fields generated by the actidfi"ofit is simple to
check, using the three moment maps, that the subspaéés .JV, KV are
mutually orthogonal. O

The following fact was proved in [6] for hypegkler manifolds which
are toral quotients of flat quaternionic vector spaces (compare also [10] for
the symplectic case).

Proposition 4.2. Let M*" be a hyperkhler manifold equipped with an
effective tri-Hamiltonian action df™ with a hyper@hler moment map =
(p1, po,p3) : M — R3® ® R™. Letp € M and letV be aT"-invariant
neighbourhood op, small enough that any singular orbit (i.e. one with
nondiscrete stabilizer) intersectifig containsp. Then:

(i) The imageu(V*) of the unionV* of singularT™-orbits in V' is of the
formu(V) NUJg Hi where

Hy = {(z', 22, 23) e RR@QR"; (z',up) = N\, i=1,2,3} (4.1)

for some countable collectiofi of vectorsuy, in R™ and scalars\,
i=1,2,3;

(i) the isotropy groupl}, of p is the connected subtorus 6f whose Lie
algebra is spanned bju, € S; u(p) € Hy};

(iii) After rescaling, the sefu;, € S;u(p) € Hy} is part of aZ-basis of
Z™ and the isotropy representation @f is determined by this set.

Proof. Let p € R™ and letM, be any component of the fixed point set
of the 1-parameter subgroup 6f" generated by, i.e. the corresponding
vector fieldX, vanishes on\/,. Thenl, is a hyperkhler submanifold of
M. It follows that, forp € M, andv € T,M, we have(du;(v), p) = 0,

i = 1,2,3. Therefore(y;, p) is constant onV,, i = 1,2, 3, which proves
thaty(V*) is as stated. This also proves that the Lie algebf, & spanned
by {uy € S; u(p) € H}.
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We shall now prove the statement (iii) and the connectedneds.of
Let dim 7}, = ¢ and letH, be the identity component df,. There is an
(n — i)-dimensional subtorugl/; of 7™ such thatl™ = H, x H;. Let
I' =T,/Hy = Hy NT,, so that thel™-orbit of p is isomorphic tof; /I
The fixed point set of}, is a totally geodesic hypedkler submanifoldX
of M and we can identify &"-invariant neighbourhood qf with a T"-
invariant neighbourhood ok in the normal bundleN = TxM/TxX.
Since the torud?; /I" acts freely onX, we can identifyX (via moment
maps) with a neighbourhood &f, /I"in Hy/I" x R3"~3', SinceM and X
both have a hypercomplex structure, so does the fibéf,afhich we then
identify with H'. The isotropy groufi,, must act orfl’ via a homomorphism
p: T, — Sp(i). Since the action df'™” is effective,p must be injective and
hencel” = 1.

By the existence of normal forms for Hamiltonian actions (see Sect. 41in
[13]) even the moment magp, can be identified with a symplectic moment
map for the action of ™ onT* H; x R? x C?% (the action is trivial on the
middle factor). Letp; denote the moment map for the actiongf = Hy
onC?. If the weights of the representation arg, . . . , a;, then we have (cf.

[6]):
G1(Z1y e vy Ziy W, e, W) = = Z(‘ZHQ — \wk|2)ak. 4.2)
k=1

Now itis easy to see that the vectgris orthogonaltaey; for i # k. Since the
representation is an isomorphism, theform aZ-basis ofZ’, and therefore
the ug, after rescaling, also form A&-basis of their span. This finishes the
proof. O

Finally, we need:

Proposition 4.3. Let M*" be a hyperkhler manifold equipped with an
effective tri-Hamiltonian action df'*. Then the hypeéhler moment map
w = (u1, u2, u3) : M — R3 induces a local homeomorphism from the
orbit spaceM /T™ into R3",

Proof. First we consider & "-invariant neighbourhood’ of a 7" -fixed
point m, which by the existence of normal forms we can identify with
a neighbourhood of the origin iff>* and the moment map; with the
standard moment map

1
(2, W) = (21, -+ s Zny Wiy v o, Wy) > §(|zl\2— lwi|?,..., |z > — |wn|2).

Furthermore, we can require that at the origin the complex structyres
I, I3 coincide with the standard complex structuds 19, I{ of H".
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Let 1, 19, 13 be the corresponding standard moment maps sq.that
w1, (9 +ipd)(z,w) = (z1w1, . . ., 2znwy,). INaneighbourhood dfwe have
an expansiordy = I9+(terms of degree> 1in z;, z;, w;, w;), and similar-
ily for I3. Now, for any vecton tangent toU, dus(v) = —dus(Isv) and
dus(v) = dpy(Iav). Therefore

po +ips = pd + ipd + (terms of degree> 3in z;, z;, wy, w;).  (4.3)

The ring of (real)I™-invariant polynomials orC?" is generated by! =

|zi]2, b = |wil?, v = R(ziws), v = S(zw;), i = 1,...,n, with relations
vivs = (48)” + (y4)*. (4.4)

In particular, as the invariant polynomials are homogeneous of dégree

the terms of degreg in (4.3) vanish. We conclude that the moment map
e + iug can be written, on a sufficiently small neighbourhood ods

(n2 +ip3)(z,w) = f (217, [wi 2, R(z101), S(z1w1), -,
|Zn‘27 |wn’2> R(znwy), %(an'ﬂ))v
wheref : R¥ — C" is aC> function of the form
F1: Y2, 93,9, - U1 U5 Y5 Ut
= (y3 + i, ¥ +iyl) + 00

with r denoting the distance from the origin &f". The imageS of the
neighbourhood ofrn in the orbit spacel//T™ is identified with a neigh-
bourhood of0 in the variety given by the equations (4.4) with additional
constraintgy! > 0, y5 > 0. The mapp : M/T™ — R3" is of the form
i° + O(r?), with

B (Y1, Y2, Y3, Yds - VT U5 U5 )

One easily checks that the functign R3" — R*" defined by
9(p1,p3: 03, - DY, D5, DY)

= <p%, —p} /1) + ()2 + (D)2 b

o= R OB + )08 ) (4.5)

is the inverse ofi” restricted toS. Sincey is locally Lipschitz, it follows that
|fi(u) — @(v)| > Clu—v| foru,v € S, providing that we restrict ourselves
to a sufficiently small neighbourhood @in R*". Thus we have shown that
nisopenand locally — 1 in a neighbourhood of a fixed point. Consider now
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an arbitrary pointn € M andletl = dim Staly» (m). From Proposition 4.2
w(m) lies on exactly flats Hy. The vectorsy;, defining thesed;, are a part

of Z-basis and we can complete it to a fidbasis. LetA be the subtorus

of T™ generated by the — [ vectors used to complete the basis and let
pa s M — R33! pe the moment map fot. According to Proposition 4.2,

A acts freely in a neighbourhood of and so any hype#éhler quotient of

M by A with the level set of the moment map lying close enough t6m)

is a manifold (in a neighbourhood of the point induced#)y For any such
hyperkahler quotien]u;‘l()\)/A, the point induced byn is a fixed point for
T™/A and so, by the previous argument, the moment map for the action of
T"/Ainduces alocally — 1 mapping fromu ;' (\) /77 toR3. Now, 12, (\)

can be viewed ag~!(V,), whereV, is a3l-dimensional affine subspace of
R3 ®R" of the formR3 & W, with W, generated by the vectong such that

m lies on Hy, and passing through the poiftt, \) in the choserZ-basis of

7™ Itfollows thatf is 1 — 1 in a neighbourhood of the orbit @f. Since the
spaces are locally compact apds continuousj: is a homeomorphism of
this neighbourhood onto its image. The orbit space is a topological manifold
(this follows from (4.5)) and s@ is a local homeomorphism inf@*”. O

5. Metrics with harmonic local conformal factors

We wish to consider the following situation which generalizes 4fdi-
mensional case of Theorem 1. In this secfioiis a complete Riemannian
(n+3)-dimensional manifold with an effective isometric actiof&fwhich

is not free only at a finite number of poings, .. ., y4. Furthermore there

is aT"-invariant mapu : Y — R? which induces a local homeomorphism
A Y/T™ — R3whose restriction td = (Y —{y1,...,yq})/T™ (with the
guotient metric) is a conformal immersion with all local conformal factors
harmonic. In other word8/ can be covered by open séfg, on whichj is

1 — 1 and the quotient metrig on V,, satisfies

(ﬂ_l)*g = D

whereg, is the flat metric olR? and®,, is a positive harmonic function on
an open subset(V,,) of R3. We shall also assume, to simplify the proof,
that thed,, do not extend to any;, i = 1, ..., d. We aim to show

Proposition 5.1. Under the above assumptiomss ahomeomorphism onto

R3 and g is globally conformally flat with the conformal factdr(z) =

S i + b, wherez; = yu(y;) anda; > 0,6 > 0,i = 1,....,d, are
constants.

We remark that a completely analogous result holds (and has a simpler proof)
if we replaceR? with anyR?, p > 3.
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We start the proof by observing that, singés a homeomorphism in a
neighbourhood of eacl}, we have one (positive) harmonic functigrin a
neighbourhood of each poigt. We have the following simple lemma about
such functions.

Lemma 5.2. Let® be a nonnegative harmonic functionih— {0} where
U is a neighbourhood dfin R3. Thend = ¢/r + ¢ wherecis a nonnegative
constanty(z) = |z| and¢ is harmonic inU.

Proof. Choose: > 0 so thatB(0,2¢) C U. Letx be a point of the sphere
S(0,€). The Harnack inequality applied to the b&l(z, e — ¢/2) implies
that®(tx) < Ct=2¢(x) for all t > 0, whereC depends only or. Thus
®(z) = O(|z|~2) in B(0,¢). Then it follows thatd = &, + ¢/r + ¢ where

¢, T, ¢ are as in the statement a4 is a linear combination (with constant
coefficients) of the first order partial derivatives of the fundamental solution
1/r. Since® is nonnegativep; = 0. O

We now deform the metric ofv.

Proposition 5.3. There exists oV a complete metric of nonnegative scalar
curvature for whichz is a conformal immersion.

Proof. A metric of the formdg, on an open subset & has nonnegative
scalar curvature if and only '/ is superharmonic (see, for example,
[20], Chapter V). Since, all powerg®, 0 < « < 1, of a harmonic (or
superharmonic) functio® are superharmonic, we know that the quotient
metricg on NV has a nonnegative scalar curvature. This metric is incomplete,
but the incompleteness occurs only at the points. . y, (as the metric on

M is complete). Hence, if we can modify the metgiso that it is complete

at these points and still has a nonnegative scalar curvature, we will be done.
Therefore we work in a neighbourhodd of the origin inR? where, by
Lemma 5.2, the metrig is given by(c/r + ¢)g.. By the last assumption
made about’, ¢ > 0. For any function) and anya € (0, 1) we have

A(p®) < 0 <= PAY + (a — 1)|V|> < 0. (5.1)

Assume now that is of the formf(r) + ¢, where¢ is harmonic inU and
f approaches-co asr — 0. Then we estimate the right-hand side of (5.1)
as

YAY + (o = D)|VY]? < (f + 9)Af + (a = 1)(Vf-V(f +2¢)).

For anye > 0 andr small enoughf + ¢ < (1 + €)f and2|¢;| < €|fi,
i = 1,2, 3, where the subscriptlenotes thé-th partial derivative. Therefore
the last estimate can be replaced by

1—c¢
1+e€

YAY + (= 1)|VY[2 < (L+e)(fAf + (a—1)—|Vf]?).



Complete hyper&hler4n-manifolds 521

In our caseq = 1/4, and if we choose so that(a — 1)};2 =—1/2, we

see from (5.1) that if 1/2 is superharmonic, then'/* is superharmonic (in
a small neighbourhood of the origin).

Our original conformal factor was of the forefir + ¢. In order to make
the metric complete we wish the growth to bé-2. Therefore we have to
find a positive functionf (r) such thatf (r) = c¢/r for r > 4, f(r) ~ 1/r?
near(, and+/f is superharmonic. Let = /f. The conditionAu < 0 is
equivalent, for a functiom = u(r), to

.2
U+ —u <0,
T

and so, forz = % In(—du/dr), itis equivalentto: < 2/r. Letz(r) be any
smooth (on(0, o)) decreasing function satisfying this inequality, equal to
3/2r for r > ¢ and equal t@/r for » < §/2. We obtain a function: by
choosing the two free constants (i#€d) andu(d)) so thatu(r) is tangent to
Watr = §. We define a new conformal factor y= w2+ ¢. It coincides
with & = ¢/r + ¢ for r > ¢ and is positive as(r) > /¢/r. Furthermore
Pl/4is superharmonic and, therefo@e has nonnegative scalar curvature.
Finally, this metric is complete @tas® has(1/r?)-growth. 0

We now appeal to results of Schoen and Yau [19] (Propositions 4.2, 4.3,
4.4, and 4.4’; see also Theorem VI.3.5 in [20]) which give us:

Corollary 5.4. The magi : N — R3isinjective and the boundary pf ')
has Newtonian capacity zero. O

We recall that a5 subsetE of R™ has Newtonian capacity zero (or
is polar) precisely when the removable singularity theorem holdgfor
Another equivalent condition is that there is a tempered positive meagure
in R™ such that the convolution of the Green funct@tw, y) = |z —y|* ™
with g is infinite exactly on the sdt. In particular the Hausdorff dimension
of F is at mostn — 2.

Since the magi : Y/T" — R3 is a local homeomorphism in a neigh-
bourhood of eachy; and since a seb U {z1,...,24}, z; ¢ E, is polar
if and only if £ is polar, the conclusion of the above corollary holds also
for Y/T™, instead ofN. Therefore we can assume that7T™ is an open
subset/ of R3, and that the quotient metric dA — {1, ..., 24}, where
x; = p(y;), is of the form

d
1= (St

for positive constants; and a functionp, harmonic inU.
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We now wish to show that : Y/T™ — R3 is onto. This will imply that
¢ is constant and will end the proof of Proposition 5.1.
We have:

Lemma 5.5. Suppose that the metric dhis complete. Thet is bounded
below and for any>!-curvey : [0,1] — U, ~([0,1)) C U, (1) € 0U, we
have

1
/O (6(v(8)) + C) 2/ ()]t = +o0
foranyC > 0 such thatp + C > 0.

In other words, for any” > 0 such thatp + C > 0, (¢ + C)g. is a
complete Riemannian metric dn.

Proof. The function¢ is bounded in a compact neighborhoAd of each
of thex; and outside of J Int K; the functionf = & — ¢ is also bounded.
Since¢ + f > 0, ¢ must be bounded below.

As in Proposition 5.3, the only incompleteness of the quotient metric
occurs at the points; and so a curve with the assumed properties must
have infinite length iry. We can assume thatavoids the points;. Let¥
be the restriction 0p  ay/|x — x| to U. This is finite orry. For anyC' > 0
such thatp + C' > 0 we have

1
oo = / (& +6)(+(1))) 17/ (1)t
1

1
< / () P ()t + / (6(x(1)) + C) V21 (1) dt
0 0
1
1/2\ 1
—I—/O CH = (t)dt.

The first and the last term are finite, and so the second one is infinite.

Proposition 5.1 will follow from the following fact (compare with Lem-
ma 5.2):

Proposition 5.6. Let E be a closed subset of Newtonian capacity zero in
R? and let¥ be a nonnegative harmonic function &1 — E. There is a
constantK > 0 such that for allz € R3,

K

< -
V@) s K+ @ By

(5.2)

where the distance is measured in the standard metri§on
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Proof. To prove the estimate (5.2) for closed setsR# in the distance
measured irb? is the same as to prove it for compact subsetRbin the
Euclidean distance. Thus we can assume Had compact. Let now: g
be the positive measure i&* whose convolution withz — y|~! gives the
nonnegative superharmonic functigg onR? with ¢51(+oo) = E.Then
the function

) = {W(x) +YE(z) ?f r¢E
+00 ifxek

is nonnegative and superharmonic®# It follows (Corollary 2 of Theo-
rem 1.23 in [16]) thatf = ¢ + G * i/, wherec is a nonnegative constant,
G(z,y) = |x—y|~ !t andy/ is anonnegative measureRd. Lety = u/ — .
ThenG * v coincides with — c onR? — E. Since¥ solves the Laplace
equation onR?* — E and G x v is the solution of the Poisson equation
A(G *v) = —vin the sense of distributions, we conclude that supp E.
Let us writev = v+ — v~ wherev™, v~ are the positive and negative
variations ofv. We have

+ — + _
Pa) o= [ PW [ ) [Ty vHE) +(B)
ple=yl = Jele—yl  Jplv—yl dist(z, E)
This concludes the proof. O

We can now finish the proof of Proposition 5.1.

Proof of Proposition 5.1Suppose that/ = u(Y) # R3". We consider

the metric(¢ + C')g. on U for some large”'. This metric is complete by
Lemma 5.5. Let € R? be such that digt, 0U) = 1 and lety € oU be a
point where this distance is achieved. Then, by Corollary 5.4, the estimate
(5.2) holds for all points: of the segmentz. Therefore the length of this
segment is finite in the metrigp + C)g. and we obtain a contradiction.
HenceU = R? and¢ must be a constant. O

We finish the section by observing that, if we write, z) for the coor-
dinates ofR? as in Sect. 1, then the functiah of Proposition 5.1 can be
written as® = F,, where (up to a term linear in) F' is given by

M=

F(z,2,2) =Y ap(siIn(sp +75) — rg) + b(22° — 22) (5.3)

k=1

wheres;, = = — xj, andry, is the distance betwedn, z, z) and u(yx) =
(Tks 2k, 2k )-
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6. Proofs

We shall now prove all results stated in the introduction.

Proof of Theorem 1Let M satisfy the assumptions of Theorem 1 witk- 0
(we showed in Sect. 3 that we can assume this)Hyete = 1, ..., d, bethe
codimensiors affine subspaces iR* @ R given by Proposition 4.2. Their
number is finite becausd has finite topological type (this follows from the
localization theorem [3], if we notice that were there infinitely mdiy,
we could find a circle il with infinitely many fixed points). Consider
a small open subséf of R? ® R" not intersecting anydy. In particular
theT™-action is free onu =1 (U) and, ifU is small enough, the hypeikler
moment map is a diffeomorphism between! (U)/T™ andU. Therefore,
as in Sect. 1, there is a functidn = F(z;, z;, z;) defined onU which
completely determines a neighbourhdoaf a section ofs~(U) — U as
a hyperfkahler tri-HamiltonianZ™-manifold. This function is unique up to
irrelevant terms linear in the;.

For any rationa$-dimensional affine subspage= a+R3?®@Rv of R?®
R™suchthal.NU # () we can consider th@: — 1)-dimensional subtoru¥
of T" whose Lie algebrais generated by vectors orthogonalfbe level set
ofthe moment map  for N is chosento bé. According to Proposition 4.2,
as long ad. does not meet any point at which two of tHe intersect N will
act locally freely onu ' (L) and soY” = p (L) is a complete Riemannian
manifold which we claim satisfies all assumptions of the previous section.
The map : Y — L ~ R? is simply the restriction of. : M — R? @ R™.
By Proposition 4.3} is a local homeomorphism. The pointsmap, under
1, to the intersections df with the Hy.. ThereforeY” = ' (L) satisfies all
assumptions of the previous section and, by Proposition 5.1, we know, up
to irrelevant linear factors, the restriction bfto . N U . It is given by the
formula (5.3) where the pointa:*, 2*) are intersection points df with the
Hj.. Thus we know the restriction df to a generic rationad-dimensional
subspace di’. This obviously determinek. We claim that o/, F' is given
by the formula

d
F(I’i, Zi, Zz) = Z ag (sk hl(Sk + Tk) — Tk)

k=1
‘l‘Zb” (233133] - Ziij) (61)
,J
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whereq, are positive constant$;;] is a positive-definite constant matrix
andsy andr are defined by (cf. (4.1))

sk(x, z) = (z,up) — )\llw
vg(x, 2) = (z,ug) — )\% —V/=1)2,
r,% = si + VR Uk-

In other words, is the distance of a point froiff, and|s| is the distance
between the projections of a point andéf onto the first factor irR™ x

R" x R™ ~ R3 @ R™. Indeed, the second sum in (6.1) is the most general
form of afunction which restricted to any (or generic ratiolatimensional
subspacd. gives us the second term of (5.3). For the first sum, notice that
(5.3) implies thatF" must be of the form

p
Z ay (sk In(sg +71) — rk) + Z bij (Qximj — ziZj)

k=1 %,J

wheresy, are linear in ther; and r,% are quadratic in the;, Rz;, Sz;. If,
however, any of these was not of the form stated above, then for some
3-dimensional subspack we would have obtained singular points X5f
different from those corresponding to the intersectiong afith the Hy.
ThereforeF is of the form (6.1).

The first sum in (6.1) describes the functibrof a hyperlahler quotient
M’ of aflatH? by a torus determined by th#, . This follows from [6], given
that theH), satisfy theZ-basis condition of Proposition 4.2. The metric on
H¢ is not the standard one but each factor is rescaled,by

Suppose thdb;;| has rankn. Since it is symmetric, we can wrig;;] =
AAT for ann x m matrix A of rankm. This A defines an embeddiRy” —
R™. The function (6.1) is the the functiafi of the Taub-NUT modification
(see Definition 2) of ordem of M’. Let us denotel/’ with this modified
metric byM”. We conclude that/ and)” are locally (on connected subsets
mapping ontd/) isomorphic as tri-Hamiltonian hypedtkler7™-manifolds.
Let ¢ be this local isomorphism. In particulaiis an isometry and, a&/ and
M" are Einstein, hence real-analytic, and compleétextends to a (unique)
isometry between the universal covésandM” ([15], Corollary VI1.6.4).
If there aren flats Hy, intersecting in a point, then, by [6]\” is simply
connected and so we obtain an isometry betwdeandM"”. This isometry
is locally a tri-Hamiltonian isomorphism and so it is such an isomorphism
globally (as everything is real-analytic). This proves case (i) of Theorem 1.

If there are at most — [, [ > 0, flats Hj, intersecting at any given point,
thenM” is isomorphic to a product of a simply connecfé@nd(S! x R3)".
Hence the universal covers are isometricXox (R*)!. Once more the
isometry betweed/ andX x (R*)! respects the tri-Hamiltonian structure
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for the action of7"~! x R! (R! acts as in Remark 2 after Theorem 1). It
follows thatr (M) is a subgroup of ™! x R!. SinceT™~ has a fixed point
in X, any element ofr; (M) has a nontrivial component iR and, hence,
the projection onto the second factorBf—! x R! gives us an embedding
of 1 (M) into R!. Since we do have @"-action onM, 7r; (M) must be a
full lattice of R! which acts onX via a rational homomorphism : R! —
R"~! ~ Lie (T™~!). We can choose a basiskf so thatr, (1) is identified
with Z! and thei-th generator ofZ! acts onX ast; € T"'. Then the
mapX x R¥ to itself given by(z, y) — (t; 'z,y) induces an equivariant
isomorphism betweelY x R*)/Z andX x (S x R%) x R*(=1). We can
continue with successive generator&bénd conclude that/ is isomorphic
to someX x (S' x R?)!. This proves case (ii) of Theorem 1. O

Proof of Corollary 2.This follows from the classification af-dimensional
quotients of vector spaces by tori, see for example [6]. O

Proof of Theorem 3This follows from Theorem 1, Proposition 4.2 and the
results of [6]. O

Proof of Theorem 4We have to compute the volume growth of a hy-
perkahler quotient of a vector space by a torus or its Taub-NUT defor-
mation. The metric on a hypeikler quotient of a vector space by a torus
is asymptotic to a cone metric on3aSasakian space and therefore it has
Euclidean volume growth. Now suppose thdtis a Taub-NUT deforma-
tion of such a quotient of order.. If we diagonalize the matri};;|, then

®;; = Fy,yp, is of the formAy; + 3¢, age/rx with \ij = 0if i # j or

i > m. The volume growth is then comparable to the volume growth of
(S! x R3)™ x (metric cone of dimensio#in — 4m), which is4n — m. O

Proof of Theorem 5uch an action a$U (2) or SO(3) induces the standard
SO(3)-action on the first factor dk? @ R"™. The affine subspaceds;, must

be preserved by this action, and so they all pass through the originuSinc
is 1-1, part (ii) of Proposition 4.2 implies that we have at mostff H,'s.
Now the result follows from Theorems 1 and 3. O

Proof of Theorem 6Let C* (V) denote the punctured metric cone over

This is a hyperkhler manifold which is complete except for the puncture.
The moment map always exists oB-&asakian manifold [7] and so it exists
onC*(NN) (where it commutes with dilatations). The fldfs corresponding

to C*(N) satisfy the condition (ii) of Proposition 4.2 everywhere except the
origin. We can therefore, as in the proof of Theorem 1, consider moment
map level sets for a generje — 1)-dimensional subtorus. This shows that
C*(N) is locally equivariantly isometric to a Taub-NUT modification of
C*(N') where N’ is a3-Sasakian quotient of a sphere determined by the
H;, (existence ofV’ follows from Theorem 4.1 in [6]). Such a modification,
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however, can be locallg-Sasakian if and only if it is of order zero (this
follows, for example, from the fact that a higher order modification does
not posess a hypeidkler potential in the sense of [21]). Therefaré(V)

is locally equivariantly isometric t6*(N'). This local isometryf respects
the hyperkhler structures and commutes with the actioR by dilatations.
Hencef restricted taV induces th&-Sasakian structure on its image, which
must therefore be contained iM'. Thus we have obtained an equivariant
3-Sasakian isometry from a connected open subs®ttofa connected open
subset ofN’. As in the proof of Theorem 1, real-analyticity, compactness
and simple-connectedness®¥ield the result. O

Proof of Corollary 7.This follows now from Corollary 3 in [5]. O
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