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Hyperk̈ahler metrics in dimension4n with n commuting tri-holomorphic
Killing vector fields form a large class of explicitly known Ricci-flat metrics.
The flatHn, the Taub-NUT, and the Eguchi-Hanson metric are of this form.
So are the multi-Eguchi-Hanson metrics (a.k.a. ALE-spaces of typeAk)
and their Taub-NUT-like deformations, both due to Gibbons and Hawking.
Higher dimensional examples include the Calabi metrics onT ∗

CPn and the
asymptotic metrics on moduli spaces of magnetic monopoles.

A powerful method of constructing such metrics was given by Lindström
and Rǒcek [17] (see also [14,18]). It associates a hyperkähler metric having
a local tri-Hamiltonian (meaning Hamiltonian for all three Kähler forms)
action ofRn to every real-valued function on an open subset ofR

3 ⊗ R
n

which ispolyharmonic, i.e. harmonic on any affine3-dimensional subspace
of the forma + R

3 ⊗ Rv, a ∈ R
3 ⊗ R

n, v ∈ R
n. This construction gives

locally all hyperk̈ahler metric with a local effective tri-Hamiltonian (hence
isometric) action ofRn. On the other hand, the global properties of the
resulting metrics - in particular completeness - have not been investigated.

There is another construction - that of hyperkähler quotient - which, while
in this case more restrictive, has the advantage that the global properties of
the resulting manifold are accessible. In particular, a hyperkähler quotient of
a complete manifold by a compact Lie group is complete. A basic example
is the hyperk̈ahler quotient ofH × (S1 × R

3) by the diagonal circle action
which yields the Taub-NUT metric. More generally, we obtain complete hy-
perk̈ahler4n-manifolds with a tri-Hamiltonian (hence isometric)Tn-action
by taking hyperk̈ahler quotients of quaternionic vector spaces by tori. This
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class of manifolds has been investigated in detail in [6]. They are closely
related to projective toric varieties. In particular, they are diffeomorphic to
a union of cotangent bundles of finitely many such varieties glued together.

There is an interesting relation to symplectic geometry and Delzant’s
theorem [10] which states that a compact symplectic2n-manifold with a
HamiltonianTn-action is completely determined, as a HamiltonianTn-
manifold, by the image of the moment map. Hyperkähler4n-manifolds with
a tri-HamiltonianTn-action can be thought of as the quaternionic analogue
of that situation. Since now we cannot have compactness, we impose the
next best thing: completeness of the metric.

By the above-mentioned construction of Lindström and Rǒcek there are
plenty of hyperk̈ahler manifolds with a local tri-Hamiltonian action ofR

n.
We shall see that the situation is very different if we require the manifold to
be complete (and Riemannian). On such a manifold any Killing vector field
is complete and so an effective local tri-Hamiltonian action ofR

n gives rise
to an effective tri-Hamiltonian action of the connected abelian Lie group
G = R

p × Tn−p. We make the following definition.

Definition 1. LetM,M ′ be two hyperk̈ahler manifolds with tri-Hamilton-
ian actions of a Lie groupGand letµ, µ′ be the chosen moment maps. We say
thatM andM ′ are isomorphic as tri-Hamiltonian hyperkählerG-manifolds,
if there is a triholomorphicG-equivariant isometryf : M → M ′ such that
µ = µ′ ◦ f .

The main result of this paper is:

Theorem 1. Let M4n be a connected complete hyperkähler manifold of
finite topological type with an effective tri-Hamiltonian action ofG = R

p ×
Tn−p. Then

(i) If M is simply connected andp = 0, thenM is isomorphic, as a tri-
Hamiltonian hyperk̈ahler Tn-manifold, to a hyperk̈ahler quotient of
some flatHd × H

m,m ≤ n, byT d−n × R
m.

(i) If M is simply connected andp > 0, thenM is isomorphic, as a tri-
Hamiltonian hyperk̈ahlerG-manifold, to the product of a flatHp and
a 4(n− p)-dimensional manifold described in part (i).

(iii) If M is not simply connected, thenM is the product of a flat(S1×R
3
)l

,
1 ≤ l ≤ n, and a4(n− l)-dimensional manifold described in part (ii).

Remarks.1. By a finite topological type we mean that the total Betti number
is finite. There are examples [2,12] of completeTn-invariant hyperk̈ahler
manifolds not satisfying this condition.
2. In part (i),T d−n acts onHd as a subtorus of the diagonal maximal torus
T d in Sp(d), while R

m acts onH
m ' (

R
m
)4

by translations on the first
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factor and onHd via an injective linear mapρ : R
m → Lie (T d) = R

d. In
parts (ii) and (iii), the actions ofRp andT l are defined analogously, except
thatρ does not have to be injective.
3. Any tri-symplecticTn-action on a simply-connectedM is tri-Hamilton-
ian.
4. In part (i), we can assume that the level set of the moment map used to
obtainM fromH

d+m is smooth (this condition is always assumed in [6] and
by no means follows from the smoothness ofM - see [8] for the3-Sasakian
case).

Corollary 2. Let M be a simply connected4-dimensional complete hy-
perk̈ahler manifold with a nontrivial tri-Hamiltonian vector field. Ifb2(M)
= k > 0, thenM is isometric either to an ALE-space of typeAk (i.e. a
multi-Eguchi-Hanson space) or to its Taub-NUT-like deformation (i.e. to
the hyperk̈ahler quotient byR of the product of such a space withH). If
b2(M) = 0, thenM is the flatH.

Here, ifb2(M) > 0, we obtain anS1-action, while ifb2(M) = 0, the vector
field gives rise either to the standard circle action or to translations in the
first factor ofR4.

We emphasize that, forn > 1, the n-dimensional toral hyperk̈ahler
quotients ofHd are also quite well understood [6]. We know their integer
cohomology, their homotopy type, generic complex structure and we have
explicit formulas for the K̈ahler potential and the metric.

The previous corollary suggests the following definition.

Definition 2. Let M4n be as in Theorem 1. A Taub-NUT deformation (of
orderm) of M is the hyperk̈ahler quotient ofM × H

m by R
m whereR

m

acts onM via an injective linear mapρ : R
m → Lie (Tn) = R

n.

Such a deformationM ′ is canonicallyTn-equivariantly diffeomorphic to
M by a diffeomorphismf which respects the hyperkähler moment maps
µ, µ′, i.e.µ = µ′ ◦ f .

We have the following hyperk̈ahler analogue of Delzant’s theorem.

Theorem 3. Complete connected hyperkähler tri-HamiltonianTn-mani-
folds of finite topological type and dimension4n are classified, up to Taub-
NUT deformations, by arrangements of codimension3 affine subspaces in
R

3 ⊗ R
n of the form

Hk = {(x1, x2, x3) ∈ R
3 ⊗ R

n; 〈xi, uk〉 = λi
k, i = 1, 2, 3}

for some finite collection of vectorsuk in R
n and scalarsλi

k, i = 1, 2, 3,
such that, for anyp ∈ R

3 ⊗ R
n, the set{uk; p ∈ Hk} is part of aZ-basis

of Z
n.
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This arrangement is the image of singularTn-orbits by the hyperk̈ahler
moment map. Taub-NUT deformations of different order are distinguished
by the volume growth of the metric. In particular we have:

Theorem 4. LetM be as in Theorem 1. IfM has Euclidean volume growth,
thenM ' H

p×N , whereN is isomorphic, as a tri-Hamiltonian hyperkähler
Tn−p-manifold, to a hyperk̈ahler quotient of a flatHd by a (d − n + p)-
dimensional subtorusN of Sp(d), i.e. to one of the toric hyperkähler man-
ifolds of [6].

Remark 4 after Theorem 1 holds here as well.
Sometimes one is interested in having anSU(2) action which preserves

the metric but not the complex structures. This is the situation for the Taub-
NUT and for the metrics which are cones over3-Sasakian manifolds [7,
6].

Theorem 5. LetM be as in Theorem 1 and suppose, in addition, that there
is an effective isometric action ofSU(2) or SO(3) rotating the complex
structures and commuting with the action ofG. ThenM is isometric to
H

l × (S1 × R
3)n−l, for somel ≤ n, or its Taub-NUT deformation.

Our last two results deal with compact Einstein manifolds which admit
some sort of quaternionic structure.

We recall that a Riemannian manifold(S, g) is 3-Sasakian if the metric
cone(R>0 × S, dr2 + r2g) is hyperk̈ahler. Such a manifold is Einstein of
positive scalar curvature and examples of compact3-SasakianTn-manifolds
were given and studied in [7,9,6,5]. These examples were obtained as3-
Sasakian quotients (see [7]) of spheres. We shall prove:

Theorem 6. LetN4n−1 be a connected simply connected compact3-Sa-
sakian manifold admitting an effectiveTn-action by3-Sasakian isometries
(equivalently: the isometry group ofN has rank at leastn + 1). ThenN
is isomorphic, as a3-SasakianTn-manifold, to a3-Sasakian quotient of a
sphere by a torus.

In fact, the isomorphism can be required to preserve the3-Sasakian
moment map for theTn-action.

A 3-Sasakian manifold fibers over a quaternion-Kähler (i.e. having holo-
nomy inSp(n−1)Sp(1)) orbifold. Theorem 6 in conjunction with Corollary
3 of [5] gives:

Corollary 7. A4n-dimensional compact connected quaternion-Kähler ma-
nifold with positive scalar curvature and isometry group of rank at leastn+1
is isometric toHPn or Gr2(Cn+2) with their symmetric metrics.
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The idea behind the proof of Theorem 1 is quite transparent. We shall
first show (Sect. 3) that it is sufficient to consider actions by tori. Then we
observe that it is essentially sufficient to prove the result in dimension4,
since, were there any new completeTn-invariant hyperk̈ahler manifolds in
higher dimensions, we would get new examples in dimension4 by taking
hyperk̈ahler quotients by subtori. In dimension4, under the assumption of
finiteness of the Betti numbers, the action ofS1 has finitely many fixed
pointsm1, . . . ,md and the hyperk̈ahler moment map induces a conformal
immersionµ̄ :

(
M − {m1, . . . ,md}

)
/S1 → R

3. Furthermore the local
conformal factors are harmonic functions which implies that the metric on(
M−{m1, . . . ,md}

)
/S1 has nonnegative scalar curvature. We modify this

metric so that it becomes a complete metric on
(
M − {m1, . . . ,md}

)
/S1

with nonnegative scalar curvature. Then the results of Schoen and Yau [19]
imply thatµ̄ is injective and∂µ(M) has Newtonian capacity zero (meaning
that∂µ(M) is removable for bounded harmonic functions). Ifµ(M) = R

3,
then we are done, since positive harmonic functions with finitely many
isolated singularities atµ(m1), . . . , µ(md) are easily classified. To show
that the boundary ofµ(M) is indeed empty, we prove an estimate which
implies that a metric, given by a harmonic conformal factor on a complement
of a setE of Newtonian capacity zero, is complete if and only ifE is empty.

1. The Legendre transform andR
n-invariant hyperk ähler metrics

The fundamental idea of Lindström and Rǒcek [17] is that hyperk̈ahler
manifolds of dimension4n with a local effective tri-Hamiltonian action of
R

n can be constructed from real-valued functionsF on an open subsetU of
R

3⊗R
n which are harmonic onU∩L for any3-dimensional affine subspace

L of the formR
3 ⊗ Rv, v ∈ R

n. If we identify R
3 ⊗ R

n with R
n × C

2n

with coordinatesxi, zi, i = 1, . . . , n, then Lindstr̈om and Rǒcek show that
the Legendre transform with respect to thexi gives a K̈ahler potentialK of
a hyperk̈ahler metric. The local holomorphic coordinates for this metric are
given by thezi and someui and we have

K = F − 2
n∑

i=1

(ui + ūi)xi (1.1)

where thexi are determined by

∂F

∂xi
= 2(ui + ūi). (1.2)

The vector fields∂/∂yi =
√−1(∂/∂ūi−∂/∂ui) are triholomorphic isome-

tries and the moment map for their action is simply(xi,<zi,=zi).
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An important observation of Pedersen and Poon [18] is that the metric
has the form

g =
∑
i,j

(
Φij(dxidxj + dzidz̄j) + (Φ−1)ij(dyi +Ai)(dyj +Aj)

)
(1.3)

whereΦij = 1
4Fxixj andAj =

√−1
2
∑

l(Fxj z̄l
dz̄l −Fxjzl

dzl). In particular,
the quotient metric onU is given by∑

i,j

Φij(dxidxj + dzidz̄j). (1.4)

TheΦij are also polyharmonic functions and, in fact, the matrix[Φij ] deter-
mines (locally) the hyperk̈ahler and tri-Hamiltonian structure of the man-
ifold. Indeed, if we have another functionF ′ with F ′

xixj
= 4Φij , then

G = F −F ′ is of the form
∑
xigi, where thegi are polyharmonic functions

of zj , z̄j only. Computing the difference of the two connection 1-formsA
andA′, we see that it is given by

√−1
2

∑
i,j

(∂gi

∂z̄j
dz̄j − ∂gi

∂zj
dzj
)
.

Since the functionsgi are polyharmonic, this form is closed and so it gives
rise to a local equivariant isometryφ. Moreoverφ respects the K̈ahler po-
tentials given by (1.1) and so the complex structureI1. It also respects the
coordinatesxi, zi (hence the moment map) and so, by the formula (2.8) in
[14], φ respectsI2 andI3.

The two basic examples of this construction are flatS1-invariant metrics
onS1 × R

3 and onH. In the first case we have

F (x, z, z̄) = 2x2 − zz̄ (1.5)

and consequentlyΦ ≡ 1, while in the second case

F (x, z, z̄) = x ln(x+ r) − r (1.6)

wherer2 = x2 + zz̄. This timeΦ = 1/4r. More general forms are given
[11] and [6]. In the latter, the functionsF and the metrics for hyperkähler
quotients of flat vector spaces are computed. They are essentially obtained
by taking linear combinations and compositions with linear maps of the
solution (1.6) (see also the proof of Theorem 1 in Sect. 6). Our aim is to
show that, in the case of a complete metric, the only other possibility is
adding a linear combination of (1.5), which corresponds to a Taub-NUT
deformation (see definition 2).
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For a metric of the form (1.3) taking hyperkähler quotients by subtori is
very simple. Indeed, the moment map equations are now linear (inxi, zi),
and the hyperk̈ahler quotient corresponds to restricting the functionF to
an appropriate affine subspace ofR

3 ⊗ R
n. In fact, the requirement thatF

be polyharmonic is a consequence of the fact that we must be able to take
hyperk̈ahler quotients by any subtorus.

An explanation of this construction in terms of twistors was given by
Hitchin, Karlhede, Lindstr̈om and Rǒcek [14]. In particular, they have shown
that any hyperk̈ahler 4n-manifold with a free tri-HamiltonianRn-action
which extends to aCn-action with respect to each complex structure and
such that the moment map is surjective is given by the Legendre transform. In
the next section we shall show that any hyperkähler4n-manifold with a free
local tri-HamiltonianR

n-action islocally given by the Legendre transform.

2. Potentials for hyperkähler metrics

LetX2n be a K̈ahler manifold with the K̈ahler formψ. It is well known that
φ can be always written in a local holomorphic chart as

ψ = − i

2

∑
i,j

∂2K

∂zi∂z̄j
dzi ∧ dz̄j (2.1)

for a real-valued functionK.
We now wish to show that a hyperkähler structure is also locally deter-

mined by a single real-valued functionK. Before proceeding we remark
that the situation when there is a simultaneous Kähler potential for all three
Kähler forms is very rigid [21] - it is equivalent to the hyperkähler manifold
being locally a cone over a3-Sasakian manifold.

LetM4n be an arbitrary hyperk̈ahler manifold and letω1, ω2, ω3 be the
three K̈ahler forms. Thenω = ω2 + iω3 is holomorphic for the complex
structureI1. The Darboux theorem holds for complex symplectic forms and
we can find a localI1-holomorphic chartui, zi, i = 1, . . . , n such that

ω =
n∑

i=1

dui ∧ dzi. (2.2)

In this local chartω1 can be written as in (2.1):

ω1 = − i

2

∑
i,j

(
Kuiūjdui ∧ dūj +Kuiz̄jdui ∧ dz̄j

+Kziūjdzi ∧ dūj +Kziz̄jdzi ∧ dz̄j
)
, (2.3)
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for a real-valued functionK. We see that the complex structureI2 is given
by:

I2

(
∂

∂ui

)
=

n∑
j=1

(
Kziūj

∂

∂ūj
+Kziz̄j

∂

∂z̄j

)

I2

(
∂

∂zi

)
=

n∑
j=1

(
−Kuiz̄j

∂

∂z̄j
−Kuiūj

∂

∂ūj

)
. (2.4)

Thus the condition(I2)2 = −1 gives a system of nonlinear PDE’s forK.
This system is equivalent to the following condition:(

Kuiūj Kuiz̄j

Kziūj Kziz̄j

)
∈ Sp(n,C), (2.5)

where the symplectic group is defined with respect to the form (2.2).
Conversely, suppose that in some local coordinate systemui, zi we have

a Kähler formω1 given by a K̈ahler potentialK such that this system of
PDE’s is satisfied. Then, if we defineω2 + iω3 by the formula (2.2), we ob-
tain a hyperhermitian structure. Howeverω2 andω3 are closed, and so, by
Lemma 4.1 in [1],I2 andI3 = I1I2 are integrable and we have locally a hy-
perk̈ahler structure. Therefore there is 1-1 correspondence between Kähler
potentials satisfying the above system of PDE’s and local hyperkähler struc-
tures.

Forn = 1 the condition (2.5) reduces to the Monge-Ampère equation

KuūKzz̄ −Kuz̄Kzū = 1. (2.6)

In higher dimensions, narrowing the situation from Ricci-flat Kähler to hy-
perk̈ahler is equivalent to replacing a single equation with high-order non-
linearities by a system of equations with quadratic nonlinearities.

We now go back to the main subject of this paper and we assume that there
is a free local tri-Hamiltonian action ofRn onM . This action will extend
to a localCn-action with respect toI1 (or any other complex structure).
Since there is a moment map for thisC

n-action, we can locally identifyM
with a neighbourhood of0 in C

n × C
n, where the first factor corresponds

to the action and the second one is given by the moment map. Since we
have now an equivariant holomorphic retraction ontoC

n × {0}, the proof
of the equivariant Darboux theorem, as given in [13], goes through forω =
ω2 + iω3. Therefore we identify locallyM , as a complexCn-Hamiltonian
manifold, withT ∗

C
n ' C

n × C
n with coordinatesui, zi in such a way

that theui correspond to the action ofC
n and thezi give the moment map

for this action. Furthermoreω has the form (2.2). The K̈ahler formω1 is
given by a K̈ahler potentialK which we can assume to beR

n-invariant, i.e.



Complete hyperk̈ahler4n-manifolds 513

independent ofui − ūi, i = 1, . . . , n. Letxi denote the moment map for the
action of

√−1(ūi − ui) with respect toω1. From the formula (2.3) (using
the fact thatKuj = Kūj ):

xi = −1
2
Kui . (2.7)

We define a functionF by

F = K +
n∑

i=1

2xi(ui + ūi). (2.8)

In particularF is independent ofui − ūi, i = 1, . . . , n. Differentiating (2.8)
with respect toui, i = 1, . . . , n, yields the system of equations:

n∑
j=1

(
∂F

∂xj
− 2uj − 2ūj

)
∂xj

∂ui
= 0, i = 1, . . . , n.

We claim that the matrix[∂xj/∂ui] is everywhere nonsingular. Indeed sup-
pose that at some point(x, z) we have

∑
aj∂xj/∂ui = 0, i = 1, . . . , n, for

some scalarsa1, . . . , an. The expression
∑
ajxj is the moment map for a

Hamiltonian vector fieldYa. If we restrict to theCn-orbitO of (x, z) we con-
clude that the moment map forYa has a critical point in the K̈ahler manifold
O. This implies thatYa vanishes at(x, z) and soa1 = · · · = an = 0. There-
fore the above equations imply equations (1.2). Thus we have shown that the
Kähler potential of a hyperkähler metric with a free local tri-Hamiltonian
R

n-action can be written in the form (1.1) for a functionF satisfying (1.2).
We wish to show thatF is polyharmonic. Let us take locally any hyperkähler
quotient ofM by an (n − 1)-dimensional subgroup ofRn. This corre-
sponds to restrictingF to a3-dimensional affine subspace inR

3 ⊗R
n of the

form a+ R
3 ⊗ Rv. Similarily, by identifying the hyperk̈ahler and complex-

symplectic quotient, we restrictK to an appropriate subspace. The restricted
K is still of the form (1.1) for the restrictedF . Therefore to show that, in
the general case, the functionF is polyharmonic it is enough to show that
for n = 1 such a function is harmonic. In this case, formula (3.143) of [14],
gives:

∂̄∂K = ∂̄(Fz) ∧ dz + 2du ∧ ∂̄(x).

This yields

Kzz̄ = Fzz̄ + Fzx
∂x

∂z̄
.

We also have, from (2.7),

Kuū = −2
∂x

∂ū
, Kuz̄ = −2

∂x

∂z̄
.
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Now, from (1.2),

0 =
∂(u+ ū)

∂z̄
= Fxx

∂x

∂z̄
+ Fxz̄ and

1 =
∂(u+ ū)
∂ū

=
1
2
Fxx

∂x

∂ū
.

Therefore

Kuū = −4(Fxx)−1, Kuz̄ = 2(Fxx)−1Fxz̄, Kzz̄ = Fzz̄−(Fxx)−1Fxz̄Fxz

and we see that the equation (2.6) is equivalent to4Fzz̄ +Fxx = 0 which is
the same as∆F = 0. Thus we have proved

Proposition 2.1. LetM4n be a hyperk̈ahler manifold with a free local tri-
Hamiltonian action ofRn. ThenM is locally given by the Legendre trans-
form of Lindstr̈om and Rǒcek. 2

Remark 2.2.It follows from the above arguments that if(M4n, I, ω1) is a
Kähler manifold which also has a complex-symplectic formω and a free
local action ofRn which is Hamiltonian for bothω1 andω, thenM is
locally given by the Legendre transform for some functionF . This function
is polyharmonic if and only ifM is hyperk̈ahler.

3. Reduction to torus actions

In this section, we shall show that, in order to prove Theorem 1, it is enough
to consider actions by tori. Suppose that we have a complete a hyperkähler
manifoldM4n with an effective tri-Hamiltonian action ofG = Tn−p × R

p,
p ≤ n. First we claim

Lemma 3.1. The groupG is closed in the full isometry groupI(M).

Proof. Consider the closurēG of G in I(M). Let µ be the hyperk̈ahler
moment map forG. Sinceµ is G-invariant, it isḠ-invariant. Letm be a
point at whichG acts freely and such thats = µ(m) is a regular value of
µ. Thenµ−1(s) is ann-dimensional submanifold ofM which is a union of
n-dimensional orbits ofG. ThereforeO = Gm is closed inµ−1(s) and so
it is also an orbit ofḠ. ThusO = G andO = Ḡ/H whereH is closed in
Ḡ. LetH0 be the identity component ofH. SinceḠ is abelian, there is a
closed subgroupF of Ḡ such thatḠ = H0 × F , and soO = F/E where
E = H ∩ F is discrete. SinceO = G is a subgroup of̄G, we have that
E = 1 andG = F is closed inḠ. ut
Corollary 3.2. The factorRp in G = Tn−p × R

p acts freely onM .
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Proof. This follows from the above lemma and the fact that isotropy groups
of I(M) are compact. ut

We shall now show

Lemma 3.3. Any discrete subgroup ofR
p acts properly discontinuously on

M .

Proof. By Proposition 4.4 in [15], it is enough to show that such a subgroup
L acts discontinuously, i.e. for any sequenceli of distinct elements ofL and
anyx ∈ M , lix does not have a limit point inM .

We shall prove several simple statements from which this claim will
follow.

Claim 1). If the action ofG is locally free atx, thenx does not belong to
the closure of anyG-orbit other thanGx.

Indeed, ifx belongs to the closure of an orbitGy, thenµ(y) = µ(x), but
Gx is an open neighbourhood ofx in µ−1

(
µ(x)

)
, and soGy = Gx.

Claim 2). If lix converges toy for some sequenceli of distinct elements of
L, thendimGy < n.

Indeed, the previous claim shows thatG cannot act locally freely aty.

Claim 3). If lix → y, thenliy also has a limit point.
To show this we observe the following estimates, whered denotes the

distance onM induced by the Riemannian metric:

d(liy, ljy) ≤ d(liy, lilix)+d(lilix, liljx)+d(liljx, ljljx)+d(ljljx, ljy)
= d(y, lix) + 2d(lix, ljx) + d(ljx, y) ≤ 3d(y, lix) + 3d(ljx, y)

where we have used the fact thatL is an abelian group of isometries. The
claim follows now from completeness of the metric.

Claim 4). If H is the stabilizer of a pointy ∈ M , then the setMH of H-
fixed points ofM is a closed hyperk̈ahler submanifold ofM of dimension
4n− 4 dimH with a tri-Hamiltonian action ofTn−p/H × R

p.
This is obvious, given that the tangent space toMH at y is spanned by

vectors{Xρ, I1Xρ, I2Xρ, I3Xρ; ρ ∈ f} where Lie(G) = Lie(H) ⊕ f and
Xρ is the Killing vector field corresponding toρ. We also use here Corollary
3.2.

We can now show thatL acts discontinuously onM . Suppose, by con-
tradiction, that there is a sequence{li} of distinct elements ofL and a point
x ∈ M such thatlix converges to a pointy ∈ M . Then, using claims 2), 3)
and 4), we conclude that there is a complete4s-dimensional,p ≤ s < n,
hyperk̈ahler manifoldN with a free tri-Hamiltonian action ofT s−p×R

p and
such thatliz has a limit point for somez ∈ N . This contradicts Claim 1). ut
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Therefore we can quotientM by a maximal latticeL in R
p and obtain a

complete hyperk̈ahler4n-manifold with a tri-Hamiltonian action ofTn.

4. Local structure of the moment map

We shall prove some facts about Hamiltonian torus actions on hyperkähler
manifolds which we shall need in the sequel. We start with a simple

Lemma 4.1. LetM4n be a hyperk̈ahler manifold equipped with an effective
tri-Hamiltonian action ofTm. Thenm ≤ n.

Proof. At any pointp ∈ M let V denote the subspace of the tangent space
spanned by the vector fields generated by the action ofTn. It is simple to
check, using the three moment maps, that the subspacesV, IV, JV,KV are
mutually orthogonal. ut

The following fact was proved in [6] for hyperkähler manifolds which
are toral quotients of flat quaternionic vector spaces (compare also [10] for
the symplectic case).

Proposition 4.2. Let M4n be a hyperk̈ahler manifold equipped with an
effective tri-Hamiltonian action ofTn with a hyperk̈ahler moment mapµ =
(µ1, µ2, µ3) : M → R

3 ⊗ R
n. Let p ∈ M and letV be aTn-invariant

neighbourhood ofp, small enough that any singular orbit (i.e. one with
nondiscrete stabilizer) intersectingV containsp. Then:

(i) The imageµ(V s) of the unionV s of singularTn-orbits inV is of the
formµ(V ) ∩⋃S Hk where

Hk = {(x1, x2, x3) ∈ R
3 ⊗ R

n; 〈xi, uk〉 = λi
k, i = 1, 2, 3} (4.1)

for some countable collectionS of vectorsuk in R
n and scalarsλi

k,
i = 1, 2, 3;

(ii) the isotropy groupTp of p is the connected subtorus ofTn whose Lie
algebra is spanned by{uk ∈ S;µ(p) ∈ Hk};

(iii) After rescaling, the set{uk ∈ S;µ(p) ∈ Hk} is part of aZ-basis of
Z

n and the isotropy representation ofTp is determined by this set.

Proof. Let ρ ∈ R
n and letMρ be any component of the fixed point set

of the 1-parameter subgroup ofTn generated byρ, i.e. the corresponding
vector fieldXρ vanishes onMρ. ThenMρ is a hyperk̈ahler submanifold of
M . It follows that, forp ∈ Mρ andv ∈ TpM , we have〈dµi(v), ρ〉 = 0,
i = 1, 2, 3. Therefore〈µi, ρ〉 is constant onMρ, i = 1, 2, 3, which proves
thatµ(V s) is as stated. This also proves that the Lie algebra ofTp is spanned
by {uk ∈ S;µ(p) ∈ Hk}.



Complete hyperk̈ahler4n-manifolds 517

We shall now prove the statement (iii) and the connectedness ofTp.
Let dimTp = i and letH0 be the identity component ofTp. There is an
(n − i)-dimensional subtorusH1 of Tn such thatTn = H0 × H1. Let
Γ = Tp/H0 = H1 ∩ Tp, so that theTn-orbit of p is isomorphic toH1/Γ .
The fixed point set ofTp is a totally geodesic hyperkähler submanifoldX
of M and we can identify aTn-invariant neighbourhood ofp with a Tn-
invariant neighbourhood ofX in the normal bundleN = TXM/TXX.
Since the torusH1/Γ acts freely onX, we can identifyX (via moment
maps) with a neighbourhood ofH1/Γ in H1/Γ × R

3n−3i. SinceM andX
both have a hypercomplex structure, so does the fiber ofN , which we then
identify withH

i. The isotropy groupTp must act onHi via a homomorphism
ρ : Tp → Sp(i). Since the action ofTn is effective,ρ must be injective and
henceΓ = 1.

By the existence of normal forms for Hamiltonian actions (see Sect. 41 in
[13]) even the moment mapµ1 can be identified with a symplectic moment
map for the action ofTn onT ∗H1 × R

2i × C
2i (the action is trivial on the

middle factor). Letφ1 denote the moment map for the action ofTp = H0
onC

2i. If the weights of the representation areα1, . . . , αi, then we have (cf.
[6]):

φ1(z1, . . . , zi, w1, . . . , wi) =
1
2

i∑
k=1

(|zk|2 − |wk|2
)
αk. (4.2)

Now it is easy to see that the vectoruk is orthogonal toαj for i 6= k. Since the
representation is an isomorphism, theαi form aZ-basis ofZi, and therefore
theuk, after rescaling, also form aZ-basis of their span. This finishes the
proof. ut

Finally, we need:

Proposition 4.3. Let M4n be a hyperk̈ahler manifold equipped with an
effective tri-Hamiltonian action ofTn. Then the hyperk̈ahler moment map
µ = (µ1, µ2, µ3) : M → R

3n induces a local homeomorphism from the
orbit spaceM/Tn into R

3n.

Proof. First we consider aTn-invariant neighbourhoodU of a Tn-fixed
point m, which by the existence of normal forms we can identify with
a neighbourhood of the origin inC2n and the moment mapµ1 with the
standard moment map

(z, w) = (z1, . . . , zn, w1, . . . , wn) 7→ 1
2
(|z1|2 − |w1|2, . . . , |zn|2 − |wn|2).

Furthermore, we can require that at the origin the complex structuresI1,
I2, I3 coincide with the standard complex structuresI0

1 , I0
2 , I0

3 of H
n.
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Let µ0
1, µ0

2, µ0
3 be the corresponding standard moment maps so thatµ0

1 =
µ1, (µ0

2+iµ0
3)(z, w) = (z1w1, . . . , znwn). In a neighbourhood of0 we have

an expansionI2 = I0
2+(terms of degree≥ 1 in zi, z̄i, wi, w̄i), and similar-

ily for I3. Now, for any vectorv tangent toU , dµ2(v) = −dµ1(I3v) and
dµ3(v) = dµ1(I2v). Therefore

µ2 + iµ3 = µ0
2 + iµ0

3 + (terms of degree≥ 3 in zi, z̄i, wi, w̄i). (4.3)

The ring of (real)Tn-invariant polynomials onC2n is generated byyi
1 =

|zi|2, yi
2 = |wi|2, yi

3 = <(ziwi), yi
4 = =(ziwi), i = 1, . . . , n, with relations

yi
1y

i
2 = (yi

3)
2 + (yi

4)
2. (4.4)

In particular, as the invariant polynomials are homogeneous of degree2,
the terms of degree3 in (4.3) vanish. We conclude that the moment map
µ2 + iµ3 can be written, on a sufficiently small neighbourhood of0, as

(µ2 + iµ3)(z, w) = f
(|z1|2, |w1|2,<(z1w1),=(z1w1), . . . ,

|zn|2, |wn|2,<(znwn),=(znwn)
)
,

wheref : R
4n → C

n is aC∞ function of the form

f(y1
1, y

1
2, y

1
3, y

1
4, . . . , y

n
1 , y

n
2 , y

n
3 , y

n
4 )

=
(
y1
3 + iy1

4, . . . , y
n
3 + iyn

4
)

+O(r2)

with r denoting the distance from the origin inR4n. The imageS of the
neighbourhood ofm in the orbit spaceM/Tn is identified with a neigh-
bourhood of0 in the variety given by the equations (4.4) with additional
constraintsyi

1 ≥ 0, yi
2 ≥ 0. The mapµ̄ : M/Tn → R

3n is of the form
µ̄0 +O(r2), with

µ̄0(y1
1, y

1
2, y

1
3, y

1
4, . . . , y

n
1 , y

n
2 , y

n
3 , y

n
4 )

=
(
(y1

1 − y1
2)/2, y

1
3, y

1
4, . . . , (y

n
1 − yn

2 )/2, yn
3 , y

n
4
)
.

One easily checks that the functiong : R
3n 7→ R

4n defined by

g(p1
1, p

1
2, p

1
3, . . . , p

n
1 , p

n
2 , p

n
3 )

=
(
p1
1,−p1

1 +
√

(p1
1)2 + (p1

2)2 + (p1
3)2, p

1
2, p

1
3, . . . ,

pn
1 ,−pn

1 +
√

(pn
1 )2 + (pn

2 )2 + (pn
3 )2, pn

2 , p
n
3

)
(4.5)

is the inverse of̄µ0 restricted toS. Sinceg is locally Lipschitz, it follows that
|µ̄(u)− µ̄(v)| ≥ C|u− v| for u, v ∈ S, providing that we restrict ourselves
to a sufficiently small neighbourhood of0 in R

4n. Thus we have shown that
µ̄ is open and locally1−1 in a neighbourhood of a fixed point. Consider now
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an arbitrary pointm ∈ M and letl = dim StabT n(m). From Proposition 4.2
µ(m) lies on exactlyl flatsHk. The vectorsuk defining theseHk are a part
of Z-basis and we can complete it to a fullZ-basis. LetA be the subtorus
of Tn generated by then − l vectors used to complete the basis and let
µA : M → R

3n−3l be the moment map forA. According to Proposition 4.2,
A acts freely in a neighbourhood ofm and so any hyperk̈ahler quotient of
M byAwith the level set of the moment map lying close enough toµA(m)
is a manifold (in a neighbourhood of the point induced bym). For any such
hyperk̈ahler quotientµ−1

A (λ)/A, the point induced bym is a fixed point for
Tn/A and so, by the previous argument, the moment map for the action of
Tn/A induces a locally1−1 mapping fromµ−1

A (λ)/Tn toR
3l. Now,µ−1

A (λ)
can be viewed asµ−1(Vλ), whereVλ is a3l-dimensional affine subspace of
R

3⊗R
n of the formR

3⊗Wλ withWλ generated by the vectorsuk such that
m lies onHk and passing through the point(0, λ) in the chosenZ-basis of
Z

n. It follows thatµ̄ is 1−1 in a neighbourhood of the orbit ofm. Since the
spaces are locally compact andµ̄ is continuous,̄µ is a homeomorphism of
this neighbourhood onto its image. The orbit space is a topological manifold
(this follows from (4.5)) and sōµ is a local homeomorphism intoR3n. ut

5. Metrics with harmonic local conformal factors

We wish to consider the following situation which generalizes the4-di-
mensional case of Theorem 1. In this sectionY is a complete Riemannian
(n+3)-dimensional manifold with an effective isometric action ofTn which
is not free only at a finite number of pointsy1, . . . , yd. Furthermore there
is aTn-invariant mapµ : Y → R

3 which induces a local homeomorphism
µ̄ : Y/Tn → R

3 whose restriction toN = (Y −{y1, . . . , yd})/Tn (with the
quotient metric) is a conformal immersion with all local conformal factors
harmonic. In other wordsN can be covered by open setsVα, on whichµ̄ is
1 − 1 and the quotient metricg onVα satisfies

(µ̄−1)∗g = Φαge

wherege is the flat metric onR3 andΦα is a positive harmonic function on
an open subset̄µ(Vα) of R

3. We shall also assume, to simplify the proof,
that theΦα do not extend to anyyi, i = 1, . . . , d. We aim to show

Proposition 5.1. Under the above assumptions,µ̄ is a homeomorphism onto
R

3 and g is globally conformally flat with the conformal factorΦ(x) =∑d
i=1

ai
|x−xi| + b, wherexi = µ(yi) andai > 0, b ≥ 0, i = 1, . . . , d, are

constants.

We remark that a completely analogous result holds (and has a simpler proof)
if we replaceR3 with anyR

p, p > 3.
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We start the proof by observing that, sinceµ̄ is a homeomorphism in a
neighbourhood of eachyi, we have one (positive) harmonic functionΦ in a
neighbourhood of each pointyi. We have the following simple lemma about
such functions.

Lemma 5.2. LetΦ be a nonnegative harmonic function inU − {0} where
U is a neighbourhood of0 in R

3. ThenΦ = c/r+φwherec is a nonnegative
constant,r(x) = |x| andφ is harmonic inU .

Proof. Chooseε > 0 so thatB(0, 2ε) ⊂ U . Let x be a point of the sphere
S(0, ε). The Harnack inequality applied to the ballB(x, ε − t/2) implies
thatΦ(tx) ≤ Ct−2Φ(x) for all t > 0, whereC depends only onε. Thus
Φ(x) = O(|x|−2) in B(0, ε). Then it follows thatΦ = Φ1 + c/r+ φ where
c, r, φ are as in the statement andΦ1 is a linear combination (with constant
coefficients) of the first order partial derivatives of the fundamental solution
1/r. SinceΦ is nonnegative,Φ1 ≡ 0. ut

We now deform the metric onN .

Proposition 5.3. There exists onN a complete metric of nonnegative scalar
curvature for which̄µ is a conformal immersion.

Proof. A metric of the formΦge on an open subset ofR
3 has nonnegative

scalar curvature if and only ifΦ1/4 is superharmonic (see, for example,
[20], Chapter V). Since, all powersΦα, 0 < α < 1, of a harmonic (or
superharmonic) functionΦ are superharmonic, we know that the quotient
metricg onN has a nonnegative scalar curvature. This metric is incomplete,
but the incompleteness occurs only at the pointsy1, . . . yd (as the metric on
M is complete). Hence, if we can modify the metricg so that it is complete
at these points and still has a nonnegative scalar curvature, we will be done.
Therefore we work in a neighbourhoodU of the origin inR

3 where, by
Lemma 5.2, the metricg is given by(c/r + φ)ge. By the last assumption
made aboutY , c > 0. For any functionψ and anyα ∈ (0, 1) we have

∆(ψα) < 0 ⇐⇒ ψ∆ψ + (α− 1)|∇ψ|2 < 0. (5.1)

Assume now thatψ is of the formf(r) + φ, whereφ is harmonic inU and
f approaches+∞ asr → 0. Then we estimate the right-hand side of (5.1)
as

ψ∆ψ + (α− 1)|∇ψ|2 ≤ (f + φ)∆f + (α− 1)
(∇f · ∇(f + 2φ)

)
.

For anyε > 0 andr small enough,f + φ ≤ (1 + ε)f and2|φi| ≤ ε|fi|,
i = 1, 2, 3, where the subscriptidenotes thei-th partial derivative. Therefore
the last estimate can be replaced by

ψ∆ψ + (α− 1)|∇ψ|2 ≤ (1 + ε)
(
f∆f + (α− 1)

1 − ε

1 + ε
|∇f |2).
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In our case,α = 1/4, and if we chooseε so that(α − 1)1−ε
1+ε = −1/2, we

see from (5.1) that iff1/2 is superharmonic, thenψ1/4 is superharmonic (in
a small neighbourhood of the origin).

Our original conformal factor was of the formc/r+φ. In order to make
the metric complete we wish the growth to be1/r2. Therefore we have to
find a positive functionf(r) such thatf(r) = c/r for r ≥ δ, f(r) ∼ 1/r2

near0, and
√
f is superharmonic. Letu =

√
f . The condition∆u ≤ 0 is

equivalent, for a functionu = u(r), to

ü+
2
r
u̇ ≤ 0,

and so, forz = d
dr ln(−du/dr), it is equivalent toz ≤ 2/r. Let z(r) be any

smooth (on(0,∞)) decreasing function satisfying this inequality, equal to
3/2r for r ≥ δ and equal to2/r for r ≤ δ/2. We obtain a functionu by
choosing the two free constants (i.e.u(δ) andu̇(δ)) so thatu(r) is tangent to√
c/r atr = δ. We define a new conformal factor bỹΦ = u2+φ. It coincides

with Φ = c/r + φ for r ≥ δ and is positive asu(r) ≥ √
c/r. Furthermore

Φ̃1/4 is superharmonic and, therefore,Φ̃ge has nonnegative scalar curvature.
Finally, this metric is complete at0 asΦ̃ has(1/r2)-growth. ut

We now appeal to results of Schoen and Yau [19] (Propositions 4.2, 4.3,
4.4, and 4.4’; see also Theorem VI.3.5 in [20]) which give us:

Corollary 5.4. The map̄µ : N → R
3 is injective and the boundary ofµ̄(N)

has Newtonian capacity zero. 2

We recall that aGδ subsetE of R
n has Newtonian capacity zero (or

is polar) precisely when the removable singularity theorem holds forE.
Another equivalent condition is that there is a tempered positive measureµE

in R
n such that the convolution of the Green functionG(x, y) = |x−y|2−n

with µ is infinite exactly on the setE. In particular the Hausdorff dimension
of E is at mostn− 2.

Since the map̄µ : Y/Tn → R
3 is a local homeomorphism in a neigh-

bourhood of eachyi and since a setE ∪ {x1, . . . , xd}, xi 6∈ Ē, is polar
if and only if E is polar, the conclusion of the above corollary holds also
for Y/Tn, instead ofN . Therefore we can assume thatY/Tn is an open
subsetU of R

3, and that the quotient metric onU − {x1, . . . , xd}, where
xi = µ(yi), is of the form

g =

(
d∑

i=1

ai

|x− xi| + φ

)
ge

for positive constantsai and a functionφ, harmonic inU .
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We now wish to show that̄µ : Y/Tn → R
3 is onto. This will imply that

φ is constant and will end the proof of Proposition 5.1.
We have:

Lemma 5.5. Suppose that the metric onY is complete. Thenφ is bounded
below and for anyC1-curveγ : [0, 1] → Ū , γ

(
[0, 1)

) ⊂ U , γ(1) ∈ ∂U , we
have ∫ 1

0

(
φ(γ(t)) + C

)1/2|γ′(t)|dt = +∞

for anyC ≥ 0 such thatφ+ C ≥ 0.

In other words, for anyC ≥ 0 such thatφ + C > 0, (φ + C)ge is a
complete Riemannian metric onU .

Proof. The functionφ is bounded in a compact neighborhoodKi of each
of thexi and outside of

⋃
IntKi the functionf = Φ − φ is also bounded.

Sinceφ+ f > 0, φ must be bounded below.
As in Proposition 5.3, the only incompleteness of the quotient metricg

occurs at the pointsxi and so a curveγ with the assumed properties must
have infinite length ing. We can assume thatγ avoids the pointsxi. LetΨ
be the restriction of

∑
ak/|x− xk| toU . This is finite onγ. For anyC ≥ 0

such thatφ+ C ≥ 0 we have

+∞ =
∫ 1

0

(
(Ψ + φ)(γ(t))

)1/2|γ′(t)|dt

≤
∫ 1

0

(
Ψ(γ(t)

)1/2|γ′(t)|dt+
∫ 1

0

(
φ(γ(t)) + C

)1/2|γ′(t)|dt

+
∫ 1

0
C1/2|γ′(t)|dt.

The first and the last term are finite, and so the second one is infinite.ut

Proposition 5.1 will follow from the following fact (compare with Lem-
ma 5.2):

Proposition 5.6. LetE be a closed subset of Newtonian capacity zero in
R

3 and letΨ be a nonnegative harmonic function onR
3 − E. There is a

constantK ≥ 0 such that for allx ∈ R
3,

Ψ(x) ≤ K +
K

distS3(x,E)
, (5.2)

where the distance is measured in the standard metric onS3.
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Proof. To prove the estimate (5.2) for closed sets inR
3 in the distance

measured inS3 is the same as to prove it for compact subsets ofR
3 in the

Euclidean distance. Thus we can assume thatE is compact. Let nowµE

be the positive measure inR3 whose convolution with|x − y|−1 gives the
nonnegative superharmonic functionψE onR

3 with ψ−1
E (+∞) = E. Then

the function

f(x) =

{
Ψ(x) + ψE(x) if x 6∈ E

+∞ if x ∈ E

is nonnegative and superharmonic onR
3. It follows (Corollary 2 of Theo-

rem 1.23 in [16]) thatf = c + G ∗ µ′, wherec is a nonnegative constant,
G(x, y) = |x−y|−1 andµ′ is a nonnegative measure inR

3. Letν = µ′−µE .
ThenG ∗ ν coincides withΨ − c on R

3 − E. SinceΨ solves the Laplace
equation onR

3 − E andG ∗ ν is the solution of the Poisson equation
∆(G ∗ ν) = −ν in the sense of distributions, we conclude that suppν ⊂ E.
Let us writeν = ν+ − ν− whereν+, ν− are the positive and negative
variations ofν. We have

Ψ(x) − c =
∫

E

dν(y)
|x− y| ≤

∫
E

dν+(y)
|x− y| +

∫
E

dν−(y)
|x− y| ≤ ν+(E) + ν−(E)

dist(x,E)
.

This concludes the proof. ut

We can now finish the proof of Proposition 5.1.

Proof of Proposition 5.1. Suppose thatU = µ(Y ) 6= R
3n. We consider

the metric(φ + C)ge onU for some largeC. This metric is complete by
Lemma 5.5. Letz ∈ R

3 be such that dist(z, ∂U) = 1 and lety ∈ ∂U be a
point where this distance is achieved. Then, by Corollary 5.4, the estimate
(5.2) holds for all pointsx of the segmentyz. Therefore the length of this
segment is finite in the metric(φ + C)ge and we obtain a contradiction.
HenceU = R

3 andφ must be a constant. 2

We finish the section by observing that, if we write(x, z) for the coor-
dinates ofR3 as in Sect. 1, then the functionΦ of Proposition 5.1 can be
written asΦ = Fxx where (up to a term linear inx) F is given by

F (x, z, z̄) =
d∑

k=1

ak

(
sk ln(sk + rk) − rk

)
+ b
(
2x2 − zz̄

)
(5.3)

wheresk = x − xk andrk is the distance between(x, z, z̄) andµ(yk) =
(xk, zk, z̄k).
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6. Proofs

We shall now prove all results stated in the introduction.

Proof of Theorem 1.LetM satisfy the assumptions of Theorem 1 withp = 0
(we showed in Sect. 3 that we can assume this). LetHk, k = 1, . . . , d, be the
codimension3 affine subspaces inR3 ⊗ R

n given by Proposition 4.2. Their
number is finite becauseM has finite topological type (this follows from the
localization theorem [3], if we notice that were there infinitely manyHk,
we could find a circle inTn with infinitely many fixed points). Consider
a small open subsetU of R

3 ⊗ R
n not intersecting anyHk. In particular

theTn-action is free onµ−1(U) and, ifU is small enough, the hyperkähler
moment map is a diffeomorphism betweenµ−1(U)/Tn andU . Therefore,
as in Sect. 1, there is a functionF = F (xi, zi, z̄i) defined onU which
completely determines a neighbourhoodV of a section ofµ−1(U) → U as
a hyperk̈ahler tri-HamiltonianTn-manifold. This function is unique up to
irrelevant terms linear in thexi.

For any rational3-dimensional affine subspaceL = a+R
3⊗Rv of R

3⊗
R

n such thatL∩U 6= ∅ we can consider the(n−1)-dimensional subtorusN
ofTn whose Lie algebra is generated by vectors orthogonal tov. The level set
of the moment mapµN forN is chosen to beL. According to Proposition 4.2,
as long asL does not meet any point at which two of theHk intersect,N will
act locally freely onµ−1

N (L) and soY = µ−1
N (L) is a complete Riemannian

manifold which we claim satisfies all assumptions of the previous section.
The mapµ : Y → L ' R

3 is simply the restriction ofµ : M → R
3 ⊗ R

n.
By Proposition 4.3,̄µ is a local homeomorphism. The pointsyi map, under
µ, to the intersections ofLwith theHk. ThereforeY = µ−1

N (L) satisfies all
assumptions of the previous section and, by Proposition 5.1, we know, up
to irrelevant linear factors, the restriction ofF toL ∩ U . It is given by the
formula (5.3) where the points(xk, zk) are intersection points ofLwith the
Hk. Thus we know the restriction ofF to a generic rational3-dimensional
subspace ofU . This obviously determinesF . We claim that onU ,F is given
by the formula

F (xi, zi, z̄i) =
d∑

k=1

ak

(
sk ln(sk + rk) − rk

)
+
∑
i,j

bij
(
2xixj − ziz̄j

)
(6.1)
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whereak are positive constants,[bij ] is a positive-definite constant matrix
andsk andrk are defined by (cf. (4.1))

sk(x, z) = 〈x, uk〉 − λ1
k,

vk(x, z) = 〈z, uk〉 − λ2
k − √−1λ2

k,

r2k = s2k + vkv̄k.

In other wordsrk is the distance of a point fromHk, and|sk| is the distance
between the projections of a point and ofHk onto the first factor inRn ×
R

n × R
n ' R

3 ⊗ R
n. Indeed, the second sum in (6.1) is the most general

form of a function which restricted to any (or generic rational)3-dimensional
subspaceL gives us the second term of (5.3). For the first sum, notice that
(5.3) implies thatF must be of the form

p∑
k=1

ak

(
sk ln(sk + rk) − rk

)
+
∑
i,j

bij
(
2xixj − ziz̄j

)

wheresk are linear in thexi andr2k are quadratic in thexi,<zi,=zi. If,
however, any of these was not of the form stated above, then for some
3-dimensional subspaceL we would have obtained singular points ofYL

different from those corresponding to the intersections ofL with theHk.
ThereforeF is of the form (6.1).

The first sum in (6.1) describes the functionF of a hyperk̈ahler quotient
M ′ of a flatHd by a torus determined by theHk. This follows from [6], given
that theHk satisfy theZ-basis condition of Proposition 4.2. The metric on
H

d is not the standard one but each factor is rescaled byak.
Suppose that[bij ] has rankm. Since it is symmetric, we can write[bij ] =

AAT for ann×mmatrixA of rankm. ThisA defines an embeddingRm →
R

n. The function (6.1) is the the functionF of the Taub-NUT modification
(see Definition 2) of orderm of M ′. Let us denoteM ′ with this modified
metric byM ′′. We conclude thatM andM ′′ are locally (on connected subsets
mapping ontoU ) isomorphic as tri-Hamiltonian hyperkählerTn-manifolds.
Letφ be this local isomorphism. In particularφ is an isometry and, asM and
M ′′ are Einstein, hence real-analytic, and complete,φ extends to a (unique)
isometry between the universal coversM̃ andM̃ ′′ ([15], Corollary VI.6.4).
If there aren flatsHk intersecting in a point, then, by [6],M ′′ is simply
connected and so we obtain an isometry betweenM andM ′′. This isometry
is locally a tri-Hamiltonian isomorphism and so it is such an isomorphism
globally (as everything is real-analytic). This proves case (i) of Theorem 1.

If there are at mostn− l, l > 0, flatsHk intersecting at any given point,
thenM ′′ is isomorphic to a product of a simply connectedX and(S1×R

3)l.
Hence the universal covers are isometric toX × (R4)l. Once more the
isometry betweeñM andX × (R4)l respects the tri-Hamiltonian structure
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for the action ofTn−l × R
l (Rl acts as in Remark 2 after Theorem 1). It

follows thatπ1(M) is a subgroup ofTn−l ×R
l. SinceTn−l has a fixed point

in X, any element ofπ1(M) has a nontrivial component inRl and, hence,
the projection onto the second factor ofTn−l × R

l gives us an embedding
of π1(M) into R

l. Since we do have aTn-action onM , π1(M) must be a
full lattice of R

l which acts onX via a rational homomorphismλ : R
l →

R
n−l ' Lie (Tn−l). We can choose a basis ofR

l so thatπ1(M) is identified
with Z

l and thei-th generator ofZl acts onX as ti ∈ Tn−l. Then the
mapX × R

4l to itself given by(x, y) 7→ (t−1
1 x, y) induces an equivariant

isomorphism between
(
X×R

4l
)
/Z andX× (S1 ×R

3)×R
4(l−1). We can

continue with successive generators ofZ
l and conclude thatM is isomorphic

to someX × (S1 × R
3)l. This proves case (ii) of Theorem 1. 2

Proof of Corollary 2.This follows from the classification of4-dimensional
quotients of vector spaces by tori, see for example [6]. 2

Proof of Theorem 3.This follows from Theorem 1, Proposition 4.2 and the
results of [6]. 2

Proof of Theorem 4.We have to compute the volume growth of a hy-
perk̈ahler quotient of a vector space by a torus or its Taub-NUT defor-
mation. The metric on a hyperkähler quotient of a vector space by a torus
is asymptotic to a cone metric on a3-Sasakian space and therefore it has
Euclidean volume growth. Now suppose thatM is a Taub-NUT deforma-
tion of such a quotient of orderm. If we diagonalize the matrix[bij ], then
Φij = Fxixj is of the formλij +

∑d
k=1 aijk/rk with λij = 0 if i 6= j or

i > m. The volume growth is then comparable to the volume growth of
(S1 × R

3)m × (metric cone of dimension4n− 4m), which is4n−m. 2

Proof of Theorem 5.Such an action ofSU(2) orSO(3) induces the standard
SO(3)-action on the first factor ofR3 ⊗ R

n. The affine subspacesHk must
be preserved by this action, and so they all pass through the origin. Sincµ
is 1-1, part (ii) of Proposition 4.2 implies that we have at mostn of Hk’s.
Now the result follows from Theorems 1 and 3. 2

Proof of Theorem 6.LetC∗(N) denote the punctured metric cone overN .
This is a hyperk̈ahler manifold which is complete except for the puncture.
The moment map always exists on a3-Sasakian manifold [7] and so it exists
onC∗(N) (where it commutes with dilatations). The flatsHk corresponding
toC∗(N) satisfy the condition (ii) of Proposition 4.2 everywhere except the
origin. We can therefore, as in the proof of Theorem 1, consider moment
map level sets for a generic(n− 1)-dimensional subtorus. This shows that
C∗(N) is locally equivariantly isometric to a Taub-NUT modification of
C∗(N ′) whereN ′ is a3-Sasakian quotient of a sphere determined by the
Hk (existence ofN ′ follows from Theorem 4.1 in [6]). Such a modification,
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however, can be locally3-Sasakian if and only if it is of order zero (this
follows, for example, from the fact that a higher order modification does
not posess a hyperkähler potential in the sense of [21]). ThereforeC∗(N)
is locally equivariantly isometric toC∗(N ′). This local isometryf respects
the hyperk̈ahler structures and commutes with the action ofR by dilatations.
Hencef restricted toN induces the3-Sasakian structure on its image, which
must therefore be contained inN ′. Thus we have obtained an equivariant
3-Sasakian isometry from a connected open subset ofN to a connected open
subset ofN ′. As in the proof of Theorem 1, real-analyticity, compactness
and simple-connectedness ofS yield the result. 2

Proof of Corollary 7.This follows now from Corollary 3 in [5]. 2
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