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1. Introduction and statement of results

We consider the nonlinear stationary Sidinger equation
(NS) { —Au+V(z)u = g(x,u) for = e RY;

u(z) — 0 as |z| - .

This equation appears in several applications from mathematical physics.
For instance, standing waves or traveling waves of nonlinear time dependent
equations of Sclidinger or Klein-Gordon type correspond to solutions of
(NS). Solutions of (NS) can also be interpreted as stationary states of the
corresponding reaction-diffusion equatiop = Au — V(z)u + g(z,u)
which models phenomena from chemical dynamics.

Depending on the potenti&l, the spectrum of the Sobdinger operator
S := —A 4V onL?*(RM) can be quite complicated. In this paper we deal
with the case where

(V1) V € C(RN,R) is 1-periodicinz;, i=1,...,N.

In this case the spectrusr(.S) is purely absolutely continuous and bounded
below; cf. [16], section XIII.16, in particular Theorem XIII.100. In re-
cent years this case has found considerable interest. In [7] Coti-Zelati and
Rabinowitz proved the existence of infinitely many solutions of (NS) for
0 < mino(S), providedg satisfies various growth conditions, of course.
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If 0 lies in a gap ob(.S) and if the primitive ofg is strictly convex Alama
and Li [2], [3], Buffoni et al. [5] and Jeanjean [11] found solutions using
variational methods. Without the convexity condition the problem becomes
more complicated because one has to deal with a strongly indefinite func-
tional whose gradient is not of the form Fredholmcompact. With the
help of a special degree theory Troestler and Willem [19] found at least one
solution of (NS). Their result has beenimproved by Kryszewski and Szulkin
[12] who found one solution under weaker conditionsgomnd infinitely
many if g is odd inu. Also interesting is the work of Heinz, ipper and
Stuart who considered a parameter dependent situatioriifith replaced
by V(z) — A\. For\ &€ o(S) they found solutions,, converging towards the
trivial solution 0 as\ approaches a boundary point«fS); cf. [10] and the
references therein.

The goal of this paper is to prove the existence of nontrivial solutions of
(NS)wherDis a boundary point of the continuous spectrur§ef —A+V.
This seems to be the first result dealing with the ¢aseo.,,,:(S). Let us
state this assumption precisely.

(V2) 0 € o(S) and there exists > 0 such that0, 5] N o(S) = 0.

This implies in particular tha” cannot be constant because ¥or= const
one hasr(—A + V) = [V, c0). The nonlinearity should satisfy the condi-
tions:

(91) g € C(RYN x R,R) is 1-periodic inz;, i=1,...,N.
(92) There are constants > 0 and2 < v < p < 2* such that

a|ul* < 4G(z,u) < g(z,u)u foral zeRY, wueR.
(93) There are constants > 0 and2 < p < g < 2* such that
lg(z,u)| < ap ([uff~ + |ut™t) forall zeRY, weR

Here2* = 2N/(N —2)if N > 3, and2* = oo if N = 1, 2. Our first result
is

Theorem 1.1. Suppos€V7), (V2) and (g1), (g2), (g3) hold. Then(NS) has
a nontrivial (weak) solutiom € H2,_(RY). Moreoveru lies in L!(RY) for
<t <2,

In contrast to the papers mentioned above we do not know whether or not
u lies in HY(RYN). It is an interesting problem whether (NS) has infinitely
many geometrically distinct solutions, that is, solutions which do not just
differ by a translation. So far this is only known for< min o (.5); cf. [7].

We shall show the existence of infinitely many solutions under additional
conditions:
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(94) There are constants, ¢ > 0 such that for alk:, u, v

l9(z, u+v) = gz, u)| < as([ul"~? + [P~ + [ulT7H)[v]
if |v] <e.

(g95) gisoddinu: g(z,—u) = —g(x,u) for all z, u.

Theorem 1.2. SupposdVi), (V) and (g1) — (¢5) hold withp = u. Then
problem(NS) has infinitely many geometrically distinct solutions which lie
in H2 (RM) N LYRN), u <t < 2%,

loc

The proofs of the theorems are based on variational methods applied to
the functional

b(u) = 1/ (|Vu|2 + V(:L‘)u2) dx — G(z,u)dz
2 JrN RN

whereG(z,u) := [ g(x,t) dt is the primitive ofg. It is well known that
b Hl(RN) — Ris of cIassC1 and that critical points of are solutions
of (NS). In fact, in the papers mentioned above the authors find critical
points of @ in H'(RY). This does not seem to work in our case where
0 € o(S). By assumption(z) we have a splitting = H'(RY) = X~ @
X corresponding to the decompositionsfS) into o(S) N (—oo, 0] and
o(S8) N [3,00). We can define a new norn || on X* by setting

|2 = i/ (Vs + V@)t ) do foru* € X*,
RN
Now & can be written as
1 )
ow) = 5 (Ju* I~ ) ~ [ Glou)da
RN

whereu = u~ +ut € X~ & X ™.
However,|| - || is not equivalent to thél !-norm since) € o(.S). Thus
it is reasonable to work with the completia}iﬁof H'(RY) with respect to
| - | z. Unfortunately,#(u) = [~ G(z,u)dz is not defined onk. The
main idea is to use the geometry &fon H'(RY) in order to construct
some kind of Palais-Smale sequence and to show that after translations
a subsequence converges in a certain sense to a weak salufoiNS).
More precisely, lef,, be the completion off ! (R™) with respecttd| ||, =

(- 1%+ 17 )1/2 soH'(RN) ¢ E, C E. Thenu € E, is the limit of a
(PSY-sequence ob with respect to the weak topology @),. The proof of
Theorem 1.1 concludes with showing thag 0 andu(z) — 0 as|z| — oc.
A major step in this argument is to show tigf embeds continuously into
LY(RN) for u < t < 2* and thatEs, embeds continuously int&? (R").
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HereE, = E, & E; again corresponds to the above splittings@f).
It is worthwhile to mention that under the conditions of Theorem 1.1 the
functional? is not defined orf,,.

The more rigorous growth conditions required in Theorem 1.2 imply
that¥ and¢ are defined ort,. The existence of infinitely many critical
points of® € C1(E,) follows from an indirect argument. We first prove an
abstract critical point theorem which yields the existence of an unbounded
sequence of critical values df provided® satisfies certain mountain pass
type assumptions. In order to prove an intersection property (a linking) we
do not need to introduce a new degree theory as in [19] and [12]. Instead we
find areduction to a finite-dimensional situation where the classical Brouwer
degree applies. In our opinion this approach is simpler and more direct than
those in [19], [12]. The Palais-Smale condition is replaced essentially by
requiring that there exists a discrete subBaif Ef[ such that an arbitrary
e-neighborhood ofts, x B contains all but finitely many elements of an
arbitrary Palais-Smale sequence. We then show that this holds fap our
provided® has only finitely many critical points (up to translations). A
similar indirect argument can be found in the papers [6] by Coti-Zelati,
Ekeland, ®ré and [17], [18] by & who were interested in homoclinic
orbits of time periodic Hamiltonian systems. The Palais-Smale condition
used in these papers is slightly weaker than the version we use.

At the end of this introduction we state two results dealing with the case
where0 is a left end point ot (S), i.e. we replaceiz) by

(V3) 0 € o(S) and there exist§ > 0 such tha{—/3,0) N o (S) = 0.

Theorem 1.3. SupposdVi), (V3) hold and—g satisfies(g1) — (g3). Then
(NS) has a nontrivial solution in2, (RY) N LY(RN), u < ¢ < 2%,

Theorem 1.4. SupposgV1), (V3) hold and —g satisfies(g1) — (g5) with
p = u. Then(NS) has infinitely many geometrically distinct solutions in
HE (RN)N LYRN), p <t < 2%

loc

Except for the superlinearity conditiogs all other conditions are the
same forg or —g. Thus if0 is a left endpoint o& (.S) we need thay decays
superlinearly. The proofs of Theorems 1.3 and 1.4 are analogous to those of
1.1 and 1.2 working with-@ instead ofb.

The paper is organized as follows. In Sect. 2 we discuss the #pzaed
prove the essential embedditg, c HY (RY) N LYRY), p < ¢ < 2%

We also prove that a weak solutienc £, of (NS) satisfiesu(z) — 0,

|x| — oo. In Sect. 3 we prove Theorem 1.1. The abstract critical point
theorem for even functionals is the content of Sect. 4. Finally, in Sect. 5 we
deduce Theorem 1.2 from the abstract critical point theorem.

We thank E. 8ré for making us aware (after the paper was accepted for
publication) of his work [6], [17], [18]. We also thank an unknown referee
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for the suggestion to simplify the proof of 2.3 and the reference to the book

[1].

2. Preliminaries

Let —« be a lower bound fos(—A + V) so that
0€o(-A+V)C(—a,0]U(8,00).

SetH = L?*(RY) with inner product(-,-) and let(Py: H — H)jcr
denote the spectral family & = —A + V. SettingH~ := PyH and
H* := (Id — Py)H we have the decompositioh = H~ @ H*. The
domain ofS and|S| is D(S) = D(|S|) = H*(RY) and

S|y = Su  forueD(S)NHT;
R - forue D(S)NH™.

Observe thatl ~ C D(S) because the spectrum&is bounded below. The
domain of|S|'/2 is the Hilbert spacél ! (R™) with the usual scalar product
and associated nor(iVu|3 + |ul3) /2 Here and in the sequel we write,,
for the LP-norm. LetE be the completion off ! (R”Y) with respect to the

norm
(9] 1/2
lull = |I12u]_ = (/ v|d(P,u, u>> .

—00

ClearlyE is a Hilbert space with inner produt, v) 5 = (|S|"/%u, |S|'/?v).
We have the orthogonal decompositibh= £~ @& E* corresponding to
the decomposition af (S). We shall writeu, = u~ +u™* with u* € E* for
u € F. Since the spectrum df restricted ta * is contained if{ 3, co) itis
bounded away from), hence the norrjj - || ¢ is equivalent to the{ '-norm
onE*:

(2.1) I-lle~ 1 llm on ET

so Et = HY(RYN) N H*. However, on the subspadé! (RY) N H~ the
norm||-|| g is weaker thatj - || ;1 andH*(RN)N H~ = H~ is not complete
with respecttd| - || z. Indeed, sincé € o(S) is a continuous spectrum point
there is a sequendey,) in D(S) such thajuy|» = 1 andSwu;, — 0, hence
|luk||z — 0. SinceH~ C D(S) we have foru € H~

0< Jullp = ~(Suw) = = [ (Vul +V(ap)da,
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Therefore|Vuls < cluls for u € H~ and by the Sobolev and ditler
inequalities

luls < cl\Vu|é_7]u\g < caluls for we H™

where2 < ¢ < 2%,y = 2. Z=L with ¢, ¢y, ¢, positive constants.

For eachn € N we set
E, =P y,H=P ,,H  CH CE"
and
E,:=E, dE* CE.
Since the spectrum f restricted toF,, is bounded away frorfi we have
(2.2) -l ~1-llm on E
Let
Qni=P_i+Id-FR):E—E,
denote the orthogonal projection. Then we have foramy H' (RV):

2.3)
Qnu — uasn — oo, with respecttd| - |z and|- |, 2 <t < 2"

Next we recall theZV-action onH given by the formula
(axu)(z) :=u(a+z) for aezZV¥ ueHazecRY.

Clearly the normd| - || ;1 and| - |;, 2 < ¢t < 2%, are invariant with respect
to this action. MoreoverS commutes with this action by{) and so does
P, for each\ € R. Hence|| - || ¢ is invariant, they,, are equivariant and the
subspace®,, andE* are closed under this action.

We need to introduce yet another normBrdefined by

1/2
lulle:= (lallE + fulZ) ™

Let £, be the completion of/~ with respect t - ||, and setE,, :=
E, © E*. ThenE, is the completion of/*(RY) with respect td| - |, due
to (2.1). Clearly(E,, || - ||.) is a Banach spacé/*(RY) c E, C E and
all norms|| - ||z, || - |z, || - ||, are equivalent o™ . It is not difficult to

check that| - ||, is uniformly convex sdv,, is reflexive, hence bounded sets
in £, are weakly compact.

Lemma2.1. £, embeds continuously inHI%C(RN) hence compactly into

Ll .(RN) for 2 < t < 2*. Moreover, it embeds continuously infd(R™)

for u <t < 2*. Finally Su € L? foru € E;,.
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Proof.Foru € E,; let (u),en be a sequence il ~ with [|u, —ul|, — 0,
n — oo. We first show that, € H\} (R"). Given a bounded domain
2 ¢ RY we take a functiom € C$°(RY) with n = 1 in £2. Since for
ve H™ C H*RY)

—A(pu)nu =n* - (=Av) - v + 0?2 - (=An)n — 2V - Vi

we get

1
IV ()l3 < (Sv°v) + §|V(?7v)|§ +clof}

wherec is here and below a generic constant depending ohhis implies
1
SIVm0)lz < e (vl + [l + [v]2)

and it follows that(u,,),, is a Cauchy sequence fi!(£2), sou € H'(2).

Next we show thabu € L2. Sinceinf o(S) > —a > —oo we have
0
Stan— wn)§ = [ X2 Pt~ )

-

0
—a/)\dPA(un )2

—Q

IN

2
= |IS12 1t = )|,
= allu, — um||2E

Therefore Su, ), is a Cauchy sequencelit and it follows thatSw,, — Su
in L2

In order to see. € HZ,.(RY) we use the Calderon-Zygmund inequality

(cf. [9], Theorem 9.11). For > 0, ¢ > 0, andy € R we obtain
[|wn — umHHQ(B(y,r))
< Cre (!un — Um| L2(B(y,r4e)) T 1S (Un — Um)\Lz(B(y,r+s))> :
This impliesu € HZ(RY).

Finally we showu € Lt(]RN) for u <t < 2*. This is clear fort = p.
Forr > 0, > 0 andy € RY we have

Ul By < clullm By

< ere (15Ul 2By rte)) + |UlLn(Byrte))
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hence,

/ lul*" dzx

B(y,r)

<eno | 15wz / |Sul? da + [uf2 / ult da

B(y,r+e) B(y,r+e)

We fix » > 0 and coveRY by ballsB(y,r), y € Y c R, such that for
e > 0small, atmostV + 1 balls B(y,r +¢), y € Y, intersect nontrivially.
It follows that

/ lu* da < ¢ (\Su!%* + \u\i)
RN

sou € L?". By interpolation we get, € L! for anyt € [y, 2*]. O

Corollary 2.2. Any bounded sequente;) in E,, has a subsequence which
converges weakly ifv,, and strongly inL¢ (RY) for any2 < t < 2*.

loc

In the proofs of the results frofil we obtain weak solutions € E,, of
(2.4) —Au+V(z)u = g(x,u) forz e RV,

By Lemma 2.1 we have € H. (R"). Moreover, from our assumptions
onV andg it follows thata(x) = =V (z) + g(z,u)/u € LN/Q(RN). This

loc

impliesu € L! _(RY) for anyt < cc. In addition, using.”-theory and the

loc
Gagliardo-Nirenberg inequality one can further show that L (RY);
see e.g. [15], Proposition 2.15.4fis of classC! then a classical bootstrap
argument and Schauder estimates instedd @heory show that weak solu-
tions of (2.4) are in fact classical solutions. Now we shall show that a weak

solutionu € E, of (2.4) satisfies alsa(z) — 0 as|z| — oo.

Corollary 2.3. If u € E, solves(2.4)thenu(z) — 0 as|z| — oo.

Proof .By the above arguments and (5.5) of [1] which we may clearly apply
for any ball B(y, r) we have

esssup |u(z)| < K1 - [|ullp2(By,2)) -
IEB(yvl)

Hence, the Klder inequality yields

(2.5) lull oo (B(y,1)) < K2 - [[ullLe(Bry,2)
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forally € RY,wherek; andK, are constants independengof RY. Now
we fixe > Oarbitrarily. Sincex € L*(R") we havdimp_, o, Jiasr Il do

= 0. We may takek > 0so large thalful| .« {j.;>r}) < €. Thenfory € RY
with |y| > R + 2 we have by (2.5)

(2.6) Jull oo (By1y) < Ka2-¢€

Sincee is arbitrary (2.6) shows that(z) — 0 as|z| — oo. 0

3. One nontrivial solution

In this section we prove Theorem 1.1. Thus we assume¥hat((2), (¢1),
(92) and (g3) are satisfied. Le#: H'(RY) — R be given by¥(u) =
Jzn G(x,u) dz. Then

B(u) = ;/RN(yw? +Vapt) o= [ Glauyda
1

=5 (Il = lu” %) — ()

whereu = u~ +u™ according to the splittingg = £~ @ ET. Observe that
(92) and (g3) imply p < pu < ¢. If p < pthenLP(RY) does not embed into
LA(RN). Therefore is not defined orf,, except whem = . Therefore
we shall use an approximation argument.

Foreacm € Nwe set,, := ¢|E,,,¥,, := ¥V|E,whereE,, = E, ®E™T,
E, = P_y,,H,isasin Sect. 2. Clearlg,,, ¥, € C'(E,,R) and

D¥,, (u)v = /]RN g(z,u)vdz

D&, (u)v = (Lu,v)p — /RN g(z,u)vdz

whereLu = ut — u™.

Definition 3.1. A sequencégu;);cn is said to be a (P$)sequence fo
with respect tq E,,, || - ||g), somer € R, if

—uj € Enj withn; — co asj — oo;
— d(uj) - casj — oo,
— ||D45nj(uj)\|E —0asj — oo.

Lemma 3.2. If (u;) is a (PS}-sequence fo® then ||lu;||z and |u;|, are
bounded or equivalentlyu;||,, is bounded. Moreovet > 0 andc = 0 if
and only if||u;|, — O.
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Proof . As a consequence of) we obtain

1 1
D(uj) — gD@(uj)uj = / <Qg(x,uj)uj — G(x,uj)) dx
RN
v —2
(3.2) > 7 g(x,uj)ujde
ai(y —2)
> TWHZ

Settinge; := || D®,,, (u;)| £ this implies
(3.2) lujlly < d(1+ gjllu;llp)

whered denotes a generic constant independerjt betd € C°(R,R) be
suchthat) < 0(t) < 1andf(t) = 0if |t| < 1,0(t) = 1if |[¢t| > 2. We set

gu(x,t) == 0(t)g(x,t) andga(z, t) = g(z,t) —g1(x, 1) = (1-0(t))g(z, ).

Then by @) and @) we obtain withy' = -4, ¢/ = -%¢

33)  d-lgi(x, 1Y <gi(w, )t and d-|ga(x, ) < gala, )t
Using the first inquality in (3.1) we see

d- (P(uy) +ejlluslle) > 1910 us)le + g2(5uy)ly, -
Moreover, the Wlder inequality yields

‘/ g(m,uj)u;rda:
RN
(3.4)

<d (|91(', ug)lg|ui g + |92(‘vuj)‘p/|“;r|10)
< d/(D(uy) + &5llusl| )P uf
+d (D(uy) +ejllugll ) |uf -

By the form of® we have

Juf Iy = Doyt + [ glavus)uf do

(3.5) RV
1/q 1/p’
<d (14 gl E" + g lE) - e
and
(3.6) iy 113 < 20(u;) + [l -

Sincel/p’ < 1andl/¢’ < 1 it follows that||u; || is bounded, hence,
applying (3.2) once morkg;|,, is bounded.
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Next, lettingj — oo in (3.1) yieldsc > 0. Clearlyc = 0 if ||u;],, — 0.
Now suppose = 0.
il = luf +uy lIE
< —20(u;) +2||uf | %
= —2&(u;) + 2D£Z5(uj)u;r +2 / g(x, u])u;L dx
RN

From®(u;) — ¢ = 0 ande; — 0 we now deducéju;||r — 0. Since
|uj|, — 0 follows from (3.1) we havéju,||, — 0 as claimed. 0
Next we recall a lemma due to P.L. Lions.

Lemma 3.3. Fix r > 0 ands € [2,2*). If (uy,) is bounded i *(R") and
if

sup / |up|®de — 0 asn — oo
yERN JB(y,r)

thenu,, — 0in L{(RY) for anyt € (2, 2%).
A proof of this lemma can be found in [13].

Lemma 3.4. Each (PS}-sequence witle > 0 gives rise to a nontrivial
solution of (NS) which lies inE),.

Proof .Let(u;) be a (PS)-sequence. By Lemma 3.2 the sequence is bounded
with respect tq| - || ., hence“uj || 71 is bounded because of (2.1). We claim

that forr > 0 arbitrary there exists a sequenge) in R andn > 0 such
that

(3.7) lim inf/ |u;'r|2 dz > n.
B(ijr)

j—0o0
Indeed, if not then,]” — 0in L!(RY) by Lemma 3.3, for any € (2, 2%).
Moreover, from (3.4) and the dlider inequality we get
1
P(u;) = 5 Db (uy)u;
= Lz 1 L td G d
= gt 5 [ o wd de— | Glaug)dr
1

/]RN g(z, u])u;' dz

< —
2
<d (|U;r|p + |U;r|q)
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This yieldsc = lim &(u;) < 0, a contradiction, thus proving (3.7).
]—)OO

Now we choose; € Z" suchthata;—y;| = min {|a — y;| 1 a € ZNi
andseb; := a;*u; = u;(-+a;). Using (3.7) and the invariance 8§, ,, &£
under the action oZ" we see that; € E,, vj e ET and

n
(3.8) HU;_HLQ(B(O,rJr\/N/Q)) = 9

Moreover, ||vj||g = |u;||g and|v;|, = |u;|,., hencellv;|, is bounded.
Corollary 2.2 yields the existence of a subsequence (which we continue to
denote by(v;)) such thatv; — u weakly in £, andv; — u strongly in
Lt _(RN),anyt € [2,2%). Clearly (3.8) implies|u™ || 12 o1 var/2) =
sou # 0.

Letv € C§°(RY) be any test function. As in the proof of Lemma 3.2
we see that

/RN g(z,v5)(Id — Qn,;)vdx
< 910, v5)lg[(id — Qn;)vlg + [g2(-, v)) |y [(Id — Qnjvlp
<d(|(Id — an)v|q +|(Id — an)v‘p)

The right hand side converges@s;j — oo. Now
<ij,v>E = <ij’Q”jU>E

= DP(v;)Qn,v + /]RN g(z,vj)vde — / g(z,v;)(Id — Qn;)vdx

RN

and therefore, letting — oo, we have

/(Vu Vo + V(z)uw) dx = (Lu,v) p = /]RN g(x,u)vdz.
RN

This shows thatt € E, solves—Au + V(z)u = g(z,u) in the weak
sense. The results of Sect. 2 then show thigs in H2 (RY) N LY(RY),
u <t <2* andu satisfiesu(z) — 0 as|z| — oo. 0

In order to conclude the proof of Theorem 1.1 it suffices to find aj(PS)
sequence for some > 0. This will be done with the help of a linking
theorem due to Kryszewski and Szulkin [12], generalizing a theorem of
Benci and Rabinowitz [4].

Theorem 3.5. Let X be a real Hilbert space and suppogec C!(X,R)
satisfies the hypotheses:
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(i) There exists a bounded selfadjoint linear operafor X — X and
a functional¥ € C!(X,R) which is bounded below, weakly sequen-
tially lower semicontinuous witV¥ : X — X weakly sequentially
continuous and such that

1
D(u) = 3 (Lu,u) — ¥(u).
(i) There exists a closed separable L-invariant subspgcef X and a
positive constant: such that
(Lu,u) < —aljul? forueY
and
(Lu,u) > o ul? foruec Z:=Y",

(iii) There are constants, p > 0 such that®(u) > « for all v € Z with

[ull = p.
(iv) There existsy € Z, ||20|| = 1, and R > p such that®(u) < 0 for
ue OMwhereM ={u=y+Cz:ycY,|ul <R,{>0}.

Then there exists a sequeneg,) such thatV®(uy) — 0 and®(uy) — ¢

for somec € [k, sup ®(M))].

A proof of Theorem 3.5 can be found in [12], Theorem 3.4. SKideis
not compact Kryszewski and Szulkin contruct a degree theory which applies
to special pseudo-gradient vector fields farA somewhat simpler proof
using only the Brouwer degree is possible with the method from Sect. 4
below.

Lemma 3.6. There exist® > 0 such that

k:=inf {P(u): u € BT, ||ullp = p} > 0.
Proof . It follows easily from ¢5) that foru € E+
1
ou) = lulfy - [ Glou)ds
RN

1
> S llullf = d (julf + ulf) -
0

Lemma 3.7. Fixe € ET with |le||z = 1. Thenthere exist > 0andR > p
such that for every, € N

sup®|M, <o and &(u) <0 forue oM,
whereM,, = {u =u~ +(e: u~ € E,,||ul|lg < R,{ > 0}.
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Proof . Hypothesis §2) implies foru = v~ + (e

2 2

<2 1, _ ap, _
<&~ Sl — S + el

2 1 5
§§—§”U7||E—dfu

whered > 0 is independent of andu. The lemma follows becauge> 2.
0

Lemma 3.8. ¢, € C!(E,,R) has the form®,,(u) = 3 (Lu,u)p — ¥(u)
where¥ ¢ C!'(FE,,R) is bounded below, weakly sequentially lower semi-
continuous and/ gV : E,, — E, is weakly sequentially continuous.

Proof . This follows from the fact (2.2) thd}- || z and|| - || ;1 are equivalent

onkE,. O
SettingX := E,,Y := E, andZ := E* we have proved thab,,

satisfies all hypotheses of Theorem 3.5. Consequently there exists a sequence

(Vm)men in E,, such thatD®,,(v,,,) — 0 and®,,(v,,) — ¢, € [k,0] as

m — oo. Form(n) large we therefore have

1

Thus along a subsequencg — ¢ € [k, 0] andu; = vy,(;) IS & (PS)-
sequence as required. This finishes the proof of Theorem 1.1.

4. An abstract critical point theorem

Throughout this section, leX’ be a reflexive Banach space with the direct
sum decompositioX = X~ & X', u =u~ +u™ foru € X, and suppose
thatX ~ is separable. LéP* denote the projection onf*. For afunctional
donX wesetd, ={uc X: du)>a},® ={ucX: &u) <b}
and®® = ¢, N ¢°. Finally we writelC = {u € X : &'(u) = 0} for the set
of critical points.

We consider a functiona? satisfying the hypotheses:

(#1) ® € C(X,R) is even andp(0) = 0;
(2) there existk, p > 0 such thatd(u) > « for everyu € X with
[ull = p;



On a nonlinear Sckidinger equation with periodic potential 29

(®3) there exists a strictly increasing sequence of finite dimensional sub-
spaces,, ¢ X such that

supP(X,) < o0 whereX,, .= X~ @Y,
and an increasing sequence of real numbgys> 0 with
sup (X, \ Bp) < inf &(B,X)

whereB,, .= {u € X, : |ju|| < R,} andB,X :={u € X : |lu]| <
p}-

Thus® has the typical mountain pass geometry. If {f5)-condition
would hold thern® would have an unbounded sequence of positive critical
values. However, this is not the case in our application. In order to formulate
the hypotheses which do hold we introduce a new notion.

Definition 4.1. Fix an intervall C R. A setA C X is a (PS)-attractor
if for any (PS).-sequencéu,,),en With ¢ € I, and anye,§ > 0 one has
up € U-(AN ngg) providedn is large enough.

Clearly, a (PSy-attractor contains all critical points with levelsInlf A is
a (PS)-attractor so is any set containing In applications it is important to
find small (PS)-attractors. In general there need not exist a smallest{PS)
attractor or minimal ones. Of course, if the Palais-Smale condition holds the
set of critical points with values i is the smallest (P$)attractor.

In the sequel we shall writ& ,, for the spaceX with the weak topology
and similarly X . It will be convenient to work withX,, := X, x X,
that is, X, is the vector spac&” with the product topology of, x X ™.
Then notions like openy-open orr-open refer to the norm topology, the
weak topology or the-topology, respectively.

Now we can state the hypotheses which replace the Palais-Smale condi-
tion:

(@4) 9': X, — X is continuous, an@: X, — R is upper semicontin-
uous.

(®5) for any compact interval C (0, c0) there exists a (Pglattractor.A
such that

inf{||ut —ovt| 1 u,v € A, u#v}>0.

Theorem 4.2. If ¢ satisfies(®,) — (&5) then there exists an unbounded
sequencéc,, ) of positive critical values.

The proof of Theorem 4.2 will occupy the rest of this section. For a
symmetric subsed = —A C X we need the clas§1(A) of mapsg: A —
X with the properties
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(4.1) g: A — X, isT-continuous and odd;

(4.2) B(g(u)) < ®(u) for everyu € A;

(4.3) eachu € A has ar-neigborhoodV,, C X such that(id — g)(WW,,)
is contained in a finite-dimensional subspaceXof

We writegen(A) € NoU{oo} for the Krasnoselski genus of a symmetric
subsetA of X, thatis,gen(A) is the least integet such that there exists an
odd continuous ma@ — S*~1. If no such map exists thegen(A) := occ.
Now we define a kind of pseudo-index for the topology of sublevelgéts
by setting

¥(c) := min{gen(g(?°) N'S,XT) : g € M(P°)} € Ny U {00}

wherep is from @;) and S, X" = {u € X : ||lu|| = p}. From @,) it
follows thaty(c) = 0 for ¢ < x since the*N S, X = () andgen(?) = 0.
Therefore Theorem 4.2 is a consequence of the next three lemmas.

Lemma 4.3. If ¢ > sup &(X,,) theny(c) > n.

Lemma 4.4. If there are no critical values in the intervéd, b),0 < a < b,
thens is constant or{a, b).

Lemma4.5. ¢: [0,00) — Ny assumes only finite values.

Proof of Lemma 4.3SetB,, :== {u € X~ @Y, : |ul]| < R,} and fix
¢ > sup @(X,,) = sup &(B,,). We shall show thagen(g(B,) NS, X) > n
for anyg € M(®°). Theny(c) > n becauseB,, C ¢ and because the
genus is monotone. Fixe M ($¢). SinceB,, is T-compact it follows from
(4.3) that(id — g)(B,,) is contained in a finite-dimensional subspdcef
X. We may assume thd@™ := PTF > Y, andF = F~ @ F* with
F~:= P~ F C X~. Consider the set

O:={ueB,NF:|gu)|<ptCF
and the map
h:00 — F~, h(u):= P og(u).

We observe thaj(B,, N F') C F becaus¢id — g)(By,) C F. Thushiswell
defined. Moreovel: B, N F — Fis continuous by (4.1) sincg is finite-
dimensional. In addition, (4.2) implies thatce © andO C int(B, N F).
ThereforeO is a bounded open neighborhood of Gin:= FN (X~ $Y,),
hencegen(00) = dim F,,. From the monotonicity of the genus we obtain

gen (00 \ h™1(0)) < gen(F, \ {0}) = dimF}, .
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The continuity and the subadditivity yield
gen(00) < gen ((hfl(O)) + gen(0O\h~1(0))
It follows that
gen(h™1(0)) > dimF, — dimF, = dim Y, > n.

Finally, h(u) = 0 impliesg(u) € X andu € 9O implies||g(u)|| = p,
thusg(h=1(0)) C g(B,)NS,XT. Therefore, using the monotonicity of the
genus once more we obtain the desired inequality

gen(g(Bn) NS, X") > gen(g(h™(0))) > gen(h™'(0)) > n.
O

Proof of Lemma 4.4Given positive numbera < b such that® has no
critical values in(a, b) we want to show thap is constant oita, b). We may
assume that there are no critical values ia= [a, b] and fixc < din (a, b).
By the monotonicity of the genus we hayéc) < ¢ (d). In order to prove
Y(d) < +(c) we shall construct a mape M (d%) with g(¢?) C . Then
hog € M(®%)foranyh € M(9°) becaused—hog = id—g-+(id—h)ogis
T-locally finite-dimensional as in (4.3)ifl— g andid — h have this property.
This implies

Y(c) = inf{gen(h(?°) N S,X*) : h € M(9°)}
> inf{gen(h(g(®%)) N S,XT) : h € M(9°)}
> inf{gen(h(¥9) NS, X+) : h € M(¢9)}

= ¥(d)

asrequired. Here we used the monotonicity of the genus in the second line. In
order to construgj € M (%) with g($?) c ¢ we choose a (PSattractor
A ando > 0 such that

(4.4) |lut — o] >20 foru,ve A, u#v.
This exists according t6?5). We set

B:=P"A)={u":ue A c X"
and consider the-open set

Ur={ueX:|ut—vt| <o forsomeve A}

= X~ x U,(B)
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SinceA is a (PS)-attractor and/,(.A) C U, there existgx > 0 such that
(4.5) |9 (w)|| > 20 foru e ¢4\ U,.

Foru € @° we choose a pseudo-gradient vectofu) € X satisfying
|w(w)| < 2and® (uw)w(u) > |9 (u)]. If u € &I\U, we therefore have
@' (u)w(u) > 2a. Therefore there existsaopen neighborhood,, of u
such that

(4.6) & (v)w(u) > a forve Ny, ue dN\U,.

Here we used the hypothesig,| that®’: X, — X* is continuous. Simi-
larly, everyu € #2NU, hence by (4.4 € X~ x U, (v*) for somev € A,
has ar-open neighborhood’, ¢ X~ x U,(v") such that

(4.7) ' (v)w(u) > ||¥'(v)] forve N, ue d?nU,.

Finally, if &(u) < cwe setN,, := X\®. andw(u) := 0. Since?: X, — R
is T-upper semicontinuousy,, is 7-open. It follows from results of Dowker
[8] and Michael [14] thatX, and every subset ok, are paracompact.
Thus there exists a-locally finite partition of unity(r;),c; subordinate
to the covering N, : u € &%) of #¢. Herer;: ¢ — [0, 1] is continuous
with respect to the-topology ond?, hence it is continuous with the norm
topology ond“. It is not difficult to see that one may construct the maps
SL:ZCh thatr; is also locally Lipschitz continuous with respect to the norm in
P°,

Forj € J we choose; € &% with supp m; C Ny, and define

Vo(u) := Y mj(ww(uy)
jeJ
and

Vidt 5 X, V(u)i= %(Vg(u) V(=)

ThenV is odd, locally Lipschitz continuous and, in addition, continuous
with the 7-topology ond¢ and onX. Moreover, for every, € ¢ there
exists ar-neigborhood¥,, such thaiid — V')(W,,) is contained in a finite-
dimensional subspace &f. We also have

(4.8) V(w)| <2 forallue &%
(4.9) &' (u)V(u) >0 forallu e o4

(4.10) d'(u)V(u) >a foralluc @\ U,;
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(4.11) &' (u)V(u) >0 foralluec 4N U,.

Let o: @ x [0,00) — &9, o(z,t) = ¢!(z), be the semiflow associated
to -V, that isdp!/dt = —V o o' fort > 0 and® = id. For every
u € &% and everyt > 0 there exists a-neighborhood¥, and anc > 0
such thatid — ¢)(W, x (t —e,t +¢)) is contained in a finite-dimensional
subspace ok . Since the vector fieldf : (#%), — X, is 7-continuous also
@: (1), x [0,00) — (¢9), is T-continuous. Now we claim that for every
u € @ there exists a timd} (v) > 0 such thatd(p(u, T1(u))) < c. If
this has been proved then there also existsopen neighborhooWV,, of u
such that>(p(v, T1(u))) < cforv € W,. As above we choose a partition
of unity (m;: ¢ — [0,1]),e, subordinate tdW, : v € ¢?) and define
T(u) := > mj(u)Ti(u;) whereu; is chosen so thatipp m; C Wy, . It

is not difficult to check that the map

g: ¢ — &, g(u) == p(u, T(u))

is well defined and lies itM (7). Thus the proof of Lemma 4.4 is finished
once the existence @f; (u) is established.
We fix u € &¢ and suppos?i}m D(pt(u)) > c. SinceA is a (PS)-

attractor||¢’(v)|| is bounded away from 0 far outside an arbitrarily small
neighborhood ofd in #°. This implies that there exists a tirfle> 0 such
that o' (u) € U, for all t > T. By (4.4) there existy € A such that
o' (u) € X~ x Uy(vT) for all t > T'. By the construction of the pseudo-
gradient vector field/ it follows for ¢t > T that

d

Z(¢'(w) < —inf {[|&'(w))]| : 75 (' (w)) # 0}

< —inf{”@l(uj)n Luj € P4N X x U(,(W)}
This cannot be bounded away from 0 becatﬂise D(pt(u)) > c. So there
e}

exists a sequende;, ) in ¢ N X~ x U, (vT) with ||’ (uj, )| — 0. Then
uj, lies in arbitrarily small (norm) neighborhoods dffor £ large, hence,
uj, — v ask — oo. Therefore¢/(v) = 0 and®(v) € [c,d] which is
a contradiction to the assumption that there are no critical valugs bh
O

Proof of Lemma 4.5We work with a comparison functiapy,; : [0, d] — Ny
in order to show the finiteness ¢t Ford > 0 fixed set

Mo(®9) := {g € M(®?) : g is a homeomorphism from? to g($?)}.

Then we define foe € [0, d]

ba(c) = min {gen(g@C) ns,X*):ge Mo(gzsd)} .
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Since My(?9) € M(d?) — M(®°) via restrictiong — g|d° we have
P(e) < g(c). Thus it suffices to show,(c) < oo for ¢ < d. Clearly
Ya(c) = 0for ¢ < k by (@3) becaused € Mq(P?). We claim that for any
¢ € [k,d) there exists) > 0 such that)y(c + ) < q(c — d) + 1. This
implies the finiteness af,(c) for ¢ € [0, d). We proceed as in the proof of
Lemma 4.4. Fod := [k/2,d] there exists a (PgjattractorA ando > 0
such that

(4.12) |ut — o] > 60 for u,v € A u#uv.
SettingB := P*(A) andU, := X~ x U,(B) there existgx > 0 such that
(4.13) |®'(u)]] > 2a for u e @Z/Q \ Us.

Next we construct a pseudo-gradient vector figld®? — X. Foru €
@ﬁ/z \ U, we choosew(u) € X with ||w(u)| < 2 and® (u)w(u) >
|9"(u)|| > 20 > . This implies® (v)w(u) > « for v in somer-
neighborhoodV, of u. If #(u) < x/2 then we setV, := X \ &, , and
w(u) =0.1fue (Pﬁ/Q N U, we setN,, := U, andw(u) := 0. Let () jes
be ar-locally finite partition of unity subordinated to theopen covering
(N, : u € &%) of . As before the maps; : ¢ — [0, 1] are Lipschitz con-
tinuous with the norm o#? and continuous with the-topology ond?. Now
we defineVo(u) := > ) mj(w)w(u;) andV (u) := 3(Vo(u) — Vo(—u))
and lety?: &% — &4, ¢t > 0, be the semiflow associated +d/. We claim
that there exists > 0 such that

(4.14) O (P € PO U Us,

whereUs, := X~ x Us,(B). Postponing the proof of (4.14) we firstdeduce
Ya(c + 0) < ahg(c — 6) + 1. Chooseg € My(P?9) such thatyy(c) =
gen(g(#°%) N'S,XT). Theng o ! € M (¥?) so that

Ya(ec+9) en(g o Q! ((ﬁc+5) N SpX+)
en(g(@°~° U Us,) NS, XT)
en(g(°) NS, XT) + gen(g(Uss))

dc—6)+1.

IN N CIA A
0 R 0

<

Here we used the standard properties of the genus and in additigittha}
is homeomorphic t&/s, which in turnis homotopy equivalent to the discrete
set B by (4.12). The homotopy equivaleng¢Us,) — B is odd hence
gen(g(Uss)) < gen(B) < 1.

It remains to prove (4.14). We argue indirectly and suppose there exists
a sequenca,, € o1/ with ! (u,) & /" U Us,. Forn > 2/a with
« from (4.13) there exists, € (0, 1) such thatp'~(u,,) € U,. Thus there
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exists0 < r, < s, < 1 with ¢"(u,) € 9U,, ¢**(u,) € 0Us, and
ot (up) € Usy \ Uy, fort € (ry, s,). This implies||¢™ (u,) — @™ (uy)|| >
20 henceg,, — r,, > o becauséV (u)| < 2. Now (4.13) yields
1 S
¢ = = < O™ (un)
< P(¢" (un)) — o

1
<Cc+——o«
n

for anyn € N. This contradiction finishes the proof of (4.14) hence the
proof of Lemma 4.5. O

5. Proof of Theorem 1.2

As in Sect. 3 the solutions of (NS) will be obtained as critical points of the
functional
P(u) = 1/ (IVul* + V(z)u?) dx — G(z,u)dz
2 RN RN
1

T2

From (g4) it follows that@ is defined on the Banach spake:= E,,. LetK
be the set of critical points @ and observe that far € \{0}

(a1 = T~ 1%) — ¥ (w).

D(u) — %@’(u)u = /]RN (9(z,w)u — G(z,u)) >0

by (¢2), hence
(5.1) K c®yand LN X~ ={0}.

Let F C K consist of arbitrarily chosen representatives of the orbits of
KC under the action dZ” . Sincey is odd by assumptiory) we may assume

that 7 = —F. As a consequence of the invariancedotinder the group
action* we obtain
(5.2)

(ZN s u) N (ZN s up) =0 if up,up € K with  &(uy) # D(uy).

It is not difficult to verify that® satisfies ¢1) — (®4). In order to apply
Theorem 4.2 we need to checky. Let [r] denote the integer part offor
anyr € R. Along the lines of the proof of [12], Proposition 4.2 (see also
[7]), one can easily establish the following lemma.
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Lemma 5.1. Let the assumptions of Theorem 1.2 be satisfied and assume
that

(5.3) inf &>a>0.

K\{o}
Let(u,) C E, be a(PS).-sequence. Then eithey, — 0 (corresponding
toc = 0); or ¢ > a and there ard < [¢/a], v; € F\{0}, i =1,--- I,

a subsequence denoted again(ky,), and! sequences$a;,), in Z, i =
1,--- .1 such that

un — 2! ain * vil|, — 0, asn — oo,

|ain — ajn| = 00 asn — oo, ifi # j,

and
S o) = e

Now suppose (NS) has only finitely many geometrically distinct solutions in
E,, thatis F is finite. It follows from (5.1) thatv := £ min &(K\{0}) > 0.
Given a compact intervall C (0, co) with d := max I we setl := [d/a]
and

[F ) = {D_ kixvi; 1<j <l ki €ZN v € F}.

As a consequence of Lemma 5.1 we see fat] is a (PS)-attractor. It is
easy to check that

(5.4) inf{||u™ —v™||: w,v € [F,l],u#v}>0

(see e.g. [7]). Thereforebg) is also satisfied and Theorem 4.2 yields the
existence of an unbounded sequence of critical valuésldenceF cannot
be finite and Theorem 1.2 is proved.
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