Thomas Bartsch¹, **Yanheng Ding²**

- ¹ Justus-Liebig-Universität Gießen, Mathematisches Institut, Arndtstraße 2, D-35392 Gießen, Germany
- ² Chinese Academy of Sciences, Institute of Mathematics, Zhongguancun, Beijing 100080, PR China

Received: 4 December 1997 / in revised form: 7 August 1998

Mathematics Subject Classification (1991): 35Q55, 58E05

1. Introduction and statement of results

We consider the nonlinear stationary Schrödinger equation

(NS)
$$\begin{cases} -\Delta u + V(x)u = g(x, u) & \text{for } x \in \mathbb{R}^N; \\ u(x) \to 0 & \text{as } |x| \to \infty \end{cases}$$

This equation appears in several applications from mathematical physics. For instance, standing waves or traveling waves of nonlinear time dependent equations of Schrödinger or Klein-Gordon type correspond to solutions of (NS). Solutions of (NS) can also be interpreted as stationary states of the corresponding reaction-diffusion equation $u_t = \Delta u - V(x)u + g(x, u)$ which models phenomena from chemical dynamics.

Depending on the potential V, the spectrum of the Schrödinger operator $S := -\Delta + V$ on $L^2(\mathbb{R}^N)$ can be quite complicated. In this paper we deal with the case where

$$(V_1)$$
 $V \in \mathcal{C}(\mathbb{R}^N, \mathbb{R})$ is 1-periodic in x_i , $i = 1, ..., N$.

In this case the spectrum $\sigma(S)$ is purely absolutely continuous and bounded below; cf. [16], section XIII.16, in particular Theorem XIII.100. In recent years this case has found considerable interest. In [7] Coti-Zelati and Rabinowitz proved the existence of infinitely many solutions of (NS) for $0 < \min \sigma(S)$, provided g satisfies various growth conditions, of course. If 0 lies in a gap of $\sigma(S)$ and if the primitive of g is strictly convex Alama and Li [2], [3], Buffoni et al. [5] and Jeanjean [11] found solutions using variational methods. Without the convexity condition the problem becomes more complicated because one has to deal with a strongly indefinite functional whose gradient is not of the form Fredholm + compact. With the help of a special degree theory Troestler and Willem [19] found at least one solution of (NS). Their result has been improved by Kryszewski and Szulkin [12] who found one solution under weaker conditions on g, and infinitely many if g is odd in u. Also interesting is the work of Heinz, Küpper and Stuart who considered a parameter dependent situation with V(x) replaced by $V(x) - \lambda$. For $\lambda \notin \sigma(S)$ they found solutions u_{λ} converging towards the trivial solution 0 as λ approaches a boundary point of $\sigma(S)$; cf. [10] and the references therein.

The goal of this paper is to prove the existence of nontrivial solutions of (NS) when 0 is a boundary point of the continuous spectrum of $S = -\Delta + V$. This seems to be the first result dealing with the case $0 \in \sigma_{cont}(S)$. Let us state this assumption precisely.

(V₂) $0 \in \sigma(S)$ and there exists $\beta > 0$ such that $(0, \beta] \cap \sigma(S) = \emptyset$.

This implies in particular that V cannot be constant because for $V \equiv \text{const}$ one has $\sigma(-\Delta + V) = [V, \infty)$. The nonlinearity should satisfy the conditions:

(g₁) $g \in C(\mathbb{R}^N \times \mathbb{R}, \mathbb{R})$ is 1-periodic in x_i , i = 1, ..., N. (g₂) There are constants $a_1 > 0$ and $2 < \gamma \le \mu < 2^*$ such that

$$a_1|u|^{\mu} \leq \gamma G(x,u) \leq g(x,u)u \quad \text{for all} \quad x \in \mathbb{R}^N, \quad u \in \mathbb{R}$$

(g₃) There are constants $a_2 > 0$ and 2 such that

$$|g(x,u)| \le a_2 \left(|u|^{p-1} + |u|^{q-1} \right)$$
 for all $x \in \mathbb{R}^N$, $u \in \mathbb{R}$.

Here $2^* = 2N/(N-2)$ if $N \ge 3$, and $2^* = \infty$ if N = 1, 2. Our first result is

Theorem 1.1. Suppose (V_1) , (V_2) and (g_1) , (g_2) , (g_3) hold. Then (NS) has a nontrivial (weak) solution $u \in H^2_{loc}(\mathbb{R}^N)$. Moreover, u lies in $L^t(\mathbb{R}^N)$ for $\mu \leq t \leq 2^*$.

In contrast to the papers mentioned above we do not know whether or not u lies in $H^1(\mathbb{R}^N)$. It is an interesting problem whether (NS) has infinitely many geometrically distinct solutions, that is, solutions which do not just differ by a translation. So far this is only known for $0 < \min \sigma(S)$; cf. [7]. We shall show the existence of infinitely many solutions under additional conditions:

(g₄) There are constants $a_3, \varepsilon > 0$ such that for all x, u, v

$$|g(x, u+v) - g(x, u)| \le a_3(|u|^{p-2} + |v|^{p-2} + |u|^{q-1})|v|$$

if $|v| \le \varepsilon$.

(g₅) g is odd in u: g(x, -u) = -g(x, u) for all x, u.

Theorem 1.2. Suppose (V_1) , (V_2) and $(g_1) - (g_5)$ hold with $p = \mu$. Then problem (NS) has infinitely many geometrically distinct solutions which lie in $H^2_{loc}(\mathbb{R}^N) \cap L^t(\mathbb{R}^N)$, $\mu \le t \le 2^*$.

The proofs of the theorems are based on variational methods applied to the functional

$$\Phi(u) = \frac{1}{2} \int_{\mathbb{R}^N} \left(|\nabla u|^2 + V(x)u^2 \right) \, dx - \int_{\mathbb{R}^N} G(x, u) \, dx$$

where $G(x, u) := \int_0^u g(x, t) dt$ is the primitive of g. It is well known that $\Phi : H^1(\mathbb{R}^N) \to \mathbb{R}$ is of class \mathcal{C}^1 and that critical points of Φ are solutions of (NS). In fact, in the papers mentioned above the authors find critical points of Φ in $H^1(\mathbb{R}^N)$. This does not seem to work in our case where $0 \in \sigma(S)$. By assumption (V_2) we have a splitting $X = H^1(\mathbb{R}^N) = X^- \oplus X^+$ corresponding to the decomposition of $\sigma(S)$ into $\sigma(S) \cap (-\infty, 0]$ and $\sigma(S) \cap [\beta, \infty)$. We can define a new norm $\|\cdot\|_E$ on X^{\pm} by setting

$$||u^{\pm}||_{E}^{2} := \pm \int_{\mathbb{R}^{N}} \left(|\nabla u^{\pm}|^{2} + V(x)|u^{\pm}|^{2} \right) \, dx \quad \text{for } u^{\pm} \in X^{\pm}.$$

Now Φ can be written as

$$\Phi(u) = \frac{1}{2} \left(\|u^+\|_E^2 - \|u^-\|_E^2 \right) - \int_{\mathbb{R}^N} G(x, u) \, dx$$

where $u = u^- + u^+ \in X^- \oplus X^+$.

However, $\|\cdot\|_E$ is not equivalent to the H^1 -norm since $0 \in \sigma(S)$. Thus it is reasonable to work with the completion E of $H^1(\mathbb{R}^N)$ with respect to $\|\cdot\|_E$. Unfortunately, $\Psi(u) = \int_{\mathbb{R}^N} G(x, u) \, dx$ is not defined on E. The main idea is to use the geometry of Φ on $H^1(\mathbb{R}^N)$ in order to construct some kind of Palais-Smale sequence and to show that after translations a subsequence converges in a certain sense to a weak solution u of (NS). More precisely, let E_μ be the completion of $H^1(\mathbb{R}^N)$ with respect to $\|\cdot\|_\mu =$ $(\|\cdot\|_E^2 + |\cdot|_\mu^2)^{1/2}$, so $H^1(\mathbb{R}^N) \subset E_\mu \subset E$. Then $u \in E_\mu$ is the limit of a (PS)*-sequence of Φ with respect to the weak topology on E_μ . The proof of Theorem 1.1 concludes with showing that $u \neq 0$ and $u(x) \to 0$ as $|x| \to \infty$. A major step in this argument is to show that E_μ embeds continuously into $L^t(\mathbb{R}^N)$ for $\mu \leq t \leq 2^*$ and that E_μ^- embeds continuously into $H^2_{\text{loc}}(\mathbb{R}^N)$. Here $E_{\mu} = E_{\mu}^{-} \oplus E_{\mu}^{+}$ again corresponds to the above splitting of $\sigma(S)$. It is worthwhile to mention that under the conditions of Theorem 1.1 the functional Ψ is not defined on E_{μ} .

The more rigorous growth conditions required in Theorem 1.2 imply that Ψ and Φ are defined on E_{μ} . The existence of infinitely many critical points of $\Phi \in \mathcal{C}^1(E_\mu)$ follows from an indirect argument. We first prove an abstract critical point theorem which yields the existence of an unbounded sequence of critical values of Φ provided Φ satisfies certain mountain pass type assumptions. In order to prove an intersection property (a linking) we do not need to introduce a new degree theory as in [19] and [12]. Instead we find a reduction to a finite-dimensional situation where the classical Brouwer degree applies. In our opinion this approach is simpler and more direct than those in [19], [12]. The Palais-Smale condition is replaced essentially by requiring that there exists a discrete subset B of E_{μ}^{+} such that an arbitrary ε -neighborhood of $E_{\mu}^{-} \times B$ contains all but finitely many elements of an arbitrary Palais-Smale sequence. We then show that this holds for our Φ provided Φ has only finitely many critical points (up to translations). A similar indirect argument can be found in the papers [6] by Coti-Zelati, Ekeland, Séré and [17], [18] by Séré who were interested in homoclinic orbits of time periodic Hamiltonian systems. The Palais-Smale condition used in these papers is slightly weaker than the version we use.

At the end of this introduction we state two results dealing with the case where 0 is a left end point of $\sigma(S)$, i.e. we replace (V_2) by

(V₃) $0 \in \sigma(S)$ and there exists $\beta > 0$ such that $[-\beta, 0) \cap \sigma(S) = \emptyset$.

Theorem 1.3. Suppose (V_1) , (V_3) hold and -g satisfies $(g_1) - (g_3)$. Then (NS) has a nontrivial solution in $H^2_{loc}(\mathbb{R}^N) \cap L^t(\mathbb{R}^N)$, $\mu \le t \le 2^*$.

Theorem 1.4. Suppose (V_1) , (V_3) hold and -g satisfies $(g_1) - (g_5)$ with $p = \mu$. Then (NS) has infinitely many geometrically distinct solutions in $H^2_{loc}(\mathbb{R}^N) \cap L^t(\mathbb{R}^N)$, $\mu \le t \le 2^*$.

Except for the superlinearity condition (g_2) all other conditions are the same for g or -g. Thus if 0 is a left endpoint of $\sigma(S)$ we need that g decays superlinearly. The proofs of Theorems 1.3 and 1.4 are analogous to those of 1.1 and 1.2 working with $-\Phi$ instead of Φ .

The paper is organized as follows. In Sect. 2 we discuss the space E_{μ} and prove the essential embedding $E_{\mu}^{-} \subset H^{2}_{loc}(\mathbb{R}^{N}) \cap L^{t}(\mathbb{R}^{N}), \mu \leq t \leq 2^{*}$. We also prove that a weak solution $u \in E_{\mu}$ of (NS) satisfies $u(x) \to 0$, $|x| \to \infty$. In Sect. 3 we prove Theorem 1.1. The abstract critical point theorem for even functionals is the content of Sect. 4. Finally, in Sect. 5 we deduce Theorem 1.2 from the abstract critical point theorem.

We thank E. Séré for making us aware (after the paper was accepted for publication) of his work [6], [17], [18]. We also thank an unknown referee

for the suggestion to simplify the proof of 2.3 and the reference to the book [1].

2. Preliminaries

Let $-\alpha$ be a lower bound for $\sigma(-\Delta + V)$ so that

$$0 \in \sigma(-\Delta + V) \subset (-\alpha, 0] \cup (\beta, \infty).$$

Set $H = L^2(\mathbb{R}^N)$ with inner product $\langle \cdot, \cdot \rangle$ and let $(P_{\lambda} \colon H \to H)_{\lambda \in \mathbb{R}}$ denote the spectral family of $S = -\Delta + V$. Setting $H^- := P_0 H$ and $H^+ := (Id - P_0)H$ we have the decomposition $H = H^- \oplus H^+$. The domain of S and |S| is $\mathcal{D}(S) = \mathcal{D}(|S|) = H^2(\mathbb{R}^N)$ and

$$|S|u = \begin{cases} Su & \text{for } u \in \mathcal{D}(S) \cap H^+;\\ -Su & \text{for } u \in \mathcal{D}(S) \cap H^-. \end{cases}$$

Observe that $H^- \subset \mathcal{D}(S)$ because the spectrum of S is bounded below. The domain of $|S|^{1/2}$ is the Hilbert space $H^1(\mathbb{R}^N)$ with the usual scalar product and associated norm $\left(|\nabla u|_2^2 + |u|_2^2\right)^{1/2}$. Here and in the sequel we write $|\cdot|_p$ for the L^p -norm. Let E be the completion of $H^1(\mathbb{R}^N)$ with respect to the norm

$$||u||_E := \left| |S|^{1/2} u \right|_2 = \left(\int_{-\infty}^{\infty} |\nu| \, d\langle P_{\nu} u, u \rangle \right)^{1/2}$$

Clearly *E* is a Hilbert space with inner product $\langle u, v \rangle_E = \langle |S|^{1/2}u, |S|^{1/2}v \rangle$. We have the orthogonal decomposition $E = E^- \oplus E^+$ corresponding to the decomposition of $\sigma(S)$. We shall write $u = u^- + u^+$ with $u^{\pm} \in E^{\pm}$ for $u \in E$. Since the spectrum of *S* restricted to H^+ is contained in (β, ∞) it is bounded away from 0, hence the norm $\|\cdot\|_E$ is equivalent to the H^1 -norm on E^+ :

(2.1)
$$\|\cdot\|_E \sim \|\cdot\|_{H^1}$$
 on E^+

so $E^+ = H^1(\mathbb{R}^N) \cap H^+$. However, on the subspace $H^1(\mathbb{R}^N) \cap H^-$ the norm $\|\cdot\|_E$ is weaker than $\|\cdot\|_{H^1}$ and $H^1(\mathbb{R}^N) \cap H^- = H^-$ is not complete with respect to $\|\cdot\|_E$. Indeed, since $0 \in \sigma(S)$ is a continuous spectrum point there is a sequence (u_k) in $\mathcal{D}(S)$ such that $|u_k|_2 = 1$ and $Su_k \to 0$, hence $\|u_k\|_E \to 0$. Since $H^- \subset \mathcal{D}(S)$ we have for $u \in H^-$

$$0 \le ||u||_E^2 = -\langle Su, u \rangle = -\int_{\mathbb{R}^N} (|\nabla u|^2 + V(x)u^2) \, dx.$$

Therefore $|\nabla u|_2 \leq c|u|_2$ for $u \in H^-$ and by the Sobolev and Hölder inequalities

$$|u|_t \le c_1 |\nabla u|_2^{1-\gamma} |u|_2^{\gamma} \le c_2 |u|_2 \quad \text{for} \quad u \in H^-$$

where $2 \le t \le 2^*$, $\gamma = \frac{2}{t} \cdot \frac{2^* - t}{2^* - 2}$, with c, c_1, c_2 positive constants. For each $n \in \mathbb{N}$ we set

$$E_n^- := P_{-1/n}H = P_{-1/n}H^- \subset H^- \subset E^-$$

and

$$E_n := E_n^- \oplus E^+ \subset E_n$$

Since the spectrum of S restricted to E_n is bounded away from 0 we have

$$\|\cdot\|_E \sim \|\cdot\|_{H^1} \quad \text{on} \quad E_n$$

Let

$$Q_n := P_{-1/n} + (Id - P_0) : E \to E_n$$

denote the orthogonal projection. Then we have for any $u \in H^1(\mathbb{R}^N)$:

(2.3)

 $Q_n u \to u \text{ as } n \to \infty$, with respect to $\|\cdot\|_E$ and $|\cdot|_t$, $2 \le t < 2^*$.

Next we recall the \mathbb{Z}^N -action on H given by the formula

$$(a * u)(x) := u(a + x)$$
 for $a \in \mathbb{Z}^N, u \in H, x \in \mathbb{R}^N$.

Clearly the norms $\|\cdot\|_{H^1}$ and $|\cdot|_t$, $2 \le t \le 2^*$, are invariant with respect to this action. Moreover, S commutes with this action by (V_1) and so does P_{λ} for each $\lambda \in \mathbb{R}$. Hence $\|\cdot\|_E$ is invariant, the Q_n are equivariant and the subspaces E_n and E^{\pm} are closed under this action.

We need to introduce yet another norm on E defined by

$$||u||_{\mu} := \left(||u||_{E}^{2} + |u|_{\mu}^{2} \right)^{1/2}$$

Let E_{μ}^{-} be the completion of H^{-} with respect to $\|\cdot\|_{\mu}$ and set $E_{\mu} := E_{\mu}^{-} \oplus E^{+}$. Then E_{μ} is the completion of $H^{1}(\mathbb{R}^{N})$ with respect to $\|\cdot\|_{\mu}$ due to (2.1). Clearly $(E_{\mu}, \|\cdot\|_{\mu})$ is a Banach space, $H^{1}(\mathbb{R}^{N}) \subset E_{\mu} \subset E$ and all norms $\|\cdot\|_{E}, \|\cdot\|_{H^{1}}, \|\cdot\|_{\mu}$ are equivalent on E^{+} . It is not difficult to check that $\|\cdot\|_{\mu}$ is uniformly convex so E_{μ} is reflexive, hence bounded sets in E_{μ} are weakly compact.

Lemma 2.1. E_{μ}^{-} embeds continuously into $H^{2}_{loc}(\mathbb{R}^{N})$ hence compactly into $L^{t}_{loc}(\mathbb{R}^{N})$ for $2 \leq t < 2^{*}$. Moreover, it embeds continuously into $L^{t}(\mathbb{R}^{N})$ for $\mu \leq t \leq 2^{*}$. Finally $Su \in L^{2}$ for $u \in E_{\mu}^{-}$.

20

Proof. For $u \in E_{\mu}^{-}$ let $(u_n)_{n \in \mathbb{N}}$ be a sequence in H^{-} with $||u_n - u||_{\mu} \to 0$, $n \to \infty$. We first show that $u \in H^{1}_{loc}(\mathbb{R}^{N})$. Given a bounded domain $\Omega \subset \mathbb{R}^{N}$ we take a function $\eta \in C_{0}^{\infty}(\mathbb{R}^{N})$ with $\eta \equiv 1$ in Ω . Since for $v \in H^- \subset H^2(\mathbb{R}^N)$

$$-\Delta(\eta v)\eta v = \eta^2 \cdot (-\Delta v) \cdot v + v^2 \cdot (-\Delta \eta)\eta - 2\eta v \nabla v \cdot \nabla \eta$$

we get

$$|\nabla(\eta v)|_{2}^{2} \leq \left\langle Sv, \eta^{2}v \right\rangle + \frac{1}{2} |\nabla(\eta v)|_{2}^{2} + c|v|_{\mu}^{2}$$

where c is here and below a generic constant depending on Ω . This implies

$$\frac{1}{2} |\nabla(\eta v)|_2^2 \le c \left(||v||_{\mu} + |v|_{\mu} + |v|_{\mu}^2 \right)$$

and it follows that $(u_n)_n$ is a Cauchy sequence in $H^1(\Omega)$, so $u \in H^1(\Omega)$.

Next we show that $Su \in L^2$. Since $\inf \sigma(S) > -\alpha > -\infty$ we have

$$|S(u_n - u_m)|_2^2 = \int_{-\alpha}^0 \lambda^2 d |P_\lambda(u_n - u_m)|_2^2$$

$$\leq -\alpha \int_{-\alpha}^0 \lambda d |P_\lambda(u_n - u_m)|_2^2$$

$$= \alpha \left||S|^{1/2}(u_n - u_m)\right|_2^2$$

$$= \alpha ||u_n - u_m||_E^2.$$

Therefore $(Su_n)_n$ is a Cauchy sequence in L^2 and it follows that $Su_n \to Su$ in L^2 .

In order to see $u \in H^2_{loc}(\mathbb{R}^N)$ we use the Calderon-Zygmund inequality (cf. [9], Theorem 9.11). For r > 0, $\varepsilon > 0$, and $y \in \mathbb{R}^N$ we obtain

$$\|u_n - u_m\|_{H^2(B(y,r))} \le c_{r,\varepsilon} \left(|u_n - u_m|_{L^2(B(y,r+\varepsilon))} + |S(u_n - u_m)|_{L^2(B(y,r+\varepsilon))} \right).$$

This implies $u \in H^2_{\text{loc}}(\mathbb{R}^N)$. Finally we show $u \in L^t(\mathbb{R}^N)$ for $\mu \leq t \leq 2^*$. This is clear for $t = \mu$. For r > 0, $\varepsilon > 0$ and $y \in \mathbb{R}^N$ we have

$$|u|_{L^{2^{*}}(B(y,r))} \leq c ||u||_{H^{1}(B(y,r))}$$

$$\leq c_{r,\varepsilon} \left(|Su|_{L^{2}(B(y,r+\varepsilon))} + |u|_{L^{\mu}(B(y,r+\varepsilon))} \right)$$

hence,

$$\int_{B(y,r)} |u|^{2^*} dx$$

$$\leq c_{r,\varepsilon} \left(|Su|_2^{2^*-2} \int_{B(y,r+\varepsilon)} |Su|^2 dx + |u|_{\mu}^{2^*-\mu} \int_{B(y,r+\varepsilon)} |u|^{\mu} dx \right).$$

We fix r > 0 and cover \mathbb{R}^N by balls B(y, r), $y \in Y \subset \mathbb{R}^N$, such that for $\varepsilon > 0$ small, at most N + 1 balls $B(y, r + \varepsilon)$, $y \in Y$, intersect nontrivially. It follows that

$$\int_{\mathbb{R}^N} |u|^{2^*} dx \le c \left(|Su|_2^{2^*} + |u|_{\mu}^{2^*} \right)$$

so $u \in L^{2^*}$. By interpolation we get $u \in L^t$ for any $t \in [\mu, 2^*]$.

Corollary 2.2. Any bounded sequence (u_k) in E_{μ} has a subsequence which converges weakly in E_{μ} and strongly in $L^t_{loc}(\mathbb{R}^N)$ for any $2 \le t < 2^*$.

In the proofs of the results from $\S1$ we obtain weak solutions $u\in E_\mu$ of

(2.4)
$$-\Delta u + V(x)u = g(x, u) \quad \text{for } x \in \mathbb{R}^N$$

By Lemma 2.1 we have $u \in H^1_{\text{loc}}(\mathbb{R}^N)$. Moreover, from our assumptions on V and g it follows that $a(x) \equiv -V(x) + g(x, u)/u \in L^{N/2}_{\text{loc}}(\mathbb{R}^N)$. This implies $u \in L^t_{\text{loc}}(\mathbb{R}^N)$ for any $t < \infty$. In addition, using L^p -theory and the Gagliardo-Nirenberg inequality one can further show that $u \in L^\infty_{\text{loc}}(\mathbb{R}^N)$; see e.g. [15], Proposition 2.15. If g is of class C^1 then a classical bootstrap argument and Schauder estimates instead of L^p -theory show that weak solutions of (2.4) are in fact classical solutions. Now we shall show that a weak solution $u \in E_\mu$ of (2.4) satisfies also $u(x) \to 0$ as $|x| \to \infty$.

Corollary 2.3. If $u \in E_{\mu}$ solves (2.4) then $u(x) \to 0$ as $|x| \to \infty$.

Proof. By the above arguments and (5.5) of [1] which we may clearly apply for any ball B(y, r) we have

$$\operatorname{ess\,sup}_{x \in B(y,1)} |u(x)| \le K_1 \cdot ||u||_{L^2(B(y,2))}.$$

Hence, the Hölder inequality yields

(2.5)
$$||u||_{L^{\infty}(B(y,1))} \le K_2 \cdot ||u||_{L^{\mu}(B(y,2))}$$

for all $y \in \mathbb{R}^N$, where K_1 and K_2 are constants independent of $y \in \mathbb{R}^N$. Now we fix $\varepsilon > 0$ arbitrarily. Since $u \in L^{\mu}(\mathbb{R}^N)$ we have $\lim_{R\to\infty} \int_{|x|\geq R} |u|^{\mu} dx$ = 0. We may take R > 0 so large that $||u||_{L^{\mu}(\{|x|\geq R\})} < \varepsilon$. Then for $y \in \mathbb{R}^N$ with $|y| \geq R + 2$ we have by (2.5)

$$(2.6) ||u||_{L^{\infty}(B(y,1))} \le K_2 \cdot \varepsilon$$

Since ε is arbitrary (2.6) shows that $u(x) \to 0$ as $|x| \to \infty$.

3. One nontrivial solution

In this section we prove Theorem 1.1. Thus we assume that $(V_1), (V_2), (g_1), (g_2)$ and (g_3) are satisfied. Let $\Psi \colon H^1(\mathbb{R}^N) \to \mathbb{R}$ be given by $\Psi(u) = \int_{\mathbb{R}^N} G(x, u) \, dx$. Then

$$\begin{split} \varPhi(u) &= \frac{1}{2} \int_{\mathbb{R}^N} (|\nabla u|^2 + V(x)u^2) \, dx - \int_{\mathbb{R}^N} G(x, u) \, dx \\ &= \frac{1}{2} \left(\|u^+\|_E^2 - \|u^-\|_E^2 \right) - \Psi(u) \end{split}$$

where $u = u^- + u^+$ according to the splitting $E = E^- \oplus E^+$. Observe that (g_2) and (g_3) imply $p \le \mu \le q$. If $p < \mu$ then $L^p(\mathbb{R}^N)$ does not embed into $L^{\mu}(\mathbb{R}^N)$. Therefore, Ψ is not defined on E_{μ} except when $p = \mu$. Therefore we shall use an approximation argument.

For each $n \in \mathbb{N}$ we set $\Phi_n := \Phi | E_n, \Psi_n := \Psi | E_n$ where $E_n = E_n^- \oplus E^+$, $E_n^- = P_{-1/n}H$, is as in Sect. 2. Clearly $\Phi_n, \Psi_n \in \mathcal{C}^1(E_n, \mathbb{R})$ and

$$D\Psi_n(u)v = \int_{\mathbb{R}^N} g(x, u)v \, dx$$
$$D\Phi_n(u)v = \langle Lu, v \rangle_E - \int_{\mathbb{R}^N} g(x, u)v \, dx$$

where $Lu = u^+ - u^-$.

Definition 3.1. A sequence $(u_j)_{j \in \mathbb{N}}$ is said to be a $(PS)_c^*$ -sequence for Φ with respect to $(E_n, \|\cdot\|_E)$, some $c \in \mathbb{R}$, if

- $\begin{array}{l} u_j \in E_{n_j} \text{ with } n_j \to \infty \text{ as } j \to \infty; \\ \varPhi(u_j) \to c \text{ as } j \to \infty; \end{array}$
- $\|D\tilde{\Phi}_{n_j}(u_j)\|_E \to 0 \text{ as } j \to \infty.$

Lemma 3.2. If (u_j) is a $(PS)_c^*$ -sequence for Φ then $||u_j||_E$ and $|u_j|_{\mu}$ are bounded or equivalently, $||u_j||_{\mu}$ is bounded. Moreover $c \ge 0$ and c = 0 if and only if $||u_j||_{\mu} \to 0$.

T. Bartsch, Y. Ding

Proof. As a consequence of (g_2) we obtain

(3.1)

$$\Phi(u_j) - \frac{1}{2} D \Phi(u_j) u_j = \int_{\mathbb{R}^N} \left(\frac{1}{2} g(x, u_j) u_j - G(x, u_j) \right) dx$$

$$\geq \frac{\gamma - 2}{2\gamma} \int_{\mathbb{R}^N} g(x, u_j) u_j dx$$

$$\geq \frac{a_1(\gamma - 2)}{2\gamma} |u_j|_{\mu}^{\mu}$$

Setting $\varepsilon_j := \|D\Phi_{n_j}(u_j)\|_E$ this implies

$$(3.2) |u_j|^{\mu}_{\mu} \le d(1 + \varepsilon_j ||u_j||_E)$$

where d denotes a generic constant independent of j. Let $\theta \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ be such that $0 \leq \theta(t) \leq 1$ and $\theta(t) = 0$ if $|t| \leq 1$, $\theta(t) = 1$ if $|t| \geq 2$. We set $g_1(x,t) := \theta(t)g(x,t)$ and $g_2(x,t) = g(x,t) - g_1(x,t) = (1-\theta(t))g(x,t)$. Then by (g_2) and (g_3) we obtain with $p' = \frac{p}{p-1}$, $q' = \frac{q}{q-1}$

(3.3)
$$d \cdot |g_1(x,t)|^{q'} \le g_1(x,t)t$$
 and $d \cdot |g_2(x,t)|^{p'} \le g_2(x,t)t.$

Using the first inquality in (3.1) we see

$$d \cdot (\Phi(u_j) + \varepsilon_j ||u_j||_E) \ge |g_1(\cdot, u_j)|_{q'}^{q'} + |g_2(\cdot, u_j)|_{p'}^{p'}.$$

Moreover, the Hölder inequality yields

(3.4)
$$\begin{aligned} \left| \int_{\mathbb{R}^{N}} g(x, u_{j}) u_{j}^{+} dx \right| &\leq d \left(|g_{1}(\cdot, u_{j})|_{q'} |u_{j}^{+}|_{q} + |g_{2}(\cdot, u_{j})|_{p'} |u_{j}^{+}|_{p} \right) \\ &\leq d \left(\Phi(u_{j}) + \varepsilon_{j} ||u_{j}||_{E} \right)^{1/p'} |u_{j}^{+}|_{p} \\ &+ d \left(\Phi(u_{j}) + \varepsilon_{j} ||u_{j}||_{E} \right)^{1/q'} |u_{j}^{+}|_{q}. \end{aligned}$$

By the form of Φ we have

(3.5)
$$\|u_j^+\|_E^2 = D\Phi(u_j)u_j^+ + \int_{\mathbb{R}^N} g(x, u_j)u_j^+ dx \\ \leq d\left(1 + \|u_j\|_E^{1/q'} + \|u_j\|_E^{1/p'}\right) \cdot \|u_j^+\|_E.$$

and

(3.6)
$$\|u_j^-\|_E^2 \le 2\Phi(u_j) + \|u_j^+\|_E^2.$$

Since 1/p' < 1 and 1/q' < 1 it follows that $||u_j||_E$ is bounded, hence, applying (3.2) once more $|u_j|_{\mu}$ is bounded.

Next, letting $j \to \infty$ in (3.1) yields $c \ge 0$. Clearly c = 0 if $||u_j||_{\mu} \to 0$. Now suppose c = 0.

$$\begin{aligned} \|u_j\|_E^2 &= \|u_j^+ + u_j^-\|_E^2 \\ &\leq -2\Phi(u_j) + 2\|u_j^+\|_E^2 \\ &= -2\Phi(u_j) + 2D\Phi(u_j)u_j^+ + 2\int_{\mathbb{R}^N} g(x, u_j)u_j^+ dx \end{aligned}$$

From $\Phi(u_j) \to c = 0$ and $\varepsilon_j \to 0$ we now deduce $||u_j||_E \to 0$. Since $|u_j|_{\mu} \to 0$ follows from (3.1) we have $||u_j||_{\mu} \to 0$ as claimed. Next we recall a lemma due to P.L. Lions.

Lemma 3.3. Fix r > 0 and $s \in [2, 2^*)$. If (u_n) is bounded in $H^1(\mathbb{R}^N)$ and if

$$\sup_{y \in \mathbb{R}^N} \int_{B(y,r)} |u_n|^s \, dx \to 0 \quad \text{as } n \to \infty$$

then $u_n \to 0$ in $L^t(\mathbb{R}^N)$ for any $t \in (2, 2^*)$.

A proof of this lemma can be found in [13].

Lemma 3.4. Each $(PS)_c^*$ -sequence with c > 0 gives rise to a nontrivial solution of (NS) which lies in E_{μ} .

Proof. Let (u_j) be a $(PS)_c^*$ -sequence. By Lemma 3.2 the sequence is bounded with respect to $\|\cdot\|_{\mu}$, hence, $\|u_j^+\|_{H^1}$ is bounded because of (2.1). We claim that for r > 0 arbitrary there exists a sequence (y_j) in \mathbb{R}^N and $\eta > 0$ such that

(3.7)
$$\liminf_{j \to \infty} \int_{B(y_j, r)} |u_j^+|^2 \, dx \ge \eta.$$

Indeed, if not then $u_j^+ \to 0$ in $L^t(\mathbb{R}^N)$ by Lemma 3.3, for any $t \in (2, 2^*)$. Moreover, from (3.4) and the Hölder inequality we get

$$\begin{split} \Phi(u_j) &- \frac{1}{2} D \Phi(u_j) u_j^+ \\ &= -\frac{1}{2} \|u_j^-\|_E^2 + \frac{1}{2} \int_{\mathbb{R}^N} g(x, u_j) u_j^+ \, dx - \int_{\mathbb{R}^N} G(x, u_j) \, dx \\ &\leq \frac{1}{2} \int_{\mathbb{R}^N} g(x, u_j) u_j^+ \, dx \\ &\leq d \left(|u_j^+|_p + |u_j^+|_q \right) \end{split}$$

This yields $c = \lim_{j \to \infty} \Phi(u_j) \le 0$, a contradiction, thus proving (3.7).

Now we choose $a_j \in \mathbb{Z}^N$ such that $|a_j - y_j| = \min \{ |a - y_j| : a \in \mathbb{Z}^N \}$ and set $v_j := a_j * u_j = u_j(\cdot + a_j)$. Using (3.7) and the invariance of E_{n_j}, E^{\pm} under the action of \mathbb{Z}^N we see that $v_j \in E_{n_j}, v_j^+ \in E^+$ and

(3.8)
$$\|v_j^+\|_{L^2(B(0,r+\sqrt{N}/2))} \ge \frac{\eta}{2}.$$

Moreover, $||v_j||_E = ||u_j||_E$ and $|v_j|_\mu = |u_j|_\mu$, hence $||v_j||_\mu$ is bounded. Corollary 2.2 yields the existence of a subsequence (which we continue to denote by (v_j)) such that $v_j \to u$ weakly in E_μ and $v_j \to u$ strongly in $L^t_{\text{loc}}(\mathbb{R}^N)$, any $t \in [2, 2^*)$. Clearly (3.8) implies $||u^+||_{L^2(B(0, r+\sqrt{N}/2))} \ge \frac{\eta}{2}$, so $u \neq 0$.

Let $v\in C_0^\infty(\mathbb{R}^N)$ be any test function. As in the proof of Lemma 3.2 we see that

$$\begin{aligned} \left| \int_{\mathbb{R}^{N}} g(x, v_{j}) (Id - Q_{n_{j}}) v \, dx \right| \\ &\leq |g_{1}(\cdot, v_{j})|_{q'} |(id - Q_{n_{j}}) v|_{q} + |g_{2}(\cdot, v_{j})|_{p'} |(Id - Q_{n_{j}} v|_{p}) \\ &\leq d(|(Id - Q_{n_{j}}) v|_{q} + |(Id - Q_{n_{j}}) v|_{p}) \end{aligned}$$

The right hand side converges to 0 as $j \to \infty$. Now

$$\langle Lv_j, v \rangle_E = \langle Lv_j, Q_{n_j}v \rangle_E$$

= $D\Phi(v_j)Q_{n_j}v + \int_{\mathbb{R}^N} g(x, v_j)v \, dx - \int_{\mathbb{R}^N} g(x, v_j)(Id - Q_{n_j})v \, dx$

and therefore, letting $j \to \infty$, we have

$$\int_{\mathbb{R}^N} \left(\nabla u \cdot \nabla v + V(x) u v \right) dx = \langle L u, v \rangle_E = \int_{\mathbb{R}^N} g(x, u) v \, dx.$$

This shows that $u \in E_{\mu}$ solves $-\Delta u + V(x)u = g(x, u)$ in the weak sense. The results of Sect. 2 then show that u lies in $H^2_{\text{loc}}(\mathbb{R}^N) \cap L^t(\mathbb{R}^N)$, $\mu \leq t \leq 2^*$, and u satisfies $u(x) \to 0$ as $|x| \to \infty$.

In order to conclude the proof of Theorem 1.1 it suffices to find a $(PS)_c^*$ -sequence for some c > 0. This will be done with the help of a linking theorem due to Kryszewski and Szulkin [12], generalizing a theorem of Benci and Rabinowitz [4].

Theorem 3.5. Let X be a real Hilbert space and suppose $\Phi \in C^1(X, \mathbb{R})$ satisfies the hypotheses:

26

(i) There exists a bounded selfadjoint linear operator $L : X \to X$ and a functional $\Psi \in C^1(X, \mathbb{R})$ which is bounded below, weakly sequentially lower semicontinuous with $\nabla \Psi : X \to X$ weakly sequentially continuous and such that

$$\Phi(u) = \frac{1}{2} \left\langle Lu, u \right\rangle - \Psi(u)$$

(i) There exists a closed separable L-invariant subspace Y of X and a positive constant α such that

$$\langle Lu, u \rangle \le -\alpha \|u\|^2$$
 for $u \in Y$

and

$$\langle Lu, u \rangle \ge \alpha \|u\|^2$$
 for $u \in Z := Y^{\perp}$.

- (iii) There are constants $\kappa, \rho > 0$ such that $\Phi(u) \ge \kappa$ for all $u \in Z$ with $||u|| = \rho$.
- (iv) There exists $z_0 \in Z$, $||z_0|| = 1$, and $R > \rho$ such that $\Phi(u) \leq 0$ for $u \in \partial M$ where $M = \{u = y + \zeta z_0 : y \in Y, ||u|| < R, \zeta > 0\}.$

Then there exists a sequence (u_k) such that $\nabla \Phi(u_k) \to 0$ and $\Phi(u_k) \to c$ for some $c \in [\kappa, \sup \Phi(\overline{M})]$.

A proof of Theorem 3.5 can be found in [12], Theorem 3.4. Since $\nabla \Psi$ is not compact Kryszewski and Szulkin contruct a degree theory which applies to special pseudo-gradient vector fields for Φ . A somewhat simpler proof using only the Brouwer degree is possible with the method from Sect. 4 below.

Lemma 3.6. There exists $\rho > 0$ such that

$$\kappa := \inf \left\{ \Phi(u) \colon u \in E^+, \|u\|_E = \rho \right\} > 0.$$

Proof. It follows easily from (g_3) that for $u \in E^+$

$$\begin{split} \varPhi(u) &= \frac{1}{2} \|u\|_{E}^{2} - \int_{\mathbb{R}^{N}} G(x, u) \, dx \\ &\geq \frac{1}{2} \|u\|_{E}^{2} - d\left(|u|_{p}^{p} + |u|_{q}^{q}\right). \end{split}$$

Lemma 3.7. Fix $e \in E^+$ with $||e||_E = 1$. Then there exist $\sigma > 0$ and $R > \rho$ such that for every $n \in \mathbb{N}$

 $\sup \Phi | \overline{M}_n \le \sigma \quad and \quad \Phi(u) \le 0 \quad for \ u \in \partial M_n$ where $M_n = \{ u = u^- + \zeta e \colon u^- \in E_n^-, \|u\|_E < R, \zeta > 0 \}.$ *Proof.* Hypothesis (g_2) implies for $u = u^- + \zeta e$

$$\begin{split} \varPhi(u) &= \frac{\zeta^2}{2} - \frac{1}{2} \|u^-\|_E^2 - \int_{\mathbb{R}^N} G(x, u) \, dx \\ &\leq \frac{\zeta^2}{2} - \frac{1}{2} \|u^-\|_E^2 - \frac{a_1}{\gamma} |u^- + \zeta e|_{\mu}^{\mu} \\ &\leq \frac{\zeta^2}{2} - \frac{1}{2} \|u^-\|_E^2 - d\, \zeta^{\mu} \end{split}$$

where d > 0 is independent of n and u. The lemma follows because $\mu > 2$.

Lemma 3.8. $\Phi_n \in C^1(E_n, \mathbb{R})$ has the form $\Phi_n(u) = \frac{1}{2} \langle Lu, u \rangle_E - \Psi(u)$ where $\Psi \in C^1(E_n, \mathbb{R})$ is bounded below, weakly sequentially lower semicontinuous and $\nabla_E \Psi : E_n \to E_n$ is weakly sequentially continuous.

Proof. This follows from the fact (2.2) that $\|\cdot\|_E$ and $\|\cdot\|_{H^1}$ are equivalent on E_n .

Setting $X := E_n$, $Y := E_n^-$ and $Z := E^+$ we have proved that Φ_n satisfies all hypotheses of Theorem 3.5. Consequently there exists a sequence $(v_m)_{m\in\mathbb{N}}$ in E_n such that $D\Phi_n(v_m) \to 0$ and $\Phi_n(v_m) \to c_n \in [\kappa, \sigma]$ as $m \to \infty$. For m(n) large we therefore have

$$||D\Phi_n(v_{m(n)})||_E + |c_n - \Phi_n(v_{m(n)})| < \frac{1}{n}$$

Thus along a subsequence $c_{n_j} \to c \in [\kappa, \sigma]$ and $u_j := v_{m(n_j)}$ is a (PS)^{*}_c-sequence as required. This finishes the proof of Theorem 1.1.

4. An abstract critical point theorem

Throughout this section, let X be a reflexive Banach space with the direct sum decomposition $X = X^- \oplus X^+$, $u = u^- + u^+$ for $u \in X$, and suppose that X^- is separable. Let P^{\pm} denote the projection onto X^{\pm} . For a functional Φ on X we set $\Phi_a = \{u \in X : \Phi(u) \ge a\}, \Phi^b = \{u \in X : \Phi(u) \le b\}$ and $\Phi_a^b = \Phi_a \cap \Phi^b$. Finally we write $\mathcal{K} = \{u \in X : \Phi'(u) = 0\}$ for the set of critical points.

We consider a functional Φ satisfying the hypotheses:

 $\begin{array}{l} (\varPhi_1) \ \ \varPhi \in \mathcal{C}^1(X,\mathbb{R}) \text{ is even and } \varPhi(0) = 0; \\ (\varPhi_2) \ \text{there exist } \kappa, \rho > 0 \text{ such that } \varPhi(u) \geq \kappa \text{ for every } u \in X^+ \text{ with } \\ \|u\| = \rho; \end{array}$

 (Φ_3) there exists a strictly increasing sequence of finite dimensional subspaces $Y_n \subset X^+$ such that

$$\sup \Phi(X_n) < \infty$$
 where $X_n := X^- \oplus Y_n$,

and an increasing sequence of real numbers $R_n > 0$ with

$$\sup \Phi(X_n \setminus B_n) < \inf \Phi(B_\rho X)$$

where $B_n := \{ u \in X_n : ||u|| \le R_n \}$ and $B_{\rho}X := \{ u \in X : ||u|| \le \rho \}.$

Thus Φ has the typical mountain pass geometry. If the (PS)-condition would hold then Φ would have an unbounded sequence of positive critical values. However, this is not the case in our application. In order to formulate the hypotheses which do hold we introduce a new notion.

Definition 4.1. Fix an interval $I \subset \mathbb{R}$. A set $\mathcal{A} \subset X$ is a $(PS)_I$ -attractor if for any $(PS)_c$ -sequence $(u_n)_{n\in\mathbb{N}}$ with $c \in I$, and any $\varepsilon, \delta > 0$ one has $u_n \in U_{\varepsilon}(\mathcal{A} \cap \Phi_{c-\delta}^{c+\delta})$ provided n is large enough.

Clearly, a $(PS)_I$ -attractor contains all critical points with levels in *I*. If A is a $(PS)_I$ -attractor so is any set containing A. In applications it is important to find small $(PS)_I$ -attractors. In general there need not exist a smallest $(PS)_I$ -attractor or minimal ones. Of course, if the Palais-Smale condition holds the set of critical points with values in *I* is the smallest $(PS)_I$ -attractor.

In the sequel we shall write X_w for the space X with the weak topology and similarly X_w^- . It will be convenient to work with $X_\tau := X_w^- \times X^+$, that is, X_τ is the vector space X with the product topology of $X_w^- \times X^+$. Then notions like open, w-open or τ -open refer to the norm topology, the weak topology or the τ -topology, respectively.

Now we can state the hypotheses which replace the Palais-Smale condition:

- $(\Phi_4) \quad \Phi' \colon X_{\tau} \to X_w^*$ is continuous, and $\Phi \colon X_{\tau} \to \mathbb{R}$ is upper semicontinuous.
- (Φ_5) for any compact interval $I \subset (0, \infty)$ there exists a $(PS)_I$ -attractor \mathcal{A} such that

$$\inf\{\|u^+ - v^+\| : u, v \in \mathcal{A}, \ u \neq v\} > 0.$$

Theorem 4.2. If Φ satisfies $(\Phi_1) - (\Phi_5)$ then there exists an unbounded sequence (c_n) of positive critical values.

The proof of Theorem 4.2 will occupy the rest of this section. For a symmetric subset $A = -A \subset X$ we need the class $\mathcal{M}(A)$ of maps $g: A \to X$ with the properties

- (4.1) $g: A_{\tau} \to X_{\tau}$ is τ -continuous and odd;
- (4.2) $\Phi(q(u)) \leq \Phi(u)$ for every $u \in A$;
- (4.3) each $u \in A$ has a τ -neighborhood $W_u \subset X$ such that $(id g)(W_u)$ is contained in a finite-dimensional subspace of X.

We write $gen(A) \in \mathbb{N}_0 \cup \{\infty\}$ for the Krasnoselski genus of a symmetric subset A of X, that is, gen(A) is the least integer k such that there exists an odd continuous map $A \to S^{k-1}$. If no such map exists then $gen(A) := \infty$. Now we define a kind of pseudo-index for the topology of sublevel sets Φ^c by setting

$$\psi(c) := \min\{\operatorname{gen}(\operatorname{g}(\Phi^{c}) \cap \operatorname{S}_{\rho} \operatorname{X}^{+}) : \operatorname{g} \in \mathcal{M}(\Phi^{c})\} \in \mathbb{N}_{0} \cup \{\infty\}$$

where ρ is from (Φ_2) and $S_{\rho}X^+ = \{u \in X^+ : ||u|| = \rho\}$. From (Φ_2) it follows that $\psi(c) = 0$ for $c < \kappa$ since then $\Phi^c \cap S_{\rho}X^+ = \emptyset$ and $gen(\emptyset) = 0$. Therefore Theorem 4.2 is a consequence of the next three lemmas.

Lemma 4.3. If $c \ge \sup \Phi(X_n)$ then $\psi(c) \ge n$.

Lemma 4.4. If there are no critical values in the interval (a, b), 0 < a < b, then ψ is constant on (a, b).

Lemma 4.5. $\psi : [0, \infty) \to \mathbb{N}_0$ assumes only finite values.

Proof of Lemma 4.3. Set $B_n := \{u \in X^- \oplus Y_n : ||u|| \le R_n\}$ and fix $c \ge \sup \Phi(X_n) = \sup \Phi(B_n)$. We shall show that $gen(g(B_n) \cap S_\rho X^+) \ge n$ for any $g \in \mathcal{M}(\Phi^c)$. Then $\psi(c) \ge n$ because $B_n \subset \Phi^c$ and because the genus is monotone. Fix $g \in \mathcal{M}(\Phi^c)$. Since B_n is τ -compact it follows from (4.3) that $(id - g)(B_n)$ is contained in a finite-dimensional subspace F of X. We may assume that $F^+ := P^+F \supset Y_n$ and $F = F^- \oplus F^+$ with $F^- := P^-F \subset X^-$. Consider the set

$$\mathcal{O} := \{ u \in B_n \cap F : \|g(u)\| < \rho \} \subset F$$

and the map

$$h: \partial \mathcal{O} \to F^-, \quad h(u) := P^- \circ g(u).$$

We observe that $g(B_n \cap F) \subset F$ because $(id - g)(B_n) \subset F$. Thus h is well defined. Moreover, $g: B_n \cap F \to F$ is continuous by (4.1) since F is finitedimensional. In addition, (4.2) implies that $0 \in \mathcal{O}$ and $\overline{\mathcal{O}} \subset int(B_n \cap F)$. Therefore \mathcal{O} is a bounded open neighborhood of 0 in $F_n := F \cap (X^- \oplus Y_n)$, hence, $gen(\partial \mathcal{O}) = \dim F_n$. From the monotonicity of the genus we obtain

$$\operatorname{gen}\left(\partial \mathcal{O} \setminus h^{-1}(0)\right) \leq \operatorname{gen}(\mathrm{F}_{\mathrm{n}}^{-} \setminus \{0\}) = \dim \mathrm{F}_{\mathrm{n}}^{-}.$$

The continuity and the subadditivity yield

$$\operatorname{gen}(\partial \mathcal{O}) \le \operatorname{gen}\left((\mathrm{h}^{-1}(0)) + \operatorname{gen}(\partial \mathcal{O} \setminus \mathrm{h}^{-1}(0))\right)$$

It follows that

$$gen(h^{-1}(0)) \ge \dim F_n - \dim F_n^- = \dim Y_n \ge n.$$

Finally, h(u) = 0 implies $g(u) \in X^+$ and $u \in \partial \mathcal{O}$ implies $||g(u)|| = \rho$, thus $g(h^{-1}(0)) \subset g(B_n) \cap S_\rho X^+$. Therefore, using the monotonicity of the genus once more we obtain the desired inequality

$$\operatorname{gen}(g(B_n) \cap S_{\rho}X^+) \ge \operatorname{gen}(g(h^{-1}(0))) \ge \operatorname{gen}(h^{-1}(0)) \ge n.$$

Proof of Lemma 4.4. Given positive numbers a < b such that Φ has no critical values in (a, b) we want to show that ψ is constant on (a, b). We may assume that there are no critical values in I := [a, b] and fix c < d in (a, b). By the monotonicity of the genus we have $\psi(c) \leq \psi(d)$. In order to prove $\psi(d) \leq \psi(c)$ we shall construct a map $g \in \mathcal{M}(\Phi^d)$ with $g(\Phi^d) \subset \Phi^c$. Then $h \circ g \in \mathcal{M}(\Phi^d)$ for any $h \in \mathcal{M}(\Phi^c)$ because $id - h \circ g = id - g + (id - h) \circ g$ is τ -locally finite-dimensional as in (4.3) if id - g and id - h have this property. This implies

$$\begin{split} \psi(c) &= \inf\{\operatorname{gen}(\operatorname{h}(\varPhi^{c}) \cap \operatorname{S}_{\rho}\operatorname{X}^{+}) : \operatorname{h} \in \mathcal{M}(\varPhi^{c})\}\\ &\geq \inf\{\operatorname{gen}(\operatorname{h}(\operatorname{g}(\varPhi^{d})) \cap \operatorname{S}_{\rho}\operatorname{X}^{+}) : \operatorname{h} \in \mathcal{M}(\varPhi^{c})\}\\ &\geq \inf\{\operatorname{gen}(\operatorname{h}(\varPhi^{d}) \cap \operatorname{S}_{\rho}\operatorname{X}^{+}) : \operatorname{h} \in \mathcal{M}(\varPhi^{d})\}\\ &= \psi(d) \end{split}$$

as required. Here we used the monotonicity of the genus in the second line. In order to construct $g \in \mathcal{M}(\Phi^d)$ with $g(\Phi^d) \subset \Phi^c$ we choose a (PS)_I-attractor \mathcal{A} and $\sigma > 0$ such that

(4.4)
$$||u^+ - v^+|| > 2\sigma \quad \text{for } u, v \in \mathcal{A}, \ u \neq v.$$

This exists according to (Φ_5) . We set

$$B := P^+(\mathcal{A}) = \{u^+ : u \in \mathcal{A}\} \subset X^+$$

and consider the τ -open set

$$U_{\sigma} := \{ u \in X : ||u^{+} - v^{+}|| < \sigma \text{ for some } v \in \mathcal{A} \}$$
$$= X^{-} \times U_{\sigma}(B)$$

Since \mathcal{A} is a (PS)_I-attractor and $U_{\sigma}(\mathcal{A}) \subset U_{\sigma}$ there exists $\alpha > 0$ such that

(4.5)
$$\|\Phi'(u)\| \ge 2\alpha$$
 for $u \in \Phi_c^d \setminus U_\sigma$.

For $u \in \Phi_a^b$ we choose a pseudo-gradient vector $w(u) \in X$ satisfying $||w(u)|| \leq 2$ and $\Phi'(u)w(u) > ||\Phi'(u)||$. If $u \in \Phi_c^d \setminus U_\sigma$ we therefore have $\Phi'(u)w(u) \geq 2\alpha$. Therefore there exists a τ -open neighborhood N_u of u such that

(4.6)
$$\Phi'(v)w(u) > \alpha \quad \text{for } v \in N_u, u \in \Phi^d_c \backslash U_\sigma.$$

Here we used the hypothesis (Φ_4) that $\Phi' \colon X_{\tau} \to X_w^*$ is continuous. Similarly, every $u \in \Phi_c^d \cap U$, hence by (4.4), $u \in X^- \times U_\sigma(v^+)$ for some $v \in \mathcal{A}$, has a τ -open neighborhood $N_u \subset X^- \times U_\sigma(v^+)$ such that

(4.7)
$$\Phi'(v)w(u) \ge \|\Phi'(u)\| \quad \text{for } v \in N_u, \ u \in \Phi^d_c \cap U_\sigma.$$

Finally, if $\Phi(u) < c$ we set $N_u := X \setminus \Phi_c$ and w(u) := 0. Since $\Phi: X_\tau \to \mathbb{R}$ is τ -upper semicontinuous, N_u is τ -open. It follows from results of Dowker [8] and Michael [14] that X_τ and every subset of X_τ are paracompact. Thus there exists a τ -locally finite partition of unity $(\pi_j)_{j\in J}$ subordinate to the covering $(N_u : u \in \Phi^d)$ of Φ^d . Here $\pi_j: \Phi^d \to [0, 1]$ is continuous with respect to the τ -topology on Φ^d , hence it is continuous with the norm topology on Φ^d . It is not difficult to see that one may construct the maps π_j such that π_j is also locally Lipschitz continuous with respect to the norm in Φ^d .

For $j \in J$ we choose $u_j \in \Phi^d$ with $\operatorname{supp} \pi_j \subset N_{u_j}$ and define

$$V_0(u) := \sum_{j \in J} \pi_j(u) w(u_j)$$

and

$$V: \Phi^d \to X, \quad V(u) := \frac{1}{2}(V_0(u) - V_0(-u)).$$

Then V is odd, locally Lipschitz continuous and, in addition, continuous with the τ -topology on Φ^d and on X. Moreover, for every $u \in \Phi^d$ there exists a τ -neigborhood W_u such that $(id - V)(W_u)$ is contained in a finite-dimensional subspace of X. We also have

$$(4.8) ||V(u)|| \le 2 \text{ for all } u \in \Phi^d;$$

(4.9)
$$\Phi'(u)V(u) \ge 0 \quad \text{for all } u \in \Phi^d$$

(4.10)
$$\Phi'(u)V(u) > \alpha \quad \text{for all } u \in \Phi_c^d \setminus U_\sigma;$$

(4.11)
$$\Phi'(u)V(u) > 0 \quad \text{for all } u \in \Phi_c^d \cap U_\sigma.$$

Let $\varphi: \Phi^d \times [0, \infty) \to \Phi^d$, $\varphi(x, t) = \varphi^t(x)$, be the semiflow associated to -V, that is $d\varphi^t/dt = -V \circ \varphi^t$ for t > 0 and $\varphi^0 = id$. For every $u \in \Phi^d$ and every t > 0 there exists a τ -neighborhood W_u and an $\varepsilon > 0$ such that $(id - \varphi)(W_u \times (t - \varepsilon, t + \varepsilon))$ is contained in a finite-dimensional subspace of X. Since the vector field $V: (\Phi^d)_{\tau} \to X_{\tau}$ is τ -continuous also $\varphi: (\Phi^d)_{\tau} \times [0, \infty) \to (\Phi^d)_{\tau}$ is τ -continuous. Now we claim that for every $u \in \Phi^d$ there exists a time $T_1(u) > 0$ such that $\Phi(\varphi(u, T_1(u))) < c$. If this has been proved then there also exists a τ -open neighborhood W_u of usuch that $\Phi(\varphi(v, T_1(u))) < c$ for $v \in W_u$. As above we choose a partition of unity $(\pi_j: \Phi^d \to [0, 1])_{j \in J}$ subordinate to $(W_u: u \in \Phi^d)$ and define $T(u) := \sum_{j \in J} \pi_j(u) T_1(u_j)$ where u_j is chosen so that $\sup \pi_j \subset W_{u_j}$. It is not difficult to check that the map

$$g: \Phi^d \to \Phi^c, \quad g(u) := \varphi(u, T(u))$$

is well defined and lies in $\mathcal{M}(\Phi^d)$. Thus the proof of Lemma 4.4 is finished once the existence of $T_1(u)$ is established.

We fix $u \in \Phi^d$ and suppose $\lim_{t\to\infty} \Phi(\varphi^t(u)) \ge c$. Since \mathcal{A} is a $(PS)_{I^-}$ attractor $\|\Phi'(v)\|$ is bounded away from 0 for v outside an arbitrarily small neighborhood of \mathcal{A} in Φ^b_a . This implies that there exists a time T > 0 such that $\varphi^t(u) \in U_{\sigma}$ for all $t \ge T$. By (4.4) there exists $v \in \mathcal{A}$ such that $\varphi^t(u) \in X^- \times U_{\sigma}(v^+)$ for all $t \ge T$. By the construction of the pseudo-gradient vector field V it follows for $t \ge T$ that

$$\frac{d}{dt}\Phi\left(\varphi^{t}(u)\right) \leq -\inf\left\{\left\|\Phi'(u_{j})\right\| : \pi_{j}\left(\varphi^{t}(u)\right) \neq 0\right\} \\
\leq -\inf\left\{\left\|\Phi'(u_{j})\right\| : u_{j} \in \Phi_{c}^{d} \cap X^{-} \times U_{\sigma}(v^{+})\right\}$$

This cannot be bounded away from 0 because $\lim_{t\to\infty} \Phi(\varphi^t(u)) \ge c$. So there exists a sequence $(u_{j_k})_k$ in $\Phi_c^d \cap X^- \times U_\sigma(v^+)$ with $\|\Phi'(u_{j_k})\| \to 0$. Then u_{j_k} lies in arbitrarily small (norm) neighborhoods of \mathcal{A} for k large, hence, $u_{j_k} \to v$ as $k \to \infty$. Therefore $\Phi'(v) = 0$ and $\Phi(v) \in [c, d]$ which is a contradiction to the assumption that there are no critical values in [a, b].

Proof of Lemma 4.5. We work with a comparison function $\psi_d \colon [0, d] \to \mathbb{N}_0$ in order to show the finiteness of ψ . For d > 0 fixed set

 $\mathcal{M}_0(\varPhi^d) := \{g \in \mathcal{M}(\varPhi^d) : g \text{ is a homeomorphism from } \varPhi^d \text{ to } g(\varPhi^d) \}.$

Then we define for $c \in [0, d]$

$$\psi_d(c) := \min\left\{\operatorname{gen}(\operatorname{g}(\Phi^c) \cap \operatorname{S}_{\rho}\operatorname{X}^+) : \operatorname{g} \in \mathcal{M}_0(\Phi^d)
ight\}.$$

Since $\mathcal{M}_0(\Phi^d) \subset \mathcal{M}(\Phi^d) \hookrightarrow \mathcal{M}(\Phi^c)$ via restriction $g \mapsto g | \Phi^c$ we have $\psi(c) \leq \psi_d(c)$. Thus it suffices to show $\psi_d(c) < \infty$ for c < d. Clearly $\psi_d(c) = 0$ for $c < \kappa$ by (Φ_3) because $id \in \mathcal{M}_0(\Phi^d)$. We claim that for any $c \in [\kappa, d)$ there exists $\delta > 0$ such that $\psi_d(c + \delta) \leq \psi_d(c - \delta) + 1$. This implies the finiteness of $\psi_d(c)$ for $c \in [0, d)$. We proceed as in the proof of Lemma 4.4. For $I := [\kappa/2, d]$ there exists a (PS)_I-attractor \mathcal{A} and $\sigma > 0$ such that

(4.12)
$$||u^+ - v^+|| > 6\sigma \text{ for } u, v \in \mathcal{A}, u \neq v.$$

Setting $B := P^+(\mathcal{A})$ and $U_{\sigma} := X^- \times U_{\sigma}(B)$ there exists $\alpha > 0$ such that

(4.13)
$$\|\Phi'(u)\| \ge 2\alpha \quad \text{for } u \in \Phi^d_{\kappa/2} \setminus U_{\sigma}.$$

Next we construct a pseudo-gradient vector field $V: \Phi^d \to X$. For $u \in \Phi_{\kappa/2}^d \setminus U_{\sigma}$ we choose $w(u) \in X$ with $||w(u)|| \leq 2$ and $\Phi'(u)w(u) \geq ||\Phi'(u)|| \geq 2\alpha > \alpha$. This implies $\Phi'(v)w(u) > \alpha$ for v in some τ -neighborhood N_u of u. If $\Phi(u) < \kappa/2$ then we set $N_u := X \setminus \Phi_{\kappa/2}$ and w(u) = 0. If $u \in \Phi_{\kappa/2}^d \cap U_{\sigma}$ we set $N_u := U_{\sigma}$ and w(u) := 0. Let $(\pi_j)_{j \in J}$ be a τ -locally finite partition of unity subordinated to the τ -open covering $(N_u : u \in \Phi^d)$ of Φ^d . As before the maps $\pi_j : \Phi^d \to [0, 1]$ are Lipschitz continuous with the norm on Φ^d and continuous with the τ -topology on Φ^d . Now we define $V_0(u) := \sum_{j \in J} \pi_j(u)w(u_j)$ and $V(u) := \frac{1}{2}(V_0(u) - V_0(-u))$ and let $\varphi^t : \Phi^d \to \Phi^d$, $t \geq 0$, be the semiflow associated to -V. We claim that there exists $\delta > 0$ such that

(4.14)
$$\varphi^1(\Phi^{c+\delta}) \subset \Phi^{c-\delta} \cup U_{3\sigma}$$

where $U_{3\sigma} := X^- \times U_{3\sigma}(B)$. Postponing the proof of (4.14) we first deduce $\psi_d(c+\delta) \leq \psi_d(c-\delta) + 1$. Choose $g \in \mathcal{M}_0(\Phi^d)$ such that $\psi_d(c) = \operatorname{gen}(g(\Phi^{c-\delta}) \cap S_\rho X^+)$. Then $g \circ \varphi^1 \in \mathcal{M}_0(\Phi^d)$ so that

$$\begin{split} \psi_d(c+\delta) &\leq \operatorname{gen}(\operatorname{g}\circ\varphi^1(\varPhi^{c+\delta})\cap\operatorname{S}_{\rho}\operatorname{X}^+) \\ &\leq \operatorname{gen}(\operatorname{g}(\varPhi^{c-\delta}\cup\operatorname{U}_{3\sigma})\cap\operatorname{S}_{\rho}\operatorname{X}^+) \\ &\leq \operatorname{gen}(\operatorname{g}(\varPhi^{c-\delta})\cap\operatorname{S}_{\rho}\operatorname{X}^+) + \operatorname{gen}(\operatorname{g}(\operatorname{U}_{3\sigma})) \\ &\leq \psi^d(c-\delta) + 1. \end{split}$$

Here we used the standard properties of the genus and in addition that $g(U_{3\sigma})$ is homeomorphic to $U_{3\sigma}$ which in turn is homotopy equivalent to the discrete set B by (4.12). The homotopy equivalence $g(U_{3\sigma}) \rightarrow B$ is odd hence $gen(g(U_{3\sigma})) \leq gen(B) \leq 1$.

It remains to prove (4.14). We argue indirectly and suppose there exists a sequence $u_n \in \Phi^{c+1/n}$ with $\varphi^1(u_n) \notin \Phi^{c-1/n} \cup U_{3\sigma}$. For $n > 2/\alpha$ with α from (4.13) there exists $t_n \in (0, 1)$ such that $\varphi^{t_n}(u_n) \in U_{\sigma}$. Thus there

exists $0 \leq r_n < s_n \leq 1$ with $\varphi^{r_n}(u_n) \in \partial U_{\sigma}$, $\varphi^{s_n}(u_n) \in \partial U_{3\sigma}$ and $\varphi^t(u_n) \in U_{3\sigma} \setminus U_{\sigma}$ for $t \in (r_n, s_n)$. This implies $\|\varphi^{r_n}(u_n) - \varphi^{s_n}(u_n)\| \geq 2\sigma$ hence, $s_n - r_n \geq \sigma$ because $\|V(u)\| \leq 2$. Now (4.13) yields

$$egin{aligned} c - rac{1}{n} &< \varPhi(arphi^{s_n}(u_n)) \ &< \varPhi(arphi^{r_n}(u_n)) - \sigma lpha \ &< c + rac{1}{n} - \sigma lpha \end{aligned}$$

for any $n \in \mathbb{N}$. This contradiction finishes the proof of (4.14) hence the proof of Lemma 4.5.

5. Proof of Theorem 1.2

As in Sect. 3 the solutions of (NS) will be obtained as critical points of the functional

$$\Phi(u) = \frac{1}{2} \int_{\mathbb{R}^N} \left(|\nabla u|^2 + V(x)u^2 \right) \, dx - \int_{\mathbb{R}^N} G(x, u) \, dx$$
$$= \frac{1}{2} (||u^+||_E^2 - ||u^-||_E^2) - \Psi(u).$$

From (g_4) it follows that Φ is defined on the Banach space $X := E_{\mu}$. Let \mathcal{K} be the set of critical points of Φ and observe that for $u \in \mathcal{K} \setminus \{0\}$

$$\Phi(u) - \frac{1}{2}\Phi'(u)u = \int_{\mathbb{R}^N} \left(g(x, u)u - G(x, u)\right) > 0$$

by (g_2) , hence

(5.1)
$$\mathcal{K} \subset \Phi_0 \text{ and } \mathcal{K} \cap X^- = \{0\}.$$

Let $\mathcal{F} \subset \mathcal{K}$ consist of arbitrarily chosen representatives of the orbits of \mathcal{K} under the action of \mathbb{Z}^N . Since g is odd by assumption (g_5) we may assume that $\mathcal{F} = -\mathcal{F}$. As a consequence of the invariance of Φ under the group action * we obtain

(5.2)

$$(\mathbb{Z}^N * u_1) \cap (\mathbb{Z}^N * u_2) = \emptyset \quad \text{if} \quad u_1, u_2 \in \mathcal{K} \quad \text{with} \quad \Phi(u_1) \neq \Phi(u_2).$$

It is not difficult to verify that Φ satisfies $(\Phi_1) - (\Phi_4)$. In order to apply Theorem 4.2 we need to check (Φ_5) . Let [r] denote the integer part of r for any $r \in \mathbb{R}$. Along the lines of the proof of [12], Proposition 4.2 (see also [7]), one can easily establish the following lemma. **Lemma 5.1.** Let the assumptions of Theorem 1.2 be satisfied and assume that

(5.3)
$$\inf_{\mathcal{K}\setminus\{0\}} \Phi > \alpha > 0.$$

Let $(u_n) \subset E_{\mu}$ be a $(PS)_c$ -sequence. Then either $u_n \to 0$ (corresponding to c = 0); or $c \ge \alpha$ and there are $l \le [c/\alpha]$, $v_i \in \mathcal{F} \setminus \{0\}$, $i = 1, \dots, l$, a subsequence denoted again by (u_n) , and l sequences $(a_{in})_n$ in \mathbb{Z} , $i = 1, \dots, l$ such that

$$\begin{aligned} ||u_n - \Sigma_{i=1}^l a_{in} * v_i||_{\mu} &\to 0, \quad \text{as } n \to \infty, \\ |a_{in} - a_{jn}| &\to \infty \quad \text{as } n \to \infty, \text{ if } i \neq j, \end{aligned}$$

and

$$\Sigma_{i=1}^{l}\Phi(v_i) = c.$$

Now suppose (NS) has only finitely many geometrically distinct solutions in E_{μ} , that is, \mathcal{F} is finite. It follows from (5.1) that $\alpha := \frac{1}{2} \min \Phi(\mathcal{K} \setminus \{0\}) > 0$. Given a compact intervall $I \subset (0, \infty)$ with $d := \max I$ we set $l := \lfloor d/\alpha \rfloor$ and

$$\mathcal{F}, l] := \{ \Sigma_{i=1}^{j} k_i * v_i; \ 1 \le j \le l, k_i \in \mathbb{Z}^N, v_i \in \mathcal{F} \}.$$

As a consequence of Lemma 5.1 we see that $[\mathcal{F}, l]$ is a $(PS)_I$ -attractor. It is easy to check that

(5.4)
$$\inf\{||u^+ - v^+||: u, v \in [\mathcal{F}, l], u \neq v\} > 0$$

(see e.g. [7]). Therefore (Φ_5) is also satisfied and Theorem 4.2 yields the existence of an unbounded sequence of critical values of Φ . Hence \mathcal{F} cannot be finite and Theorem 1.2 is proved.

Acknowledgement. The second named author is supported by the Alexander von Humboldt-Stiftung in Germany. He is very grateful to the Alexander von Humboldt-Stiftung for allowing him a visit to Universität Gießen.

References

- S. Agmon, Lectures on exponential decay of solutions of second order elliptic equations, Mathematical Notes, vol. 29, Princeton University Press, Princeton, N.J., 1982.
- S. Alama, Y.Y. Li, Existence of solutions for semilinear elliptic equations with indefinite linear part, J. Differential Equations 96 (1992), 89–115.
- S. Alama, Y.Y. Li, On "multibump" bound states for certain semilinear elliptic equations, Indiana J. Math. 41 (1992), 983–1026.
- V. Benci, P.H. Rabinowitz, Critical point theorems for indefinite functionals, Invent. Math. 52 (1979), 241–273.

- B. Buffoni, L. Jeanjean, C.A. Stuart, Existence of nontrivial solutions to a strongly indefinite semilinear equation, Proc. Amer. Math. Soc. 119 (1993), 179–186.
- V. Coti-Zelati, I. Ekeland, E. Séré, A variational approach to homoclinic orbits in hamiltonian systems, Math. Ann. 288 (1990), 133–160.
- V. Coti-Zelati, P. H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on ℝ^N, Comm. Pure Appl. Math. 45 (1992), 1217–1269.
- 8. C.H. Dowker, An embedding theorem for paracompact metric spaces, Duke Math. J. **14** (1947), 639–645.
- D. Gilbarg, N. Trudinger, Elliptic partial differential equations of second order, Springer, Berlin Heidelberg New York Tokyo, 1983.
- H.-P. Heinz, T. Küpper, C. A. Stuart, Existence and bifurcation of solutions for nonlinear perturbations of the periodic Schrödinger equation, J. Differential Equations 100 (1992), 341–354.
- L. Jeanjean, Solutions in spectral gaps for a nonlinear equation of Schrödinger type, J. Differential Equations 112 (1994), 53–80.
- 12. W. Kryszewski, A. Szulkin, Generalized linking theorem with an application to semilinear Schrödinger equation, Adv. in Differential Equations (to appear).
- P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Part II, Ann. Inst. H. Poincaré. Anal. non linéaire 1 (1984), 223– 283.
- 14. E. Michael, A note on paracompact spaces, Proc. Amer. Math. Soc. 4 (1953), 831–838.
- P. H. Rabinowitz, A note on a semilinear elliptic equation on ℝ^N, Nonlinear Analysis. A Tribute in Honour of Giovanni Prodi (A. Ambrosetti, A. Marino, eds.), Quaderni, Scuola Normale Superiore, Pisa, 1991, pp. 307–317.
- M. Reed, B. Simon, Methods of modern mathematical physics, vol. IV, Academic Press, 1978.
- E. Séré, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z. 209 (1992), 27–42.
- E. Séré, Looking for the Bernoulli shift, Ann. Inst. H. Poincaré, Analyse non linéaire 10 (1993), 561–590.
- 19. C. Troestler, M. Willem, Nontrivial solution of a semilinear Schrödinger equation, Comm. Partial Differential Equations (to appear).