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1. Introduction

One of the most basic and most important subfamily &y processes is sym-
metric stable processes. A symmetiistable procesX onR" is a Lévy process
whose transition density(t, x —y) relative to the Lebesgue measure is uniquely
determined by its Fourier transforify, e*$p(t, x)dx = e~!l¢/". Herea must be

in the interval (0 2]. Whena = 2, we get a Brownian motion running with a
time clock twice as fast as the standard one. Brownian motion plays a central
role in modern probability theory and has numerous important applications in
other scientific areas as well as in many other branches of mathematics. Thus
it has been intensively studied. In this paper, symmetric stable processes are re-
ferred to the case when @ o < 2, unless otherwise specified. In the last few
years there has been an explosive growth in the study of physical and economic
systems that can be successfully modeled with the use of stable processes. Stable
processes are now widely used in physics, operations research, queuing theory,
mathematical finance and risk estimation. In some physics literatures, symmetric
«-stable processes are calle@vy flights, and they have been applied to a wide
range of very complex physics issues, such as turbulent diffusion, vortex dynam-
ics, anomalous diffusion in rotating flows, and molecular spectral fluctuations.
In mathematical finance, stable processes can be used to model stock returns in
incomplete market. For these and more applications of stable processes, please
see the interesting book [14] by Janicki and Weron and the references therein
and the recent article [15] by Klafter, Shlesinger and Zuomofen. In order to
make precise predictions about natural phenomena and to better cope with these
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widespread applications, there is a need to study the fine properties of symmetric
stable processes, just as for the Brownian motion case. Although a lot is known
about symmetric stable processes and their potential theory (see [1, 2, 3, 4, 9,
10, 12, 14, 16, 17, 20, 21] and the references therein), little is known about the
counterparts to some of the deep results for Brownian motion, such as sharp esti-
mates on Green functions and Poisson kernels of bounded domains. In the special
case of balls, the explicit formulae for the Poisson kernels and Green functions
for symmetric stable processes are known. The formula for the Poisson kernel
of balls were obtained by M. Riesz and the formula for Green function of balls
were obtained by Blumenthal, Getoor and Ray in [3]. Prior to that, Kac, Polland,
Spitzer, Widom, Kesten and Kinney had obtained some results for 1-dimensional
case (cf. [3]).

Unlike the generatord of Brownian motion whose time clock is twice as
fast as the standard one, the generator of a symmetstable process with
0 < a < 2 is the fractional Laplacian-(—A)*/? which is non-local. Also a
symmetric stable process is a process with discontinuous sample paths and having
heavy tails, while Brownian motion has continuous sample paths and exponential
decay tails. The transition density functip(t, x—y) for discontinuous symmetric
a-stable proces¥ is approximatelyc|x — y|~("®) when|x —y| is large. SaX;
has infinite variance and when« < 1, |X;| even has infinite mean. All these
indicate the significant difference between Brownian motion and symmetric
stable processes.

In this paper, we will address some of these problems. More specifically, we
will derive precise estimates on Green functions and Poisson kernefsiof
boundedC “-smooth domain®. ThatD is C1! means that for everg € 9D,
there exists @ > 0 such thatB(z,r) N 9D is the graph of a function whose
first derivatives are Lipschitz. These estimates are very useful in studying other
properties of symmetric stable processes. As examples of applications of these
estimates, we prove that the 3G Theorem holds for symmetsitable processes
on boundedC*! domains and that the conditional lifetimes for the symmetric
a-stable processes in a boundéé! domain are uniformly bounded.

To state the main results of this paper,Xebe a symmetriev-stable process
on R" with n > 2 and 0< a < 2. The procesX is transient and we are going
to useG to denote the potential of. We know that the Green function of is
given by

[eS) n _ -1
w1 )= [ p(t,x,y)dyzz-%-zr<” “)F(“) X —yl*"
0 2 2

(see, for example, [2]). Herd" is the Gamma function defined b¥()\) =
JoSt*te~tdt for A > 0. For a domairD in R", let7p =inf{t >0:X ¢ D}.
Adjoin a cemetery poind to D and set

Xi(w), if t <,
XP (W) = .
0 s if t>7mp.
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XP is called the subprocess of the symmeisiestable procesX killed upon
leavingD, or simply the symmetriei—stable process iB. It is well known that
there is a continuous symmetric functi@p (-, -) defined orD x D except along
the diagonal such that for any Borel measurable functionO,

| [ 10| = [ eotronay.
0 D
Gp is called the Green function ok in D. Note thatGp has the following
scaling property: foa > 0,
(1.2) Go(x,y) =a*"Gp,a (x/a,y/a), x,y€D.
The main results of of this paper are summarized as follows.
Theorem 1.1. Suppose that D is a bounded*€ domain inR". Let §(x) =

d(x,0D) be the Euclidean distance between x apid. Then there exists a
C =C(D, a) > Osuch that for xy € D,

1

Gp (X, < _ 1.3

o(X.Y) oy (13)
6(X)a/2

Gp(x,y) < ma (1.4)
a/2 a/2

Golxy) < c IOV (L5)
x =y
a/2

Goxy) < c 2 ! (1.6)

o(y)*/2 x =y
Now that sinceGp is a symmetric function, so (1.6) tells that

6(y)u/2 1
509°72 =y

Theorem 1.1 is proved by using inversion with respect to spheres along with the
explicit formulae for Green functions and exit distributions>fon balls. For

the now classical upper bounds for Green functions of Brownian motion, one
can see Zhao [23] and the references therein. Comparing with the upper bound
estimates above, the following lower bounds on the Green functions are much
more difficult to prove. The proof involves some very detailed hard analysis.
These lower bounds, in a sense, are generalizations of the results of Zhao [23]
for Brownian motions to the discontinuous symmetric stable processes.

7 Go(x,y)<C

Theorem 1.2. Suppose that D is a bounded-€domain inR". Then there exists
aC=C(D,a) > 0such that for xy € D,

Goey) = o tk-yl=max{ TP g

a/2 a/2
Gp(X,Y) C w, if |x —y|> max{é(zx),a(zw}. (2.9)

Y
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The above lower and upper bounds provide precise information about the
Green functions. Summarizing them up, we have

Corollary 1.3. Therefore there is a constant EC(D, «) > 1 such that

1 1 5(x)*/26(y)>/?
1 <
C m|n{|x_yn_a, P~ < Gp(x,y)
a/2 a/2
<C mm{ 1 , 6(X)*/<4(y) }
x—y[ret x =y

In the Brownian motion case, the Poisson kernel in a bour@fetl domain
is the normal derivative of the Green function. In the case ofvagymmetric
process, < a < 2, this kind of relationship can not be expected to hold. For
0 < a < 2, the symmetrica-stable process has discontinuous sample paths
and therefore the exit distribution of,, underPx does not concentrate on the
boundarydD. In fact, we have the following

Theorem 1.4. For every bounded domain D iR" satisfying uniform exterior
cone condition, there is a functionox, z) defined on Dx D¢ such that

E06)] = AN o) | Ko(x.2)p()dz, x €D

for everyyp > 0 on D, where
a201r(%5h)

1.10 An,a)=22 12 )
(110) 0.0)= " =y
Furthermore

Ko (x,2) = A(n, )/ |GD(X|ny+)ady, x €D, yeDC.

Recall that a domai® in R" is said to satisfy the uniform exterior cone con-
dition if there exist constantg > 0,r > 0 and a con&Z” = {X = (Xy,...,%y) €
RM:0 < X, (X2 + -+ +x2 )2 < nx,} such that for everg € 9D, there is a
cone Z; with vertexz, isometric toZ" and satisfyingZz; N B(z,r) ¢ D®. ltis
well known that bounde€ ! domains satisfy the uniform exterior cone condi-
tion, therefore the above theorem holds in particular for bour@ieti domains.
In principle, by using Theorem 1.4 and the bounds for the Green functions, one
could get two—sided bounds on the Poisson kernels. However, it turns out to be
a pretty challenging task.

Theorem 1.5. Suppose that D is a bounded-€domain inR". Then there exists
aC=C(D,«) > 1such that for xe D and ze D",

5(x)/2 1 -
Co@)*/2(1+5(2)*/% [x —z|" ~

Kb (X, 2)

C §(x)/? 1
8(2)2/2(1 +6(2))2/2 [x —z|"
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For the corresponding results for Brownian motion, see Zhao [22]. Using the
bounds above, we have

Theorem 1.6 ((3G Theorem)).Suppose that D is a bounded-€domain inR".
Then there exists a € C(D, «) > 0 such that

Go (X, ¥)Go(y,w) _ [x —w|"™®
Gp (X, w) T x=yrrely —wlrme?
X,¥,w € D. (1.12)
Go(x,y)Ko(y,2) _ x —z]"~*
Ko (x,2) T x=yrely —zrme?
X,y €D, zeD". (1.12)

The estimates above are very useful and have a lot of applications. As an
example of these applications, we are going to prove that the conditional lifetimes
for X in a boundedC%! domain are uniformly bounded. As another application
of our estimates we are also going to give a simple proof of the boundary Harnack
principle for nonnegative functions which are harmonic in a bour@etidomain
D. Recently, the boundary Harnack principle for nonnegative functions which
are harmonic in a bounded Lipschitz dom#@inwas proved by Bogdan [4]. To
state these results, we first we need some definitions.

Definition 1.1. Let D be a domain irR". A locally integrable functiorf defined
on R" satisfying the conditionf, .., If ()[|x|~**)dx < oo is said to be

1) (—A)*/?—superharmonic in D if f is lower semicontinuous i and for
eachx € D and each balB(x,r) with B(x,r) C D,

f (X) > Ef (X(TB(x,r)))~

2) (—A)*/?~harmonic in D if f is continuous inD and for eachx € D and
each ballB(x,r) with B(x,r) c D,

f(x) = EF (X(TB(x.1))-

Theorem 1.7 (Boundary Harnack Principle). Suppose that D is a bounded
C%! domain inR", V is an open set oR" and K is a compact subset of V.
Then there is a constant € C(D, V, K, «) > 0 such that for any tw@—A)*/2—
harmonic functions v in D which are strictly positive and bounded onrvD,
and vanish on VW D¢, we have

M<CM X,y e KND.

v(x) T u(y)’
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For fixedy € D andz € D°, it is easy to check thafGp (XP,y), Z P},

and{Kp(XP,2), 7 P },., are nonnegative-supermartingales for eache D.
So if we extendGp(-,y) andKp(-,z) to be zero outsid®, thenGp(-,y) and
Ko (-, z) are (~A)*/?—superharmonic iD.

We can take thdr-transform ofXP, whereh(x) is taken to beGp(x,y) or
Kp (X, z). For eachy € D, the G(-,y)-transformed process ofP is called the
y-conditioned symmetric stable process whose state spad2 \s{{}) U {9},
where 0 is the added cemetery point. The lifetime of the conditional process
is ¢ = 1p\qy}.- We continue to us&XP to denote the generic random variable
of the conditional process, but us® and E{ to denote its probability and
expectation respectively. Far € D°, the K (-, 2)-transformed process is called
the z—conditioned symmetric stable process whose state spdae igd} and
its lifetime is ¢ = 7p. Its probability and expectation are denotedPgsand EZ
respectively. Using Theorem 1.6, one can show easily that any boudééd
domain is a Cranston-McConnell domain for symmetric stable process. That is,

Theorem 1.8 (Conditional Lifetimes). Suppose that D is a bounded*& do-
main inR". Then

sup EZ(m) < oo and sup  EY(mp\(yy) < <.
2€D°, xeD y€D, xeD\{y}

In [5], we apply the estimates in Theorems 1.1-1.2 and Theorem 1.5 to
show that logarithmic Sobolev inequality and intrinsic ultracontractivity hold for
symmetrica-stable processes in bound&€d! domains. We then use these to
establish the conditional gauge theorem for symmeitritable processes.

The rest of the paper is organized as follows. In Sect. 2 we prove the upper
bound estimates Theorem 1.1 for Green funcifas. Due to the length of its
argument, the proof for Theorem 1.2 is postponed until Sect. 6. Theorem 1.4 and
1.5 are proved in Sect. 3. The boundary Harnack principle is proved in Sect. 4,
the 3G Theorem and conditional lifetime Theorem are proved in Sect. 5.

In the sequel we use, to denote the surface area of the unit ballRA.
That is,wn = 27"/2I'(53)~1. In the proofs of this paper, constamtandC, which
do not change their dependence, may change their values from line to line. The
Lebesgue measure of a Borel measurableAsetill be denoted agA|. For a
bounded domai® in R", we usedp to denote the diameter @.

Although the main results of this paper are stated for bour@fetidomains
only, the assumption about the connectednesB @ not really needed in the
proof. All our proofs will go through ifD has a finite number of componerids
such that eacl; is boundedC®?! and thatD; andD; are disjoint fori #]j.

AcknowledgementsWe thank Prof. W. Hansen for a very helpful comment on an earlier version of
this paper. We also thank the referee for pointing a mistake in the proof of (1.5) in an earlier version
of the paper.
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2. Upper bound estimates for Green functions

It is easy to see from the strong Markov propertyXothat for eachy € D and
zeD', Gp(+,y) andKp(:, z) are superharmonic functions . If f andg are
superharmonic, then so fsA g. If f is superharmonic i andf > 0 on D€,
thenf > 0 onR" by the limit theorem for supermartingales.

The following proposition follows immediately from the scaling property of
the symmetric stable processes, so we will omit the proof.

Proposition 2.1. Let D be a domain irR" and a> 0 be a constant. Then
Go(x,y) =a* "Gp,a (x/a,y/a), X,y €D.

Lemma 2.2. There exists a constant @ C(n,«) > 0 such that for any ball
B c R" we have

38 (X)*/ 258 (y) /2
x =y

where G is the Green function of B angk(x) = d(x, 9B).

Proof. We first consider the case that= B(0, 1). It follows from [3] that

_2 z
Gs(x,y) =2 %7 "2 (9) r (g) / (u+1)""/2u*/2"1dulx —y|*"
0

Ge(x,y) <C , X,y € B,

2
wherez = (1 — |x|?)(1 — |y[|?)|x — y|~2. Note that

z
/ (u+1)~"2y*/2"1dy
0

1
Za/Z/ (1 +,UZ)—r‘I/2,Ua/2—ld,U
0
(L= [XPHL = [yD*/2(L+ X HL+ [y Zx —y| 7 -

1
/ (1 +vz) %02 dy
0

IN

1
(/ (1 +vZ)n/2v°‘/21dv> 20‘5B(X)Q/Z5B(Y)a/2|x -y
0

Since L L
/ (1 +vz) "2/2 dy < / v*/? dy < o0
0 0

the assertion of Lemma 2.2 holds fBr= B(0,1). ForB = B(0,r) with radius
r, by Proposition 2.1Gg(or)(X,Y) = ~"*Gg(,1)(%, ¥), we have

T
I8 (X)*/2dg (y)*/2

G <C
PO =T )=y

, X,y € B.
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Lemma 2.3. There exists C= C(n,«) > 0 such that for any ball BC R" we

have
5g (x)/2

s (y)*/?x —yn—e’
Proof. Let G(x,y) be the Green function of the whole space. Clearly

GB(X7y) < G(X7y)

Combining this with Lemma 2.2 and formula (1.1), we have

Ge(x,y) < G(x,y)A<c‘W)

Cdp(x)*/? (5B(Y)a/2 os(y)* )
os(Y)*/2|x —y[n—e \ dp(x)2/2 " [x —y|* )"

If 6a(y) > 208(x), then|x —y| > dg(y) — ds(x) > 308(y) and so

Ss(y)*/? . de(y)” < 9" _ oo
dp(x)*/2 X —y|* T [x =yl ~
If 0g(y) < 25g(x), then

BW)Y? M) _ BME g
dp(x)*/2 " [x —y[* = dg(x)*/2 ~

GB(va) S Cc

X,y € B.

Lemma 2.3 is thus proved. |

Lemma 2.4. There exists a constant @ C(n,«) > 0 such that for any ball
B ¢ R" we have

5 (x)2/2

Ge(x,y) <C X —y[ar2’

X,y € B.

Proof. Clearly Lemma 2.4 holds fox =y. Forx,y € B with x Zy, by Lemma
2.2 and Lemma 2.3,

C dg(x)*/2 <|X —y]/2  Sp(y)/? > < C dg(x)*/2
|

< .

]

Lemma 2.5. There exists a constant € C(n, «) > 0 such that for any
B =B(a,r) C R" we have

5g (x)/2

— . X,yeB°
|X 7y|nia/2? )y Y

Gee(x,y) < Cly — a|*/?

where G is the Green function of B
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Proof. In view of Proposition 2.1, we may assume tigat B(0, 1). Then from
the discussions on pages 263-265 of [16] one can easily show that

Gee(X,y) = X" ly" " *Ga (X", y")

wherex* = x/|x|? andy* =y/|y|?. Since

* * |X - y| * 6B(X)
X* —y*| = and dg(x*) = ,
YR ) A
we have by Lemma 2.4 that
6B(X*)a/2

G (X < CX* n—«o *N—a__ "B\ J
B ( 7y) = ‘ | |y ‘ ‘X* _y*|n7a/2

/2 dp (x)*/2
X —y[nes2

Cly
0

Now let D be a bounded ! domain and leGp be the Green function of
D. It is well known that there existsy > 0 depending only o such that for
anyz € 0D, 0 < r <y, there exist two ball87(r) andBj(r) of radiusr such
that B#(r) ¢ D, B3(r) ¢ R"\ D and {z} = dB#(r) N 9B3(r). Let dp be the
diameter ofD. In the following, we are going to assume thigt< %dD.

Proof of (1.4).Let xo € dD be such thaix — xg| = §(x). Consider the ball
B = B}°(ro) = B(a, ro). From Lemma 2.5, there is a constaht= C(n,«) > 0
such that

§ (X)a/Z
a/2 B
Goley) < Gerlxy)<Cly—al”* =i
6(X)a/2
= —_ a/zi
Cly a||x_wmwz
|
Proof of (1.6).From (1.3) and (1.4) we know that
Goly) < C — =
pD(X,Y = 1 |X — y|n_a 9
5(X)a/2
Gp(x,y) < 2 m

Sinced(y) < 4(x) + |x — y|, we haveds(y)*/? < §*/2(x) + |x — y|*/2. Therefore,

5()/2Gp(x,y) < (X)*2Gp(x,y) +|x — y|*/?Gp(X,y)
5(X)a/2 5(X)a/2

n—a + 2 n—ao’
Xyl X —y|

IN

1
|
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Hence
5(x)/? 1
o(y)a/2 [x —y|n—e’

Gp(x,y) < (C1+Cy)

O

Proof of (1.5).1f d(y) > ro or 6(y) < ro and |[x —y| < 84(y), then (1.5)
follows from (1.4). So we assume thafy) < rp and |[x —y| > 84(y). Set
r = min(x — y|/8,ro). Let yo € dD be such thaty — yo| = d(y) and let
B(a,r) = B}°(r). Without loss of generality, we can assume thas at the origin
and thatyp = (0,---,0,—r). ThenB¥(r) = B(b,r) whereb = (0,---,0,—2r).
By the explicit formula for the Poisson kernel on the HA{0,r) given in [3]
and the strong Markov property, we have

Go(x,y) = Ey[GD(X7XTz(O,,))]
2 |yI12ya/2
- ¢ D\B(0,r) E|ru|2 —|yr|2;a/2 ly —ul" Gox, U)du
du
< C(S(X)“/Z(S(y)a/z/D\B(OJ) (u[— )72y —uf|x —u"~%
du
< CoX)*/25(y)/? /D RO

where in the first inequality above we used (1.4) and in the last expression above
Do is the seB(b,r)°\ B(O,r). Letu=rv, X =%, § =Y. Then

/ du _1 dv
po (Ul =) 2lu =y Ju—x|"=% 1" Jp, (jv] = 1)*/2jv = F|" o — X" 2

whereD; = %Do =B((0,---,0,-2),1)°\ B(0,1)). Note that§| < 1 and|X| > 7.
The proof will be finished if we can show that the function

dv

F(x,y) = -
oY) = Tl =12 — ylo — x| 3

is bounded on the set

B((0,---,0,-2), 1) Nn{|x| > 7} x B(0O,1)N{(0,---,0,¥n) : ¥n < 0}

by a constant depending only dd and «. In order to accomplish this, one
only has to show that the functioR(x, (0,--- ,0,—1)) is bounded on the set
B((0,---,0,—2),1)¢ n{|x| > 7}, which can be accomplished by elementary
analysis. We omit the details here. O
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3. Poisson kernel estimates

Let D be a bounded domain RR" and letX be the symmetrier—stable process

on R". In this Sect. we are going to prove Theorem 1.4 first, and then we will
use Theorem 1.4 to prove Theorem 1.5. To prove Theorem 1.4, we need the
following result:

Theorem 3.1. For any Borel measurablé > 0 on D°
X
BD B0 X 1= [ sz [ 20y

Proof. It is known (see, e.g., page 19 of [2]) that theMy system I, H) of the
a-symmetric stable proces$ is given by

N(dey) = A(n7a) dya Ht = ta

1
X —y|me
whereA(n, «) is given by (1.10). Extend to R" by defining it to be zero iD.
For any non-negative Borel measurable functioon R", set

fx)e0) 4 f(x)o(y)

Feo=Ama) [ o Iy @ =AM

Define
k(w, dt) = Z f (Xs— (W) p(Ks(w))Is(At) Ly, _ (w)xe(w)} -
s>0
By Theorems (73.1) and (73.4) of [19] we know that the dual predictable pro-
jection of x is given by
kP(dt) = F(%)dt.

Since the random proces§l.y.o<t<m )} IS left-continuous and is therefore
predictable,

> 060N ) = B[ FOG)s
0<s<7p 0
- / Go (X, Y)F (y)dy
= A, a) / Gp(X,Y) / f(y)¢|(n+)adzdy
f
= A(n,0) / o(@)dz / Go (x, y)nfay) dy
Therefore

B (10 )00 ik, 1)) =AML0) [ otz [ GD(XZy)f(y)d

In particular,
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006 Xy # % 12 AM0) [ ez [ 20Ty

O

Proof of Theorem 1.4lt follows from Lemma 6 of Bogdan [4] that for any
bounded domai satisfying uniform exterior cone condition,

(3.2) Px(Xry # Xrp—) =1, x € D.
The theorem now follows immediately from (3.1) and (3.2). O

Theorem 3.2. Suppose D is a bounded'€ domain inR". Then there is a con-
stant C= C(D, «) > 0 such that

3(x)*/2
(1 +0(2))*/26(z)*/2 |x — z|"”

Proof. By Theorem 1.4

o )/ “ﬂil

Gp (X
| | |yD( |ny_;.)a |X7y|n+‘y72|n) dy

2" Go(X,y)[x —y[" Gp(x,y)
“““Nx—nn(ﬁ y—zme Yy @
n

2z (I +10). (3.3)

Kp(x,z) <C XGD,ZEﬁ:.

Kb (X, 2)

IN

A(n, )

IN

Aln, o) —— x—

By Theorem 1.1, there is a constadt= C(D, «) > 0 such that

50°/20(9)* 2
< _ =
Go(x,y)<C Xy

We have

I < C(S(X)a/z/ |5(y)o¢/2 dy

Z‘I’H’O{

Cé(x)a/z/D v _rnﬂx/Z dy
a/2 @ n—1
C(S(X) Wwn /5(2) rn+a/2r dr
ZCwn
«
_ 2Cuw 5(x)*/?
- a  §(z)*/2

IN

IN

5(X)a/2( r 7(1/2) |5(Z)+dD

IN

(3.4)

Using
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5(X)a/2
Go(x,y) < Cma
we get
N < ca(x)a/z/ 1 dy
— D |X_y|n—a/2|y_z|a
1
< Co(x)*/? / Ayt
{yeDix—y|>ly—z)} Y — Z|"*/?
1 1
+ dy
/{yED:x—y|<|y—z|} ‘X - y|n—a/2 |y - Z|a }
1
< a/2
< Co(x) { ok

1
o/
(yeD:x—y|<ly—z[} [X = Y|"~/2(||]x — z| —

= dy .
X =yl VIx—yl) }

In the last inequality, we used (3.4) and the triangle inequality. Using spherical
coordinates centered &t

I comer2d —* v rH d
< @ +
- ) 5(z)/? /0 rn—e/2(la—r|vr)> '

wherea = |x — z|

r=as 1 1 do/a ga/2-1
< o) —— + / — __dsy.
= oK) {6(2)&/2 a2y (I-s|ver

Since 0< a < 2,
dp/a Sa/2—l 0 Sa/2—l
_ dsg/ —————ds < 0,
/o ([1—s|vs)* o (L—slvs)®

§(X)a/2
5( )a/2
for some constant > 0. This together with (3.3) and (3.4), implies

thus
I <C—F—

s(x)/2 1
§(z)*/2 |x —z|"

Kp(x,z) < AN, a)C ——— for x e D, ze D"

In particular, ifz € D® with 6(z) < dp, then

5(x)>/2 1

a/2
Ko(x.2) < AN, 0)C(L +to) 2ot

If 6(z) > dp, then fory € D, §(z) < |y — z| < 26(z). Therefore
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Go(x,y) Y)

)/ ‘ Z|n+a
AN o)z | ot y)ay
1 / C16(x)*/2

o2 Jp [x —y[nme/?
s(x)*/2 1
o(2)> o)
s(x)/2 1
0(z)> |x—zJ"
5(x)e/? 1
3(2)*/2(1+0(2))*/% x -z

K(x,2)

IN

IN

A, a)

IN

A(n, a)C

IN

A(n, a)C

IN

A(n, a)C
This completes the proof of the theorem. |

Before going to estimate the lower boundkyf, we first record three simple
facts about bounded Lipschitz domains in the following lemma. The proof of
this lemma is straightforward and thus omitted. We say a Lipschitz dobain
has Lipschitz characteristic constantsg, (&) if for every z € 9D, there is a
local coordinate systentq, éY) € R x R"~* with origin sitting atz and there
is a Lipschitz functionf defined onR"~! with Lipschitz constan#y, such that

D NB(z,r0) = B(z,10) N{¢ = (€1, §W) 1 & > F (€M)}

Lemma 3.3. (1) If D is a Lipschitz domain with characteristic constafig Ao)
and a> Ois a constant, then the dilation aD has Lipschitz characteristic constant
(aro, Ao).

(2) Suppose th@ € D andr > 0,0 < a < 2. Then there is a constanCG- 0
depending only on r¢, and the Lipschitz characteristic constarfts, Ag) of D

such that )
a/2
/ L (1/\ o) ) dy > Co > O.
pne@n 1Yl ly|

(3) There is a constant &= Cy(ro, Ao, ) > 0 such that

/ 5(y)*/?dy > Co >0 forall x € dD.

DNB(x,r)

Theorem 3.4. Suppose D is a bounded'€ domain inR". Then there is a con-
stant C=C(D, «) > 0 such that

5(x)*/2
8(2)/2(1 +6(2))*/2 |x — z|r+e’

Kp(x,z) > C xeD,zeD".

Proof. Let (rg, Ag) denote the Lipschitz characteristic constantsDorBy Theo-
rem 1.2, we have
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1 5(x)*/25(y)~/?
X =yt x =y

GD(x,y)ECmin{ }, X,y € D.

Recall thatdp is the diameter oD. We derive the estimate by considering two
cases.

Case 14(z) < dp.
Using change of variable, we have

Kb (x,2)
B Go (X, y)
A(n )/ | |n+a
y 1 1 5(y)*/? )
>A(n Oz)C(S(X) 2/ |y Z|n+0‘ ‘X _yln o <5(X)a/2 A |x —y|a dy

y—x=lx—zly Co(x)~/2 / 1 1 1 52\
> Aln, [ — — = N —= d
= AT fs @y B sz e )Y

(D — x) and3(y) = d(y, D). Sinced(x) = 2&) < 1,

x—z] =

C8(x)2/2 1 1 5H)22\
Kox.2) 2 Aln. o) = |"+a/2/5(1+|v>n+a g \ M e )

whereD =

Ix— Z|

Note that|x — z| < 2dp, so D has Lipschitz characteristic constarﬁ%,Ao).
LetO<r < r° be fixed. Then

KD (Xa Z)
Co(x)/2 / 1 1 AP

> AN, a)————0 [ — 1A == d

" )| —z|™/2 J5agry (L+r)Me |y[n-e Iy Y

Co(x)*/?
> |x—(z|)“+a/2 by Lemma 3.3(2) (3.5)

1°. If 6(z) > ro, then by (3.5)
Cro/? 5(x)/2 5(x)/2

KD (Xa Z) Z A(na a)

> A(n, a)C

0(2)*/2 |x —z|"(2dp)>/2 ~ (z)*/2x —z|"

2°. If |x — z| < 44(z), then by (3.5)

Co(x)*/?
X —z|"(4d(z))~/2 ~

Co(x)*/?

Ko(x,2) = AN, a) 5@ 2% — 2z’

> A(n, o)

3°. Lastly, if [x — z| > 46(z) and§(z) < ro, then by a change of variable
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Gp (X
Koo = Ana) [ 200 ay
a/2
> A, a)CH(x)*/? / 5(,1” e AY
{yeD:ly—z|<3}|x—z|} X —y| ‘y—Z| «
s (N a/2 NS /2
(=L YOS SO Ry L
6(2)*/2|x — z|" J Fep:gi<iixiy X —YI"YI
where
~ X—2Z
D=——(D — X = .
6(2)( z) and X @)
Thus
KD(sz)
N .l X2
- T 0(2) 2 x =z Jgeniyi<axiy (X + YDy
a/2 -
smce|><|>4> AN, o) Ci(x) 5(7)“/2d7. (3.6)

8(2)2/21x — 2" ) Fepryi<2y

Note thatD has Lipschitz characteristic constar(%%,Ao W|th 6(2) > 1. Let

y* € 8D such thaty*| = d(0, dD) = 1. Then by (3.6), and Lemma 3.3(3),
Co(x)*/?

8(2)*/2x — z|" JorBy,1)
Co(x)*/?

3(2)*/2x —y["

In summary, we have fof(z) < dp,

Co(x)°/2
e
5@y /2y = )

Ko(x,2) > A(n,a) 3(y)*/2dy

v

A(n, «)

Co(x)*/? 1

KD(X7Z) > A(n,Ol) 5(2)0//2(1 +6(Z))o¢/2 |X _ Zln '

Case 24(z) > dp

In this remaining case, for any € D, we haved(z) < |y — z| < 2§(z).

Thus
Ko(x.2) = Ana) [ 220 ay

> [
= A(n’a)2n+a5(z)n+a/I;GD(X’y)dy

CH(x)*/2 / . 1 5(y)~/2
> AN, Q) d
= A o MMy eae0e x -y S Y
>

Co(x)/2 1 o(y)*/2
A(n’a)(S(z)a\x—ZI” /D a/2|x y—a A X —y|n d

(3.7)
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1 8(y)>/?
p(x) =/ A d
D <d3/2|x—y|”a Ix =y

is strictly positive and continuous dp, thus iean p(X) > Cy > 0. So by (3.7)
X

Note that

Co(x)*/? 1

Kb (x,2) > A(n, a) 5(2)*/2(1 +6(2))*/2 |x — z|°

4. Boundary Harnack inequality

By using the strong Markov property and the quasi-left-continuitiX pbne can
show that if a functioru defined orR™ is (— A)*/2~harmonic inD, then for any
open seiD; with D; C D,

u(x) = Exu(X(m,)), for x € Dj.

Proof of Theorem 1.7Without loss of generality, we can assume that for any
xeD,

u(x) = Exu(X (7)), v(x) = Exv(X(7p)).
Otherwise, we can take @' domainD; ¢ D and a seW; with K ¢ V; Cc V
such that §D) NV, C (D) N (0D1) € V. Thenu and v are bounded and
continuous inD; and vanishes ilDf NV;. From Theorem 1.4 and the quasi-left-
continuity of X one can show that

u(x) = Exu(X(mp,)), v(X) = Exv(X(7p,)).

Then we can work wittD;, V3, K instead ofK,V,D.
Letro =d(K NnD,D®\ V) > 0 anddy be the diameter oD N K. Then by
Theorem 1.5 fox € D

ux) = / Kp (X, z)u(z)dz
DC
— a/ U(Z)
> 00 | oy an
— — af U(Z)
= Cly(x)2 /D o T ST T dz.  (4.1)
Similarly

N u(z)
(4.2) u(x) < Co()°/? /Dc\v 5(2)/3(1 +5(z))/2|x — z|" @

Forx,y e DNK andz € D¢\ V
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o
X —z|] < Iy—2|+|><—y|§|y—2|+do%

IN

vzl 2y -z < (1eR) -2
0 )

[x — | < <1+d°)_
ly — 2| lo

Interchange the role of andy, we have

-1
<1+do> cx=2 g, %
ro ly — z] ro

Hence

Thus by (4.1) and (4.2)
—n n
c! (1+d°) gu(x)gc(1+do> .
fo u(y) Fo

c! <1+d°)_n<v(x)gc (1+d°)n.

) ~ w(y) lo
Thus there is a constat = C(D,V,K, «) > 0 such that

Similarly

uk) <C@ for x,y € D NnK.

v(x) = u(y)

5. 3G Theorem and conditional lifetimes

Proof of Theorem 1.670rx,y, w € D, if |x —w| < 3 max{s(x), 6(w)}, then by
(1.3) and (1.8)

GD(Xay)GD(ya U}) <C |X B wln—oz )
Gp(x,w) = [x—y["oly —whme

If [x —w| > 2 max{d(x), 6(w)}, then by (1.5), (1.7) and (1.9) we have

Go (%, Y)Go (v, w) X —w|”§(x)*/2(y)/? S(w)*/?
Go (X, w) T 0)Z(w) =yt a(y)/Ply — wlhe
X — w|"

. 5.1
Xyl — we (1)

Interchange the role of andw,

Go(x.Y)Go(,w) _ o [x—wf

5.2 .
(®2) Goow) - X yPely —af
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If |x —y| > 3[x —w|, we see from (5.1) that (1.11) holds.|¥—y| < 3[x — w],
sincely — w| > [x —w| — [x —y| > 3[x — w|, we get (1.1) from (5.2). Thus
(1.112) is proved.

Forx,y e D andz € D%, by Theorem 1.5

5(y)*/? |x —z|"
6(x)/2 |y —z|n”

GD (X? y)KD (y7 Z)

(5.3) Ko(x.2)

< CGD (Xa y)

If [x —z| < 2]y —2z|, by (5.3) and (1.6) we have

GD(va)KD(y?Z) < |X_Z|n_a
Kp(x,z2) = " [x—y["eoly -z

If [x —z| > 2]y —z|, then|x —z| < [x —y|+ ]y —z| < |[x —y| + 3[x — z|. So
X —z| < 2|x —y|. By (4.3) and (1.5)

Go (YKo (x,Y) _ ~ 0W)™ [x—2" _ x—z"
Kp(x,Yy) Tox=yt ly—z[" T x—yhrely —zhme

Proof of Theorem 1.8Fory € D andx € D \ {y}, by (1.11)

Edlovyy] = /O PY (X €D\ {y})dt

- 1 [ ub
- GD(Xay)/o Ex [GD(Xtvy)y Xi €D \ {y}] dt

- / GD(Xvw)GD(wvy) dw
D GD(X7y)

<C/( 1n_+ 1n_>dw
o \[X —w"m |y —w[h—e
1
< 2C su /7dw
xeRE') p [X —w["~e

Co < o0.
Forx e D,z D", by (1.12)

/ GD(Xa w)KD (U}, Z) dw
D KD(X7Z)

C [ (e * o —gpe ) 4o
p \X—w|"=* " |w—z["—e

< Gy < 0.

Edlmo]

IN
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6. Lower bound estimates for Green functions

SinceD is a bounded > domain, we know that there exist positive constahys
andrq depending only oD such that for anyg, w € 9D, |n, —n,,| < Cp|z — w)|
(wheren, andn,, are the inward unit normal vector &#D atz andw respectively)
and for anyz € 0D, 0 < r <y, there exist two ball®;7(r) andB3(r) of radius
r such thatB#(r) c D, B3(r) c R"\ D anddB#(r) N 9BZ(r) = {z}.

Without loss of generality, we can assume that

1 < —.
(6.1) fo < 2Co

Lemma 6.1. For any x € [—1, 1],

(2x — 1) +/(2x — 1R +4(1—x)2 > 1.

Proof. Using first year calculus it can be shown that the function

f(x) = (2x — 1) +/(2x — 12+ 4(1— X)?
achieves its minimum onH1,1] atx = 1. Thusf(x) > f (3) = 1. O
Corollary 6.2. Forany0 < s <r, we have

(6.2) s+ 2rs — 4rs cosypy < 4r?(1 — cospr)?.

Proof. It is easy to see that (6.2) is true when

0<s<r[(2cosp; — 1) ++1/(2cospy — 12 +4(1— cospy)?].

From Lemma 6.1 we know that

(2cosp; — 1) + /(2 cospy — 1)2 + 4(1— cospy)? > 1.
Therefore (6.2) is true for any € s <r. |
Lemma 6.3. For any z w € 9D with z # w,

P GD (Xv y)
liminf ————~— > 0.
Dxz 3(x)*/2i(y)e/?

Proof. For any fixed O< 8 < dp, the diameter oD, letr = min{ro, %} For
anyz,w € 0D with |z —w| > 3, when|x —z| < § and|y —w| < 5, letx* and
y* be the points o@D such thatx — x*| = 4(x) and|y — y*| = d(y). Write

B (r) =B(Ox,r), B (r)=B(Oy,r)
BI(r) =B(Og,r),  B{'(r) =B(Ou,r).

Note thatx € B(Oy,r). By the explicit formula for the Poisson kernel on the
ball B(Ox,r) given in [3] and the strong Markov property , we have
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GD(X7y)
= Ex [GD (XTB(OXJ)7 y)}
(r2 — |x — Ox[?)*/? 1
= Cl/ Gp(u,y)du
BO.renp (U — Ox|2 —r2)®/2 |x —ul"
> C? / / (12 =[x — O«)*/*(r? — |y — O, )*/2
- B(O,r)cND  JB(Oy,r)enD (Ju — Ok 2 — r2)@/2(Jv — Oy|2 — r2)=/2
M dudv

X —ul"y — v
=C12/ (r? =[x = Ox)*/2(r® — ly — Oy [»)*/2
b Jo (Ju—Ox[2—r2)2/2(jv — Oy|2 — r2)=/2
Gp (U, v)1p(0,.re(U)1B(0y.1)e(v)
X —ul"y —v["

dudv

where n o
=G () gin2t
Ci=nw r (2) sin 5
Thus
Go (X, Y) . / / (1 + x — Ox|)*/*(r +]y — Oy|)*/>
)220 = T o Jo (U= O~ r)/2(ju — O —17)2/2
“Gp (U, v)1s0,.r(U)1B(0y 1) (v) du do
X —ulMy — o
= h(x, y) (6.3)
We show next that limsx—,z h(X,y) exists and forms a positive and con-
Doy—w
tinuous function on{(z,w) € 9D x 9D : |z — w| > #}. For this, we set up a
spherical coordinate system, (s, ... , ©n—_1) With origin Ox and principal axis
Oxxi. Then for anyu = u(p, 1, ... ,¢n_1) € B(Ox,r)¢, we have
u—x2 = PP+ (r = 8(x)) — 2p(r — 5(x)) Cosp
p:L+S

2r(r +s — 6(x))(1 — cosypy) + % + §2(x) + 256(X) COS1
> Ar(r +s—6(X))sir? % +s°

> 2r%si? % +s2
22 P1 2
> (Zr sir? 5 ) V (s?). (6.4)

Similarly, if we set up a spherical coordinate systeny, ... , 6,_1) with origin
Oy and principal axisOyyi, we have for any = v(7; 01, ... ,6h_1) € B(Oy, )",

(6.5) lv—y? > <2r25in2 921) vV (t?)

wheret =~ —r. Let
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D1 = (B(Ox, 2r) \ B(Ox,r)) ND, D2=D\B(Ox,2r)
Ds = (B(Oy,2r)\ B(Oy,r)) ND, D4=D \B(Oy,2r).

Then, for anyu € D1,

d(u, 8BX " (r)) [4r2 + p? — 4r pcospq]¥? —t

p=r+s

1l
=
II+

[r?(5 — 4 cospy) + (5% + 2rs — 4rs cosyp)]Y? — r

Corollary 6.2
< [r?(5 — 4 cospy) + 4r2(1 — cospr)?]Y2 —r

r(v/5—4cosp; — 1)+ 2r (1 — cosy1)

4r (1 — cosp;) + 2r (1 — cosp;)
12r sir? %. (6.6)

ININ

Similarly, for anyv € D3
d(v,8B) (r)) < 12r sir? %1

Foru € Dy, v € D3

B<lz—wl < |z=xX|+|x—u[+[u—v|+]v-y|+]y —wl
< r+3r+|u \+3r+r
= 2 v 2
< T+ |u—v
< g+|u _fv‘a
and hence
|U—’U|Z§, YueD;, VYvéeDs.
By Theorem 1.1, we have
5(U)a/25(v)a/2
G < = 7
D(U,’U) = ‘U —’U|n
8\" .
< C (5) d(u, BX (r))*/?d(v, dBY (r))*/?
< C(1an)~ 8 nsinCY P i b for (u,v) e Dy x D
> ﬁ 2 2 , U 1 3
5(u)e/2 C(12r)>/2sin™ £
Gp(u,v) < U= o2 < TR for (u,v) € Dy x Dy,
C(12r)*/2sin* &
Gp(u,v) < U o2 for (u,v) € D, x D3,
and
Gp(u,v) <C for (u,v) € Dy x Dg.

|u — v|n—e
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Thus for (1, v) € B(Oy,r)¢ x B(Oy,r)°

(r +[x — Ox)*/2(r +|y — Oy[)*/2 Gp (U, v)

(lu—Ox2=r?9)*/2(jv = Oy|2 = rH)*/2 |u —Xx|"|v —y|"

< L :
(lu = Ol = 1r)/2(Jv — Oy —r)/2
{ C(12r)*(§)" sin™ & sin® & 1p, (u)1p,(v)

[(2r2sir? £) v (Ju — Ox| — r)2"/2- [(2r2sir® £) v (jv — Oy| — r)q"/2
C(12r)*/2sin™ £ 1p, (u)1p,(v) 1

r[(2r2si® £) v (ju — Oy| — r)3"/2 |u —w[n=a/2
C(12r)*/2sin® % 1p,(u)1p,(v) 1

rﬂ[(2r23in2 %) V (jv — Oy| —r)2n/2 lu — yn—a/2

L olln )y
r2n |u _ /U|n70¢

o 8\" sin® £+ - 1p,(u) 1 _
s cd) (5) [(2r2sin® ) v (Ju — Ox| — r)2"/2 (Ju — Oy —r)/2
. sin® % - 1p,(v) 1
[(2r2sir? )V (jv — Oy| — r)2"/2 (Jv — Oy —r)*/2
/2, —n sin® 2 - 1p,(u) 1
O s ) v (u— o — A2 (U0 172
_ 1o.()
|U—1}‘”_0‘/2
/2, —n sin* 4 - 1p,(v) 1
T s )V (oo A (0O e
1D2(u)

'|u — y[n—a/2
1 1p,(u)lp,(v)

r2n+a ‘U—’U|n_a

f(u,v;x,y,z,w)

n
c(@azr)~ (;) fi(u, v; X, Y, z,w) + C - 12%/?r ~"f(u, v; X, Y, Z, u)

1
+C]-2ar_nf3(u7v;x7y7 Z7’LU) + Cmf;;(u,’l); X,Y,2Z, ’U})

From Lemma 6.4 below we know that the family of functions of«)
A= {f(u,v,x,y,z,w) : X,yeD,z,wedD,|z—w| >0,
r r
x—z| <3y —wl <3} (6.7)

is uniformly integrable orD x D.
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Whenx — z,y — w,

|Ox — O] [(X* +rng«) — (z — ;)|
|X* — z| +rCo|x* — 2|
(1 +1Co)(Jx* — x|+ [x - z])

2(1 +rCp)|x — z| — 0.

ININ A

Similarly
|Oy — Oy| — 0.

Thus by the uniform integrability of# in (6.7), we have

lim h(x,y) =
DoSx—z
Doy—w
GD(U,’U)].B(O r)C(U)lB(o r)C('U)
Cf (2n) 2 2 dud
i (@r) /D /D (Ju— 0|2 = r2)2/2(Jy — Oy |2 — r2)a/2ju — z|"|v — w|" v

and is a continuous function i(z,w) € 9D x dD : |z —w| > §}. Sinces > 0
is arbitrary, we have by (6.3) that for ang, (v) € 9D x 9D with z # w,

Gp(X,y)
L”’;"X'E‘Z S 23(y) T2 = DQQLZ hx.y) > 0.
D> D3y—w

Lemma 6.4. There exists) = n(n, «) > 1 such that

sup / / (F (U, v: X, . 2, w)"dudy < oo,
D

fe.4JD
where. 4 is the set of functions defined above in (6.7).

Proof. It is easy to see that for any< n < and anyu € D

n— a/2’

1 d -1

and

1 d . n-1

Casell<a<?.

In this case, we take & 7 < mln{ n-i } Then

a’ n—a’ n— a/Z
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/ sin® 215, (u) 1 ! "
p | [(2r2sin? £) v (Ju — Ox| — r)2"/2 (Ju — O] —r)*/2

/ 1p,(u) 1 "du
p \ 2V/2rnsin™™* £ (Ju — Ox| —r)2/2

p"sim 2 o1dgrdp

IN

" 2r 1 /7\' 1
"L (=02 Jo (@Sl gy
n—1 r T n—2
wn-1(2r) / 1 ds/ ST <o (6.10)
0 0

= (2n/2rn)n som/2 sinh—a) %
Similarly
/ [ sin* 21p,(v) 1 ndv
p | [@r2sir? &) v (v — Oy —r)2]"/2 (jv — Oy| —r)*/2
n—-1 pr T iN—2
g wzznl/(zzrrn))n /0 S(j] ds /O Slsn'ﬂnnaflez d6; < oo, (6.11)

Thus, from (6.8)—(6.11), we have

//fl(u,v;x,y,z,w)”dudv

D JD

2 n-2 r 2 x  n_2 2

wh_1(2r) (/ _an ) / sif"~“ ¢

—_ sz ds ———d < 00,
@@y o o sz T ) =%

//fz(u,v;x,y,z,w)"dudv

D JD

wnwn_1(2r)" 1 fen o -l T osin" Y
ey Uy = 95) () et /osin”(“z"gd(p

< 00,

//fg(u,v;x7y,z,w)”’dudv
D JD

annfl(zr)n_l /r _an /dD -1 /ﬂ sin" 2 ()
—_— sz ds ——d — T d
(2n/2rnyn 0 ’ o Tnn—a/2) T o sim(— 2 ®

< 00,

do n—1
//f4(u,v;x,y,z,w)’7dudv§ |D| wn / Tifdr < 00.
p.Jp o 7=

Therefore the assertion of Lemma 6.4 is valid whea & < 2.

IN

IN

IA

and

Case20< a <.
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In this case we take & 1 < min{ -1 _ 4 _n } Then

/ Sirf £ 1, () '
p | [(2r2sir® £1) v (ju — Ox| — r)2]7/2 (Ju— Oyl —r)*/2

n
g / sin® £ 1o, (u) du
< a_3a -7
0 | @) -0 g (U= O =)
n(1—32) x pm sin“_z 1
2\— 4y $1 n—1
< () Tz anl/r /0 Sin0- ) 21 (o —n@ o’ deadp
n—(1—3a) r o 4 Sinn_z
2y~ &) oan—1 (- L 2 S
< @9 )T wna ( /O s 7 ds) /0 Sinn<n—<1+%»%d90
c (6.12)
Similarly

/ sir? %15, (v) 1 "d
o | [2r2sif B) v (v — Oy — 272 (ju— Oy —1)o/2| ~°

n—(1—3a) r o & Slnn_z
2y— 2o yn—1 —1=%)m L S
< (2r9) 2 (2r)" “wn-1 (/0 S ¢ dS) </O sin(—(1+%)) £ de

< oo. (6.13)

Therefore, from (6.8), (6.9), (6.12) and (6.13), we have

//fl(u,v;x,y,z,w)"dudv
D JD
2
(2r 2)—(n—(1—3%))71(2r)2n—2w§71 (/r S—(l—‘j)ﬂds>
0

2
« ﬂﬂd
o Sinn(n—(l+%))% ®
< 00,
//fZ(uvv;vaasz)ndUdv
D JD
r do n—1
(2r2)~(0==FN (21 4 /s*(lf%’”ds / AT
0 0 7—7](“ )
, Wﬂd
o s+ ¢ 7

IN

IN
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//fg(u,v;x,y,z,w)”dudv
D JD
n—a-% ' o
< @) 7 12" lwpwn_s < / s‘(1‘4)"ds>
0

/'dD LA /’T sif" 2y g
: U7 T N —(1+2)
, 715 o sin-@) 2 v

and

dp 7_n—l
//f4(u,v;x,y,z,w)”’dudv§|D|wn(1) / ——d7 | < 0.
p.JD o Tnn—a)

Hence the assertion of Lemma 6.4 is also valid when @ < 1. O

Lemma 6.5. For any % € D and z€ 9D, the limit

GD (Xv y)

m
a/2
DXB_;ﬁz §(y) /

exists and forms a positive and continuous function or BD.

Proof. Using the same notations as in the proof of Lemma 6.3, we have
Gp (va) = K [GD (XTB(Ox,r)? Y)]

(r2 _ |X _ OX|2)a/2 1
C/ Gp(u,y)du.
" Joonryro (U— O F 12y [x —up W)

From here on we can use a similar but simpler argument as that of Lemma 6.3
to finish the proof of this lemma. |

Lemma 6.6. For any ball B ¢ R" of radius r, there is a constant =
2-or—z2] (%)_zf(g) such that

G (X )>C ‘X_y|n +|X— |n—a -
PRI =2 Ge 022 Y ’

wheredg(x) = d(x, 9B).

Proof. Without loss of generality, we can assume tBat B(0, 1). We know that
z
Ge(X,y) = Cg/ (u+1)""/2y*/2"1dulx —y|*"
0
wherez = (1 — [x|)(1 — |y|P)|x —y|72. If z > 1, then

1
(6.14) Gs(X,y) > C2/ (u+1)""/2y*/2 1du|x — y|*".
0
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If z< 1, since

z 1
/ (u+1)™"/2u"/2 "1y = 20/ / (1 +v2) "2/ 1dy
0 0

1
> Za/Z/ (1 +v)—n/2va/2—ldv
0
1
> (@ ) ) -y [ e
0
we have
1 a/2 a/2
(6.15) G (x,y) > C / a +v)—“/2va/2—1de
0 X =Y
Combining (6.14) and (6.15) we get the assertion of Lemma 6.6. |

Proof of Theorem 1.2f |x —y| < %") takeB = B(x, 0(x)). Theny € B C D.
Let Gg be the Green function d8. Then it follows from [3] that we have

C;D (va) 2 GB (Xa y)

c (IX -yl = / lu— XI“‘”uy(dU))
lu—x|>5(x)

> alx -y = 000"
1

> __oa—n

il Cl(l 2 )|X 7y|n7a7

wherec; = I'(252) [Z‘Xw”/zf(%)]_l and uy is the distribution of first hitting
position of B(x, d(x))¢ when the process starts from
If [x —y| < 29, the proof is the same.

In the case that
9(x) o(y)
27 2 ]
if the conclusion of the theorem were false, there must be a seqfiéacg)} C
D x D such that

X —y| > max{

xkyk|>max{5(zxk),5(32/k)}, k>1

and
“m GD (Xk7yk)
k=00 0(Xk) /20 (yk) /2

By taking subsequence, we may assumeyk) — (z,w) € D x D asn — co.
If z#w, z,w € D, then

X —y|" =0.

GD (Xk7 Yk)

— GD (Za U))
I Sz M K

_ TU\= =] _ n
= 5(2)@/26(w)°‘/2|z w[" > 0.
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If z#w, z,w € D, then by Lemma 6.3

||m|nf GD(Xk7Yk)

imi GD (Xk7Yk)
_ DV IR 1y [N = |7 |0
k— 00 5(Xk)a/25(yk)a/2|xk Yk| |Z u)| ||knl|nf

oo 6(X)*/25(yi)*/?
If z#w,zeD andw € 0D, then by Lemma 6.5

Gp (X%, Yk)

im |n - ‘Z_w|n . GD(Xkayk)
k=00 0(X)*/20(yk)*/?

0.
5@ 7 e TSz

X — Vi

Similarly, if z# w, z € 0D andw € D, then

GD (Xk7 Yk)

FTVEVYCYTNEYIE] _ n
k—o0 §(Xi )2/ 25y )/ 2 X — y«|" > 0.

To deal with the case = w (xx —yx — 0), we want to prove that there exists
a constanC > 0 such that for anx andy in D satisfying

6(x) 4a(y) ro
) 2L <) — S
(6.16) max{ > o < |x y‘<10(1+r0C0)’
the inequality
a/2 a/2
(617) Gox,y) > c‘w

holds. This fact leads to the final contradiction.

For any fixed pointsx andy satisfying (6.16), leix* andy* be the points
on 9D such thatix — x*| = §(x) and |y — y*| = d(y). Setr =rg, By =B} (r) =
B(Ox,r), By = Bly*(r) =B(Oy,r). Then

IX* —y*| < X —=y[+4d(X)+(y) < 5[X — ]

Ok —Oy| < X" —y*[+r|ne —ny-
< (1 +10Co)[x* —y*|
< 5(L+roColk— Y| < 5.
Set up a spherical coordinate system, ... , vn_1) with origin O and

principal axisOxy (see Fig. 1 below) and set

6 = ¢4 coordinate ofOy
a = maxfr:(r;¢1,--. ., ¢n_1) € By)
a
S = {(r;3017...,g0n1)EaBXIO<g01<2}
= |y =0
J = ly-0
8 = cosf+a)
n = CO0sb.
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By some elementary geometric arguments, we can get

|Ox —Oy| = 2rcos@+a)
y— Oy = |y—O2+|0 —Oy>—2ly — O |Ox — Oy|cost. (6.18)
Thus
12— 4rBnl + (4262 -3% =0
| = 2rﬂ77+(4¥2527]2 —4r2ﬂ2+\]2)1/2
2 .2 2 .
- O? =)+ a0 —5) oo
(r — 2r ) + (42322 — 4232 + 32)1/2
Set

>
1

16r cos@ +a) sin% sin (9 + ;)

810, — Oy\sin%sin <9+ ‘;‘) :
There are three possible cases:

Case 1y ¢ By.
Thenl > r. By (6.19) we get

r2—J2<4r?g(n — B) = 8r?cosy +a)sin%sin (9+ Z) _mh

Sy)=r -3 <(r?-J3%/r <h.
Noting 3 = |Ox — Oy|/2r < ;11 and using (6.19), we have

< 4B —P)

| < S <8 = g =h.

Case 2y € By anddi(y) < h.

Then
[I —r|=0dg/(y) <d(y) <h.

So in both Case 1 and Case 2, the following inequalities

(6.20) o(y) <h
(6.21) I —r|<h
hold.

SinceGp (-, y) is superharmonic oBy, we have
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(r? — [x = Ox)*/2 Gp(u,y)
Jag (lu = Ox[2 —r2)2/2 |u —x|n

(r® =[x = Ox[»)*/* Gg,(u,y)

Gp(x,y) > C du

C d
1 e (|U7OX|2*r2)a/2 |U—X|n u

c, (I’2 _ |X _ OX|2)a/2 1By(u) .

o (U= Ox? =172 Ju —xJ"
u—yp" o)
. +u— @ du
(@
where in the last inequality we used Lemma 6.6.

Put

h
r<p<r+_—
=P= 247r}’

N R

Do={u(p:<m,--- ypn-1) 1 0< 1 <

and letv be the point ordB, such that the angle betwe@y ¢ ando_>xy is 3.
(See Fig. 1.)

By the law of cosine we have
|v — Ox|? +|Ox — Oy|? — 2Jv — Ox| |Ox — Oy| cos<9 + Z) =r?
ie.,
|v — Oy|? + 4r2 cod(f +a)] — 4r |v — Oy cos(9+a)cos(9 + z) =r?

which can be rewritten as
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(Jv = Ox| = r)?+2(v — Ox| — 1)r (1 — 2cosf +a)cos(0 + Z))
+4r2 cos@ + @) (cos@ +a) — cos(& + ;)) =0.
Solving the above equation, we get

v —Ok| —r

=—r (120036+a)cos 9+;)) +

+r \/(1 — 2cos@ + @) cos(6 + g))2 +4cosf +a) (cos(f + 5) — cosf +a))

4r cos@ + ) (cos(d +5) — cosf +@))

(1—2cos@ +a)cos(0+3)) + \/1—4co§(9 +a@)si (0+95)

> 2r cosf +a) (cos (9 + 3) — cosf +a))

= 4r cos@ + @) sin <0+ Bf) sin%

a @ sing
> 4rcos@+a)sin( 0+ ) sine >4

2 2

i

ThereforeDg C By, which implies that

(r2—|x =0/ 1
G >C :
p(X,y) = Cy /Do (\ufOx|27I’2)°‘/2 X —ul"

- u—yP" +]u—yhe _1du. (6.22)
dg, (U)*/26g, (y)>/?

From Zhao [23] we know that for any € S, |x — U] < 4|x —y|. For any
u € Do, U= 57(u—0O)+0Ox €8S, thus

X —u] < |x—1Uul+ |ufu|<4|xfy|+—h
< 4|x-y\+ 8|OX Oyl

< _ _ _
< 4x y\+247r(1+roC0)|X yl
< 5x -y, (6.23)

due to the fact thaty < 2(:0 Let 4, be the angle between’:)xu and OXOy Then
Oy <O0+pU) <O+ % “ . Since
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lu—0yf
= lu— Ox|?+|Ox — Oy|? — 2Ju — Ox| |Ox — Oy| cosb,

< U — Of2+ |0 — Oy[2 — 2Ju — Oy |oxoy|cos(9+02‘)
ut ju—oy|= a
PUL IO l=rs (r +s)?+4r2cos(h +a) — 4r(r +s)cosp +a)cos(9+ 3) ,
we have
r?—|u—0yf
> 4r?cosf +@) <cos<9+ Z) — cosf +a)>
+4rs cos@ + @) cos(9+ Oé) —(2rs +s?)
>

3r2cosf + @) (cos <9 + Oé) — cosf + a))

Ao

= 6r2cos@ +a)sin (0 + 3f> sin

2 — —
> 6Lcos€+a)sin 9+<) sin
T 2 2
3
= —rh
87rr

where in the second inequality from above we used the fact that fors0<

1
527 O,

s2+2rs—4rs cos@+a) cos <9 + Z) < r?cos@+a) <cos <9 + Z) — cosf + a))

which can be proven by using elementary algebra. Note that

(6.24) dg, (y) = 4(y)

and

(6.25) og,(U) =1 —[u—-0Cy| > (r>—Ju—0oyf/2r > % h.

497
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lu—ypP
= |y — Ox2+|u— Oy — 2ly — O] |u — Oy cosgs(u)
MEOLTS_ 124 (¢ 4 8)2 — 21 (r +5) cospr

=(I —r)?+2r (1 — cospy) + 2rs(1 — cosp) + 2(r — |)scosyp; + s2

< h?+4r?(1 — cos )+£(1—cos )+h72+h72
- U 197 U 190 (24r)2’
I <2r, [r—1|<h
h 2
< (32> +5r2(1 — cosy1)
3 2
< (2h> + 5122 oy, (6.26)
From (6.20)—(6.26), we have
GD(va)
0, o0 | 1
ST By o, (U - O P12

/2
16\ 1 3\2 . oo |
((3) NG [(2h> +5r2sirf o1
5\ 2 n/2—a/2\ 1
+[<2h) +5r28in2<p11 ) du
_ Clak / 1 1r\** 1
~ 325X —y|" Jp, (Ju — Ox| —r)*/2 3 he/25(y)>/?
, n/2 5 n/2—a/2\ ~1
l(szh) +5r23in2g01] +[<32h> +5r23in2¢1] ) du

aj2 preg

i |i(x—)y/|i / 24 /o (p—lr)a/zpnflsi”nfzwl
(C S e CORE L
+[(gh)2+5r25in2¢1}n/27a/2>71d<p1dg

/2 L,r s
5 Grena 0K) /24 s*"‘/zds/2 r"=tsin =2,
0 0

nlR|

— 3a/25n |X_y|n

()" Fermgyere | (G0) + 5ot ]

+ th)z +5r2sir? @1} n/2—a/2> _ld<p1.
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Note that

L ()" e Gn) s st ]

+th)2+5r S|n2991}n/2 a/z) Pt sin 2 prdepy

o R (R

(@) e5]" ) o

B 5 R (€ R ) BRI

-1
+(1 + 5102)n/27a/2> wn72dw

S
=oe2(5n) ()" [T 52,)22/2 '

()" Q) gyt sir s sy i

2002 G0) Q) [ ((F) () wrsrs
+(1+ 5w2)n/2—a/2) 71w”_2dw
= Ca(y)"/*h/2 71,

NIR|

Therefore
Gp(x,y) >C Mha/Z—l fﬁ s—/2ds

Fy 04/25 /2
=C T (6.27)

Case 3y € By, d(y) > h.

Sincel < r and ¢ — 2r 8n) + (4r23%n? — 4r232 + J2)1/2 < 2r. We have from
(6.19) that

(r?—J2%) —4r?p(n — B)
2r

21— 9) — 4 — )]
= 3lw-3]

dg, (y) =1 — 1

Y

v

Thus
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3(y)
2

IN

h
oY) 208, (y) + 5 < 208,(y) *

oy) < 4ds(Y)
5(x) 58, (X).

Therefore by Lemma 6.6 we have

GD (X7 y) Z GBx (X? y)

Xy e
(5 sz gy T I

42—y o)

sz * )
PPy Ay -

(57207 * sy )

Co 3(X)°/28(y)° 2

200t x =y

Vv

(6.28)

Inequality (6.17) follows from (6.27) and (6.28). The proof is now complefed.
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