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1 Introduction

It is a well-known fact in gauge theory that solutiong, ¢) of the (non-linear)
Bogomolny monopole equatiofy = xdy® on Euclidean 3-space can be rein-
terpreted as time-invariant anti-self-dual connections on Euclidean 4-space: If
P : R* — R2 denotes the projection which ‘forgets’ the time coordingténen

the connectiorv* := P*V + dt ® P*® is easily seen to have an anti-self-dual
curvature 2-form. This construction can be paralleled for a different projection
7 : B* — B3, namely a radial extension of the Hopf fibrati®@ — S2. In

that case the group preserving our anti-self-dual connection will no longer be
the time-translation grouf®, but the compact group! acting on the four-ball

B“. To be somewhat more precise, there exists a circle-invariant 1famB*

such thatm*V + ¢ @ 7*@ is anti-self-dual with respect to the Euclidean metric. It
should be noted that th®!-action on the pull-back bundle acts trivially on the
fibre over the origin ofB4. This is somewhat restrictive, since one would also
like to work with non-trivial St-actions on this fibre. It is therefore preferable to
define the pull-back bundle only ov&*\ 0, which allows us to define a partic-
ularly interesting type of singular monopoles. Indeed we can look at monopoles
that are only defined oB2\ 0, but whose corresponding circle-invariant con-
nection extends smoothly in some gauge of the pull-back bundle BY&r0,
along with theS!-action on the bundle. In such a situation, ®eaction may

act non-trivially on the fibre over the origin &#*. This definition of singular
monopoles is quite satisfactory, as it is based on a re-interpretation in terms of
regular anti-self-dual (or ASD) connections on the four-ball.
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The above construction, linking singular objects on the 3-ball to regular ones
on the 4-ball, can be used in the framework of gauge theory on compact 3-
manifolds. As a matter of fact, smooth monopol&5 ¢) over any compact 3-
manifold necessarily satisfy the much stronger equatieps= 0, dy® = 0; one
has therefore to look for singular solutions. In our setup, we fix a finite number
of points {p1,...,pn} On a compact, Riemannian, oriented 3-manifldand
we consideiSU(2) monopoles that are singular (in the sense defined hereabove)
at each poinp;. To any such solution, we can associateonnegative integers
ki, ..., ks, Where k, —k;) are the weights of the representati®h — SU(2) in
the fibre over the origin oB* (the 4-ball is projected via the Hopf fibration to
a small 3-ball around the singularity). The integerk; is called thecharge of
the monopole at the singularify .

Actually, the reinterpretation of our monopoles in terms of ASD connections
can be performed only over small 3-balls around the singularities. As we show in
Sect. 2.3, it is indeed impossible (for topological reasons) to extend thiesal
correspondences to one global correspondence intertwining singular monopoles
on a compact 3-manifold and regular ASD connections on a 4-manifold with an
St-action.

It should be pointed out that the monopoles we consider have genuine sin-
gularities at the pointg;:

Proposition 6 If (V,®) is a monopole with a singularity of charge k at p, then
the pointwise norm o satisfies|®| = k/2r + o(1/r), where r is the geodesic
distance from p.

We should also make a remark about the 3- and 4-dimensional metrics. As
a matter of fact, the local construction we have discussed so far works only for
the Euclidean metric oB3. However (cf. proposition 4), it is true that for any
metric onB2, one can modify the 1-forrg and the metric oi8* (without losing
too much regularity) so that the correspondence between the Bogomolny and the
ASD equation still holds.

For our purposes, we fix the charge at each singularity, i.e. we only consider
monopoles whose charge at the singulapitequals a prescribed integler The
aim of this paper is to work out a formula for the virtual dimension of the moduli
space #4 of singular monopoles oK with chargesKi, . .., k,) at the singulari-
ties (o1, - - -, pn). By moduli space we mean the space of all singular monopoles
with charges K, ..., k,), modulo the action of the group of bundle automor-
phisms (or gauge group). The gauge group does indeed preserve the Bogomolny
equation, so that the moduli space parametrizes the essentially different singular
monopoles.

The techniques used for the study of this moduli space are fairly standard
and have been applied to the study of instanton moduli spaces ([3], [4]). In the
affine space of all pairs{, ¢), we construct through each pair a ‘slice’ transverse
to its orbit under the gauge group action, thus obtaining a fairly adequate local
model for the space of gauge equivalence classes of pairs.‘Jduige-fixing
result’ (Proposition 9) is very similar to the one in instanton theory, and their
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proofs are identical (with one minor exception due to the fact that here we are
working with singular objects; however, this is not a problem, since it suffices
to view our singular pairs as regular anti-self-dual connections over the 4-ball).
It will follow from the gauge-fixing result that the moduli space around a point
[(V,®)] can be identified with the set of all monopoles in the slice through
(V, ®), modulo the (finite-dimensional) stabilizer 0¥ (&) in the gauge group.

As in standard instanton theory, the virtual dimension of our moduli space is
given by the index of a Fredholm operatbr(which is however not elliptic,
again due to the singularity af). The explicit computation of this index leads

to our main result:

Theorem 1 The virtual dimension of the moduli spac#& of singular monopoles
on X with singularities afps, . . ., pn) and chargegks, ..., kq) equals42i”:1 ki .

To obtain this index formula,we use the excision property for indices of ellip-
tic operators (one of the many ingredients of the Atiyah-Singer Index Theorem),
and we show in Proposition 11 that the problem of computing the inddx of
boils down to computing the index of the standard elliptic operator from instan-
ton theory (namelydy, @ dg.), acting onS*-invariant 1-forms oveS* (in this
particular case, th&!-action onS* fixes two points and acts freely everywhere
else).

The computation of this new index is carried out in Proposition 12. Our result
is a simple application of the Atiyah-Singer Fixed Point Theorem for G-invariant
elliptic operators. The combination of Propositions 11 and 12 yields the main
result.

Finally, we exhibit (in Sect.5) a 1-parameter family $9(3)-invariant, sin-
gular monopoles withy = 1 (i.e. with one singularity of charge 1) on the 3-sphere
with its round metric. We also show (via a Weitzéxchk formula) that the moduli
spaces of singular monopoles on the 3-sphere are regular, which means in par-
ticular that in thek; = 1 case, the moduli space is given locally by a 4-parameter
family of solutions (as predicted by the virtual dimension formula).

It is my pleasure to thank Peter Kronheimer and Simon Donaldson for their
assistance over the years. | am also grateful to the Wiener-Anspach Foundation
for its financial support. The results presented here are part of a D.Phil thesis

([7D).

2 The Bogomolny and the ASD equation

Let (X, g) be a compact, oriented Riemannian 3-manifold, and X an SU(2)
vector bundle. Lelv be anSU(2) connection iy, and® a section of ag (i.e.
a trace-free, skew-hermitian endomorphismyhf
We say that the pair\{, ®) is a monopole if it satisfies the Bogomolny
equation
FV = *dv@
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Here Fy denotes the curvature &F, and x the Hodge star operator induced
by the metricg. Now let u be a gauge transformation, i.e. &J(2) bundle
automorphism of;. Gauge transformations act on the space of all paitsh)
by the ruleu - (V,®) = (V', '), where

V' = uvu!
& = udu L.

If (V,®) is a monopole, then clearlyW{(, ®’) is a monopole. It means that the
Bogomolny equation is invariant under gauge transformations.

A basic question about the Bogomolny equation on a compact manifold would
be to examine the moduli space of monopoles for giveng(n), i.e. the space
of all monopoles modulo gauge equivalence. Whereas the moduli spaces of the
4-dimensional anti-self-duality (ASD) equation are highly interesting objects, the
next proposition shows that the moduli spaces for the monopole equation on a
compact 3-manifold are too constrained to give rise to new information about
the 3-manifoldX.

Proposition 1 If (V,®) is a monopole on a compact 3-manifold X, thep E
*dv@ =0.

Proof. Combine the Bianchi identitgyyFv = 0 and the monopole equation to
deduce thatly,dy® = 0, whereds, : 2'(adn) — 2°(adn) is the formal adjoint
of dy. The result follows. O

2.1 The Euclidean case

We define arS!-action onB# (viewed as subset ¢f? =~ R*) by
0-(21,2) = (€%2,€2).

This action fixes the origin oB*, whereas it is free oB* \ 0. Now define
coordinatesy( )i=1,..4 onB* by z; = y; +iy,, Z = y3 +iys, and let &, Xz, X3) be
coordinates orB3. Then the polynomial map : B4 — B2 defined by

X1 = 2(y1y3 +Y2Ya)
X2 = 2(y2y3 — y1ya)
Xs = YEtYs—Y5—Vi

exhibitsB*\ 0 as anS*-principal bundle oveB?\ 0.

Note that ifr, denotes the ‘distance from the origin’-function Rf", then
T3 =r2.

We denote by.Z: the smooth vector field oB* given by

(@), =@
20), " do

@ -y).

0=0
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Let ¢ be anSU(2) vector bundle oveB®\ 0 and consider its pull-back*s to
B#\ 0. This pull-back bundle comes with a natu@d-action projecting onto
the St-action onB*\ 0. Given anyS*-invariant 1-form¢ on B4\ 0, satisfying
5(%) Z 0, we can define a one-to-one correspondence between

(a) pairs ¥, ®) of an SU(2) connection ire and a section of ag and

(b) St-invariantSU(2) connectionsv# in r*e,

by letting V* = 7*V + ¢ @ 7*®. One shows easily tha? and & can be
unambiguously recovered froii*.

This correspondence has (at least for a particular choigeaofl the metrics)
the following nice property.

Proposition 2 Endow B (resp. B®) with the Euclidean metric and the orientation
form —dy; Ady, Adys Adyy, (resp.—dxg Adx Adxs), and leté = 2(—y.dy; +y dy, —
yadys + yzdys). Then(V, ®) is a monopole if and only iW4 = 7V + £ @ 7°®
satisfies the anti-self-dualtity (or ASD) equatigiiys = —Fya.

Proof.

Fve = Frovecorno
T Fy +dov( @ T°0) + (@ D) A (§ @ D)
m™Fy +déQ@m*® — E AT (dy D).

Now, for the given orientation oB*, d¢ = 4(dy; A dy, + dys A dy,) is an anti-
self-dual 2-form. Therefore

Foo = (@Fo)" — (€ A" (dv )",

where the superscript denotes the self-dual part of a (bundle-valued) 2-form. One
checks that for any 1-forrv on B3, one has

ENT W = *x1" (*w), and therefore

(m"Fo)" — (" (xdv ®))"
(W*(Fv - *dv@)) .

+
v4

This establishes the only-if part. As for the converse, just notice that for any
2-form o on B3\ 0, (7*)* = 0 implies thata = 0. O
2.2 Generalization for arbitrary metrics

The next proposition shows that the correspondence between the monopole and
the ASD equation in the Euclidean case is no accident.
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Proposition 3 Suppose Band B® carry arbitrary metricsg* and ¢, and let¢
be an S-invariant 1-form on B\ 0 with £(:2;) 7 0. Then the equivalence

(V,®) is amonopole on B\ 0 «= V*:=1*V+¢@n*Pis ASD on B\ 0

holds exactly when

(i) the metricg* on B*\ 0 is conformal tor* g% + ¢,

(i) ¢ = 7*(1/f) - w, where f is a smooth non-zero function of \BO satisfying
Af =0and L[«df] = 1 € H2(B®\ O,R), andw is an S-invariant 1-form on
B*\ 0 satisfyingw(-%) = 1and dw = —7* (xdf).

Proof. Re-reading the proof of Proposition 2, one sees immediately that the
equivalence holds exactly when

(i) &€ Am*a = x7* () for any 1-forma on B3\ 0,

(ii) d¢ is an anti-self-dual 2-form.

It is easy to check that condition (i) is satisfied if and only if the metric on
B4\ 0 is conformal tor* g3 + £2. One can write = 7*(f ~1) - w, wheref is a
smooth non-zero function o&®\ 0, andw a connection 1-form of the principal
S!-bundleB*\0 — B3\ 0 (f is non-singular, sincé(%) # 0). Hencedw = 7*B,
whereB is the curvature 2-form of the bundle. The exterior derivativé efuals

dé=7* (B/f) —«* (df /f) A&
Using conditions (i) and (ii), we get

0

dé ++d¢
7 (B/f) + 7% (xdf /f) + & A 7™ (df /f +xB/f),

and hence
B = — x df.

As B is closedf must be harmonic 0B\ 0. Note that a given harmonic function
determined, and hencev (up to gauge equivalence) agdHowever, there is an
extra topological condition coming from the fact thats a connection 1-form:
the curvature 2-forrB has to lie in the cohomology classr@ (P), whereP
stands for the degree or@-bundleB*\ 0 — B2\ 0. This gives the condition

2 [df] = 1. U
In the Euclidean case (the model case investigated in Sect. 2.1), we have
1
f = —
2r3

1
wo = ﬁ(*yzdyl +y1dy, — yadys + yadys)
4
g3+ €% = ArZ(dy? +dyZ +dyZ +dyd).

(rn is the radius in Euclidean-space; recall that*rz =rZ.)
Suppose we are given a l1-forh as in Proposition 3, as well as a 3-
dimensional metricg®. Then there is still not a unique metri# on B4\ 0
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for which the correspondence between the Bogomolny and ASD equation holds.
Indeed, we have to choose the conformal factor by whith® + £2 is to be
multiplied. Naturally we want to choose this factor in a way to obtain some
regularity of the metric coefficients at the origin Bf. The Euclidean example
suggests that*f is a reasonable choice for our conformal factor. We therefore
define our4-dimensional metric g on B4\ 0 to be given by

gt =t (m g+ ) = 1 (f gB) + m (1/F )P

Proposition 4 Let ¢° be an arbitrary metric on B. Then there exists a smooth
harmonic function f as in Proposition 3 of the forn:f% +higher order terms (r

is the geodesic distance from the origin). Moreover, one can choose a connection
1-formw on B*\ 0 with curvature— * df in such a way that the 1-for =
7(1/F)w is in L oc(B?) and the metrigy* = 7*f (7% g% + ) is in L ,.(BY).

We say that a function is ih|27|oc(B4) if all its derivatives up to order have
finite L?>-norm over any compact subset Bf.

We skip the rather technical proof of this proposition, since it is focused on
an analytic construction of a functioh of the desired form, from which the
regularity results about and ¢* follow easily.

2.3 Non-existence of a global correspondence

We have established the existence of a local correspondence between the
Bogomolny equation and the ASD equation. One might wonder why we are con-
sidering a correspondence &t rather than one which reinterprets monopoles
on a general compact 3-manifoil as circle-invariant ASD connections on a
4-manifold. The precise question we are going to answer is as follows.

Given a compact, oriented, Riemannian 3-manifd{dg) with marked points
P1,...,Pn, CaAN one construct an oriented, Riemannian 4-manifldyt) with
an St-action such that
(i) the St-action is free everywhere ovi except amn fixed pointsqy, . . . , Gn,

(ii) there is a smooth map : Y — X such thatr(q) = p andY \ {g} —
X\ {pi} is a principalSt-bundle,

(iii) there is a smoott8!-invariant 1-form& on Y \ {qg;} such that a pairV, ¢)
on X \ {pi} is a monopole if and only if*V + ¢ ® 7*® is an ASD connection
onY \ {g}?

The answer is always negative (except in the trivial case0). To understand
this, we cut out small open balls around thés and theq;’s, thus providing us
with a principalS:-bundleY — X such thatdX is a union ofn two-spheres
and dY is a union ofn three-spheres. Take a 2-forenrepresenting the Euler
class of this principal bundle. As is closed, its integral ovedX vanishes. On
the other hand, it is equal to the sum of the integral® @iver each of then
two-spheres. One shows that the princifatbundle over any such two-sphere
is isomorphic to the Hopf fibratios® — S?, which has degree 1. Hence, for
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eachp, there is a contribution oft1 to the integral ofe over 9X. Call p; a
(+)-point if this contribution is +1, and a—)-point otherwise. As the sum of
the contributions is zero, there must be as many (+)-points-agp@ints and
consequenthyn must be even.

It is possible to construct, for any 3-manifoXl with an even number of
marked points, a 4-manifold satisfying conditions (i) and (ii). The construction
is obvious forn = 0. Furthermore, if the construction ¥f has been achieved for
X with n marked points, then it can also be achievedXowith n + 2 marked
points. This is done by gluing a copy &f into Y. Indeed there is aB*-action
on S* with 2 fixed points and quotier®, so this gluing adds two more marked
points toX.

However, condition (iii) will imply a contradiction. By Proposition 3, one
obtains a smooth, harmonic, nowhere-zero funcfioan X \ {p;}. Moreover,
the topological conditionzlﬂ[*df] = 1 implies thatf goes to +o at (—)-points,
whereas it goes te-co at (+)-points. This contradicts the non-vanishingf of

3 The moduli space of good monopoles
3.1 Good monopoles

Let p be a point on a compact Riemannian 3-maniféld We wish to study
pairs (V,®) consisting of a smooth connectioi in an SU(2) vector bundle

n — X \ p and a smooth sectio® of adn, and satisfying the Bogomolny
equationFy = xdy®. To impose some regularity at we shall use thepstairs
connectionV* overB#\ 0 constructed in the previous section. Using exponential
coordinates aroung, we obtain a mapr : B* — U from the 4-ball to the 3-
ball of radius 1 aroungh. We also know from Proposition 4 that we can find
a 1-form¢ and a metric orB# such that the upstairs connecti&ff, obtained
from the restriction of {, ®) to the 3-ballU, is ASD. Our regularity condition
will require the upstairs connection to be regular at the origin of the four-ball.
Thus, by Proposition 2 and its subsequent generalization in Sect. 2.2, a monopole
(V,®) on X \ p satisfying our regularity condition can be interpreted (at least
near the singularitp) as a regulaB'-invariant ASD connection on the four-ball
B“. To be more precise, th®*-invariant connection

vh= 7T*(V|U\p) +E® 7"*(@|U\p)

is defined on thes'-equivariant bundler*(n|u\p) — B#\ 0. There are smooth
trivializations of 7*(n|y\p) in which the St-action on the bundle extends to a
smooth action of*. We call such a trivialization k-gaugeof 7 (n|y\p), where

k € {0,1,2,...} denotes the weight of the representat®h— SU(2) given
by the action ofS! on the fibre at the origin oB*. Note that anyk-gauge can
be transformed, via some smooth gauge transformation B¥eto ak-gauge in
which theS? action is given by

0-(y,a1,8)=(0-y,e"%y, e %) (0 cShyecB? (a,a) € CH.
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Definition 1 A good smooth pair (V, ®) of charge k is a pair consisting of a
smooth connectiok in 7 — X\ p and a smooth sectiah of adn such that there
exists a k-gauge of 7*(n|y\p) in which the connection

7"'*(V|U\p) +E® 77*(¢|U\p)

is represented by a smooth connection matrix ovér\Be say tha(V, ®) is a
good smooth pair of charge k with respectito

Remark.n this definition, as well as in our whole study of the moduli space, we
assume without loss of generality that we are dealing only with one singularity
p.

Requiring smoothness of the upstairs connectiorB6ris too strong, since
the 4-dimensional metrig# is not necessarily smooth at the origin. For this
reason, we now introduce a larger class of singular monopoles.

Definition 2 A good monopole of charge is a pair(V, &), whereV is a smooth
connection innp — X \ p, and$ a smooth section aidr, with the following
properties:

() Fyv = xdy @ (the Bogomolny equation),

(ii) The upstairs connectioW* has finite energy over any compact subset &f B
(i) @ — k at p (f is the harmonic function on Yp introduced in Proposition
3).

A priori, this definition does not seem to have much to do with good smooth
monopoles. But as we shall see, any good smooth monopole of chagje
good monopole of chargk (Proposition 6). Furthermore, good monopoles of
chargek have a nice interpretation in terms lofgauges (Proposition 5).

Definition 3 The moduli space.Z4° of good monopoles of charge is the
set of all good monopoles of charge k, divided by the group of all smooth gauge
transformations of the bundbe

The ‘infinity’ superscript signifies the smooth nature of the objects we are
considering. Note that the moduli spacé/° is defined without the use of
k-gauges.

3.2 Good £ pairs and good & monopoles

Proposition 5 Let (V,®) be a good monopole of charge k. Then there exists
a k-gauge ofr*(n|y\p) in which V* is represented by an3l,,.(B*) connection
matrix.

Proof. V# is a finite-energy, anti-self-dual connection Bf\ 0 (with respect to

the metricg*). The coefficients of the metric are I ,,.(B*) (cf. Proposition

4). In that case Uhlenbeck’s Removable Singularity Theorem [10] guarantees the
existence of a gauge whose corresponding connection n#aties in L ,.(B%).
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One then constructs aui'oc(B“) gauge transformation to change this gauge to a
k’-gauge, namely a gauge where Bebundle action is given by - (y, a;, ay) =
(0y,e¥1%a;, e '1%a,). We will be done if we can show’ = k, which clearly
follows from the following result. O

Proposition 6 Suppose that the upstairs connectigf corresponding to a pair
(V, ) is represented by anl,.(B*) connection matrix in a kgauger. Then
'}ﬂ — k’ at p, or equivalently2r|®| — k’ at p (r is the geodesic distance from

p).

Proof. In the k’-gauger, the S bundle action can be seen as the map

. R4 1 . ek'io 0
u:B*xS*—SU@Q):(y,0) — 0 eXio |-

In the same gauge,
0 Ow _,4

"o a0
wherew : B4\ 0 — SU(2) is the gauge transformation from agy-invariant
gauge ofr*n to . Hence

ow ,_(Ki 0

0" ~\ o —ki )
We know thatV* = d + B, whereB is an L5 ,.(B*) connection matrix. As
V4=V + £ @ b, we get

X _( Ki 0 0]
T (P/f) = ( 0 —Ki >+B ((99)
The matrix-valued 1-fornB is in L5 ,.(B“), so by the Sobolev Imbedding The-
orem in dimension 4B is bounded in a neighbourhood of the origin. Thus

B () — 0 at the origin ofB*. The result follows. O
Proposition 5 motivates our next definition.

(V) 2

Definition 4 Letr be a k-gauge. Thengood L3 pair of charge k with respect
to 7 is a pair consisting of an {,,. connectionV in n — X \ p and an § .
section® of adn such that the connection

vt= T (V]u\p) + €@ 7 (Plu\p)

is represented (in the k-gaugg by an L§7|OC(B4) connection matrix. In other
words, we use the k-gauge and the standard trivialization{dy, . . ., dys) of
T*B* to representV* by a collection of functions. We say th&f, ¢) is a good
L2 pair of charge k if each of these functions has fingenborm over any compact
subset of B.

We suppose from now on that we have fixed &-gauger. All good L3
pairs are supposed to be good with respect to this gauge.
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Definition 5 Theconfiguration space? is the set of all good } pairs of charge
k. Thegauge group % is the set of all E‘JOC gauge transformations u ef such
thatm*(u|y\p) is represented (in the k-gaugg by an |-=21,|oc matrix over B*. The
moduli space.Z of good 12 monopoles is the quotiefimonopoles in%y } / %.

One can show that there is a natural bijection between the moduli spaces
At and. 7¢°. We can also restate our definition .ofZ° in a form which is
independent of any choices 6fand ¢. This shows that our moduli space is a
natural object.

Proposition 7 Let V be a smooth connection im — X \ p, and® a smooth
section ofadrn. Suppose that the paifV,®) satisfies the monopole equation.
Then(V, ®) is a good monopole of charge k if and only if

@) 2r|®| — k at p,

(i) d (r2|®|?) is bounded near p.

(here r is the geodesic distance from p.)

Proof. The result follows from a straightforward re-writing of the finite-energy
condition for V4 in terms of V and &. O

3.3 The local structure of the moduli space

We now begin the analysis of the moduli spaegy. Our approach is very close
to the standard theory on instanton moduli spaces. These moduli spaces have
been studied intensively in [3], [4] and [6].

Notation. Henceforth we shall frequently drop the reference to the chlarge
notations like?Zy or 4.

The configuration spac& is an affine space modelled on a vector space
denoted byl “ . The spacd “ is given a Banach space structure via the following
norm:

l|(a, @)HE% = ||a||fg(x\%u) + H‘PHE%(X\%M +|rra+E® 7T*<PHE§(B§/3)~
Let us fix a pair V, ®) € . Then the tangent space to its orbit (under the gauge
group action) at the point\{, ) is given by the image of a linear mdpv )
from the Lie algebra of¢ (denoted byT?) into T?. (Like T, the vector
spaceT“ can also be endowed with a Banach norm). e T, one has
D(V,@)v = (_dvva [7}, @])

We introduce the followind.?-inner products o andT? :

(v1,v2)7s = /7<vl,v2)vol
X

(0. 1), (@2, 92)) 1 /X (a1, 2) + (i1, 92)) VO,
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l1onX\ 2U

f on U

The formal adjointDy; 4 of D(v ) With respect to these inner products maps
T? to 77 = {v € L3 (adn)|r*v € L§ (B} (the target space would be
more complicated without the functiop) and is given by the formula

Diy.a(@, ¢) =7 H(—dwa+[,¢).

The main difficulty in the study of our moduli space comes obviously from the
singularity of the objects we consider. In our context, we cannot talk about elliptic
operators in the usual sense, since these are defined on Sobolev spaces over
compact manifolds. The Banach spaces we introduced in the previous subsection
are clearly not of this type. However some of our differential operators behave
exactly like elliptic operators.

where~ is a smooth positive function oX \ p satisfyingy =

Proposition 8 The operator L= D, 4D(v.#) : T? — T admits a left and a
right parametrix. As a consequend&erL is finite-dimensional antin L is closed
and has finite codimension.

Proof. We can modifyL over %U to obtain an elliptic differential operatdry
over X. This operatorLy admits a left and a right parametrix. Moreover, the
restriction of L to U can be viewed (by definition of our singularity) as the
regular elliptic differential operatods,,dy« over the four-ballB* (again due to
the presence of the functioy). This 4-dimensional operator can be extended to
an elliptic operatotgs over the four-sphere. The operato: also admits a left
and a right parametrix.

From the left (right) parametrices fax andLs«, one constructs (using suit-
able multiplications by cutoff functions) a left (right) parametrix far O

Proposition 8 allows us to carry out the local description of the moduli space
in the standard way, i.e. by constructing a ‘slice’ through a monop9lebj
transverse to the gauge group orbit, and viewing the moduli space as the zero set
(modulo the finite-dimensional stabilizer o¥(®)) of a smooth Fredholm map
defined on the slice. Standard theory leads to the following gauge-fixing result:

Proposition 9 Let(V,®) € ¢. Then

i) there exists; > 0 such that for anya, ¢) € T with ||(a, ga)|||_§ < €1, the pair
(V. ®)+(a, p) is gauge equivalent to a pa(fv, #) + (@, ¢’) with Dy 4)(@", ") =
0,

ii) there existse, > 0 with the following property:

If (a7 @)7 (a/v QD/) € KerD(*V,d)) SatiSfy‘ |(aa @)”L%’ H(a/, 90/)‘ |L§ < €2, and
(V+a,@+¢') =u(V+a,®+yp) for some ue &, then ue Yy ), where
‘“v @) is the stabilizer of V, ®) in .7

We now bring in the Bogomolny equation. We start with the following easy
lemma.

+
Lemma 1 If (V,®) € &, then the self-dual 2—forn€7r*(Fv - *dvqﬁ)) lies in
L%,Ioc(B‘l)-
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Proof. Let V4 = m*V + £ ® m*®. The proof of Proposition 2 gives
+
(7r*(|:v - *dvdi)) =Fl.. 0

Thus, if we define?? := {X € L3 o o(A°T*(X\p)®adn)|(7*\)" € L3,,.(B*)},
then the lemma implies that for eacW (®) € ¢, the bundle-valued 2-form
Fy — *dy @ lies in £22. As we did already witiT “ andT*, we endow this new
vector space with a Banach space structure.

Let (V,®) € ¢ be a monopole, and leiy ) be the map

1(v.2) - KerD(G 4y — 2% 1 (a,9) > Fysa — #dy+a(® + ).

The gauge-fixing result implies that there is a neighbourt®o80 in KerD (g 4
such that,(L(_vl7¢)(O)ﬁS)/f§’(’v7¢) is homeomorphic to a neighbourhood oV[(®)]
in 7.

Using a variant of Proposition 8, one can show tha$ ¢ iS a smooth
Fredholm map, i.e. its derivative at each point is a Fredholm operator. It follows
that thevirtual dimension of .#2 equals the index oflx minus the dimension
of Yv ¢ (heredy stands for the derivative gf(v 4 at the origin). Now it is
easy to see that

Ind d/J/ —dim :g(v,@) = Ind(D(*v,@) D dB(Vy@))7

wheredBy ¢y : T? — 22 (a,¢) — dya — xdyy — *[a, @] is the linearization

of the Bogomolny equation. The operatd(y 4 @ dBv ¢) is easily seen to

be Fredholm (again by adapting the proof of Proposition 8). Hence its index is
well-defined. In Sect. 4, we shall prove the following index formula.

Proposition 10 Let(V, ®) € % (recall that k is the charge at the singularity p).
Then the Fredholm operator ® 4 & dBv, ) has indexdk.

As a corollary, we have

Theorem 1 Let X be a compact, oriented and connected 3-manifold. Fix n points
P1,---,Pn € X and n non-negative integers,k. . , k,. Then the virtual dimen-
sion of the moduli spaceZZ,... k,) of good monopoles having charged the

n

singularity p equals4 > k;.
i=1

4 Proof of the index formula

We now come to the explicit computation of the index&¥ s) = Dy 4) @
dBv.4). It is easy to see that
(a) for fixedk, Indd(v ¢ does not depend on the choice & ,@) in %,
(b) for the trivial pair V,®) = (d,0) € % (and hence for all\{,®) € %),
Indd(v 4 = 0. This is becaus&y 4 is essentiallyd ©d* : 1@ 2 — 0@ 22,
which has index zero.

What remains to see is how the index changes as the ckarggeases. To
deal with this question, we use the excision property for indices.
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4.1 The excision property for indices

We formulate the excision property for indices (Atiyah-Singer, [1] p.522, [3]
p.264) in some generality. Suppose that

(i) Z is a compact manifold decomposed as a union of two operZsetsl UV,
(i) L: I'(E) —» I'(F) andL’ : I'(E") — I'(F’) are a pair of elliptic differential
operators over,

(iii) there are bundle isomorphisms: E|y — E’|y, 8 : F|yv — F’|v such that
L=p3"a overV.

We obtain thus a set of dat&r := (Z,U,V,L,L’,a, 3). Now suppose we have
another set of dat& := (Z,0,V,L,L’,&,7) verifying the same conditions.
Suppose moreover that there is a diffeomorphismi — U and four bundle
mapse : Ely — E|g, € : E'lu — E'|g, f : Flu = Flg, f' : F'ly = F'|g
coveringi and such that

L=f"'Le
{ L= -1 e overU.
Then IndL — IndL’ = IndL — IndL".
The idea of the proof consists in constructing (franandL’) a pseudodif-
ferential operatoP over the manifoldZ such that
() IndP = IndL — IndL’,
(i) the elements of KeP and KerP* are supported itJ .
Doing the same construction for the set of da#, we can arrange that

KerP = KerP and KeP* & KerP* (since all their elements are supportedin
(resp.U)). Hence IncP = IndP and the result follows. To construBt one con-
siders first the differential operat@r = L & (L')*, so that IndD = IndL — IndL’.
One proceeds to define the pseudodifferential zeroth order operator

Po:= (1+DD*)~Y¥?D,

whose index equals Ifd. Finally, one deforms the symbol &, overV to
obtain the identity, thus producing another pseudodifferential opeRatatith
the same index aBy. This P can be chosen in such a way that Reland
KerP* are supported iftJ.

We want to use the excision property fr= X, Z = S*. Let us explain first
how we proceed foX = U UV, whereU is the standard 3-ball aroungl and
V =X\ 3U. Fix an integerk > 0 and pick ¥,®) € ¢ and ', %) € Zis1
such that ¥, ?)|v = (V',?)|y (this can always be done). It follows that the
operatorsiv ¢y anddv /) agree ovel/ . At this stage we are no longer in the
theoretical setup described above. Indeed, the operégers and oy o) are
not elliptic operators oveX, since they are not defined at However, they are
elliptic overV, and this is actually all we need to construct a pseudodifferential
operatorP satisfying
@) IndP = |nd5(v1¢) —Ind 5(v/7¢/),
(i) Ker P and KerP* are supported itJ.
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Indeed, checking this construction step by step, one sees that the singularity at
p € U does not affect the construction, since the deformations of the various
pseudodifferential operators are taking place away fpom

Consider now the 4-sphe®®. Choosing a 4-balB* in S* gives us a pro-
jecton 7 : B* — U down to the 3-dimensionall. We defineU = B4,
V = s*\ 771(2U), so thats* = U U V. The standards*-action onB* = U
extends to arSSl action onS* with two antipodal fixed points (denoted byc0U
andoo € V). In the same way, the four-dimensional megfc= 7*f - (7 g + £2)
on U extends to arSl-invariant metric onS*. By definition of Z, the S!-
invariant connectiont*V + ¢ ® 7*® in the pull-back bundle ovet \ 0 can
be extended across 0 in a gauge whsteacts with weights K, —k). One can
also extend this connection to &t-invariant connectiorV* in an equivariant
vector bundleN — S*. This bundleN can be chosen in such a way that tBat
acts with weights (00) on the fibre overc. Similarly we define arg!-invariant
connectionv4’ in an equivariant vector bundlg’. Observe thaN andN’ are
not isomorphic as vector bundles ovet. However, one can arrange that their
restrictions toV are, and a&* and V4’ agree ovel) NV, one can even arrange
Vily = vy

The operator(iw)Sl is the restriction of the elliptic operatdg. := dg., ©dg.
to St-invariant sections. Instead of considering the whole operator

die @ dis : N(T*S* @ adN) — I'(R @ A2T*S* @ adN),

we restrict ourselves to the subspaceSbinvariant sections of these two vector
bundles. So once again we violate the standard conditions required in the state-
ment of the excision property. Howeverivé)S and 6V4/)S are restrictions of
genuine elliptic operators ov&*, and ¢v«)S | = (6V4/)S |y . Itis therefore still
possible to construct a pseudodifferential oper&auch that
() Ind P = Ind(y«)S" — Ind(g)",
(i) Ker P and KerP* are supported it .
Furthermore one can arrange thamapsS!-invariant sections t&!-invariant
sections. Using the correspondendgs ¢)lu (5v4)S lg and oy anlu <>
(65+)S'|g given by the projectionr : U — U, we see that KeP = KerP and
KerP* = KerpP*,

We have thus proved

Proposition 11 Let (V,®) € %, (V',d’) € €1 be such thatV, @) = (V/, @)
outsideiU. Then

Ind 5w .4 — INdé(yr.a) = INd@Ey4)S — INd(Eger)S
Introducing the notatloﬁ(k 0) = = V4 in order to keep track of the weights of
the St-action over the fixed points 0 angb, we obtain the following corollary.
Corollary 1 If (V,®) € %, thenInd v o) = Ind(évz;k 0))S Ind(Sgs )S.

(0,0)

At this stage, it appears already that fipel ) does not depend on the man-
ifold X.
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4.2 The index ofdz, @ di.)S"

This subsection deals with the explicit computation @ {® d§4)31, which is
carried out in greater generality than what is really needed (namely the index
corresponding to a connection @f, endowed with anS!-action fixing two
points). LetY be a compact, oriented, Riemannian 4-manifold wittSasaction

that is free everywhere exceptmffixed pointsqy, ..., g, (recall from Sect. 2.3
thatn must be even). Suppose the metricYois St-invariant. Consider aBU(2)
vector bundleE — Y with an S!-equivariant action. Le¥* be anS-invariant
connection. Then we want to compute the index of the operator

(694)% = (d%a)® @ (dEa)S'.

This index calculation has already appeared in various papers (e.g. [5]). Hereafter,
we describe a rather direct way to work out the index.

The operatordw)Sl is obtained by restricting the standard elliptic operator
in instanton theory ([3], p.137), namely

Sy i= O5e @ dYy - 21 (adE) — 2°%adE) @ 3(adE),

to the subspaces @ -invariant elements in2°, 2! and 22. Let us note the

following as well.

(a) Any 6 € S! preserves the fibr&;, = C2(j = 1,...,n). Hence there is a
[0

basis ofE; in which ¢ € S* acts by( eké) e—(a,-ie

integerk; .

(b) For eachy;, there is a coordinate chawti(y», ys, y4) aroundg; in which the

Sl-action becomes

> for some non-negative

cosfd —siné 0 0
_ sinf  cosf 0 0
g - (y17y2ay37y4) - (y15y27y3ay4) 0 0 cod _Sine
0 0 sind  cosh

We say that; is a (+)-point (resp. a-{)-point) if the orientation or¥ is given
by dyi A dy, A dys A dys (resp.—dy; A dy, A dys A dyy). There aren/2 (+)-points
andn/2 (—)-points onY.

The main ingredient of the index computation will be an application of the
Atiyah-Singer Fixed Point Theorem for G-invariant elliptic operators. Let us
rewrite our elliptic operator aéy. : I'(F) — I'(F’) with

F = (T"'Y®adE)®C
F' = (ReA2T*Y)®adE) ®C.

We complexified our vector bundles, since the Atiyah-Singer Fixed Point The-
orem only holtljs for complex vector bundles. This operation clearly leaves the
index of v«)° unchanged.
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Theorem 2 (Atiyah-Singer, [2] p.560, [9] p.123).

27
Ind@os)s = = [ uo)de,
2’/T 0

where/ : St — R is the function defined by

n tl"@(FqI trg(F II)
)= Z trg(A=1(TYy ® (qC))

Notation: Fy (resp.Fg, TYy) is the fibre of the vector bundl& (resp.F’,
TY) over the fixed poingg € Y. For a complex vector spadé with a linear
Sl-action, ty(V) denotes the trace of the isomorphism \¢fassociated td.
Moreover, ifV is anm-dimensional complex vector space, thén(V) is the
virtual vector spacé /1 (—1) A'V

We compute the different terms in the formula #6):

tro(Fq) = 4cosd(1+2coskb).

tro(El) = 4(1+2cosg0) if g is a (-)-point,
o(Fq) = 2(1+cos2)(1+2cosk) if g isa (+)-point.
trg(A"H(TYq ® C)) = 4(1— cost)®.

It now follows from the Fixed Point Theorem that if the weights at the (+)-
points are labelled bk, ..., k;'/z (and similarly for the {)-points), we have:

n/2 + —
o) :Z (2(coszk1- f—cosX 0) (1+2cos:ki+9)> '

— 1— cosf
From the equality
2w
Ind(5g+)S = L7 oy,
27T 0

it is clear that we are done if we can compute the numbers

1 (% /2(cosInb — cos 2
R(m,m’)::g/o ((COS b — cos 9)—(1+2cosme)>d6

1— cosh
Indeed, Indgy)S" = 12 R(k", k™). Observe that

1ifm#0,
R(m’m):{ Tsitmeo

Using elementary trigonometric identities, one gets

(2m’ +1)9) sing

=4
1 - cosh do

27 sin
R(m,m' +1) — R(m,m’) = 2 / (
™ Jo

We have thus proved
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Proposition 12

n/2
INd(5:)® = 4 (Z k™~ K*) —5 %

i=1
wherex is the number of+)-points g such that K = 0.
Corollary 2 (= Proposition 10). If(V,®) € &, thenInd (v ) = 4K.

Proof. For the St-action onS* considered in 4.1, there are= 2 fixed points.
Moreover, the fixed point O is easily seen to be a)-poin} by considering
the orientations chosen in Proposition 2. Hence de(%)s = 4 — 3 and

Ind(6v?0 0))51 = —3. Applying corollary 1 yields the result. ]

5 Singular monopoles on the three-sphere
5.1 Explicit solutions for k=1

Let us try and find explicit examples of good monopoles with one singularity
on the 3-sphere of radius 1 with its standard round metric.pLet S® be the
singularity and; — S*\ p an SU(2) vector bundle (necessarily trivial). We want
to construct our monopoles d& \ p by modelling them on the Bogomolny-
Prasad-Sommerfield monopole on Euclidean 3-space [8].gLbe the point
oppositep in S%. Then the stereographic projection fragnonto the tangent
space ofS® at p gives us as identificatio8® \ {p,q} = R3\ 0. Pick any gauge

o of n over S®\ p. We shall be looking folSO(3)-invariant monopolesY, ¢)

of the form

VO'
@G‘

t(r) - ((dexa — XgdX)a; + (Xadxq — X10Xz)a, + (XedXo — dexl)gs),

S(r) - (xagy + Xoo, + X3Q3)7

where ¢4, 0,,05) denotes the standard basis sf(2), (x1, X2, X3) are standard
coordinates o3, r is the radius function ofR3, ands, t are smooth functions
(0, +¢0) — R. We compute

/ 3 3
For = (~5 +22) 8- oxa + (0 + 203 @ A S,

i=1 i=1

wheres = x; dx A dxg + X dxg A dx + X3 dx; A dx. On the other hand
o 3 3
(dyP)? = (r — Zst> - z;xigi + (s + 2r2st) ;dxgi ,
1= 1=

where a = x;dx; + xod¥ + X3dx3. Hence a pair ¥, ®) of the above form is a
monopole orS®\ {p,q} if and only if
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/ 5 _ 5 _1 S/
—?+2t = —(1+r%/4) (r—Zst) 1)
'+t = — (1+r2/4)_1(s+2rzst) 2)

PuttingS =sr, T =1+ 22, (2) becomes

T/(1+r?/4) = —2ST, (3)
and (1) +3(2) becomes
2 _
T2r 1(1”2/4):—5’- (4)

Lettingr = 2tanu (u € (0, 7)), the system formed by (3) and (4) can be written
as

—4ST = T (5)
—4Scofusirfu = T?-1, (6)

where' denotes differentiation with respect to the variable
As the gauger of 7 is non-singular atj, V° must be bounded at. Observe
that |[V7|? = Cot?r2(1 +r2/4)? for some positive constar@q. Thereforet?r® =
r2(tr?)?> must be bounded at = +oo and consequentlyr? — 0 asr — +oo. It
follows that we only have to consider solutions wiklju) — 1 asu — 7.
OnZ ={u € (0, 3)|T(u) # 0}, we can define

M(u) = coiu(j;nu

Note that in casd is smooth andl' (u) — 1 asu — 7%, one hasM (u) 7 0 and
M(u) — 0" asu — %. Now the ODEs (5) and (6) imply
M2—-MM =1, and hence

d (M2-1\ _2MM(MM —|\'/|2+1)_0
du\ M2 )~ M4 T

The solutions of the first-order ODH2 = 1 + AM?2 (whereA is a constant) are
as follows:

1
If A>0, M(u)= =+——sinh¢/Au+B).
(u) A ( )
If A=0, M(u)= =£(u+B).
1
If A<0O, M(u)= +——sin(y—Au+B).
W= =sin(/ )
In all three casesB is a constant. Observe that each of these functions is smooth

on R, and henceZ = (0,%). Among the above solutions, only the following
satisfy the condition$/ (u) 7 0 andM (u) — 0" asu — 7:
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M(u) = %sinh(C(w/Z—u)), C < (0, +00)
M@u) = w/2-u
M(u) = ésin(C(w/qu)), C € (0,2]

From (5) one deduces that

1M

4M°
Hence, for the explicit expressions bfabove, one obtains

S(u) = —% cot(u) +

Su) = f% cot(2u) — %coth(C(vr/Z _ u)) <0, Ce(0,+)
S(U) = —% COt(ZJ) — 4.(7]_/;_[1) < 0
Su) = f% cot(u) — %cot(C(w/Z . u)) <0, C < (0,2]

Note that in the third case, the solution correspondin@ te 2 yieldsS = 0 and
T=1,i.e.s=t =0. This is a trivial monopole, i.€V is a product connection
and® = 0. It is a good monopole of charge 0.

Each one of the above solutions %) — 0 asu — 7. Itis straightforward
to check that the corresponding monopoles can be extended smoothly @cross
to give a smooth pair\{, ®) on S\ p.

Now |#| = —S, and asS > 0 for any non-trivial monopole, one sees that
the norm of the Higgs field decreases as one approaches the point opposite
the singularity, where it eventually vanishes. As for a neighbourhood of the
singularity, one checks that the non-trivial solutions have

2u
+
tan2i R(u),

whereR(u) — 0 asu — 0 anddR is bounded neau = 0. Proposition 7 therefore
allows us to conclude that all our non-trivial solutions are good monopoles of
charge 1.

2r3|®| = —4uS(u) =

5.2 Regularity of the moduli spaces

We wish to show that the actual dimension of the moduli spate of good
monopoles of chargek{, . . ., ky) on S% equals its virtual dimension ¥ k; (pro-
vided . # (). To do this, it is sufficient to show that the linearization of the
Bogomolny equation, i.e.

dBv.a): T? — 22:(a,¢) — dya — xdyp — *[a, 9]

is surjective. We define ab?-inner product onf2? as follows:
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(AN 2 ::/Xv‘1<)\,)\’>vol.

The functiony was introduced in Sect. 3.3. Multiplication by ! ensures con-
vergence of the integral defining the inner product/@h Recall thafT“ carries

a natural inner product (also defined in 3.3). One computes that the formal adjoint
dB 4 Of dBv.4) with respect to the inner products @if and(2? is given by

the formula

dBT. o)A = (A5 (7 A) = [, %77 AL, —dg (+y A)).
To prove thatlBv ¢) is surjective, it is enough to prove th@B +)dBy ¢)A,
)2 > 0 for all non-zeroX € 22, It turns out that
dBv.#) 0By ) = (dvdy +ddy)(yA) — [dv @, +y A1+ [ 2,7 1Al ]

Lety := =1\ There is a Weitzeridzk formula for the Hodge Laplaciadyds, +
dgdy acting ony ([6], p.96), namely

(dydg +dgdy)y = V VY + ¢ o Ric+7 9(¥) + 7 ¥ (¥),

whereV*V is the trace Laplacian, and the remaining three terms are defined as
follows: for anyV ,W € T« X, and €1, &, e3) any orthonormal frame ofy X,

(¥ o RiC)(V, W) = (Ric(V), W) +¢(V, Ric(W)),
(Ric : TyX — TxX is the Ricci tensor)

3
(Z W)V, W) = > 1(g, RV, W)g),

j=1
(R is the curvature tensor of the metgg

3
(Z YNV, W) = {[Fu(g, V), v, W) - [Fu(g, W), ¥(g, V)I}.

j=1
One checks that7 v () = [*Fy, *1], so that for monopolesY{, #), we obtain
dBv,#)dBy A = V'V + 9 o Ric+7 9(y) +[[2, Y], ].

For the metric of (positive) constant curvature 8# the 2-formsy o Ric and
7 9(y) are both positive scalar multiples ¢f and hence

dBwv,4)dBy A = V'V +K -9 +[[®, 9], D]
for some positive consta€. It follows that

/X (VY. ) + (Kb, ) + (1D, 0], 8], ) vol

(dB(v,0)dBT 4y, A) 2

[ (70 + K0 + (2,01 vol
> 0 for any non-zero\ € 22,

As an obvious corollary, we obtain that the moduli space of good monopoles of
chargek; = 1 is given locally by a 4-parameter family of monopole solutions.
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