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1 Introduction

It is a well-known fact in gauge theory that solutions (∇, Φ) of the (non-linear)
Bogomolny monopole equationF∇ = ∗d∇Φ on Euclidean 3-space can be rein-
terpreted as time-invariant anti-self-dual connections on Euclidean 4-space: If
P : R4 → R3 denotes the projection which ‘forgets’ the time coordinatet , then
the connection∇4 := P∗∇ + dt ⊗ P∗Φ is easily seen to have an anti-self-dual
curvature 2-form. This construction can be paralleled for a different projection
π : B4 → B3, namely a radial extension of the Hopf fibrationS3 → S2. In
that case the group preserving our anti-self-dual connection will no longer be
the time-translation groupR, but the compact groupS1 acting on the four-ball
B4. To be somewhat more precise, there exists a circle-invariant 1-formξ on B4

such thatπ∗∇ + ξ⊗π∗Φ is anti-self-dual with respect to the Euclidean metric. It
should be noted that theS1-action on the pull-back bundle acts trivially on the
fibre over the origin ofB4. This is somewhat restrictive, since one would also
like to work with non-trivialS1-actions on this fibre. It is therefore preferable to
define the pull-back bundle only overB4 \ 0, which allows us to define a partic-
ularly interesting type of singular monopoles. Indeed we can look at monopoles
that are only defined onB3 \ 0, but whose corresponding circle-invariant con-
nection extends smoothly in some gauge of the pull-back bundle overB4 \ 0,
along with theS1-action on the bundle. In such a situation, theS1-action may
act non-trivially on the fibre over the origin ofB4. This definition of singular
monopoles is quite satisfactory, as it is based on a re-interpretation in terms of
regular anti-self-dual (or ASD) connections on the four-ball.
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The above construction, linking singular objects on the 3-ball to regular ones
on the 4-ball, can be used in the framework of gauge theory on compact 3-
manifolds. As a matter of fact, smooth monopoles (∇, Φ) over any compact 3-
manifold necessarily satisfy the much stronger equationsF∇ = 0, d∇Φ = 0; one
has therefore to look for singular solutions. In our setup, we fix a finite number
of points {p1, . . . , pn} on a compact, Riemannian, oriented 3-manifoldX and
we considerSU(2) monopoles that are singular (in the sense defined hereabove)
at each pointpi . To any such solution, we can associaten nonnegative integers
k1, . . . , kn, where (ki ,−ki ) are the weights of the representationS1 → SU(2) in
the fibre over the origin ofB4 (the 4-ball is projected via the Hopf fibration to
a small 3-ball around the singularitypi ). The integerki is called thechargeof
the monopole at the singularitypi .

Actually, the reinterpretation of our monopoles in terms of ASD connections
can be performed only over small 3-balls around the singularities. As we show in
Sect. 2.3, it is indeed impossible (for topological reasons) to extend thesen local
correspondences to one global correspondence intertwining singular monopoles
on a compact 3-manifold and regular ASD connections on a 4-manifold with an
S1-action.

It should be pointed out that the monopoles we consider have genuine sin-
gularities at the pointspi :

Proposition 6 If (∇, Φ) is a monopole with a singularity of charge k at p, then
the pointwise norm ofΦ satisfies|Φ| = k/2r + o(1/r ), where r is the geodesic
distance from p.

We should also make a remark about the 3- and 4-dimensional metrics. As
a matter of fact, the local construction we have discussed so far works only for
the Euclidean metric onB3. However (cf. proposition 4), it is true that for any
metric onB3, one can modify the 1-formξ and the metric onB4 (without losing
too much regularity) so that the correspondence between the Bogomolny and the
ASD equation still holds.

For our purposes, we fix the charge at each singularity, i.e. we only consider
monopoles whose charge at the singularitypi equals a prescribed integerki . The
aim of this paper is to work out a formula for the virtual dimension of the moduli
spaceM of singular monopoles onX with charges (k1, . . . , kn) at the singulari-
ties (p1, . . . , pn). By moduli space we mean the space of all singular monopoles
with charges (k1, . . . , kn), modulo the action of the group of bundle automor-
phisms (or gauge group). The gauge group does indeed preserve the Bogomolny
equation, so that the moduli space parametrizes the essentially different singular
monopoles.

The techniques used for the study of this moduli space are fairly standard
and have been applied to the study of instanton moduli spaces ([3], [4]). In the
affine space of all pairs (∇, Φ), we construct through each pair a ‘slice’ transverse
to its orbit under the gauge group action, thus obtaining a fairly adequate local
model for the space of gauge equivalence classes of pairs. This‘gauge-fixing
result’ (Proposition 9) is very similar to the one in instanton theory, and their
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proofs are identical (with one minor exception due to the fact that here we are
working with singular objects; however, this is not a problem, since it suffices
to view our singular pairs as regular anti-self-dual connections over the 4-ball).
It will follow from the gauge-fixing result that the moduli space around a point
[(∇, Φ)] can be identified with the set of all monopoles in the slice through
(∇, Φ), modulo the (finite-dimensional) stabilizer of (∇, Φ) in the gauge group.
As in standard instanton theory, the virtual dimension of our moduli space is
given by the index of a Fredholm operatorL (which is however not elliptic,
again due to the singularity atp). The explicit computation of this index leads
to our main result:

Theorem 1The virtual dimension of the moduli spaceM of singular monopoles
on X with singularities at(p1, . . . , pn) and charges(k1, . . . , kn) equals4

∑n
i =1 ki .

To obtain this index formula,we use the excision property for indices of ellip-
tic operators (one of the many ingredients of the Atiyah-Singer Index Theorem),
and we show in Proposition 11 that the problem of computing the index ofL
boils down to computing the index of the standard elliptic operator from instan-
ton theory (namelyd∗

∇4 ⊕ d+
∇4), acting onS1-invariant 1-forms overS4 (in this

particular case, theS1-action onS4 fixes two points and acts freely everywhere
else).

The computation of this new index is carried out in Proposition 12. Our result
is a simple application of the Atiyah-Singer Fixed Point Theorem for G-invariant
elliptic operators. The combination of Propositions 11 and 12 yields the main
result.

Finally, we exhibit (in Sect. 5) a 1-parameter family ofSO(3)-invariant, sin-
gular monopoles withk1 = 1 (i.e. with one singularity of charge 1) on the 3-sphere
with its round metric. We also show (via a Weitzenböck formula) that the moduli
spaces of singular monopoles on the 3-sphere are regular, which means in par-
ticular that in thek1 = 1 case, the moduli space is given locally by a 4-parameter
family of solutions (as predicted by the virtual dimension formula).

It is my pleasure to thank Peter Kronheimer and Simon Donaldson for their
assistance over the years. I am also grateful to the Wiener-Anspach Foundation
for its financial support. The results presented here are part of a D.Phil thesis
([7]).

2 The Bogomolny and the ASD equation

Let (X, g) be a compact, oriented Riemannian 3-manifold, andη → X an SU(2)
vector bundle. Let∇ be anSU(2) connection inη, andΦ a section of adη (i.e.
a trace-free, skew-hermitian endomorphism ofη).

We say that the pair (∇, Φ) is a monopole if it satisfies the Bogomolny
equation

F∇ = ∗d∇Φ.
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Here F∇ denotes the curvature of∇, and ∗ the Hodge star operator induced
by the metricg. Now let u be a gauge transformation, i.e. anSU(2) bundle
automorphism ofη. Gauge transformations act on the space of all pairs (∇, Φ)
by the ruleu · (∇, Φ) = (∇′, Φ′), where

∇′ = u∇u−1

Φ′ = uΦu−1.

If (∇, Φ) is a monopole, then clearly (∇′, Φ′) is a monopole. It means that the
Bogomolny equation is invariant under gauge transformations.

A basic question about the Bogomolny equation on a compact manifold would
be to examine the moduli space of monopoles for given (X, g, η), i.e. the space
of all monopoles modulo gauge equivalence. Whereas the moduli spaces of the
4-dimensional anti-self-duality (ASD) equation are highly interesting objects, the
next proposition shows that the moduli spaces for the monopole equation on a
compact 3-manifold are too constrained to give rise to new information about
the 3-manifoldX.

Proposition 1 If (∇, Φ) is a monopole on a compact 3-manifold X , then F∇ =
∗d∇Φ = 0.

Proof. Combine the Bianchi identityd∇F∇ = 0 and the monopole equation to
deduce thatd∗

∇d∇Φ = 0, whered∗
∇ : Ω1(adη) → Ω0(adη) is the formal adjoint

of d∇. The result follows. �

2.1 The Euclidean case

We define anS1-action onB4 (viewed as subset ofC2 ∼= R4) by

θ · (z1, z2) := (ei θz1, e
i θz2).

This action fixes the origin ofB4, whereas it is free onB4 \ 0. Now define
coordinates (yi )i =1,...,4 on B4 by z1 = y1 + iy2, z2 = y3 + iy4, and let (x1, x2, x3) be
coordinates onB3. Then the polynomial mapπ : B4 → B3 defined by

x1 = 2(y1y3 + y2y4)

x2 = 2(y2y3 − y1y4)

x3 = y2
1 + y2

2 − y2
3 − y2

4

exhibitsB4 \ 0 as anS1-principal bundle overB3 \ 0.
Note that if rn denotes the ‘distance from the origin’-function inRn, then

π∗r3 = r 2
4 .

We denote by∂
∂θ the smooth vector field onB4 given by(

∂

∂θ

)
y

:=
d
dθ
|

θ=0
(θ · y).
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Let ε be anSU(2) vector bundle overB3 \ 0 and consider its pull-backπ∗ε to
B4 \ 0. This pull-back bundle comes with a naturalS1-action projecting onto
the S1-action onB4 \ 0. Given anyS1-invariant 1-formξ on B4 \ 0, satisfying
ξ( ∂

∂θ ) 6= 0, we can define a one-to-one correspondence between
(a) pairs (∇, Φ) of an SU(2) connection inε and a section of adε, and
(b) S1-invariantSU(2) connections∇4 in π∗ε,
by letting ∇4 = π∗∇ + ξ ⊗ π∗Φ. One shows easily that∇ and Φ can be

unambiguously recovered from∇4.
This correspondence has (at least for a particular choice ofξ and the metrics)

the following nice property.

Proposition 2 Endow B4 (resp. B3) with the Euclidean metric and the orientation
form−dy1∧dy2∧dy3∧dy4 (resp.−dx1∧dx2∧dx3), and letξ = 2(−y2dy1+y1dy2−
y4dy3 + y3dy4). Then(∇, Φ) is a monopole if and only if∇4 = π∗∇ + ξ ⊗ π∗Φ
satisfies the anti-self-dualtity (or ASD) equation∗F∇4 = −F∇4.

Proof.

F∇4 = Fπ∗∇+ξ⊗π∗Φ

= π∗F∇ + dπ∗∇(ξ ⊗ π∗Φ) + (ξ ⊗ π∗Φ) ∧ (ξ ⊗ π∗Φ)

= π∗F∇ + dξ ⊗ π∗Φ− ξ ∧ π∗(d∇Φ).

Now, for the given orientation ofB4, dξ = 4(dy1 ∧ dy2 + dy3 ∧ dy4) is an anti-
self-dual 2-form. Therefore

F +
∇4 = (π∗F∇)+ − (ξ ∧ π∗(d∇Φ))+,

where the superscript denotes the self-dual part of a (bundle-valued) 2-form. One
checks that for any 1-formω on B3, one has

ξ ∧ π∗ω = ∗π∗(∗ω), and therefore

F +
∇4 = (π∗F∇)+ − (π∗(∗d∇Φ))+

=
(
π∗(F∇ − ∗d∇Φ)

)+
.

This establishes the only-if part. As for the converse, just notice that for any
2-form α on B3 \ 0, (π∗α)+ = 0 implies thatα = 0. �

2.2 Generalization for arbitrary metrics

The next proposition shows that the correspondence between the monopole and
the ASD equation in the Euclidean case is no accident.
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Proposition 3 Suppose B4 and B3 carry arbitrary metricsg4 and g3, and letξ
be an S1-invariant 1-form on B4 \ 0 with ξ( ∂

∂θ ) 6= 0. Then the equivalence

(∇, Φ) is a monopole on B3 \ 0 ⇐⇒ ∇4 := π∗∇ + ξ ⊗ π∗Φ is ASD on B4 \ 0

holds exactly when
(i) the metricg4 on B4 \ 0 is conformal toπ∗g3 + ξ2,
(ii) ξ = π∗(1/f ) · ω, where f is a smooth non-zero function on B3 \ 0 satisfying
4f = 0 and 1

2π [∗df ] = 1 ∈ H 2(B3 \ 0,R), andω is an S1-invariant 1-form on
B4 \ 0 satisfyingω( ∂

∂θ ) = 1 and dω = −π∗(∗df ).

Proof. Re-reading the proof of Proposition 2, one sees immediately that the
equivalence holds exactly when
(i) ξ ∧ π∗α = ∗π∗(∗α) for any 1-formα on B3 \ 0,
(ii) dξ is an anti-self-dual 2-form.

It is easy to check that condition (i) is satisfied if and only if the metric on
B4 \ 0 is conformal toπ∗g3 + ξ2. One can writeξ = π∗(f −1) · ω, wheref is a
smooth non-zero function onB3 \ 0, andω a connection 1-form of the principal
S1-bundleB4\0 → B3\0 (f is non-singular, sinceξ( ∂

∂θ ) 6= 0). Hencedω = π∗B,
whereB is the curvature 2-form of the bundle. The exterior derivative ofξ equals

dξ = π∗ (
B/f

) − π∗ (
df /f

) ∧ ξ.
Using conditions (i) and (ii), we get

0 = dξ + ∗dξ

= π∗ (
B/f

)
+ π∗ (∗df /f

)
+ ξ ∧ π∗ (

df /f + ∗B/f
)
,

and hence
B = − ∗ df .

As B is closed,f must be harmonic onB3\0. Note that a given harmonic function
determinesB, and henceω (up to gauge equivalence) andξ. However, there is an
extra topological condition coming from the fact thatω is a connection 1-form:
the curvature 2-formB has to lie in the cohomology class 2πc1(P), whereP
stands for the degree oneS1-bundleB4 \ 0 → B3 \ 0. This gives the condition

1
2π [∗df ] = 1. �

In the Euclidean case (the model case investigated in Sect. 2.1), we have

f =
1

2r3

ω =
1
r 2

4

(−y2dy1 + y1dy2 − y4dy3 + y3dy4)

π∗g3 + ξ2 = 4r 2
4(dy2

1 + dy2
2 + dy2

3 + dy2
4).

(rn is the radius in Euclideann-space; recall thatπ∗r3 = r 2
4 .)

Suppose we are given a 1-formξ as in Proposition 3, as well as a 3-
dimensional metricg3. Then there is still not a unique metricg4 on B4 \ 0
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for which the correspondence between the Bogomolny and ASD equation holds.
Indeed, we have to choose the conformal factor by whichπ∗g3 + ξ2 is to be
multiplied. Naturally we want to choose this factor in a way to obtain some
regularity of the metric coefficients at the origin ofB4. The Euclidean example
suggests thatπ∗f is a reasonable choice for our conformal factor. We therefore
define our4-dimensional metric g4 on B4 \ 0 to be given by

g4 := π∗f · (π∗g3 + ξ2) = π∗(f g3) + π∗(1/f )ω2.

Proposition 4 Let g3 be an arbitrary metric on B3. Then there exists a smooth
harmonic function f as in Proposition 3 of the form f= 1

2r +higher order terms (r
is the geodesic distance from the origin). Moreover, one can choose a connection
1-form ω on B4 \ 0 with curvature− ∗ df in such a way that the 1-formξ =
π∗(1/f )ω is in L2

3,loc(B4) and the metricg4 = π∗f (π∗g3 + ξ2) is in L2
5,loc(B4).

We say that a function is inL2
l ,loc(B4) if all its derivatives up to orderl have

finite L2-norm over any compact subset ofB4.
We skip the rather technical proof of this proposition, since it is focused on

an analytic construction of a functionf of the desired form, from which the
regularity results aboutξ andg4 follow easily.

2.3 Non-existence of a global correspondence

We have established the existence of a local correspondence between the
Bogomolny equation and the ASD equation. One might wonder why we are con-
sidering a correspondence onB3 rather than one which reinterprets monopoles
on a general compact 3-manifoldX as circle-invariant ASD connections on a
4-manifold. The precise question we are going to answer is as follows.

Given a compact, oriented, Riemannian 3-manifold (X, g) with marked points
p1, . . . , pn, can one construct an oriented, Riemannian 4-manifold (Y , g4) with
an S1-action such that
(i) the S1-action is free everywhere onY except atn fixed pointsq1, . . . , qn,
(ii) there is a smooth mapπ : Y → X such thatπ(qi ) = pi and Y \ {qi } π−→
X \ {pi } is a principalS1-bundle,
(iii) there is a smoothS1-invariant 1-formξ on Y \ {qi } such that a pair (∇, Φ)
on X \ {pi } is a monopole if and only ifπ∗∇ + ξ ⊗ π∗Φ is an ASD connection
on Y \ {qi }?

The answer is always negative (except in the trivial casen = 0). To understand
this, we cut out small open balls around thepi ’s and theqi ’s, thus providing us
with a principalS1-bundleỸ

π−→ X̃ such that∂X̃ is a union ofn two-spheres
and ∂Ỹ is a union ofn three-spheres. Take a 2-forme representing the Euler
class of this principal bundle. Ase is closed, its integral over∂X̃ vanishes. On
the other hand, it is equal to the sum of the integrals ofe over each of then
two-spheres. One shows that the principalS1-bundle over any such two-sphere
is isomorphic to the Hopf fibrationS3 → S2, which has degree 1. Hence, for
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eachpi , there is a contribution of±1 to the integral ofe over ∂X̃. Call pi a
(+)-point if this contribution is +1, and a (−)-point otherwise. As the sum of
the contributions is zero, there must be as many (+)-points as (−)-points and
consequentlyn must be even.

It is possible to construct, for any 3-manifoldX with an even number of
marked points, a 4-manifoldY satisfying conditions (i) and (ii). The construction
is obvious forn = 0. Furthermore, if the construction ofY has been achieved for
X with n marked points, then it can also be achieved forX with n + 2 marked
points. This is done by gluing a copy ofS4 into Y . Indeed there is anS1-action
on S4 with 2 fixed points and quotientS3, so this gluing adds two more marked
points toX.

However, condition (iii) will imply a contradiction. By Proposition 3, one
obtains a smooth, harmonic, nowhere-zero functionf on X \ {pi }. Moreover,
the topological condition1

2π [∗df ] = 1 implies thatf goes to +∞ at (−)-points,
whereas it goes to−∞ at (+)-points. This contradicts the non-vanishing off .

3 The moduli space of good monopoles

3.1 Good monopoles

Let p be a point on a compact Riemannian 3-manifoldX. We wish to study
pairs (∇, Φ) consisting of a smooth connection∇ in an SU(2) vector bundle
η → X \ p and a smooth sectionΦ of adη, and satisfying the Bogomolny
equationF∇ = ∗d∇Φ. To impose some regularity atp, we shall use theupstairs
connection∇4 overB4\0 constructed in the previous section. Using exponential
coordinates aroundp, we obtain a mapπ : B4 → U from the 4-ball to the 3-
ball of radius 1 aroundp. We also know from Proposition 4 that we can find
a 1-form ξ and a metric onB4 such that the upstairs connection∇4, obtained
from the restriction of (∇, Φ) to the 3-ballU , is ASD. Our regularity condition
will require the upstairs connection to be regular at the origin of the four-ball.
Thus, by Proposition 2 and its subsequent generalization in Sect. 2.2, a monopole
(∇, Φ) on X \ p satisfying our regularity condition can be interpreted (at least
near the singularityp) as a regularS1-invariant ASD connection on the four-ball
B4. To be more precise, theS1-invariant connection

∇4 = π∗(∇|U \p) + ξ ⊗ π∗(Φ|U \p)

is defined on theS1-equivariant bundleπ∗(η|U \p) → B4 \ 0. There are smooth
trivializations of π∗(η|U \p) in which the S1-action on the bundle extends to a
smooth action onB4. We call such a trivialization ak-gaugeof π∗(η|U \p), where
k ∈ {0, 1, 2, . . .} denotes the weight of the representationS1 → SU(2) given
by the action ofS1 on the fibre at the origin ofB4. Note that anyk-gauge can
be transformed, via some smooth gauge transformation overB4, to ak-gauge in
which theS1 action is given by

θ · (y, a1, a2) = (θ · y, ekiθa1, e
−kiθa2) (θ ∈ S1, y ∈ B4, (a1, a2) ∈ C2).
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Definition 1 A good smooth pair (∇, Φ) of charge k is a pair consisting of a
smooth connection∇ in η → X \p and a smooth sectionΦ of adη such that there
exists a k-gaugeτ of π∗(η|U \p) in which the connection

π∗(∇|U \p) + ξ ⊗ π∗(Φ|U \p)

is represented by a smooth connection matrix over B4. We say that(∇, Φ) is a
good smooth pair of charge k with respect toτ .

Remark.In this definition, as well as in our whole study of the moduli space, we
assume without loss of generality that we are dealing only with one singularity
p.

Requiring smoothness of the upstairs connection onB4 is too strong, since
the 4-dimensional metricg4 is not necessarily smooth at the origin. For this
reason, we now introduce a larger class of singular monopoles.

Definition 2 A good monopole of chargek is a pair(∇, Φ), where∇ is a smooth
connection inη → X \ p, andΦ a smooth section ofadη, with the following
properties:
(i) F∇ = ∗d∇Φ (the Bogomolny equation),
(ii) The upstairs connection∇4 has finite energy over any compact subset of B4,
(iii) |Φ|

f → k at p (f is the harmonic function on U\ p introduced in Proposition
3).

A priori, this definition does not seem to have much to do with good smooth
monopoles. But as we shall see, any good smooth monopole of chargek is a
good monopole of chargek (Proposition 6). Furthermore, good monopoles of
chargek have a nice interpretation in terms ofk-gauges (Proposition 5).

Definition 3 The moduli spaceM∞
k of good monopoles of chargek is the

set of all good monopoles of charge k, divided by the group of all smooth gauge
transformations of the bundleη.

The ‘infinity’ superscript signifies the smooth nature of the objects we are
considering. Note that the moduli spaceM∞

k is defined without the use of
k-gauges.

3.2 Good L23 pairs and good L23 monopoles

Proposition 5 Let (∇, Φ) be a good monopole of charge k. Then there exists
a k-gauge ofπ∗(η|U \p) in which ∇4 is represented by an L2

3,loc(B4) connection
matrix.

Proof. ∇4 is a finite-energy, anti-self-dual connection onB4 \ 0 (with respect to
the metricg4). The coefficients of the metric are inL2

5,loc(B4) (cf. Proposition
4). In that case Uhlenbeck’s Removable Singularity Theorem [10] guarantees the
existence of a gauge whose corresponding connection matrixA lies in L2

6,loc(B4).
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One then constructs anL2
4,loc(B4) gauge transformation to change this gauge to a

k′-gauge, namely a gauge where theS1 bundle action is given byθ · (y, a1, a2) =
(θy, ek′ i θa1, e−k′ i θa2). We will be done if we can showk′ = k, which clearly
follows from the following result. �

Proposition 6 Suppose that the upstairs connection∇4 corresponding to a pair
(∇, Φ) is represented by an L2

3,loc(B4) connection matrix in a k′-gaugeτ . Then
|Φ|
f → k′ at p, or equivalently2r |Φ| → k′ at p (r is the geodesic distance from

p).

Proof. In the k′-gaugeτ , the S1 bundle action can be seen as the map

u : B4 × S1 → SU(2) : (y, θ) →
(

ek′ i θ 0
0 e−k′ i θ

)
.

In the same gaugeτ ,

(π∗∇) ∂
∂θ

=
∂

∂θ
− ∂w

∂θ
w−1,

wherew : B4 \ 0 → SU(2) is the gauge transformation from anyS1-invariant
gauge ofπ∗η to τ . Hence

∂w

∂θ
w−1 =

(
k′i 0
0 −k′i

)
.

We know that∇4 = d + B, where B is an L2
3,loc(B4) connection matrix. As

∇4 = π∗∇ + ξ ⊗ π∗Φ, we get

π∗(Φ/f ) =

(
k′i 0
0 −k′i

)
+ B

(
∂

∂θ

)
.

The matrix-valued 1-formB is in L2
3,loc(B4), so by the Sobolev Imbedding The-

orem in dimension 4,B is bounded in a neighbourhood of the origin. Thus
B

(
∂
∂θ

) → 0 at the origin ofB4. The result follows. �
Proposition 5 motivates our next definition.

Definition 4 Let τ be a k-gauge. Then agoodL2
3 pair of charge k with respect

to τ is a pair consisting of an L23,loc connection∇ in η → X \ p and an L23,loc
sectionΦ of adη such that the connection

∇4 = π∗(∇|U \p) + ξ ⊗ π∗(Φ|U \p)

is represented (in the k-gaugeτ ) by an L2
3,loc(B4) connection matrix. In other

words, we use the k-gaugeτ and the standard trivialization(dy1, . . . , dy4) of
T∗B4 to represent∇4 by a collection of functions. We say that(∇, Φ) is a good
L2

3 pair of charge k if each of these functions has finite L2
3-norm over any compact

subset of B4.

We suppose from now on that we have fixed ak-gaugeτ . All good L2
3

pairs are supposed to be good with respect to this gauge.
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Definition 5 Theconfiguration spaceCk is the set of all good L23 pairs of charge
k. Thegauge groupGk is the set of all L24,loc gauge transformations u ofη such
that π∗(u|U \p) is represented (in the k-gaugeτ ) by an L2

4,loc matrix over B4. The
moduli spaceMk of good L23 monopoles is the quotient{monopoles inCk}/Gk.

One can show that there is a natural bijection between the moduli spaces
Mk andM∞

k . We can also restate our definition ofM∞
k in a form which is

independent of any choices off and ξ. This shows that our moduli space is a
natural object.

Proposition 7 Let ∇ be a smooth connection inη → X \ p, andΦ a smooth
section ofadη. Suppose that the pair(∇, Φ) satisfies the monopole equation.
Then(∇, Φ) is a good monopole of charge k if and only if
(i) 2r |Φ| → k at p,
(ii) d (r 2|Φ|2) is bounded near p.
(here r is the geodesic distance from p.)

Proof. The result follows from a straightforward re-writing of the finite-energy
condition for∇4 in terms of∇ andΦ. �

3.3 The local structure of the moduli space

We now begin the analysis of the moduli spaceMk . Our approach is very close
to the standard theory on instanton moduli spaces. These moduli spaces have
been studied intensively in [3], [4] and [6].

Notation. Henceforth we shall frequently drop the reference to the chargek in
notations likeCk or Gk .

The configuration spaceC is an affine space modelled on a vector space
denoted byTC . The spaceTC is given a Banach space structure via the following
norm:

||(a, ϕ)||2L2
3

:= ||a||2L2
3(X\ 1

3 U ) + ||ϕ||2L2
3(X\ 1

3 U ) + ||π∗a + ξ ⊗ π∗ϕ||2L2
3(B4

2/3
).

Let us fix a pair (∇, Φ) ∈ C . Then the tangent space to its orbit (under the gauge
group action) at the point (∇, Φ) is given by the image of a linear mapD(∇,Φ)

from the Lie algebra ofG (denoted byTG ) into TC . (Like TC , the vector
spaceTG can also be endowed with a Banach norm). Forv ∈ TG , one has

D(∇,Φ)v = (−d∇v, [v, Φ]).

We introduce the followingL2-inner products onTG andTC :

〈v1, v2〉TG =
∫

X
γ〈v1, v2〉 vol

〈(a1, ϕ1), (a2, ϕ2)〉TC =
∫

X
(〈a1, a2〉 + 〈ϕ1, ϕ2〉) vol,
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whereγ is a smooth positive function onX \p satisfyingγ =

{
1 on X \ 2

3U
f on 1

3U
.

The formal adjointD∗
(∇,Φ) of D(∇,Φ) with respect to these inner products maps

TC to TG
2 := {v ∈ L2

2,loc(adη)|π∗v ∈ L2
2,loc(B4)} (the target space would be

more complicated without the functionγ) and is given by the formula

D∗
(∇,Φ)(a, ϕ) = γ−1(−d∗

∇a + [Φ,ϕ]).

The main difficulty in the study of our moduli space comes obviously from the
singularity of the objects we consider. In our context, we cannot talk about elliptic
operators in the usual sense, since these are defined on Sobolev spaces over
compact manifolds. The Banach spaces we introduced in the previous subsection
are clearly not of this type. However some of our differential operators behave
exactly like elliptic operators.

Proposition 8 The operator L= D∗
(∇,Φ)D(∇,Φ) : TG → TG

2 admits a left and a
right parametrix. As a consequence,KerL is finite-dimensional andIm L is closed
and has finite codimension.

Proof. We can modifyL over 1
3U to obtain an elliptic differential operatorLX

over X. This operatorLX admits a left and a right parametrix. Moreover, the
restriction of L to U can be viewed (by definition of our singularity) as the
regular elliptic differential operatord∗

∇4d∇4 over the four-ballB4 (again due to
the presence of the functionγ). This 4-dimensional operator can be extended to
an elliptic operatorLS4 over the four-sphere. The operatorLS4 also admits a left
and a right parametrix.

From the left (right) parametrices forLX andLS4, one constructs (using suit-
able multiplications by cutoff functions) a left (right) parametrix forL. �

Proposition 8 allows us to carry out the local description of the moduli space
in the standard way, i.e. by constructing a ‘slice’ through a monopole (∇, Φ)
transverse to the gauge group orbit, and viewing the moduli space as the zero set
(modulo the finite-dimensional stabilizer of (∇, Φ)) of a smooth Fredholm map
defined on the slice. Standard theory leads to the following gauge-fixing result:

Proposition 9 Let (∇, Φ) ∈ C . Then
i) there existsε1 > 0 such that for any(a, ϕ) ∈ TC with ||(a, ϕ)||L2

3
< ε1, the pair

(∇, Φ)+ (a, ϕ) is gauge equivalent to a pair(∇, Φ) + (a′, ϕ′) with D∗
(∇,Φ)(a

′, ϕ′) =
0,
ii) there existsε2 > 0 with the following property:
If (a, ϕ), (a′, ϕ′) ∈ KerD∗

(∇,Φ) satisfy||(a, ϕ)||L2
3
, ||(a′, ϕ′)||L2

3
< ε2, and

(∇ + a′, Φ + ϕ′) = u(∇ + a, Φ + ϕ) for some u∈ G , then u ∈ G(∇,Φ), where
G(∇,Φ) is the stabilizer of(∇, Φ) in G .

We now bring in the Bogomolny equation. We start with the following easy
lemma.

Lemma 1 If (∇, Φ) ∈ C , then the self-dual 2-form
(
π∗(F∇ − ∗d∇Φ)

)+
lies in

L2
2,loc(B4).
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Proof. Let ∇4 = π∗∇ + ξ ⊗ π∗Φ. The proof of Proposition 2 gives(
π∗(F∇ − ∗d∇Φ)

)+
= F +

∇4. �

Thus, if we defineΩ2 := {λ ∈ L2
2,loc(Λ2T∗(X\p)⊗adη)|(π∗λ)+ ∈ L2

2,loc(B4)},
then the lemma implies that for each (∇, Φ) ∈ C , the bundle-valued 2-form
F∇ −∗d∇Φ lies inΩ2. As we did already withTC andTG , we endow this new
vector space with a Banach space structure.

Let (∇, Φ) ∈ C be a monopole, and letµ(∇,Φ) be the map

µ(∇,Φ) : KerD∗
(∇,Φ) → Ω2 : (a, ϕ) 7→ F∇+a − ∗d∇+a(Φ + ϕ).

The gauge-fixing result implies that there is a neighbourhoodS of 0 in KerD∗
(∇,Φ)

such that (µ−1
(∇,Φ)(0)∩S)/G(∇,Φ) is homeomorphic to a neighbourhood of [(∇, Φ)]

in M.
Using a variant of Proposition 8, one can show thatµ(∇,Φ) is a smooth

Fredholm map, i.e. its derivative at each point is a Fredholm operator. It follows
that thevirtual dimension of M equals the index ofdµ minus the dimension
of G(∇,Φ) (heredµ stands for the derivative ofµ(∇,Φ) at the origin). Now it is
easy to see that

Inddµ− dimG(∇,Φ) = Ind(D∗
(∇,Φ) ⊕ dB(∇,Φ)),

wheredB(∇,Φ) : TC → Ω2 : (a, ϕ) 7→ d∇a − ∗d∇ϕ− ∗[a, Φ] is the linearization
of the Bogomolny equation. The operatorD∗

(∇,Φ) ⊕ dB(∇,Φ) is easily seen to
be Fredholm (again by adapting the proof of Proposition 8). Hence its index is
well-defined. In Sect. 4, we shall prove the following index formula.

Proposition 10 Let (∇, Φ) ∈ Ck (recall that k is the charge at the singularity p).
Then the Fredholm operator D∗(∇,Φ) ⊕ dB(∇,Φ) has index4k.

As a corollary, we have

Theorem 1 Let X be a compact, oriented and connected 3-manifold. Fix n points
p1, . . . , pn ∈ X and n non-negative integers k1, . . . , kn. Then the virtual dimen-
sion of the moduli spaceM(k1,...,kn) of good monopoles having charge ki at the

singularity pi equals4
n∑

i =1
ki .

4 Proof of the index formula

We now come to the explicit computation of the index ofδ(∇,Φ) := D∗
(∇,Φ) ⊕

dB(∇,Φ). It is easy to see that
(a) for fixedk, Indδ(∇,Φ) does not depend on the choice of (∇, Φ) in Ck ,
(b) for the trivial pair (∇, Φ) = (d, 0) ∈ C0 (and hence for all (∇, Φ) ∈ C0),
Indδ(∇,Φ) = 0. This is becauseδ(∇,Φ) is essentiallyd ⊕d∗ : Ω1⊕Ω3 → Ω0⊕Ω2,
which has index zero.

What remains to see is how the index changes as the chargek increases. To
deal with this question, we use the excision property for indices.
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4.1 The excision property for indices

We formulate the excision property for indices (Atiyah-Singer, [1] p.522, [3]
p.264) in some generality. Suppose that
(i) Z is a compact manifold decomposed as a union of two open setsZ = U ∪V ,
(ii) L : Γ (E) → Γ (F ) and L′ : Γ (E′) → Γ (F ′) are a pair of elliptic differential
operators overZ ,
(iii) there are bundle isomorphismsα : E|V → E′|V , β : F |V → F ′|V such that
L = β−1L′α over V .
We obtain thus a set of dataD := (Z ,U ,V , L, L′, α, β). Now suppose we have
another set of dataD̃ := (Z̃ , Ũ , Ṽ , L̃, L̃′, α̃, β̃) verifying the same conditions.
Suppose moreover that there is a diffeomorphismi : U → Ũ and four bundle
mapse : E|U → Ẽ|Ũ , e′ : E′|U → Ẽ′|Ũ , f : F |U → F̃ |Ũ , f ′ : F ′|U → F̃ ′|Ũ
coveringi and such that{

L = f −1L̃e
L′ = f ′−1L̃′e′ over U .

Then IndL − IndL′ = Ind L̃ − Ind L̃′.
The idea of the proof consists in constructing (fromL and L′) a pseudodif-

ferential operatorP over the manifoldZ such that
(i) Ind P = IndL − IndL′,
(ii) the elements of KerP and KerP∗ are supported inU .
Doing the same construction for the set of datãD , we can arrange that

KerP
i∼= Ker P̃ and KerP∗ i∼= Ker P̃∗ (since all their elements are supported inU

(resp.Ũ )). Hence IndP = IndP̃ and the result follows. To constructP, one con-
siders first the differential operatorD = L ⊕ (L′)∗, so that IndD = IndL − IndL′.
One proceeds to define the pseudodifferential zeroth order operator

P0 := (1 + DD∗)−1/2D ,

whose index equals IndD . Finally, one deforms the symbol ofP0 over V to
obtain the identity, thus producing another pseudodifferential operatorP with
the same index asP0. This P can be chosen in such a way that KerP and
KerP∗ are supported inU .

We want to use the excision property forZ = X, Z̃ = S4. Let us explain first
how we proceed forX = U ∪ V , whereU is the standard 3-ball aroundp, and
V := X \ 1

2Ū . Fix an integerk ≥ 0 and pick (∇, Φ) ∈ Ck and (∇′, Φ′) ∈ Ck+1

such that (∇, Φ)|V = (∇′, Φ′)|V (this can always be done). It follows that the
operatorsδ(∇,Φ) andδ(∇′,Φ′) agree overV . At this stage we are no longer in the
theoretical setup described above. Indeed, the operatorsδ(∇,Φ) and δ(∇′,Φ′) are
not elliptic operators overX, since they are not defined atp. However, they are
elliptic over V , and this is actually all we need to construct a pseudodifferential
operatorP satisfying
(i) Ind P = Indδ(∇,Φ) − Indδ(∇′,Φ′),
(ii) Ker P and KerP∗ are supported inU .
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Indeed, checking this construction step by step, one sees that the singularity at
p ∈ U does not affect the construction, since the deformations of the various
pseudodifferential operators are taking place away fromp.

Consider now the 4-sphereS4. Choosing a 4-ballB4 in S4 gives us a pro-
jection π : B4 → U down to the 3-dimensionalU . We defineŨ := B4,
Ṽ := S4 \ π−1( 1

2Ū ), so thatS4 = Ũ ∪ Ṽ . The standardS1-action onB4 ∼= Ũ
extends to anS1-action onS4 with two antipodal fixed points (denoted by 0∈ Ũ
and∞ ∈ Ṽ ). In the same way, the four-dimensional metricg4 = π∗f · (π∗g + ξ2)
on Ũ extends to anS1-invariant metric onS4. By definition of Ck , the S1-
invariant connectionπ∗∇ + ξ ⊗ π∗Φ in the pull-back bundle over̃U \ 0 can
be extended across 0 in a gauge whereS1 acts with weights (k,−k). One can
also extend this connection to anS1-invariant connection∇4 in an equivariant
vector bundleN → S4. This bundleN can be chosen in such a way that thatS1

acts with weights (0, 0) on the fibre over∞. Similarly we define anS1-invariant
connection∇4′

in an equivariant vector bundleN ′. Observe thatN and N ′ are
not isomorphic as vector bundles overS4. However, one can arrange that their
restrictions toṼ are, and as∇4 and∇4′

agree overŨ ∩ Ṽ , one can even arrange
∇4|Ṽ = ∇4′|Ṽ .

The operator (δ∇4)S1
is the restriction of the elliptic operatorδ∇4 := d∗

∇4 ⊕d+
∇4

to S1-invariant sections. Instead of considering the whole operator

d∗
∇4 ⊕ d+

∇4 : Γ (T∗S4 ⊗ adN ) → Γ ((R ⊕ Λ2
+T∗S4) ⊗ adN ),

we restrict ourselves to the subspaces ofS1-invariant sections of these two vector
bundles. So once again we violate the standard conditions required in the state-
ment of the excision property. However, (δ∇4)S1

and (δ∇4′ )S1
are restrictions of

genuine elliptic operators overS4, and (δ∇4)S1|Ṽ = (δ∇4′ )S1|Ṽ . It is therefore still
possible to construct a pseudodifferential operatorP̃ such that
(i) Ind P̃ = Ind(δ∇4)S1 − Ind(δ∇4′ )S1

,
(ii) Ker P̃ and KerP̃∗ are supported iñU .
Furthermore one can arrange thatP̃ mapsS1-invariant sections toS1-invariant
sections. Using the correspondencesδ(∇,Φ)|U ↔ (δ∇4)S1|Ũ and δ(∇′,Φ′)|U ↔
(δ∇4′ )S1|Ũ given by the projectionπ : Ũ → U , we see that KerP ∼= Ker P̃ and
KerP∗ ∼= Ker P̃∗.

We have thus proved

Proposition 11 Let (∇, Φ) ∈ Ck, (∇′, Φ′) ∈ Ck+1 be such that(∇, Φ) = (∇′, Φ′)
outside1

2U . Then

Indδ(∇,Φ) − Indδ(∇′,Φ′) = Ind(δ∇4)S1 − Ind(δ∇4′ )S1

.

Introducing the notation∇4
(k,0) := ∇4 in order to keep track of the weights of

the S1-action over the fixed points 0 and∞, we obtain the following corollary.

Corollary 1 If (∇, Φ) ∈ Ck, thenIndδ(∇,Φ) = Ind(δ∇4
(k,0)

)S1 − Ind(δ∇4
(0,0)

)S1
.

At this stage, it appears already that Indδ(∇,Φ) does not depend on the man-
ifold X.
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4.2 The index of(d∗
∇4 ⊕ d+

∇4)S1

This subsection deals with the explicit computation of (d∗
∇4 ⊕ d+

∇4)S1
, which is

carried out in greater generality than what is really needed (namely the index
corresponding to a connection onS4, endowed with anS1-action fixing two
points). LetY be a compact, oriented, Riemannian 4-manifold with anS1-action
that is free everywhere except atn fixed pointsq1, . . . , qn (recall from Sect. 2.3
thatn must be even). Suppose the metric onY is S1-invariant. Consider anSU(2)
vector bundleE → Y with an S1-equivariant action. Let∇4 be anS1-invariant
connection. Then we want to compute the index of the operator

(δ∇4)S1

:= (d∗
∇4)S1 ⊕ (d+

∇4)S1

.

This index calculation has already appeared in various papers (e.g. [5]). Hereafter,
we describe a rather direct way to work out the index.

The operator (δ∇4)S1
is obtained by restricting the standard elliptic operator

in instanton theory ([3], p.137), namely

δ∇4 := d∗
∇4 ⊕ d+

∇4 : Ω1(adE) → Ω0(adE) ⊕Ω2
+(adE),

to the subspaces ofS1-invariant elements inΩ0, Ω1 andΩ2
+. Let us note the

following as well.
(a) Any θ ∈ S1 preserves the fibreEqj

∼= C2 (j = 1, . . . , n). Hence there is a

basis ofEqj in which θ ∈ S1 acts by

(
ekj i θ 0

0 e−kj i θ

)
for some non-negative

integerkj .
(b) For eachqj , there is a coordinate chart (y1, y2, y3, y4) aroundqj in which the
S1-action becomes

θ · (y1, y2, y3, y4) = (y1, y2, y3, y4)


cosθ − sinθ 0 0
sinθ cosθ 0 0

0 0 cosθ − sinθ
0 0 sinθ cosθ

 .

We say thatqj is a (+)-point (resp. a (−)-point) if the orientation onY is given
by dy1 ∧ dy2 ∧ dy3 ∧ dy4 (resp.−dy1 ∧ dy2 ∧ dy3 ∧ dy4). There aren/2 (+)-points
andn/2 (−)-points onY .

The main ingredient of the index computation will be an application of the
Atiyah-Singer Fixed Point Theorem for G-invariant elliptic operators. Let us
rewrite our elliptic operator asδ∇4 : Γ (F ) → Γ (F ′) with

F =
(
T∗Y ⊗ adE

) ⊗ C
F ′ =

(
(R ⊕ Λ2

+T∗Y) ⊗ adE
) ⊗ C.

We complexified our vector bundles, since the Atiyah-Singer Fixed Point The-
orem only holds for complex vector bundles. This operation clearly leaves the
index of (δ∇4)S1

unchanged.
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Theorem 2 (Atiyah-Singer, [2] p.560, [9] p.123).

Ind(δ∇4)S1

=
1

2π

∫ 2π

0
`(θ)dθ,

where` : S1 → R is the function defined by

`(θ) =
n∑

i =1

trθ(Fqi ) − trθ(F ′
qi

)

trθ(Λ−1(TYqi ⊗ C))
.

Notation: Fqi (resp. F ′
qi

, TYqi ) is the fibre of the vector bundleF (resp. F ′,
TY) over the fixed pointqi ∈ Y . For a complex vector spaceV with a linear
S1-action, trθ(V ) denotes the trace of the isomorphism ofV associated toθ.
Moreover, if V is an m-dimensional complex vector space, thenΛ−1(V ) is the
virtual vector space

∑m
i =0(−1)iΛi V .

We compute the different terms in the formula for`(θ):

trθ(Fqi ) = 4 cosθ(1 + 2 cos 2ki θ).

trθ(F ′
qi

) =

{
4(1 + 2 cos 2ki θ) if qi is a (−)-point,
2(1 + cos 2θ)(1 + 2 cos 2ki θ) if qi is a (+)-point.

trθ(Λ−1(TYqi ⊗ C)) = 4(1− cosθ)2.

It now follows from the Fixed Point Theorem that if the weights at the (+)-
points are labelled byk+

1 , . . . , k
+
n/2 (and similarly for the (−)-points), we have:

`(θ) =
n/2∑
i =1

(
2(cos 2k+

i θ − cos 2k−
i θ)

1 − cosθ
− (1 + 2 cos 2k+

i θ)

)
.

From the equality

Ind(δ∇4)S1

=
1

2π

∫ 2π

0
`(θ)dθ,

it is clear that we are done if we can compute the numbers

R(m,m′) :=
1

2π

∫ 2π

0

(
2(cos 2mθ − cos 2m′θ)

1 − cosθ
− (1 + 2 cos 2mθ)

)
dθ.

Indeed, Ind(δ∇4)S1
=

∑n/2
i =1 R(k+

i , k
−
i ). Observe that

R(m,m) =

{ −1 if m 6= 0,
−3 if m = 0.

Using elementary trigonometric identities, one gets

R(m,m′ + 1) − R(m,m′) =
2
π

∫ 2π

0

sin
(
(2m′ + 1)θ

)
sinθ

1 − cosθ
dθ = 4.

We have thus proved
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Proposition 12

Ind(δ∇4)S1

= 4

 n/2∑
i =1

k−
i − k+

i

 − n
2

− 2κ,

whereκ is the number of(+)-points q+
i such that k+i = 0.

Corollary 2 (= Proposition 10). If(∇, Φ) ∈ Ck, thenIndδ(∇,Φ) = 4k.

Proof. For theS1-action onS4 considered in 4.1, there aren = 2 fixed points.
Moreover, the fixed point 0 is easily seen to be a (−)-point by considering
the orientations chosen in Proposition 2. Hence Ind(δ∇4

(k,0)
)S1

= 4k − 3 and

Ind(δ∇4
(0,0)

)S1
= −3. Applying corollary 1 yields the result. �

5 Singular monopoles on the three-sphere

5.1 Explicit solutions for k1 = 1

Let us try and find explicit examples of good monopoles with one singularity
on the 3-sphere of radius 1 with its standard round metric. Letp ∈ S3 be the
singularity andη → S3 \p anSU(2) vector bundle (necessarily trivial). We want
to construct our monopoles onS3 \ p by modelling them on the Bogomolny-
Prasad-Sommerfield monopole on Euclidean 3-space [8]. Letq be the point
oppositep in S3. Then the stereographic projection fromq onto the tangent
space ofS3 at p gives us as identificationS3 \ {p, q} ∼= R3 \ 0. Pick any gauge
σ of η over S3 \ p. We shall be looking forSO(3)-invariant monopoles (∇, Φ)
of the form

∇σ = t(r ) ·
(

(x2dx3 − x3dx2)σ1 + (x3dx1 − x1dx3)σ2 + (x1dx2 − x2dx1)σ3

)
,

Φσ = s(r ) · (x1σ1 + x2σ2 + x3σ3),

where (σ1, σ2, σ3) denotes the standard basis ofsu(2), (x1, x2, x3) are standard
coordinates onR3, r is the radius function onR3, ands, t are smooth functions
(0,+∞) → R. We compute

(F∇)σ =

(
− t ′

r
+ 2t2

)
β ·

3∑
i =1

xiσi + (rt ′ + 2t)
3∑

i =1

(dxi +1 ∧ dxi +2)σi ,

whereβ = x1 dx2 ∧ dx3 + x2 dx3 ∧ dx1 + x3 dx1 ∧ dx2. On the other hand

(d∇Φ)σ =

(
s′

r
− 2st

)
α ·

3∑
i =1

xiσi + (s + 2r 2st)
3∑

i =1

dxiσi ,

whereα = x1dx1 + x2dx2 + x3dx3. Hence a pair (∇, Φ) of the above form is a
monopole onS3 \ {p, q} if and only if
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− t ′

r
+ 2t2 = − (

1 + r 2/4
)−1

(
s′

r
− 2st

)
(1)

rt ′ + 2t = − (
1 + r 2/4

)−1
(s + 2r 2st) (2)

PuttingS = sr, T = 1 + 2r 2t , (2) becomes

T ′(1 + r 2/4) = −2ST, (3)

and (1) + 1
r 2 (2) becomes

T2 − 1
2r 2

(1 + r 2/4) = −S′. (4)

Letting r = 2 tanu (u ∈ (0, π
2 )), the system formed by (3) and (4) can be written

as

− 4ST = Ṫ (5)

− 4Ṡ cos2 u sin2 u = T2 − 1, (6)

where· denotes differentiation with respect to the variableu.
As the gaugeσ of η is non-singular atq, ∇σ must be bounded atq. Observe

that |∇σ|2 = C0t2r 2(1 + r 2/4)2 for some positive constantC0. Thereforet2r 6 =
r 2(tr 2)2 must be bounded atr = +∞ and consequentlytr 2 → 0 asr → +∞. It
follows that we only have to consider solutions withT(u) → 1 asu → π

2 .
On D = {u ∈ (0, π

2 )|T(u) 6= 0}, we can define

M (u) :=
cosu sinu

T(u)
.

Note that in caseT is smooth andT(u) → 1 asu → π
2 , one hasM (u) 6= 0 and

M (u) → 0+ asu → π
2 . Now the ODEs (5) and (6) imply

Ṁ 2 − M M̈ = 1, and hence

d
du

(
Ṁ 2 − 1

M 2

)
=

2M Ṁ (M M̈ − Ṁ 2 + 1)
M 4

= 0.

The solutions of the first-order ODĖM 2 = 1 + AM 2 (whereA is a constant) are
as follows:

If A> 0, M (u) = ± 1√
A

sinh(
√

Au + B).

If A = 0, M (u) = ±(u + B).

If A< 0, M (u) = ± 1√−A
sin(

√−Au + B).

In all three cases,B is a constant. Observe that each of these functions is smooth
on R, and henceD = (0, π

2 ). Among the above solutions, only the following
satisfy the conditionsM (u) 6= 0 andM (u) → 0+ asu → π

2 :
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M (u) =
1
C

sinh
(

C(π/2 − u)
)
, C ∈ (0,+∞)

M (u) = π/2 − u

M (u) =
1
C

sin
(

C(π/2 − u)
)
, C ∈ (0, 2]

From (5) one deduces that

S(u) = −1
2

cot(2u) +
1
4

Ṁ
M
.

Hence, for the explicit expressions ofL above, one obtains

S(u) = −1
2

cot(2u) − C
4

coth
(

C(π/2 − u)
)
< 0, C ∈ (0,+∞)

S(u) = −1
2

cot(2u) − 1
4(π/2 − u)

< 0

S(u) = −1
2

cot(2u) − C
4

cot
(

C(π/2 − u)
)

≤ 0, C ∈ (0, 2]

Note that in the third case, the solution corresponding toC = 2 yieldsS = 0 and
T = 1, i.e. s = t = 0. This is a trivial monopole, i.e.∇ is a product connection
andΦ = 0. It is a good monopole of charge 0.

Each one of the above solutions hasS(u) → 0 asu → π
2 . It is straightforward

to check that the corresponding monopoles can be extended smoothly acrossq
to give a smooth pair (∇, Φ) on S3 \ p.

Now |Φ| = −S, and asṠ > 0 for any non-trivial monopole, one sees that
the norm of the Higgs fieldΦ decreases as one approaches the point opposite
the singularity, where it eventually vanishes. As for a neighbourhood of the
singularity, one checks that the non-trivial solutions have

2r3|Φ| = −4uS(u) =
2u

tan 2u
+ R(u),

whereR(u) → 0 asu → 0 anddR is bounded nearu = 0. Proposition 7 therefore
allows us to conclude that all our non-trivial solutions are good monopoles of
charge 1.

5.2 Regularity of the moduli spaces

We wish to show that the actual dimension of the moduli spaceM of good
monopoles of charge (k1, . . . , kn) on S3 equals its virtual dimension 4

∑
ki (pro-

vided M 6= ∅). To do this, it is sufficient to show that the linearization of the
Bogomolny equation, i.e.

dB(∇,Φ) : TC → Ω2 : (a, ϕ) 7→ d∇a − ∗d∇ϕ− ∗[a, Φ]

is surjective. We define anL2-inner product onΩ2 as follows:
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〈λ, λ′〉Ω2 :=
∫

X
γ−1〈λ, λ′〉 vol .

The functionγ was introduced in Sect. 3.3. Multiplication byγ−1 ensures con-
vergence of the integral defining the inner product onΩ2. Recall thatTC carries
a natural inner product (also defined in 3.3). One computes that the formal adjoint
dB∗

(∇,Φ) of dB(∇,Φ) with respect to the inner products onTC andΩ2 is given by
the formula

dB∗
(∇,Φ)λ = (d∗

∇(γ−1λ) − [Φ, ∗γ−1λ],−d∗
∇(∗γ−1λ)).

To prove thatdB(∇,Φ) is surjective, it is enough to prove that〈dB(∇,Φ)dB∗
(∇,Φ)λ,

λ〉Ω2 > 0 for all non-zeroλ ∈ Ω2. It turns out that

dB(∇,Φ)dB∗
(∇,Φ)λ = (d∇d∗

∇ + d∗
∇d∇)(γ−1λ) − [d∇Φ, ∗γ−1λ] + [[Φ, γ−1λ], Φ].

Let ψ := γ−1λ. There is a Weitzenb̈ock formula for the Hodge Laplaciand∇d∗
∇ +

d∗
∇d∇ acting onψ ([6], p.96), namely

(d∇d∗
∇ + d∗

∇d∇)ψ = ∇∗∇ψ + ψ ◦ Ric +F g(ψ) + F ∇(ψ),

where∇∗∇ is the trace Laplacian, and the remaining three terms are defined as
follows: for anyV ,W ∈ TxX, and (e1, e2, e3) any orthonormal frame ofTxX,

(ψ ◦ Ric)(V ,W) := ψ(Ric(V ),W) + ψ(V ,Ric(W)),

(Ric : TxX → TxX is the Ricci tensor)

(F g(ψ))(V ,W) :=
3∑

j =1

ψ(ej ,R(V ,W)ej ),

(R is the curvature tensor of the metricg)

(F ∇(ψ))(V ,W) :=
3∑

j =1

{[F∇(ej ,V ), ψ(ej ,W)] − [F∇(ej ,W), ψ(ej ,V )]}.

One checks thatF ∇(ψ) = [∗F∇, ∗ψ], so that for monopoles (∇, Φ), we obtain

dB(∇,Φ)dB∗
(∇,Φ)λ = ∇∗∇ψ + ψ ◦ Ric +F g(ψ) + [[Φ,ψ], Φ].

For the metric of (positive) constant curvature onS3, the 2-formsψ ◦ Ric and
F g(ψ) are both positive scalar multiples ofψ, and hence

dB(∇,Φ)dB∗
(∇,Φ)λ = ∇∗∇ψ + K · ψ + [[Φ,ψ], Φ]

for some positive constantK . It follows that

〈dB(∇,Φ)dB∗
(∇,Φ)λ, λ〉Ω2 =

∫
X

(〈∇∗∇ψ,ψ〉 + 〈Kψ,ψ〉 + 〈[[Φ,ψ], Φ], ψ〉) vol

=
∫

X
(|∇ψ|2 + K |ψ|2 + |[Φ,ψ]|2) vol

> 0 for any non-zeroλ ∈ Ω2.

As an obvious corollary, we obtain that the moduli space of good monopoles of
chargek1 = 1 is given locally by a 4-parameter family of monopole solutions.
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