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1 Introduction

It is a quite natural idea to extend the Fatou-Julia theory of iteration of holo-
morphic maps inC, C to higher dimension. One can even restrict to interesting
classes of holomorphic maps, like polynomial automorphisms ofC2, biholomor-
phic maps ofCk , volume preserving biholomorphic maps etc. The special case
of (polynomial) H́enon maps inC2 has been extensively studied. (See ([FS0])
for references.)

Here the emphasis is on transcendental self maps ofCk .
Given Φ : Ck → Ck , a holomorphic self map of generic rankk, we define

the Fatou setFΦ as the open set of normality of (Φn)n≥0. (We allow ∞ as a
limit.) The complement,JΦ, is the Julia set.

It was proved in ([FS4]) that for a denseGδ set in the groupB of biholomor-
phic maps inCk the Fatou set is just made of basins of attraction corresponding
to attracting cycles and that hyperbolic periodic cycles are dense in the Julia set.
Similar results are obtained in ([FS3]), ([FS4]) for other classes of mappings, see
Theorems 2.9 and 2.10 below.

In ([Bu]), Buzzard proved a version of the Kupka-Smale Theorem forB .
In this paper we want to study the first properties of Fatou and Julia sets for

holomorphic maps of generic maximal rank,Em.
In the second paragraph we give some properties and examples. In the third

paragraph we describe recurrent Fatou components for maps inEm.
In paragraph 4, we show that the Julia set of a mapΦ ∈ Em is perfect unless

the map is conjugate to an upper triangular automorphism. In the same vein, we
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show that ifΦ is a biholomorphism ofCk , not conjugate to an upper triangular
automorphism, then the Julia set ofΦ has no compact component.

In the last paragraph we construct a biholomorphismΦ of C2 with a wan-
dering Fatou componentΩ, such that a subsequence (Φni ) converges to∞ onΩ
and another subsequence (Φmi ) has a finite limit onΩ; we call such a component
an oscillating Fatou component.

2 Basic definitions

We let E denote the space of entire holomorphic mapsΦ on Ck and Em ⊂ E

the space of endomorphisms of generic maximal rankk. For every mapΦ ∈ E ,
Ck is naturally divided in two subsets, the set of normality and its complement.
We say that a family of maps is normal if each subsequence has a subsequence
which either converges uniformly on compacts or diverges uniformly to infinity.

Definition 2.1 The Fatou set F= FΦ of a mapΦ ∈ E , is the largest open set on
which the iteratesΦn is a normal family.

Definition 2.2 The Julia set J= JΦ consists of the complement ofF .

The main problems are to describe the nature of the components of the Fatou
set and the structure of the Julia set.

We need the following classical result, which can be found for example in
the textbook ([G, p. 137]) by Gunning.

Proposition 2.3 Let Φ ∈ Em. There exists a closed analytic setΣ contained
in the branching locus ofΦ such that no level sets ofΦ|Σ has discrete points.
MoreoverΦ is open and has discrete fibers onCk \Σ.

We callΣ (Σn) the constant set ofΦ (Φn).
Next we state invariance properties for the Fatou and Julia sets. These follow

from the definitions and the previous proposition.

Proposition 2.4 GivenΦ ∈ Em with Fatou set F , Julia set J and constant setΣ.
The following relations hold:
1) Φ−1(F ) ⊂ F ,
2) Φ(F ) ⊃ F ∩ Φ(Ck),
3) Φ(F ∩Σc) ⊂ F , and dually,
4) Φ−1(J ) ⊃ J ,
5) Φ(J ) ⊂ J (= J ∩ Φ−1(Ck)) and
6) Φ−1(J ) ∩Σc ⊂ J .

We can strengthen 3) for some Fatou components.

Proposition 2.5 Let Ω be a Fatou component forΦ ∈ Em. Assume{Φn} is
locally bounded onΩ. ThenΦ(Ω) is contained in the Fatou set.
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Proof. Recall at first that for a compact setK ⊂ Ck the polynomially convex
hull K̂ of K is defined by

K̂ = {z ∈ Ck ; |P(z)| ≤ sup
K

|P| ∀ holomorphic polynomialsP}.

A domain U is Runge if K ⊂⊂ U implies K̂ ⊂⊂ U . Here K may be
assumed to be connected andK̂ is then automatically connected ([Hö]). We
show first thatΩ is Runge. LetK ⊂⊂ Ω. Let Kδ = {z; dist(z,K ) ≤ δ}. Choose
δ > 0 so thatKδ ⊂⊂ Ω. It is clear that{Φn} is uniformly bounded onK̂δ and
it is easy to check that̂Kδ contains a neighborhood of̂K . HenceΩ is Runge.
Similarly, Φ(Ω \ Σ) is contained in a Runge Fatou componentΩ′ sinceΦ is
open onΩ \ Σ. Let p ∈ Ω ∩ Σ. Pick a disc∆ centered atp and such that
∆ \ p ⊂ Ω \Σ. ThenΦ(∆ \ p) ⊂ Ω′, henceΦ(p) ∈ Ω′, using thatΩ′ is Runge.

ut
Example 2.6 Let f (z) = λez, z ∈ C, 0 < λ < e−1. Then the Fatou set has one
single componentΩ containing0, but 0 /∈ f (Ω). So assertion 3) in Proposition
2.4 is sharp even when k= 1. Observe that when k= 1, Σ is empty ifΦ is not
constant. The example is mentioned in ([Be], p. 162)

Examples 2.7 i) Φ : C2 → C2 : (z, w) → (zw, z).
Then Φn(z, w) = (zpnwpn−1, zpn−1wpn−2), n ≥ 2, p0 = p1 = 1, pn+1 =
pn + pn−1, n ≥ 1. Then pn = 1√

5
(αn+1 − βn+1), α = 1+

√
5

2 β = 1−√
5

2 .

|Zn| := |zpnwpn−1| = |zw
pn−1

pn |pn , with pn−1

pn
→ 1

α . If |z||w| 1
α > 1, Zn → ∞.

If |z||w| 1
α < 1, Zn → 0. The Julia set,{|z||w| 1

α = 1}, is smooth.
The Fatou set has two components, the domain of attraction of0 and the domain
of attraction of infinity. Observe that in this caseΣ = {z = 0} is in the Fatou
set. Periodic points other than(0, 0) are roots of unity on{|z| = |w| = 1} and
they are hyperbolic. The restriction ofΦ2 to the torus{|z| = |w| = 1} is a linear
hyperbolic map. Periodic points are dense. It is easy to check that the Julia set is
foliated by the corresponding stable leaves.

ii) We now consider an example of a biholomorphic map ofC2. Let h be
an entire function of one variable. DefineΦ(z, w) = (zeh(zw), we−h(zw)), then
Z1W1 = zw so on zw = α, Φn(z, w) = (zenh(α), we−nh(α)). If <h(0) < 0, then
J = {<h(zw) = 0} ∪ {w = 0}. If h(ζ) = ζ − 1/2, J is not connected. The domain
of attraction of infinity is pseudoconvex but not Runge. The variety{w = 0} is
the stable manifold of(0, 0), it’s contained in J and not dense in J. Observe that
points in J have bounded orbit.
If <h(0) = 0 then J = {<h(zw) = 0}. The varieties defined by h(zw) = 2ikπ

n are
fixed byΦn. Their union is dense in J . The Fatou set can have infinitely many
components, all of them in the basin of attraction of infinity.

Proposition 2.8 Let Ω be a Fatou component forΦ ∈ Em. Let Ω′ be the Fa-
tou component containingΦ(Ω \ Σ). ThenΦ(Ω) ⊂ Ω′ and Φ(∂Ω) ⊂ ∂Ω′. In
particular if Φ is proper, thenΦ(Ω) = Ω′.
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Proof. We know thatΦ(Ω \ Σ) is in the Fatou set. SinceΩ \ Σ is connected
it follows thatΦ(Ω \ Σ) is contained in a componentΩ′ of the Fatou set. The
continuity ofΦ implies thatΦ(Ω) ⊂ Ω′.

We show next thatΦ(∂Ω) ⊂ ∂Ω′. Assumep ∈ Ω′ \Φ(Ω) andp = Φ(q) with
q ∈ ∂Ω, then (Φn) is normal in a neighborhood ofq, a contradiction. IfΦ is
proper, thenΦ is open soΦ(Ω) ⊂ Ω′, andΦ(Ω) has no boundary point inΩ′.

ut
We introduce some interesting classes of holomorphic endomorphisms ofCk .

B : The group of biholomorphic maps.
V : The group of volume preserving biholomorphic maps.
Pm: The proper holomorphic maps.

These spaces are endowed with the topology of uniform convergence on
compact sets. The spacesB and V are Baire spaces. Some partial results
concerning dynamics of generic maps forB , V , E have been obtained in
([FS2]), ([FS3]) and ([FS4]).

A point p belongs toΩ(f ), the nonwandering set off , if and only if for every
neighborhoodU (p) there existsn ≥ 1 such thatf n(U ) ∩ U /= ∅.
Theorem 2.9 ([FS4]) There exists a Gδ dense setV ′ ⊂ V such that for every
f ∈ V ′, hyperbolic periodic orbits are dense inCk , hence the Julia set of f,
Jf = Ck . Moreover for a Gδ dense set of points inCk , orbits are dense.

Theorem 2.10 ([FS4]) Let D denoteB or E . There existsD ′ ⊂ D , a dense
Gδ set such that, for f∈ D ′ the Fatou set is the union of components (pre)periodic
to attracting basins. Moreover for f∈ D ′,Ω(f ) is the closure of the set of periodic
points.

Proposition 2.11 LetΦ ∈ Pm. Then FΦ = FΦ` and JΦ = JΦ` .

Proof. It is clear thatFΦ ⊂ FΦ` . Let Ω be a Fatou component forΦ` := Ψ. Let
(Φni ) be a subsequence of iterates. Thenni = mi ` + ri , 0 ≤ ri < `.

Without loss of generality we can assume that for alli , ri = r , 0 < r < `.
If Ψmi has a finite limit then necessarilyΦr (Ψmi ) is locally bounded. So assume
Ψmi → ∞. ThenΦr (Ψmi ) → ∞. HenceFΦ ⊃ FΦ` , so FΦ = FΦ` . Therefore, by
taking complement,JΦ = JΦ` also. ut

3 Recurrent Fatou components forEm

Definition 3.1 LetΦ ∈ Em. A Fatou componentΩ is periodic if for some m> 0,
Φm(Ω) ⊂ Ω. EquivalentlyΦm(Ω\Σm) ⊂ Ω. A Fatou componentΩ is recurrent if
there is a point q∈ Ω, and a sequence of integers nj , such thatΦnj (q) → p0 ∈ Ω.
A Fatou componentΩ is wandering if{Φm(Ω \Σm)} are pairwise disjoint.

Observe that recurrent Fatou components are perodic.
Because of normality of iterates on Fatou sets this definition is equivalent to
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Lemma 3.2 A Fatou componentΩ is recurrent if and only if there is a compact
K ⊂ Ω, and a sequence of integers nj and points qj ∈ K , such thatΦnj (qj ) →
p0 ∈ Ω.

Theorem 3.3 Let Φ ∈ Em, the space of entire maps of generic maximal rank.
AssumeΩ is a recurrent Fatou component forΦ. Then(Φn) is locally bounded
onΩ andΩ is pseudoconvex and Runge. Moreover there is a closed connected
complex submanifold S′ ⊂ Ω of dimension r, 0 ≤ r ≤ k and an integer̀ ≥ 1
such thatΦ` is an automorphism of S′ and(Φ`n

|S′ )n is relatively compact in Aut(S′).

If f ∈ {Φn
|Ω} \ {Φn

|Ω} then f is of generic rank equal to r.

Proof. We use the notation of Lemma 3.2. Let` ≥ 1 be the smallest integer for
which Φ`(Ω) ∩Ω /= ∅. ThenΩ ⊂ Ω′, a Fatou component forΦ`. We will show
thatΩ′ is recurrent forΨ := Φ`. Indeed,Ψ (Ω) ⊂ Ω soΨm(Ω) ⊂ Ψ (Ψm−1(Ω)) ⊂
Ω by induction.

Assume that for some 0< r < `, Φm`+r (Ω)∩Ω /= ∅. Then∅ /= Φr (Φm`(Ω))∩
Ω ⊂ Φr (Ω) ∩ Ω, henceΦr (Ω) ∩ Ω /= ∅, a contradiction. Hence then′

j s are
multiples of `, nj = mj `, so Ω′ is recurrent forΨ. Notice that by Proposition
2.4,Ψ (∂Ω′) ⊂ ∂Ω′. We can assume the existence ofq ∈ Ω′ such thatΨmj (q) →
p0 ∈ Ω′.

Consider the set of all mapsh : Ω′ → Ω′ with h(p) = p for somep ∈ Ω′ and
h = lim Ψ kj for some sequencekj . This set is non empty sinceΨmj +1−mj (Ψmj ) =
Ψmj +1, so if h is a limit of a subsequence ofΨmj +1−mj we will have thath(p0) = p0.
Among the mapsh, fix one of maximal generic rankr . If r = 0, thenh(Ω′) = p.
We haveΨ (p) = Ψ (h(p)) = Ψ (lim Ψmj (p)) = lim Ψmj (Ψ (p)) = h(Ψ (p)) = p.
(Ψ (p) ∈ Ω′ sinceh(p) = p andΨ (∂Ω′) ⊂ ∂Ω′.)

So p is fixed forΨ and it is necessarily attracting, henceΨn converges u.c.c.
to p. Hencep belongs to an attracting periodic cycle forΦ. The theorem is
proved in this case.

Assumer ≥ 1. DefineΣ = h(Ω′) for someh of maximal rankr . We show
thatΨ (Σ∩Ω′) ⊂ Σ∩Ω′. Let y ∈ Σ∩Ω′. Write y = h(x) with x ∈ Ω′. We show
first thatΨ (y) ∈ Ω′. SinceΨmi (x) → y, Ψmi +1−mi (y) → y. HenceΨ (y) must be
in Ω′. Then Ψ (y) = Ψ (h(x)) = Ψ (lim Ψmi (x)) = h(Ψ (x)) sinceΨ (x) ∈ Ω′. So
Ψ (y) ∈ Σ.

By choosing anotherh of maximal generic rankr we want to arrange thath
is the identity map on some nonempty piece of anr − dimensional manifold.

Let ∆ be a small polydisc centered atp. Choosing a suitable small polydisc
∆′ ⊂ ∆ we have thatσ := h(∆′) is a smoothr − dimensional manifold in∆.
Taking a limit h̃ of Ψmi +1−mi we get thath̃ = Id on σ.

Define S := {q ∈ Ω′; h̃(q) = q}. Then S has dimension≤ r . Using that
Id − h̃ has rank at leastk − r , it follows thatS is locally contained in a complex
manifold of dimensionr . HenceS is a manifold at each point of dimensionr . Fix
q0 ∈ h̃(σ); h̃(σ) ⊂ S and has dimensionr . Let Sq0 be the irreducible component
of S containingh̃(σ). ThenSq0 is a closed submanifold ofΩ′.

Observe that as above,Ψ j (Sq0) ⊂ Ω′, hence
h̃ ◦ Ψ j = Ψ j ◦ h̃ on Sq0. Thereforeh̃ = Id on Ψ j (Sq0).
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ThenΨ j (Sq0) ⊂ S. Since some iterates converge to the identity, for somei ,
Ψ i (Sq0) ⊂ Sq0. SinceSq0 is a manifold and a subsequence of iterates converges
to the identity, thenΨ i ∈ Aut(Sq0).

DefineY = {Ψ in
|Sq0

}n ∩ Aut(Sq0). On Y we use the topology of uniform con-
vergence on compact sets. We want to show thatY is compact. We first show
that Y is locally compact.

Fix g0 ∈ Y . Let K be a compact set contained inSq0. For ε > 0 small, define

W = {g ∈ Y ; |g − g0|K < ε}.
Let {gj } be a subsequence inW. We can assume thatgj = Ψ imj . Since we

are on a Fatou component,{Ψ imj } has a cluster value, a mapΘ onΩ′.
We show thatΘ(Sq0) ⊂ Sq0. The classical result on limits of automorphisms

uses Kobayashi hyperbolicity. Here we use instead that we are on a Fatou com-
ponent.

Let X := {z ∈ Sq0; rank Θ < r .} We first show thatΘ(Sq0 \ X) ⊂ Sq0.
Observe thatΘ−1(Sq0) ∩ Sq0 is clearly open inSq0 and nonempty. We show this
set is closed. Letx be a boundary point ofΘ−1(Sq0) ∩ Sq0 with respect toSq0 \ X
(which is connected). FixV a neighborhod ofx, Ψ imj (V ) are r − dimensional
manifolds which we can take to be graphs overΘ(V ) (shrinkingV a little).

For large j , all these graphs have a nonempty set in common withΘ(V ).
Hence by the identity theoremΘ(V ) ⊂ Sq0.

We show next thatΘ(X) ⊂ Sq0. Fix x ∈ X. Let∆ be a small complex disc in
(Sq0 \ X) ∪{x}. Let U be a small Runge neighborhood of∆. For mj > mj0 large
enough, (Ψ imj0 )−1Ψ imj (∂∆) is contained inU . Hence by the maximum principle,
Ψ imj (∆) ⊂ Ψ imj0 (U ) ⊂⊂ Sq0. HenceΘ(x) ∈ Θ(∆) ⊂ Sq0. So we have shown
thatΘ(Sq0) ⊂ Sq0.

We know that some sequenceΨ i ` → Id on Sq0. For anymj we can choose
s(j ) so thatΨ i `s(j )−mj is close to the inverse ofΨ imj . Taking a subsequence, we
may assume thatΨ i `s(j )−mj → Θ̃. As aboveΘ̃(Sq0) ⊂ Sq andΘ̃ ◦Θ = Θ ◦ Θ̃ = Id.
HenceΘ is an automorphism ofSq0.

Because of the structure of commutative locally compact groups, the existence
of a sequenceΨ imj → Id implies thatY is compact. ([Bo])

As a consequence we obtain that{Ψ im} is locally bounded onSq0. Equiconti-
nuity of {Ψ im}m shows that{Ψ im}m is also locally bounded onΩ′. Hence{Φn}
is also locally bounded onΩ′. ThereforeΩ = Ω′. HenceΩ is pseudoconvex and
even Runge.

We can takeS′ = Sq0.
We show next that all limits of subsequences of{Φn} have generic rankr .
Assumef = lim Φnj . We can assume that the limitf̃ := lim Φnj i ` exists also on
Ω′. By assumption the ranks off , f ` are≤ r . On the other hand onS′ the rank
is r , so the rank off̃ is generically equal tor . Moreover, near points onSq0,
f̃ = f i ` so generic rank off is r . ut
Remark 3.4We have shown that recurrent Fatou components forΦ` are Fatou
components forΦ.
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Proposition 3.5 LetΦ ∈ Em. AssumeΩ is a Fatou component forΦwith compact
complement K . Then(Φn) diverges to infinity onΩ.

Proof. We haveΦ(Ω) ⊂ Ω sinceΩ contains the complement of a ball. Since
Φ(Ω) is an unbounded set, we can choosep ∈ Ω so thatΦ(p) ∈ Ω also. Choose
U ⊂⊂ Ω, connected withp andΦ(p) in U . DefineE := ∩N∪n≥NΦn(U ). Then
E is connected. Using Theorem 3.3 we know thatΩ is not recurrent. Hence
E ⊂ K ∪ ∞. If E ⊂ K , thenΩ must be Runge, which it is not, henceE = ∞.

ut

Proposition 3.6 LetΩ be a Fatou component forΦ ∈ V . Then eitherΦn con-
verges to infinity onΩ or Ω is recurrent and{Φn

|Ω} is a compact Lie Group in
Aut(Ω).

Proof. If Ω is not wandering,Ω is periodic, so for somek ∈ Z+, Φk(Ω) = Ω. If
Ω is not recurrent, then{Φkn

|Ω}n → ∂Ω ∪∞ uniformly on compact sets. Assume

Φnj k converges to a holomorphic maph : Ω → Ck . Thenh(Ω) ⊂ ∂Ω, so h has
rank at mostk − 1, contradicting thatΦ is volume preserving. HenceΦnk

|Ω → ∞
uniformly on compact sets. But then, also{Φn

|Ω} converges to infinity.
Suppose next thatΩ is wandering but thatΦn does not converge to infinity.

Then some subsequence{Φni

|Ω} has a limit F : Ω → Ω′ := f (Ω) ⊂ Ck . But
thenΩ′ is an open set and sinceΦ is volume preserving,Ω is preperiodic, hence
periodic. This contradicts thatΩ is wandering. ut

4 Isolated components in Julia sets

An upper triangular automorphism ofCk is an automorphism of the form
Φ(z1, · · · , zk) = (λ1z1, λ2z2 + h2(z1), · · · , λkzk + hk(z1, · · · , zk−1) whereλj ∈ C∗

and eachhj is an entire function.

Proposition 4.1 LetΦ ∈ B . Suppose that0 is an isolated point in the Julia set
JΦ. Then0 is a repelling fixed point and JΦ = {0}. MoreoverΦ is conjugate to
an upper triangular map.

Proof.Pick a small ballU containing 0, and letΩ be a Fatou component contain-
ing U \{0}. The sequence (Φn) is not locally bounded inΩ. We can assume that
∂U ⊂ Ω. Since{0} is not inΩ, there is a sequencenj , and pointspj → 0 with
{Φnj (pj )} bounded andΦnj

|∂U → ∞. We may assume then thatΦnj (U ) ⊃⊃ U
for all nj . Fix any nj . Then there is a repelling fixed pointq for Φnj in U . But
since 0 is the only point ofJΦ in U , necessarily,q = 0. Hence 0 is on a periodic
orbit of some minimal order̀ and hencenj = `mj . We observe thatΦ−nj is
contracting onΦnj (U ) and the iteratesΦmnj restricted toΦnj (U ) converge to 0. If
nj is large enough the whole orbit of 0 is contained inΦnj (U ). Hence there can
be no other points on this orbit, sò= 1 and 0 is a repelling fixed point forΦ.
By the invariance of the Fatou set, it also follows that 0 is the only point in the
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Julia set. Moreover, the basin of attraction ofΦ−1 consists of all ofCk . Using
a classical result by ([RR]) we get thatΦ−1 is conjugate to an upper triangular
automorphism. The same is true forΦ. ut
Theorem 4.2 Let Φ ∈ Em and suppose that the Julia set is not perfect. ThenΦ
is biholomorphic and conjugate to an upper triangular automorphism.

We need a preliminary result on fixed points.
Recall thatω is holomorphically homotopic to a point inΩ if there exists a

continuous mappingh : [0, 1] × ω → Ω with h(1, z) = z andh(0, z) = p, where
p ∈ ω, moreoverh(t , ·) is holomorphic inω for every t ∈ [0, 1].

Lemma 4.3 Let ω ⊂⊂ Ω ⊂⊂ Ck be connected open sets. Let f: ω → Ω be
a holomorphic map. Assumeω is holomorphically homotopic inΩ to a point
p ∈ f (ω) ∩ ω and that f(∂ω) is disjoint from∪0≤s≤1h(s, ω). Then f has a fixed
point inω.

Proof. We can assume thatp = 0. Define f (s, z) := f (z) − h(s, z). Then f (s, z)
never vanishes on [0, 1] × ∂ω. Since f (0, ·) takes the value 0 onω, the same
holds for f (1, ·) i.e. the number of fixed points forf is the same as the number
of zeroes off (z) counted with multiplicity. ut
Remark 4.4If f is a biholomorphism in the above Lemma, thenf has a unique
fixed point inω and this fixed point is repelling. (In this case the existence of
a unique fixed point can be proved directly using thatf −1 is strictly contracting
for the Kobayashi metric.)

Proof of previous Theorem.Assume thatJΦ ∩ B(0, 2) = (0). If every converging
subsequence ofΦn has a finite limit onA = {1/2 ≤ |z| ≤ 1}, then 0 /∈ J .
So there exists a subsequenceΦmj converging onA to ∞ but not converging
to ∞ on B(0, 1). So, we can assume there is a sequencepj → 0 such that
Φmj (pj ) → q ∈ Ck . Fix R>> ‖q‖. Choosemj such thatΦmj (A) ∩ B(0, 2R) = ∅.
Let ωj be the connected component ofΦ−mj (B(0,R)) containingpj and contained
in B(0, 1/2). ThenΦmj has a fixed pointx0 in ωj , by Lemma 4.3. Ifx0 /= 0, then
some sequence of iterates converges to∞ contradicting thatx0 is periodic. Hence
x0 = 0, so 0 is periodic. For the same reason there is no pointx /= 0 in ωj so
thatΦmj (x) = 0, because some subsequence ofΦn(x) tends to infinity, and 0 is
periodic.

Let ` be the period of 0. Then mj = nj `. ConsiderΦmj : ωj → B(0,R) for
large mj . ThenΦmj : ωj → B(0,R) is a proper map and 0 cannot have a stable
manifold, soΦmj ′(0) has no zero eigenvalue. HenceΦmj is invertible near 0, so
the sheet number is one. HenceΦmj is biholomorphic onωj . Then Φmj −r ` is
injective onωj andΦr ` : Φmj −r `(ωj ) → B(0,R) is biholomorphic. HenceΦ−r ` is
well defined onB(0,R) with Φ−r `(0) = 0. SinceR is arbitrary,Φ−r ` is globally
defined withΦ−r ` : Ck → Ω is biholomorphic for someΩ ⊂ Ck .

Suppose∂Ω /= ∅. Pick p ∈ ∂Ω and (pn) ⊂ Ω, pn → p, pn = (Φ−`(qn)). The
(qn) cannot have a finite limit point. ThenΦ`(pn) → ∞ which is impossible.
HenceΦ−` is a global biholomorphism. SoΦ is biholomorphic.
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Proposition 4.1 implies thatΦ is conjugate to a triangular mapping. ut
Remark 4.5Theorem 4.2 shows in particular that whenk = 1 andΦ is not linear,
the Julia set is perfect. The proof does not use the theory of periodic points.

5 Maps with empty Julia set

Theorem 5.1 LetΦ ∈ Em. Assume the Julia set ofΦ is empty. Then either(Φn)
diverges to infinity onCk or there is a closed analytic submanifold S⊂ Ck with
the following properties:
(0) Φ|S ∈ Aut(S),
(1) S is holomorphically trivial, i.e. there is a continuous family of holomorphic
mapsh̃t : S → S, t ∈ [0, 1], h̃1 = Id and h̃0 ≡ constant,
(2) The images of{Φn} converge uniformly on compact sets to S .
(3) {Φn

|S} is isomorphic to T` × A where T` is a torus of dimensioǹ and A is a
finite group.

Proof. Assume (Φn) does not converge uniformly on compact sets to infinity.
Then Ck is a recurrent Fatou component and (Φn) is locally bounded as fol-
lows from Theorem 3.3. Leth = lim Φni have maximal generic rankr Since
Φni +1−ni (Φni ) = Φni +1 we can construct̃h = lim Φmi such thath̃ ◦h = h. Here{mi }
is a subsequence of{ni +1 − ni }. Henceh̃ = Id on h(Ck). Let S = {q; h̃(q) = q}.
ThenS is a subvariety inCk containingh(Ck). Let S1 be the irreducible branch
of S containingh(Ck). ThenS1 is a manifold of dimensionr and is isolated in
S. We show that̃h(Ck) = S1. Let U = h̃−1(S1). ThenU is an open set containing
S1. If p ∈ ∂U , thenh̃(p) ∈ S1, so U = Ck . HenceS = S1. One shows easily that
Φ(S) ⊂ S and sinceΦmi

|S → Id it follows thatΦ is an automorphism ofS.

As in the proof of Theorem 3.3 one shows that{Φn
|S} ∩ Aut(S) is a compact

subgroupG of Aut(S).
If V is a bounded open set inS, thenṼ = ∪nΦ

n(V ) is also a bounded open
set in S andΦ is an automorphism of̃V . HenceG is a commutative compact
Lie group, see ([Ko]) p.70 or ([Na]), which is therefore isomorphic toT` × A
whereA is a finite commutative group.
It follows that {Φn

|S} is contained in Aut(S). [Let Φki be a convergent subse-

quence, converging toψ, writing Φmj (i ) = Φmj (i )−ki ◦Φki for j (i ) large, we see that
ψ ∈ Aut(S).] AssumeΦ`i → h1, then h1(Ck) ⊃ S and by the above argument
h1(Ck) = S. So property (2) is proved. Sincẽh is a holomorphic retraction onS,
it follows that S is holomorphically trivial, i.e.h̃t (z) := h̃(tz) then h̃t joins the
identity to the constant map ast varies from 1 to 0. ut
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6 Oscillating Fatou components

Definition 6.1 LetΩ be a Fatou component forΦ ∈ Em. ThenΩ is oscillating if
some subsequence of iterates is locally uniformly bounded onΩ and some other
subsequence converges u.c.c. to infinity.

Theorem 6.2 There exists a biholomorphic mapΦ of C2 which has a wandering
oscillating Fatou component.

To find aΦ we will use the concept of anr −shift. This consists of a sequence
of regions converging to infinity and a shift between them. Let 0< r < 1/2.

Definition 6.3 A (Ψ, r )− shift X = X(Ψ, r , {Ωi }) is a biholomorphic mapΨ of
C2 together with a sequence of regions{Ωi }∞

i =−∞ where∆((2i , 0); r − r 2) ⊂
Ωi ⊂ ∆((2i , 0); r + r 2), Ψ : Ωi → Ωi +1 and Ψ − (z + 2, w) vanishes at each
center point(2i , 0).

−2 −1 0 1 2

Ω−1 Ω0 Ω1

Ψ
Ψ

Fig. 1. A (Ψ, r )− shift

We will inductively glue almost oscillating domains tor − shifts in such a
way that in the limit one has an oscillating domain.

Definition 6.4 An almost oscillatingΨ− domain

Y = Y(Ψ, {Ui }, {Di }, {ri }, {si })

consists of a sequence of domains{Ui }∞
i =−∞, polydiscs Di , Ui ⊂ Di :=

∆(zi ; ri ) × ∆(wi , si ) for which the∆(zi ; ri ) is a locally finite pairwise disjoint
family and there is a biholomorphic mapΨ of C2 for whichΨ (Ui ) = Ui +1 ∀i . We
assume(1, 0) ∈ U0.

It follows that limzi = ∞.
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U−4
U−3

U−2U−1

U0

U1
U2

U3

Ψ

Fi 2 Al ill i Ψ d i
Fig. 2. Almost oscillatingΨ− domain

We say that shifts and almost oscillating domains are disjoint if they project
disjointedly on thez− axis.

Definition 6.5 We say that a(Ψ, r )− shift and an almost oscillatingΨ− domain
are disjoint if the discs∆(2i ; r + r 2), ∆(zj ; rj ) are all pairwise disjoint.

We will define a gluing of disjoint (Ψ, r )− shifts and almost oscillatingΨ−
domains.

Definition 6.6 Given a(Ψ, r )− shift X(Ψ, r , {Ωi }) and an almost oscillatingΨ−
domain Y(Ψ, {Ui }, {Di }, {ri }, {si }) which are disjoint, and R> 0, an R− glu-
ing is an almost oscillatingΦ− domain Y′(Φ, {U ′

i }, {D ′
i }, {r ′

i }, {s′
i }) with the

following properties:
(i) ‖Φ− Ψ‖ ≤ 1/R when‖(z, w)‖ ≤ R,
(ii) U ′

0 = U0,
(iii) Let i 0 be the smallest integer such that|zk | − rk > R ∀ k ≥ i0. Then
U ′

i ⊂ ∆((2i − 2i0 − 2[R] − 2, 0); r + 2r 2) ∀ i ≥ i0.

Condition (iii) is crucial. It means thatU ′
i comes back before going to infinity.

In our constructionU ′
i will be close to an edge of the polydisc.
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−2[R] − 2 0 R

Ψ

Ψ

Φ

Ui0

U {i 0}′

Fig. 3. Gluing

Lemma 6.7 Any (Ψ, r )− shift and any almost oscillatingΨ− domain which are
disjoint have an R− gluing for any R. The R− gluing is disjoint from some r′−
shift.

Proof. To obtain anR− gluing, we composeΨ with a suitable choice of maps.
We want to mapUi into Ωi −i0−[R]−1 for i ≥ i0.
Remark first that we can assume that|wi |+|si | are arbitrarily small when|i | → ∞.
Simply composeΨ with a map of the form

(z, w) → (z, weφ(z)),

whereφ(z) is an entire function which is arbitrarily close to 0 on∪∆(2i , r +
r 2) and on finitely many∆(zi , ri ) while <φ(z)|∆(zi ,ri ) → ∞ when i → −∞,
<φ(z)|∆(zi ,ri ) → −∞ when i → ∞. We also wantφ(z) to vanish at eachz = 2i .

Let Ψ1 be a map of the same form,Ψ1(z, w) = (z, weφ1(z)) whereφ1 is close
to 0 on∆(0,R + 1)∪ ∪i∆(zi , ri ) and<φ1|Ωi → ∞ as i → −∞. In this way we
arrange that theΩi ’s are flattened arbitrarily fast at infinity in thew− direction
during the proof and at the end we compose again with a similar kind of map to
restore the newΩi back to the correct essentiallyi − independent height.

To glue, we will moveUi0 into Ω−[R]−1 and also contractingUi0 to an arbi-
trarily small subset -U ′

i0 will be a small perturbation of this set - containing the
point (−2[R] − 2 − r /2, 0) i.e. far from the center ofΩ−[R]−1. We moveUi0 in
three steps.
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Ω−[R]−1

Ui0

1)

2)

3)

Fig. 4. InsertingUi0 into Ω−[R]−1

1) Compose with a map of the form

(z, w) → (z, w + φ(z)).

Hereφ(z) is close to zero on all discs∆(2i , r + r 2), ∆(zj , rj ) and∆(R, 0)
except∆(zi0, ri0) where |φ(z)| >> R and is almost constant. Moreover,φ(z)
vanishes at each center 2i . Notice that replacingΨ with the composition with
this map we still have disjoint (Ψ, r )− shift and oscillatingΨ− domain if we
only consider∆(zj , rj ) for j ≤ i0. We will continue our construction so as also
to include the indicesj > i0.

2) We next compose with a map which will contract (the new)Ui0 in the z−
direction and moveUi0 to the right location in thez− direction. We compose
with a map of the form

(eg(w)z − h(w), w).

Here g vanishes at 0 and is arbitrarily small on∆(0,R + 1). In order to
compressUi0 in the z− direction we makeg arbitrarily close to a large negative
constant onUi0.
Finally, we moveUi0 to a z− coordinate close to−2[R] − 2 − r /2 by letting
h(w) have an appropriate almost constant value onUi0 while h vanishes at 0
and is arbitrarily small on∆(0,R + 1), this is where we use that|wi | + |si | → 0
arbitrarily fast andΩi are flattened in thew−direction. Sog, h are arbitrarily
close to 0 onΩi thereby preserving ther −shift.

3) Next we insertUi0 into∆((−2[R] −2, 0); r +r 2) by composing with a map
of the form

(z, eG(z)w + H (z)).
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HereG(z), H (z) are arbitrarily close to zero on all discs∆(2i ; r + r 2), i /=
−[R]−1, ∆(−2[R]−2; r /4), ∆(zj ; rj ) and∆(0;R+1) and vanishes at all centers.
MoreoverG(z) is arbitrarily close to a large negative constant on∆(−2[R] −
2 − r /2; r /8) in order to compressUi0 in the w− direction while H (z) has a
suitable, almost constant value to moveUi0 to the desired location.

We next letΦ denote the composition of these three maps andΨ and define
U ′

0 := U0, U ′
i := Φi (U ′

0). This defines an almost oscillatingΦ− domain. More-
overΦ defines a (Φ, r

8)− shift which is disjoint. ut
Proof of the Theorem.To prove the Theorem, one uses an inductively defined
seqence of gluings and pass to a limit. The first step of the inductive construction,
is to use the mapΨ (z, w) = (z + 2, w). Also we define a (Ψ, 1/4)− shift by
letting Ωi := ∆((2i , 0); 1/4) Our first almost oscillatingΨ− domain consists of
the domainsUi := ∆((2i + 1, 0); 1/4).

If we chooseRn → ∞ fast enough, then after passing to the limit in the
inductive construction we obtain finally an almost oscillatingΦ domain which
consists of domains{U ′

i } and the forward iteratesΦ(U ′
i ) pass infinitely often

close to the sequence (2j , 0) and toU0 and so is oscillating.
Let Ω be the Fatou component containingU ′

0. We know completely the orbit
of U ′

0. It remains to show thatΩ is wandering. If not, there is an integerk ≥ 1
such thatΦk(Ω) = Ω. Let γ be a curve contained inΩ connectingU ′

0 to U ′
k .

Also let U be a connected neighborhood ofγ contained inΩ. For high iterates
nj , Φ

nj k
|U ′

0 ∪U ′
k ∪U converges u.c.c. to (0, 0) on U ′

0 and to (2k, 0) on U ′
k . This is a

contradiction. ut
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