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1 Introduction

It is a quite natural idea to extend the Fatou-Julia theory of iteration of holo-
morphic maps irC, C to higher dimension. One can even restrict to interesting
classes of holomorphic maps, like polynomial automorphisni&zphiholomor-
phic maps ofC¥, volume preserving biholomorphic maps etc. The special case
of (polynomial) Henon maps irC? has been extensively studied. (See ([FSO0])
for references.)

Here the emphasis is on transcendental self mai&*of

Given @ : Ck — Ck, a holomorphic self map of generic raikk we define
the Fatou set’; as the open set of normality o#{)n>o. (We allow co as a
limit.) The complement,Zs, is the Julia set.

It was proved in ([FS4]) that for a den&s set in the group”’ of biholomor-
phic maps inCk the Fatou set is just made of basins of attraction corresponding
to attracting cycles and that hyperbolic periodic cycles are dense in the Julia set.
Similar results are obtained in ([FS3]), ([FS4]) for other classes of mappings, see
Theorems 2.9 and 2.10 below.

In ([Bu]), Buzzard proved a version of the Kupka-Smale Theoremir

In this paper we want to study the first properties of Fatou and Julia sets for
holomorphic maps of generic maximal rard;,.

In the second paragraph we give some properties and examples. In the third
paragraph we describe recurrent Fatou components for magg.in

In paragraph 4, we show that the Julia set of a mdap #~, is perfect unless
the map is conjugate to an upper triangular automorphism. In the same vein, we

* First author supported by an NSF grant.
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show that if® is a biholomorphism ofC¥, not conjugate to an upper triangular
automorphism, then the Julia set®fhas no compact component.

In the last paragraph we construct a biholomorphigrof C? with a wan-
dering Fatou componeinf?, such that a subsequenc&’( converges tac on {2
and another subsequend@&) has a finite limit on(2; we call such a component
an oscillating Fatou component.

2 Basic definitions

We let & denote the space of entire holomorphic mdpen C and &, ¢ &

the space of endomorphisms of generic maximal fankor every mapp € &,

Ck is naturally divided in two subsets, the set of normality and its complement.
We say that a family of maps is normal if each subsequence has a subsequence
which either converges uniformly on compacts or diverges uniformly to infinity.

Definition 2.1 The Fatou set = Fg of a map®d € &, is the largest open set on
which the iterate®" is a normal family.

Definition 2.2 The Julia set J= Jg consists of the complement.&f .

The main problems are to describe the nature of the components of the Fatou
set and the structure of the Julia set.

We need the following classical result, which can be found for example in
the textbook ([G, p. 137]) by Gunning.

Proposition 2.3 Let & € &;. There exists a closed analytic s&t contained
in the branching locus of such that no level sets @5, has discrete points.
Moreover® is open and has discrete fibers @i \ .

We call X (X)) the constant set ap (P").
Next we state invariance properties for the Fatou and Julia sets. These follow
from the definitions and the previous proposition.

Proposition 2.4 Given® € &, with Fatou set F, Julia set J and constant set
The following relations hold:

1P YF) CF,

2) &(F) D F N@(CY),

3) &(F N X°) C F, and dually,

4)d71(J) > J,

5)¢J) c I(=I Nnd~(CK)) and

6) P~1(J) N X° c J.

We can strengthen 3) for some Fatou components.

Proposition 2.5 Let 2 be a Fatou component fop € &y,. Assume{®"} is
locally bounded on2. Thend((?) is contained in the Fatou set.
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Proof. Recall at first that for a compact skt C Ck the polynomially convex
hull K of K is defined by

K ={z eCk

P(z)| < sup|P| ¥V holomorphic polynomial®}.
K

A domain U is Rurnge if K cc U implies K cc U. Here K may be
assumed to be connected aKdis then automatically connected @f. We
show first thatf? is Runge. LeK CC 2. Let Ks = {z; distz,K) < ¢}. Choose
d > 0 so thatk; CC 2. It is clear that{®"} is uniformly bounded orK; and
it is easy to check thas contains a neighborhood @€. Hence(2 is Runge.
Similarly, (2 \ X) is contained in a Runge Fatou componé?t since @ is
open on2\ X. Letp € 2N X. Pick a discA centered ap and such that
A\p cC 2\ X. Thend(A\ p) C £2', henced(p) € 2, using that(?’ is Runge.

O

Example 2.6 Let f(z) = \e?, z € C, 0 < X < e~ . Then the Fatou set has one
single componenf? containing0, but0 ¢ f(£2). So assertion 3) in Proposition
2.4 is sharp even when k 1. Observe that when k 1, X' is empty if® is not
constant. The example is mentioned in ([Be], p. 162)

Examples 2.7i) @ : C2 — C?: (z,w) — (zw, 2).

Then &"(z,w) = (@PwP-1,zP—1wP-2) n > 2. pp = pr = 1, pps1 =
Ph+ Pn_t, N > 1 Then p = %(a”ﬂ A 1%@ B = 1*7‘/5
Za] = 2P| = fzw P with Bt LA Jzl|wld > 1, Zy = ool
If |z||w|> < 1, Zy — 0. The Julia set{|z|[w|= = 1}, is smooth.

The Fatou set has two components, the domain of attracti@eofl the domain
of attraction of infinity. Observe that in this cage = {z = 0} is in the Fatou
set. Periodic points other tha(D, 0) are roots of unity on{|z| = |w| = 1} and
they are hyperbolic. The restriction @f to the torus{|z| = |w| = 1} is a linear
hyperbolic map. Periodic points are dense. It is easy to check that the Julia set is
foliated by the corresponding stable leaves.

i) We now consider an example of a biholomorphic mapCéf Let h be
an entire function of one variable. Defing(z, w) = (z&'@), we="@w), then
Z;W; = zw so on zw = a, P"(z,w) = (z€M we "), If Rh(0) < 0, then
J = {Rh(zw) =0} U{w =0}. If h(¢) =¢ — 1/2, J is not connected. The domain
of attraction of infinity is pseudoconvex but not Runge. The vafiety- 0} is
the stable manifold of0, 0), it's contained in J and not dense in Observe that
points in J have bounded orbit.
If $*h(0) = Othen J= {Rh(zw) = O}. The varieties defined by(lw) = % are
fixed by®". Their union is dense in J. The Fatou set can have infinitely many
components, all of them in the basin of attraction of infinity.

Proposition 2.8 Let 2 be a Fatou component fap € #y,. Let 2 be the Fa-
tou component containing(f2 \ X). Then®(2) C 2’ and #(9£2) C 952. In
particular if @ is proper, thend(£2) = (2.
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Proof. We know that®(f2 \ X) is in the Fatou set. Sinc€ \ X' is connected
it follows that &(£2 \ X) is contained in a componeri?’ of the Fatou set. The
continuity of @ implies that®(£2) C (2.
We show next tha®(912) C 9. Assumep € 2\ ¢(£2) andp = &(q) with
g € 912, then @") is normal in a neighborhood af, a contradiction. If® is
proper, then? is open sod(£2) C ', and®(£2) has no boundary point if’.
O

We introduce some interesting classes of holomorphic endomorphis@ts of
.73 The group of biholomorphic maps.

7" The group of volume preserving biholomorphic maps.
. The proper holomorphic maps.

These spaces are endowed with the topology of uniform convergence on
compact sets. The space® and 7" are Baire spaces. Some partial results
concerning dynamics of generic maps faf, Z°, & have been obtained in
([FS2]), ([FS3]) and ([FS4]).

A point p belongs ta2(f ), the nonwandering set éf if and only if for every
neighborhoodJ (p) there exists > 1 such thaf"(U) N U # 0.

Theorem 2.9 ([FS4]) There exists a Gdense se?7” ¢ 7" such that for every
f € 77, hyperbolic periodic orbits are dense ifi¥, hence the Julia set of,f
J: = CX. Moreover for a G dense set of points i6%, orbits are dense.

Theorem 2.10 ([FS4]) Let & denote. 2 or & . There exists&Z’ C &, a dense
G; setsuch that, for fe &7’ the Fatou set is the union of components (pre)periodic
to attracting basins. Moreover for & &7, £2(f) is the closure of the set of periodic
points.

Proposition 2.11 Let® € &4,. Then ki = Fge and Jp = Jge.

Proof. It is clear thatFs C Fge. Let 2 be a Fatou component fa¥ := &. Let
(™) be a subsequence of iterates. TmeFr m/+r;, 0<r; < /.

Without loss of generality we can assume that foriall; =r, 0 <r < (.
If Y™ has a finite limit then necessari® (¢™) is locally bounded. So assume
U™ — co. Thend' (P™) — oo. HenceFg D Fge, SOFg = Fge. Therefore, by
taking complementZs = Z. also. O

3 Recurrent Fatou components foré&p,

Definition 3.1 Let® € &,,. A Fatou componen® is periodic if for some m> 0,
@M(2) C 2. Equivalentlyd™(2\ L) C 2. A Fatou componen® is recurrent if
there is a point ge {2, and a sequence of integers such tha?" (q) — po € 2.
A Fatou componen® is wandering if{®™({2 \ X,)} are pairwise disjoint.

Observe that recurrent Fatou components are perodic.
Because of normality of iterates on Fatou sets this definition is equivalent to
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Lemma 3.2 A Fatou componen® is recurrent if and only if there is a compact
K C £, and a sequence of integers and points ¢ € K, such thatd" (g) —
Po € 0.

Theorem 3.3 Let & € &, the space of entire maps of generic maximal rank.
Assumef? is a recurrent Fatou component f@r. Then(2") is locally bounded

on {2 and {2 is pseudoconvex and Runge. Moreover there is a closed connected
complex submanifold’Sc (2 of dimension r 0 < r < k and an integer > 1

such thatb’ is an automorphism of’&nd(dﬁfg,)n is relatively compact in A8’).

Iff {@TQ} \ {2, } then f is of generic rank equal to r.

Proof. We use the notation of Lemma 3.2. Lét> 1 be the smallest integer for
which #¢(£2) N 2 # (). Then {2 C {2, a Fatou component fab’. We will show
that (2’ is recurrent forr := ¢°. Indeed ¥ (£2) C 2 so¥™(2) c v (W™ (1)) C
12 by induction.

Assume that for some @ r < ¢, @™ ()N N2 # (. Then # &' (P™(2))N
Q2 C ¢'(2) N N2, henced'(2) N N2 # (), a contradiction. Hence tha's are
multiples of ¢, n; = my¢, so (2’ is recurrent for&. Notice that by Proposition
2.4,0(02") C 9£2'. We can assume the existencego€ 2’ such thawv™ (q) —
po € 2.

Consider the set of all mags: 2’ — 2’ with h(p) = p for somep € 2’ and
h = lim ¥4 for some sequenclg. This set is non empty sincg™-~™ (yM) =
ym+_ soif his a limit of a subsequence &fm+~™ we will have thath(pg) = po.
Among the map#$, fix one of maximal generic rank If r = 0, thenh(f2’) = p.
We have¥(p) = ¥(h(p)) = ¥(lim¥M(p)) = lim¥™(¥(p)) = h(¥(p)) = p.
(@(p) € 2 sinceh(p) =p and¥(02') C 912'.)

Sop is fixed for¥ and it is necessarily attracting, heng& converges u.c.c.
to p. Hencep belongs to an attracting periodic cycle fér The theorem is
proved in this case.

Assumer > 1. Define X = h(£2’) for someh of maximal rankr. We show
thatv (X N’) C YN Lety € XN 2. Writey = h(x) with x € £2’. We show
first that@(y) € 2'. Since¥™(x) — y, ¥M™=+~M(y) — y. Hence¥(y) must be
in 2. Then®(y) = ¥(h(x)) = &(lim¥™(x)) = h(¥(x)) since?(x) € . So
Uy) e 2.

By choosing anothen of maximal generic rank we want to arrange thét
is the identity map on some nonempty piece ofrandimensional manifold.

Let A be a small polydisc centered pt Choosing a suitable small polydisc
A’ C A we have thatr := h(4') is a smoothr — dimensional manifold inA.
Taking a limith of ™™ we get thath = Id ono.

Define S := {q € £2’; h(q) = q}. ThenS has dimensior< r. Using that
Id — h has rank at least —r, it follows that$ is locally contained in a complex
manifold of dimensionr. HenceS is a manifold at each point of dimensionFix
o € h(o); h(c) c S and has dimension. Let Sy, be the irreducible component
of S containingh(s). Then Sy is a closed submanifold af’.

Observe that as abov#! (S) C 2, hence

howl =Wl oh on§,. Thereforeh = Id on ¥ (S,).
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Theny (&,) C S. Since some iterates converge to the identity, for some
u (&) C & Since S, is a manifold and a subsequence of iterates converges
to the identity, then?! € Aut(Sy,).

DefineY = {W\igqo}n NAUt(S;,). On'Y we use the topology of uniform con-
vergence on compact sets. We want to show thas compact. We first show
thatY is locally compact.

Fix go € Y. LetK be a compact set contained$. For e > 0 small, define

W ={g€VY;lg—golk <e}.

Let {g;} be a subsequence W. We can assume thaj = ¥'™. Since we
are on a Fatou componer#’'™ } has a cluster value, a map on 2’

We show thato(§,) C §,,. The classical result on limits of automorphisms
uses Kobayashi hyperbolicity. Here we use instead that we are on a Fatou com-
ponent.

Let X = {z € §,;rank © < r.} We first show thato(§;, \ X) C .
Observe tha®1(S,) N S, is clearly open ing, and nonempty. We show this
set is closed. Lex be a boundary point a®~1(S,) NS, with respect tog;, \ X
(which is connected). Fi% a neighborhod ok, ¥'™ (V) arer — dimensional
manifolds which we can take to be graphs o&l) (shrinkingV a little).

For largej, all these graphs have a nonempty set in common Wi(k').
Hence by the identity theore®(V) C §,.

We show next tha®(X) C §,,. Fix x € X. Let A be a small complex disc in
(S \ X)U{x}. Let U be a small Runge neighborhood 4f For m > my, large
enough, ¢'™o)~1%M (9 A) is contained inJ . Hence by the maximum principle,
T (A) C PMo(U) CC . HenceO(x) € O(A) C ,. So we have shown
that O(,) C S

We know that some sequen#e’ — Id on . For anym we can choose
s(j) so that¥'n—m s close to the inverse af™ . Taking a subsequence, we
may assume thak'’s0 =™ — . As aboved(S,) C S, and6oO =606 =Id.
Hence® is an automorphism df,,.

Because of the structure of commutative locally compact groups, the existence
of a sequenc@'™ — Id implies thatY is compact. ([Bo])

As a consequence we obtain tHat™} is locally bounded or&,,. Equiconti-
nuity of {¥'™}, shows that{¥'™}, is also locally bounded of’. Hence{$"}
is also locally bounded of’. Thereforef? = (2. Hence(? is pseudoconvex and
even Runge.

We can take5' = §,.

We show next that all limits of subsequences{df} have generic rank.
Assumef = lim®". We can assume that the linfit:= lim "¢ exists also on
2. By assumption the ranks &f f¢ are<r. On the other hand o8’ the rank
is r, so the rank off is generically equal to. Moreover, near points o,
f =¥ so generic rank of isr. O

Remark 3.4We have shown that recurrent Fatou componentsifoare Fatou
components forb.
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Proposition 3.5 Let® € #p,. Assumd? is a Fatou component fab with compact
complement K. Thef@") diverges to infinity orf2.

Proof. We have®(£2) C (2 since 2 contains the complement of a ball. Since
&((2) is an unbounded set, we can chogse (2 so that®(p) € (2 also. Choose
U cc 2, connected wittp and@(p) in U. DefineE = NyUp>n®"(U). Then
E is connected. Using Theorem 3.3 we know tliatis not recurrent. Hence
E c KUoo. If E C K, then{2 must be Runge, which it is not, henBe= cc.

O

Proposition 3.6 Let {2 be a Fatou component fab € 7. Then eithe®" con-
verges to infinity on2 or (2 is recurrent and{@?n} is a compact Lie Group in
Aut((2).

Proof. If £2 is not wandering{?2 is periodic, so for som& € Z*, &%(2) = . If
{2 is not recurrent, then@@“‘g n — 0£2U oo uniformly on compact sets. Assume

@k converges to a holomorphic mép: 2 — CK. Thenh(2) c 912, soh has
rank at mosk — 1, contradicting thatp is volume preserving. Hencxér}‘2 — 00
uniformly on compact sets. But then, algérg} converges to infinity.
Suppose next tha® is wandering but tha®" does not converge to infinity.
Then some subsequen@@?in} has a limitF : 2 — (' := () c CX. But
then (2’ is an open set and sindeis volume preservings? is preperiodic, hence
periodic. This contradicts tha? is wandering. O

4 |solated components in Julia sets

An upper triangular automorphism df¥ is an automorphism of the form
D(zy, -+, %) = (Mze, Aoz + o(z0), -+, Az + h(ze, - - -, Z—1) where )j € C*
and eachh; is an entire function.

Proposition 4.1 Let® € .. Suppose thad is an isolated point in the Julia set
Jg. ThenO is a repelling fixed point andg)= {0}. Moreover® is conjugate to
an upper triangular map.

Proof. Pick a small balU containing 0, and lef2 be a Fatou component contain-
ing U \ {0}. The sequencel(") is not locally bounded if2. We can assume that
oU C 2. Since{0} is not in £2, there is a sequenag, and pointsp; — 0 with
{®" (p;)} bounded andﬁr"gu — oo. We may assume then théf'(U) D> U
for all n;. Fix any n;. Then there is a repelling fixed poigtfor ¢" in U. But
since 0 is the only point adg in U, necessarilyg = 0. Hence 0 is on a periodic
orbit of some minimal orde¥ and hencen; = ¢/m. We observe tha$—" is
contracting on?" (U) and the iterate$™ restricted tod" (U) converge to 0. If
n; is large enough the whole orbit of 0 is contained#fi(U). Hence there can
be no other points on this orbit, o= 1 and 0 is a repelling fixed point fab.
By the invariance of the Fatou set, it also follows that O is the only point in the
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Julia set. Moreover, the basin of attractiondf! consists of all ofCK. Using
a classical result by ([RR]) we get th@ ! is conjugate to an upper triangular
automorphism. The same is true fér O

Theorem 4.2 Let @ € &, and suppose that the Julia set is not perfect. Tiken
is biholomorphic and conjugate to an upper triangular automorphism.

We need a preliminary result on fixed points.

Recall thatw is holomorphically homotopic to a point if? if there exists a
continuous mappind : [0, 1] x @ — 2 with h(1,z) =z andh(0, z) = p, where
p € w, moreover(t, -) is holomorphic inw for everyt € [0, 1].

Lemma 4.3 Letw cC £2 cC CK be connected open sets. Let 5 — 2 be

a holomorphic map. Assume is holomorphically homotopic irf2 to a point

p € f(w) Nw and that f(0w) is disjoint fromUp<s<1h(s,@). Then f has a fixed
point in w.

Proof. We can assume thgt = 0. Definef (s, z) := f(z) — h(s, z). Thenf (s, z)
never vanishes on [Q] x dw. Sincef (0, ) takes the value O ow, the same
holds forf (1, -) i.e. the number of fixed points fdr is the same as the number
of zeroes off (z) counted with multiplicity. O

Remark 4.4If f is a biholomorphism in the above Lemma, thfehas a unique
fixed point inw and this fixed point is repelling. (In this case the existence of
a unique fixed point can be proved directly using that is strictly contracting

for the Kobayashi metric.)

Proof of previous Theoremissume thatls N B(0, 2) = (0). If every converging
subsequence of" has a finite limit onA = {1/2 < |z| < 1}, then 0¢ J.
So there exists a subsequeng8 converging onA to oo but not converging
to co on B(0,1). So, we can assume there is a sequepce+ 0 such that
P (p) — e Ck. Fix R>> ||q]|. Chooseny such that®™ (A) N B(0, 2R) = 0.
Letw; be the connected componentdf™ (B(0, R)) containingp; and contained
in B(0,1/2). Then®™ has a fixed poinky in wj, by Lemma 4.3. I, # 0, then
some sequence of iterates convergesstoontradicting thakg is periodic. Hence
X = 0, so 0 is periodic. For the same reason there is no poiat0 in w; so
that ™ (x) = 0, because some subsequencebbfx) tends to infinity, and O is
periodic.

Let ¢ be the period of 0Thenm = n;j¢. Considerd™ : w; — B(0,R) for
largem. Thend™ : w; — B(O,R) is a proper map and O cannot have a stable
manifold, so®#™’(0) has no zero eigenvalue. Hené® is invertible near 0, so
the sheet number is one. Hené& is biholomorphic onw;. Then @™ ~"* is
injective onw; and®'* : ™ ~"¢(w;) — B(0, R) is biholomorphic. Hence"* is
well defined onB(0, R) with #~"¢(0) = 0. SinceR is arbitrary,®~"* is globally
defined withd—"¢ : CX — 12 is biholomorphic for some? c CK.

Suppoself? £ (. Pickp € 92 and @,) C 2, pn — P, Pn = (@ *(an))- The
(g,) cannot have a finite limit point. The®‘(p,) — oo which is impossible.
Henced ! is a global biholomorphism. Sé is biholomorphic.
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Proposition 4.1 implies thab is conjugate to a triangular mapping. O

Remark 4.5Theorem 4.2 shows in particular that whers 1 and® is not linear,
the Julia set is perfect. The proof does not use the theory of periodic points.

5 Maps with empty Julia set

Theorem 5.1 Let® € #;,. Assume the Julia set df is empty. Then eitheid")
diverges to infinity orC* or there is a closed analytic submanifoldSC* with

the following properties:

(0) @5 € Au(S),

(1) S is holomorphically trivial, i.e. there is a continuous family of holomorphic
mapsh; : S — S, t €[0,1], hy = Id and hy = constant

(2) The images of®"} converge uniformly on compact setsto S.

3) {dilns} is isomorphic to T x A where T is a torus of dimensiof and A is a
finite group.

Proof. Assume ¢") does not converge uniformly on compact sets to infinity.
Then CX is a recurrent Fatou component andl'Y is locally bounded as fol-
lows from Theorem 3.3. Leh = lim &" have maximal generic rank Since
PN (") = P+ we can construdh = lim ™ such thatioh = h. Here {m }

is a subsequence @hi.1 — n; }. Henceh = Id on h(C¥). Let S = {q; h(q) = q}.
ThenS is a subvariety inC containingh(CX). Let S; be the irreducible branch
of S containingh(CX). ThenS; is a manifold of dimensiom and is isolated in
S. We show thah(CK) = S;. Let U = h—(S,). ThenU is an open set containing
S. If pe oy, thenﬁ(p) € S;, soU = CK. HenceS = S;. One shows easily that

$(S) Cc S and since@g — Id it follows that & is an automorphism db.

As in the proof of Theorem 3.3 one shows tl@ﬂAut(S) is a compact
subgroupG of Aut(S).

If V is a bounded open set B, thenV = U,d"(V) is also a bounded open
set inS and @ is an automorphism of . HenceG is a commutative compact
Lie group, see ([Ko]) p.70 or ([Na]), which is therefore isomorphicTtox A
whereA is a finite commutative group.

It follows that {@?S} is contained in Ait(S). [Let # be a convergent subse-
quence, converging te, writing $Mo = dMo—k o P& for j (i) large, we see that
¥ € Aut(S).] Assumed’ — hy, thenh(C¥) > S and by the above argument
h;(CX) = S. So property (2) is proved. Sindeis a holomorphic retraction o8,
it follows that S is holomorphically trivial, i.e.h(z) := h(tz) thenh; joins the
identity to the constant map asvaries from 1 to O O
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6 Oscillating Fatou components

Definition 6.1 Let {2 be a Fatou component fa¢ € #;,,. Then{? is oscillating if
some subsequence of iterates is locally uniformly bounde@ and some other
subsequence converges u.c.c. to infinity.

Theorem 6.2 There exists a biholomorphic mapof C? which has a wandering
oscillating Fatou component.

To find a® we will use the concept of an—shift. This consists of a sequence
of regions converging to infinity and a shift between them. Let 0 < 1/2.

Definition 6.3 A (&,r)— shift X = X(&,r, {2 }) is a biholomorphic maw of
C? together with a sequence of regiof&; }7=___ where A((2i,0);r —r?) C
2 C A((2i,0);r +12), ¥ 1 — 4 and¥ — (z + 2,w) vanishes at each
center point(2i, 0).

NI N

4

Fig. 1. A (¥, r)— shift

We will inductively glue almost oscillating domains te- shifts in such a
way that in the limit one has an oscillating domain.

Definition 6.4 Analmost oscillating ¥ — domain

Y =YW, {U},{Di}, {ri}.{s })

consists of a sequence of domaifig;}>__, polydiscs D, Ui C D; :=

A(z;ri) x A(wi,s) for which the A(z; ;) is a locally finite pairwise disjoint
family and there is a biholomorphic malp of C2 for which¥(U;) = Uj41 Vi. We
assumg1, 0) € Uq.

It follows that limz = oco.



Fatou and Julia sets for entire mappingsth 37

Fig. 2. AImost oscillating¥ — domain

We say that shifts and almost oscillating domains are disjoint if they project

disjointedly on thez— axis.

Definition 6.5 We say that 47, r)— shift and an almost oscillatingg— domain
are disjoint if the discsA(2i;r +r?), A(z;r;) are all pairwise disjoint.

We will define a gluing of disjoint¥, r)— shifts and almost oscillating —
domains.

Definition 6.6 Given a(¥, r)— shift X(&, r, {2 }) and an almost oscillating’—
domain Y(&, {U; }, {Di}, {ri}, {s }) which are disjoint, and R> 0, an R— glu-
ing is an almost oscillatingp— domain Y (2, {U/'},{D/}, {r/},{s'}) with the
following properties:

(i) | — || < 1/R when|/(z, w)| <R,

(i) Ug = Uo,

(ii) Let ip be the smallest integer such thgk| —r« > RV k > ip. Then
U/ C A((2i — 2ig — 2[R] — 2,0);r +2r2) Vi > io.

Condition (jii) is crucial. It means thad;’ comes back before going to infinity.
In our constructiorlJ;’ will be close to an edge of the polydisc.
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Fig. 3. Gluing

Lemma 6.7 Any (¥, r)— shift and any almost oscillating— domain which are
disjoint have an R gluing for any R. The R gluing is disjoint from some’r
shift.

Proof. To obtain anR— gluing, we compos& with a suitable choice of maps.
We want to mapJ; into (2 _j,_[rj—1 for i > io.

Remark first that we can assume that|+|s | are arbitrarily small whefi | — oo.
Simply compose&” with a map of the form

(2, w) = (2, we’®),

where ¢(z) is an entire function which is arbitrarily close to 0 aMA(2i,r +
r?) and on finitely manyA(z, r;) while Ré(2) A 1y — o0 wheni — —oo,
RP(2)|a@ 1) — —oc wheni — oco. We also wanty(z) to vanish at eacla = 2i.

Let ¥, be a map of the same forn#y(z, w) = (z, we?*®) where ¢, is close
to 0 onA(0,R+1)UU; A(z, 1) and K¢y 2 — oo asi — —oo. In this way we
arrange that the?;’'s are flattened arbitrarily fast at infinity in the— direction
during the proof and at the end we compose again with a similar kind of map to
restore the new?, back to the correct essentially- independent height.

To glue, we will moveU;, into {2_rj—1 and also contracting;, to an arbi-
trarily small subset U;’ will be a small perturbation of this set - containing the
point (—2[R] — 2 —r/2,0) i.e. far from the center of2_jz;_1. We moveU;; in
three steps.
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Fig. 4. InsertingVj, into £2_[rj_1

1) Compose with a map of the form

(z,w) = (z,w + ¢(2)).

Here ¢(z) is close to zero on all disca\(2i,r +r?), A(zg,r;) and A(R,0)
except A(z,, ri,) where|¢(z)] >> R and is almost constant. Moreovef(z)
vanishes at each center. Notice that replacingZ with the composition with
this map we still have disjoint(,r)— shift and oscillatingZ— domain if we
only considerA(z,rj) for j < ig. We will continue our construction so as also
to include the indice$ > io.

2) We next compose with a map which will contract (the nély)in thez—
direction and moveJ;; to the right location in the— direction. We compose
with a map of the form

(e9™z — h(w), w).

Here g vanishes at 0 and is arbitrarily small ofi(0,R + 1). In order to
compresdJ;, in the z— direction we make arbitrarily close to a large negative
constant orlJj,.

Finally, we moveU;, to az— coordinate close te-2[R] — 2 —r /2 by letting

h(w) have an appropriate almost constant valueUgnwhile h vanishes at 0
and is arbitrarily small omA(O, R + 1), this is where we use thati| +|s| — 0

arbitrarily fast andf?, are flattened in thev—direction. Sog, h are arbitrarily
close to 0 onf2, thereby preserving the—shift.

3) Next we insert);, into A((—2[R] — 2, 0);r +r?) by composing with a map
of the form

(z,e%@w + H (2)).
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Here G(z), H(z) are arbitrarily close to zero on all dise¥(2i;r +r?), i #
—[Rl-1, A(-2[R]—-2;r/4), A(z;r;) andA(0;R+1) and vanishes at all centers.
MoreoverG(z) is arbitrarily close to a large negative constant A(—2[R] —

2 —r/2;r/8) in order to compresdl;; in the w— direction whileH (z) has a
suitable, almost constant value to maovg to the desired location.

We next let® denote the composition of these three maps &rahd define
Ug = U, U/ = &' (U{). This defines an almost oscillating— domain. More-
over ¢ defines a @, g)— shift which is disjoint. O

Proof of the TheoremTo prove the Theorem, one uses an inductively defined
segence of gluings and pass to a limit. The first step of the inductive construction,
is to use the map(z,w) = (z + 2,w). Also we define a¥,1/4)— shift by
letting (2, := A((2i, 0); 1/4) Our first almost oscillating/— domain consists of
the domaindJ; := A((2i +1,0); 1/4).

If we chooseR, — oo fast enough, then after passing to the limit in the
inductive construction we obtain finally an almost oscillatthgdomain which
consists of domaingU;'} and the forward iterate$(U;/) pass infinitely often
close to the sequencej(®) and toUy and so is oscillating.

Let {2 be the Fatou component containiblg. We know completely the orbit
of UJ. It remains to show thaf? is wandering. If not, there is an integer> 1
such that®(2) = 2. Let v be a curve contained if2 connectingUg to U,.
Also letU be a connected neighborhoodpftontained inf2. For high iterates

n, qjm:{uuk’uu converges u.c.c. to (0) on Uj and to (X,0) onU). This is a
contradiction. O
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