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1. Introduction

In an article published in thMathematische Annalein 1935, Heinrich Behnke
(1898-1979) and Ernst Peschl (1906-1986) introduced a notion of convexity
calledPlanarkonvexiit, nowadays known aseak lineal convexityThey showed

that for domains in the space of two complex variables with boundary of Class
this property implies that a differential inequality is satisfied at every boundary
point. Here we shall prove that, conversely, the differential inequality is sufficient
for weak lineal convexity.

Lineal convexity is a notion of convexity in complex geometry which is
intermediate between usual convexity and pseudoconvexity. By definition a set
in C" is lineally convexf its complement is a union of complex hyperplanes. An
open set is calledveakly lineally conveXf there passes, through any boundary
point, a complex hyperplane which does not intersect the set. If the boundary of
the set is of clas€?, the only candidate for such a plane is the complex tangent
plane, so then weak lineal convexity just means that no complex tangent plane
shall cut the set.

Lineal convexity is not a local condition. There exist open sets with Lipschitz
boundary which are not lineally convex but which are such that every point in the
space has a neighborhood which intersects the set in a lineally convex set. This
makes the study of such sets tricky and is in contrast to both pseudoconvexity
and usual convexity: if a domain is such that every point on its boundary has
a neighborhood which intersects the domain in a (pseudo)convex set, then the
whole domain has the same property.
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However, Behnke and Peschl [1935:170] proved that for sets with smooth
boundary, weak lineal convexity is a local property (see Theorem 3.1 below).

Both usual convexity and pseudoconvexity can be characterized infinitesi-
mally. The simplest example of such a result is that%afunction of one real
variable is convex if and only if its second derivative is nonnegative. More gen-
erally, a domain inR" with boundary of clas€? is convex if and only if the
Hessian of a defining function is positive semidefinite in the tangent space at
every boundary point. Similarly, an open set@i with boundary of clas€?
is pseudoconvex if and only if the Levi form of a defining function is positive
semidefinite in the complex tangent space at every boundary pointLéhie
condition).

In analogy with these two classical results, we shall prove in the present
paper that a connected open subse€bfwith boundary of clas€? is weakly
lineally convex if and only if the real Hessian of a defining function is positive
semidefinite in the complex tangent space at every boundary poinBéheke—
Peschl conditioi.

It is easy to see that semidefiniteness is necessary. It is also known—indeed,
this is theHauptsatzof Behnke and Peschl [1935]—that the corresponding strong
condition, i.e., that the real Hessian be positive definite, is sufficient. Thus what
we have proved is that semidefiniteness is sufficient.

In the case of convexity and pseudoconvexity, the best way to deal with
semidefiniteness is to approximate the domain by domains which satisfy the
corresponding condition of definiteness. This is not how we approach the problem
here, at least not directly. | do not know if a weakly lineally convex domain with
smooth boundary can be approximated by domains satisfying the strong Behnke—
Peschl condition. For Hartogs domains, though, this is known. The idea of proof
of the main result here is to construct Hartogs domains which share a tangent
plane with the given domain.

| learned about lineal convexity from AngliMartineau in 1967-68 when | was
in Nice with him. His premature death on May 4, 1972, was a great loss to world
mathematics. He introduced also the notion of strong lineal convexity [1968],
which, however, is not geometrically defined. Later Znamenskij [1979] found a
geometric characterization; the property is now callzdonvexity. Nowadays
the most important sources f@-convexity are the book by &tmander [1994]
and the survey article by Andersson, Passare, and Sigurdsson [1995]. My earlier
contributions to the field are to be found in [1978], [1996], [1997] and][ The
proof of the main result here depends on that for Hartogs domains in [1996].

I am grateful to Ragnar Sigurdsson for comments to the manuscript.

2. Definitions

To be able to characterize sets by infinitesimal conditions, we shall describe
boundaries and their curvature using defining functions and the Hesse and Levi
forms. In this section we give the needed definitions.
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A defining functiorfor an open sef? is a real-valued functiop of classC?
such that its differential never vanishes whemanishes, and such thét is the
set of points wherg is negative.

The complex tangent space at a boundary pajrdenoted byTc(a), is the
set of allt € C" such that
(2.1) > _r @) =0,
whereas the real tangent spaga) is the set of alt € C" such that
(2.2) R p (@) =0,
Here and in the following we write

ol = @ ol = 82/7
4 0z’ A% 070zZy’
for partial derivatives. The complex tangent plane is thefic(a); it is contained
in the real tangent plana + Tr(a).

The complex Hessian (complex Hesse form) of a funcjoof classC? is
defined to be the quadratic form

etc.

(2.3) H=H,(zt)=) st  zeC"teC"
The Levi form of p is the Hermitian form
(2.4) L=L,zt)=> py@4tk,  zeCteC"

Finally the real Hessian of a functignof real variables, ..., Xn is the quadratic
form

(2.5) Hr =Hr,(68) = > px (s X €R™seR™

When a function oh complex variables is given, its real Hessian in timergal
variables {z;, 3z, ..., Rz,, 32,) can be expressed using its complex Hessian and
its Levi form as

Hr(z;s) = 2(RH (z;t) + L(z; 1)),
ZEC"SeRMtcC"f =55 1 +isy.
Thus the characterization of convexity mentioned in the introduction is that
RH (a;t)+L(a;t) be nonnegative for alk € 92 and allt € Tr(a). For a lineally
convex set the same inequality holds for alf Tc(a). It is then equivalent to

L(a;t) > |H(a;t)| for a € 912 andt € Tc(a). We shall say thaf? satisfies the
Behnke—Peschl conditicat a if

(2.6) RH(a;t) +L(a;t) > 0, t € Te(a).

We shall say that? satisfies thestrong Behnke—Peschl conditiana if the form
is positive definite, i.e.,

2.7) FH@E O+ >0, teTe@)\ {0}

It is easy to prove that these conditions are invariant under complex affine map-
pings. They also do not depend on the choice of defining function. They were
introduced forn = 2 by Behnke and Peschl [1935:169].
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3. Main result

As noted in the introduction, lineal convexity is not a local condition. Simple

examples of sets which are locally lineally convex but not weakly lineally convex
can be found in Kiselman [1996: section 3]. However, weak lineal convexity is
a local condition for sets with smooth boundary. The precise result is as follows.

Theorem 3.1. Let £2 be a connected open set@f with boundary of class &

Assume that for every boundary point a, the closure of the intersecti@wath

the complex tangent plane at a does not contain a. Tfleis weakly lineally
convex.

For sets inC? or P?> with boundary of classC?, this was proved by
Behnke and Peschl [1935:170]. For a proof under the hypotheses stated here, see
Hormander [1994: Proposition 5.6.4]. The assumption thereshhe bounded
is not needed for the conclusion cited here. Cf. also Andersson, Passare and
Sigurdsson [1995: Proposition 2.4.7]. We shall need this result in our proof.

The following two results are well known and easy to prove. They are due
to Behnke and Peschl [1935: Theorems 7 and 8]; local weak lineal convexity is
calledPlanarkonvexiit im kleinenby them. Cf. also Zino\ev [1971], Hbrmander
[1994: Corollary 5.6.5], and Kiselman [1996: Lemmas 5.2 and 5.3].

Lemma 3.2. Let £2 be an open set iilC" with boundary of class & If 2 is
locally weakly lineally convex, then it satisfies the Behnke—Peschl condition (2.6)
at every boundary point.

Lemma 3.3. Let {2 be an open set i€" with boundary of class € If (2 satisfies
the strong Behnke—Peschl condition (2.7) at a poirg &2, then the complex
tangent plane a Tc(a) at a avoidss? in a neighborhood of a.

Combining Lemma 3.3 and Theorem 3.1 we can deduce that the strong
Behnke—Peschl condition (2.7) at all boundary points is sufficient for weak lineal
convexity. This is theHauptsatzof Behnke and Peschl [1935:170] (for sets in
C? or P?). We now state our main result, that in fact also the weaker condition
(2.6) is sufficient:

Theorem 3.4. Let £2 be a connected open set@f with boundary of class &
Then (2 is weakly lineally convex if and only i satisfies the Behnke—Peschl
condition (2.6) at every boundary point.

If (2 is locally weakly lineally convex, has @* boundary, and in addition
is bounded, then? is also C-convex and lineally convex. This follows from
Andersson, Passare and Sigurdsson [1995: Proposition 2.4.7], who consider sets
in projective space. | do not know how their result can be applied to unbounded
domains inC" with smooth boundary; such domains are not necessarily smoothly
bounded inP".
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4. Results for Hartogs sets

A subsetA of C" is called aHartogs seif there is a sef; in C"! x R such that
ze Aifand only if (z, ..., z1—1, |Z1]) € Aq; Alis said to be a&omplete Hartogs
setif z € Aimplies @, ...,Z,_1,t) € Afor all t with |t| < |z,|. Thebaseof A is
the subset oC"~! consisting of all pointsZ, ..., z,_1) such that, ..., z,) € A
for some complex humbes,.

Lineal convexity for Hartogs sets is easier to handle than in the general case.
The following is known.

Theorem 4.1. Let 2 be a complete Hartogs set @" which is open and con-
nected. Assume that its boundary is of classeRcept perhaps wherg z 0. If
{2 satisfies the Behnke—Peschl condition (2.6) at all boundary points w0z
then (2 is weakly lineally convex. If in addition the basef@fis lineally convex,
then {2 is lineally convex.

This result was proved in Kiselman [1996: Theorem 7.6]rfer 2 and under
slightly stronger hypotheses. The proof, however, is valid with small changes
under the hypotheses given here. The aasel is proved in Kiselmannjs].

Theorem 4.2. Let £2 be a complete Hartogs set @ defined by a function R as
N ={(z,w) € w x C; |w| < R(2)},

wherew is an open disk irC and Re C?(w) has positive values in all ab. If
{2 satisfies the Behnke—Peschl condition (2.6) at all pa(pi&(z)) with z € w,
then (2 is lineally convex.

This theorem was proved in Kiselman [1996: Theorem 9.7]. Note that the
boundary of(2 is not necessarily of clas§! at a boundary pointz(w) with
z € Jw andw # 0. The important step in the proof is to approximazeby
domains with smooth boundary satisfying condition (2.6). This can be done
whenw is a disk, but for no other domain which is equal to the interior of its
closure [1996: Theorems 8.3 and 8.4].

The Behnke—Peschl condition for a domain of the type described in Theorem
4.2 takes the form

2 2 .
IR|” > [(R,)" +RR}| +RR;
the strong condition corresponds to strict inequality here.

Proposition 4.3. Let £2 be an open set i€" and define
(41) 2={z€C" (@, ... 701, \z) € 2 for all A € C with [\| < 1.}

This is the largest complete Hartogs set contained2inif (2 is lineally convex,
then (2 is lineally convex; similarly for weak lineal convexity.df? is of class
C2 except perhaps wherg z 0, then so is the boundary 6? at all points z with
z, # 0 and satisfying the condition

(4.2) 2M|z0| < |py, (2)),
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where M is a bound for the second derivatiygs, and o, . If, in addition, £2
satisfies the Behnke-Peschl condition (2.6) at all boundary points with @
then so does? at all boundary points withz# 0 satisfying (4.2).

Proof. If (2 is lineally convex, then als@, as an intersection of lineally convex
sets, has this property:

0= (] 2., where 2,={z€C" (21, ..., zn-1,\2z) € 2}.
[A<1

Assume now that? is only weakly lineally convex, and let a poiaton the
boundary off2 be given. Then for soma with |A| = 1, a is on the boundary
of £2) defined above, and a hyperplane throeghhich does not intersea®,
does not intersec® either. (The argument is valid for &; if a, = 0 we even
havea € 02, for all \.)

If p definess(?, then

(4.3) pl2) = SUpp(z, .., 2a-1, €'%z,)

defines? in a neighborhood of its closure. Define

o(z1, ..., 20,0) = p(z1, ..., Zo_1, €2, (z,0) e C" x R.

We can calculate

vp = —23(p;,€°2);
Poo —2R(p}, €"%20) — 2R (0}, €777 + 2055, |2a]%.

The value ofg which defines the supremum in (4.3) solves the equatipr O,
and the implicit function theorem can be appliedjf, # 0 there. This condition
is fulfilled if

(4.4) 1R(p}, €%2) > 2M |z,

whereM is a bound for the second derivatives ofs defined in the statement
of the proposition. However, whepj, = 0, the expressior;»’zne‘@zn is real, so
that (4.4) simplifies to (4.2). The implicit function theorem then says that the
boundary off2 is as smooth as that d? where the condition is satisfied.

Now assume thaf? satisfies the Behnke—Peschl condition at a boundary point
a of 2 with a, # 0. Thena is on the boundary of some,, |A| = 1, as already
noted above. Consider the functions

pa(s) =pa(@a+st), @) =pla+st), seR,teTc(d),

wherepx(2) = p(a, ..., Z—1, AZy), the defining function for2, obtained by ro-
tating p in the last coordinate.

The Behnke—Peschl condition holds @5, which means that4)”(0) > 0.
Now ¢ > ¢, and both functions vanish at the origin, which implig§(0) >
(©2)"(0). Thus the condition holds faR. This completes the proof.
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In an application of this proposition in the next section we shallf}ebe
defined near an arbitrarily given point by an inequality< f(z’, x,) for some
real-valued functiorf of n — 1 complex and one real variable. Thefz) =
yn — f(Z’, %) is a defining function for? near the given point. (Heng, = Rz,,
Yn =Sz, andz’ = (z, ..., Z,-1).) We see thap, = —i(f; +i), so that|p] | > 1.
Moreover

1/ - //7 - 7;1: 1
Pzaz = Pz.zZ, 7 %% *
This implies that a sufficient condition for (4.2) to hold is
(4.5) Clan| < 1,
whereC is a bound forf,”, .

Remark 4.4Condition (4.2) has a simple geometric meaning. With the defining

function p(z) =y, — f(Z/, xn) it says that the intersection of the boundaryfof

with the subspace’ = constant has smaller curvature than the intersection of

the boundary of2 with the same subspace where the two boundaries meet. For
simplicity we shall use the stronger condition (4.5) instead.

5. Proof of the main result

We shall now prove Theorem 3.4. In view of Theorem 3.1 it is enough to prove
that the complex tangent plamae- Tc(a) does not cut? neara. We shall assume
thata+Tc(a) cutss? in a pointb and then show that this leads to a contradiction
if b is close toa.

First of all we may assume that = 2 by looking at the two-dimensional
affine complex subspace which contaimsb and a third point on the normal
to 042 througha. We may also assume that the coordinate system is chosen so
thata = 0 and the real tangent plaet+ Tr(a) has the equatio’z, = 0. We
recall that both weak lineal convexity and the Behnke—Peschl condition (2.6) are
invariant under complex affine mappings. The complex tangent plaaetesn
has the equatiom, = 0, so thath, = 0. We shall consider a neighborho@d of
a such that three conditions are satisfied. Let

W = {z € C?, |z| < Ry, |2| < R},
and letV be its intersection witlC x R:

V ={(z, %) € C xR;

7| <Ry, %] < R}

The three conditions are:

(A) First of all the set? shall be defined iW by an inequalitysz, < f(z;, Rz)
for some functiorf which is of classC? in a neighborhood of the closure
of V.
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(B) Next we shall assume that condition (4.5) is satisfied forzall W with
some margin:
|<z< 1l

XoX2

R; sup|f,.
\

(This is to allow a change of coordinates later.)
(C) Third,R; shall be so small thalR; +C (1+M?)R? < iR,, whereM = {CR,
andC is defined below.

To satisfy these conditions we have to specify the numBerRR, andC.
We first chooseR; and R, so that (A) and (B) hold, and then define a constant
C as follows. Since is a function of clas<C? defined in a neighborhood of
the closure oV and with vanishing derivatives of order up to one at the origin,
there exists a constaf such that

f(z, %) < C(zf+x3),
fe,(z,%)] < C(lz| +|x2[), and
‘f)(lz/xz(zlv X2)| < C

for all (z;,x2) € V. We finally shrinkR; if necessary to make (C) hold.

With the choice of coordinate system we have made, the nornalisathe
yo-axis. Letc be a point on that axis witksc, < O; it is convenient to take
€ = —1iRz. Thusc = (0, c,) and|c| = =S¢, = iR,. The circle in the plang; = 0
with center atc and radiusc| passes through and is tangent to thg,-axis at
that point.

We shall prove thaf (b) < 0 (hence thab ¢ 2) for all b with |b;| < Ry.
Assume the contranf.(b) > 0. Consider the plang, = b; and the graph of
restricted to that plane. Draw the normal to the grapH (@#, -) through the
point z, = if (b, 0) in the z-plane. This normal intersects the ligg= 3¢, at a
point which we callp,. Definep; = by, so thatp = (p1, p2) is a point inC2. The
slope of the normal is determined by the slope of the graghatb;, x, =0, i.e.,
by f,,(b1,0). This derivative can however be controlled: we know tifgb, , 0)
is not more tharC|b;| in modulus. The distance betweprandc is

[P — cf = [f;, (b1, 0)|(|c| + (b1, 0)) < C|by| (3R + Clby|?) < $CRyby],

where the last estimate is a consequence of (C). Thus c| < M |b;| with
M = iCR..

We have constructed a di€l in the planez; = 0 with center at, and with
z, = 0 on its boundary, and now I&; be the disk in the plane, = b; with
center atp, andif (by, 0) on its boundary (and therefore containipg= 0):

Do = {z€C?%2=0,|z—c < c|};
D; = {zeC%z=hy|z—p <|if (b1,0)— pal}.

Both disks are moreover contained $hn W. For Dy this is obvious from the
construction; forD; this can be seen as follows. The centeiDafis p, and its
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radiusry is |if (b1) — p2|. The disk is contained iW if |py| +r1 < Ry. This
inequality follows from the estimates we already have:

p2| +11 < 2|py| +Cby[* < 2|ca| +2pz — C2| +Cby[* < 1R+ 2MRy +CRE < R,,

where the last inequality follows from (C). Thiz; ¢ W. ThatD; C {2 now
follows from (B); cf. Remark 4.4.

If we construct a Hartogs domain by rotatifiyjaround an axis which passes
through ¢ and p, then this Hartogs domain will hava on its boundary and
containb. This is precisely what we shall do.

We introduce new coordinatesu{, wo) so that thew;-axis, i.e., the plane
wy = 0, passes through and p. The w,-axis need not be changed. This means
that the new coordinates shall be defined as

w1 = 74y, w2 =2 — C2 — (P2 — C2)z1/by.

Indeedz = ¢ givesw = 0 andz = p yieldsw = b = (b, 0). We now define’?
in the w-coordinates. The tangent plane with equatier-= 0 has the equation
w2 = —C2 — (P2 — Cx)wy/by and is also the tangent plane &3? at the point
w = (0, —¢p). It intersects? at the pointz = b, i.e., w = (by, —pz). That this
point is an element of? follows from the construction obD;.

We shall now apply Theorem 4.2 1@ over the disk|wi| < Ry in the w;-
plane. To be able to do so we have to check that there is a poift ofer
every pointw; with |wi| < Ry, or equivalently that«{,,0) € (2 for all w with
|w1\ < R

In the new coordinate system, the inequality definiadgpecomes

Swp < =€ — (P2 — Cwa/by +f (w1, Rwz + R(p2 — C2)wi/by).
Denote the right-hand side hyfw;, ®w,). In particular
g(wi,0) = =3¢z — I(p2 — C)wz /by +f (w1, R(p2 — C2)wi/by).
Recalling the estimatgp, — ¢;| < M |b;| above, we get
g(w1,0) > iRy — M|wy| — C(L +M?)|ws)? > tR, — MR, — C(1 +M?)R? > 0,

the last inequality coming from (C). This ensures that every paint @) with
lw1| < Ry lies in £2 and therefore also it
We know thatf? satisfies the Behnke—Peschl condition at all boundary points
if the condition in thew-coordinates corresponding to (4.5) is valid. Note that
|wa — 2o + ¢2| < M|z independently of the choice &f € W, from which we
deduce
|wz| < |z| + 1R+ MRy < 2R,.

The second derivative @f with respect tdRw; is the same as the second deriva-
tive of f with respect to; = Rz, so from (B) we can conclude that the condition
(4.5) is satisfied also in the-coordinates for all pointa € 962 with |wi| < Ry.

It now follows from Theorem 4.2 thav is lineally convex, which contradicts
the fact that the tangent plane at the paint —c intersects(?2 in w = (b, —py).
This completes the proof.
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