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1. Introduction

In an article published in theMathematische Annalenin 1935, Heinrich Behnke
(1898–1979) and Ernst Peschl (1906–1986) introduced a notion of convexity
calledPlanarkonvexiẗat, nowadays known asweak lineal convexity.They showed
that for domains in the space of two complex variables with boundary of classC2,
this property implies that a differential inequality is satisfied at every boundary
point. Here we shall prove that, conversely, the differential inequality is sufficient
for weak lineal convexity.

Lineal convexity is a notion of convexity in complex geometry which is
intermediate between usual convexity and pseudoconvexity. By definition a set
in Cn is lineally convexif its complement is a union of complex hyperplanes. An
open set is calledweakly lineally convexif there passes, through any boundary
point, a complex hyperplane which does not intersect the set. If the boundary of
the set is of classC1, the only candidate for such a plane is the complex tangent
plane, so then weak lineal convexity just means that no complex tangent plane
shall cut the set.

Lineal convexity is not a local condition. There exist open sets with Lipschitz
boundary which are not lineally convex but which are such that every point in the
space has a neighborhood which intersects the set in a lineally convex set. This
makes the study of such sets tricky and is in contrast to both pseudoconvexity
and usual convexity: if a domain is such that every point on its boundary has
a neighborhood which intersects the domain in a (pseudo)convex set, then the
whole domain has the same property.
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However, Behnke and Peschl [1935:170] proved that for sets with smooth
boundary, weak lineal convexity is a local property (see Theorem 3.1 below).

Both usual convexity and pseudoconvexity can be characterized infinitesi-
mally. The simplest example of such a result is that aC2 function of one real
variable is convex if and only if its second derivative is nonnegative. More gen-
erally, a domain inRn with boundary of classC2 is convex if and only if the
Hessian of a defining function is positive semidefinite in the tangent space at
every boundary point. Similarly, an open set inCn with boundary of classC2

is pseudoconvex if and only if the Levi form of a defining function is positive
semidefinite in the complex tangent space at every boundary point (theLevi
condition).

In analogy with these two classical results, we shall prove in the present
paper that a connected open subset ofCn with boundary of classC2 is weakly
lineally convex if and only if the real Hessian of a defining function is positive
semidefinite in the complex tangent space at every boundary point (theBehnke–
Peschl condition).

It is easy to see that semidefiniteness is necessary. It is also known—indeed,
this is theHauptsatzof Behnke and Peschl [1935]—that the corresponding strong
condition, i.e., that the real Hessian be positive definite, is sufficient. Thus what
we have proved is that semidefiniteness is sufficient.

In the case of convexity and pseudoconvexity, the best way to deal with
semidefiniteness is to approximate the domain by domains which satisfy the
corresponding condition of definiteness. This is not how we approach the problem
here, at least not directly. I do not know if a weakly lineally convex domain with
smooth boundary can be approximated by domains satisfying the strong Behnke–
Peschl condition. For Hartogs domains, though, this is known. The idea of proof
of the main result here is to construct Hartogs domains which share a tangent
plane with the given domain.

I learned about lineal convexity from André Martineau in 1967-68 when I was
in Nice with him. His premature death on May 4, 1972, was a great loss to world
mathematics. He introduced also the notion of strong lineal convexity [1968],
which, however, is not geometrically defined. Later Znamenskij [1979] found a
geometric characterization; the property is now calledC-convexity. Nowadays
the most important sources forC-convexity are the book by Ḧormander [1994]
and the survey article by Andersson, Passare, and Sigurdsson [1995]. My earlier
contributions to the field are to be found in [1978], [1996], [1997] and [ms]. The
proof of the main result here depends on that for Hartogs domains in [1996].

I am grateful to Ragnar Sigurdsson for comments to the manuscript.

2. Definitions

To be able to characterize sets by infinitesimal conditions, we shall describe
boundaries and their curvature using defining functions and the Hesse and Levi
forms. In this section we give the needed definitions.
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A defining functionfor an open setΩ is a real-valued functionρ of classC1

such that its differential never vanishes whenρ vanishes, and such thatΩ is the
set of points whereρ is negative.

The complex tangent space at a boundary pointa, denoted byTC(a), is the
set of all t ∈ Cn such that ∑

ρ′
zj

(a)tj = 0,(2.1)

whereas the real tangent spaceTR(a) is the set of allt ∈ Cn such that

<
∑

ρ′
zj

(a)tj = 0.(2.2)

Here and in the following we write

ρ′
zj

=
∂ρ

∂zj
, ρ′′

zj zk
=

∂2ρ

∂zj ∂zk
, etc.

for partial derivatives. The complex tangent plane is thena+TC(a); it is contained
in the real tangent planea + TR(a).

The complex Hessian (complex Hesse form) of a functionρ of classC2 is
defined to be the quadratic form

H = Hρ(z; t) =
∑

ρ′′
zj zk

(z)tj tk , z ∈ Cn, t ∈ Cn.(2.3)

The Levi form ofρ is the Hermitian form

L = Lρ(z; t) =
∑

ρ′′
zj zk

(z)tj t k , z ∈ Cn, t ∈ Cn.(2.4)

Finally the real Hessian of a functionρ of real variablesx1, ..., xm is the quadratic
form

HR = HR,ρ(x; s) =
∑

ρ′′
xj xk

(x)sj sk , x ∈ Rm, s ∈ Rm.(2.5)

When a function ofn complex variables is given, its real Hessian in the 2n real
variables (<z1, =z1, ..., <zn, =zn) can be expressed using its complex Hessian and
its Levi form as

HR(z; s) = 2(<H (z; t) + L(z; t)),

z ∈ Cn, s ∈ R2n, t ∈ Cn, tj = s2j −1 + is2j .

Thus the characterization of convexity mentioned in the introduction is that
<H (a; t)+L(a; t) be nonnegative for alla ∈ ∂Ω and allt ∈ TR(a). For a lineally
convex set the same inequality holds for allt ∈ TC(a). It is then equivalent to
L(a; t) ≥ |H (a; t)| for a ∈ ∂Ω and t ∈ TC(a). We shall say thatΩ satisfies the
Behnke–Peschl conditionat a if

<H (a; t) + L(a; t) ≥ 0, t ∈ TC(a).(2.6)

We shall say thatΩ satisfies thestrong Behnke–Peschl conditionat a if the form
is positive definite, i.e.,

<H (a; t) + L(a; t) > 0, t ∈ TC(a) \ {0}.(2.7)

It is easy to prove that these conditions are invariant under complex affine map-
pings. They also do not depend on the choice of defining function. They were
introduced forn = 2 by Behnke and Peschl [1935:169].
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3. Main result

As noted in the introduction, lineal convexity is not a local condition. Simple
examples of sets which are locally lineally convex but not weakly lineally convex
can be found in Kiselman [1996: section 3]. However, weak lineal convexity is
a local condition for sets with smooth boundary. The precise result is as follows.

Theorem 3.1. Let Ω be a connected open set inCn with boundary of class C1.
Assume that for every boundary point a, the closure of the intersection ofΩ with
the complex tangent plane at a does not contain a. ThenΩ is weakly lineally
convex.

For sets in C2 or P2 with boundary of classC2, this was proved by
Behnke and Peschl [1935:170]. For a proof under the hypotheses stated here, see
Hörmander [1994: Proposition 5.6.4]. The assumption there thatΩ be bounded
is not needed for the conclusion cited here. Cf. also Andersson, Passare and
Sigurdsson [1995: Proposition 2.4.7]. We shall need this result in our proof.

The following two results are well known and easy to prove. They are due
to Behnke and Peschl [1935: Theorems 7 and 8]; local weak lineal convexity is
calledPlanarkonvexiẗat im kleinenby them. Cf. also Zinov′ev [1971], Ḧormander
[1994: Corollary 5.6.5], and Kiselman [1996: Lemmas 5.2 and 5.3].

Lemma 3.2. Let Ω be an open set inCn with boundary of class C2. If Ω is
locally weakly lineally convex, then it satisfies the Behnke–Peschl condition (2.6)
at every boundary point.

Lemma 3.3. LetΩ be an open set inCn with boundary of class C2. If Ω satisfies
the strong Behnke–Peschl condition (2.7) at a point a∈ ∂Ω, then the complex
tangent plane a+ TC(a) at a avoidsΩ in a neighborhood of a.

Combining Lemma 3.3 and Theorem 3.1 we can deduce that the strong
Behnke–Peschl condition (2.7) at all boundary points is sufficient for weak lineal
convexity. This is theHauptsatzof Behnke and Peschl [1935:170] (for sets in
C2 or P2). We now state our main result, that in fact also the weaker condition
(2.6) is sufficient:

Theorem 3.4. Let Ω be a connected open set inCn with boundary of class C2.
ThenΩ is weakly lineally convex if and only ifΩ satisfies the Behnke–Peschl
condition (2.6) at every boundary point.

If Ω is locally weakly lineally convex, has aC1 boundary, and in addition
is bounded, thenΩ is also C-convex and lineally convex. This follows from
Andersson, Passare and Sigurdsson [1995: Proposition 2.4.7], who consider sets
in projective space. I do not know how their result can be applied to unbounded
domains inCn with smooth boundary; such domains are not necessarily smoothly
bounded inPn.
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4. Results for Hartogs sets

A subsetA of Cn is called aHartogs setif there is a setA1 in Cn−1×R such that
z ∈ A if and only if (z1, ..., zn−1, |zn|) ∈ A1; A is said to be acomplete Hartogs
set if z ∈ A implies (z1, ..., zn−1, t) ∈ A for all t with |t | ≤ |zn|. Thebaseof A is
the subset ofCn−1 consisting of all points (z1, ..., zn−1) such that (z1, ..., zn) ∈ A
for some complex numberzn.

Lineal convexity for Hartogs sets is easier to handle than in the general case.
The following is known.

Theorem 4.1. Let Ω be a complete Hartogs set inCn which is open and con-
nected. Assume that its boundary is of class C2 except perhaps where zn = 0. If
Ω satisfies the Behnke–Peschl condition (2.6) at all boundary points with zn /= 0,
thenΩ is weakly lineally convex. If in addition the base ofΩ is lineally convex,
thenΩ is lineally convex.

This result was proved in Kiselman [1996: Theorem 7.6] forn = 2 and under
slightly stronger hypotheses. The proof, however, is valid with small changes
under the hypotheses given here. The casen > 1 is proved in Kiselman [ms].

Theorem 4.2. Let Ω be a complete Hartogs set inC2 defined by a function R as

Ω = {(z, w) ∈ ω × C; |w| < R(z)},

whereω is an open disk inC and R∈ C2(ω) has positive values in all ofω. If
Ω satisfies the Behnke–Peschl condition (2.6) at all points(z, R(z)) with z ∈ ω,
thenΩ is lineally convex.

This theorem was proved in Kiselman [1996: Theorem 9.7]. Note that the
boundary ofΩ is not necessarily of classC1 at a boundary point (z, w) with
z ∈ ∂ω and w /= 0. The important step in the proof is to approximateΩ by
domains with smooth boundary satisfying condition (2.6). This can be done
when ω is a disk, but for no other domain which is equal to the interior of its
closure [1996: Theorems 8.3 and 8.4].

The Behnke–Peschl condition for a domain of the type described in Theorem
4.2 takes the form

|R′
z|2 ≥ |(R′

z

)2
+ RR′′

zz| + RR′′
zz;

the strong condition corresponds to strict inequality here.

Proposition 4.3. Let Ω be an open set inCn and define

Ω̃ = {z ∈ Cn; (z1, ..., zn−1, λzn) ∈ Ω for all λ ∈ C with |λ| ≤ 1.}(4.1)

This is the largest complete Hartogs set contained inΩ. If Ω is lineally convex,
then Ω̃ is lineally convex; similarly for weak lineal convexity. If∂Ω is of class
C2 except perhaps where zn = 0, then so is the boundary of̃Ω at all points z with
zn /= 0 and satisfying the condition

2M |zn| < |ρ′
zn

(z)|,(4.2)
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where M is a bound for the second derivativesρ′′
znzn

andρ′′
znzn

. If, in addition,Ω
satisfies the Behnke–Peschl condition (2.6) at all boundary points with zn /= 0,
then so does̃Ω at all boundary points with zn /= 0 satisfying (4.2).

Proof. If Ω is lineally convex, then alsõΩ, as an intersection of lineally convex
sets, has this property:

Ω̃ =
⋂

|λ|≤1

Ωλ, where Ωλ = {z ∈ Cn; (z1, ..., zn−1, λzn) ∈ Ω}.

Assume now thatΩ is only weakly lineally convex, and let a pointa on the
boundary ofΩ̃ be given. Then for someλ with |λ| = 1, a is on the boundary
of Ωλ defined above, and a hyperplane througha which does not intersectΩλ

does not intersect̃Ω either. (The argument is valid for alla; if an = 0 we even
havea ∈ ∂Ωλ for all λ.)

If ρ definesΩ, then

ρ̃(z) = sup
θ

ρ(z1, ..., zn−1, ei θzn)(4.3)

definesΩ̃ in a neighborhood of its closure. Define

ϕ(z1, ..., zn, θ) = ρ(z1, ..., zn−1, ei θzn), (z, θ) ∈ Cn × R.

We can calculate

ϕ′
θ = −2=(ρ′

zn
ei θzn);

ϕ′′
θθ = −2<(

ρ′
zn

ei θzn
) − 2<(

ρ′′
znzn

e2i θz2
n

)
+ 2ρ′′

znzn
|zn|2.

The value ofθ which defines the supremum in (4.3) solves the equationϕ′
θ = 0,

and the implicit function theorem can be applied ifϕ′′
θθ /= 0 there. This condition

is fulfilled if
|<(ρ′

zn
ei θzn)| > 2M |zn|2,(4.4)

whereM is a bound for the second derivatives ofρ as defined in the statement
of the proposition. However, whenϕ′

θ = 0, the expressionρ′
zn

ei θzn is real, so
that (4.4) simplifies to (4.2). The implicit function theorem then says that the
boundary ofΩ̃ is as smooth as that ofΩ where the condition is satisfied.

Now assume thatΩ satisfies the Behnke–Peschl condition at a boundary point
a of Ω̃ with an /= 0. Thena is on the boundary of someΩλ, |λ| = 1, as already
noted above. Consider the functions

ϕλ(s) = ρλ(a + st), ϕ̃(s) = ρ̃(a + st), s ∈ R, t ∈ TC(a),

whereρλ(z) = ρ(z1, ..., zn−1, λzn), the defining function forΩλ obtained by ro-
tating ρ in the last coordinate.

The Behnke–Peschl condition holds forΩλ, which means that (ϕλ)′′(0) ≥ 0.
Now ϕ̃ ≥ ϕλ and both functions vanish at the origin, which impliesϕ̃′′(0) ≥
(ϕλ)′′(0). Thus the condition holds for̃Ω. This completes the proof.
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In an application of this proposition in the next section we shall letΩ be
defined near an arbitrarily given point by an inequalityyn < f (z′, xn) for some
real-valued functionf of n − 1 complex and one real variable. Thenρ(z) =
yn − f (z′, xn) is a defining function forΩ near the given point. (Herexn = <zn,
yn = =zn, andz′ = (z1, ..., zn−1).) We see thatρ′

zn
= − 1

2 (f ′
xn

+ i ), so that|ρ′
zn
| ≥ 1

2 .
Moreover

ρ′′
znzn

= ρ′′
znzn

= − 1
4 f ′′

xnxn
.

This implies that a sufficient condition for (4.2) to hold is

C |zn| < 1,(4.5)

whereC is a bound forf ′′
xnxn

.

Remark 4.4.Condition (4.2) has a simple geometric meaning. With the defining
function ρ(z) = yn − f (z′, xn) it says that the intersection of the boundary ofΩ
with the subspacez′ = constant has smaller curvature than the intersection of
the boundary ofΩ̃ with the same subspace where the two boundaries meet. For
simplicity we shall use the stronger condition (4.5) instead.

5. Proof of the main result

We shall now prove Theorem 3.4. In view of Theorem 3.1 it is enough to prove
that the complex tangent planea +TC(a) does not cutΩ neara. We shall assume
thata +TC(a) cutsΩ in a pointb and then show that this leads to a contradiction
if b is close toa.

First of all we may assume thatn = 2 by looking at the two-dimensional
affine complex subspace which containsa, b and a third point on the normal
to ∂Ω througha. We may also assume that the coordinate system is chosen so
that a = 0 and the real tangent planea + TR(a) has the equation=z2 = 0. We
recall that both weak lineal convexity and the Behnke–Peschl condition (2.6) are
invariant under complex affine mappings. The complex tangent plane ata then
has the equationz2 = 0, so thatb2 = 0. We shall consider a neighborhoodW of
a such that three conditions are satisfied. Let

W = {z ∈ C2; |z1| < R1, |z2| < R2},

and letV be its intersection withC × R:

V = {(z1, x2) ∈ C × R; |z1| < R1, |x2| < R2}.

The three conditions are:

(A) First of all the setΩ shall be defined inW by an inequality=z2 < f (z1, <z2)
for some functionf which is of classC2 in a neighborhood of the closure
of V .
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(B) Next we shall assume that condition (4.5) is satisfied for allz ∈ W with
some margin:

R2 sup
V

|f ′′
x2x2

| < 2
3 < 1.

(This is to allow a change of coordinates later.)
(C) Third,R1 shall be so small thatMR1+C(1+M 2)R2

1 < 1
4R2, whereM = 1

2CR2

andC is defined below.

To satisfy these conditions we have to specify the numbersR1, R2 and C .
We first chooseR1 and R2 so that (A) and (B) hold, and then define a constant
C as follows. Sincef is a function of classC2 defined in a neighborhood of
the closure ofV and with vanishing derivatives of order up to one at the origin,
there exists a constantC such that

|f (z1, x2)| ≤ C(|z1|2 + x2
2 ),

|f ′
x2

(z1, x2)| ≤ C(|z1| + |x2|), and

|f ′′
x2x2

(z1, x2)| ≤ C

for all (z1, x2) ∈ V . We finally shrinkR1 if necessary to make (C) hold.
With the choice of coordinate system we have made, the normal ata is the

y2-axis. Let c be a point on that axis with=c2 < 0; it is convenient to take
c = − 1

4 iR2. Thusc = (0, c2) and|c| = −=c2 = 1
4R2. The circle in the planez1 = 0

with center atc and radius|c| passes througha and is tangent to thex2-axis at
that point.

We shall prove thatf (b) ≤ 0 (hence thatb /∈ Ω) for all b with |b1| < R1.
Assume the contrary:f (b) > 0. Consider the planez1 = b1 and the graph off
restricted to that plane. Draw the normal to the graph off (b1, · ) through the
point z2 = if (b1, 0) in thez2-plane. This normal intersects the liney2 = =c2 at a
point which we callp2. Definep1 = b1, so thatp = (p1, p2) is a point inC2. The
slope of the normal is determined by the slope of the graph atz1 = b1, x2 = 0, i.e.,
by f ′

x2
(b1, 0). This derivative can however be controlled: we know thatf ′

x2
(b1, 0)

is not more thanC |b1| in modulus. The distance betweenp andc is

|p − c| = |f ′
x2

(b1, 0)|(|c| + f (b1, 0)) ≤ C |b1|( 1
4R2 + C |b1|2) ≤ 1

2CR2|b1|,
where the last estimate is a consequence of (C). Thus|p − c| ≤ M |b1| with
M = 1

2CR2.
We have constructed a diskD0 in the planez1 = 0 with center atc2 and with

z2 = 0 on its boundary, and now letD1 be the disk in the planez1 = b1 with
center atp2 and if (b1, 0) on its boundary (and therefore containingz2 = 0):

D0 = {z ∈ C2; z1 = 0, |z2 − c2| < |c|};

D1 = {z ∈ C2; z1 = b1, |z2 − p2| < |if (b1, 0) − p2|}.

Both disks are moreover contained inΩ ∩ W. For D0 this is obvious from the
construction; forD1 this can be seen as follows. The center ofD1 is p2 and its
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radius r1 is |if (b1) − p2|. The disk is contained inW if |p2| + r1 ≤ R2. This
inequality follows from the estimates we already have:

|p2| + r1 ≤ 2|p2| + C |b1|2 ≤ 2|c2| + 2|p2 − c2| + C |b1|2 ≤ 1
2R2 + 2MR1 + CR2

1 ≤ R2,

where the last inequality follows from (C). ThusD1 ⊂ W. That D1 ⊂ Ω now
follows from (B); cf. Remark 4.4.

If we construct a Hartogs domain by rotatingΩ around an axis which passes
through c and p, then this Hartogs domain will havea on its boundary and
containb. This is precisely what we shall do.

We introduce new coordinates (w1, w2) so that thew1-axis, i.e., the plane
w2 = 0, passes throughc and p. The w2-axis need not be changed. This means
that the new coordinates shall be defined as

w1 = z1, w2 = z2 − c2 − (p2 − c2)z1/b1.

Indeedz = c gives w = 0 andz = p yields w = b = (b1, 0). We now defineΩ̃
in the w-coordinates. The tangent plane with equationz2 = 0 has the equation
w2 = −c2 − (p2 − c2)w1/b1 and is also the tangent plane to∂Ω̃ at the point
w = (0, −c2). It intersectsΩ̃ at the pointz = b, i.e., w = (b1, −p2). That this
point is an element of̃Ω follows from the construction ofD1.

We shall now apply Theorem 4.2 tõΩ over the disk|w1| < R1 in the w1-
plane. To be able to do so we have to check that there is a point ofΩ̃ over
every pointw1 with |w1| < R1, or equivalently that (w1, 0) ∈ Ω̃ for all w with
|w1| < R1.

In the new coordinate system, the inequality definingΩ becomes

=w2 < −=c2 − =(p2 − c2)w1/b1 + f (w1, <w2 + <(p2 − c2)w1/b1).

Denote the right-hand side byg(w1, <w2). In particular

g(w1, 0) = −=c2 − =(p2 − c2)w1/b1 + f (w1, <(p2 − c2)w1/b1).

Recalling the estimate|p2 − c2| ≤ M |b1| above, we get

g(w1, 0) ≥ 1
4R2 − M |w1| − C(1 + M 2)|w1|2 ≥ 1

4R2 − MR1 − C(1 + M 2)R2
1 > 0,

the last inequality coming from (C). This ensures that every point (w1, 0) with
|w1| < R1 lies in Ω and therefore also iñΩ.

We know thatΩ̃ satisfies the Behnke–Peschl condition at all boundary points
if the condition in thew-coordinates corresponding to (4.5) is valid. Note that
|w2 − z2 + c2| ≤ M |z1| independently of the choice ofb ∈ W, from which we
deduce

|w2| ≤ |z2| + 1
4R2 + MR1 ≤ 3

2R2.

The second derivative ofg with respect to<w2 is the same as the second deriva-
tive of f with respect tox2 = <z2, so from (B) we can conclude that the condition
(4.5) is satisfied also in thew-coordinates for all pointsw ∈ ∂Ω̃ with |w1| < R1.

It now follows from Theorem 4.2 that̃Ω is lineally convex, which contradicts
the fact that the tangent plane at the pointw = −c intersectsΩ̃ in w = (b1, −p2).
This completes the proof.
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