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1. Introduction

We shall study the existence of singular positive solutions for the following
semilinear elliptic and parabolic problems.

(1.1)




∆u(x) + V (x) up(x) = 0, x ∈ D − {0},
u(x) > 0, x ∈ D − {0},
u(x) ∼ c

|x|n−2 , near x = 0, for any sufficiently small c > 0,
u(x) = 0, x ∈ ∂D .

Here and throughout the paperD ⊂ Rn, n ≥ 3, is a bounded Lipschitz domain
containing 0,∆ is the Laplacian andp > 1.
(1.2)


∆u(x) + V (x) up(x) = 0, x ∈ Rn − {0},
u(x) > 0, x ∈ Rn − {0},
u(x) ∼ c

|x|n−2 , near x = 0, ∞, for any sufficiently small c > 0.

In (1.1) and (1.2), the notionu(x) ∼ c
|x|n−2 near 0 or∞ means that for some

C1, C2 > 0, cC1
|x|n−2 ≤ u(x) ≤ cC2

|x|n−2 whenx is near 0 or∞.

(1.3)




∆u(x, t) + V (x) up(x, t) − ut (x, t) = 0, x ∈ D − {0}, 0 < t ≤ T,
limx→0 u(x, t) = ∞, 0 < t < T,
u(x, t) = 0, (x, t) ∈ ∂D × (0, T),
u(x, 0) = u0(x).

Solutions of these problems are understood as distributional solutions inD −
{0} for (1.1) and (1.2), inD − {0} × (0, T) for (1.3). Under our conditions to
be specified later, these solutions are continuous except atx = 0.
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Equations in (1.1) and (1.2) contain several well-known types which have
been studied extensively. For instance, whenV = 1, the equation in (1.1) is
the Lane-Emden equation. WhenV = 1

1+|x|2 , the equation in (1.2) becomes the
Matukuma equation. Since the 1960’s, many interesting and important results
concerning the existence and non-existence of positive singular solutions of (1.1)
and (1.2) have appeared, which include, among others, the papers [NSa], [BM],
[Se1, 2], [GV], [GS], [CGS], [N], [SEF], [A], [BO] and [L]. More references can
be found in a recent paper [LS] by Li and Santanilla. However, to our knowledge,
these existing results on problem (1.1) share a striking common condition that
the domainD is a ball. It is a natural question to ask: “What happens ifD is no
longer a ball?”

The first purpose of this paper to address this question. Needless to say
that many well-known symmetry results can no longer be expected whenD is a
general bounded domain. Nevertheless we shall establish, for the case of bounded
Lipschitz domains and under a natural condition onV , an existence theorem on
(1.1), which matches the existing ones whenD is a ball.

The second purpose is to discuss the parabolic problem (1.3), which in ad-
dition to being the parabolic counter part of (1.1), is also a model of nonlinear
reaction diffusion equation with a point source at the origin. It is interesting to
compare problem (1.3) with theLp problem studied first by Weissler [W] and
later by others. In the paper [W], Weissler considered the problem inLp spaces.

(1.3′)




∆u(x, t) + up(x, t) − ut (x, t) = 0, (x, t) ∈ D × (0, T],
u(x, t) = 0, (x, t) ∈ ∂D × (0, T),
u(x, 0) = u0(x), 0 < T < ∞.

It was shown that ifu0 ∈ Lq(D), q > n(p − 1)/2 and q ≥ p, the the above
problem has a unique solution inC([0, T]; Lq(D)), which is continuous inD ×
(0, T], for some T > 0. As to be specified in Theorem C and Remark 1.4
below, problem (1.3) contains a special case that apparently falls into the category
studied in [W] except thatD in (1.3’) is replaced byD −{0}. However this time
we obtain a solution that is singular as soon ast > 0. Another point worth
mentioning is that this paper seems to be the first in studying nonlinear heat
equations on non-smooth domains by using some of the most up to date linear
results such as [ACS] and [FS].

Let us introduce the conditions on the potential functionV . It turns out that
these conditions are related to the next two functional classes which are widely
used in the study of Schrödinger equations. More properties pertaining to these
classes can be found in Sect. 2 and the references [AS], [Si] and [Zhao1].

Definition 1.1.(see [AS]) A Borel measurable function U belongs to the Kato
class Kn if limr →0[supx

∫
|x−y|≤r

|U (y)|
|x−y|n−2 dy] = 0,

Definition 1.2.([Zhao1]) A Borel measurable function U is called a Green tight
function inRn if U ∈ Kn and limM →∞[supx

∫
|y|≥M

|U (y)|
|x−y|n−2 dy] = 0.

The basic assumptions onV are the following. For problems (1.1) and (1.3)
we require the functionh ≡ V (x)/|x|(n−2)(p−1) is in the Kato classKn and for
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problem (1.2) we needh to be a Green tight function inRn. It is important to
remember that the Kato class properly containsLq

loc class withq > n/2 (see
[AS]).

As will be seen in the remarks after the theorems and in Sect. 2, the reasons
to impose these conditions are threefold.

One: They are more general than those in the current literature.
Two: They have the minimum requirements on the smoothness ofV and

make no assumption on the sign ofV .
Three: In case thatV is radial andD is a ball, our conditions reduce to those

in [LS], which are essentially the optimal ones dealing with (1.1) and (1.2) when
D is a ball.

Now we are ready to present the main elliptic results of the paper.

Theorem A. Suppose the function V(.)/|.|(n−2)(p−1) is in the class Kn, then prob-
lem (1.1) has infinitely many solutions. More specifically, there exists aλ0 > 0
such that for allλ ∈ (0, λ0] and ρ ∈ (0, 1), there exists a solution of (1.1) such
that

λ(1 − ρ)G(x, 0) ≤ u(x) ≤ λ(1 + ρ)G(x, 0),

where G(x, y) is the Green’s function of the Laplacian in D.

By Proposition 2.1 in Sect. 2, Theorem A implies the next result which is
quite well-known (see, e.g. [N] and [GS]).

Corollary A. When D is the unit ball, V= |x|−l , l < 2 and1 < p < (n− l )/(n−
2), (1.1) has positive solutions u such that, for some positive constants C1 and
C2, C1

|x|n−2 ≤ u(x) ≤ C2
|x|n−2 near x = 0.

Remark 1.1.Solutions given in Theorem A are solutions of (1.1). This is clear
from the well known property of the Green’s functionG (see [K] Theorem
1.2.8). Whenx ∈ D approaches∂D in a nontangential manner,G(x, 0) → 0 and
G(x, 0) ∼ 1

|x|n−2 when x is near 0. We also remark that solutions for (1.1) are
not unique in general. The following is an example. By Theorem A, there are
λ > 0 andρ ∈ (0, 1) such that there exists a solution of (1.1) satisfying

λ(1 − ρ)G(x, 0) ≤ u(x) ≤ λ(1 + ρ)G(x, 0).

Now choose a positiveλ1 < λ such thatλ1(1 + ρ) < λ(1 − ρ). By Theorem A
again, there exists a solutionu1 of (1.1) satisfying

λ1(1 − ρ)G(x, 0) ≤ u1(x) ≤ λ1(1 + ρ)G(x, 0).

By our choice ofλ1 and the fact thatG(x, 0) > 0 in the interior ofD , we know
that u1(x) < u(x) in the interior ofD . Therefore they are two different solutions
of (1.1).

Theorem A is not restricted to the special nonlinearityup. In fact if the equa-
tion in (1.1) is replaced by∆u+f (x, u) = 0 and the functionf (x, G(x, 0))/G(x, 0)
is in the Kato class, then the conclusion of Theorem A still holds. This will be
clear from the proof.
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Theorem B. Suppose the function V(.)/|.|(n−2)(p−1) is in the class of Green tight
functions inRn, then problem (1.2) has infinitely many solutions. More specifi-
cally, there exists aλ0 > 0 such that for allλ ∈ (0, λ0] and ρ ∈ (0, 1), there
exists a solution of (1.2) such that

λ(1 − ρ)G0(x, 0) ≤ u(x) ≤ λ(1 + ρ)G0(x, 0),

where G0(x, y) is the Green’s function of the Laplacian inRn.

Remark 1.2.By Proposition 2.1 (b), Theorem B contains Theorem 2.1 in [LS],
which states that (1.2) has a solution provided thatV = V (|x|) is Hölder contin-
uous and satisfies the condition

∫ ∞
0 r n−1−p(n−2)V (r )dr < ∞, which is sharp in

the radial case (see Theorem 2.3 in [LS]). SinceG0(x, 0) = cn
|x|n−2 for a dimen-

sional constantcn, we know that solutions given in Theorem B are solutions of
(1.2).

Remark 1.3.Theorem A and B still hold if one replaces∆ by a uniformly elliptic
operator in divergence form with bounded measurable coefficients. Only minor
modifications are needed in the proof.

Our main result about the parabolic problem (1.3) is

Theorem C. Let D be a bounded Lipschitz domain. Suppose the function
V (.)/|.|(n−2)(p−1) is in the class Kn, then the following conclusions hold.

(a). If u0 and V are non-negative, there exists a M> 0 such that for any
u0 satisfying u0(x) ≤ MG(x, 0), problem (1.3) has a global positive solution in
(D − {0}) × (0,∞) such that for all t> 0

u(x, t) ≤ CG(x, 0) and lim
x→0

u(x, t) = ∞.

(b). Under the same the assumptions in (a), there exists a sequence tk → ∞,
k = 1, 2, ..., such that for x/= 0, u(x, tk) converges pointwise when k→ ∞.

Remark 1.4.Due to Proposition 2.1, whenV = |x|−l , l < 2 and 1 < p <
(n − l )/(n − 2), the result in Theorem C holds. If we replaceD − {0} by D and
take l = 0, we will reach problem (1.3’) which was studied in [W] and others.
By [W], for every u0 ∈ Lq(D), q > n(p − 1)/2 andq ≥ p, solutions of (1.3’)
are continuous as soon ast > 0. In contrast, solutions of (1.3) are singular as
soon ast > 0.

We list a number of notations to be used frequently.G(x, y) will be the
Green’s function of∆ in D and G0(x, y) will be he fundamental solution
of ∆ in Rn. Γ (x, t ; y, s) with t > s denotes the heat kernel with Dirich-
let boundary conditions onD × (0,∞). For any domainΩ and a functionf ,
KΩ(f ) ≡ supx∈Ω

∫
Ω

|f (y)|
|x−y|n−2 dy. The functionh is reserved for

(1.4) h(x) = V (x)/|x|(n−2)(p−1)

We shall prove Theorem A and B in Sect. 3 and Theorem C in Sect. 4. To
prove the theorems, We shall convert the problems into suitable integral equations
and use Schauder fixed point theorem to establish existence. To achieve this, some
delicate and original estimates will be presented.
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2. Preliminaries

In the next proposition we prove that in the caseV is radial andD is a ball, our
conditions onV become those in the paper [LS].

Proposition 2.1.(a). Suppose that V= V (|x|) and satisfies

(2.1)
∫ r0

0
r n−1−p(n−2)V (r )dr < ∞

for some r0 > 0, then the function h= V (.)/|.|(n−2)(p−1) defined on B(0, r0) is in
the Kato class Kn. In particular, if

(2.1′) V = |x|−l , l < 2, 1 < p < (n − l )/(n − 2),

then (2.1) is satisfied.
(b). Suppose that V= V (|x|) and satisfies

(2.2)
∫ ∞

0
r n−1−p(n−2)V (r )dr < ∞,

then the function h= V (.)/|.|(n−2)(p−1) is a Green tight function inRn.

Proof. (a). By Proposition 4.10 in [AS], a radial functionU = U (|x|) in B(0, r0)
belongs to the Kato classKn if and only if

∫ r0

0 r |U (r )|dr < ∞. Taking U = h =
V (r )/r (n−2)(p−1), we immediately reach the conclusion that (2.1) implies that
h is in the Kato class. In the special case that (2.1’) holds,r n−1−p(n−2V (r ) =
rn − 1 − p(n − 2) − l andn − 1 − p(n − 2) − l > −2. Hence (2.1) holds.

(b). By Proposition 1 in [Zhao1], a radial functionU = U (|x|) ∈ Kn, which
satisfies, for aL > 0,

∫ ∞
L r |U (r )|dr < ∞, is a Green tight function inRn. We

can finish the proof by takingU = h = V (r )/r (n−2)(p−1). q.e.d.

We shall use the following three-G theorem in a substantial way. We refer
the reader to the paper [CFZ] for a proof.
Three-G Theorem. For a bounded Lipschitz domain D, there exists a constant
C depending on D such that

(2.3)
G(x, y)G(y, z)

G(x, z)
≤ C [

1
|x − y|n−2

+
1

|y − z|n−2
],

for all x , y and z ∈ D. (2.3) still holds if G is replaced by G0 which is the
fundamental solution of the Laplacian inRn. An immediate consequence of the

three-G theorem is the
Corollary 2.1. Suppose U∈ L1(D) belongs to the Kato class, then

(2.4)
1

G(x, 0)

∫
D

G(x, y)|U (y)|G(y, 0)dy ≤ CKD (U ).
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Remark 2.1.It is easy to see that ifD andG in (2.4) are replaced byRn andG0

respectively, then

(2.5)
1

G0(x, 0)

∫
D

G0(x, y)|U (y)|G0(y, 0)dy ≤ CK∞(U ),

whereK∞(U ) ≡ supx∈Rn

∫
Rn

|U (y)|
|x−y|n−2 dy. By [Zhao1], if U is Green tight inRn,

thenK∞(U ) < ∞.

3. Proof of Theorem A and B: the elliptic case

Proof of Theorem A.We would like to show that there exists aλ0 > 0 such that
for all λ ∈ (0, λ0] and ρ ∈ (0, 1), the following integral equation (3.1) has a
solutionu such that

(i) u is continuous inD − {0};
(ii) λ(1 − ρ)G(x, 0) ≤ u(x) ≤ λ(1 + ρ)G(x, 0), x ∈ D − {0}.

(3.1) u(x) = λG(x, 0) +
∫

D
G(x, y)V (y)up(y)dy.

To achieve this, it is enough to show that there exists a continuous functionw
such thatλ(1 − ρ) ≤ w(x) ≤ λ(1 + ρ), x ∈ D and that

(3.2) w(x) = λ +
1

G(x, 0)

∫
D

G(x, y)V (y)Gp(y, 0)wp(y)dy.

Indeed forw satisfying (3.2) thenu = w(x)G(x, 0) satisfies (3.1). We shall use
the Schauder fixed point theorem. More specifically, let

S = {w ∈ C(D)|λ(1 − ρ) ≤ w(x) ≤ λ(1 + ρ)}
andT be the integral operator onS, which is defined as

Tw(x) = λ +
1

G(x, 0)

∫
D

G(x, y)V (y)Gp(y, 0)wp(y)dy,

we will show thatT has a fixed point inS wheneverλ is sufficiently small. To
this end we need to check that theTS ⊂ S andTS is compact inS.

Let w ∈ S, thenw ≤ λ(1 + ρ) and

|Tw(x) − λ| ≤ [λ(1 + ρ)]p

G(x, 0)

∫
D

G(x, y)|V (y)|Gp(y, 0)dy.

Since
|V (y)|Gp−1(y, 0) ≤ C |V (y)|/|y|(n−2)(p−1) = C |h(y)|

andh belongs to the Kato class by assumption, the three-G theorem (see Corollary
2.1) implies
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1
G(x,0)

∫
D G(x, y)|V (y)|Gp(y, 0)dy

= 1
G(x,0)

∫
D G(x, y)|V (y)|Gp−1(y, 0)G(y, 0)dy ≤ CKD (h).

Therefore|Tw(x)−λ| ≤ CKD (h)λp, which implies, whenλ is sufficiently small,

(3.3) λ(1 − ρ) ≤ Tw(x) ≤ λ(1 + ρ).

Next we intend to show thatw(x) belongs toC(D̄). For simplicity we write

I (x) ≡ Tw(x) − λ =
1

G(x, 0)

∫
D

G(x, y)V (y)Gp(y, 0)wp(y)dy.

We need to consider two cases. First, letx0 be an interior point ofD . For any
small δ > 0, we write

I (x) = 1
G(x,0)

∫
|y|≤δ

G(x, y)V (y)Gp(y, 0)wp(y)dy

+ 1
G(x,0)

∫
|y|≥δ

G(x, y)V (y)Gp(y, 0)wp(y)dy

≡ I1(x) + I2(x).

For anyε > 0, by the three-G theorem again, we have

I1(x) ≤ CKB(0,δ)(h) ≤ ε/4,

whenδ is sufficiently small. The last inequality is due to Corollary 2.1 and the
fact thath = V (x)Gp−1(x, 0) is in the Kato class.

Sincex0 is an interior point, can chooseδ so small thatB(x0, δ) ⊂ D . We
write

I2(x) = 1
G(x,0)

∫
B(x0,δ)∩B(0,δ)c G(x, y)V (y)Gp(y, 0)wp(y)dy

+ 1
G(x,0)

∫
B(x0,δ)c∩B(0,δ)c G(x, y)V (y)Gp(y, 0)wp(y)dy

≡ I21(x) + I22(x).

As in the last paragraph, we can use the three-G theorem to show, forx ∈
B(x0, δ), that

|I21(x)| ≤ ε/4

whenδ is sufficiently small.
Note thetG(x, 0) > 0 in the interior ofD . MoreoverG(x, y) and G(y, 0)

have no singularities whenx ∈ B(x0, 3δ/4) andy ∈ B(x0, δ)c ∩ B(0, δ)c, hence
I22(x) is a continuous function inB(x0, δ/2). Let x1, x2 ⊂ B(x0, δ/2) and choose
δ sufficiently small, then

|I (x1) − I (x2)| ≤ |I1(x1) − I1(x2)| + |I21(x1) − I21(x2)| + |I22(x1) − I22(x2)| < 2ε.

This shows thatI (x) is continuous in the interior ofD .
Secondly, letx0 ∈ ∂D . In this case we write
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I (x) = 1
G(x,0)

∫
D−B(x0,δ) G(x, y)V (y)Gp(y, 0)wp(y)dy

+ 1
G(x,0)

∫
B(x0,δ)∩D G(x, y)V (y)Gp(y, 0)wp(y)dy

= I3(x) + I4(x).

It is clear that forx ∈ D ∩ B(x0, 3δ/4), the functions

J +(x) ≡
∫

D−B(x0,δ)
G(x, y)V +(y)Gp(y, 0)wp(y)dy

and

J−(x) ≡
∫

D−B(x0,δ)
G(x, y)V −(y)Gp(y, 0)wp(y)dy

are non-negative solutions of the Laplacian, so is the functionG(x, 0). By the
well-known theorem 7.9 in [JK], we know thatI3 = J +(x)

G(x,0) − J−(x)
G(x,0) is a continuous

function in D̄ ∩ B(x0, δ/2). Next we have , by the three-G theoremI4(x) ≤
CKB(x0,δ)(h), x ∈ B(x0, δ) ∩ D . Given anyε > 0, we can then chooseδ small so
that

|I (x1) − I (x2)| ≤ |I3(x1) − I3(x2)| + |I4(x1) − I4(x2)| < ε,

for all x1, x2 in B(x0, δ/2). This shows thatI (x) is continuous up to the bound-
ary. Therefore we have proved thatTS ⊂ S when λ is small. From the above
argument, we also know thatTS is compact, since the functions inTw are equi-
continuous for allw ∈ S. Now the Schauder fixed point theorem implies the
existence of a fixed point ofT in S. q.e.d.

Proof of Theorem B.The proof is similar to that of Theorem A. We would like
to show that there exists aλ0 > 0 such that for allλ ∈ (0, λ0] and ρ ∈ (0, 1),
the following integral equation (3.4) has a solutionu such that

(i) u is continuous inRn − {0};
(ii) λ(1 − ρ)G0(x, 0) ≤ u(x) ≤ λ(1 + ρ)G0(x, 0), x ∈ Rn G0(x, y) =

cn/|x − y|n−2.

(3.4) u(x) = λG0(x, 0) +
∫

Rn
G0(x, y)V (y)up(y)dy.

To achieve this, it is enough to show that there exists a continuous functionw
such thatλ(1 − ρ) ≤ w(x) ≤ λ(1 + ρ), x ∈ Rn and that

(3.5) w(x) = λ +
1

G0(x, 0)

∫
Rn

G0(x, y)V (y)Gp
0 (y, 0)wp(y)dy.

We shall use the Schauder fixed point theorem. More specifically, let

Cλ,ρ = {w ∈ C(Rn) | λ(1 − ρ) ≤ w(x) ≤ λ(1 + ρ), }
andT be the integral operator onCλ,ρ, which is defined as

Tw(x) = λ +
1

G0(x, 0)

∫
Rn

G0(x, y)V (y)Gp
0 (y, 0)wp(y)dy,
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we will show thatT has a fixed point inCλ,ρ wheneverρ is sufficiently small.
To this end we need to check that theTCλ,ρ ⊂ Cλ,ρ and TCλ,ρ is compact in
Cλ,ρ.

Let w ∈ Cλ,ρ, then

|Tw(x) − λ| ≤ [λ(1 + ρ)]p

G0(x, 0)

∫
Rn

G0(x, y)|V (y)|Gp
0 (y, 0)dy.

Clearly
|V (y)|Gp−1

0 (y, 0) ≤ C |V (y)|/|y|(n−2)(p−1) = C |h(y)|.
Sinceh is Green tight by assumption, by (2.5), we have

1
G0(x,0)

∫
Rn G0(x, y)|V (y)|Gp

0 (y, 0)dy

= 1
G0(x,0)

∫
Rn G0(x, y)|V (y)|Gp−1

0 (y, 0)G(y, 0)dy ≤ CK∞(h).

Therefore|Tw(x)−λ| ≤ CK∞(h)λp, which implies, whenλ is sufficiently small,

(3.6) λ(1 − ρ) ≤ Tw(x) ≤ λ(1 + ρ).

To establish compactness we need to show that

(3.7) lim
|x|→∞

Tw(x) = λ +
∫

Rn
V (y)Gp

0 (y, 0)wp(y)dy

uniformly for all w ∈ Cλ,ρ. We remark that the righthand side of (3.7) is a finite
number since|VGp−1

0 | ≤ C |h| andh is a Green tight function. By the definition
of Green tight functions, for anyε > 0, there is aM > 0 such that

(3.8) sup
x∈Rn

∫
|y|≥M

h(y)
|x − y|n−2

dy < ε/2.

Now
|Tw(x) − λ − ∫

Rn V (y)Gp
0 (y, 0)wp(y)dy|

≤ 1
G0(x,0)

∫
|y|≥M G0(x, y)|V (y)|Gp

0 (y, 0)wp(y)dy

+| 1
G0(x,0)

∫
|y|≤M G0(x, y)V (y)Gp

0 (y, 0)wp(y)dy

− ∫
|y|≤M V (y)Gp

0 (y, 0)wp(y)dy|
+

∫
|y|≥M V (y)Gp

0 (y, 0)wp(y)dy

≡ I1 + I2 + I3.

Applying the three-G theorem toI1 and using (3.8) we have

I1 ≤ C sup
x∈Rn

∫
|y|≥M

h(y)
|x − y|n−2

dy < Cε/2.

When |y| ≤ M and let|x| be sufficiently large we know thatI2 < ε since

lim
|x|→∞

G0(x, y)/G0(x, 0) = lim
|x|→∞

|x|n−2/|x − y|n−2 = 1
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uniformly for |y| ≤ M . It is also clear thatI3 < ε whenM is large. Therefore

|Tw(x) − λ −
∫

Rn
V (y)Gp

0 (y, 0)wp(y)dy| < (C + 2)ε,

when |x| is sufficiently large. This proves (3.7).
Following the argument in the proof of Theorem A, we find thatTw is equi-

continuous. Now that we knowTCλ,ρ is a convex, compact subset ofCλ,ρ, by
Schauder fixed point theorem, we can find aw ∈ Cλ,ρ such that (3.5) holds.
q.e.d.

4. Proof of Theorem C: the parabolic case

Before proving the theorem we need two preliminary results.

Proposition 4.1.Suppose the function h= V (x)/|x|(n−2)(p−1) is in the Kato class
Kn. If a bounded functionw = w(x, t) satisfies the next integral relation (4.1),
then the function u= u(x, t) ≡ w(x, t)G(x, 0) is a distributional solution of the
equation (1.3) in the region(D − {0}) × (0, T).

(4.1)
w(x, t) = 1

G(x,0)

∫
D Γ (x, t ; y, 0)u0(y)dy + m

G(x,0)

∫ t
0 Γ (x, t ; 0, s)ds

+ 1
G(x,0)

∫ t
0

∫
D Γ (x, t ; y, s)V (y)[w(y, s)G(y, 0)]pdyds.

Here m> 0.

Proof. Let φ ∈ C∞(D × (0, T)) be such that the closure of suppφ is a subset of
(D − {0}) × (0, T). Usingφ as a test function, it is easy to see that

(4.1′)
u = w(x, t)G(x, 0) =

∫
D Γ (x, t ; y, 0)u0(y)dy + m

∫ t
0 Γ (x, t ; 0, s)ds

+
∫ t

0

∫
D Γ (x, t ; y, s)V (y)updyds.

is a distributional solution of∆u − ut + Vup = 0 in (D − {0}) × (0, T). HereΓ
is the Dirichlet heat kernel inD × (0,∞). q.e.d.

Remark 4.1.We want to underline the role played bym
∫ t

0 Γ (x, t ; 0, s)ds on the
right hand side of (4.1’). It is easy to check that this function is a solution of the
heat equation in (D − {0}) × (0,∞). More importantly, as we shall see in the
proof of Theorem C below, it is this function that provides the singularity foru.

Proposition 4.2.Suppose the function h= V (x)/|x|(n−2)(p−1) is in the Kato class
Kn. Letδ > 0 andw = w(x, t) be a bounded function in D× [0,∞), then we have

(a). the function

T(x, t) ≡
∫ t

0

∫
D−B(0,δ)

Γ (x, t ; y, s)V (y)[w(y, s)G(y, 0)]pdyds

is continuous inD̄ × [0,∞).
(b). As functions of x, T(., t) are equi-continuous for all t≥ 1.
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Proof. (a). SinceD is bounded,|V (x)| ≤ C |h(x)|, thereforeV is also in
the Kato classKn. For simplicity let h1 be the function such thath1(y, s) =
V (y)[w(y, s)G(y, 0)]p if |y| > δ andh1(y, s) = 0 if |y| ≤ δ. Then clearly

|h1(y, s)| ≤ C(δ)|V (y)|,

which is in the Kato classKn. Now we can writeT(x, t) as

T(x, t) =
∫ t

0

∫
D

Γ (x, t ; y, s)h1(y, s)dyds

For anyη > 0, we have

T(x, t) =
∫ t

0

∫
D∩B(x,η) Γ (x, t ; y, s)h1(y, s)dyds

+
∫ t

0

∫
D−B(x,η) Γ (x, t ; y, s)h1(y, s)dyds≡ T1(x, t) + T2(x, t).

Using the equality
∫ ∞

0 Γ (x, t ; y, 0)dt = G(x, y), we have

|T1(x, t)| ≤ C(δ)||w||L∞

∫
|x−y|≤η

G(x, y)|V (y)|dy.

Therefore, for anyε > 0, whenη is small, we have, by the fact thatV is in Kato
class,

|T1(x, t)| < ε.

It is clear thatT2 is a continuous function since the kernel of the integral is a
bounded function. Given anyPi = (xi , ti ) ∈ D × [0,∞), i = 1, 2,

|T(x1, t1) − T(x2, t2)| ≤ |T1(x1, t1) − T1(x2, t2)| + |T2(x1, t1) − T2(x2, t2)| < Cε,

when |P1 − P2| is sufficiently small. This proves the continuity ofT(., .) and
finishes the proof of part (a).

(b). From the proof of (a), it is clear that we only need to prove thatT2(., t)
is equi-continuous for allt > 1. For x1, x2 ∈ D and t > 1,

|T2(x1, t) − T2(x2, t)|

≤ | ∫ t
0

∫
D−B(x1,η) Γ (x1, t ; y, s)h1dyds− ∫ t

0

∫
D−B(x2,η) Γ (x1, t ; y, s)h1dyds|

+
∫ t

0

∫
D−B(x2,η) |Γ (x2, t ; y, s) − Γ (x1, t ; y, s)||h1(y, s)|dyds

≤ ∫ t
0

∫
(B(x1,η)−B(x2,η))∪(B(x1,η)−B(x2,η)) Γ (x1, t ; y, s)|h1(y, s)|dyds

+
∫ t

0

∫
D−B(x2,η) |Γ (x2, t ; y, s) − Γ (x1, t ; y, s)||h1(y, s)|dyds

≤ C(δ)
∫

(B(x1,η)−B(x2,η))∪(B(x1,η)−B(x2,η)) G(x1, y)|V (y)|dyds

+C(δ)
∫ t

0

∫
D−B(x2,η) |Γ (x2, t ; y, s) − Γ (x1, t ; y, s)||V (y)|dyds

≡ T3 + T4.
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For any ε > 0, sinceV is in the Kato class, we know thatT3 < ε when
|x1 − x2| is sufficiently small. Chooseη such thatB(x2, η) ⊂ D . Next we notice
that for y ∈ D − B(x2, η), Γ (., .; y, s) is a solution of the heat equation in
B(x2, η/2) × (0,∞). By the standard parabolic theory (see [A]), we can find
positive constantsC(η) andα < 1 such that, forx1 ∈ B(x2, η/4),

|Γ (x2, t ; y, s) − Γ (x1, t ; y, s)| ≤ C(η)|x2 − x1|α sup
(z,τ )∈Qη/2

Γ (z, τ ; y, s),

whereQη/2 ≡ B(x2, η/2) × [t − η2/4, t + η2/4]. By Harnack inequality and the
Gaussian bound in [A]

sup
(z,τ )∈Qη/2

Γ (z, τ ; y, s) ≤ CΓ (x2, t + 4η2; y, s) ≤ C

(t + 4η2 − s)n/2
e

−c
|x2−y|2

t+4η2−s .

Since|x2 − y| ≥ η, we have

sup
(z,τ )∈Qη/2

Γ (z, τ ; y, s) ≤ C

(t + 4η2 − s)n/2
e

−c η2

t+4η2−s .

Now

T4 ≤ C(η)|x2 − x1|α
∫ t

0

∫
D−B(x2,η)

C
(t+4η2−s)n/2 e

−c η2

t+4η2−s |V (y)|dyds

≤ C(η)
∫

D−B(x2,η) |V (y)|dy |x2 − x1|α.

This proves that, when|x1 − x2| is small

|T2(x1, t) − T2(x2, t)| < Cε,

and hence the modulus of continuity ofT2 and T(., t) is independent oft > 1.
q.e.d.

Now we are ready to give the

Proof of Theorem C, part (a).
We divide the proof into several steps.

Step 1.Let Λ be the integral operator

(4.2)

Λw(x, t) = 1
G(x,0)

∫
D Γ (x, t ; y, 0)u0(y)dy + m

G(x,0)

∫ t
0 Γ (x, t ; 0, s)ds

+ 1
G(x,0)

∫ t
0

∫
D Γ (x, t ; y, s)V (y)[w(y, s)G(y, 0)]pdyds

≡ f1 + f2 + Λ3w,

which is defined on

(4.3) Sα = {w ∈ C(D × (0,∞))|0 ≤ w(x, t) ≤ α}.

By Proposition 4.1, we only need to prove thatΛ has a fixed pointw in Sα

provided that 0≤ u0(x) ≤ MG(x, 0) and thatα, M andm are sufficiently small.
This is so becauseu = w(x, t)G(x, 0) will be a solution of (1.3). By standard
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continuation argument, it is sufficient to show that under the same condition the
operatorΛ has a fixed point in

(4.4) Sα,T = {w ∈ C(D × (0, T))|0 ≤ w(x, t) ≤ α},

for all T > 0. At the same time all parameters such asα, M and m must be
chosen independently ofT

To this end we need to check, whenα, M andm are sufficiently small, that
ΛSα,T ⊂ Sα,T andΛSα,T is compact inSα,T for all T > 0.

Step 2.We want to show, under the assumptions in step 1, that

(4.5) 0 ≤ Λw ≤ α

whenw ∈ Sα,T .
For anyw ∈ Sα,T , we know thatw(x, t) ≤ α. By the inequality

(4.6)
∫ t

0
Γ (x, t ; y, s)ds ≤ G(x, y)

and the assumptionu0(x) ≤ MG(x, 0), we have

(4.7)
Λw(x, t) ≤ M

G(x,0)

∫
D Γ (x, t ; y, 0)G(y, 0)dy + m

G(x,0)G(x, 0)

+ αp

G(x,0)

∫
D G(x, y)V (y)Gp(y, 0)dy.

Since |V (y)|Gp−1(y, 0) ≤ Ch(y) and h is in the Kato classKn, we have, as in
Sect. 3,

(4.8)
∫

D
G(x, y)V (y)Gp(y, 0)dy ≤ CKD (h)G(x, 0),

which implies, via (4.7),

(4.9) Λw(x, t) ≤ M
G(x, 0)

∫
D

Γ (x, t ; y, 0)G(y, 0)dy + m + CαpKD (h).

To control the first term on the righthand side of (4.9) we observe that
∫

D Γ (x, t ; y, 0)G(y, 0)dy

=
∫

D Γ (x, t ; y, 0)
∫ ∞

0 Γ (y, s; 0, 0)dsdy=
∫ ∞

0

∫
D Γ (x, t ; y, 0)Γ (y, s; 0, 0)dyds

=
∫ ∞

0 Γ (x, t + s; 0, 0)ds ≤ ∫ ∞
0 Γ (x, s; 0, 0)ds

= G(x, 0),

where we have used the well-known equality
∫ ∞

0 Γ (y, s; 0, 0)ds = G(x, y) and
the reproducing property of the heat kernel. From (4.9) we then get

Λw(x, t) ≤ M + m + CαpKD (h).

Sincep > 1, we can takeα, m andM sufficiently small so that
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Λw(x, t) ≤ α,

for all t > 0. This proves (4.5).

Step 3.We need to show thatΛSα,T is compact inSα,T for anyT > 0. According
to (4.2),Λw = f1 + f2 +Λ2w. Sincef1 andf2 are two fixed and bounded functions,
it is enough to prove that

Λ3Sα,T is compact in Sα,T

for any T > 0. In this step, we shall prove that

(4.10) Λ3w =
1

G(x, 0)

∫ t

0

∫
D

Γ (x, t ; y, s)V (y)[w(y, s)G(y, 0)]pdyds

is equi-continuous for allw ∈ Sα,T . We consider two cases separately.
Case 1. Letx0 be an interior point, we need to show thatΛ3w is continuous

in a neighborhood of (x0, t0), t0 > 0. For a smallδ > 0 we write

(4.11)

Λ3w = 1
G(x,0)

∫ t
0

∫
|y|≤δ

Γ (x, t ; y, s)V (y)[w(y, s)G(y, 0)]pdyds

+ 1
G(x,0)

∫ t
0

∫
|y|≥δ

Γ (x, t ; y, s)V (y)[w(y, s)G(y, 0)]pdyds

≡ I1(x, t) + I2(x, t).

Using (4.6) and the fact thatw ∈ Sα,T , we know that

I1(x, t) ≤ αp

G(x, 0)

∫
|y|≤δ

G(x, y)V (y)Gp(y, 0)dy.

By the three-G theorem and following the argument in the proof of Theorem A,
we have

(4.12) I1(x, t) ≤ CαpKB(0,δ)(h),

where h = V (x)/|x|(n−2)(p−1) again. SinceG(x, 0) > 0 in the interior ofD ,
I2(x, t) is, by Proposition 4.2, a continuous function in a small neighborhood of
(x0, t0). Let (xi , ti ) be two points inB(x0, δ) × [x0 − δ2, x0 + δ2], then, for any
ε > 0, we can chooseδ so small that

|Λ3w(x1, t1) − Λ3w(x2, t2)| ≤ |I1(x1, t1) − I1(x2, t2)| + |I2(x1, t1) − I2(x2, t2)| < ε.

This shows thatΛ3w is continuous in the interior ofD × [0,∞). It is important
to note that the modulus of continuity ofΛ3w is independent of the choice ofw
in Sα,T .

Case 2.x0 ∈ ∂D . We need to prove thatΛ3w is continuous at (x0, t0).
For a smallδ > 0 we write

(4.13)
Λ3w = 1

G(x,0)

∫ t
0

∫
D∩B(x0,2δ) Γ (x, t ; y, s)V (y)[w(y, s)G(y, 0)]pdyds

+ 1
G(x,0)

∫ t
0

∫
D−B(x0,2δ) Γ (x, t ; y, s)V (y)[w(y, s)G(y, 0)]pdyds

≡ I3(x, t) + I4(x, t).
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For x ∈ B(x0, δ) we have, as in case one,
(4.14)

|I3(x, t)| ≤ αp

G(x, 0)

∫
D∩B(x0,2δ)

G(x, y)V (y)Gp(y, 0)dy ≤ CαpKB(x0,2δ)(h).

Next we turn our attention toI4(x, t). Whenδ is sufficiently small, it is clear
that the function

G(x, 0)I4(x, t) =
∫ t

0

∫
D−B(x0,2δ)

Γ (x, t ; y, s)V (y)[w(y, s)G(y, 0)]pdyds

is a non-negative solution of the heat equation in the cylinderD ∩ B(x0, 3δ/2)×
(0,∞), so is the functionG(x, 0) itself. It is also not hard to see that

G(x, 0)I4(x, 0) = 0.

Therefore the function

(4.15) f (x, t) =

{
G(x, 0)I4(x, t), t > 0
0, t ≤ 0

is a non-negative solution of the heat equation inD ∩ B(x0, 3δ/2) × (−∞,∞).
Therefore bothG(x, 0) and G(x, 0) + f (x, t) are positive solutions of the heat
equation inD ∩B(x0, 3δ/2)× (−∞,∞). By Theorem1 and Corollary 1 in [ACS]
or by [FS], we know thatG(x,0)+f (x,t)

G(x,0) is a continuous function in̄D ∩ B(x0, δ) ×
[−T, T], T > 0. In particular,I4(x, t) is continuous inD̄ ∩ B(x0, δ) × [0, T),
T > 0.

Let (xi , ti ), i = 1, 2, be two points inD × B(x0, δ) × [t0 − δ2, t0 + δ2], then,
for any ε > 0, we can chooseδ so small that

|Λ3 w(x1, t1) − Λ3w(x2, t2)| ≤ |I3(x1, t1) − I3(x2, t2)| + |I4(x1, t1) − I4(x2, t2)|
≤ 2CαpKB(x0,2δ)(h) + |I4(x1, t1) − I4(x2, t2)|
< ε.

This shows thatΛ3w is continuous inD̄ × [0,∞). Again it is important to note
that the modulus of continuity ofΛ3w is independent of the choice ofw in Sα,T .

Step 4.Next we show thatΛ is a continuous operator. Letw1, w2 ∈ Sα,T , then

||Λw1 − Λw2||L∞

≤ C ||wp
1 − wp

2||L∞ 1
G(x,0)

∫ t
0

∫
D Γ (x, t ; y, s)V (y)[G(y, 0)]pdyds

≤ ||wp
1 − wp

2||L∞ 1
G(x,0)

∫
D G(x, y)V (y)[G(y, 0)]pdy

≤ C ||wp
1 − wp

2||L∞KD (h).

Here we used (4.8) to reach the last inequality. HenceΛ is continuous.



792 Qi S. Zhang, Z. Zhao

By this time it is clear from the Ascoli-Arzela theorem thatΛ3Sα,T is a
compact subset ofSα,T . By the observation at the beginning of step 3,

ΛSα,T = f1 + f2 + Λ3Sα,T .

SinceΛSα,T ⊂ Sα,T by step 2, we know thatΛSα,T is a compact subset ofSα,T ,
T > 0. By the Schauder fixed point theorem, for anyT > 0, Λ has a fixed point
in Sα,T . Therefore Proposition 4.1 implies thatu = G(x, 0)w(x, t) is a solution
of the equation in (1.3) and 0≤ u(x, t) ≤ αG(x, 0). Finally, sinceu0 andV are
non-negative, we have

(4.16) u(x, t) ≥ m
∫ t

0
Γ (x, t ; 0, s)ds = mG(x, 0) − m

∫ ∞

t
Γ (x, s, 0, 0)ds

Since
∫ ∞

t Γ (x, s, 0, 0)ds is finite whent > 0, we know thatu is singular atx = 0
as soon ast > 0. Part (a) of the theorem is proven.

Proof of Theorem C, part (b).Let u be a solution of (1.3) obtained in the proof
of part (a), thenu = w(x, t)G(x, 0) satisfies

u(x, t) =
∫

D Γ (x, t ; y, 0)u0(y)dy + m
∫ t

0 Γ (x, t ; 0, s)ds

+
∫ t

0

∫
D Γ (x, t ; y, s)V (y)[w(y, s)G(y, 0)]pdyds

where 0≤ w(x, t) ≤ α. Therefore
(4.17)

|x|n−2u(x, t) = |x|n−2
∫

D Γ (x, t ; y, 0)u0(y)dy + m|x|n−2
∫ t

0 Γ (x, t ; 0, s)ds

+|x|n−2
∫ t

0

∫
D Γ (x, t ; y, s)V (y)[w(y, s)G(y, 0)]pdyds.

By the Gaussian bounds in [A],

lim
t→∞ |x|n−2

∫
D

Γ (x, t ; y, 0)u0(y)dy = 0.

It is also well known that

lim
t→∞ |x|n−2

∫ t

0
Γ (x, t ; 0, s)ds = |x|n−2 lim

t→∞

∫ t

0
Γ (x, t ; 0, s)ds = |x|n−2G(x, 0),

whenx /= 0. Therefore we only need to show that the third term

J (x, t) ≡ |x|n−2
∫ t

0

∫
D

Γ (x, t ; y, s)V (y)[w(y, s)G(y, 0)]pdyds

on the righthand side of (4.17) has a convergent subsequence whent → ∞. We
claim that for anyt > 1 the functionsJ (., t) are equi-continuous. Suppose, for
the moment, that we take the claim for granted, then the set{J (., t) |t > 1} is
compact under the maximum norm. Therefore there exists a sequencetk → ∞ so
that the functionsuk ≡ |x|n−2u(x, tk) converge uniformly to a function|x|n−2u∞
whenk → ∞.
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Now it only remains to prove the above claim. This is done by following the
lines of case 1 in step 3 of part (a). Letx0 ∈ D and for a smallδ > 0 we write

J (x, t) = |x|n−2
∫ t

0

∫
|y|≤δ

Γ (x, t ; y, s)V (y)[w(y, s)G(y, 0)]pdyds

+|x|n−2
∫ t

0

∫
|y|≥δ

Γ (x, t ; y, s)V (y)[w(y, s)G(y, 0)]pdyds

≡ J1(x, t) + J2(x, t).

Using (4.6) again and the fact that 0≤ w ≤ α, we know that

J1(x, t) ≤ αp

G(x, 0)

∫
|y|≤δ

G(x, y)V (y)Gp(y, 0)dy.

SinceG(x, 0) ≤ C/|x|n−2, by the three-G theorem and following the argument
in the proof of Theorem A, we have

J1(x, t) ≤ CαpKB(0,δ)(h),

where h = V (x)/|x|(n−2)(p−1) again. By Proposition 4.2 (b),J2(., t) is equi-
continuous fort > 1. Let xi , i = 1, 2, be two points inB(x0, δ) ∩ D , then, for
any ε > 0, we can chooseδ small that when|x1 − x2| is small

|J (x1, t) − J (x2, t)| ≤ |J1(x1, t) − J1(x2, t)| + |J2(x1, t) − J2(x2, t)| < ε.

This shows thatJ (., t) is continuous inD , t > 1. It is important to note that the
modulus of continuity ofJ is independent of the choice oft when t > 1. This
proves the claim and the theorem.
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