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1. Introduction

We shall study the existence of singular positive solutions for the following
semilinear elliptic and parabolic problems.

Au(x) +V (x) uP(x) =0, x € D — {0},
u(x) > 0, x € D — {0},
u(x) ~ \x\%’ near x =0, for any sufficiently small ¢ > 0,
u(x) =0, x € dD.
Here and throughout the papBrc R", n > 3, is a bounded Lipschitz domain
containing 0,A is the Laplacian ang > 1.
(1.2)
{ Au(x) +V (x) uP(x) =0, x € R" — {0},

(1.1)

u(x) > 0, x € R" — {0},
u(x) ~ \x\%’ near x =0, co, for any sufficiently small ¢ > 0.

In (1.1) and (1.2), the notion(x) ~ M% near 0 oroo means that for some

C1,C, >0, bﬁ% <u(x) < vﬁ% whenx is near 0 orso.

Au(x,t) +V(X) uP(x,t) —w(x,t)=0, xeD —{0},0<t<T,
limy_ou(x,t) = oo, O<t<T,
u(x,t) =0, (x,t) € 9D x (0, T),
u(x, 0) = ug(x).

Solutions of these problems are understood as distributional solutidhs-in
{0} for (1.1) and (1.2), inD — {0} x (0, T) for (1.3). Under our conditions to
be specified later, these solutions are continuous exceptdl.

(1.3)
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Equations in (1.1) and (1.2) contain several well-known types which have
been studied extensively. For instance, whén= 1, the equation in (1.1) is
the Lane-Emden equation. Whé&h = Wlxz the equation in (1.2) becomes the
Matukuma equation. Since the 1960’s, many interesting and important results
concerning the existence and non-existence of positive singular solutions of (1.1)
and (1.2) have appeared, which include, among others, the papers [NSa], [BM],
[Sel, 2], [GV], [GS], [CGS], [N], [SEF], [A], [BO] and [L]. More references can
be found in a recent paper [LS] by Li and Santanilla. However, to our knowledge,
these existing results on problem (1.1) share a striking common condition that
the domainD is a ball. It is a natural question to ask: “What happer3 ifs no
longer a ball?”

The first purpose of this paper to address this question. Needless to say
that many well-known symmetry results can no longer be expected ®hiera
general bounded domain. Nevertheless we shall establish, for the case of bounded
Lipschitz domains and under a natural condition\bnan existence theorem on
(1.1), which matches the existing ones wheris a ball.

The second purpose is to discuss the parabolic problem (1.3), which in ad-
dition to being the parabolic counter part of (1.1), is also a model of nonlinear
reaction diffusion equation with a point source at the origin. It is interesting to
compare problem (1.3) with theP problem studied first by Weissler [W] and
later by others. In the paper [W], Weissler considered the probleb? gpaces.

Au(x,t) +uP(x,t) — w(x,t) =0, (x,t) e D x (0, T],
.3) u(x,t) =0, (x,t) € 9D x (0, T),
ux,0) =u(x), 0<T < o0

It was shown that ifuy € L9(D), g > n(p — 1)/2 andq > p, the the above
problem has a unique solution @([0, T]; L%(D)), which is continuous irD x

(0, T], for someT > 0. As to be specified in Theorem C and Remark 1.4
below, problem (1.3) contains a special case that apparently falls into the category
studied in [W] except thaD in (1.3’) is replaced byp — {0}. However this time

we obtain a solution that is singular as soontas 0. Another point worth
mentioning is that this paper seems to be the first in studying nonlinear heat
equations on non-smooth domains by using some of the most up to date linear
results such as [ACS] and [FS].

Let us introduce the conditions on the potential functionlt turns out that
these conditions are related to the next two functional classes which are widely
used in the study of Sctdinger equations. More properties pertaining to these
classes can be found in Sect. 2 and the references [AS], [Si] and [Zhao1l].

Definition 1.1(see [AS]) A Borel measurable function U belongs to the Kato

class K, if limo[sup, /| U0 gy =0,

x—y|<r x—y["=2
Definition 1.2.([Zhaol]) A Borel measurable function U is called a Green tight

function iNR™ if U € Ky and imy oo [SUR, [, 5 %dy] =0.

The basic assumptions ah are the following. For problems (1.1) and (1.3)
we require the functiom = V (x)/|x|"~2®—D is in the Kato clasK, and for
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problem (1.2) we neetl to be a Green tight function iR". It is important to
remember that the Kato class properly contalﬁ,g class withq > n/2 (see
[AS]).

As will be seen in the remarks after the theorems and in Sect. 2, the reasons
to impose these conditions are threefold.

One: They are more general than those in the current literature.

Two: They have the minimum requirements on the smoothnes¢ ahd
make no assumption on the sign\éf

Three: In case thaf is radial andD is a ball, our conditions reduce to those
in [LS], which are essentially the optimal ones dealing with (1.1) and (1.2) when
D is a ball.

Now we are ready to present the main elliptic results of the paper.

Theorem A. Suppose the function()/|.|"~2®-1 is in the class K, then prob-
lem (1.1) has infinitely many solutions. More specifically, there exists & 0
such that for allx € (0, \g] and p € (0, 1), there exists a solution of (1.1) such
that

A1 = p)G(x,0) < u(x) < A(1 +p)G(x,0),

where Qx,y) is the Green’s function of the Laplacian in D.

By Proposition 2.1 in Sect.2, Theorem A implies the next result which is
quite well-known (see, e.g. [N] and [GS]).

Corollary A. When D is the unit ball, \= |x|~',1 < 2and1 < p < (n—1)/(n—
2), (1.1) has positive solutions u such that, for some positive constantsx@

C C. —
Co, lxl—l,z <ux) < M—Ez near x= 0.

Remark 1.1Solutions given in Theorem A are solutions of (1.1). This is clear
from the well known property of the Green’'s functidd (see [K] Theorem
1.2.8). Wherx € D approache#D in a nontangential manneg(x, 0) — 0 and
G(x,0) ~ V% whenx is near 0. We also remark that solutions for (1.1) are
not unigue in general. The following is an example. By Theorem A, there are

A > 0 andp € (0,1) such that there exists a solution of (1.1) satisfying
A1 = p)G(x,0) < ux) < AL +p)G(x,0).

Now choose a positiva; < A such that\1(1 +p) < A(1 — p). By Theorem A
again, there exists a solutian of (1.1) satisfying

(1= p)G(x,0) < ur(x) < M(L+p)G(x,0).

By our choice of\; and the fact thaG(x, 0) > 0 in the interior ofD, we know
thatu;(x) < u(x) in the interior ofD. Therefore they are two different solutions
of (1.1).

Theorem A is not restricted to the special nonlineaniy In fact if the equa-
tion in (1.1) is replaced bylu+f (x, u) = 0 and the functiofi (x, G(x, 0))/G(x, 0)
is in the Kato class, then the conclusion of Theorem A still holds. This will be
clear from the proof.
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Theorem B. Suppose the function(j/|.|"~2®-1 is in the class of Green tight
functions inR", then problem (1.2) has infinitely many solutions. More specifi-
cally, there exists a\, > 0 such that for allA € (0, \o] and p € (0, 1), there
exists a solution of (1.2) such that

A1 = p)Go(x, 0) < u(x) < A1 +p)Go(x, 0),
where G(x,y) is the Green'’s function of the Laplacian R

Remark 1.2By Proposition 2.1 (b), Theorem B contains Theorem 2.1 in [LS],
which states that (1.2) has a solution provided Wat V (|x|) is Holder contin-
uous and satisfies the conditigj” r"~*=P"=2V (r)dr < oo, which is sharp in
the radial case (see Theorem 2.3 in [LS]). Siggx,0) = lec—_z for a dimen-
sional constant,, we know that solutions given in Theorem B are solutions of
(1.2).

Remark 1.3Theorem A and B still hold if one replace$ by a uniformly elliptic
operator in divergence form with bounded measurable coefficients. Only minor
modifications are needed in the proof.

Our main result about the parabolic problem (1.3) is

Theorem C. Let D be a bounded Lipschitz domain. Suppose the function
V()/].|"=2C-1 s in the class K, then the following conclusions hold.

(). If uy and V are non-negative, there exists a M 0 such that for any
Up satisfying y(x) < MG(x,0), problem (1.3) has a global positive solution in
(D — {0}) x (0, c0) such that for all t> 0

u(x,t) < CG(x,0) and Ilim u(x,t) = cc.
x—0

(b). Under the same the assumptions in (a), there exists a sequeneext,
k =1,2, ..., such that for x# 0, u(x, ty) converges pointwise when- co.

Remark 1.4.Due to Proposition 2.1, whel = \x|—', | <2and 1< p <
(n—=1)/(n —2), the result in Theorem C holds. If we repldde- {0} by D and
takel = 0, we will reach problem (1.3") which was studied in [W] and others.
By [W], for every up € L9(D), g > n(p — 1)/2 andq > p, solutions of (1.3’)
are continuous as soon as> 0. In contrast, solutions of (1.3) are singular as
soon ag > 0.

We list a number of notations to be used frequen@®(x,y) will be the
Green’s function ofA in D and Gy(x,y) will be he fundamental solution
of A in R". I'(x,t;y,s) with t > s denotes the heat kernel with Dirich-
let boundary conditions o x (0, c0). For any domainf? and a functionf,

Ko(f) = supcq fQ %dy. The functionh is reserved for

(1.4) h(x) = V (x)/|x|("—2e-1)

We shall prove Theorem A and B in Sect.3 and Theorem C in Sect. 4. To
prove the theorems, We shall convert the problems into suitable integral equations
and use Schauder fixed point theorem to establish existence. To achieve this, some
delicate and original estimates will be presented.
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2. Preliminaries

In the next proposition we prove that in the caéeés radial andD is a ball, our
conditions onV become those in the paper [LS].

Proposition 2.1.(a). Suppose that \# V (|x]) and satisfies
o
(2.1) / rN=1=P=2yv/ (r)dr < oo
0

for some g > 0, then the function = V (.)/|.|"=2®-1) defined on B0, ry) is in
the Kato class K. In particular, if

(2.1) V=x<21<p<(-=1)/(n-2),

then (2.1) is satisfied.
(b). Suppose that \# V (|x|) and satisfies

(2.2) / r"=1=P=2v/ (r)dr < oo,
0

then the function k= V (\)/|.|"=2®-1) is a Green tight function iR".

Proof. (a). By Proposition 4.10 in [AS], a radial functidth = U (|x]) in B(0, ro)
belongs to the Kato clads, if and only if fo”’ r{U(r)|dr < co. TakingU =h =
V(r)/r("=2¢-1 we immediately reach the conclusion that (2.1) implies that
h is in the Kato class. In the special case that (2.1') hotds!—P"=2v(r) =
rn—1—-pn—-2)—1andn—-1—-p(nh—-2)—1 > —2. Hence (2.1) holds.

(b). By Proposition 1 in [Zhao1l], a radial functidh = U (|x|) € K,, which
satisfies, for & > 0, fL°°r|U (r)|dr < oo, is a Green tight function iR". We
can finish the proof by taking =h =V (r)/r"=2¢-1_q.e.d.

We shall use the following three-G theorem in a substantial way. We refer
the reader to the paper [CFZ] for a proof.
Three-G Theorem. For a bounded Lipschitz domain D, there exists a constant
C depending on D such that

G(x,y)G(y, 2) 1 1
G(x,2) = ¢l x —y[n=2 * ly — ZI”—Z]’

(2.3)

for all x,y and z € D. (2.3) still holds if G is replaced by &which is the
fundamental solution of the Laplacian R'. An immediate consequence of the

three-G theorem is the
Corollary 2.1. Suppose U< LY(D) belongs to the Kato class, then

1

(2.4) S0

/D G(x.y)U ()|G(y, O)dy < CKp (U).
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Remark 2.1t is easy to see that D andG in (2.4) are replaced bR" andGg
respectively, then

1

(25) Go(x, 0)

/D Go(x. y)|U (¥)|Goly, O)dy < CKoo(U),

whereK,(U) = sug,cgn fxn ‘X‘E}f‘yn)l_zdy. By [Zhaol], if U is Green tight inR",
thenK(U) < co.

3. Proof of Theorem A and B: the elliptic case

Proof of Theorem AWe would like to show that there existsh\g > 0 such that
for all A\ € (0, )] and p € (0,1), the following integral equation (3.1) has a
solutionu such that

(i) u is continuous irD — {0};

(i) M2 - p)G(x,0) < u(x) < A1 +p)G(x,0), x € D — {0}.

(3.1) u(x) :)\G(X,O)+/DG(x,y)V(y)up(y)dy.

To achieve this, it is enough to show that there exists a continuous funetion
such that\(1 — p) < w(X) < A\(1+p), X € D and that

(32) w(x)= A+ ﬁ /D G(x, )V (¥)G(y, 0)uP(y)dy.

Indeed forw satisfying (3.2) theru = w(x)G(x, 0) satisfies (3.1). We shall use
the Schauder fixed point theorem. More specifically, let

S={we COIML—p) < wx) < A1 +p)}

andT be the integral operator 0B, which is defined as

Tu() =0+ 5o | SOV (G 0y

we will show thatT has a fixed point irS whenever) is sufficiently small. To
this end we need to check that th& C S and TS is compact inS.
Letw € S, thenw < A(1 +p) and

A +p)P

Twl) -\ < 566

A G(x,y)|V (y)|GP(y, 0)dy.
Since
V(¥)IGP~ Xy, 0) < CIV(y)l/ly|"2®P=D = C|h(y)|

andh belongs to the Kato class by assumption, the three-G theorem (see Corollary
2.1) implies



Singular solutions 783

s o GO YIVHIGP(y, 0)dy
= 5000 Jo COCYIV (V)|GPHy, 0)G(y, 0)dy < CKp (h).
Therefore|Tw(x) — A| < CKp (h)AP, which implies, when is sufficiently small,
(3.3) A1 = p) < Tw(x) < M1 +p).

Next we intend to show that(x) belongs toC(I5). For simplicity we write

|(x) = Tw() — A= ﬁ | /D G(x, Y)V ()G (y. O)uP(y)dy.

We need to consider two cases. First,Xgtbe an interior point oD. For any
small§ > 0, we write

1) = aikgy Jy1<s GO YV ()GP(y, OuP(y)dly

*+505) Jiy1>6 GG YIV ()GP(y, 0)wP (y)dy
= |1(X) + |2(X).

For anye > 0, by the three-G theorem again, we have
11(X) < CKa(o,5)(h) < €/4,

when is sufficiently small. The last inequality is due to Corollary 2.1 and the
fact thath = V (x)GP~(x, 0) is in the Kato class.

SinceXg is an interior point, can chooseso small thatB(xp, §) € D. We
write

IZ(X) = ﬁ fB(X0,§)ﬁB(0,5)C G(X, Y)V (y)Gp(ya O)wp(y)dy
+550) JB00.snB0.0 G VIV (Y)GP(Y, OywP(y)dy
= l2a(X) + 122(X).

As in the last paragraph, we can use the three-G theorem to show, ¢or
B(Xo, 8), that
[121(X)| < €/4
when is sufficiently small.
Note thetG(x,0) > 0 in the interior ofD. MoreoverG(x,y) and G(y, 0)
have no singularities whex € B(xg, 30/4) andy € B(xg,d)¢ N B(0, §)¢, hence

[22(X) is @ continuous function iB(xo, §/2). Letx;, Xo C B(Xo, d/2) and choose
o0 sufficiently small, then

[1(x1) — 1 (%) < [11(X2) — 1a(X%2)| + [122(X2) — l21(%2)| + [122(X1) — l22(X2)| < 2e.

This shows that (x) is continuous in the interior ob.
Secondly, letxg € 9D. In this case we write
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1) = 5555 Jo_ppe.sy G0 VIV (V)GP(Y, 0yuP(y)dy
+500) Jooe.snp GOGY)V (V)GP(Y, 0)uwP(y)dy
= I3(x) + I4(x).

It is clear that forx € D N B(xg, 36/4), the functions
P0GV )G, 0Py
D —B(x0,6)

and
1) = / G(x, Y)V ~ (y)GP(y, O)uP(y)dy
D —B(Xo,9)

are non-negative solutions of the Laplacian, so is the fundB¢x, 0). By the
well-known theorem 7.9 in [JK], we know thé = ngx(xg) — &% Is a continuous
function in D N B(xo,d/2). Next we have , by the three-G theordnix) <
CKa,5)(N), X € B(X,d) N D. Given anye > 0, we can then chooskesmall so

that

1 (x2) = 1 (x2)| < [13(x0) — 130%)[ + [la(X1) — la(X2)| <,
for all x3, X2 in B(Xo, d/2). This shows that(x) is continuous up to the bound-
ary. Therefore we have proved th&s C S when X is small. From the above
argument, we also know thaiS is compact, since the functions Thw are equi-
continuous for allw € S. Now the Schauder fixed point theorem implies the
existence of a fixed point of in S. g.e.d.

Proof of Theorem BThe proof is similar to that of Theorem A. We would like
to show that there exists & > 0 such that for all\ € (0, A\o] and p € (0, 1),
the following integral equation (3.4) has a solutiorsuch that

(i) u is continuous iIrR" — {0};

(i) ML — p)Go(x,0) < u(x) < A1 +p)Go(x,0), x € R"  Go(x,y) =
Cn/[x —y|" 2.

(3.4) () = 2Go(x,0) + | Golx, IV BIUP)cy.
RN
To achieve this, it is enough to show that there exists a continuous funetion

such that\(1 — p) < w(x) < A(1+p), x € R" and that

1
GO(Xa 0)

We shall use the Schauder fixed point theorem. More specifically, let

(3.5) w(x) = A+ /R Go(x, y)V (Y)Gg (v, 0)wP(y)dy.

Crp={w e CR" | AM1-p) <wW(X) < A1+p),}

andT be the integral operator 0By ,, which is defined as

Tu) =A% g | Golky)V 0)GE. 0y
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we will show thatT has a fixed point irCy , wheneverp is sufficiently small.
To this end we need to check that th€, , c C, , andTC, , is compact in
Cip-

Letw € Cyp, then

A +p)P

Twt) =A< 75600 Ja

Go(x, )V ¥)|GE(y, 0)dy.
Clearly
IV (y)IGE Xy, 0) < C[V(y)|/ly|"~2P=D = C|h(y)|.

Sinceh is Green tight by assumption, by (2.5), we have
560 Jrn Gol: VIV (Y)IGE(y, 0)dy
= &6 Jrn GO VIV (V)[GF (Y, 0)G(y, 0)dy < CKo(h).
Thereforg Tw(x) — A| < CK,.(h)AP, which implies, when\ is sufficiently small,
(36) ML= p) < Tw(x) < AL +p).

To establish compactness we need to show that
37) Jim Twe) =3+ [ V)GHY. 0Py
X|—00 RN

uniformly for all w € C, ,. We remark that the righthand side of (3.7) is a finite
number since}VGg’l| < C|h| andh is a Green tight function. By the definition
of Green tight functions, for any > 0, there is avi > 0 such that

()
3.8 su ——=——dy <¢/2.
38) o) ey e

XERN

Now
[TwX) — A — [zn V(Y)GE(Y, O)uP(y)dy|
< 56 Jiy=m Golx IV (1[G (y, 0)wP(y)dy

ot Jiyj<m Gol: YIV (Y)GE(y, OywP(y)dy

= Jiyiem Y GGy, 0)uP(y)dy|
*+ [lyism Y G5y, OywP(y)dy

=1+ 1 +1s.

Applying the three-G theorem tq and using (3.8) we have

I, <C sup h(y)

dy < Ce/2.
xeRN J|y|>M X —y[n=2 Y /

When|y| <M and let|x| be sufficiently large we know thd} < e since

lim Go(x,y)/Go(x,0) = lim |x|"2/|x —y[""?=1
[X| =00 [X]| =00
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uniformly for |y| < M. It is also clear that; < e whenM is large. Therefore
Tw00 — A= [ VOGP < (€ +2),

when|x| is sufficiently large. This proves (3.7).

Following the argument in the proof of Theorem A, we find that is equi-
continuous. Now that we knowWC, , is a convex, compact subset Gf, ,, by
Schauder fixed point theorem, we can findvac C, , such that (3.5) holds.
g.e.d.

4. Proof of Theorem C: the parabolic case

Before proving the theorem we need two preliminary results.

Proposition 4.1.Suppose the functionHV (x)/|x|"~2®—1 is in the Kato class
Kn. If @ bounded functionv = w(x,t) satisfies the next integral relation (4.1),
then the function = u(x,t) = w(x,t)G(x, 0) is a distributional solution of the
equation (1.3) in the regio(D — {0}) x (0, T).
wy  EOT s Jo L0, Ooy)dy + iy Jo T, £:0,5)ds

*si0 Jo Jo T 1Y, 9V W)[w(y, )G(y, 0)Pdyds

Here m> 0.

Proof. Let ¢ € C>(D x (0, T)) be such that the closure of supgs a subset of
(D — {0}) x (0, T). Using ¢ as a test function, it is easy to see that

u= w(x,1)G(x,0) = [; I'(x,t;y, 0)uo(y)dy +m [ I'(x,t; 0, s)ds

+f(; fD F(X7t;yvs)v(y)updyds

is a distributional solution ofAu — u; +VuP =0 in (D — {0}) x (0, T). HereI"
is the Dirichlet heat kernel i x (0, c0). g.e.d.

4.1)

Remark 4.1We want to underline the role played hyfg I'(x,t;0,s)ds on the
right hand side of (4.1’). It is easy to check that this function is a solution of the
heat equation in@¥ — {0}) x (0, o). More importantly, as we shall see in the
proof of Theorem C below, it is this function that provides the singularityufor

Proposition 4.2.Suppose the function#V (x)/|x|"~2®~1 is in the Kato class
Kn. Letd > Oandw = w(Xx,t) be a bounded function in B [0, o), then we have
(). the function

t
T(x,1) = / / F(x. 6y, SV (y)[w(y, S)G(y, 0)Pdyds
o JD-B(0,5)

is continuous iD x [0, cc).
(b). As functions of x, [T, t) are equi-continuous for all t 1.
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Proof. (a). SinceD is bounded,|V(x)| < C|h(x)|, thereforeV is also in
the Kato classK,. For simplicity leth; be the function such that,(y,s) =
V (Y)[w(y,s)G(y, 0)P if ly| > § andhy(y,s) = 0 if |y| < 4. Then clearly

Iha(y,s)| < CO)IVY),

which is in the Kato clas&,. Now we can writeT (x,t) as

T(x,t):/Ot/DF(x,t;y,s)hl(y,s)dyds
For anyn > 0, we have
T(x,t) =/, Joney TGy, 9y, s)dyds
+ s Jo s TGy, Sy, s)dyds= Ta(x, t) + Ta(x, t).

Using the equality[,~ I'(x, t;y,0)dt = G(x, y), we have
T, < COllulls [ GV
[x—y[<n

Therefore, for any > 0, wheny is small, we have, by the fact th¥t is in Kato
class,
ITa(x, )] < e

It is clear thatT, is a continuous function since the kernel of the integral is a
bounded function. Given anf; = (X;,tj) € D x [0,00), 1 =1, 2,

IT (X1, t1) — T(X, t2)| < |Ta(Xe, tr) — Ta(Xe, t2)] + | T2(X1, t1) — Ta(Xe, t2)| < Ce,

when |P; — P| is sufficiently small. This proves the continuity a%.,.) and
finishes the proof of part (a).

(b). From the proof of (a), it is clear that we only need to prove Wt t)
is equi-continuous for all > 1. Forx;, X, € D andt > 1,

|T2(X17 t) - TZ(X27 t)|

< |f0 fD B(x1,7) F(Xl7trY7 S)hldyds fo fD B(X2,7) F(Xlatuy»s)hldydﬁ
+f0 fD B(x2,m) |F(X2’t1y S) F(XlatvyaS)th(yaS)'dde

< Jo fisgxl,7z)—B(XZ,n))u(B(xl,n)—B(xZ,n)) I'(x, 1y, )|y, s)|dyds
*+Jo Jo—gpem 102 1Y, 8) = I'(x1, 1y, s)[[hu(y, s)|dyds

< C () Ji@pam)—B oo m)(BOam)—B gy GO VIV ()] dyds
+C(0) Jo Jo_apem 102 tY,S) = I(x,t;y, S)||V (y)|dyds
= T3+ Ty
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For anye > 0, sinceV is in the Kato class, we know thdl; < ¢ when
|x1 — X2| is sufficiently small. Choose such thatB(xz,7) C D. Next we notice
that fory € D — B(x,n), I'(,,.;y,S) is a solution of the heat equation in
B(x2,1/2) x (0,). By the standard parabolic theory (see [A]), we can find
positive constant€ () anda < 1 such that, fox; € B(xz,n/4),

II'(%, t;y,s) — I'(x1, 1y, 8)| < C(xe — x| sup  I'(z,73y,8),
(z,7)€Qy /2

whereQ, > = B(xz,1/2) x [t — n?/4,t +1?/4]. By Harnack inequality and the
Gaussian bound in [A]

eyl
2
t+4n< —s .

sup I'(z,7;y,s) < CI'(Xa,t + 412y,

<— e
@,7)€Q, 2 (t +4n? —s)n/2

Since|x; —y| > n, we have

2
_c—n
t+an2—s

sup I'(z,7;y,

)< —~ e
@.7)EQ, /2 (t +4n2 — s)n/2

Now

T < COXe—l® J fo_agey Geargme® "IV ()dyds
< C) Jo_spom VWY X2 — Xa|*.
This proves that, whep; — X;| is small
| T2(xa,t) — To(X2, 1)| < Ce,

and hence the modulus of continuity ® and T(.,t) is independent of > 1.
g.e.d.

Now we are ready to give the

Proof of Theorem C, part (a).
We divide the proof into several steps.

Step 1.Let A be the integral operator

Awx,t) = g Jo Ty, Oo(y)dy + gy Jo '(x.1;0.5)ds

(42) +oiy Jo Jo Ty, SV (Y)[w(y, 9)G(y, 0)Pdyds
=f, +f, + Azw,

which is defined on

4.3) Sy ={w € C(D x (0,0))|0 < w(x,t) < a}.

By Proposition 4.1, we only need to prove thatas a fixed point in S,
provided that 0< up(x) < MG(x, 0) and thain, M andm are sufficiently small.
This is so becausa = w(x,t)G(x,0) will be a solution of (1.3). By standard
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continuation argument, it is sufficient to show that under the same condition the
operator/A has a fixed point in

(4.4) S.7={we C(D x (0, )0 < w(x,t) <a},

for all T > 0. At the same time all parameters suchacggM and m must be
chosen independently df

To this end we need to check, whenM andm are sufficiently small, that
AS, T C S,,7 and AS, 1 is compact inS, r for all T > 0.

Step 2.We want to show, under the assumptions in step 1, that
(4.5) 0<Aw<a

whenw € S, 1.
For anyw € S, 1, we know thatw(x,t) < . By the inequality

(4.6) /0t I'(x,t;y,s)ds < G(x,y)
and the assumptiony(x) < MG(x, 0), we have
A1) < ity o D6y, 006y, 0)dy + 55 G(x,0)
+505 Jo GG YV (Y)GP(y, 0)dy.

Since |V (y)|GP~1(y,0) < Ch(y) andh is in the Kato class,, we have, as in
Sect. 3,

4.7)

(48) | St nVeIG(. 0y < CKo (G 0),
which implies, via (4.7),
(4.9) Aw(x,t) < % /D I'(x,t;y,0)G(y, 0)dy + m+ CaPKp(h).

To control the first term on the righthand side of (4.9) we observe that
Jo I'(x,t;y,0)G(y, 0)dy
= Jo (X, t;y,0) [~ I'(y,s;0,0)dsdy= [ [, I'(x,t;y,0)I'(y,s; 0, 0)dyds

= o T(x,t +s;0,0)ds < [;° I'(x,s; 0,0)ds
=G(x,0),

where we have used the well-known equalﬁ§’/C I'(y,s;0,0)ds = G(x,y) and
the reproducing property of the heat kernel. From (4.9) we then get

Aw(x,t) <M +m+ CaPKp(h).

Sincep > 1, we can takey, m andM sufficiently small so that
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Aw(x,t) < a,
for all t > 0. This proves (4.5).

Step 3We need to show thatS, 1 is compact inS, r for any T > 0. According
to (4.2), Aw = f; +fo+ Arw. Sincef; andf, are two fixed and bounded functions,
it is enough to prove that

A3S,,t iscompactin S, 1

for any T > 0. In this step, we shall prove that

4.10 Azw = ! t I'(x,t; \Y G(y,0)]Pdyd
@10 dw=gpw | [ Mty 9vee. e ordys

is equi-continuous for allv € S, v. We consider two cases separately.
Case 1. Lelky be an interior point, we need to show th&w is continuous
in a neighborhood ofx, tp), top > 0. For a smalll > 0 we write

Azw = ﬁfé Jy1<s T 1y, )V (Y)[w(y, s)G(y, 0)]Pdyds
(4.11) +eis; I Jiyiz6 T Y, S)V (Y)[w(y, S)G(y, 0)]Pdyds

= |1(X, t) + |2(X7 t)
Using (4.6) and the fact that € S, 1, we know that

aP
l1(X,1) < —— G(x,y)V (y)GP(y, 0)dy.
1(X; 1) G(,0) /iy s (X, y)V (Y)GP(y, 0)dy
By the three-G theorem and following the argument in the proof of Theorem A,

we have
(4.12) l1(x,t) < CaPKgo,s(h),

whereh = V(x)/|x|"=2®-Y again. SinceG(x,0) > 0 in the interior ofD,
I2(x,t) is, by Proposition 4.2, a continuous function in a small neighborhood of
(%o, to). Let (x,t;) be two points inB(xo, ) x [Xo — 02, %o + 62], then, for any

e > 0, we can choosé so small that

[ Azw(xa, 1) — Asw(Xe, t2)] < |11(X1, t1) — [1(X2, t2)| + |12(X1, t1) — [2(X2, t2)| < e.

This shows thatlzw is continuous in the interior dD x [0, o). It is important
to note that the modulus of continuity df;w is independent of the choice af
in SJ’T.

Case 2%y € 9D. We need to prove thatzw is continuous atX, to).

For a small§ > 0 we write
(4.13)

Aaw = 5o o Jonsezn LY. SV ()w(y, S)G(y, )P dyds
5 Jo Jo—spezs T 6.V @) [w(y, S)G(y. 0)Pdyds

= I3(x,t) + 14(X, t).
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For x € B(Xo, ) we have, as in case one,
(4.14)

la(x, )] < G(X, y)V (Y)GP(y, 0)dy < CaPKgx,26)(N)-

G(X,0) JonB(x,2s)

Next we turn our attention tly(x,t). When¢ is sufficiently small, it is clear
that the function

t
G(x, 0)la(x, 1) = /0 /D ooy Ty VOl G0, OF s
—b(Xo,

is a non-negative solution of the heat equation in the cyliflerB (xo, 35/2) x
(0, x0), so is the functiorG(x, 0) itself. It is also not hard to see that

G(x, 0)l4(x,0) = 0.

Therefore the function

(4.15) f(x,t) = {g’(xvo)lztg,ot), t>0

is a non-negative solution of the heat equatioim B(xg, 36/2) x (—o0, o0).
Therefore bothG(x,0) andG(x, 0) +f(x,t) are positive solutions of the heat
equation inD NB(Xo, 36/2) x (—o0, 00). By Theorem1 and Corollary 1 in [ACS]

or by [FS], we know thaf¥% is a continuous function i N B(x, 5) x

[-T,T], T > 0. In particular,l4(x,t) is continuous inD N B(Xo,0) x [0, T),
T>0.

Let (x,t), i = 1,2, be two points inD x B(Xo,d) x [to — 62, to + 62], then,
for any e > 0, we can choosé so small that

[z w(xq, t1) — Asw(Xo, t2)| < [la(Xq, tr) — 13(X2, t2)| + [la(X1, t1) — la(X2, t2)]
< 2CaPKpxy,26)(N) + [la(Xe, t1) — la(X2, t2)]
< €.

This shows thatlzw is continuous irD x [0, 00). Again it is important to note
that the modulus of continuity olzw is independent of the choice afin S, 1.

Step 4.Next we show thatl is a continuous operator. Let;, w, € S, 7, then
[|Awy — Awy||Le
< Cllwf — wdllix 5o Jo Jo 1O Y, SV (VIG(y, 0)Pdyds
< [Jwf — whlli sy Jo GOGYIV (IG(Y, 0)]Pdy
< Cllwy — whl|L=Ko(h).

Here we used (4.8) to reach the last inequality. Heride continuous.
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By this time it is clear from the Ascoli-Arzela theorem thatS, ; is a
compact subset d, 1. By the observation at the beginning of step 3,

AS, 7 =f +f,+ A3S, 1.

SinceAS, t C S, by step 2, we know thalS, 7 is a compact subset &, T,
T > 0. By the Schauder fixed point theorem, for ahy> 0, A has a fixed point
in S,.v. Therefore Proposition 4.1 implies that= G(x, O)w(x, t) is a solution
of the equation in (1.3) and € u(x,t) < aG(x, 0). Finally, sinceup andV are
non-negative, we have

t o)
(4.16) u(x,t) > m/ I'(x,t;0,s)ds = mG(x, 0) — m/ I'(x,s,0,0)ds
0 t

SinceftOo I'(x,s,0,0)dsis finite whent > 0, we know thau is singular ak = 0
as soon as > 0. Part (a) of the theorem is proven.

Proof of Theorem C, part (blet u be a solution of (1.3) obtained in the proof
of part (a), theru = w(x,t)G(x, 0) satisfies

ux,t)= [y I'(x,t;y, 0)uo(y)dy + m [g I'(x,t;0,s)ds

+ I3 5 T, Y, S)V (¥)[w(y, S)G(y, 0)]Pdyds

where 0< w(x,t) < «. Therefore
(4.17)
X["2u(x,t) = x| [ T(x,t;y, O)uo(y)dy + m[x|"~2 [3 I'(,1; 0, s)ds

+x|"2 [0 [ T(x, 6y, SV (V)[w(y, $)G(y, 0)Pdyds
By the Gaussian bounds in [A],

lim |x|”*2/ I(x,t;y, 0)uo(y)dy = 0.

t—oo D
It is also well known that

t t
lim |x|”‘2/ I'(x,t;0,8)ds = [x|"2 lim / I'(x,t;0,8)ds = [x|"~2G(x, 0),

t—oo 0 t—oo 0

whenx # 0. Therefore we only need to show that the third term

t
Ix.1) = X" /O /D L, 5y, SV () [wly, S)G(y, 0)Pdyds

on the righthand side of (4.17) has a convergent subsequencetwher. We
claim that for anyt > 1 the functions](.,t) are equi-continuous. Suppose, for
the moment, that we take the claim for granted, then the{3eft) |t > 1} is
compact under the maximum norm. Therefore there exists a seqtiencec so
that the functionsi, = |x|"~2u(x, ty) converge uniformly to a functiofx|"~2us,
whenk — oo.
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Now it only remains to prove the above claim. This is done by following the
lines of case 1 in step 3 of part (a). bet€ D and for a smalb > 0 we write

3061 = XIM2 5 Sy <5 TOG Y, SV ()Y, S)G(Y, 0)Pdyds
HXI"2 [y fiyjms 106G Y, SV ()[w(y, )Gy, 0)]Pdyds
= Ji(X, 1) + Jo(X, 1).

Using (4.6) again and the fact that-Ow < «, we know that

Ji(x,1) < G(x,y)V (Y)GP(y,0)dy.

aP
G(x,0) Jy<s
SinceG(x, 0) < C/|x|"2, by the three-G theorem and following the argument
in the proof of Theorem A, we have

Jl(x7 t) < CapKB(O,é)(h)7

where h = V(x)/|x|"=2®-1) again. By Proposition 4.2 (b)J(.,t) is equi-
continuous fort > 1. Letx, i = 1,2, be two points inB(xg,d) N D, then, for
anye > 0, we can choosé small that wher|x; — x| is small

|3 (X1, 1) — I, )] < |J1(X1, 1) — Ji(Xe, 1)] + | T2 (X, t) — Jo(Xo, 1) < €.

This shows thad(.,t) is continuous irD, t > 1. It is important to note that the
modulus of continuity of) is independent of the choice bfwhent > 1. This
proves the claim and the theorem.
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