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Introduction

In [McQ1], [McQ2], [LMcS], [GLQ] and [LMcQ] the singular integral theory
associated with the bounded holomorphic functional calculi of Dirac operators
on one- and higher- dimensional Lipschitz graphs was established. In [Q1-3] and
[GQW] the theory was further extended to periodic cases. This paper is devoted
to an analogous theory in the quaternionic spaceQ. The theory is closely related
to some recent development of operator theory and harmonic analysis. Even
restricted to the unit sphere, the study of the paper is new: It provides a large
class of singular integral operators, each is analogous to the Hilbert transform
in the context, that constitutes a bounded holomorphic functional calculus of
the spherical Dirac operator. The theory proves identifications between the three
forms: Fourier multipliers, singular integrals and Cauchy-Dunford’s integrals for
functional calculi on both the unit sphere and star-shaped Lipschitz surfaces. It
also provides explicit formulas to obtain the singular integral kernels from the
Fourier multipliers and vice versa.

The study of the paper restricted to the sphere does not fall into the scope of
the well studiedCaldeŕon-Zygmund spherical convolution operator theory,for a
survey of that we refer the reader to [Sa] and [CW]. The operators studied there
are multiplier operators on spherical Laplace-Beltrami eigenspace expansions,
or alternatively, Fourier-Laplace expansions, ofL2-functions on the sphere. The
present theory, however, is about Fourier multipliers on spherical Dirac operator
eigenspace expansions of theL2-functions .

The nature of the theory is different from what is developed in [QR] either,
in which Möbius transforms are used to transfer, using change of variables, the
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singular integral theory established in [LMcQ] to certain surfaces which may not
be Lipschitz.

There is some recent development on function theory of quaternionic vari-
ables which would be worthwhile mentioning. In [ABLSS1] regular functions of
several quaternionic variables and the Cauchy-Fueter complex of differential op-
erators are studied. In [ABLSS2] regular functions of one quaternionic variable
which satisfy a large class of differential equations are studied. As a consequence
they proved that the functions under consideration cannot have compact singu-
larities. Some more advanced results along this line are given in [ALPS]. In a
more recent paper [CLSS] the authors extend the work by K. Imaeda, that gives
rise to Maxwell’s equations, to define a notion of regularity for functions of
one and several biquaternionic variables. The function theory developed in the
present paper has no overlap with the above mentioned function theories. It is
enlightened by the latest development of harmonic analysis dealing with Fourier
theory in conjunction with functional calculi of Dirac operators on surfaces in
the quaternionic space.

In [Q4] and [Q5] we establish the analogous theory inRn. Although Rn is
no longer an algebra and more complicated to deal with, the methods we use are
suggested by the present paper.

The applications of the theory include the kind of boundary value problems
discussed in [LMcQ] and [Mc3], but on closed Lipschitz surfaces. Partition of
unity has been used in order to make use of singular integral theory developed
on infinite graphs to boundary value problems on closed curves and surfaces
(see e.g. [V], [K1] and [K2]). The study of the paper forms part of our efforts
in providing effective operator algebras right on closed curves and surfaces so
to allow the inverse operator problems to be solved directly. A detailed study
concerning the application aspect will appear elsewhere.

The paper is arranged into four sections. Section 0 contains preliminaries. In
Sect. 1 we construct a class of regular functions that will act as singular integral
kernels in the later sections. Whilst the theory for the periodic cases is built up
from periodisation based on Poisson summation formulas ([Q1], [GQW], [Q3]),
there is no analogous method available for the unit sphere. As a substitution,
Fueter’s result provides a method to construct regular functions of a quaternionic
variable from holomorphic functions of a complex variable (see, e.g. [Su], [De]).
This enables us to transfer the theory established in [Q1], [Q2] and [GQW] for
a complex variable to the present case. Theorems 1, 2 and 3 can be understood
as concerning Fourier series, in particular Fourier and inverse Fourier transforms
between the kernel functions and the bounded holomorphic multipliers; they can
also be understood as regular continuations of power and principal series (see
Remark 6). Not only for their connections to singular (Theorem 1) and fractional
(Theorem 3) integrals on the surfaces, but also the results themselves would be
of interest in the Laurent series theory in quaternions (also see Proposition 4).
Theorems 1 and 3 are the main technical results to the theory developed in the
following sections.
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In Sect. 2 we establish a singular integral theory (Theorem 4) using the kernel
functions obtained in Theorem 1 of Sect. 1. The theory includes two aspects: the
identification between the singular integral expressions and the Fourier multiplier
expressions; and theL2-boundedness of the operators. If we restrict ourselves to
the sphere, then the boundedness can be easily deduced by making use of the
Plancherel theorem on the sphere. In our new context, i.e. on starlike Lipschitz
surfaces, however, there does not exist Plancherel’s theorem. The nature of the
boundedness problem turns to be of the same kind as that of Coifman-McIntosh-
Meyer’s (CMcM’s) theorem on theL2-boundedness of the Cauchy integral op-
erator on Lipschitz graphs (cf. [CMcM], [Mc1], [LMcS], [GLQ], [CM], [GQW],
[Ta]). The proof presented here is an adaptation of a proof of [GQW] based on
Littlewood-Paley theory. The identification result in particular implies Parseval’s
identity on the sphere linking the kernel functions to the bounded holomorphic
multipliers (Corollary 3)

In Sect. 3 we provide a third version of the operators: Cauchy-Dunford’s
integrals of functional calculus. We show that the spherical Dirac operator can
be expressed as a sum of two type-ω operators. The Dirac operator therefore
enjoys all the basic properties possessed by type-ω operators studied in [Mc2]
and [CDMcY].

NotationsC ,Cν , etc. will be used for constants which may vary from one
occurrence to the next. Subscripts, such asν in Cν , etc. are used to stress depen-
dence of constants. In most cases, if a paragraph contains a piece of argument or
statement, and if the notation± appears in both the condition and the conclusion
parts, then the argument or statement is meant to be valid for two symmetric
cases: one is for all the± being replaced by +; and the other is for all the±
being replaced by−. Similarly, when we introduce a new notation, if± appears
in both its name part and its definition parts, then we are simultaneously defining
two notations: one is for all the± being +; and the other is for all the± being
−. According to the convention, we will need to write∓ as−(±) in the sequel.

The author wishes to express his sincere gratitude to John Ryan. He intro-
duced me the spherical Dirac operator eigenspace decomposition of homogeneous
spherical harmonics during his visit to the University of New England and Mac-
quarie University in 1994, and has been continuously providing me with relevant
information including references. He also made valuable comments to an early
draft of Sect. 1 of the paper. The author is sincerely grateful to Alan McIntosh
for his various supports to this interest of the author. Thanks are due to F. Som-
men for his kindness in sending me his reprints, some of which are immediately
useful and some widen the author’s scope, being especially instructive to further
development of the topic. Thanks are due to Meg Vivers and Norman Gaywood
for their kind help in drawing the beautiful diagram for the paper.

0 Preliminaries

Let Q and Qc denote the algebras of Hamilton’s quaternions overR, the real
number field, andC, the complex number field, respectively, with the usual
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canonical basis,i0, i1, i2, i3 (i0 being the identity ofQ which will henceforth be
identified with the identity 1 ofR), where

i1i2 = −i2i1 = i3, i2i3 = −i3i2 = i1, i3i1 = −i1i3 = i2,

and
i21 = i22 = i23 = −1.

A general quaternion is of the formq =
∑3

l =0 ql i l = q0 + q
¯
, ql ∈ R or ql ∈ C,

depending onq ∈ Q or q ∈ Qc, respectively, whereq0 and q
¯

= q1i1 + q2i2 + q3i3
are called the real and the imaginary part ofq, respectively. Denote byO the real
vector space{q1i1 + q2i2 + q3i3 : ql ∈ R, l = 1,2,3}. The quaternionic conjugate
of q, denoted by ¯q, is defined to be ¯q = q0 − q

¯
. We haveqq′ = q′q̄. For any

non-zero elementq ∈ Q there exists an inverseq−1 ∈ Q : q−1 = q̄
|q|2 such that

q−1q = qq−1 = 1. The natural inner product betweenq and q′ in Qc, denoted
by < q,q′ >, is the number

∑
l ql q̄′

l , and the norm ofq associated with this
inner product is|q| = (

∑
l |ql |2)

1
2 . We have|qq′| = |q||q′|. The angle between

q and q′ in Q, denoted by arg(q,q′), is defined to be arccos<q,q′>
|q||q′| , where the

inverse function arccos takes values in [0, π). By the unit sphere of quaternions
we mean the set{q ∈ Q : |q| = 1}, denoted byS. We will use the terminology
the real axisin both the complex and the quaternionic spaces with the obvious
meanings.

Denote, by

D =
1
2

3∑
l =0

∂

∂ql
i l ,

the Dirac operator. Functions to be studied in this paper will beQc-valued, but
defined in sets ofQ. We will assume, whenever they are involved in the context,
the existence of the partial derivatives defined in the same region in which the
function itself is defined. The operatorD can be applied to such a function
f = f0i0 + f1i1 + f1i2 + f3i3 from the left- and the right-hand side in the following
manners:

Df (q) =
1
2

∑
l

∑
k

∂fk
∂ql

i l ik , fD(x) =
1
2

∑
l

∑
k

∂fk
∂ql

ik i l ,

respectively.
If Df = 0 or fD = 0, thenf is said to be aleft-regular or a right-regular

function, respectively. A function which is both left- and right- regular is called
a regular function. For left- and right-regular functions the following versions of
Cauchy-Fueter’s theorem and Cauchy-Fueter’s formula hold ([Su] or [DSS]):

Assume thatΩ is a bounded open domain with a Lipschitz boundary, andf , g
are respectively left- and right-regular functions defined in an open neighborhood
of the closureΩ ∪ ∂Ω. Then∫

∂Ω

g(q)n(q)f (q)dσ(q) = 0,
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wheredσ is the surface area measure andn(q) the outward pointing unit normal
to ∂Ω at q ∈ ∂Ω.

Under the above assumption, ifq ∈ Ω, then

f (q) =
1

2π2

∫
∂Ω

E(q′ − q)n(q′)f (q′)dσ(q′),

whereE(q) = q̄
|q|4 is the Cauchy-Fueter kernel.

The relationE(qq′) = E(q′)E(q) will be frequently used.
We will also use the operators

D̄ =
1
2

(
∂

∂q0
−

3∑
l =1

∂

∂ql
i l ),

D
¯

=
1
2

3∑
l =1

∂

∂ql
i l and ∆ = 4DD̄ =

3∑
l =0

∂2

∂q2
l

.

We note that for any regular functionf we have

D̄f =
∂

∂q0
f = −D

¯
f . (1)

1 Laurent series of Kernel functions

Denote byI the Kelvin inversion defined by

I (f )(q) = E(q)f (q−1).

It is obvious thatI 2=identity. We recall thatI maps a left-regular function in-
side (outside) the unit sphere to a left-regular function outside (inside) the unit
sphere; and a right-regular function inside (outside) the unit sphere to a right-
regular function outside (inside) the unit sphere ([DSS]). This is a special case
of Bojarski’s result, for a proof of which we refer the reader to [PQ].

Define, fork ∈ Z+, the set of the positive integers,P(−k)(q) = (−1)k−1

(k−1)! D̄k−1

·E(q); and P(k−1) = I (P(−k)). Since E is regular, owing to the relations indi-
cated in (1),P(−k) has alternative expressions:P(−k)(q) = (−1)k−1

(k−1)! ( ∂
∂q0

)k−1E(q) =
1

(k−1)! D¯
k−1E(q).

Lemma 1. For k ∈ Z+, P(−k) is regular away from the origin and homoge-
neous of degree−2 − k; P(k−1) is a polynomial of ql , l = 0,1,2,3, regular and
homogeneous of degree k− 1. Moreover,

P(k−1)(q) = q̄|q|2kP(−k)(q̄). (2)

Proof. The regularity ofP(−k) follows from the regularity of the Cauchy ker-
nel E and the commutativity of ∂

∂q0
with the operatorD . The homogeneity of

P(−k) is from taking derivatives to the homogeneous functionE. The regularity
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and the homogeneity ofP(k−1) come from the corresponding properties ofP(−k)

and the property of the Kelvin inversion. SincēDk−1E is homogeneous of de-
gree−2− k, it follows that (D̄k−1E)( q̄

|q|2 ) = |q|4+2k (k−1)!
(−1)k−1 P(−k)(q̄). Multiplying

E(q) (−1)k−1

(k−1)! to the both sides, we obtain (2). The fact thatP(k−1) is a polynomial
is a consequence of the last equality in Remark 2.

We will use a Fueter’s result ([Su], [De]) which says that iff 0 is holomorphic,
defined in an open setO in the upper half plane ofC, f 0(z) = u(x, y)+iv(x, y), z =
x + iy, whereu andv are real-valued functions, then∆f0 is a regular function
in the open setO = {q = q0 + q

¯
∈ Q : (q0, |q

¯
|) ∈ O}, where

f0(q) = u(q0, |q
¯
|) + ev(q0, |q

¯
|),

and e =
q
¯|q
¯
| . We will call f0 the induced functionfrom f 0, denoted byf0 = ~f 0,

and O the induced set from O, denoted byO = ~O. In the sequel we will use
the notationA = {q = q0 + q

¯
∈ Q : (q0, |q

¯
|) ∈ A} for any setA in the complex

plane, denoted byA = ~A, regardless whether or not it is open or in the upper
half plane. We will frequently use the relations

D̄∆f0 = ∆

−−−→
(
df 0

dz
) (3)

and

∆f =
2
|q
¯
|
∂u
∂y

(q0, |q
¯
|) + 2e(

1
|q
¯
|
∂v

∂y
(q0, |q

¯
|) − 1

|q
¯
|2v(q0, |q

¯
|)). (4)

We refer the reader to [De] for proofs of (3), (4) and the two-sided regularity of
∆f0.

Fueter’s method is naturally related to the conceptintrinsic functionsof a
complex variable and that of a quaternionic variable. Rinehart ([Ri]) introduced
and motivated the study of the class of intrinsic functions on a linear associative
algebra, sayU , with identity, over a fieldF . Let G be the group of all auto-
morphisms and antiautomorphisms ofU that leavesF element-wise invariant.

Definition 1. A subsetD of U is called an intrinsic set ofU if ΩD = D for
everyΩ in G.

Definition 2. The single-valued function F, with domainD and range inU ,
is said to be an intrinsic function ifD is an intrinsic set ofU and if Z ∈ D

implies F(ΩZ) = ΩF (Z) for all Ω in G.

It is well known that in the complex field the only nonidentical automor-
phism or antiautomorphism is the complex conjugate mapping. Accordingly, the
intrinsic sets are those which are symmetric with respect to the real axis and
the intrinsic functions onC are thosef 0 satisfying ¯f 0(z) = f 0(z̄) ([Ri],[Tu]). If
f 0 = u + iv, where u, v are real-valued, then the above equality is equivalent
to u(x,−y) = u(x, y), v(x,−y) = −v(x, y). In particular,v(x,0) = 0, i.e. f 0 is
real-valued if restricted on the real line in its domain.
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It is also well known that inQ the groupG of the automorphisms and
antiautomorphisms consists of all the linear transformations which leave 1 fixed
and effect orthogonal transformations on the vector spaceO . For each unit
elemente in O the linear span of 1 ande over R is called thecomplex plane
in Q induced by e, denoted byCe. The intrinsic sets inQ are those which are
symmetric with respect to the real axis in every induced complex planeCe in Q.
It is proved that iff 0 is an intrinsic function defined in an intrinsic setO of C,
then the induced functionf0 is an intrinsic function defined in the intrinsic set
O; conversely, all intrinsic functions onQ are formed in this way ([Ri]).

In this casef0 is identical with theprimary functionof f 0, and f 0 the stem
function of f0, the terminology related to the Hermite interpolation extending
functions defined inC to functions defined in finite dimensional associative alge-
bras (see e.g. [Ri]). In the sequel we will be using the terminology “stem” func-
tions only for intrinsic holomorphic functions defined in open, simply-connected
intrinsic sets in the complex plane. In this language Fueter’s result says that the
Laplacian of the primary function of a stem function is regular.

Denote byτ0 the mapping

τ0 : f 0 → −1
4
∆f0.

It is noted thatτ0 is linear with respect to addition and real-scalar multiplication.
As shown in [Su],

E(q) = τ0((·)−1)(q),

which is
P(−1)(q) = τ0((·)−1)(q)

in our notation. In general, we have

Lemma 2. P(−k) = τ0((·)−k), k ∈ Z+.

Proof. Denoteψ0(z) = 1
zk . Owing to the relationsψ0(z) = (−1)k−1

(k−1)! ( d
dz)k−1( 1

z )

and D̄τ0(f 0) = τ0( df 0

dz ), which is from (3), we have

τ0(ψ0) =
(−1)k−1

(k − 1)!
D̄k−1τ0(

1
(·) ) =

(−1)k−1

(k − 1)!
D̄k−1E = P(−k).

Fromτ0( 1
(·) ) = E(·) we haveτ0( 1

1−· ) = E(1−·). Thus the mappingτ0 formally
maps the series

1
1 − z

= −1
z

− 1
z2

− · · · − 1
zk+1

− · · · , |z| > 1,

term by term, to the series

E(1 − q) =
∞∑
k=1

−P(−k)(q), |q| > 1. (5)
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Applying the Kelvin inversion to both sides of (5), since E(q)E(1 − q−1) =
−E(1 − q), we obtain, formally,

E(1 − q) =
∞∑
k=0

P(k)(q), |q| < 1, (6)

corresponding to

1
1 − z

= 1 + z + z2 + · · · + zk + · · · , |z| < 1.

The actual equality of (5) and (6) is justified by the estimates

|P(−k)(q)| ≤ C(1 + k3)|q|−2−k , |q| > 1, (7)

and
|P(k)(q)| ≤ C(1 + k3)|q|k , |q| < 1, (8)

deduced from the estimates (9) on page 431 and (2) on page 429 of [So]. (5)
and (6) can also be deduced from Laurent series theory of monogenic functions
(see Ch.II of [DSS]).

The following relation is anticipated which could be used to alternatively
defineP(k) for k = 0,1,2, ...

Lemma 3. I (τ0((·)−k)) = τ0((·)k+1), and thus P(k−1) = τ0((·)k+1), k ∈ Z+.

The proof is crumble-some for which we refer the interested reader to [Q4].
In the sequel, a series of the form

∑∞
k=0 ckzk , or

∑−1
k=−∞ ckzk , or

∑∞
k=−∞ ckzk

is called aTaylor series(power series), or a principal series, or Laurent series.
Series

∑
ckP(k) and

∑
ckzk will be said to beassociatedto each other. Ow-

ing to the observation made in the last paragraph,τ0 maps
∑−1

k=−∞ ckzk to its
associated series; but does not maps

∑∞
k=1 ckzk to its associated series.

Remark 1. It is easy to prove, using more direct methods than those in the proofs
of (5) and (6), that in general the convergence radii of a pair of associated series
are the same: To get the same radius of convergence after taking partial deriva-
tives on induced functions, one can use the same methods as in the real case, i.e.
extend into several complex variables and then use the multiple Cauchy integral
formula over polydiscs ([Ry1]). Some results concerning radii of convergence
along some of these lines can be found in [Ry2].

In this paper thedomainof a power seriesφ0(z) =
∑∞

k=0 ckzk will be meant
to be the largest simply-connected region which the power function, originally
defined in its convergence disc, can be holomorphically extended to. The same
convention applies to principal series. The domain ofφ0(z) =

∑∞
k=−∞ ckzk is

defined to be the intersection set of the domains ofφ0,+ andφ0,−, whereφ0,+(z) =∑∞
k=0 ckzk , andφ0,−(z) =

∑−1
k=−∞ ckzk , andφ0(z) = φ0,++φ0,− in the intersection

set. Using this convention, for instance, the series
∑∞

k=1 zk +
∑−1

−∞ −zk = 1+z
1−z , a

function holomorphic inC\{1}. The convention also applies to series
∑

ckP(k),
but using “regular” in place of “holomorphic”. An example is



Singular integrals on surfaces in the quaternionic space 609

∞∑
k=1

P(k)(q) +
−1∑
−∞

−P(k)(q) = τ0(
∞∑
k=1

zk +
−1∑
−∞

−zk)

= τ0(
1 + z
1 − z

)

= τ0(−1 +
2

1 − z
)

= τ0(
2

1 − z
) = 2E(1 − q),

a function regularly defined everywhere exceptq = 1. Be notice that ifck ∈ R
for all k, then

∑
ckzk is an intrinsic function defined in an intrinsic setO, and∑

ckP(k) is defined in the intrinsic setO.

Remark 2. The relation between P(k) and the entries of general Laurent series of
regular functions may be easily established. The following setting is standard (see
[Su], [DSS]). Let Uk , k = ...− 5,−4,−3,0,1,2,3, ..., be the set of the functions
f : Q\{0} → Qc which are regular and homogeneous of degree k (note that U−2

and U−1 are empty sets). Letα be an unordered set of n integers{i1, ..., in} with
1 ≤ ik ≤ 3;α can also be specified by three integers n1,n2,n3 with n1+n2+n3 = n,
where n1 is the number of1’s in α,n2 the number of2’s and n3 the number of
3’s. There are1

2(n + 1)(n + 2) such setsα and the set being consisted of which is
denoted byσn.When n= 0, letσ0 = {∅}.We write∂α for the nth order differential
operator

∂α =
∂n

∂qi1 · · · ∂qin
=

∂n

∂qn1
1 ∂qn2

2 ∂qn3
3
.

Set
Eα = ∂αE

and

Pα(q) =
1
n!

∑
(q0i i1 − qi1) · · · (q0i in − qin ),

where the sum is over all n!/(n1!n2!n3!) different orderings of n11’s, n22’s and
n33’s. It is proved that{Eα : α ∈ σn} forms a basis of U−3−n and{Pα : α ∈ σn}
forms a basis of Un and

E(p − q) =
∞∑

n=0

∑
α∈σn

Pα(q)Eα(p)

=
∞∑

n=0

∑
α∈σn

Eα(p)Pα(q), |q| < |p|. (9)

Let q = 1, |p| > 1, we obtain, for k≥ 0,

P(−k−1) =
∑
α∈σk

Pα(1)Eα =
1
k!

D
¯

kE ∈ U−3−k .

Let p = 1, |q| < 1, we have
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P(k) =
∑
α∈σk

Eα(1)Pα ∈ Uk .

We will come back with more relations between Pα,Eα and P(k) in Sect. 2 ((16)
and (17) in the proof of Proposition 4).

We will be using the following sets in the complex plane. Set, forω ∈ (0, π
2 ),

Sc
ω,± = {z ∈ C : | arg(±z)| < ω},

where the angle arg(z) of the complex numberz takes values in (−π, π],

Sc
ω,±(π) = {z ∈ C : |Re(z)| ≤ π, z ∈ Sc

ω,±},
Sc

ω = Sc
ω,+ ∪ Sc

ω,−,
Sc

ω(π) = Sc
ω,+(π) ∪ Sc

ω,−(π),

Wc
ω,±(π) = {z ∈ C : |Re(z)| ≤ π and Im(±z) > 0} ∪ Sc

ω(π),

Hc
ω,± = {z = exp(i η) ∈ C : η ∈ Wc

ω,±(π)},
and

Hc
ω = Hc

ω,+ ∩ Hc
ω,−.

These sets are illustrated in the diagram below.Wc
ω,+(π) andWc

ω,−(π) are “W”-
and “M”-shaped regions, respectively.Hc

ω,+ is a heart-shaped region, and the
complement ofHc

ω,− is a heart-shaped region. With the obvious meaning we

sometimes writeHc
ω,± = ei Wc

ω,±(π), etc.

Remark 3. The above introduced sets naturally arise from our integral operator
theory. Star-shaped Lipschitz curves in the complex plane have the parameteriza-
tion γ = γ(θ) = expi(θ + iA(θ)), where A is a2π-periodic Lipschitz function. Let
the Lipschitz constant‖A′‖∞ = tan(ω0), ω0 ∈ (0, π

2 ). The integrals under study
are convolutions using the multiplicative structure of the complex field and of the
form p.v.

∫
γ
φ0(zη−1)f (η) dη

η , z ∈ γ, whereφ0 is a kernel function. A simple com-

putation shows that the condition z, η ∈ γ implies zη−1 ∈ Hc
ω, ω ∈ (ω0,

π
2 ), and

thus the domains of the kernel functions need to contain the setsHc
ω (also see the

explanation made before Lemma 4).

The following function spaces are used in the theory:

K (Hc
ω,±) = {φ0 : Hc

ω,± → C : φ0 is holomorphic and satisfies|φ0(z)| ≤ Cν

|1 − z|
in every Hc

ν,±,0< ν < ω}, (10)

K (Hc
ω) = {φ0 : Hc

ω → C : φ0 = φ0,+ + φ0,−, φ0,± ∈ K (Hc
ω,±)},

H ∞(Sc
ω,±) = {b : Sc

ω,± → C : b is holomorphic and satisfies

|b(z)| ≤ Cν in everySc
ν,±,0< ν < ω},

and
H ∞(Sc

ω) = {b : Sc
ω → C : b± = bχ{z∈C:±Rez>0} ∈ H ∞(Sc

ω,±)}.
The study of the paper will be based on the main results of [Q1] that will

now be recalled for the reader’s convenience. The results address the relation
between the classesK (Hc

ω,±) andH ∞(Sc
ω,±).
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Fig. 1.

Theorem A. If b belongs to H∞(Sc
ω,±) or H ∞(Sc

ω), thenφ0(z) =
∑±∞

n=±1 b(n)zn

or φ0(z) =
∑∞

n=−∞
′
b(n)zn belongs to K(Hc

ω,±) or K (Hc
ω), respectively.

Theorem B. If φ0 ∈ K (Hc
ω,±), then for everyν ∈ (0, ω), there exists a function

bν ∈ H ∞(Sc
ν,±) such thatφ0 =

∑±∞
n=±1 bν(n)zn. Moreover,

bν(z) = lim
δ→0+

1
2π

∫
l ±(ν)

exp(−iηz)φ0(exp(i(η ± δi)))dη,

where the path l±(ν) = {z ∈ C : z = r exp(i(π ± ν)), r is from π sec(ν)to 0; and
thenz = r exp(−(±iν)), r is from 0 toπ sec(ν)}.

If φ0 ∈ K (Hc
ω), then its Taylor series partφ0,+ belongs toK (Hc

ω,+) and
its principal series partφ0,− belongs toK (Hc

ω,−), respectively. By invoking
Theorem B we have two functionsb+,ν and b−,ν ,0 < ν < ω, associated with
φ0,+ andφ0,−, respectively. Adding up, we obtain the correspondenceφ0 → bν =
b+,ν + b−,ν ∈ H ∞(Sc

ν).
In Q we will be working on the heart-shaped regions
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Hω,± = {q ∈ Q :
−(± ln |q|)

arg(q,1)
> − tan(ω)}

and
Hω = Hω,+ ∩ Hω,−.

That is

Hω = {q ∈ Q :
| ln |q||

arg(q,1)
< tan(ω)}.

The reason of using these sets is the same as what is described in Remark
3 in relation to convolution integrals using the multiplicative structure of the
underlying space. Precisely, we will be working on convolution singular integrals
on star-shaped Lipschitz surfaces and the kernel functions ought to be defined
in Hω. The following observation for the complex plane case has motivated the
definition ofHω : Let A = A(x) be a 2π-periodic Lipschitz curve whose Lipschitz
constant is less than tan(ω), then for z = expi (x + iA(x)), η = expi(y + iA(y)),

we havezη−1 = expi((x − y) + i(A(x) − A(y))). This implies that | ln |zη−1||
|x−y| =

|A(x)−A(y)|
|x−y| < tan(ω).
Denote byHe

ω,± andHe
ω the images onCe ⊂ Q of the setsHc

ω,± andHc
ω in

C, respectively, under the mappingie : a + bi → a + be. We have

Lemma 4.
Hω,± = ∪e∈J He

ω,±
and

Hω = ∪e∈J He
ω,

where the index set J is the set of all the unit vectors inO .

Proof. We will only prove the lemma for the case “+.” The remaining cases

can be dealt with similarly. Letq ∈ Hω,+, then q ∈ Ce, with e =
q
¯|q
¯
| . Denoting

q0

|q| = cosθ, we have, in the complex planeCe,

q = |q|( q0

|q| +
|q
¯
|

|q|e) = |q|eeθ = ee(θ+eρ),

whereρ = − ln |q|. The condition−ln|q|
θ > − tan(ω) thus becomesρθ > − tan(ω),

a condition characterising a pointsθ + eρ ∈ We
ω,+(π) by which we denote the

image onCe of the setWc
ω,+(π) under the mappingie. SinceHe

ω,+ = ei We
ω,+(π),

we thus haveq ∈ He
ω,+, and so

Hω,± ⊂ ∪eHe
ω,±.

Since the argument is reversible, the proof is complete.
Set

K (Hω,±) = { φ : Hω,± → Qc : φ =
∑±∞

i =±1 ci P(i ), ci ∈ C, is regular and
satisfies|φ(q)| ≤ Cν

1
|1−q|3 in everyHν,±,0< ν < ω}

(11)
and

K (Hω) = {φ : Hω → Qc : φ = φ+ + φ−, φ± ∈ K (Hω,±)}.
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Theorem 1. If b ∈ H ∞(Sc
ω,±) and φ(q) =

∑±∞
k=±1 b(k)P(k)(q), then φ ∈

K (Hω,±).

Proof. We will first prove the theorem forb in H ∞,r (Sc
ω,±), where

H ∞,r (Sc
ω,±) = {b ∈ H ∞(Sc

ω,±) : b|R∩Sc
ω,±

is real valued},
and then prove the theorem for the general caseb ∈ H ∞,r (Sc

ω,±).
We will first consider the case “-”. Forb ∈ H ∞,r (Sc

ω,−), let φ0(z) =∑−∞
k=−1 b(k)zk . Theorem A asserts thatφ0 is in K (Hc

ω,−). Sinceb(k) ∈ R, φ0 is
a stem function defined in the intrinsic setHc

ω,−. The associatedφ(q) therefore
is regularly defined inHω,− away from theq0-axis. It is easy to show, using
Morera’s theorem for functions of a quaternionic variable, that the associated
functionφ is regularly defined across theq0-axis in Hω,−.

Now we prove the estimate forφ. What is interested here is the behavior of
φ at q ≈ 1, its sole singular point. This implies that|q

¯
| ≈ 0.

Writing φ0 = u + iv as usual and using the relation (4), we have

τ0(φ0)(q) = 2
|q
¯
|

∂u
∂y (q0, |q

¯
|) + 2

q
¯|q
¯
| (

1
|q
¯
|

∂v
∂y (q0, |q

¯
|) − 1

|q
¯
|2v(q0, |q

¯
|))

= I1 +
q
¯|q
¯
| I2. (12)

In order to estimateI1 and I2 we will need the following lemma.

Lemma 6. For φ0 ∈ K (Hc
ω,±), we have, for any0< ν < ω,

|φ0(n)
(z)| ≤ 2n!Cν

δn(ν)
1

|1 − z|1+n
, z ∈ Hc

ν,±,

where Cν is the constants in (11) andδ(ν) = min{ 1
2, tan(ω − ν)}.

Proof. We first notice that at the localz ≈ 1 the setHc
ν,± can be approximated

by the cone of the angleπ ± 2ν and vertex (1,0) pointing to the± direction of
the x-axis. This claim can be justified from the relationeη − 1 ≈ η,0 ≈ η ∈ C.
Then for any point 1≈ z ∈ Hc

ν,± the discSr (z) of radiusr = δ(ν)|1−z| centered
at z is contained inHc

ν,±. Using Cauchy’s formula, we have

φ0(n)
(z) =

n!
2πi

∫
Sr (z)

φ0(η)
(η − z)1+n

dη.

Therefore,

|φ0(n)
(z)| ≤ n!

2π

∫ 2π

0

Cν

|1 − η|
1
r n

dθ ≤ 2n!Cν

δn(ν)
1

|1 − z|1+n
,

where we have used the relation|1 − η| ≥ |1 − z| − |z − η| = |1 − z| − r ≥
|1 − z| − 1

2|1 − z| = 1
2|1 − z|. The proof is complete.

Continuing the proof of the theorem, we first consider the case|q
¯
| > δ(ν)

4 |1−
q|. Using the estimates in Lemma 6 forn = 1, from the definitions ofI1, I2 in
(12), we have
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|I1| + |I2| ≤ Cν

|1 − q|3 .

Since the above case covers all the pointsq0 ≤ 1,q ≈ 1 in the region, we
need now only consider the caseq0 ≥ 1 and |q

¯
| ≤ δ(ν)

4 |1 − q|. First studyI1.

Sinceu(x, y) is an even function with respect to its second argumenty, ∂u
∂y is an

odd function with respect toy. For smally we have the Taylor expansion

2
∂u
∂y

(x, y) =
∂u
∂y

(x, y) − ∂u
∂y

(x,−y)

=
∞∑

n=1

∂n+1u
∂yn+1 (x,−y)

n!
(2y)n.

Using the estimates in Lemma 6 to the partial derivatives in the series and the
relation |q

¯
| ≤ δ(ν)

4 |1 − q|, we have

|I1| ≤ 4Cν

δ2(ν)|1 − q|3
∞∑

n=1

(n + 1)(
2|q

¯
|

|1 − q|δ(ν)
)n−1

≤ 4Cν

δ2(ν)|1 − q|3
∞∑

n=1

n + 1
2n−1

≤ Cν

|1 − q|3 .

The proof of the estimate forI2 is similar and left to the interested reader
(see [Q5] for a complete proof in a more general case).

Now consider the case “+”. Assumeb ∈ H ∞,r (Sc
ω,+) andψ(q) =

∑∞
i =1 b(i )

P(i )(q). The Kelvin inversion then givesI (ψ)(q) =
∑−∞

i =−1 b′(i )P(i −1)(q), where

b′(z) = b(−z) ∈ H ∞,r (Sc
ω,−). SinceI (ψ) = τ0(ψ0), whereψ0(z) =

∑−∞
i =−1 b′(i )

zi −1 = 1
z

∑−∞
i =−1 b′(i )zi ∈ Hc

ω,−, the argument for dealing withφ in the above
considered case, and hence the conclusions there, all apply toI (ψ). Using the
relationψ = I 2(ψ) = E(q)I (ψ)(q−1) and the relationq ∈ Hν,+ if and only if
q−1 ∈ Hν,−, we have

|ψ(q)| = |E(q)I (ψ)(q−1)| ≤ 1
|q|3 Cν

1
|1 − q−1|3 = Cν

1
|1 − q|3 , q ∈ Hν,+.

The proof for the caseb ∈ H ∞,r (Sc
ω,±) is thus complete.

Thanks to the following observation which enables us to extend the result
for b ∈ H ∞,r (Sc

ω,±) to functionsb ∈ H ∞(Sc
ω).

Observation. If b ∈ H ∞(Sc
ω,±), then b̄(z̄) is in the same class with the same

bounds. We observe thatg(z) = 1
2(b(z) + b̄(z̄)) and h(z) = 1

2i (b(z) − b̄(z̄)) both
belong to H∞,r (Sc

ω,±) with the same bounds, and b= g + ih.

The proof of Theorem 1 is complete.
A consequence of Theorem 1 is
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Corollary 1. Let b ∈ H ∞(Sc
ω) and φ(q) =

∑∞
i =−∞

′
b(i )P(i )(q). Then φ ∈

K (Hω).

The converse of Theorem 1 holds. Before we state the result we need to
extend the indexk in the functionsP(k) to complex numbers. First, the domain
of the mappingτ0 can be extended to holomorphic functions, not necessarily
intrinsic, defined in intrinsic sets inC, using the decomposition given in the
above observation. In light of Lemma 2 and 3, we may define, for anyz ∈ Sc

ω,

P(z) = τ0((·)z), z ∈ Sc
ω,−

and

P(z) = τ0((·)z+2), z ∈ Sc
ω,+,

where (·)z = exp(z ln(·)), where in the first case the ln function is defined by
cutting the positivex-axis, and in the second case defined by cutting the negative
x-axis.

Theorem 2. If φ(q) =
∑±∞

i =±1 bi P(i )(q) ∈ K (Hω,±), then for everyν ∈ (0, ω)
there exists a function bν ∈ H ∞(Sc

ν,±) such that bi = bν(i ), i = ±1,±2, ...
Moreover,

bν(z) = lim
r →1−

1
2π2

∫
L±(ν)

P(z)(p−1)E(p)n(p)φ(r ±1p)dσ(p),

where L±(ν) =
−−−−−−−→
exp(il ±(ν)) and l±(ν) is defined in Theorem B.

The proof of Theorem 2 is similar to that of Theorem B (see [Q1] and [Q2]).
The integral formula forbν in Theorem 2 is related to the formula given in
Proposition 4 below.

Remark 4. From the proofs of Theorems 1 and 2 we can obtain the bounds of
φ ∈ K (Hω,±) and the bounds of bν ∈ H ∞(Sc

ν,±), respectively. For instance, out
of the proof of Theorem 1 we can further conclude that for any0< ν < ν′ < ω,
we have

|φ(q)| ≤ Cν‖b‖L∞(Sc
ν′,±)

1
|1 − q|3 , q ∈ Sc

ν,±.

Remark 5. As in the complex variable case proved in [Q2]. Theorem 1 and
Theorem 2 can be extended to the cases where b is holomorphic, bounded near
the origin and satisfies|b(z)| ≤ Cν |z|s for |z| > 1 in smaller sectorsSc

ν,±, where
s is any real number. Details will not be included here, but the following result,
with a proof similar to that of Theorem 1 (also see [Q2]), will be used in the proof
of part (ii) of Theorem 4 (see Lemma 8) and Remark 9.
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Theorem 3. Let −∞ < s < ∞, s /= −3,−4, ... and b a holomorphic function in
Sc

ω,± satisfying the estimates

|b(z)| ≤ Cν |z ± 1|s, in every Sc
ν,±,0< ν < ω.

Thenφ(q) =
∑±∞

i =±1 b(i )P(i )(q) can be regularly extended toHω,± satisfying

|φ±(q)| ≤ Cν‖ b(·)
|(·) ± 1|s ‖L∞(Sc

ν′ )
1

|1 − q|s+3
, q ∈ Hν,±,0< ν < ν′ < ω.

Remark 6. Theorems 1 and 3 can be interpreted as regular continuations of
Taylor and principal series. For instance, for(bi )∞i =1 ∈ l ∞ the seriesφ(q) =∑∞

i =1 bi P(i )(q) is naturally defined and regular in the unit ball inQ. Theorem 1
asserts that if there exists b∈ H ∞(Sc

ω,+) such that bi = b(i ), thenφ can be regu-
larly extended toHω,+, and actually belongs to K(Hω,+). A similar interpretation
applies to principal series.

2 Singular integrals and Fourier multipliers

A surfaceΣ is said to be a star-shaped Lipschitz surface, if it is star-shaped
about the origin and there exists a constantM < ∞ such thatq,q′ ∈ Σ implies
that

| ln |q−1q′||
arg(q,q′)

≤ M .

The minimum value ofM is called the Lipschitz constant ofΣ, denoted by
N = Lip(Σ).

Since locally ln|q−1q′| = ln(1+(|q−1q′|−1))| ≈ (|q−1q′|−1) ≈ |q−1|(|q′|−
|q|) ≈ (|q′| − |q|), the above defined sense of Lipschitz is the same as that of
the usual one. According to the definition, we have that ifq,q′ ∈ Σ, then
q−1q′ ∈ Hω for anyω ∈ (arctan(N ), π

2 ).
From now on we will be working on a fixed star-shaped Lipschitz surfaceΣ

and we assume thatω ∈ (arctan(N ), π
2 ).

Let
ρ = min{|q| : q ∈ Σ} andτ = max{|q| : q ∈ Σ}.

We will be working onL2(Σ) = L2(Σ,dσ). The norm off ∈ L2(Σ) is denoted
by ‖f ‖.

As in [CM] and [GQW], we consider the following subclass ofL2(Σ) :

A = {f (q) : f (q) is left − regular inρ− s < |q| < τ + s for somes > 0}.
Proposition 3. The subclassA is dense in L2(Σ).

Proof. For f , g ∈ L2(Σ), denote by (f , g) the bilinear form∫
Σ

f ḡdσ.
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It is easy to verify that, forq ∈ Q,

(f , f ) = ‖f ‖2, (f , g) = (g, f ), (qf , g) = q(f , g).

If ( f , g) = 0, then we say thatf is orthogonal tog. Assume thatA was not
dense. Since the bilinear form (·, ·) satisfies the requirements for inner products
over quaternions, the basic Hilbert space methods are adaptable to this case. In
particular, there would exist a function 0/= g ∈ L2(Σ) orthogonal to all the
functions inA, and so in particular toE(· − q′), q′ being outside an annuls
ρ− s < |q| < τ + s.

We would have, therefore,∫
Σ

E(q − q′)n(q)h(q)dσ(q) = 0, (13)

where
h(q) = n(q)g(q)

was a function inL2(Σ). Since the integral in (13) is absolutely convergent, it
would remain valid for allq′ /∈ Σ, by regular continuation.

Let p be a point onΣ and q′ = rp,q∗ = r −1p. We would have, as a
consequence of the CMcM theorem on Lipschitz surfaces ([CMcM]) and (13),

0 = h(p) = lim
r →1−

1
2π2

∫
Σ

(E(q − q′) − E(q − q∗))n(q)h(q)dσ(q)

for almost allp ∈ Σ, and sog(p) = 0 for almost allp ∈ Σ. This is a contradiction
and the proof is complete.

From [Su], we have, forf ∈ A,

f (q) =
∞∑

n=0

∑
α∈σn

{Pα(q)aα + Eα(q)bα}, ρ− s < |q| < τ + s, (14)

where

aα =
1

2π2

∫
Σ

Eα(p)n(p)f (p)dσ(p)

and

bα =
1

2π2

∫
Σ

Pα(p)n(p)f (p)dσ(p).

The following result is expected.

Proposition 4. If f ∈ A, then

f (q) =
∞∑

k=−∞

1
2π2

∫
Σ

P(k)(p−1q)E(p)n(p)f (p)dσ(p), ρ−s < |q| < τ +s. (15)

In general, if the annuls is centered at q0, then for a left-regular function f in the
annuls, we have
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f (q) =
∞∑

k=−∞

1
2π2

∫
Σq0

P(k)(p−1(q − q0))E(p)n(p)f (p)dσ(p),

ρ− s < |q − q0| < τ + s,

whereΣq0 is a star-shaped Lipschitz surface about q0.

Corollary 2. If f is left-regular in U ⊂ Q and q0 ∈ U , then

f (q) =
∞∑
k=0

1
2π2

∫
B(q0,r )

P(k)(p−1(q − q0))E(p)n(p)f (p)dσ(p),

where B(q0, r ) is the solid ball centered at q0 with radius r such that B(q0, r ) ⊂
U . Moreover, the Taylor series is absolutely convergent in any ball B(q0, r ) ⊂ U .

We will only prove the equality (15). The other conclusions will then become
obvious.
Proof. We first deduce some relations betweenP(k) andPα,Eα.

Let |q| < |p|. The equality (6) implies

E(1 − p−1q)E(p) =
∞∑

n=0

P(n)(p−1q)E(p).

On the other hand, from (15),

E(1 − p−1q)E(p) = E(p − q)

=
∞∑

n=0

∑
α∈σn

Pα(q)Eα(p)

=
∞∑

n=0

∑
α∈σn

Eα(p)Pα(q).

Comparing the two expressions, we have

P(n)(p−1q)E(p) =
∑
α∈σn

Pα(q)Eα(p) =
∑
α∈σn

Eα(p)Pα(q). (16)

The obtained relation (16) can be extended to anyp,q such thatp−1q /= 1 using
regular continuation.

Similarly, for |q| > |p|, from formula (5) we have

E(1 − p−1q)E(p) =
∞∑

n=1

−P(−n)(p−1q)E(p).

On the other hand,
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E(1 − p−1q)E(p) = −E(q − p)

=
∞∑

n=0

∑
α∈σn

−Pα(p)Eα(q)

=
∞∑

n=0

∑
α∈σn

−Eα(q)Pα(p).

Comparing the two expressions, we have, forn = 1,2, ...,

P(−n)(p−1q)E(p) =
∑

α∈σn−1

Pα(p)Eα(q) =
∑

α∈σn−1

Eα(q)Pα(p). (17)

The relation (17) can be extended to anyp,q such thatp−1q /= 1 by using regular
continuation.

The relations (16), (17) imply that the projections off onto the spaces
Uk , k = ... − 5,−4,−3,0,1,2,3, ... are given by convolution integrals using
P(n) as kernels. In particular, from (14), we have

f (q) =
∞∑

n=0

1
2π2

(
∫

Σ

∑
α∈σn

Pα(q)Eα(p)n(p)f (p)dσ(p) +

+
∫

Σ

∑
α∈σn

Eα(q)Pα(p)n(p)f (p)dσ(p))

=
∞∑

n=0

1
2π2

∫
Σ

P(n)(p−1q)E(p)n(p)f (p)dσ(p) +

+
−∞∑

n=−1

1
2π2

∫
Σ

P(n)(p−1q)E(p)n(p)f (p)dσ(p)

as desired. The proof is complete.
As a bi-product of the argument in deducing (16) and (17), we have, for any

integern andp /= q,

E(p)P(n)(qp−1) = P(n)(p−1q)E(p) (18)

and therefore, for anyφ ∈ K (Hω),

E(p)φ(qp−1) = φ(p−1q)E(p). (19)

Owing to (18) and (19) all the integral expressions that involveP(n)(p−1q)E(p)
andφ(p−1q)E(p) in their integrands, e.g. in Proposition 4, Corollary 2 and The-
orem 4 have alternative expressions usingE(p)P(n)(qp−1) and E(p)φ(qp−1) in
their integrands instead.
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Remark 7. If f 0 is a holomorphic function in the annulsρ− s < |η| < τ + s in
C, σ a star-shaped Lipschitz curve in the annuls, then the Laurent series of f0has
the expression

f 0(z) =
∞∑

k=−∞

1
2π

∫
σ

(η−1z)kf 0(η)
dη
η
, ρ− s < |η| < τ + s.

Comparing this with Proposition 4 and its Corollary 2, we can see that the func-
tions P(k) play the same role as the functions(·)k in the one complex variable
case. For right-regular functions we have symmetric results. For instance, the
counterpart of Proposition 4 in that case is

f (q) =
∞∑

k=−∞

1
2π2

∫
Σ

f (p)n(p)E(p)P(k)(qp−1)dσ(p), ρ− s < |q| < τ + s.

Now for a functionb ∈ Sc
ω we introduce the following multiplier operator

Mb : A → A :

Mbf (q) =
∞∑

n=1

b(n)
∑
α∈σn

Pα(q)aα+
∞∑

n=1

b(−n)
∑
α∈σn

Eα(q)bα, ρ−s < |q| < τ+s.

Now we show thatMb has a singular integral expression whose kernel, apart
from a constant multiple, is the function inK (Hω) associated withb as specified
in Theorem 1

Now for q ∈ Σ, r ≈ 1 but r < 1 consider the function

M r
b f (q) =

∞∑
n=1

b(n)
∑
α∈σn

Pα(rq)aα +
∞∑

n=1

b(−n)
∑
α∈σn

Eα(r −1q)bα

= Pr (q) + Qr (q),

ρ− s < |q| < τ + s.

Using the convolution expressions of the projections, we have

Pr (q) =
∞∑

n=1

b(n)
1

2π2

∫
Σ

P(n)(p−1rq)E(p)n(p)f (p)dσ(p)

=
1

2π2

∫
Σ

(
∞∑

n=1

b(n)P(n)(p−1rq))E(p)n(p)f (p)dσ(p)

=
1

2π2

∫
Σ

φ+(p−1rq)E(p)n(p)f (p)dσ(p),

whereφ+ =
∑∞

n=1 b(n)P(n) ∈ K (Hω,+) as proved in Theorem 1. Similarly, we
have

Qr (q) =
1

2π2

∫
Σ

φ−(p−1r −1q)E(p)n(p)f (p)dσ(p),

whereφ− ∈ K (Hω,−).
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Now letting r → 1−, since the series definingM r
b f is uniformly convergent

as r → 1−, we can exchange the order of taking limit and summation to obtain

Mbf (q) = lim
r →1−

1
2π2

∫
Σ

(φ+(p−1rq) + φ−(p−1r −1q))E(p)n(p)f (p)dσ(p).

Theorem 4. (i) If b ∈ H ∞(Sc
ω), then for any f∈ A and q∈ Σ, we have

Mbf (q) = lim
r →1−

1
2π2

∫
Σ

(φ+(p−1rq) + φ−(p−1r −1q))E(p)n(p)f (p)dσ(p)

= lim
ε→0

1
2π2

{
∫

|1−p−1q|>ε,p∈Σ

φ(p−1q)E(p)n(p)f (p)dσ(p)

+φ1(ε,q)f (q)},
whereφ = φ+ + φ− is the function associated with b as specified in Corollary 1
andφ1 the bounded continuous function:φ1 = φ+,1 + φ−,1, where

φ±,1(ε,q) =
∫

S(ε,q,±)
φ±(p)E(p)n(p)dσ(p),

where S(ε,q,±) is the part of the surface|1 − p−1q| = ε inside or outsideΣ,
depending on± taking + or −.

(ii) For any b ∈ H ∞(Sc
ω),Mb can be extended to a bounded operator from

L2(Σ) to L2(Σ). Moreover,

‖Mb‖L2(Σ)→L2(Σ) ≤ Cν‖b‖L∞(Sc
ν ), arctan(N ) < ν < ω.

Proof of part (i) Only the second equality requires a proof. Let us only consider
the part related toφ+; the other part can be dealt with similarly. We will adapt the
proof of Theorem 6.1 of [McQ1]. For eachε > 0, the integral can be decomposed
into

lim
r →1−

{
∫

|1−p−1q|>ε,p∈Σ

φ+(p−1rq)E(p)n(p)f (p)dσ(p)+

+
∫

|1−p−1q|≤ε,p∈Σ

φ+(p−1rq)E(p)n(p)f (p)dσ(p)}.

As r → 1−, the first part tends to∫
|1−p−1q|>ε,p∈Σ

φ+(p−1q)E(p)n(p)f (p)dσ(p).

The second part can be decomposed into∫
|1−p−1q|≤ε,p∈Σ

φ+(p−1rq)E(p)n(p)(f (p) − f (q))dσ(p)+

+
∫

|1−p−1q|≤ε,p∈Σ

φ+(p−1rq)E(p)n(p)dσ(p)f (q).
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As ε → 0, the first integral tends to zero uniformly with respect tor → 1−;
while if we invoke Cauchy’s theorem, for a fixedε, the second integral tends to
φ+,1(ε,q)f (q) as r → 1 − . The proof is complete.

The proof in [GQW] for the analogous result for a complex variable can be
closely followed to give a proof of part 2 of Theorem 4. Due to the consideration
that the particulars in relation to the spherical Dirac operator in the present case
may be worthwhile pointing out, we choose to incorporate the proof.

We need some preparation on Hardy spaces of regular functions on the sur-
faceΣ (see [Mi] for the theory of Clifford monogenic Hardy spaces on higher-
dimensional Lipschitz graphs).

Let ∆ and ∆c be the bounded and unbounded connected components of
Q \Σ. For α > 0, define thenon-tangential approach regionsΛα(q) andΛc

α(q)
to a pointq ∈ Σ to be

Λα(q) = Λα(q, ∆) = {p ∈ ∆ : |p − q| < (1 +α)dist(p, Σ)},

and

Λc
α(q) = Λα(q, ∆c) = {p ∈ ∆c : |p − q| < (1 +α)dist(p, Σ)}.

It is easy to show, similarly to the complex variable case considered in [K1]
and [JK], that there exists a positive constantα0, depending on the Lipschitz
constant ofΣ only, such thatΛα(q) ⊂ ∆ andΛc

α(q) ⊂ ∆c for 0 < α < α0

and all q ∈ Σ. The following argument is independent of specially chosen
α ∈ (0, α0). We choose and fixα from now on.

The interior non-tangential maximal function Nα(f ) is defined by

Nα(f )(q) = sup{|f (p)| : p ∈ Λα(q)}, q ∈ Σ.

The exterior non-tangential maximal function Nc
α(f ) is similarly defined.

For 0< p0 < ∞, the (left-) Hardy spaceH p0(∆) is defined by

H p0(∆) = {f : f is left − regular in∆, andNα(f ) ∈ Lp0(Σ)}.

If f ∈ H p0(∆), then‖f ‖H p0(∆) is defined as theLp0 norm of Nα(f ) onΣ.
The spaceH p0(∆c) is defined similarly, except that the functions inH p0(∆c)

are assumed to vanish at infinity. Similarly to the monogenic Hardy space case
studied in [Mi], one can prove

Proposition 5. If f ∈ H p0(∆),p0 > 1, then the non-tangential limit of f,

lim
p→q,p∈Λα(q)

f (p)

exists almost everywhere with respect to the surface measure onΣ. If the limit is
still denoted by f, then

CN ,p0‖f ‖H p0(∆) ≤ ‖f ‖Lp0(Σ) ≤ C ′
N ,p0

‖f ‖H p0(∆),
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where CN ,p0,C
′
N ,p0

depend on the Lipschitz constant N and p0.

In other words, forp0 > 1, the H p0(∆) norm of a function is equivalent to
the Lp0 norm of its non-tangential limit on the boundary. A similar result holds
for the functions in the Hardy spaces associated with∆c.

In polar coordinate system the Dirac operatorD can be decomposed into

D = ζ∂r − 1
r
∂ζ = ζ(∂r − 1

r
Γζ),

whereΓζ is a first order differential operator depending only on the angular
coordinates (see [DSS] and note that ourΓζ is their −Γζ ).

Recall thatUk , k ∈ Z \ {−1,−2}, denotes the subspace ofk-homogeneous
regular functions. It is known that

Γζ f (ζ) = kf (ζ), f ∈ Uk (20)

(see, e.g. page 162-163, [DSS]).
For f ∈ A, by definingΓζ f to be the regular extension ofΓζ(f |S), the

definition ofΓζ can be extended toΓζ : A → A.

Proposition 6. Suppose that f∈ H 2(∆). Then the norm‖f ‖H 2(∆) is equivalent
to the norm ∫ 1

0

∫
Σ

|(Γ j
ζ f )(rq)|2(1 − r )2j −1dσ(q)

dr
r
, j = 1,2, ...

The proof is similar to that of the corresponding result for Lipschitz graphs
studied in [Mi] (also see [JK]). A similar result holds forf ∈ H 2(∆c).

The following is equivalent to the CMcM theorem onΣ ([CMcM]).

Proposition 7. Suppose that f∈ L2(Σ). Then there exist f+ ∈ H 2(∆) and f− ∈
H 2(∆c) such that their non-tangential boundary limits, still denoted by f+, f −,
respectively, lie in L2(Σ), and f = f + + f −. The mappings f→ f ± are bounded
on L2(Σ).

It is easy to see that iff ∈ A, then the natural decomposition off into
its power series and principal series parts induces the decomposition given in
Proposition 7.

Denote byΣr ,0< r < 1, the surface{rq : q ∈ Σ}.
Lemma 7. Suppose q0 ∈ Σ. Let 0 < r < 1, and q = rq0. Then there exists a
constant CN such that

|1 − p−1q| ≥ CN{(1 − √
r )2 + θ2} 1

2 , p ∈ Σ√
r ,

whereθ = arg(q,p).

Proof. Owing to the relation arg(q,p) = arg(p−1q,1) = arg((p−1q)0 + i|(p−1q)|),
where the last arg stands for the angle of the complex number, the argument in
the proof of Lemma 3.4 of [GQW] then can be followed to conclude the lemma.
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Proof of part (ii) Let f ∈ A. Using the decomposition off defined in Proposition
7, we havef = f + + f −, where f + ∈ H 2(∆), f − ∈ H 2(∆c), ‖f ±‖L2(Σ) ≤
CN‖f ‖L2(Σ). We also haveMbf = Mb+ f + + Mb− f −, where

Mb± f ±(q) = lim
r →1−

∫
Σ

φ±(r ±1p−1q))E(p)n(p)f (p)dσ(p), q ∈ Σ.

Mb± f ±(q) can be left-regularly extended to∆ and∆c using

Mb± f ±(q) =
∫

Σ

φ±(p−1q))E(p)n(p)f (p)dσ(p),

for q ∈ ∆ andq ∈ ∆c, respectively.
Owing to Proposition 5, we need to show

‖Mb± f ±‖H 2 ≤ CN‖f ±‖H 2.

We will now only prove the inequality for the case “+”; the case “-” can be dealt
with similarly. We will suppress the superscript “+” in below for simplicity.
Using the Taylor series expansion off , and accordingly that ofMbf , we easily
have, forq ∈ ∆,

ΓζMbf (q) =
1

2π2

∫
Σ

φ(p−1q)E(p)n(p)Γζ f (p)dσ(p),

where exchange of the order of taking differentiationΓζ and the infinite summa-
tion is justified by first assuming|q| < ρ, and then performing regular contin-
uation. We also easily have, by exchanging the order of taking integration and
differentiation,

Γ 2
ζ Mbf (q) =

1
2π2

∫
Σ

Γζ(φ(p−1q))E(p)n(p)Γζ f (p)dσ(p)

which is justified by the following

Lemma 8. If ν ∈ (arctan(N ), ω), then

|Γζ(φ(p−1q)|) ≤ Cν
1

|1 − p−1q|4 , p ∈ Σ,q ∈ ∆.

Proof. Applying Γζ with respect toq to the series

φ(p−1q)E(p) =
∞∑

n=1

b(n)P(n)(p−1q)E(p) =
∞∑

n=1

b(n)
∑
α∈σn

Pα(q)Eα(p)

term by term, justified by first assumimg|q| < |p| and then performing regular
continuation, owing to (26), we obtain

Γζ(φ(p−1q)) =
∞∑

n=1

nb(n)P(n)(p−1q).
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Applying Theorem 3 withs = 1 to the multiplierb′(z) = zb(z), we conclude the
lemma.

Now we return to the proof of part (ii). Using Lemma 8 and 7, we have, for
q ∈ Σr .

|Γ 2
ζ Mbf (q)| ≤ C

(∫
Σ√

r

|Γζ(φ(p−1q))|dσ(p)
|p|3

) 1
2

×
(∫

Σ√
r

|Γζ(φ(p−1q))||Γζ f (p)|2 dσ(p)
|p|3

) 1
2

≤ C

(∫
Σ√

r

1
|1 − p−1q|4

dσ(p)
|p|3

) 1
2

×
(∫

Σ√
r

1
|1 − p−1q|4 |Γζ f (p)|2 dσ(p)

|p|3
) 1

2

≤ C

(∫
Σ

1
((1 − √

r )2 + θ2
0)2

dσ(p)

) 1
2

×
(∫

Σ

1
((1 − √

r )2 + θ2
0)2

|Γζ f (
√

rp)|2dσ(p)

) 1
2

,

whereθ0 is the angle betweenq andp.
Since∫

Σ

1
((1 − √

r )2 + θ2
0)2

dσ(p) ≤ C
∫ π

0

sin2 θ0

((1 − √
r )2 + θ2

0)2
dθ0

≤ C
∫ π

0

θ2
0

((1 − √
r )2 + θ2

0)2
dθ0

= C
1

1 − √
r

≤ C
1

1 − r
,

we have

‖Mbf ‖2
H 2(∆) ≈

∫ 1

0

∫
Σ

|Γ 2
ζ (Mbf )(rq)|2(1 − r )3dσ(q)

dr
r

≤ C
∫ 1

0

∫
Σ

1
1 − r

(
∫

Σ

1
((1 − √

r )2 + θ2
0)2

|Γζ f (
√

rp)|2dσ(p))

×(1 − r )3 dr
r

dσ(q)

≤ C
∫ 1

0

∫
Σ

|Γζ f (
√

rp)|2(
∫

Σ

(1 − r )
((1 − √

r )2 + θ2
0)2

dσ(q))
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×(1 − r )dσ(p)
dr
r

≤ C
∫ 1

0

∫
Σ

|Γζ f (
√

rp)|2(1 − r )dσ(p)
dr
r

≤ C
∫ 1

0

∫
Σ

|Γζ f (rp)|2(1 − r )dσ(p)
dr
r

≈ C‖f ‖2
H 2(∆).

The bounds of the operator norm‖Mb‖ can be derived from the proof of
Lemma 8 and the estimates obtained in Theorem 3. The proof is complete.

Remark 8. Since the surface measure onΣ satisfies the so called doubling con-
dition, the standard Calderón-Zygmund method ([St]) can be applied to the op-
erators Mb, based on the L2-boundedness supplied by Theorem 4, so to conclude
the Lp- and the weak-L1-boundedness of the operators with the same bounds for
the operator norms in terms of‖b‖L∞(Sc

ν ) as given in Theorem 4.

Remark 9. As in the standard cases the Hilbert transform on the unit sphere and
on star-shaped Lipschitz surfaces should be defined using the Fourier multiplier
b(z) = −i sgn(z), wheresgn(z) is the signum function which takes value+1 for
Re(z) > 0 and−1 for Re(z) < 0, whose singular integral expression is given by
the kernel− i

π2 E(1 − q), as derived in Sect. 1. The associated singular integral
kernels

1
2π2

∞∑
k=−∞

′
b(k)P(k)(q)

of a general function b∈ H ∞(Sc
ω) can be alternatively obtained from the formula

1
2π2

τ0(φ0),

where

φ0 = φ0,+ + φ0,−, φ0,+(z) =
∞∑
k=1

b(k)zk+2, φ0,−(z) =
−1∑

k=−∞
b(k)zk .

If, instead, we useφ0(z) =
∑∞

k=−∞
′
b(k)zk, then the difference between the two

image functions underτ0 is

1
2π2

[b(2) +
∞∑
k=1

(b(k + 2) − b(k))P(k)]

which, owing to Theorem 3 for the case s= −1, is an integrable function on the
surface, and so gives rise to a bounded operator.

We now close the section by giving Parseval’s identity on the sphere between
the kernel functions and the bounded holomorphic multipliers.
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Corollary 3. Let f be a smooth function on the sphere, b∈ H ∞(Sc
ω), andφ the

function in K(Hω) associated with b as specified in Theorem 1. Then we have

∞∑
n=−∞

b(n)
∫

S
P(−n−1)(p)n(p)f (p)dσ(p) =

lim
ε→0+

{
∫

|1−p|>ε,p∈S
I (φ)(p)n(p)f (p)dσ(p) + φ1(ε,1)f (1)},

where b(0) = 1
2π2

∫
S I (φ)(p)n(p)dσ(p) andφ1(ε,q) is defined in Theorem 4.

Proof. Subsequently performing the following steps: decomposingf into f =
f ++f −, wheref + andf − are the power and principal series part off , respectively;
adopting the argument in the proof of part (i) of Theorem 4 to each off + andf −

for q = 1; replacing, in virtue of (18) and (19),P(n)(p−1)E(p) andφ(p−1)E(p)
by P(−n−1)(p) and I (φ)(p) respectively, we obtain the identity.

3 Holomorphic functional calculus of the spherical Dirac operator

We wish to point out that the class of the bounded operatorMb studied in Sect. 2
constitutes a functional calculus ofΓζ , and in fact is identical to the Cauchy-
Dunford’s bounded holomorphic functional calculus ofΓζ . For a discussion in
relation to the domains ofΓζ in various spaces we refer the reader to [LMcQ]
and [Mc3] where examples in relation to Dirac operators on Lipschitz graphs are
given.

The operatorsMb enjoy the following properties, according to which the
classMb,b ∈ H ∞(Sc

ω) is said to constitute a bounded holomorphic functional
calculus.

Let 0< ω < π
2 ,0 < p0 < 1, tanω > N = Lip(Σ), b,b1,b2 ∈ H ∞(Sc

ω), and
α1, α2 ∈ C. Then

‖Mb‖Lp0(Σ)→Lp0(Σ) ≤ Cp0,ν‖b‖L∞(Sc
ν ), arctan(N ) < ν < ω;

Mb1b2 = Mb1 ◦ Mb2;

Mα1b1+α2b2 = α1Mb1 + α2Mb2.

The first assertion is concluded in Remark 8 . The second and the third can
be easily derived by using Laurent series expansions of test functions.

Denote by
R(λ, Γζ) = (λI − Γζ)−1

the resolvent operator ofΓζ at λ ∈ C. We show that for non-realλ,R(λ, Γζ) =
M 1

λ−(·)
. In fact, a direct computation using the property (20) shows that the

Fourier multiplierλ − k is associated with the operatorλI − Γζ , and therefore
the Fourier multiplier (λ− k)−1 is associated withR(λ, Γζ). The property of the
functional calculus regarding the boundedness then asserts that for 1< p0 < ∞
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‖R(λ, Γζ)‖Lp0(Σ)→Lp0(Σ) ≤ Cν

|λ| , λ /∈ Sc
ν . (21)

Owing to the estimate (21), forb ∈ Sc
ω with good decays at zero and infinity,

the Cauchy-Dunford integral

b(Γζ) =
1

2πi

∫
Π

b(λ)R(λ, Γζ)dλ (22)

defines a bounded operator, whereΠ is a path consisting of four rays:
{s exp(−i θ) : s is from ∞ to 0}∪{s exp(i θ) : s is from 0 to∞}∪{s exp(i (π−
θ)) : s is from ∞ to 0}∪{s exp(i (π+θ)) : s is from 0 to∞}, where arctan(N ) <
θ < ω. The functions of this sort form a dense subclass ofH ∞(Sc

ω) in the sense
specified in the convergence lemma of McIntosh in [Mc2]. Using the lemma, we
can define a bounded functional calculusb(Γζ) on general functionsb ∈ H ∞(Sc

ω)
extending the definition given by (22) for functions with good decays.

Now we showb(Γζ) = Mb. Assume again thatb has good decays at zero
and∞, and f ∈ A. Then change of order of the integration and the summation
in the following chain of equalities can be easily justified, and we have

b(Γζ)f (q) =
1

2πi

∫
Π

b(λ)R(λ, Γζ)dλf (q)

=
1

2πi

∫
Π

b(λ)
∞∑

k=−∞

′
(λ− k)−1 1

2π2

×
∫

Σ

P(k)(p−1q)E(p)n(p)f (p)dσ(p)dλ

=
∑

k

′
(

1
2πi

∫
Π

b(λ)(λ− k)−1dλ)
1

2π2

×
∫

Σ

P(k)(p−1q)E(p)n(p)f (p)dσ(p)

=
∑

k

′
b(k)

1
2π2

∫
Σ

P(k)(p−1q)E(p)n(p)f (p)dσ(p)

= Mbf (q).

Denote byP± the projection operators such thatP±f = f ± as defined in
Proposition 7. A consequence of estimate (21) is that bothΓζP± are type-ω
operators (see [Mc2]).

ΓζP±, as well asΓζ , are identical to theirdual operatorson L2(Σ), respec-
tively, in the dual pair (L2(Σ),L2(Σ)) under the bilinear pairing

<< f , f ′ >>=
1

2π2

∫
Σ

f (q)n(q)f ′(q)dσ(q). (23)

That is
<< ΓζP±f , f ′ >>=<< f , ΓζP±f ′ >>

and
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<< Γζ f , f ′ >>=<< f , Γζ f ′ >> .

These can be easily derived from Parseval’s identity

∞∑
n=0

∑
α∈σn

aαa′
α + bαb′

α =
1

2π2

∫
S

f (q)n(q)f ′(q)dσ(q),

in the notation of (14), and the relation (20).
Similar conclusions hold for the Banach space dual pairs (Lp0(Σ),Lp′

0(Σ)),1<
p0 < ∞, 1

p0
+ 1

p′
0

= 1, under the same bilinear pairing (23).

Hilbert and Banach space properties of general type-ω operators are well
studied respectively in [Mc2] and [CDMcY]. The results of [Mc2] and [CDMcY]
therefore are all applicable to the operatorsΓζP±, and so toΓζ as well.
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borńe surL2 pour les courbes lipschitziennes, Ann. Math.116 (1982), 361-387.

[CW] R. Coifman and G. Weiss, Transference methods in analysis, C.B.M.S. Regional Con-
ference Series in Mathematics, number 31, AMS Providence, 1977 (reprinted in 1986),
1-59.

[De] C.A. Deavours, The quaternion calculus, Amer. Math. Monthly80 (1973), 995-1008.
[DSS] R. Delanghe, F. Sommen and V. Soucek, Clifford algebra and spinor valued functions:

A function theory for Dirac operator, Kluwer, Dordrecht, 1992.
[GLQ] G. Gaudry, R-L. Long and T. Qian, A martingale proof ofL2-boundedness of Clifford-

valued singular integrals, Annali di Mathematica Pura Ed Applicata165 (1993), 369-394.
[GQW] G. Gaudry, T. Qian and S-L. Wang, Boundedness of singular integral operators with

holomorphic kernels on star-shaped Lipschitz curves, Colloq. Math.LXX (1996), 133-
150.

[JK] D. Jerison and C.E. Kenig, Hardy spaces,A∞, and singular integrals on chord-arc
domains, Math. Scand.50 (1982), 221-247.

[K1] C.E. Kenig, WeightedH p spaces on Lipschitz domains, Amer. J. Math.102 (1980),
129-163.



630 T. Qian

[K2] C.E. Kenig, Harmonic analysis techniques for second order elliptic boundary value
problems, Conference Board of the Mathematics, CBMS, Regional Conference Series in
Mathematics, number 83, 1994.

[LMcQ] C. Li, A. McIntosh and T. Qian, Clifford algebras, Fourier transforms, and singular
convolution operators on Lipschitz surfaces, Revista Matemática Iberoamericana10 No.3
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