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Introduction

In [McQ1], [McQZ2], [LMcS], [GLQ] and [LMcQ] the singular integral theory
associated with the bounded holomorphic functional calculi of Dirac operators
on one- and higher- dimensional Lipschitz graphs was established. In [Q1-3] and
[GQW] the theory was further extended to periodic cases. This paper is devoted
to an analogous theory in the quaternionic spQcd&he theory is closely related

to some recent development of operator theory and harmonic analysis. Even
restricted to the unit sphere, the study of the paper is new: It provides a large
class of singular integral operators, each is analogous to the Hilbert transform
in the context, that constitutes a bounded holomorphic functional calculus of
the spherical Dirac operator. The theory proves identifications between the three
forms: Fourier multipliers, singular integrals and Cauchy-Dunford’s integrals for
functional calculi on both the unit sphere and star-shaped Lipschitz surfaces. It
also provides explicit formulas to obtain the singular integral kernels from the
Fourier multipliers and vice versa.

The study of the paper restricted to the sphere does not fall into the scope of
the well studiedCalde®n-Zygmund spherical convolution operator thedoyr, a
survey of that we refer the reader to [Sa] and [CW]. The operators studied there
are multiplier operators on spherical Laplace-Beltrami eigenspace expansions,
or alternatively, Fourier-Laplace expansions Léffunctions on the sphere. The
present theory, however, is about Fourier multipliers on spherical Dirac operator
eigenspace expansions of th&functions .

The nature of the theory is different from what is developed in [QR] either,
in which Mobius transforms are used to transfer, using change of variables, the
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singular integral theory established in [LMcQ)] to certain surfaces which may not
be Lipschitz.

There is some recent development on function theory of quaternionic vari-
ables which would be worthwhile mentioning. In [ABLSS1] regular functions of
several quaternionic variables and the Cauchy-Fueter complex of differential op-
erators are studied. In [ABLSS2] regular functions of one quaternionic variable
which satisfy a large class of differential equations are studied. As a consequence
they proved that the functions under consideration cannot have compact singu-
larities. Some more advanced results along this line are given in [ALPS]. In a
more recent paper [CLSS] the authors extend the work by K. Imaeda, that gives
rise to Maxwell’'s equations, to define a notion of regularity for functions of
one and several biquaternionic variables. The function theory developed in the
present paper has no overlap with the above mentioned function theories. It is
enlightened by the latest development of harmonic analysis dealing with Fourier
theory in conjunction with functional calculi of Dirac operators on surfaces in
the gquaternionic space.

In [Q4] and [Q5] we establish the analogous theoryRifh Although R" is
no longer an algebra and more complicated to deal with, the methods we use are
suggested by the present paper.

The applications of the theory include the kind of boundary value problems
discussed in [LMcQ] and [Mc3], but on closed Lipschitz surfaces. Partition of
unity has been used in order to make use of singular integral theory developed
on infinite graphs to boundary value problems on closed curves and surfaces
(see e.g. [V], [K1] and [K2]). The study of the paper forms part of our efforts
in providing effective operator algebras right on closed curves and surfaces so
to allow the inverse operator problems to be solved directly. A detailed study
concerning the application aspect will appear elsewhere.

The paper is arranged into four sections. Section 0 contains preliminaries. In
Sect. 1 we construct a class of regular functions that will act as singular integral
kernels in the later sections. Whilst the theory for the periodic cases is built up
from periodisation based on Poisson summation formulas ([Q1], [GQW], [Q3]),
there is no analogous method available for the unit sphere. As a substitution,
Fueter’s result provides a method to construct regular functions of a quaternionic
variable from holomorphic functions of a complex variable (see, e.g. [Su], [De]).
This enables us to transfer the theory established in [Q1], [Q2] and [GQW] for
a complex variable to the present case. Theorems 1, 2 and 3 can be understood
as concerning Fourier series, in particular Fourier and inverse Fourier transforms
between the kernel functions and the bounded holomorphic multipliers; they can
also be understood as regular continuations of power and principal series (see
Remark 6). Not only for their connections to singular (Theorem 1) and fractional
(Theorem 3) integrals on the surfaces, but also the results themselves would be
of interest in the Laurent series theory in quaternions (also see Proposition 4).
Theorems 1 and 3 are the main technical results to the theory developed in the
following sections.
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In Sect. 2 we establish a singular integral theory (Theorem 4) using the kernel

functions obtained in Theorem 1 of Sect. 1. The theory includes two aspects: the
identification between the singular integral expressions and the Fourier multiplier
expressions; and the?-boundedness of the operators. If we restrict ourselves to
the sphere, then the boundedness can be easily deduced by making use of the
Plancherel theorem on the sphere. In our new context, i.e. on starlike Lipschitz
surfaces, however, there does not exist Plancherel’s theorem. The nature of the
boundedness problem turns to be of the same kind as that of Coifman-MclIntosh-
Meyer's (CMcM'’s) theorem on th&?-boundedness of the Cauchy integral op-
erator on Lipschitz graphs (cf. [CMcM], [Mc1], [LMcS], [GLQ], [CM], [GQW],
[Ta]). The proof presented here is an adaptation of a proof of [GQW] based on
Littlewood-Paley theory. The identification result in particular implies Parseval's
identity on the sphere linking the kernel functions to the bounded holomorphic
multipliers (Corollary 3)

In Sect.3 we provide a third version of the operators: Cauchy-Dunford’s
integrals of functional calculus. We show that the spherical Dirac operator can
be expressed as a sum of two typesperators. The Dirac operator therefore
enjoys all the basic properties possessed by tymperators studied in [Mc2]
and [CDMcY].

NotationsC, C,, etc. will be used for constants which may vary from one
occurrence to the next. Subscripts, suchvas C,, etc. are used to stress depen-
dence of constants. In most cases, if a paragraph contains a piece of argument or
statement, and if the notatiah appears in both the condition and the conclusion
parts, then the argument or statement is meant to be valid for two symmetric
cases: one is for all the- being replaced by +; and the other is for all the
being replaced by-. Similarly, when we introduce a new notation4if appears
in both its name part and its definition parts, then we are simultaneously defining
two notations: one is for all the- being +; and the other is for all the being
—. According to the convention, we will need to write as —(+) in the sequel.

The author wishes to express his sincere gratitude to John Ryan. He intro-
duced me the spherical Dirac operator eigenspace decomposition of homogeneous
spherical harmonics during his visit to the University of New England and Mac-
quarie University in 1994, and has been continuously providing me with relevant
information including references. He also made valuable comments to an early
draft of Sect. 1 of the paper. The author is sincerely grateful to Alan Mcintosh
for his various supports to this interest of the author. Thanks are due to F. Som-
men for his kindness in sending me his reprints, some of which are immediately
useful and some widen the author’s scope, being especially instructive to further
development of the topic. Thanks are due to Meg Vivers and Norman Gaywood
for their kind help in drawing the beautiful diagram for the paper.

0 Preliminaries

Let Q and Q° denote the algebras of Hamilton's quaternions dRerthe real
number field, andC, the complex number field, respectively, with the usual
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canonical basisig, i1, i2,i3 (ig being the identity ofQ which will henceforth be
identified with the identity 1 oR), where

i1ip = —igly =3, ligiz = —igip =iy, lgiy = —i1iz =iy,

and

2=i2=ig=-1
A general quaternion is of the forig = Zf:o gil=qg+09,q €Rorqg €C,
depending org € Q or g € Q°, respectively, whergg and g= qi; + Opiz + Oais
are called the real and the imaginary partjofespectively. Denote by’ the real
vector spaceqiis + 0iz + Gsiz : g € R,1 = 1,2, 3}. The quaternionic conjugate
of g, denoted byq; is defined to beg = qo — . We haveqq’ = g’q. For any
non-zero elemeny € Q there exists an inversg ' c Q:q~t= ﬁ such that

q~'q = qg~! = 1. The natural inner product betweenandg’ in Q¢, denoted
by < q,q" >, is the number}, g g/, and the norm ofy associated with this

inner product isiq| = (3, lq|2)2. We have|qq/| = |q||q|. The angle between

g andq’ in Q, denoted by arg{,q’), is defined to be arcc q’q/,‘>, where the
inverse function arccos takes values in By the unit sphere of quaternions
we mean the sefq € Q : |q| = 1}, denoted byS. We will use the terminology
the real axisin both the complex and the quaternionic spaces with the obvious
meanings.

Denote, by

3
1 0 .
D:—E —
2|:08q||"

the Dirac operator. Functions to be studied in this paper will@fevalued, but
defined in sets of. We will assume, whenever they are involved in the context,
the existence of the partial derivatives defined in the same region in which the
function itself is defined. The operat® can be applied to such a function

f =foig + f1iy + f1io + f3i3 from the left- and the right-hand side in the following
manners:

1 Ofx . . 1 ofk. .
Df(q) = = — i, fD(x) = = — ki,
(@) zsz:aqlw ) zzl:zk:aqlm

respectively.

If Df = 0 orfD = 0, thenf is said to be deft-regular or a right-regular
function, respectively. A function which is both left- and right- regular is called
aregular function. For left- and right-regular functions the following versions of
Cauchy-Fueter’s theorem and Cauchy-Fueter’'s formula hold ([Su] or [DSS]):

Assume thaf? is a bounded open domain with a Lipschitz boundary,fard
are respectively left- and right-regular functions defined in an open neighborhood
of the closuref?2 U 9f2. Then

/ o(@n(@)f (@)do() =0,
o8
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wheredo is the surface area measure ar{d) the outward pointing unit normal
to 012 atq € 912.
Under the above assumption,gfe (2, then

1
f(q) = ﬁ/ E(@" —a)n(@")f(q)de(@"),
™ Jogn
whereE(q) = % is the Cauchy-Fueter kernel.

The relationE(qq’) = E(q’)E(q) will be frequently used.
We will also use the operators

1 0 P
= — d A=4DD = —.
227 ii an ; 7
We note that for any regular functidnwe have
= 0
Df = —f = —Df. 1
9% )

1 Laurent series of Kernel functions

Denote byl the Kelvin inversion defined by

L)@ =E@f@).

It is obvious thatl 2=identity. We recall that maps a left-regular function in-
side (outside) the unit sphere to a left-regular function outside (inside) the unit
sphere; and a right-regular function inside (outside) the unit sphere to a right-
regular function outside (inside) the unit sphere ([DSS]). This is a special case
of Bojarski's result, for a proof of which we refer the reader to [PQ].

Define, fork € Z., the set of the positive integerB(~¥(q) = ((j(l_)kl;!l Dk-1
-E(q); and P&=1 = | (P(-K). SinceE is regular, owing to the relations indi-
cated in (1)P(X has alternative expressiord¢—(q) = (‘l)kfl(a%o)kflE(q) =

&1
=D E(@).
Lemma 1. For k € Z,, PK is regular away from the origin and homoge-

neous of degree-2 — k; P&~1 js a polynomial of g1 = 0,1, 2, 3, regular and
homogeneous of degreek1. Moreover,

P(g) = gla/*P(@). )

Proof. The regularity ofP(—%) follows from the regularity of the Cauchy ker-
nel E and the commutativity o% with the operatoiD. The homogeneity of

P(=K is from taking derivatives to the homogeneous functioriThe regularity
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and the homogeneity &**—Y come from the corresponding propertiesRf
and the property of the Kelvin inversion. SinBX—1E is homogeneous of de-
gree—2— k it follows that Ok~ 1E)(W) = [q|* & & AR 1)' -PCR(@). Multiplying

E(q)((k n " to the both sides, we obtain (2). The fact tR4t Y is a polynomial
is a consequence of the last equality in Remark 2.

We will use a Fueter’s result ([Su], [De]) which says thétdfis holomorphic,
defined in an open s@ in the upper half plane o, f°(z) = u(x, y)+iv(x,y),z =
X +iy, whereu andv are real-valued functions, thenf® is a regular function
in the open se©O ={g=qo+g € Q: (0o, |q) € O}, where

fo(a) = u(do, |dl) + ev(go, |q),

ande = % We will call f° the induced functiorfrom °, denoted byf® = ©,

and O the induced setfrom O, denoted byO = O. In the sequel we will use
the notationA = {q=qo+g € Q : (0o, |q]) € A} for any setA in the complex

plane, denoted byA = A, regardless whether or not it is open or in the upper
half plane. We will frequently use the relations

DAfO = A(g) 3)

and
2 du

Af = "1 ay(QO,|9J) Ze(|9J ay(QOJgJ) |9J2v(q0,\gj)) )

We refer the reader to [De] for proofs of (3), (4) and the two-sided regularity of
AfO,

Fueter's method is naturally related to the concieptinsic functionsof a
complex variable and that of a quaternionic variable. Rinehart ([Ri]) introduced
and motivated the study of the class of intrinsic functions on a linear associative
algebra, say2Z, with identity, over a field7 . Let G be the group of all auto-
morphisms and antiautomorphisms@f that leaves” element-wise invariant.

Definition 1. A subsetZ of %7 is called an intrinsic set ofZ/ if 2% = & for
every(2in G.

Definition 2. The single-valued function F, with domaf# and range in%?7,
is said to be an intrinsic function i€ is an intrinsic set ofZ4 and if Z €¢ &/
implies H22) = 2F(Z) for all 2 in G.

It is well known that in the complex field the only nonidentical automor-
phism or antiautomorphism is the complex conjugate mapping. Accordingly, the
intrinsic sets are those which are symmetric with respect to the real axis and
the intrinsic functions orC are those © satisfyingf9(z) = f°(z) ([Ri],[Tu]). If
fO = u +iv, whereu,v are real-valued, then the above equality is equivalent
to u(x, —y) = u(x,y),v(x, —y) = —v(x,y). In particular,v(x,0) = 0, i.e.f is
real-valued if restricted on the real line in its domain.



Singular integrals on surfaces in the quaternionic space 607

It is also well known that inQ the groupG of the automorphisms and
antiautomorphisms consists of all the linear transformations which leave 1 fixed
and effect orthogonal transformations on the vector spéceFor each unit
elemente in @ the linear span of 1 and overR is called thecomplex plane
in Q induced bye, denoted byC®. The intrinsic sets irQ are those which are
symmetric with respect to the real axis in every induced complex gl&na Q.

It is proved that iff © is an intrinsic function defined in an intrinsic s8tof C,
then the induced functioff is an intrinsic function defined in the intrinsic set
O; conversely, all intrinsic functions o@ are formed in this way ([Ri]).

In this casef® is identical with theprimary functionof f°, andf® the stem
function of 9, the terminology related to the Hermite interpolation extending
functions defined irC to functions defined in finite dimensional associative alge-
bras (see e.g. [Ri]). In the sequel we will be using the terminology “stem” func-
tions only for intrinsic holomorphic functions defined in open, simply-connected
intrinsic sets in the complex plane. In this language Fueter’s result says that the
Laplacian of the primary function of a stem function is regular.

Denote byr° the mapping

1
0:f0 5 —ZAf°,
T - -2

It is noted thatr? is linear with respect to addition and real-scalar multiplication.
As shown in [Su],

E(@) =7%() ")),
which is
PEI(@) = 7°(() (@)
in our notation. In general, we have

Lemma 2. PR = 79(() %), k € Z..

Proof. Denotey°(z) = 4. Owing to the relations)®(z) = ((‘kl_)klg!l(%)kfl(%)
— 0
andD70(f% = 7°(%L), which is from (3), we have

_ (et

Sk—1 — p(—k)
—(k_l)!D E=ph,

(1)t g o1
o O

Fromfo(%) = E() we haver®(;+-) = E(1—). Thus the mapping® formally
maps the series

@) = )

- _-_ = _... - |z] > 1,

term by term, to the series

E@l-q)=) -PC¥@), al>1 ()

k=1
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Applying the Kelvin inversion to both sides of (53ince E(q)E(1 — g~ =
—E(1 - q), we obtain, formally,

E@l-a)=) P¥@, lal<1, (6)

k=0

corresponding to

k

=1+z+Z%+ - +Z¢+.. z| < L.
1-z
The actual equality of (5) and (6) is justified by the estimates
PEY@) < c@+kdjal~>,  [al > 1, (7
and
PO@)] <c@+kdal*,  lal<1, 8)

deduced from the estimates (9) on page 431 and (2) on page 429 of [So]. (5)
and (6) can also be deduced from Laurent series theory of monogenic functions
(see Ch.ll of [DSS]).

The following relation is anticipated which could be used to alternatively
defineP® fork =0,1,2, ...

Lemma 3. 1 (r°(()~)) = 7%(()¥*1), and thus B = 70(()<*1) k € Z,.

The proof is crumble-some for which we refer the interested reader to [Q4].
In the sequel, a series of the folm, 2, cz¥, or S az¥, or S0 oz
is called aTaylor series(power seriel or aprincipal series or Laurent series.
Series>” ckP® and 3" cz* will be said to beassociatedto each other. Ow-
ing to the observation made in the last paragraz;ﬂwmapszljzl_w czX to its
associated series; but does not mapg, cz* to its associated series.

Remark 1. It is easy to prove, using more direct methods than those in the proofs
of (5) and (6), that in general the convergence radii of a pair of associated series
are the same: To get the same radius of convergence after taking partial deriva-
tives on induced functions, one can use the same methods as in the real case, i.e.
extend into several complex variables and then use the multiple Cauchy integral
formula over polydiscs ([Ryl]). Some results concerning radii of convergence
along some of these lines can be found in [Ry2].

In this paper thelomainof a power serieg%(z) = Y2, oz will be meant
to be the largest simply-connected region which the power function, originally
defined in its convergence disc, can be holomorphically extended to. The same
convention applies to principal series. The domainb(z) = >0 oz is
defined to be the intersection set of the domaing%fand¢®—, where¢®*(z) =
o kX, andg®(2) = St az¥, andg®(z) = ¢%*+¢% in the intersection
set. Using this convention, for instance, the sefig&, z“+> "} —z¢ =12 a
function holomorphic irC\ {1}. The convention also applies to serjescP®,
but using “regular” in place of “holomorphic”. An example is
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-1

3 PO(g)+ 3" ~PH()
k=1 —00

[eS) -1
3 32
k=1 —o0

1+z

— 0
= )
2
— 0
= T
= (2 )=2E(1-q)
17 a),

a function regularly defined everywhere except 1. Be notice that ifcy € R
for all k, then_ ¢z* is an intrinsic function defined in an intrinsic st and
S cP® is defined in the intrinsic sed.

Remark 2. The relation between® and the entries of general Laurent series of
regular functions may be easily established. The following setting is standard (see
[Su], [DSS]). Let Y,k =...—5,—-4,-3,0,1,2 3, ..., be the set of the functions
f 1 Q\ {0} — Q¢ which are regular and homogeneous of degree k (note that U
and U_; are empty sets). Let be an unordered set of n integefs, ...,in} with
1 < ix < 3;a can also be specified by three integersm, ng with n, +ny+nz = n,
where n is the number ofl’s in o, n, the number o2's and ry the number of
3's. There are%(n +1)(n + 2) such setsx and the set being consisted of which is
denoted by,. When n= 0, let oo = {(}}. We writed,, for the nth order differential
operator
" "
%= Da,-0a, | T oqEoy

Set
E., =0,E
and 1
Pa(@ = > (Qoii, — Gi,) - - (qoii, — Gi,),
where the sum is over all!fi(n;!n,!ng!) different orderings of fi's, n,2's and

ns3's. Itis proved that{E,, : « € on} forms a basis of Us_,, and{P,, : a € o}
forms a basis of i and

(o}

> > Pa(®Ea(p)

n=0 a€on

E(p—a)

o0

S Eap)Pa(@),  lal <|pl. )

n=0 a€on

Letg=1,|p| > 1, we obtain, for k> 0,

P = 3" Py (1)E, =

acok

1

le“E cU_3 .

Letp=1|g| < 1, we have



610 T. Qian

P® = %" E,(1)P, € Uk.

aEoyk
We will come back with more relations between B, and PX in Sect.2 ((16)
and (17) in the proof of Proposition 4).
We will be using the following sets in the complex plane. Setufag (0, ),
S ={zeC:arglz)| < w},
where the angle arg) of the complex numberz takes values in{x, 7],
S, . (n)={zeC:|Re@)| <mze S },
S =S.US, _,
Si(m) =S (M US, _(7),
WE, . (m) ={z € C: |Ref)| < 7 and Im¢z) > 0} U S (n),
o+ ={z=expln) € C:ne W (m},
and
o=HL L OHG .
These sets are illustrated in the diag’ram bew%(w) andW¢, _(r) are “W"-

and “M"-shaped regions, respectiveljl® . is a heart-shaped region, and the

w,+
complement ofH?, _ is a heart-shaped region. With the obvious meaning we

. . H C
sometimes writeH, , = e'We.x(M etc.

Remark 3. The above introduced sets naturally arise from our integral operator
theory. Star-shaped Lipschitz curves in the complex plane have the parameteriza-
tion v = v(0) = expi(d +iA(0)), where A is a2r-periodic Lipschitz function. Let

the Lipschitz constanfA’||., = tan(yo),wo € (0, 5). The integrals under study

are convolutions using the multiplicative structure of the complex field and of the
form p.v. [ #2>zn~H)f (n)‘%ﬂ z € v, where¢? is a kernel function. A simple com-
putation shows that the condition z € ~ implies z;7* € HS,w € (wo, ), and

thus the domains of the kernel functions need to contain théH§efalso see the
explanation made before Lemma 4).

The following function spaces are used in the theory:

K(HS, +) = {¢%: H . — C : ¢°is holomorphic and satisfigs’(z)| < |1Ci”z

inevery HY ,,0 <v <w}, (10)
K(HE) = {6% 1 HE, — C 1 ¢” = 02" + 0%, ¢%F € K(HE D)},
H>(S,+) ={b:S_ — C:bis holomorphic and satisfies
Ib(z)] < C, ineveryS ,0 <v <w},
and
H>(S) ={b: S, = C: by =bxzectrer0; € H™(S] 1)}
The study of the paper will be based on the main results of [Q1] that will

now be recalled for the reader’s convenience. The results address the relation
between the classé¢s(HE, 1) andH *(S;, ).
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N
) _WW

K27 /57,

)

Fig. 1.

Theorem A. If b belongs to H°(S;, ;) or H>(S}), then¢®(z) = Znifil b(n)z"
or ¢%z) = Yop2 .. 'b(n)z" belongs to KHS ) or K (HS), respectively.

Theorem B. If ¢° € K(HE, 1), then for every € (0,w), there exists a function
b” € H>(S{ ) such that° = S > b¥(n)z". Moreover,

@ = Jim o [ et et +

where the path¥(v) = {z € C: z =r exp((r £ v)),r is from 7 sec¢)to 0; and
thenz =r exp(—(ziv)),r is from 0 torw sec{)}.

If ¢° € K(HS), then its Taylor series pat®* belongs toK (H¢,,) and
its principal series part®~ belongs toK (H¢, _), respectively. By invoking
Theorem B we have two functiors™” andb=",0 < v < w, associated with
»%* and¢®~, respectively. Adding up, we obtain the correspondeftces b” =
b*” +b=" € H>(S).

In Q we will be working on the heart-shaped regions
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In{ql)

Ho+={0€Q: m > —tan()}
and
H,=Ho,+NH, .
That is iniq
niq
H, = €Q: < tan .
{aeQ arg@. 1) @}

The reason of using these sets is the same as what is described in Remark
3 in relation to convolution integrals using the multiplicative structure of the
underlying space. Precisely, we will be working on convolution singular integrals
on star-shaped Lipschitz surfaces and the kernel functions ought to be defined
in H,,. The following observation for the complex plane case has motivated the
definition ofH,, : Let A = A(x) be a 2r-periodic Lipschitz curve whose Lipschitz
constant is less than tap, then forz = expi(x +iA(X)),n = expi(y + iA(y))
we havezn! = expi((x — y) +i(A(X) — A(y))). This implies that!nzz Il =

Ix—yl

|A(T) A‘(Y)\ < tang).
y

Denote byH?, | andH¢, the images or€® C Q of the setsH{, , andH¢, in

C, respectively, under the mappitig: a + bi — a + be. We have
Lemma 4.

Ho+ = UeesHE 4
and

Hw = UEGJ Hfm

where the index set J is the set of all the unit vector&’in
Proof. We will only prove the lemma for the case “+.” The remaining cases
can be dealt with similarly. Leg € H,, +, thenqg € C®, with e = % Denoting

|q| = cosfl, we have, in the complex plare®,

al 0 e(6+¢
—e) =|qle¥ = e¥0*en)
|Q|(‘q‘ al ]
wherep = —In|q|. The condition% > —tan() thus becomeg > —tan(),

a condition characterising a points+ ep € W¢, (m) by which we denote the
image onC® of the setW¢ ,(r) under the mappinge. SinceH? , = g W (),
we thus havey € H, ., and so

Hw’:l: C Uer),:l:

Since the argument is reversible, the proof is complete.

Set
KHo+)= { ¢:Hut—>Q:9g= Z, -6 PO ¢ € C,is regular and
satisfies|¢(q)| < C, VI qP ineveryH, +,0<v <w}

(11)
and

KH.)={¢:Ho = Q%19 =¢"+9¢7,6" € K(Ho,+)}.



Singular integrals on surfaces in the quaternionic space 613

Theorem 1.1f b € H>(S; ) and ¢(q) = oo b(k)PX(q), then ¢ €
K(Hw,:i:)'

Proof. We will first prove the theorem fdb in H°"(S;, ), where
H(S 1) = {b € H®(S] 1) : blrnse | is real valued,

and then prove the theorem for the general daseH **'(S;, ).
We will first consider the case “". Fob € H>'(S, ), let ¢°(z) =
> sy b(k)z*. Theorem A asserts thaf is in K(HE, _). Sinceb(k) € R, ¢° is
a stem function defined in the intrinsic d8f, _. The associated(q) therefore
is regularly defined irH,, _ away from thegp-axis. It is easy to show, using
Morera’s theorem for functions of a quaternionic variable, that the associated
function ¢ is regularly defined across tlgg-axis inH,, _.
Now we prove the estimate far. What is interested here is the behavior of
¢ atq ~ 1, its sole singular point. This implies that ~ 0.
Writing ¢° = u +iv as usual and using the relation (4), we have

(%)) = g 2. 1) + 21 (g 2 (0. o) — rdrv(cb. )

9
'

In order to estimaté; andl, we will need the following lemma.

=l + (12)

Lemma 6. For ¢° € K(HS, ), we have, for anp) < v < w,

(n) 2n!C, 1

@] < @) [L—z zeHj,,

0
19 50 L

where G, is the constants in (11) ani{v) = min{3, tan( — v)}.

Proof. We first notice that at the local ~ 1 the setH; | can be approximated
by the cone of the angle + 2v and vertex (10) pomtmg to the+ direction of
the x-axis. This claim can be justified from the relatieh— 1~ n,0~n € C.
Then for any point & z € H, , the discS (2) of radiusr = §(v)|1—z| centered
atz is contained inH{ .. Usmg Cauchy’s formula, we have

o nt [ ¢%(n)
¢ )= 27”/:;@) (n— Z)“”d?7

Therefore,

27
o n! c, 1 2nic, 1
< —dp < —_ = ___
¢ ®—%AHfW”‘WMH4W’

where we have used the relatibth—n| > |1 —z|—|z—9n| =|1—-2z| -1 >
|1—2z| — 2|1 —z| = 3|1 — z|. The proof is complete.

Continuing the proof of the theorem, we first consider the ¢aise ¥|1—
g|. Using the estimates in Lemma 6 far= 1, from the definitions ofi1, I, in
(12), we have
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Since the above case covers all the pops< 1,9 ~ 1 in the region, we
need now only consider the cage > 1 and|gl < 2|1 — g|. First studyl.

Sinceu(x, y) is an even function with respect to its second argunyer% is an
odd function with respect tg. For smally we have the Taylor expansion

ou 8u

ou _
Za—y(ny) = 8—y(x7y) ay -Y)
o 6n1
— Z ayml( y) (Zy)n
n=1

Using the estimates in Lemma 6 to the partial derivatives in the series and the
relation|g| < 2|1 — q|, we have

Z(n 1)( 24 nt

LEY

- 52(V)|1 —qlo(v)
n+1
62(u)|1 q|3zzn-1
< G
- [1-qP

The proof of the estimate fadr, is similar and left to the interested reader
(see [Q5] for a complete proof in a more general case).

Now consider the case “+". Assuniee H>'(Sf, ;) andy(q) = Y %, b(i)
P)(q). The Kelvin inversion then giveb(:)(q) = Z,:_lb’(l)P(' (q), where
b’(z) = b(—2z) € H"(S, ). Sincel (1) = 7%(1°), wherey®(z) = >>,_>, b/(i)
7-1= %Z;"_Ol b'(i)z' € Hg _, the argument for dealing with in the above
considered case, and hence the conclusions there, all apply}oUsing the
relation+ = 12(y)) = E(q)l (')(q~1) and the relatiorg € H, . if and only if

g~ €H,_, we have

1 1
C, =C, :
Iql3 |1—q-1]3 |1—qf®

(@) = [E@)! ()@ )] < qeH, .
The proof for the case € H>'(S, ) is thus complete.

Thanks to the following observation which enables us to extend the result
for b € H>'(S ) to functionsb € H>(S;).

Observation. If b € H>(S;, ), then b(Z) is in the same class with the same
bounds. We observe thatz) = 5(b(z) + b(z)) and h(z) = I(b(z) b(i)) both
belong to H*'(S], ;) with the same bounds, and=bg +ih.

The proof of Theorem 1 is complete.
A consequence of Theorem 1 is
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Corollary 1. Let b € H™(S) and ¢(q) = 372 __'b(i)PO(q). Theno <
K(Hy)-

The converse of Theorem 1 holds. Before we state the result we need to
extend the indeX in the functionsP®) to complex numbers. First, the domain
of the mappingr® can be extended to holomorphic functions, not necessarily
intrinsic, defined in intrinsic sets i€, using the decomposition given in the
above observation. In light of Lemma 2 and 3, we may define, foraays’,,

PO =7()), ze$

and
P@ =70(()y**9), ze S, .,

where {)* = exp@In(-)), where in the first case the In function is defined by
cutting the positivex-axis, and in the second case defined by cutting the negative
X-axis.

Theorem 2. If ¢(q) = Y57, biPY(q) € K(H,, +), then for everys € (0,w)
there exists a function'b € H*(S] ) such that b = b”(i),i = +1,42, ...
Moreover,

b*(2)= lim = ) P@(p~HEPN(P)S(r “*p)da(p),

r—1- 2m2 LE(

_
where 1=(v) = exp(l *(v)) and I=(v) is defined in Theorem B.

The proof of Theorem 2 is similar to that of Theorem B (see [Q1] and [QZ2]).
The integral formula forb” in Theorem 2 is related to the formula given in
Proposition 4 below.

Remark 4. From the proofs of Theorems 1 and 2 we can obtain the bounds of
¢ € K(H,, +) and the bounds of‘be H>(S] ), respectively. For instance, out

of the proof of Theorem 1 we can further conclude that for@ry v < v/ < w,

we have

1
lp(@)] < C”||b”L°O(Sf/,i)W’ qe S?/,i'

Remark 5. As in the complex variable case proved in [Q2]. Theorem 1 and
Theorem 2 can be extended to the cases where b is holomorphic, bounded near
the origin and satisfief(z)| < C, |z for |z| > 1in smaller sectorss, , , where

s is any real number. Details will not be included here, but the following result,
with a proof similar to that of Theorem 1 (also see [Q2]), will be used in the proof

of part (ii) of Theorem 4 (see Lemma 8) and Remark 9.
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Theorem 3. Let —o0 < s < 00,5 # =3, —4, ... and b a holomorphic function in
S . satisfying the estimates

Ib(z) <C,lz+1f°, inevery S ,,0<v <w.

Theng(q) = Y55, b(|)P(')(q) can be regularly extended td,, 5. satisfying

o=@ < Coll o e qeH, 1+, 0<v <V <w.

1
|()i 1| e
Remark 6. Theorems 1 and 3 can be interpreted as regular continuations of
Taylor and principal series. For instance, f@b; ), € 1°° the series¢(q) =
Soie, biPO(q) is naturally defined and regular in the unit ball @. Theorem 1
asserts that if there existsd H (S, ,) such that b= b(i), then¢ can be regu-
larly extended tdH,, ., and actually belongs to K, +). A similar interpretation
applies to principal series.

2 Singular integrals and Fourier multipliers

A surface X is said to be a star-shaped Lipschitz surface, if it is star-shaped
about the origin and there exists a constéink oo such thatg, q’ € X implies
that
[Injg—*q’||
arg@, a’)
The minimum value ofM is called the Lipschitz constant of, denoted by
N = Lip(X).
Since locally Ing~*q/| = In(1+(q~*a’|-1))| = (|9~ 'a’| - 1) =~ [a~*|(|9’| -
la]) = (/9’| — |g]), the above defined sense of Lipschitz is the same as that of
the usual one. According to the definition, we have thag,if’ € X, then
q~q’ € H,, for anyw € (arctan{), %)
From now on we will be working on a fixed star-shaped Lipschitz surfdce
and we assume that € (arctanN), 5
Let

p=min{|q] :q € X} and7 =maxX|q| : q € X}.

We will be working onL?(X) = L%(X, do). The norm off € L?(Y) is denoted
by |-
As in [CM] and [GQW], we consider the following subclassIo{Y) :

4 ={f(q):f(q) is left—regular inp — s < |gq| < 7 +s for somes > 0}.

Proposition 3. The subclass+# is dense in B(X).

Proof. Forf,g € L3(X), denote by {, g) the bilinear form

/ fgdo.
b
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It is easy to verify that, fog € Q,

(.5 =IfI% F.9) = (9.7). @f,9)=a(f,9).

If (f,g) = O, then we say that is orthogonal tog. Assume that 4 was not
dense. Since the bilinear form () satisfies the requirements for inner products
over quaternions, the basic Hilbert space methods are adaptable to this case. In
particular, there would exist a function £ g € L?(X) orthogonal to all the
functions in. ¢, and so in particular t&(- — q’), g’ being outside an annuls
p—s<lgl<T+s.

We would have, therefore,

/Z E(q — q)n(@h(a)do(q) = O, (13)

where
h(a) =n(g)g(a)

was a function inL?(Y). Since the integral in (13) is absolutely convergent, it
would remain valid for allg’ ¢ X, by regular continuation.

Let p be a point onX andq’ = rp,q* = r—p. We would have, as a
consequence of the CMcM theorem on Lipschitz surfaces ([CMcM]) and (13),

0=h®)= im 55 [ E@-d) - E@ - In@h@do(a)

for almost allp € X', and sog(p) = 0 for almost allp € X'. This is a contradiction
and the proof is complete.
From [Su], we have, fof € .4,

f@=> > {Pa(@an+Ea(@bs}, p—s<|g<7+s,  (14)

n=0 a€on

where 1
%= 50 [ EONEIE)(P)

and 1
0= 573 | PalING (o)
The following result is expected.

Proposition 4. If f €., then
f(a) = Z / PO a)E(P)n(p)f (P)do(p), p—s < g < +s. (15)
k=—o00

In general, if the annuls is centered &, ghen for a left-regular function f in the
annuls, we have
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(=3 - [ PYe-ia - dDEENEN o)
k=—o0 2m? 0 ’

p—s<|g—q°| <r+s,

where X is a star-shaped Lipschitz surface abolt q

Corollary 2. Iff is left-regularin U ¢ Q and ¢ € U, then
=1
f@)=> - / P®(p~Y(q — a°)E(PIN(p)f (p)da(p),
=0 27 Je(@n)

where Bq°,r) is the solid ball centered at%with radius r such that Bq°,r)
U . Moreover, the Taylor series is absolutely convergent in any b@PR) c U.

We will only prove the equality (15). The other conclusions will then become
obvious.
Proof. We first deduce some relations betwd@® andP,, E,,.

Let |g| < |p|. The equality (6) implies

E@-pa)E(p) =>_ PO(p'q)E(p).

n=0
On the other hand, from (15),
EQ-p'a)E(P) = E(p-q)
= i > Pa(9)Ea(p)
n=0 a€on
= 2 ; Ea(P)Pa(a).

Comparing the two expressions, we have

PO a)E(P) = Y Pa(@Ea(p) = Y Ea(p)Pa(Q). (16)

acop acop

The obtained relation (16) can be extended to pny such thatp~1q # 1 using
regular continuation.
Similarly, for |g| > |p|, from formula (5) we have

E(L-pQ)EP) =>_ —PC(p q)E(p).

n=1

On the other hand,
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E(L—p ta)E(p) —E(q—p)

o0

= > ) —Pa(p)Ea(q)

n=0 acon

= > ) —Ea(@)Pa(p).

n=0 acon

Comparing the two expressions, we have,ror 1,2, ...,

PCY(p'g)EMP) = > Pa(@Ea(@= Y Ea(@Pa(p).  (17)

a€op_1 aEop_1

The relation (17) can be extended to any such thap—1q # 1 by using regular
continuation.

The relations (16), (17) imply that the projections fofonto the spaces
Ug,k = ... —5-4,-3,0,1,2,3,... are given by convolution integrals using
P®™ as kernels. In particular, from (14), we have

t() ngfrz( /E 3" Pa(@EL (PN (P)do(p) +

acon

" / 3" Ea(@Pa(P)n(@)f (P)do(p))

acon

oo

= i ) fn—
= nZ:OZTrZ/EP (p 1q)E(p)n(p)f(p)dO_(p)+
+ f i/ P(n)(p_lq)E(p)n(p)f (p)do(p)
i 2r2 |

as desired. The proof is complete.
As a bi-product of the argument in deducing (16) and (17), we have, for any
integern andp # q,

E()P™(@ap™) = P™(p~'q)E(p) (18)

and therefore, for any € K(H,,),

E(P)oap™™) = ¢(p*a)E(p). (19)

Owing to (18) and (19) all the integral expressions that invé®e(p—1q)E(p)
and#(p~1q)E(p) in their integrands, e.g. in Proposition 4, Corollary 2 and The-
orem 4 have alternative expressions usi@)P™(qp—1) and E(p)¢(gp~2) in
their integrands instead.
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Remark 7. If f 0 is a holomorphic function in the annujs— s < |n| < 7 +s in
C, o a star-shaped Lipschitz curve in the annuls, then the Laurent seri¢ha$f
the expression

=1 _ d
0= 5 [ p-s<pl<rs
k=—o0 g

Comparing this with Proposition 4 and its Corollary 2, we can see that the func-
tions PX) play the same role as the functiofd® in the one complex variable
case. For right-regular functions we have symmetric results. For instance, the
counterpart of Proposition 4 in that case is

fay=> 2712/Zf(p)n(p)E(p)P(k)(qp‘l)do(p), p—s<logf<7+s

k=—o0

Now for a functionb € S, we introduce the following multiplier operator
My :. 4 — 4

Mof(@) =D _b(n) > Pa(@as+)y b(—n) > E.(@bs, p—s<|q| <7+s.

n=1 agcon n=1 acop

Now we show thatMy has a singular integral expression whose kernel, apart
from a constant multiple, is the function Ku(H,,) associated withh as specified
in Theorem 1

Now forq € X,r = 1 butr < 1 consider the function

Mgf(@) = > b(n) > Pa(g)a.+ Y b(—n) > E.(r'a)ba
n=1 a€op n=1 a€on

P'(q) + Q" (a),

p—s<|ql<T+s.

Using the convolution expressions of the projections, we have

o0 1
P b(n)== [ P™W(p~trq)E f(p)do
(@) n§:1 M52 /Z (P~ r)E(p)n(p)f (p)dao(p)

1 ad "y
= 5 /2 (bR Oe ) EENG ()t

= 5z 06 REENE) E)o)

where¢* = 2 b(n)P™M € K(H,+) as proved in Theorem 1. Similarly, we
have

Q'(@) = 2—12 / o~ (P~ TE(PIn(p)f (p)da(p),
™ Jx

where¢™ € K(H,, ).
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Now lettingr — 1—, since the series defining/ f is uniformly convergent
asr — 1—, we can exchange the order of taking limit and summation to obtain

Mof (@)= lim 5 [ (' ra) + o (p~r )EENE) (P)do(p)

Theorem 4. (i) If b € H>(S), then for any fe .4 and g€ X', we have

Mpf ()

r—1—

lim —= { / 6(p~Q)E(@)N(P)f (p)do(p)
|[1—p—lq|>e,peX

lim 2—12 / (¢*(p~'ra) + ¢~ (p~r Q) E(p)n(p)f (p)do(p)
™ Jx

e—0 2’/T2
+¢'(e, @) ()},

where¢ = ¢ + ¢~ is the function associated with b as specified in Corollary 1
and ¢! the bounded continuous function® = ¢*1 + ¢—1, where

iea)= |

o™ (P)E (P)n(p)do(p),
S(e,q, %)

where Se, g, £) is the part of the surfacél — p—1q| = e inside or outsideY,
depending ont taking+ or —.

(i) For anyb € H*°(S), Mp, can be extended to a bounded operator from
L2(X) to L?(X). Moreover,

||Mb||L2(E)—>L2(2) < Cy||b|||_oo(sg), arctan(\l) <v<w.

Proof of part (i) Only the second equality requires a proof. Let us only consider
the part related t@*; the other part can be dealt with similarly. We will adapt the
proof of Theorem 6.1 of [McQ1]. For eaetr> 0, the integral can be decomposed
into

r—1—

im { [ & (0 H)EEN(P)F (p)do(p)+
[1-p~lq|>e,peX
+ / &* (0~ rEMENE) (P)do(p)}.
[1-p~1g|<e,peX
Asr — 1—, the first part tends to
/ & (0 *EEN(P)! () (p).
|[1—p~1q|>e,peXx
The second part can be decomposed into
/ ¢* (P~ ra)E(P)n(p)(f () — f (a))do(p)+
[1-p~1q|<e,peX

+ / &* (0~ ) EEIN(M)do (P ().
[1-p~iqg|<e,pex
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As ¢ — 0, the first integral tends to zero uniformly with respectrte— 1—;
while if we invoke Cauchy’s theorem, for a fixedthe second integral tends to
ot e, q)f (q) asr — 1 — . The proof is complete.

The proof in [GQW] for the analogous result for a complex variable can be
closely followed to give a proof of part 2 of Theorem 4. Due to the consideration
that the particulars in relation to the spherical Dirac operator in the present case
may be worthwhile pointing out, we choose to incorporate the proof.

We need some preparation on Hardy spaces of regular functions on the sur-
face X (see [Mi] for the theory of Clifford monogenic Hardy spaces on higher-
dimensional Lipschitz graphs).

Let A and A°® be the bounded and unbounded connected components of
Q\ X. Fora > 0, define thenon-tangential approach regions, (q) and AS (q)
to a pointq € X to be

Aa(9) = Aa(0, ) ={p € A |p—q| < (1 +a)dist(p, L)},

and
A5(q) = 44(q, A% = {p € A°: |p — q| < (L +a)dist(, X)}.

It is easy to show, similarly to the complex variable case considered in [K1]
and [JK], that there exists a positive constant depending on the Lipschitz
constant ofX only, such thatd,(q) C A and A5(q) C A® for 0 < a < «ag
and allq € X. The following argument is independent of specially chosen
a € (0, ap). We choose and fixx from now on.

The interior non-tangential maximal function Nf) is defined by

No(f)(@) = sugf[f (p)| : p € 4a(@)}, g€ X

The exterior non-tangential maximal functionf ) is similarly defined.
For 0< po < oo, the (left-) Hardy spacél ™(A) is defined by

HP(A) = {f : f is left—regular inA, andN,(f) € L®(X)}.

If f € HP(A), then||f ||uw(y) is defined as th&éP norm of N,(f) on X.

The spacdd P(A°) is defined similarly, except that the functionsHie (A°)
are assumed to vanish at infinity. Similarly to the monogenic Hardy space case
studied in [Mi], one can prove

Proposition 5. If f € H™(A), pp > 1, then the non-tangential limit of,

lim f
p—q,peAa(q) )

exists almost everywhere with respect to the surface measure trthe limit is
still denoted by f then

Crv.pollf lHpoqay < I [|iro(y < CF polIf lHRoca),



Singular integrals on surfaces in the quaternionic space 623

where G p,, Ch/,)po depend on the Lipschitz constant N and p

In other words, fopg > 1, the H™(A) norm of a function is equivalent to
the LP norm of its non-tangential limit on the boundary. A similar result holds
for the functions in the Hardy spaces associated whth

In polar coordinate system the Dirac operdibican be decomposed into

1 1
D = (o — =0c = (0 — 1),

where I'; is a first order differential operator depending only on the angular
coordinates (see [DSS] and note that dyris their —I7 ).

Recall thatUy,k € Z \ {—1, -2}, denotes the subspace lothhomogeneous
regular functions. It is known that

It (Q) = kF(Q), f € Uk (20)

(see, e.g. page 162-163, [DSS)).
Forf € .4, by defining I'.f to be the regular extension df.(f|s), the
definition of I can be extended tb; : .4 — . 2.

Proposition 6. Suppose that £ H?(A). Then the normi|f |[,42(4) is equivalent
to the norm

1
- ; d .
| [iineia-r-tae@f. =12

The proof is similar to that of the corresponding result for Lipschitz graphs
studied in [Mi] (also see [JK]). A similar result holds fore H2(A°®).
The following is equivalent to the CMcM theorem an ([CMcM]).

Proposition 7. Suppose that £ L2(X). Then there existf € H?(A) and f~ €
H2(A®) such that their non-tangential boundary limits, still denoted Byff-,
respectively, lie in B(X), and f = f* +f—. The mappings f— f* are bounded
on L2(X).

It is easy to see that if € .4, then the natural decomposition 6finto
its power series and principal series parts induces the decomposition given in
Proposition 7.

Denote byX;,0 < r < 1, the surface{rqg : q € X'}.

Lemma 7. Suppose i€ Y. Let0O < r < 1, and g = rqo. Then there exists a
constant G such that

1-p~lal > Cn{@— VPP +6%)E, pe X,
wheref = arg(, p).

Proof. Owing to the relation argy, p) = argp—q, 1) = arg(b1q)o+i|(p~1q)|),
where the last arg stands for the angle of the complex number, the argument in
the proof of Lemma 3.4 of [GQW] then can be followed to conclude the lemma.
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Proof of part (ii) Letf € .-2. Using the decomposition éfdefined in Proposition
7, we havef = f*+f~ wheref* € H2(Q), f~ € H3(A%),[[f %2z <
Cn|[f[|L2(x)- We also haveMyf = Mp:f* + Mp-f ~, where

Mp<f*(q) = lim /Z o= (rHpT)EEN(E) (P)do(p), q € X
M,y=f *(q) can be left-regularly extended t& and A® using

My f=(q) = /E (Pt a))E(P)n(P)f (p)dor(p),

for g € A andg € A®, respectively.
Owing to Proposition 5, we need to show

Mo+ = lwz < Cl|f .

We will now only prove the inequality for the case “+”; the case “-” can be dealt
with similarly. We will suppress the superscript “+” in below for simplicity.
Using the Taylor series expansion fafand accordingly that oM,f, we easily
have, forg € A,

TV (@) = 5 /E 60~ DE NP (p)do(p).

where exchange of the order of taking differentiatignand the infinite summa-

tion is justified by first assumingg| < p, and then performing regular contin-
uation. We also easily have, by exchanging the order of taking integration and
differentiation,

I (@)= 55 [ T EENEI ()do(p)

which is justified by the following

Lemma 8. If v € (arctanl),w), then

ITe(¢(p~tg))) < C peX.qeA.

1t
T1-pq*”
Proof. Applying I'; with respect tog to the series
S(PTAEP) = > bMPD(p)E(p) = > b(n) Y Pu(a)Ea(p)
n=1 n=1 a€oy

term by term, justified by first assuminig| < |p| and then performing regular
continuation, owing to (26), we obtain

Te(d(p~ta)) = Y nb(n)PM(p~q).

n=1
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Applying Theorem 3 withs = 1 to the multiplierb’(z) = zb(z), we conclude the
lemma.
Now we return to the proof of part (ii). Using Lemma 8 and 7, we have, for

qex.
—1 do(p)
C</ retotp )| )

L) || T (p)zd"‘p))

| TZMyf (a))|

IN

Ip[3
1 do(p)

(L,

C( o, T—p i |p|3>
3t
(.

IN

do(p) )
I (p)|?
e T ) |p|3>

IN

c da(p))

2 (@-Vr )2 (X— vz +037

1 :
X(/E ((1_\/r—)2+98)2|FCf(\/Fp)|2dU(p)> )

wherefy is the angle betweeq andp.
Since

m sir? 6o
CJy @@=y rapt

1
/g @ vrz+apt”®

T 02
<cf|] %N
B /o (1- ﬂ2+92)2
1
= Cl—ﬁ
1
- 1-r’
we have
2 ! 2 2 3 dr
Mf ey = [ [ 12060~ rdot@)
X

IN

1 1 1
C/o /Z 1—[’(A ((1_\/F)2+0(2))2|Fcf(\ﬁp)‘2da(p))
x(1— rﬁ?da(q)

! 2 1-r
o [ [iraemr - @)

IN
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<@ o)
1 dr
2(1 — Ndo(p)—
< c /O /E L (VPP)A(L = 1)do(p)~

1
dr
< ¢ [irtmra-nde T
0 JXx
~ CJff ||a2(A)-
The bounds of the operator norfiMy|| can be derived from the proof of
Lemma 8 and the estimates obtained in Theorem 3. The proof is complete.

Remark 8. Since the surface measure éhsatisfies the so called doubling con-
dition, the standard Caldén-Zygmund method ([St]) can be applied to the op-
erators M,, based on the 4-boundedness supplied by Theorem 4, so to conclude
the LP- and the weak-t-boundedness of the operators with the same bounds for
the operator norms in terms ¢ib||L~(sc) as given in Theorem 4.

Remark 9. As in the standard cases the Hilbert transform on the unit sphere and
on star-shaped Lipschitz surfaces should be defined using the Fourier multiplier
b(z) = —isgng), wheresgng) is the signum function which takes valt# for

Re(z) > 0 and —1 for Re(z) < 0, whose singular integral expression is given by
the kernel—#E(l — ), as derived in Sect. 1. The associated singular integral
kernels

oo !
1
53 2 bPY(@)
k=—o0
of a general function ke H *°(Sf) can be alternatively obtained from the formula
1
ﬁTO@O%

where
o) -1
6% = 0%+ ¢ ¢*7(2) = > bK)Z2, 6% (1) = Y b(k)Z“.
k=1 k=—o0

If, instead, we us@°(z) = ZE‘__’_OO’b(k)zk, then the difference between the two
image functions under® is

1 o0
52102+ %;(b(k +2) = b(k)PY]

which, owing to Theorem 3 for the case=s-1, is an integrable function on the
surface, and so gives rise to a bounded operator.

We now close the section by giving Parseval’s identity on the sphere between
the kernel functions and the bounded holomorphic multipliers.
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Corollary 3. Letf be a smooth function on the spheres 1 *°(S)), and ¢ the
function in K(H,,) associated with b as specified in Theorem 1. Then we have

> b /5 P D(p)n(p)f (p)do(p) =

n=—oo

lim { (@) P)n(P)f (P)da(p) + ¢*(e, ) (1)},

€0+ J|1-p|>epes

where KO0) = 2—712 sl (@) (P)n(p)da(p) and ®'(e, q) is defined in Theorem 4.

Proof. Subsequently performing the following steps: decompodingto f =

f*+f =, wheref * andf — are the power and principal series part ofespectively;
adopting the argument in the proof of part (i) of Theorem 4 to eadi @indf —

for g = 1; replacing, in virtue of (18) and (19R™(p—HE(p) and ¢(p~1)E(p)

by P(-"=1(p) and| (¢)(p) respectively, we obtain the identity.

3 Holomorphic functional calculus of the spherical Dirac operator

We wish to point out that the class of the bounded opefdipstudied in Sect. 2
constitutes a functional calculus é%, and in fact is identical to the Cauchy-
Dunford’s bounded holomorphic functional calculus igf. For a discussion in
relation to the domains of in various spaces we refer the reader to [LMcQ]
and [Mc3] where examples in relation to Dirac operators on Lipschitz graphs are
given.

The operatordMy, enjoy the following properties, according to which the
classMp,b € H(S}) is said to constitute a bounded holomorphic functional
calculus.

Let0<w < 5,0<po <1, tanw > N =Lip(¥), b,by, b, € H>(S), and
a1, ap € C. Then

[Mp [|Lro(y—1po(z) < Cpo,[|B]|Le(sc),  arctanN) < v < w;
|\/|b1b2 = Mb1 o sz;
Ma1b1+(¥2b2 = O[j_Mbl + aZMbg'

The first assertion is concluded in Relk& . The second and the third can
be easily derived by using Laurent series expansions of test functions.
Denote by
RO\ T) =W — Tt

the resolvent operator df: at A € C. We show that for non-real, R(\, I';) =
Mﬁ. In fact, a direct computation using the property (20) shows that the
Fourier multiplier A — k is associated with the operatal — I';, and therefore
the Fourier multiplier § — k)~! is associated witfR()\, I). The property of the
functional calculus regarding the boundedness then asserts thakf@p X oo
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C
IRCA, IO [y < A¢S (21)

ma
Owing to the estimate (21), fds € S, with good decays at zero and infinity,
the Cauchy-Dunford integral

b(I;) = % /H bR, I)dA (22)

defines a bounded operator, whefé is a path consisting of four rays:
{sexp(if) :sis fromoo to O} U{sexp(h) : s is from O tooo} U{sexpl(m —
0)) : s is from oo to O}U{sexp((r+0)) : s is from O tooo}, where arctar{) <
6 < w. The functions of this sort form a dense subclas$i6f(SF) in the sense
specified in the convergence lemma of Mcintosh in [Mc2]. Using the lemma, we
can define a bounded functional calculbfg’) on general functionb € H>°(S}))
extending the definition given by (22) for functions with good decays.

Now we showb(l;) = M,. Assume again thab has good decays at zero
andoco, andf €.-4. Then change of order of the integration and the summation
in the following chain of equalities can be easily justified, and we have

D@ = 5 | BOROTIAN @)

— 1 - B L
= 5 Hb(/\)k;w e
></2|:>(k)(p—lq)E(p)n(p)f(p)d<7(p)d/\
— ! 1 - 1
_ zk:(zm/nb(x)(x—k) N5
« /2 PO ')E(EN(P)f (P)do(p)

= 305 [ PUGOEENE) E)do()
k

= Mpf(q).

Denote byP* the projection operators such thatf = f* as defined in
Proposition 7. A consequence of estimate (21) is that HQtR* are typew
operators (see [Mc2]).

FCPi, as well asl;, are identical to theidual operatorson L2(X), respec-
tively, in thedual pair (L?(X), L3(X)) under the bilinear pairing

1

<<f,f'>>= z—ﬂ/zf(q)n(q)f’(q)da(q). (23)

That is
<< [ePERLf >>=<< £, I P >>

and
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<< Ief f >>=<< £ T >> .

These can be easily derived from Parseval’s identity

>3 Al +bubl = 5z [ F@n@) (@da(a),

n=0 acon

in the notation of (14), and the relation (20).

Similar conclusions hold for the Banach space dual pafgx), L’ (X)), 1 <
Po < 00, & + 5 = 1, under the same bilinear pairing (23).

Hilbert and Banach space properties of general typeperators are well
studied respectively in [Mc2] and [CDMcY]. The results of [Mc2] and [CDMcY]
therefore are all applicable to the operatéP =+, and so tol; as well.
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