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O Introduction

Let (M, Ji,h), i =12, ... 1, be compact Ehler manifolds with positive first
Chern class and real dimension 2Since it is well-known that th#l; are simply
connected, we can write the first Chern clagéV;) of M; aspi«;, whereq;

is indivisible andp; is a positive integer. LeM = My x My x --- x M; and

m; denote the projection dfi onto M;. For non-zero integergs, ¢z, - . ., i, the
integral cohomology clasginias +- - -+ g7y is the Euler class of a principal
circle bundlePy,, .. o overM. The circle acts by rotation on the complex plane
C and its one-point compactification, the Riemann splsgréNVe denote the total
space of the associated complex line bundlevly .  and that of the associated
S?-bundle byWy, .. q-

In this paper we construct new Einstein metrics and Einstein-Weyl structures
on these spaces under various additional conditions. See Theorems 1.2, 1.6, 1.7 in
Sect. 1 for the precise statements. These new Einstein metrics are hermitian but
in general are not Khler with respect to the natural induced complex structure on
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the total spaces. However, their Riemann curvature tensor is invariant under the
action of the complex structure. We also construct Einstein metrics and Einstein-
Weyl structures on the quotiel\Tt/qh.__,ql of Wy,,....q by the antipodal map of

the fibres, which can be viewed as an associ&&d-bundle of Py, q. See
Theorems 1.4 and 1.8 for the precise statements.

All these new Einstein (Einstein-Weyl) manifolds do not in general have large
isometry groups. However, when all factors of the base are homogeneous, the
metrics are of cohomogeneity one, i.e., there is an isometric action of a compact
Lie group with codimension one principal (generic) orbits.

Regarding the motivation for studying this class of manifolds, recall that
the first example of a compact inhomogeneous Einstein manifold with positive
scalar curvature was constructed by D. Page [P] from the Taub-NUT solution,
essentially by replacing time by v/—1 t. Bérard Bergery [BB] then made the
important observation that the Page metric can be generalizeshriekahler
Einstein metrics on the associat&d-bundles of those principdl (1)-bundles
over Kahler-Einstein manifolds with positive first Chern class whose Euler class
is of the formq - o, 0 < q < p, with « indivisible andp - o equal to the first
Chern class of the base. Somewhat later, Page and Pope [PP2] independently
observed the same generalization, with the difference that while [BB] emphasized
the framework of cohomogeneity one Einstein metrics, they stressed the Kaluza-
Klein ansatz and the existence of a certain variable change which allows the
components of the Einstein metrics to be expressed explicitly in terms of special
functions, specifically the Gegenbauer polynomials. Yet another approach to these
examples can be found in [JR], and orbifold solutions in dimension 4 were studied
in [PZ].

Inspired by [BB], Y. Sakane [S] constructed the first non-homogeneous ex-
amples of Kahler-Einstein manifolds with positive first Chern class by studying
the associate®?-bundles of principal (1)-bundles over a product of two com-
pact hermitian symmetric spaces. He found that the existencéloliekEinstein
metrics of Kaluza-Klein type on thes®?-bundles required not only similar con-
ditions on the Euler class of thé (1)-bundle, but also the vanishing of a certain
integral. His work was generalized by N. Koiso and himself in [KS1, KS2],
where it was discovered that the integral is actually the Futaki invariant of the
holomorphic vector field associated to thg1)-action. If one uses the variable
change in [PP2], then again the Koiso-Sakane metrics can be expressed in terms
of certain linear functions and integrals of their products. In tiéhlr context,
this change of independent variable corresponds to conversion to the variable
naturally associated to the moment map of thel) action.

In view of the above developments, it is natural to study the Kaluza-Klein
construction ohon-Kahler Einstein metrics on the associatgttbundles of circle
bundles over an arbitrary finite product ofikler-Einstein manifolds, and to try
to fit into a single framework the works of the above authors. Furthermore, in
[PS2], Einstein-Weyl structures which are not locally conformally Einstein were
constructed on th&2-bundles considered byéBard Bergery. It is therefore also
natural to study the Einstein-Weyl equations for this larger familg®bundles.
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We shall see that replacing the base by product manifolds gives rise to several
new phenomena. First, there is a new family of solutions of the Einstein equation
(Theorem 1.2) in addition to the generalization of ther&d Bergery metrics
(Theorem 1.4). Second, (local) conformality t@tder metrics is no longer au-
tomatic (Corollary 7.3). Perhaps the most thought-provoking phenomenon is the
role played by the Futaki integral in Theorems 1.2 and 1.7.

The main results of this paper will be stated in Sect. 1, where the general
geometrical set-up will also be presented. The existence of Einstein metrics will
be taken up in Sects. 2-5. In Sect. 6, some of the topological properties of the
S2-pundles will be discussed, and in Sect. 7 some aspects of their Hermitian
geometry will be described. Einstein-Weyl structures will be explored in the
remaining sections of the paper.

Sections 2-6 of this paper are based on the third chapter of the Ph.D. thesis of
the first author [W2] written under the supervision of the second author, whose
role beyond that of supervision is to ensure that certain closely related themes
are pursued and completed. Finally, we would like to thank A. Nicas for some
useful discussions about topology and Sun Poon for discussions about [PePo].

1 Statement of results

Let (M;, Ji, h;) be a compact Ehler-Einstein manifold with positive first Chern
class as in the Introductiony; be its Kahler form, andp; be its Ricci form.

We will normalize h; so thatp; = pjw;. Also, the multi-index subscripts on
the bundles defined in the Introduction will be omitted whenever there is no
confusion.

Next, we choose a connection forthon P whose curvature? = df =
Z!zl 0im'wi. We caution the reader that these are real-valued forms, while the
usual convention is for the Lie algebra of the circle to be identified with the
imaginary complex numbers. Notice thé&t is harmonic with respect to any
product metric of the formazh; +- - - +a h; onM, wherea; are positive constants,
so thatd may be viewed as a Yang-Mills connection Bnf induces connections
onV andW which we use to lift metrics on the babé to the horizontal spaces
of the bundles. We will examine the Einstein (resp. Einstein-Weyl) equations for
the family of metrics of the form

|
(1.1) h=dt®+f(t)> 00+ g(t)° m'h,

i=1
wheref andg; are smooth non-negative functionstodefined on some interval
| and satisfying suitable boundary conditions which guaranteehttdgfines a
smooth metric o/, W, or W. These conditions will be discussed in detail later
on. Here we only point out that for each fixedhe induced metric oR makes it
into a Riemannian submersion with totally geodesic fibres onto a product metric
on M, and, ast varies, we have an equi-distant hypersurface family as was
discussed in Sect. 2 of [EW].
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The connectiord can also be used to construct a complex struciuon V
(resp.W) by lifting the product complex structutk x - - - xJ; on the basé to the
horizontal spaces and using the natural complex structute(mdsp. the Riemann
sphere) on the vertical spaces. Thusadmits a natural complex structure, and
W, with the complex structurg, may be viewed as the projectivization\6fp 1,
wherel denotes the trivial complex line bundle over.

Theorem 1.2 Notation as above, assume that
O<|g|<p, i=12...,1,

and that there exist&, ..., g/) where|e;| = 1 with at least ones; positive such
that L
P1 n P2 n P n
(— +epX)" (== +eX)? - (— +X)"xdx < 0.
/4 |G |G| G
Then there exists an Einstein metric with positive scalar curvature gn. VY
which is Hermitian with respect to J but which is ncalderian.

Note thatl cannot be equal to 1 in Theorem 1.2! This is because the positivity
of the first Chern class implies thpt < n; + 1, which in turn implies that when
| =1 the above integral is positive. Hence the Einstein metrics constructed in this
theorem belong to differentfamily than the Brard Bergery-Page-Pope metrics.
Indeed, we shall see from the proof of the theorem that the metrics do not factor
through the antipodal map of ti&?-fibres (cf Remark 3.4).

Suppose now that the bundle is fixed, and some choicg 0f.(. , ¢;) contain-
ing both +1 and-1 makes the above integral positive. Then one easily checks
that the choice {¢;,...,—¢) renders the integral negative. Of course, there
could be several choices ofy(. . ., g /) containing both +1 and-1 which make
the integral negative.

At this point let us recall the existence theorem of Koiso-Sakane [KS1, The-
orem 4.2 ], which we state in the following form for comparison purposes:

Theorem 1.3 (Koiso-Sakane)There exists an Einstein metric with positive
scalar curvature on Y, . o which is Kahler with respect to J if

o< |ai| <pi,
and if
1
P1 nlpz n pi n _
— —=X)"(=—x)"--- (= —x)"xdx=0
/_1(q1 P =0 (B =)

As was discovered in [KS1], the above integral is precisely Futaki's func-
tional [Fu] evaluated on the (real) holomorphic vector fiélg) ot. Comparing
Theorems 1.2 and 1.3, one sees that the hypotheses in Theorem 1.2 above are
much less restrictive. Furthermore, when a choice=gf.( ., /) makes the in-
tegral in Theorem 1.2erg then Theorem 1.3 shows that on the bundle whose
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Euler class is given by the integersz;|q;| there is a Khler-Einstein metric,
because the integral in Theorem 1.2 is the Futaki invarianf §gfot on this
bundle. In this sense Theorems 1.2 and 1.3 complement each other.

The generalization of the Einstein metrics oérérd Bergery-Page-Pope to
S2-bundles over a product ofafler-Einstein manifolds with positive first Chern
class is given by

Theorem 1.4 LetO < || < pi,i =1,...,l. Thenthere always exists an Einstein
metric with positive scalar curvature on tlﬁéP’z—bundlqul,,,M, and hence an
Einstein metric on the Sbundle W,....q Which is Hermitian but non-ghler with
respect to J and has fibre-wigk/2 symmetry.

Notice that, unlike the Khler case, the hypotheses in Theorems 1.2 and 1.4
depend only ong; |. In fact, the manifold§\y, .. q for which the absolute values
of the corresponding} are equal are diffeomorphic, but the natural complex
structures on them (see Remark 2.5) are not equivalent in general.

The Hermitian (with respect td) geometry of the Einstein metrics given by
Theorems 1.2 and 1.4 is quite interesting. In Sect. 7 we will characterize when
these Einstein metrics are conformal deKahler metrics (Corollary 7.3). We
also prove (see Corollary 7.5) that the Riemann curvature tensbingariant,

i.e., R(X,Y,Z,W) = R(JX,JY,JZ,JW) for all tangent vectorX,Y,Z,W. So
these Einstein metrics belong to the clagg of Hermitian manifolds studied

by A. Gray in [Gr]. See [FFS] for a more up-to-date study and more complete
references.

Remark 1.5Theorems 1.2 and 1.4 may be generalized as follows. Mgty ), i
=12 ...,1 be compact Einstein manifolds with Einstein constgnts> O,
and suppose that there are harmonic 2-fownon M; such that (2)Y[wi] €
H2(M;; Z). Suppose further that each satisfies the condition

D wiX adwi(Y,a) = 2x%g (X, Y)
k
for all vectorsX, Y of M; and some positive constait. ({&} is an orthonormal
basis forg;.) As before, we can construct a principal circle buridleverM with
a connectior® whose curvature form ig!zl giwi, Whereq; are nonzero integers.
Then the proofs of Theorems 1.2 and 1.4 carry over to show the existence of
Einstein metrics on the associat8d and RP?-bundles ofP.

Our construction also produces complete Einstein metrics on the 2-plane
bundlesVy, . q-

Theorem 1.6 (a) There exists an + 1 parameter family of complete Ricci-flat
Kahler metrics on ¥, ... q provided that—g; = p; for all i.

(b) LetO < |qi| < pi for all i, then there exists a complete noréler Ricci-flat
Einstein metricon ¥, . q.

(c) There exists a completeaKler-Einstein metric with negative constant and

.....

all i.
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(d) On each bundle ¥ .. o there exists at least &parameter family of complete
non-Kahler Einstein metrics with negative constant and infinite volume.

This theorem generalizes the corresponding theorems in [BB]. A new feature
is that whenl > 1 we get continuous families of Einstein metrics in case (a),
where one obtained only one Einstein metric (up to homothety) before. Also,
in case (d) we get a 2-parameter family of Einstein metrics if in addition either
|gi| > pi foralli or|g| < p foralli. The proof of this theorem will be given
in Sect. 5.

Next we present our results on Einstein-Weyl structures. Recall that a Weyl
structure on a manifold consists of a conformal class of metrics together with
a linear connection on the bundle of length-scales determined by the conformal
class. Such structures were introduced by H. Weyl [We] in order to have a
conformally invariant analogue of Einstein’s equation. The paper [Fo] gives a
detailed study of various equivalent formulations of a Weyl structure. We will
work with the definition of a Weyl structure as an equivalence class of pairs
(h,7), whereh is a Riemannian metric angl a 1-form, with f,7) ~ (h,7j) if
there exists a smooth functian such thath = exp(2w)h and+7'= 5 + 2dw. The
Levi-Civita connection ofh and the 1-formm determine a unique torsion free
affine connectioD such thaDh = n®h. (See, e.g., [PS1], Lemma 2.1.) A Weyl
structure is Einstein if the symmetric part of the Ricci tensobois a function
timesh. This equation is invariant under the equivalence relation above. There
is an extensive literature on (Einstein-)Weyl structures. We refer the reader to
[Ga], [PS1], [PS2], [PPS], [Md], and [MPPS] for more information and a more
complete guide to the literature.

We will consider in Sect. 8 solutions of the Einstein-Weyl equation on the
S2-bundlesW,, . andRP?-bundlesW,, 4. The metricsh will again be of
the form (1.1). As for the 1-forrm we assume it to be of the formdt + Bf 6,
whereA, B are smooth functions df satisfying appropriate boundary conditions
described in Sect. 8.

Theorem 1.7 Suppose that for all = 1,...,1,0 < |gi| < pi. Suppose further
that there existgzy, ..., ) with g = £1 and at least one; = +1 such that the
integral

! P1 P2 P
= e X)) (S X)) (—— 4+ g X)"xdX < 0.
| G e g e 0

Thenon VW, .. q there exists d-parameter family of Einstein-Weyl metrigs 7]
which are not locally conformal to the Einstein metrics in Theorem 1.2.

The analog of Theorem 1.4 is

Theorem 1.81f 0 < |gi| < p foralli =1,....1, then there exists &parameter
family of Einstein-Weyl metrics oW, ... q which are not locally conformal to
the corresponding Einstein metrics in Theorem 1.4.

None of these Einstein-Weyl structures are hermitian in the sense of [PPS].
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2 The Einstein equations

We will study in this section the Einstein condition for metrics of the form (1.1)
without regard to boundary conditions. It will be shown in particular that the
Einstein equations are explicitly integrable in terms of polynomial functions. We
will employ the notation established in Sect. 1. We will, however, omit the multi-
index subscripts whenever there is no confusion. Recall Rhet the principal
U (1) bundle oveM with Euler class determined by the integeis. .., q . This
part of the analysis is common to the bundsW, andV.

We saw in Sect. 1 that the above manifolds are all of the fBrml, where
| is a finite interval in the case & andW and an infinite interval in the case
of V, with appropriate identifications at the boundaryl oMetrically, we have
an equi-distant family of hypersurfaces and so the Einstein condition can be read
off from Proposition 2.1 of [EW].

Let —U be the vector field of? generated by thé& (1)-action. Then, since
the connection fornd was chosen to be real-valued, it follows tifgt) ) = 1. If
we choose as a local bagidl = 9/0t,U ey, ..., en}, wheren is the complex
dimension ofM, and{ey,...,ex} is a local basic orthonormal frame field with
respect to the product metrlg x ... x hy, then the shape operatbrin [EW]
has components /f, g’ /gi andtr (L) = f//f + 7, 2n i’ /gi. Together with the
Kahler-Einstein conditioRic(h;) = pih; for M;, we see easily that the Einstein
condition for (1.1) is given by the following system:

£ g
(2.1) - — = 2n=—=c¢
f ; g
£ | f/g/ | f2
(22) —f——ZZni f .I +22ni)\i2?:c
i=1 T i

T ! ! ! _ f2
3 -%& -9 %o 9 e -2+ B _op2l =

gi gi i i gi i i
where we have set = ¢ /2, i =1,2,...,1, andc is the Einstein constant. Notice

that by the remark after Corollary 2.4 of [EW] there is no need to consider the
Einstein condition for the off-diagonal components of the Ricci tensor.
Let us now equate (2.1) and (2.2). We obtain

I /" 1! 2
3 on (g'— i +)\i2f4> =0.
i=1 g '

fgi i

Let us set

11 o f2
(2.4) = Iz
g fai gi
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In a generic situation, the, would be linearly independent. Accordingly, we will
consider only solutions for which; = 0 for all i. Whenl = 1, this condition is

of course automatically satisfied. We shall see in Sect. 7 that this is equivalent to
the condition that the sectional curvatures of the mdtrfor all mixed 2-planes

(i.e., spanned by a vertical and a horizontal vector) are equal. In Hermitian
geometry terms, this is equivalent to requiring the idenB{X,Y,Z, W) =
R(JIX,JY,JZ,IW) for all tangent vectors. It would be interesting to determine
whether all solutions of (2.1)-(2.3) must satisfy this geometrical condition. See
the end of Sect. 7 for further discussion about this point.

Remark 2.5 The complex structur@ was defined by lifting the product complex
structure of the base via the connectiérto the horizontal spaces and using
the natural complex structure of the fibres. For a mdtriof the form (1.1),

it is hermitian with respect to the complex structudrewhich agrees withl on
horizontal spaces and which is given fyU) = f (9/0t) on the fibres. ( Caution:

—U s the infinitesimal generator of th®! action.) In the case o%?-bundles,

the uniformization theorem implies that the complex structureand J; are
equivalent by an orientation (and fibre) preserving diffeomorphism. This is also
the case for Ricci flat metrics dR?-bundles, i.e., cases (a) and (b) in Theorem
1.6. More details and the situation for cases (c) and (d) will be described in
Remark 5.1. For the rest of the paper we will abuse notation and dénbteJ.
Actually, the vanishing of the torsion df also needs verification, for which it is
important that the Euler class &f is of type (1 1) with respect to the complex
structure of the base.

Let w denote the fundamental 2-form of the Hermitian mekricThen

[
w= —fdt/\0+Zgi27ri*wi.
i=1

It follows immediately from this that is closed iff

(2.6) (¢? =—qf, i=1..1.

As can easily be verified, thisdhler condition is a special solution pf = 0.

Suppose thah is a Kahler metric of the type in (1.1). Then th(1)-action
on our manifold is a symplectic action. One can verify that the negative of any
anti-derivative of the functiorf is a moment map for this action. With this as
motivation, we letr be an anti-derivative of, i.e., dr = f (t)dt. Sincef is non-
negative, we can expressas a function of and define functions andg; of r
by

a(r) =f(t), Gi(r)=alt).

Then (2.1)-(2.3) become

| i /
—ad — (o) — ; 2n; (azgii + aa’é) =c,
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|
— a"—(a')z—ZZn,oza—+22n,)\2a =
i=1

sl GO a?
2I_2 //BI 2n2|J+2I 2)\2_.
6! Z e Blﬁl ﬁl ﬂl ﬁl
The conditionu; = 0 which we imposed now takes on the simple form
g N
2.7 —+ =
@D BT
A first integral of (2.7) is
BHBY)?
(28) B Tt R 1
AG+ N

where A, are constants of integration. TheaKler condition (2.6) simplifies to
Gi B/ = =\ for all i, which corresponds té; = 0 for alli.

We will make one further transformation of the Einstein equations by letting
a(r) = o(r)? andb;(r) = i (r)?. The metrich then takes on the form

I
a(r)~tdr’+a(r) 06+ > bi(r)mh,

i=1
and (2.1)-(2.3) become

" /N 2
(2.9) %a”+ ~a/(logv)’ +azn| (b (E) ) .

i=1
2

1, A
(2.10) 2a + = a(logv) fZaIZ;n. b? =—c,

P Ml b b, ab _
(2.11) b +2ab2 (bi b + = (Iog) b T2 c,

where

U—ngn' ‘Hbi”‘.
i
Notice that, up to a constant, the integralwofvith respect to the variable is
precisely the volume of the metrit. Also, a appears linearly in each of these
equations, and for eadh (2.11) is a first order linear equation ay which is
readily integrable.
In terms ofb;, (2.8) becomes

(2.12) (b)) = 4(A by + 22,
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and the Kahler condition is given by-b/ = 2); = q;. Indeed, solving (2.12), we
obtain

_ \2 AT i A
(2.13) bry=4 ACHR)—%  TAZ0
20\ (r +R) otherwise,
whereR; are constants.
Lemma 2.14 Functions ab;,i =1, ...,| give a solution 0{2.9)-(2.11) on P x

int(1) such thaty; = 0 and A # 0 for all i iff the following hold.

i. There exist constantg and E such that for all i

P (A
(2.15) E-A+c(pq>,
(2.16) bi(r) = A/(r +10)* — 22

ii. On each subinterval of irft) on which r+ro does not vanish, there exists
&i = +1such thate A Y (AL + A)Y2 =71 +r1o.
iii. ais given by

r+ro

(2.17) a(r) = /r v(E — c(s +r0)?)(s + rg) ~2ds.
0

v

Proof. Starting with a solution of (2.9)-(2.11) such that = 0 andA; # O, it
follows thatb; has the form given in the first case of (2.13). Using this form, we
multiply (2.11) byb; A%, and obtain upon simplification

(2.18) (r+R)a’ =a(l - (r +R)(logv)) + Ei —c(r +R)?,

2
whereE; = % +c (g—) . If we subtract equatiop from equation in (2.18), we
have

(R —R)a’ = -a(logv) (R —~ R)+(E - E) - c(R — R)(2r +R +R),

while if we subtract  + R) times equatiorj from (r + R) times equatiori in
(2.18) we get

0=R —-R)a+c(R —R)r+R)r+R)—E( +R)+E(( +R).
Differentiating this last equation yields
(R —R)a' =c(R —R)@ +R +R) — E +E.

Hence we must havl;, = R =rg andE; = E = E for constantg, andE. This
proves (i). From this and (2.13) it follows that

A (AD+ X2 = sgn(A)r + ),
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which proves (ii). The formula foa follows by straight-forward integration.
Conversely, ifa andb; are as given above and (2.15) holds, then (2.11) holds
for all i andy; = 0. It remains to check (2.9). It follows from using (2.18) twice
that

" — 1 / / 1 " E
a’ = (r+r0—(logv))a —((r+ro)2+(logv) )a_(r+ro)2_c

Using (2.18) once more with (2.16), we obtain (2.9). This completes the proof
of (2.14).

Remark 2.19if the metric is required to be &hler, then similar computations
show that there are constarids and E such that for all
b = —2\r + Dy,
~_ch —p
E=——-—.
Ai
Furthermore, )
a= v‘l/ v(E — 2cs)ds.
0

3 Existence onS?2 bundles

In this section we will give the proof of Theorem 1.2. Recall that smooth functions
f,gi,i =1,....,1 onl =[0, T] define via (1.1) a smooth metric on ti$8-bundle
W iff
(&) (positivity) f is positive on (QT) andg; are positive on [0T],
(b) (smoothness) in a neighborhood off (t) = t#(t?) for some smooth function
¢ with ¢(0) = 1, gi(t) = v;(t?) for smooth functionsy;, and analogous
conditions hold in a neighborhood df.

Discussions of these conditions can be found, for example, in [BB], [PP2], or
[S]. Perhaps more systematically, they can also be deduced using the argument
in the proof of Lemma 1 in [EW]. In any case, we choose the anti-derivative of
f so that the interval [OT'] corresponds, under our change of variable froto
7, to the interval = [ro, o + R], where we have set=r +rg, so thatr ranges
over the interval [OR]. The positivity condition (a) translates inte: positive
on (O R) andb; positive on [OR]. The conditiong(0) = 1 (resp.¢(T) = —1)
becomesa’(0) = 2 (resp.a’(R) = —2). By Lemma 2.14, if we choose so that
a(0) = 0 =a(R), then we can easily verify that the smoothness condition (b) is
satisfied to second order. This means that we have an Einstein metric of class
C2. By Theorem 5.2 in [DK], the metric is smooth.

We will assume in the following that > 0 and choosé& > 0 in a manner
to be specified later. If we substitute the boundary conditionsaforto (2.11),
we find thatro and —(R +rg) are roots of the quadratic equation
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(3.1) cx?+2x—E =0.

Hence the lengtiR of the interval is 271 andrg(R + ro) = Ec™%. From this
we see that the assumption that> 0 is equivalent to the condition that the
intervall does not contain 0. So once we have chosendE, then the interval
I is determined by the choice of a root of (3.1). By replacingy™—f, we can
assume that the positive root of (3.1) is chosen.

Furthermore, (2.15) gives a quadratic equation from which we can solve for
A;. Of course, there are two solutions, but if the condition

O<l|gl<p, i=12---,1

in the hypothesis of Theorem 1.2 holds, then the positivity conditioféwolds

no matter which; we pick. The verification of this is routine, although there are
a number of cases to check. As an examplerdet 0 and suppose tha#; < 0.
Note, by the way, that in this casg = —1 (cf 2.14(ii)). Then

_ pi — (p? + cEq)Y/?

A= 2E '
But by (2.16) and (2.15),
(3.2) =P +A ((+r2—E) >0
. i c 0 C
iff
2Ep

E —c(r +rg)? >

P — (p? + cEqP)Y/?
Using (3.1), we see that the last inequality holds oyRJ0iff
1+ (1+cE)Y/? Ep

c “forR < (p? +CEQ))Y/2 — py

2 21\ 1/2
1+(1+cE)? < 2'2<1+<1+Ecg'2> )

i i
which holds iff 0< |g; /pi| < 1.

It remains to guarantee the positivity conditionaand ensure that(R) = O.
By (2.17),a(R) = 0 is equivalent to

ro+R | i nj
/ 1T <32 - (A;)Z) (E — cs?)s2ds = 0.

j=1

Let x = cs — (1 +cE)Y2, then the above integral becomes (modulo constants)
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T ip; (p? 2y1/2 _ 2\ "
/ [T(x3+2(+cE)?x+1+ &P (P2 + 4CEND)Y2 —
-1|j4a1 e

]
X2+ 2X(L+cE)Y2+ 1
(X + (1 +cE)1/?)?

Note thats; has appeared to account for the choicegandA;: if ro is chosen
to be positive, then; is just the sign ofA;. Let F(E) denote the value of the
above integral as a function &. We will prove that there is a positive value
of E so thatF(E) = 0. With this choice ofE in our preceeding discussion, we
obtain in addition the desired boundary condita(R) = 0.

First, we compute lima_ - F(E). Note that forE > 0,

/1 x2+2(1+cE)Y2x + 1 X =
1 (X+(L+cE)/22 T

SO we can write

&i Py (p? + 4CEN)Y/2 — p?

FE) = F(E)—/ [H( Y — CE)"

J

x2+2(1+cE)Y2x +1
(x + (1 +cE)1/2)?

Let
z = (X + (1L +cE)Y/?)? = ¢%s?
and 2 2\1/2 2
&i Py (p? + 4CEN9)Y2 —
L= Jpj(p] 21) p _CE.
2\
Then

F(E) = / [H(Z+F)'—HF“J]< CE)dx.

If we expand the term in square brackets, we seezluwides into the resulting
expression. Hence, we may interchange the order of taking the linfit-as0*
and integration to obtain ligL.¢- F(E) =

Z _—y 2n; pJ 2 ’
—1)~ st | I 1+x)" | I +1 d
(-1) l/1 [ (1 +x) ] [ < q —(x ) ) ] X

g=—1
*2H <(€' 1)p] )

j=1 J

By assumption, at least one of theequals 1, so the last term in the above expres-
sion vanishes. Furthermore, sincecdq; | < p;, it is clear that ling o+ F(E) > 0
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if Zsj:_l n; is even, and lim_,o- F(E) < O if Zsjz_l n; is odd. On the other
hand,

-3 3 L 1/2 2 B\ 1/2
lim [FE)E*" 7] = [1 H(zc/x+c/5j|m) 2c~Y/2xdx

j=1
1 | . nj
(_1)Zsj:_1nl K/ H (p] +5jx> de’
~154 G|

where K is a positive constant. Therefore, if

1 | p n
/ H(' +5jx) xdx < 0,
-1 |3 1G]

=1

then there exists sonte > 0 such that~=(E) = 0.

Finally, a(r) > 0 for 0 < r < R becauseéE — c(r +ro)? is monotone, so that
the integral part of (2.17) has the same sigrr asrg before it becomes 0. The
original variablet can now be recovered from(r) by

r
(3.3) t= / a(s)~?ds.
0
This completes the proof of Theorem 1.2.

Remark 3.4 Since we have chosdh > 0, i.e.,i = [ro, R+ro] does not contain
0, it follows thatAb; + \? is never zero, and sgj?)’ is never zero on (0T).
This means that the Einstein metric does not have fibrewise antipodal symmetry.

Remark 3.5 For the Kahler case, the above considerations simplify greatly.
In particular, there is no longer any singularity in the integral defiran@he
boundary conditions foa(r) give E = 2 andR = 2c~1. The positivity ofb; is
again guaranteed by the condition<0|qi| < p;i, and the conditiora(R) = 0 is
equivalent to

R ) ) n
/ 11 (M —qjs) "l (1-c9)ds=0.
o |jm s ©
Letting x = cs — 1, we obtain (modulo constants)
1 | . nj
/ H(p’—x) xdx = 0,
-1 5 \G

which is the integral condition in Theorem 1.3.
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4 Existence onRP2 bundles

We turn now to theRP?-bundlesW. Recall that the circle acts oRP? with
circles as principal orbits which collapse on one end to a fixed point and on the
other end to a circle via a double covering map. In order for functfgms to
define a smooth metrib of type (1.1) onW, it is necessary and sufficient that

(a) (positivity) f is positive on (QT], g; are positive on [0T],

(b) (smoothness at 0) in a neighborhood off @t) = t¢(t?) for some smooth
function ¢ with ¢(0) = 1, ¢;(t) = ;i (t?) for smooth functions;,

(c) (smoothness &) in a neighborhood of, f(T —t) = g%(tz) andg (T —t) =
i (t2) for smooth functionsp, ;..

We will again consider solutions such that gll = 0. In terms of the variable
r, the functiona must be positive on (R] and bj must be positive on [(R].
Furthermorea(0) = 0,a’(0) = 2 a’(R) = 0, andb/(R) = 0 must hold. If so, then
as in the proof of Theorem 1.2, the conditions (a)-(c) will be satisfied.

Any metric onW lifts to a metric orW such that at the midpoint of the corre-
sponding interval the derivatives of andg; vanish simultaneously. Conversely,
from (2.8) and Lemma 2.14, we see that for an Einstein métraf the type
under consideration, this can happen oahceand thenonly at = 0 € int(i).
Therefore, back oW, in contrast to the situation in Theorem 1.2, we must
haverg + R = 0. It follows that the boundary conditidg/(R) = 0 automatically
holds. By (2.16) and the positivity condition, it follows that for aJlA; < 0.
Furthermore, if we evaluate (2.11) mat= R and use (2.16) withip + R = 0, we
obtain —a(R) = E < 0. Applying the boundary conditions far at 0 to (2.11),
we conclude thaty is a (negative) root of the quadratic equation (3.1). So again,
the Einstein constard and the constare determine, up to a choice of roots of
(3.1), the interval .

We address next the positivity condition on the Let

—1—(1+cE)Y2

4.1) ro= -
and
2 G

2E ’
with —cE < 1 and—cE(g?/p?) < 1 to guarantee thap and A are real. As in
the proof of Theorem 1.2, positivity df, on [0, R] is equivalent to
—2Ep
p — (pi + CEQR)V/2’

c(r+rp)> —E <

which, upon using (3.1) and the above expressiorr§pis equivalent to

2 2\ 1/2
1+(1+cE)Y2 < % <1+(1+CE3 ) ) .

This is satisfied iff 0< |gi| < pi holds, as can be easily verified.
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Remark 4.3In the above we may also choosgto be the other root of (3.1).
However, the inequality would not hold if we choose the other valug; ofVe

will see shortly that the above choices farandA; are important for the rest of
the proof. Hence there is less flexibility in the proof of Theorem 1.4. Notice also
that whenl =1 (the Berard Bergery-Page-Pope case), the consistency condition
(2.15) is not required.

We will now show that there is a value &f < 0 with —c—! < E so that the
boundary conditiora’(R) = 0 holds. According to (2.17),

r r o B
0= [T, (A2 — 32 /ro (lj—[(AizSz - ) ') (E —cs)s%ds.

Since one can easily check the(R + ro) = a(0) = —E, it follows that

a'(0) = lim <M> .

r—0— r

Soa’(0) = 0 iff

r M) (E-—cs E Mol
[ (e ) (555 o St ] -o

(4.4) lim
r—0—

r

Let G(E) denote the value of this limit as a function Bf First we compute
limg_,o- G(E). Observe that as a Laurent polynomial rin the expression in
(4.4) in square brackets has cancelling-terms and the polynomial part of the
second term has no constant term. So, using (4.1) and (4.2) in taking the limit,
and lettings =ro(1 — y), we get

1 2 n
i = _ &_ﬂ _v)2
Jim G(E) 2/0 1]_[<C o y)) dy,

which is negative since & |qi| < pi.
Next, to compute lira_,_;,c G(E), we again letr = ro(1 —y) in (4.4) and
add and subtract the term

A\" oy —E +crd(1—x)?
H(‘Ai) [ () e

J

inside the square brackets. After recombining the terms, integrating, and using
(3.1), we obtain

h M\" LR B ey
r2(1 N2 _ ) i el —E+crgl—y)*
/0 [;1]1<A”°(1 & Aﬁ'> .Hl< Aa-) ]( oY) )dy
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I 22 N
+2(1+cro) [ | <AJ,> :

j=1

As E approach-c~1, the second term tends to 0, and using (4.1) and (4.2), we
see that the integral tends to

oy (P 07 - a2
/0 [H< J2c J

J

B + (7 — H)Y? 2\ o\
B lj_[ ( 2c e (p? — 4X?)Y/2) (1-y)
1+(1-y)
(e )

which is positive. Therefore there is sorielying between—1/c and 0 such
that G(E) = 0.

Finally, the positivity ofa follows from that ofbj and the negativity of
E — c(r +rg)?. This completes the proof of Theorem 1.4.

5 Complete Einstein metrics

We now consider complete Einstein metrics on the 2-plane bundles o of
type (1.1) withy; = 0 for all i. By the theorem of Bonnet-Myers, the Einstein
constantc must be non-positive. Smooth functiofisg,i = 1,...,] give a
complete smooth metric oB iff

(a) (positivity) f is positive on (0+o00), gi are positive on [0+oo),
(b) (smoothness at 0) in a neighborhood off (t) = t¢(t?) for some smooth
function ¢ with ¢(0) = 1, ¢; (t) = ¥ (t?) for smooth functions); .

Note that completeness requires the integral (3.3) to be infinity whenR,
where [QR) is the domain of the functiona, b;.

We consider first complete Ricci-flatékler-Einstein metrics. Applying the
boundary conditions at = 0, we obtain immediately thatqg, = p; for all i. It
follows thatE in Remark 2.19 equals 2. By completeness, the leiytf the
interval of definition of the functiona, bj must be infinite because the volume
of these metrics must be infinite. The positivity conditions are satisfied as long
asD; are positive. Up to homothety we can fix the value of one ofDhebut
we may choose the rest arbitrarily, giving b 1 parameter family of solutions
of the Einstein equation.

For Kahler-Einstein metrics with negative constanthe boundary conditions
atr = 0 force —q; to be larger thamp,. ChoosingE > 2 (see Remark (2.19)),
it follows thatD; = c-*(1Eq +p) are positive. Changing the value Bf only
results in translating the variabie So we obtain only one solution. Notice that



514 J. Wang, M.Y. Wang

R is finite iff the volume is finite, in which case (3.3) would also be finite,
contradicting completeness. Therefore the volume must be infinite.

We consider next the nond&ler case. Fot = 0, it follows from the consis-
tency condition (2.15) thag; /A = E. Since the volume must be infinitR,= +oo,
and, by replacing by —f if necessary, we may assume that= E/2 > 0.
HenceA; > 0 and one checks easily thht satisfy the positivity condition iff
0 < |gi| < pi for all i. Changing the value oE only results in a homothetic
metric.

Finally, if ¢ < O in the non-Khler case, one sees first that completeness
again implies thaR = +co. From the boundary conditions at= 0, one obtains
thatrg is a root of (3.1). Suppose thigf | < p;. Then we choose & E < —c™1,
and

(o= LHA+EQY? _pi+ (B +Ecq)!?

0 —c 2E '
It follows thatb; satisfies the positivity condition. Notice that|dj| < p;, we
may also choosey = —c~1[1 — (1 +Ec)'/?]. As E — —c 1, the two values of
ro become equal. Also, & — 0*, A, tends to +o.

When |gi| > pi, we may choose < E < min(p?/q2,...,p?/q?), ro =
—c Y1+ (1+Ec)Y/?], andA = (pi — (p? + Ecq?)*/?)/2E. Thenb; will satisfy
the positivity condition. We may also chooke< O.

Therefore, we obtain a 2-parameter family of Einstein metridg; jf> p; for
all'i, orif |gi| < p for all i. We obtain a 1-parameter family of Einstein metrics
in all remaining cases. This completes the proof of Theorem 1.6.

Remark 5.1We now give the discussion of complex structures promised in Re-
mark 2.5. First, note that in order to compare the complex structiyrasd J,

it suffices to do so on the fibres. G&f consider thelU (1)-equivariant injection

. given in polar coordinates by~ (t,0) = (o(t),0) whereo is a solution of

the equationy’f = o satisfying appropriate boundary conditions so tkétis a
smooth map . Thert” becomes a holomorphic map @f equipped with the
complex structure); on the domain and on the range. One then checks that

. is surjective iff
/ T,
o alp) ’

wherea(r) = f(t)%. Looking at our solutions, one finds that the above integral
diverges exactly in the Ricci flat cases. TRisandJ are equivalent ifc = 0. In

the negative case); is equivalent toJ restricted to an open disk iR?. This is
exactly the discrepancy observed in [PePo, p.319, remark after (3.14)] between
their example and the corresponding example @&faBd Bergery (see 9.129(c) in
[Be]).

Remark 5.2It is interesting to study other boundary conditions such as the van-
ishing of some of the; att = 0. In a forthcoming paper by A. Dancer and the
second author [DW] about &hler-Einstein metrics of cohomogeneity one, the
possibilities for the collapse of the hypersurfages {t} to lower-dimensional
manifolds will be examined in greater detail.
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6 Examples

In this section we first discuss some topological properties oS8tsundles and
then we indicate applications of Theorems 1.2—-1.4 with explicit examples.

Let y denote the Euler clasy; gimi*oi € H?(M;Z) of the principal cir-
cle bundlePy, . q has a unique
compatible holomorphic structure since its Euler class is of typg)(andM is
simply connected. TheW, . q can be identified with the projectivized bundle
P(V & 1), wherel denotes the trivial complex line bundle. We will summarise
below some well-known facts which allow us to compute topological invariants
of WQ17---,Q| '

Let{ =V @ 1 andr be the projection map frof®¢ onto M. Then there is
an exact sequence

.....

(6.1) O—-y—=7"¢—v—0,

where over each fibre df¢, ~ is the tautological line bundle andis the quotient
bundle. Denote-c;(v) € H2(P¢; Z) by s. The Leray-Hirsch theorem asserts that
H*(W;Z) is a freeH *(M; Z)-module with generators, $ and its ring structure
is given by

s*+ (" cu(€))s + T e(€) = 0.

In the present situation, we have
(6.2) 2= —r*cy(V)s=—x-s,

using the module structure.

We will identify the holomorphic tangent bundle &Y (resp.M) with the
tangent bundleTW (resp. TM) and denote by7” the (holomorphic) tangent
bundle along fibres of : W — M. Then it is well-known that (see [H, p. 102])

(6.3) F 2y teu.

Proposition 6.4 We retain the above notation.
() The complex manifolds q are simply connected with cohomology ring

Yoo,

H*(W;Z) =H*(M; Z)[s]/(s* + x - ).

(b) c1(W) = 7*(ca(M) + x) + 2s, and it is positive if0 < |qgi| < p; for all i.
Moreover, (W) = *co(M) + 7*co (M) - (7*x + 25).

(©) p1(W) = m*p1(M) + (7 x)?.

(d) The second Stiefel-Whitney clasgW) = n*c;(M) + 7*x (mod?2). Hence W
is spin iff for all i, p and q are of the same parity.
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Proof. Part (a) follows from the homotopy exact sequence and the remarks before
the proposition. The Chern classes are obtained by routine computations using
(6.1) and (6.3) and the fact thaWw = 7*TM & .7 . The Pontrjagin classes are
calculated from the Chern classes using (6.2). SMtds complex, the &th
Stiefel-Whitney class is just the reduction mod 2 of tlle Chern class.

It remains to examine the positivity of the first Chern class. We will compute
the Ricci form of the induced hermitian metric o for some suitably chosen
hermitian metric onW of the form (1.1). Sincé 9/0r is a (real) holomorphic
vector field alongZ , the Ricci form is given by-id’d” logf2. This equals

1
—ff—(fdr ANO) =1 gimw.
i
So 2t¢1(W) = 2n(¢ci (7)) + *cy(M)) is represented by
f//
—]T(fdl' A 60) —f’Zqiwi*wi +Zpi7ri*wi.
i i

We may choose a #&hler metric onW with f (t) = sint. Then the above Ricci
form is positive iff || < |pi], | =1,2,...,]. This completes the proof of (6.4).

To see that our constructions give non-trivial Einstein metrics, we prove the
following

Proposition 6.5 Let M = CP" x CP™.

(@) The total space W,, is not homotopy equivalent to the product S M.

(b) Forn#m, W, q is homeomorphic to W, iff |g1| = |r1| and|g| = |r2|.

(c) Forn=m, W, g, is homeomorphic to W,,, iff either |g;| = |ri|, i =1,2 0r
elselou| = [raf, |Gz = |ra].

Proof. In this case, Proposition 6.4 implies that
H*(W;Z) = Z[a1, az, 8]/ (a1, a3, 8 + (qaan + Goaz)s),

wherea; is a generator oH%(CP";Z) and a; is a generator oH%(CP™; Z).
To prove (a), one only has to observe that ik2n < m, then the cohomology
ring of W does not contain a 2-dimensional class whose squaredadwhen
1 =n < m, then the only 2-dimensional classes whose squares equal O are
proportional toa;. Finally, if 1 = n = m, then such classes are proportional
either toay or to as.
Next, the first Pontrjagin class &fl is p1(M) = (n + 1)a? + (m + 1)a3. So,
by (6.4(c)), the first Pontrjagin class @ is

p(W) = (n+ g7 + 1)ad + (M + 0 + 1)aj + 20u0paz002.

Recall that our cohomology rings are torsion free and that rational Pontrjagin
classes are homeomorphism invariants. Suppose there is a homeomo¥phism
betweenW;, ;, andW, ¢, inducing a ring isomorphism#* between
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H*(Wy, 03 Z) = Z[eu, az, 8] /(a7 a3 8% + (qua + Gpa)s)
and
H*(Why.r,; Z) = Z[B1, B2, 1] /(8] BI 12 + (1181 + 1282)1).

Assume that
U*(aq) = upf + Upfo + Ut

U™ (o) = v181 + 0202 + vat
U*(s) = w1f1 + woffp + wat.

Forn, m > 1, the condition?*(s?) = (¥'*(s))? gives rise to the equations

(6.6) wi[wy + Q1 + 1] = 0,
(6.7) wa[wz + gz + Gavz] = 0,
(6.8) 2wywy + w1[OUz + O2v2] + w2[QiUs + Qov1] = 0,

(6.9) 2wiwz + wi[01Us + Q2us] + wa[QrUy + Qov1] = riws[ws + qaUz + Qavz],

(6.10) 2wows + w2 GUs + Gous] + wa[OhUz + Gpuz] = rpwz[ws + Gals + Gpvs).

From ¥ (p1(Wy,,q,)) = P1(W, r,), we obtain

(0 +af + 1)uf + (M +0Z + 1) + 201Gl vn,

(6.12) m+r3+1 (n+0f + 1)u + (M + 0 + 1)v3 + 201Gy,
rar (N +0f + Dugtz + (M + 0 + L)oo,

(6.13) o Gp(Ugv2 + Upu1).

(6.11) n+r2+1

To analyse these equations, there are two cases to consider. First(ré-
spectivelyw,) is non-zero, then using (6.8)-(6.10) together with the invertibility
of ¥* and the fact that its determinant is thereferg, it follows thatw;, = ryws
andw, = rowsz with wg = 1. From (6.11)-(6.13) we then obtain the equations

n+l = (@+1u?+m+1p?,
m+1 = (n+1)uf+(m+ 13,
0 = (n+2uuz +(M+ Lwyvs.

The desired conclusion then follows easily from these equations.

The second case to consider is when = wp; = 0, so thatwg = 1 and
uv; — vy = £1. Then, by looking at (6.9) and (6.10), we see that neither
g1Up + oy NOT QU + Qv can equal to Olt follows from (6.11)-(6.13) that this
time we have



518 J. Wang, M.Y. Wang

n+l > (n+1u?+m+1p?,
m+1 > (n+1us+m+1p3,
iz = (n+1uglp + (M + Lvgvp + raro(ws + o + Gous)?,

where equality holds in the first two inequalities iff{+ qyus + gov3)? = 1. The
desired conclusions again follow easily from these facts.

If n =1< m, sinceaj = 0 andg; = 0, we will not have (6.6) and (6.11).
Also, the terms in (6.11)-(6.13) containing the facto# g2 + 1 will be absent.
However, from the fact that*(«4)? = 0, we obtainu, = 0 = us, SO thatu; = 1.
Accordingly, similar arguments will yield the desired conclusions in this case as
well.

As for the converses, recall that complex conjugation of the homogeneous
coordinates of2P¥ induces multiplication by-1 onH 2(CP*; Z). Hence, pulling
back Py, ¢, Via an appropriate diffeomorphism GfP" x CP™ yields the other
circle bundle, and so the associa®@bundles are diffeomorphic.

Example 6.14If n; = n, = 1, then the possible choices fay (q,) are (11) and
(1,—-1). By Theorem 1.4, we have a noraHKler Einstein metric oW, ; and

Wy _1. The integral in Theorem 1.2 foly 1 is positive if €1,¢2) = (1,1) and is

0 if (e1,£2) = (1, —1). So we do not get any further Einstein metrics. However,
we do get a Khler-Einstein metric oW, _,, by the theorem of Koiso-Sakane.
Note thatWy ; is the Fano 3-fold which is the blow-up of the cone over a smooth
quadric surface iCP* and has unstable tangent bundle [St, p.688]. ; is the
Fano 3-fold which is the blow-up oEP?® with center two disjoint lines [MM, p.
157]. Notice that by 6.4(d\W; 11 are non-spin, so they are not diffeomorphic to
S? x S? x S2. However, they are diffeomorphic to each other, siRge ; is the
pull-back ofPy ; via the orientation reversing diffeomorphism 8A x S? which

is the identity on the first factor and a reflection on the second factor.

Example 6.15Let M; = M, be any Kahler-Einstein manifold with positive first
Chern class and set, = n, = n,py = p, = p. Assume further that & |ou| <
|gz2| < p. Then by Theorem 1.4 there is always a no@hler Einstein metric on
Wi,,q- On the other hand, by the calculation on p. 612 of [S], the integral

1
p n, P h
X(— +X)"(— — x)"dx
/_1 |a | )(\Qﬂ )

is negative. It follows from Theorem 1.2 that there is a ndgihiker Einstein metric

of type €1,e2) = (1, —1). The integral in Theorem 1.2 foe{, ;) = +(1,1) is
positive (resp. negative). Hence no further Einstein metrics arise. Of course,
Sakane proved that there are natfer-Einstein metrics.

Example 6.16Let 1 =n; < np = n, then|g;| = 1 and|gp| =k =1,...,n. As
before, Theorem 1.4 gives a norakler Einstein metric on eadl, 4, with the
above values ofj. As for Theorem 1.2, corresponding tey (¢2) = (1,1), the
integral
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1 +
/ X(X + 2)(¢ + - Linax > 0,
-1

as can be seen by expanding the third factor by the binomial theorem and
integrating the resulting expression term by term. On the other hand, for
(e1,€2) = (-1, 1), the integral

1
/ x(—x +2)x + = Ly
1 k
can be shown to be positive. So if we take,€,) to be (1 —1), then the corre-
sponding integral will be negative and we get another nahi&r Einstein metric

by Theorem 1.2. Note that again Theorem 1.3 does not give any Einstein metrics
on these spaces.

7 Hermitian geometry

In this section we study the Hermitian geometry of the methosf the form

(1.1) and then apply some of the results to the Einstein metrics constructed in
Theorems 1.2, 1.4, and 1.6. Recall (see Remark 2.5)hthatHermitian with
respect toJ, defined byJN = —(1/f)U and the horizontal lift of the complex
structure of the base.

Almost Hermitian metrics can be classified by the covariant derivative of
their fundamental 2-fornw. More precisely, if we lefv denote the Levi Civita
connection ofh, then as a 1-form with values in the skew-Hermitian endomor-
phisms,Vw decomposes into 4 parts corresponding to the decomposition of the
bundle with respect to the unitary structural group. This classification is due to
A. Gray and L. Hervella [GH]. In the Hermitian case, the component¥ of
lie in a subbundle denoted by these authorsZy & #;. Each summand is
characterized by a tensor identity. For exampldelongs to the componea¥
iff

-1
n—1
—h(A, JB)éw(IC) + h(A, JC)dw(IB)} ,

(7.1) h((VaJd)B,C) =

{h(A B)3w(C) — h(A, C)3w(B)

wheren—1 =dim M. (For details, see [GH, pp. 36-41].) Furthermore, all locally
conformally Kahler Hermitian metrics (with respect 89 lie in 7. In order to
apply this theory, we need the following

Lemma 7.2 LetV denote the Levi Civita connection of the metric h, L the shape
operator of the hypersurface P{t}, and{? the curvature form of the connection

¢ on the circle bundle P. For a horizontal vector X we [t X; denote its
decomposition into components “along’MLet N denote the vector fiel@/ot

and U the vector field such th&{U) = 1. Then
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(a) vNJZOIVU\], )

() (Vxd)N) == 55, (2 + 24 ) 3x,

(©) (VxI)(U) =fI((VxI)(N)),

(d) (VxI)(Y) = (h@(LX),Y) + 12X, Y)) N — (%h(LX,Y) + %Q(X,JY)) U

Hence, the divergence afis given by

Sw(A) = (Z 2n; (9' + )) h(U, A).

The proof of the lemma is by straight-forward computation, so we will leave it
to the reader.

Corollary 7.3 Let h be one of the nond&ler Einstein metrics constructed on
Wa,,....q by Theorem 1.2 or 1.4, or ongV... o by Theorem 1.6. Then h lies in
the family 7 iff i /A are independent of i, in which case h must be globally
conformally equivalent to some JaKler metric. In particular, if ¢/p; are not
all equal, then h cannot be locally conformallyaKler.

If h is an Einstein metric from Theorem 1.4 or from Theoren{l),&hen it
belongs to7 iff pi /g are independent of.iThe same is true for an Einstein

metric from Theorem 1(6) provided thatiqi| < p; for all i or |q;| > p; for all i.

Proof. By the above lemma and the characterization of the clgswe see that

h lies in 774 iff
g| (g( )‘i >
EOaL 2+ 2 ).
g g? n-1 Z g 4

This holds iffg/ /gi + (\if /¢?) is independent of. Using Lemma 2.14, it follows
that this is equivalent tg /A; being independent af When the Einstein constant

c # 0, then ,
a_2[ p p? Ve
A"c[ " n(q')(ff+CE> '

Note that ifg; /A are independent af then by the consistency condition (2.15),

pi /A would be independent of which in turn implies that; /p; are independent

of i. Finally, recall from [GH, Theorem 4.3] that li belongs toZ7 then it

is locally (globally) conformally Khler depending on whether the Lee form is
closed (exact). It remains to observe that by Lemma 7.2, the Lee form is precisely

1 (g Aif >
e 2n (2 + dt,
-1 zl: ! Ji gI
and that all the manifoldgV andV are simply connected.
In the case of Einstein metrics from Theorem 1.4, note th&;alre negative.
So if h lies in 4, then allg, have the same sign. In this case, the minus sign
occurs in the above formula faj /A, and it follows thatg; /A are all equal iff
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pi /g are all equal. Likewise, in case (b) of Theorem 146/p; are all equal,
so g /pi are all equal iffqi /A are all equal. For Einstein metrics constructed
in Theorem 1.6(d), ifigi| < p; for all i or if |g| > p; for all i, then there is

a uniform choice of thet sign in the formula forg /A;, and so agaim; /g
being all equal is equivalent tg /A; being all equal. This completes the proof
of Corollary 7.3.

We turn now to consider the curvature lof

Lemma 7.4 The Riemann curvature tensBrof h is given by

1. R(X,Y,Z,W) =R(@JX,JY,JZ,JW), where XY, Z,W are horizontal vector
fields,

R(X,Y,Z,U)=0=R(X,Y,Z,N),

RN, JU,JU,IN) =R(N,U,U,N) = —f"f,

R(N,U,N,X) =0=R@N,JU,JIN, IX),

ROX, Y, U, N) = —ff'Q2(X, Y) +F202(X, LY) = R(IX, JY, JU, IN),
R(X,U,Y,N) = (f2/2)2(X,LY) — (1/2)ff'2(X,Y) = R@X, JU, IY, IN),
ROXNSNLY) = =37 (g /gi)h(%i, Vi),

R(X,ULU,Y) =237 (A — T9nex, v).

fgi

© No ok wN

The proof of this lemma is again via straight-forward computation, using the
Gauss equation and the O’Neill formulas for a Riemannian submersion. An im-
mediate consequence of the lemma is

Corollary 7.5 The Riemannian curvature tensor of a metric h of typd) on
Wy,....q OF Vg, q Satisfies

R(A,B,C,D) =R(JA JB,JC, JD)

for all vectors AB, C, and D iff

g flg . of7_
' L+AP—5 =0

E_ f gi g

foralli =1,2,...,I.

This corollary gives a geometric interpretation of the assumptioe: 0 in
the construction of the Einstein metrics ¥ or V. Furthermore, the question
of whether an Einstein metric of type (1.1) necessarily satigfiess 0 can be
rephrased in terms of the notation of Proposition 4.1 of [FFS]. For Hermitian
manifolds, there is no difference between the clasggsand.#3. So the ques-
tion becomes: what is the effect of the vanishing of #gcomponent on the
component¥Zs and 7 in the situation of the manifolds under consideration?
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8 Einstein-Weyl structures

In this section we derive the analogs of Theorem 1.2 and 1.4 for Einstein-Weyl
structures. Recall that the Einstein-Weyl equation fonatimensional manifold
with Weyl structure f, n] is

Ric(h) + (”;2> &y = Ah,
where
InX,Y) = (Vxn)(Y) + (Vyn)(X) +n(X)n(Y),
and A is the function given by

n—-2\, ,, 1 sP
= + 2o+ —.
A ( 1 ) 7] 257] -

In the abovegn, is the codifferential andP is the conformal scalar curvature of
the Weyl connection.

As mentioned in Sect. 1, we choose a 1-form= Adt + Bff, where A
and B are functions oft. Using the argument for the proof of Lemma 1 in
[EW], for example, one sees that for the bundi¥s the smoothness conditions
for n are as follows. In a neighborhood of B(t) = t¢(t?) for some smooth
function ¢, and Bf)(t) = ¥(t?) for some smooth functiog such thaty)(0) = Q.
Analogous conditions should hold in a neighborhoodrofFor the bundlesv,
the smoothness conditions fgrare the same except that in a neighborhood of
T, (Bf)(T —t) = ¢(t2) for some smooth functiogh which need not vanish &t.
Notice that by Theorem 2.2 of [PS2], it suffices to satisfy these conditions up to
first order.

Using (2.1)-(2.3) and the calculations of [PS2] on pp. 107-108, we obtain the
Einstein-Weyl equations below:

fIl gll n
8.1 —— =Y onZ +nA + A= 4,
(8.1) : ; 'y 5
" | I |
(8.2) —%—ZZW]}? +> 2 \? 4+nAf—+EBZ—A,
i=1 b= i
" 1! 'a! / ) 2 /
83— % ff—g_' ~Y a8 on —@yee s 2x2 el = 4,
Ji gi i gi gj Gi g 9 Gi
/ li
(8.4) BE—%+A:0,

wheren=>"n;, andX =q /2, i =1,2,...,1.
We may introduce a functiob (t) such that
2U'
A= .
’ U

B=fu—2
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The corresponding boundary conditions fdris that near OJ should be even,
so that in particular we must haw¢’(0) = 0, and analogously nedr. Then the
Einstein-Weyl equations become

" |
u”
- - E 2n.g'_ +2n =4,

" | 1§/ 2
f'g! U, nf?
_7_22' '+ZZH|/\. T Uf +W_Aa

/" / »
iLlﬂ—ZZﬂ%<m o !
g fa - g2 gt Uy

As before, if we equate the first two equations, we obtain

|
U// U/f/ f2
me‘m<u‘Uf‘mJ‘Q

wherey; is given by (2.4). We will seek a solution with constatity; = 0 for
alli, and

(8.5) b )

We now perform the same variable change as in Sect. 2, defining in addition
u(r) = U (t)°. Then the Einstein-Weyl equations become

—%a” 5a '(logv)’ —aan (b - }(b ) )

n /a'u u’ 1 u\? :
(8.6) +2( 7 )+na<u—2(u>>-/17

|
gy A n/auy na _
(8.7) 58" — 52/(logv) +2a;nI 220 ) 2w = A,
B, N a bl_ b\, a b a'hl na /blu"y _
®8) b %2 2 Gy ) 09y~ * 5 (pu )™

If we solve foru, we obtain
1
8.9 =C(r +Ff)2+ —
(8.9) u=C(r+i)’+ o,

wherer”is a constant andC is a positive constant. In particular, there are no
solutions which are linear in, andu is everywhere positive. One can derive the
analog of Lemma 2.14 in the same way. The only differences arectBhould
be replaced byl andv by vu™", and part (i) should also assert thiag¢Gualsrg.
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One can now go through the proofs of Theorems 1.2 and 1.4 and see that they
can be modified easily to prove Theorems 1.7 and 1.8 respectively. In analysing
the behavior of the analogs &f(E) and G(E), one needs only to observe that
u~1!is uniformly bounded from above and below on a finite interval by (positive)
constants. Consequently, the desired behavior can be deduced from f&)of
andG(E). Furthermore, the boundary conditions foare satisfied easily. Since
the constanC is arbitrary, we actually obtain a 1-parameter family of solutions.
Finally, if B is not identically O, them is not closed, hence it cannot be exact.
Thus we obtain Einstein-Weyl structures which are not locally conformal to the
Einstein structures constructed in Theorems 1.2 and 1.4.

Remark 8.10The solution of the Einstein-Weyl equation for= 1 given in
Theorem 1.8 is not conformally equivalent to that in [PS2]. Indeed, applying a
conformal factor to our solution that makeé) constant, one can check using
(8.9) and (2.16) that (4.4) in [PS2] does not hold.

9 Uniqueness of Einstein-Weyl structures on principalS*-bundles

We take this opportunity to include an extension of the main result in [W1] to the
Einstein-Wey! situation. Recall that for each principal circle burlg . o as
in Sect. 1, it was shown in [WZ] that there is an Einstein metric of Kaluza-Klein
type which submerses onto a product of thighker-Einstein metrics on the base.
In [W1] it was proved that conversely if a principal circle bundle over a compact
Kahler manifold admits an Einstein metric such that the bundle projection is a
Riemannian submersion with totally geodesic fibres and that the curvature form of
the principal connection is of type (1), then in fact the base splits isometrically
into a product of Kahler-Einstein manifolds with positive scalar curvature and
the Euler class of the principal bundle is of the form described in Sect. 1.

In [PS1], the above existence theorem of [WZ] was extended to the Einstein-
Weyl case (see Theorem 4.1, p. 388 of [PS1]). It turns out that a similar converse
holds.

Theorem 9.1 Let P be a principal circle bundle over a compacitder manifold

M admitting an Einstein-Wey! structure h such that the bundle projection is a
Riemannian submersion with totally geodesic fibres onto titdd¢ metric of M,

the curvature form?2 # 0 of the principal connectiod is of type(1, 1), and the
1-formn = f @ for some smooth function f. Suppose also that the scalar curvature
of M is constant. Then the eigenvalues of the Ricci tensor of M are constant over
M and M is isometric to a product ofahler-Einstein manifolds corresponding

to the eigenspaces of the Ricci tensor of M.

Proof. We refer to [W1] for notation. As before, I&t satisfyd(U) = 1. We will
view (2 as a closed 2-form oM. Then the Einstein-Weyl equations are given

by
1 n—-2
(9.2) 4;(%)%( 2 >(2U(f)+f2):/1,
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(9.3)

(9.4)

. 1
qu'jvl — Z Z -Qit _th = A(Sij s
t

where is a function. By (9.3)

UM =U() = -2 UWy) =0

Therefore,U (f) = 0 andf is a function constant along the fibres. On the other
hand, again by (9.3)

n-—2
—— i = =5 = i = Oy + Kij!\i/t' 2 + Ki,!}’t' .

It follows from the last equality that

— i = Ki,!\i’t' 2 = Rigi 2 =0,

and hencdj = 0. We conclude that is a constant, and therefofe is harmonic

by (9.3). SinceM is of constant scalar curvatur€, has constant norm and the
Ricci curvature ofM has constant eigenvalues by (9.4). The rest of the proof is
the same as that given in [W1].
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