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Abstract. New Einstein metrics are constructed on the associatedRP
2, S2, and

R
2-bundles of principal circle bundles with base a product of Kähler-Einstein

manifolds with positive first Chern class and with Euler class a rational linear
combination of the first Chern classes. These Einstein metrics represent different
generalizations of the well-known Einstein metrics found by Bérard Bergery,
D. Page, C. Pope, N. Koiso, and Y. Sakane. Corresponding new Einstein-Weyl
structures are also constructed.
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0 Introduction

Let (Mi , Ji ,hi ), i = 1,2, . . . , l , be compact K̈ahler manifolds with positive first
Chern class and real dimension 2ni . Since it is well-known that theMi are simply
connected, we can write the first Chern classc1(Mi ) of Mi as piαi , whereαi

is indivisible andpi is a positive integer. LetM = M1 × M2 × · · · × Ml and
πi denote the projection ofM onto Mi . For non-zero integersq1,q2, . . . ,ql , the
integral cohomology classq1π

∗
1α1 + · · · + qlπ

∗
l αl is the Euler class of a principal

circle bundlePq1,...,ql over M . The circle acts by rotation on the complex plane
C and its one-point compactification, the Riemann sphereS2. We denote the total
space of the associated complex line bundle byVq1,...,ql and that of the associated
S2-bundle byWq1,...,ql .

In this paper we construct new Einstein metrics and Einstein-Weyl structures
on these spaces under various additional conditions. See Theorems 1.2, 1.6, 1.7 in
Sect. 1 for the precise statements. These new Einstein metrics are hermitian but
in general are not K̈ahler with respect to the natural induced complex structure on
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the total spaces. However, their Riemann curvature tensor is invariant under the
action of the complex structure. We also construct Einstein metrics and Einstein-
Weyl structures on the quotientWq1,...,ql of Wq1,...,ql by the antipodal map of
the fibres, which can be viewed as an associatedRP

2-bundle of Pq1,...,ql . See
Theorems 1.4 and 1.8 for the precise statements.

All these new Einstein (Einstein-Weyl) manifolds do not in general have large
isometry groups. However, when all factors of the base are homogeneous, the
metrics are of cohomogeneity one, i.e., there is an isometric action of a compact
Lie group with codimension one principal (generic) orbits.

Regarding the motivation for studying this class of manifolds, recall that
the first example of a compact inhomogeneous Einstein manifold with positive
scalar curvature was constructed by D. Page [P] from the Taub-NUT solution,
essentially by replacing timet by

√−1 t . Bérard Bergery [BB] then made the
important observation that the Page metric can be generalized tonon-Kähler
Einstein metrics on the associatedS2-bundles of those principalU (1)-bundles
over Kähler-Einstein manifolds with positive first Chern class whose Euler class
is of the formq · α, 0 < q < p, with α indivisible andp · α equal to the first
Chern class of the base. Somewhat later, Page and Pope [PP2] independently
observed the same generalization, with the difference that while [BB] emphasized
the framework of cohomogeneity one Einstein metrics, they stressed the Kaluza-
Klein ansatz and the existence of a certain variable change which allows the
components of the Einstein metrics to be expressed explicitly in terms of special
functions, specifically the Gegenbauer polynomials. Yet another approach to these
examples can be found in [JR], and orbifold solutions in dimension 4 were studied
in [PZ].

Inspired by [BB], Y. Sakane [S] constructed the first non-homogeneous ex-
amples of K̈ahler-Einstein manifolds with positive first Chern class by studying
the associatedS2-bundles of principalU (1)-bundles over a product of two com-
pact hermitian symmetric spaces. He found that the existence of Kähler-Einstein
metrics of Kaluza-Klein type on theseS2-bundles required not only similar con-
ditions on the Euler class of theU (1)-bundle, but also the vanishing of a certain
integral. His work was generalized by N. Koiso and himself in [KS1, KS2],
where it was discovered that the integral is actually the Futaki invariant of the
holomorphic vector field associated to theU (1)-action. If one uses the variable
change in [PP2], then again the Koiso-Sakane metrics can be expressed in terms
of certain linear functions and integrals of their products. In the Kähler context,
this change of independent variable corresponds to conversion to the variable
naturally associated to the moment map of theU (1) action.

In view of the above developments, it is natural to study the Kaluza-Klein
construction ofnon-KählerEinstein metrics on the associatedS2-bundles of circle
bundles over an arbitrary finite product of Kähler-Einstein manifolds, and to try
to fit into a single framework the works of the above authors. Furthermore, in
[PS2], Einstein-Weyl structures which are not locally conformally Einstein were
constructed on theS2-bundles considered by Bérard Bergery. It is therefore also
natural to study the Einstein-Weyl equations for this larger family ofS2-bundles.
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We shall see that replacing the base by product manifolds gives rise to several
new phenomena. First, there is a new family of solutions of the Einstein equation
(Theorem 1.2) in addition to the generalization of the Bérard Bergery metrics
(Theorem 1.4). Second, (local) conformality to Kähler metrics is no longer au-
tomatic (Corollary 7.3). Perhaps the most thought-provoking phenomenon is the
role played by the Futaki integral in Theorems 1.2 and 1.7.

The main results of this paper will be stated in Sect. 1, where the general
geometrical set-up will also be presented. The existence of Einstein metrics will
be taken up in Sects. 2–5. In Sect. 6, some of the topological properties of the
S2-bundles will be discussed, and in Sect. 7 some aspects of their Hermitian
geometry will be described. Einstein-Weyl structures will be explored in the
remaining sections of the paper.

Sections 2-6 of this paper are based on the third chapter of the Ph.D. thesis of
the first author [W2] written under the supervision of the second author, whose
role beyond that of supervision is to ensure that certain closely related themes
are pursued and completed. Finally, we would like to thank A. Nicas for some
useful discussions about topology and Sun Poon for discussions about [PePo].

1 Statement of results

Let (Mi , Ji ,hi ) be a compact K̈ahler-Einstein manifold with positive first Chern
class as in the Introduction,ωi be its K̈ahler form, andρi be its Ricci form.
We will normalize hi so thatρi = piωi . Also, the multi-index subscripts on
the bundles defined in the Introduction will be omitted whenever there is no
confusion.

Next, we choose a connection formθ on P whose curvatureΩ = dθ =∑l
i =1 qiπ

∗
i ωi . We caution the reader that these are real-valued forms, while the

usual convention is for the Lie algebra of the circle to be identified with the
imaginary complex numbers. Notice thatΩ is harmonic with respect to any
product metric of the forma1h1+· · ·+al hl on M , whereai are positive constants,
so thatθ may be viewed as a Yang-Mills connection onP. θ induces connections
on V andW which we use to lift metrics on the baseM to the horizontal spaces
of the bundles. We will examine the Einstein (resp. Einstein-Weyl) equations for
the family of metrics of the form

h = dt2 + f (t)2 θ ⊗ θ +
l∑

i =1

gi (t)2 π∗
i hi ,(1.1)

wheref andgi are smooth non-negative functions oft defined on some interval
I and satisfying suitable boundary conditions which guarantee thath defines a
smooth metric onV ,W, or W. These conditions will be discussed in detail later
on. Here we only point out that for each fixedt , the induced metric onP makes it
into a Riemannian submersion with totally geodesic fibres onto a product metric
on M , and, ast varies, we have an equi-distant hypersurface family as was
discussed in Sect. 2 of [EW].
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The connectionθ can also be used to construct a complex structureJ on V
(resp.W) by lifting the product complex structureJ1×· · ·×Jl on the baseM to the
horizontal spaces and using the natural complex structure ofC (resp. the Riemann
sphere) on the vertical spaces. ThusV admits a natural complex structure, and
W, with the complex structureJ , may be viewed as the projectivization ofV ⊕1,
where1 denotes the trivial complex line bundle overM .

Theorem 1.2 Notation as above, assume that

0< |qi | < pi , i = 1,2, . . . , l ,

and that there exists(ε1, . . . , εl ) where|εi | = 1 with at least oneεi positive such
that ∫ 1

−1
(

p1

|q1| + ε1x)n1(
p2

|q2| + ε2x)n2 · · · (
pl

|ql | + εl x)nl xdx< 0.

Then there exists an Einstein metric with positive scalar curvature on Wq1,...,ql

which is Hermitian with respect to J but which is not Kählerian.

Note thatl cannot be equal to 1 in Theorem 1.2! This is because the positivity
of the first Chern class implies thatpi ≤ ni + 1, which in turn implies that when
l = 1 the above integral is positive. Hence the Einstein metrics constructed in this
theorem belong to adifferentfamily than the B́erard Bergery-Page-Pope metrics.
Indeed, we shall see from the proof of the theorem that the metrics do not factor
through the antipodal map of theS2-fibres (cf Remark 3.4).

Suppose now that the bundle is fixed, and some choice of (ε1, . . . , εl ) contain-
ing both +1 and−1 makes the above integral positive. Then one easily checks
that the choice (−ε1, . . . ,−εl ) renders the integral negative. Of course, there
could be several choices of (ε1, . . . , εl ) containing both +1 and−1 which make
the integral negative.

At this point let us recall the existence theorem of Koiso-Sakane [KS1, The-
orem 4.2 ], which we state in the following form for comparison purposes:

Theorem 1.3 (Koiso-Sakane)There exists an Einstein metric with positive
scalar curvature on Wq1,...,ql which is K̈ahler with respect to J if

0< |qi | < pi ,

and if ∫ 1

−1
(
p1

q1
− x)n1(

p2

q2
− x)n2 · · · (

pl

ql
− x)nl xdx = 0

As was discovered in [KS1], the above integral is precisely Futaki’s func-
tional [Fu] evaluated on the (real) holomorphic vector fieldf ∂/∂t . Comparing
Theorems 1.2 and 1.3, one sees that the hypotheses in Theorem 1.2 above are
much less restrictive. Furthermore, when a choice of (ε1, . . . , εl ) makes the in-
tegral in Theorem 1.2zero, then Theorem 1.3 shows that on the bundle whose
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Euler class is given by the integers−εi |qi | there is a K̈ahler-Einstein metric,
because the integral in Theorem 1.2 is the Futaki invariant forf ∂/∂t on this
bundle. In this sense Theorems 1.2 and 1.3 complement each other.

The generalization of the Einstein metrics of Bérard Bergery-Page-Pope to
S2-bundles over a product of K̈ahler-Einstein manifolds with positive first Chern
class is given by

Theorem 1.4 Let0< |qi | < pi , i = 1, . . . , l . Then there always exists an Einstein
metric with positive scalar curvature on theRP

2-bundleWq1,...,ql , and hence an
Einstein metric on the S2-bundle Wq1,...,ql which is Hermitian but non-K̈ahler with
respect to J and has fibre-wiseZ/2 symmetry.

Notice that, unlike the K̈ahler case, the hypotheses in Theorems 1.2 and 1.4
depend only on|qi |. In fact, the manifoldsWq1,...,ql for which the absolute values
of the correspondingqi are equal are diffeomorphic, but the natural complex
structures on them (see Remark 2.5) are not equivalent in general.

The Hermitian (with respect toJ ) geometry of the Einstein metrics given by
Theorems 1.2 and 1.4 is quite interesting. In Sect. 7 we will characterize when
these Einstein metrics are conformal toJ -Kähler metrics (Corollary 7.3). We
also prove (see Corollary 7.5) that the Riemann curvature tensor isJ -invariant,
i.e., R(X,Y ,Z ,W) = R(JX, JY, JZ, JW) for all tangent vectorsX,Y ,Z ,W. So
these Einstein metrics belong to the classL3 of Hermitian manifolds studied
by A. Gray in [Gr]. See [FFS] for a more up-to-date study and more complete
references.

Remark 1.5Theorems 1.2 and 1.4 may be generalized as follows. Let (Mi , gi ), i
= 1,2, . . . , l be compact Einstein manifolds with Einstein constantspi > 0,
and suppose that there are harmonic 2-formsωi on Mi such that (2π)−1[ωi ] ∈
H 2(Mi ; Z). Suppose further that eachωi satisfies the condition∑

k

ωi (X,ek)ωi (Y ,ek) = 2λi
2gi (X,Y)

for all vectorsX,Y of Mi and some positive constantλi . ({ek} is an orthonormal
basis forgi .) As before, we can construct a principal circle bundleP overM with
a connectionθ whose curvature form is

∑l
i =1 qiωi , whereqi are nonzero integers.

Then the proofs of Theorems 1.2 and 1.4 carry over to show the existence of
Einstein metrics on the associatedS2 andRP

2-bundles ofP.

Our construction also produces complete Einstein metrics on the 2-plane
bundlesVq1,...,ql .

Theorem 1.6 (a) There exists an l− 1 parameter family of complete Ricci-flat
Kähler metrics on Vq1,...,ql provided that−qi = pi for all i .
(b) Let 0 < |qi | < pi for all i , then there exists a complete non-Kähler Ricci-flat
Einstein metric on Vq1,...,ql .
(c) There exists a complete Kähler-Einstein metric with negative constant and
infinite volume on an open disk-subbundle of Vq1,...,ql provided that−qi > pi for
all i .
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(d) On each bundle Vq1,...,ql there exists at least a1-parameter family of complete
non-Kähler Einstein metrics with negative constant and infinite volume.

This theorem generalizes the corresponding theorems in [BB]. A new feature
is that whenl > 1 we get continuous families of Einstein metrics in case (a),
where one obtained only one Einstein metric (up to homothety) before. Also,
in case (d) we get a 2-parameter family of Einstein metrics if in addition either
|qi | > pi for all i or |qi | < pi for all i . The proof of this theorem will be given
in Sect. 5.

Next we present our results on Einstein-Weyl structures. Recall that a Weyl
structure on a manifold consists of a conformal class of metrics together with
a linear connection on the bundle of length-scales determined by the conformal
class. Such structures were introduced by H. Weyl [We] in order to have a
conformally invariant analogue of Einstein’s equation. The paper [Fo] gives a
detailed study of various equivalent formulations of a Weyl structure. We will
work with the definition of a Weyl structure as an equivalence class of pairs
(h, η), whereh is a Riemannian metric andη a 1-form, with (h, η) ∼ (h̃, η̃) if
there exists a smooth functionw such thath̃ = exp(2w)h and η̃ = η + 2dw. The
Levi-Civita connection ofh and the 1-formη determine a unique torsion free
affine connectionD such thatDh = η⊗h. (See, e.g., [PS1], Lemma 2.1.) A Weyl
structure is Einstein if the symmetric part of the Ricci tensor ofD is a function
times h. This equation is invariant under the equivalence relation above. There
is an extensive literature on (Einstein-)Weyl structures. We refer the reader to
[Ga], [PS1], [PS2], [PPS], [Md], and [MPPS] for more information and a more
complete guide to the literature.

We will consider in Sect. 8 solutions of the Einstein-Weyl equation on the
S2-bundlesWq1,...,ql and RP

2-bundlesWq1,...,ql . The metricsh will again be of
the form (1.1). As for the 1-formη we assume it to be of the formAdt + Bf θ,
whereA,B are smooth functions oft satisfying appropriate boundary conditions
described in Sect. 8.

Theorem 1.7 Suppose that for all i= 1, . . . , l ,0 < |qi | < pi . Suppose further
that there exists(ε1, . . . , εl ) with εi = ±1 and at least oneεi = +1 such that the
integral ∫ 1

−1
(

p1

|q1| + ε1x)n1(
p2

|q2| + ε2x)n2 · · · (
pl

|ql | + εl x)nl xdx< 0.

Then on Wq1,...,ql there exists a1-parameter family of Einstein-Weyl metrics[h, η]
which are not locally conformal to the Einstein metrics in Theorem 1.2.

The analog of Theorem 1.4 is

Theorem 1.8 If 0< |qi | < pi for all i = 1, . . . , l , then there exists a1-parameter
family of Einstein-Weyl metrics onWq1,...,ql which are not locally conformal to
the corresponding Einstein metrics in Theorem 1.4.

None of these Einstein-Weyl structures are hermitian in the sense of [PPS].
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2 The Einstein equations

We will study in this section the Einstein condition for metrics of the form (1.1)
without regard to boundary conditions. It will be shown in particular that the
Einstein equations are explicitly integrable in terms of polynomial functions. We
will employ the notation established in Sect. 1. We will, however, omit the multi-
index subscripts whenever there is no confusion. Recall thatP is the principal
U (1) bundle overM with Euler class determined by the integersq1, . . . ,ql . This
part of the analysis is common to the bundlesW,W, andV .

We saw in Sect. 1 that the above manifolds are all of the formP × I , where
I is a finite interval in the case ofW andW and an infinite interval in the case
of V , with appropriate identifications at the boundary ofI . Metrically, we have
an equi-distant family of hypersurfaces and so the Einstein condition can be read
off from Proposition 2.1 of [EW].

Let −U be the vector field onP generated by theU (1)-action. Then, since
the connection formθ was chosen to be real-valued, it follows thatθ(U ) = 1. If
we choose as a local basis{N = ∂/∂t ,U ,e1, . . . ,e2n}, wheren is the complex
dimension ofM , and{e1, . . . ,e2n} is a local basic orthonormal frame field with
respect to the product metrich1 × . . . × hl , then the shape operatorL in [EW]
has componentsf ′/f , gi

′/gi andtr (L) = f ′/f +
∑l

i =1 2ni gi
′/gi . Together with the

Kähler-Einstein conditionRic(hi ) = pi hi for Mi , we see easily that the Einstein
condition for (1.1) is given by the following system:

− f ′′

f
−

l∑
i =1

2ni
g′′

i

gi
= c(2.1)

− f ′′

f
−

l∑
i =1

2ni
f ′g′

i

f gi
+

l∑
i =1

2niλi
2 f 2

g4
i

= c(2.2)

− g′′
i

gi
− f ′g′

i

f gi
−
∑
j /=i

2nj
g′

i g
′
j

gi gj
− (2ni − 1)(

g′
i

gi
)2 +

pi

g2
i

− 2λi
2 f 2

g4
i

= c(2.3)

where we have setλi = qi /2, i = 1,2, . . . , l , andc is the Einstein constant. Notice
that by the remark after Corollary 2.4 of [EW] there is no need to consider the
Einstein condition for the off-diagonal components of the Ricci tensor.

Let us now equate (2.1) and (2.2). We obtain

l∑
i =1

2ni

(
g′′

i

gi
− f ′g′

i

f gi
+ λ2

i
f 2

g4
i

)
= 0.

Let us set

µi =
g′′

i

gi
− f ′g′

i

f gi
+ λ2

i
f 2

g4
i

.(2.4)
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In a generic situation, theµi would be linearly independent. Accordingly, we will
consider only solutions for whichµi ≡ 0 for all i . When l = 1, this condition is
of course automatically satisfied. We shall see in Sect. 7 that this is equivalent to
the condition that the sectional curvatures of the metrich for all mixed 2-planes
(i.e., spanned by a vertical and a horizontal vector) are equal. In Hermitian
geometry terms, this is equivalent to requiring the identityR(X,Y ,Z ,W) =
R(JX, JY, JZ, JW) for all tangent vectors. It would be interesting to determine
whether all solutions of (2.1)-(2.3) must satisfy this geometrical condition. See
the end of Sect. 7 for further discussion about this point.

Remark 2.5 The complex structureJ was defined by lifting the product complex
structure of the base via the connectionθ to the horizontal spaces and using
the natural complex structure of the fibres. For a metrich of the form (1.1),
it is hermitian with respect to the complex structureJf which agrees withJ on
horizontal spaces and which is given byJf (U ) = f (∂/∂t) on the fibres. ( Caution:
−U is the infinitesimal generator of theS1 action.) In the case ofS2-bundles,
the uniformization theorem implies that the complex structuresJ and Jf are
equivalent by an orientation (and fibre) preserving diffeomorphism. This is also
the case for Ricci flat metrics onR2-bundles, i.e., cases (a) and (b) in Theorem
1.6. More details and the situation for cases (c) and (d) will be described in
Remark 5.1. For the rest of the paper we will abuse notation and denoteJf by J .
Actually, the vanishing of the torsion ofJf also needs verification, for which it is
important that the Euler class ofP is of type (1,1) with respect to the complex
structure of the base.

Let ω denote the fundamental 2-form of the Hermitian metrich. Then

ω = −fdt ∧ θ +
l∑

i =1

g2
i πi

∗ωi .

It follows immediately from this thatω is closed iff

(g2
i )′ = −qi f , i = 1, . . . , l .(2.6)

As can easily be verified, this K̈ahler condition is a special solution ofµi = 0.
Suppose thath is a Kähler metric of the type in (1.1). Then theU (1)-action

on our manifold is a symplectic action. One can verify that the negative of any
anti-derivative of the functionf is a moment map for this action. With this as
motivation, we letr be an anti-derivative off , i.e., dr = f (t)dt. Sincef is non-
negative, we can expresst as a function ofr and define functionsα andβi of r
by

α(r ) = f (t), βi (r ) = gi (t).

Then (2.1)-(2.3) become

−αα′′ − (α′)2 −
l∑

i =1

2ni

(
α2β

′′
i

βi
+ αα′ β

′
i

βi

)
= c,
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−αα′′ − (α′)2 −
l∑

i =1

2niαα
′ β

′
i

βi
+

l∑
i =1

2niλ
2
i
α2

β4
i

= c,

−α2β
′′
i

βi
− 2αα′ β

′
i

βi
−

l∑
j =1

2njα
2β

′
i β

′
j

βiβj
+ α2 (β′

i )
2

β2
i

+
pi

β2
i

− 2λ2
i
α2

β4
i

= c.

The conditionµi = 0 which we imposed now takes on the simple form

β′′
i

βi
+
λ2

i

β4
i

= 0.(2.7)

A first integral of (2.7) is
β2

i (β′
i )

2

Aiβ2
i + λ2

i

= 1,(2.8)

whereAi are constants of integration. The Kähler condition (2.6) simplifies to
βiβ

′
i = −λi for all i , which corresponds toAi = 0 for all i .
We will make one further transformation of the Einstein equations by letting

a(r ) = α(r )2 andbi (r ) = βi (r )2. The metrich then takes on the form

a(r )−1 dr2 + a(r ) θ ⊗ θ +
l∑

i =1

bi (r )π∗
i hi ,

and (2.1)-(2.3) become

1
2

a′′ +
1
2

a′(logv)′ + a
l∑

i =1

ni

(
b′′

i

bi
− 1

2

(
b′

i

bi

)2
)

= −c,(2.9)

1
2

a′′ +
1
2

a′(logv)′ − 2a
l∑

i =1

ni
λ2

i

b2
i

= −c,(2.10)

− pi

bi
+ 2a

λ2
i

b2
i

+
a
2

(
b′′

i

bi
−
(

b′
i

bi

)2
)

+
a
2

(logv)′
b′

i

bi
+

a′b′
i

2bi
= −c,(2.11)

where

v =
l∏

i =1

g2ni
i =

∏
i

bni
i .

Notice that, up to a constant, the integral ofv with respect to the variabler is
precisely the volume of the metrich. Also, a appears linearly in each of these
equations, and for eachi , (2.11) is a first order linear equation ina, which is
readily integrable.

In terms ofbi , (2.8) becomes

(b′
i )

2 = 4(Ai bi + λ2
i ),(2.12)
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and the K̈ahler condition is given by−b′
i = 2λi = qi . Indeed, solving (2.12), we

obtain

bi (r ) =

{
Ai (r + Ri )2 − λ2

i
Ai

if Ai /= 0
±2λi (r + Ri ) otherwise,

(2.13)

whereRi are constants.

Lemma 2.14 Functions a,bi , i = 1, . . . , l give a solution of(2.9)-(2.11) on P×
int(I ) such thatµi ≡ 0 and Ai /= 0 for all i iff the following hold.

i. There exist constants r0 and E such that for all i

E =
pi

Ai
+ c

(
λi

Ai

)2

,(2.15)

bi (r ) = Ai (r + r0)2 − λ2
i

Ai
.(2.16)

ii. On each subinterval of int(I ) on which r + r0 does not vanish, there exists
εi = ±1 such that εi A

−1
i (Ai bi + λ2

i )1/2 = r + r0.
iii. a is given by

a(r ) =
r + r0

v

∫ r

0
v(E − c(s + r0)2)(s + r0)−2ds.(2.17)

Proof. Starting with a solution of (2.9)-(2.11) such thatµi = 0 andAi /= 0, it
follows thatbi has the form given in the first case of (2.13). Using this form, we
multiply (2.11) bybi A

−1
i , and obtain upon simplification

(r + Ri )a
′ = a(1 − (r + Ri )(logv)′) + Ei − c(r + Ri )

2,(2.18)

whereEi = pi

Ai
+ c
(

λi
Ai

)2
. If we subtract equationj from equationi in (2.18), we

have

(Ri − Rj )a
′ = −a(logv)′(Ri − Rj ) + (Ei − Ej ) − c(Ri − Rj )(2r + Ri + Rj ),

while if we subtract (r + Ri ) times equationj from (r + Rj ) times equationi in
(2.18) we get

0 = (Ri − Rj )a + c(Ri − Rj )(r + Ri )(r + Rj ) − Ei (r + Rj ) + Ej (r + Ri ).

Differentiating this last equation yields

(Rj − Ri )a
′ = c(Ri − Rj )(2r + Ri + Rj ) − Ei + Ej .

Hence we must haveRi = Rj = r0 andEi = Ej = E for constantsr0 andE. This
proves (i). From this and (2.13) it follows that

1
Ai

(Ai bi + λ2
i )1/2 = sgn(Ai )|r + r0|,
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which proves (ii). The formula fora follows by straight-forward integration.
Conversely, ifa and bi are as given above and (2.15) holds, then (2.11) holds
for all i andµi = 0. It remains to check (2.9). It follows from using (2.18) twice
that

a′′ =

(
1

r + r0
− (logv)′

)
a′ −

(
1

(r + r0)2
+ (logv)′′

)
a − E

(r + r0)2
− c.

Using (2.18) once more with (2.16), we obtain (2.9). This completes the proof
of (2.14).

Remark 2.19If the metric is required to be K̈ahler, then similar computations
show that there are constantsDi and Ê such that for alli

bi = −2λi r + Di ,

Ê =
cDi − pi

λi
.

Furthermore,

a = v−1
∫ r

0
v(Ê − 2cs)ds.

3 Existence onS2 bundles

In this section we will give the proof of Theorem 1.2. Recall that smooth functions
f , gi , i = 1, . . . , l on I = [0,T] define via (1.1) a smooth metric on theS2-bundle
W iff

(a) (positivity) f is positive on (0,T) andgi are positive on [0,T],
(b) (smoothness) in a neighborhood of 0, f (t) = tφ(t2) for some smooth function

φ with φ(0) = 1, gi (t) = ψi (t2) for smooth functionsψi , and analogous
conditions hold in a neighborhood ofT.

Discussions of these conditions can be found, for example, in [BB], [PP2], or
[S]. Perhaps more systematically, they can also be deduced using the argument
in the proof of Lemma 1 in [EW]. In any case, we choose the anti-derivative of
f so that the interval [0,T] corresponds, under our change of variable fromt to
r̃ , to the intervalĨ = [r0, r0 + R], where we have set ˜r = r + r0, so thatr ranges
over the interval [0,R]. The positivity condition (a) translates into:a positive
on (0,R) and bi positive on [0,R]. The conditionφ(0) = 1 (resp.φ(T) = −1)
becomesa′(0) = 2 (resp.a′(R) = −2). By Lemma 2.14, if we choosea so that
a(0) = 0 = a(R), then we can easily verify that the smoothness condition (b) is
satisfied to second order. This means that we have an Einstein metric of class
C2. By Theorem 5.2 in [DK], the metric is smooth.

We will assume in the following thatc > 0 and chooseE > 0 in a manner
to be specified later. If we substitute the boundary conditions fora into (2.11),
we find thatr0 and−(R + r0) are roots of the quadratic equation
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cx2 + 2x − E = 0.(3.1)

Hence the lengthR of the interval is 2c−1 and r0(R + r0) = Ec−1. From this
we see that the assumption thatE > 0 is equivalent to the condition that the
interval Ĩ does not contain 0. So once we have chosenc andE, then the interval
Ĩ is determined by the choice of a root of (3.1). By replacing ˜r by −r̃ , we can
assume that the positive root of (3.1) is chosen.

Furthermore, (2.15) gives a quadratic equation from which we can solve for
Ai . Of course, there are two solutions, but if the condition

0< |qi | < pi , i = 1,2, · · · , l

in the hypothesis of Theorem 1.2 holds, then the positivity condition forbi holds
no matter whichAi we pick. The verification of this is routine, although there are
a number of cases to check. As an example, letr0 > 0 and suppose thatAi < 0.
Note, by the way, that in this caseεi = −1 (cf 2.14(ii)). Then

Ai =
pi − (p2

i + cEq2
i )1/2

2E
.

But by (2.16) and (2.15),

bi =
pi

c
+ Ai

(
(r + r0)2 − E

c

)
> 0(3.2)

iff

E − c(r + r0)2 >
2Epi

pi − (p2
i + cEq2

i )1/2
.

Using (3.1), we see that the last inequality holds on [0,R] iff

1 + (1 +cE)1/2

c
= r0 + R <

Epi

(p2
i + cEq2

i )1/2 − pi

iff

1 + (1 +cE)1/2 <
p2

i

q2
i

(
1 +

(
1 + Ec

q2
i

p2
i

)1/2
)
,

which holds iff 0< |qi /pi | < 1.
It remains to guarantee the positivity condition ona and ensure thata(R) = 0.
By (2.17),a(R) = 0 is equivalent to

∫ r0+R

r0


 l∏

j =1

(
s2 − (

λj

Aj
)2

)nj


 (E − cs2)s−2ds = 0.

Let x = cs− (1 + cE)1/2, then the above integral becomes (modulo constants)
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∫ 1

−1


 l∏

j =1

(
x2 + 2(1 +cE)1/2x + 1 +

εj pj (p2
j + 4cEλ2

j )1/2 − p2
j

2λ2
j

)nj



×x2 + 2x(1 + cE)1/2 + 1
(x + (1 + cE)1/2)2

dx.

Note thatεj has appeared to account for the choice ofr0 andAj : if r0 is chosen
to be positive, thenεi is just the sign ofAi . Let F (E) denote the value of the
above integral as a function ofE. We will prove that there is a positive value
of E so thatF (E) = 0. With this choice ofE in our preceeding discussion, we
obtain in addition the desired boundary conditiona(R) = 0.

First, we compute limE→0+ F (E). Note that forE > 0,∫ 1

−1

x2 + 2(1 +cE)1/2x + 1
(x + (1 + cE)1/2)2

dx = 0,

so we can write

F (E) = F (E) −
∫ 1

−1


 l∏

j =1

(
εj pj (p2

j + 4cEλ2
j )1/2 − p2

j

2λ2
j

− cE)nj




×x2 + 2(1 +cE)1/2x + 1
(x + (1 + cE)1/2)2

dx.

Let
z = (x + (1 + cE)1/2)2 = c2s2,

and

Γj =
εj pj (p2

j + 4cEλj
2)1/2 − p2

j

2λi
2 − cE.

Then

F (E) =
∫ 1

−1


 l∏

j =1

(z + Γj )
nj −

l∏
j =1

Γj
nj


(z − cE

z

)
dx.

If we expand the term in square brackets, we see thatz divides into the resulting
expression. Hence, we may interchange the order of taking the limit asE → 0+

and integration to obtain limE→0+ F (E) =

(−1)

∑
εj =−1

nj

∫ 1

−1


∏

εj =1

(1 + x)2nj




 ∏

εj =−1

(
4p2

j

q2
j

− (x + 1)2
)nj

dx

−2
l∏

j =1

(
(εj − 1)p2

j

2λ2
j

)nj

.

By assumption, at least one of theεj equals 1, so the last term in the above expres-
sion vanishes. Furthermore, since 0< |qi | < pi , it is clear that limE→0+ F (E) > 0
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if
∑

εj =−1 nj is even, and limE→0+ F (E) < 0 if
∑

εj =−1 nj is odd. On the other
hand,

lim
E→+∞

[F (E)E
1
2 −
∑

j

nj
2 ] =

∫ 1

−1


 l∏

j =1

(
2c1/2x + c1/2εj

pj

|λj |
)nj


2c−1/2xdx

= (−1)

∑
εj =−1

nj
K
∫ 1

−1

l∏
j =1

(
pj

|qj | + εj x

)nj

xdx,

where K is a positive constant. Therefore, if

∫ 1

−1


 l∏

j =1

(
pj

|qj | + εj x

)nj


 xdx< 0,

then there exists someE > 0 such thatF (E) = 0.
Finally, a(r ) > 0 for 0< r < R becauseE − c(r + r0)2 is monotone, so that

the integral part of (2.17) has the same sign asr + r0 before it becomes 0. The
original variablet can now be recovered froma(r ) by

t =
∫ r

0
a(s)−1/2ds.(3.3)

This completes the proof of Theorem 1.2.

Remark 3.4 Since we have chosenE > 0, i.e., Ĩ = [r0,R+ r0] does not contain
0, it follows that Ai bi + λ2

i is never zero, and so (g2
i )′ is never zero on (0,T).

This means that the Einstein metric does not have fibrewise antipodal symmetry.

Remark 3.5 For the K̈ahler case, the above considerations simplify greatly.
In particular, there is no longer any singularity in the integral defininga. The
boundary conditions fora(r ) give Ê = 2 andR = 2c−1. The positivity of bi is
again guaranteed by the condition 0< |qi | < pi , and the conditiona(R) = 0 is
equivalent to ∫ R

0


 l∏

j =1

(pj + qj

c
− qj s

)nj


 (1 − cs)ds = 0.

Letting x = cs− 1, we obtain (modulo constants)

∫ 1

−1


 l∏

j =1

(
pj

qj
− x

)nj


 xdx = 0,

which is the integral condition in Theorem 1.3.
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4 Existence onRP2 bundles

We turn now to theRP
2-bundlesW. Recall that the circle acts onRP

2 with
circles as principal orbits which collapse on one end to a fixed point and on the
other end to a circle via a double covering map. In order for functionsf , gi to
define a smooth metrich of type (1.1) onW, it is necessary and sufficient that

(a) (positivity) f is positive on (0,T], gi are positive on [0,T],
(b) (smoothness at 0) in a neighborhood of 0,f (t) = tφ(t2) for some smooth

functionφ with φ(0) = 1, gi (t) = ψi (t2) for smooth functionsψi ,
(c) (smoothness atT) in a neighborhood ofT, f (T − t) = φ̂(t2) andgi (T − t) =

ψ̂i (t2) for smooth functionsφ̂, ψ̂i .

We will again consider solutions such that allµi ≡ 0. In terms of the variable
r , the functiona must be positive on (0,R] and bi must be positive on [0,R].
Furthermore,a(0) = 0,a′(0) = 2,a′(R) = 0, andb′

i (R) = 0 must hold. If so, then
as in the proof of Theorem 1.2, the conditions (a)-(c) will be satisfied.

Any metric onW lifts to a metric onW such that at the midpoint of the corre-
sponding intervalI the derivatives off andgi vanish simultaneously. Conversely,
from (2.8) and Lemma 2.14, we see that for an Einstein metrich of the type
under consideration, this can happen onlyonceand thenonly at r̃ = 0 ∈ int(Î ).
Therefore, back onW, in contrast to the situation in Theorem 1.2, we must
haver0 + R = 0. It follows that the boundary conditionb′

i (R) = 0 automatically
holds. By (2.16) and the positivity condition, it follows that for alli , Ai < 0.
Furthermore, if we evaluate (2.11) atr = R and use (2.16) withr0 + R = 0, we
obtain−a(R) = E < 0. Applying the boundary conditions fora at 0 to (2.11),
we conclude thatr0 is a (negative) root of the quadratic equation (3.1). So again,
the Einstein constantc and the constantE determine, up to a choice of roots of
(3.1), the interval̂I .

We address next the positivity condition on thebi . Let

r0 =
−1 − (1 + cE)1/2

c
(4.1)

and

Ai =
pi − (p2

i + cEq2
i )1/2

2E
,(4.2)

with −cE < 1 and−cE(q2
i /p2

i ) < 1 to guarantee thatr0 andAi are real. As in
the proof of Theorem 1.2, positivity ofbi on [0,R] is equivalent to

c(r + r0)2 − E <
−2Epi

pi − (pi + cEq2
i )1/2

,

which, upon using (3.1) and the above expression forr0, is equivalent to

1 + (1 +cE)1/2 <
p2

i

q2
i

(
1 +

(
1 +

cEq2
i

p2
i

)1/2
)
.

This is satisfied iff 0< |qi | < pi holds, as can be easily verified.
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Remark 4.3In the above we may also chooser0 to be the other root of (3.1).
However, the inequality would not hold if we choose the other value ofAi . We
will see shortly that the above choices forr0 andAj are important for the rest of
the proof. Hence there is less flexibility in the proof of Theorem 1.4. Notice also
that whenl = 1 (the B́erard Bergery-Page-Pope case), the consistency condition
(2.15) is not required.

We will now show that there is a value ofE < 0 with −c−1 < E so that the
boundary conditiona′(R) = 0 holds. According to (2.17),

a(r ) =
r∏l

j =1(A2
j r 2 − λ2

j )nj

∫ r

r0


∏

j

(A2
j s2 − λ2

j )nj


 (E − cs2)s−2ds.

Since one can easily check thata(R + r0) = a(0) = −E, it follows that

a′(0) = lim
r →0−

(
a(r ) + E

r

)
.

So a′(0) = 0 iff

lim
r →0−


∫ r

r0


∏

j

(Aj s
2 − λ2

j

Aj
)nj


(E − cs2

s2

)
ds +

E
r

∏
j

(Aj r
2 − λ2

j

Aj
)nj


= 0.(4.4)

Let G(E) denote the value of this limit as a function ofE. First we compute
limE→0− G(E). Observe that as a Laurent polynomial inr , the expression in
(4.4) in square brackets has cancelling 1/r -terms and the polynomial part of the
second term has no constant term. So, using (4.1) and (4.2) in taking the limit,
and lettings = r0(1 − y), we get

lim
E→0−

G(E) = −2
∫ 1

0

∏
j

(
pj

c
− 4λ2

j

cpj
(1 − y)2

)nj

dy,

which is negative since 0< |qi | < pi .
Next, to compute limE→−1/c G(E), we again letr = r0(1 − y) in (4.4) and

add and subtract the term

∏
j

(
−λ2

j

Aj

)nj ∫ y

0

(−E + cr2
0(1 − x)2

r0(1 − x)2

)
dx

inside the square brackets. After recombining the terms, integrating, and using
(3.1), we obtain

∫ 1−

0


 l∏

j =1

(
Aj r

2
0(1 − y)2 − λ2

j

Aj

)nj

−
l∏

j =1

(
−λ2

j

Aj

)nj

(−E + cr2

0(1 − y)2

r0(1 − y)2

)
dy
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+ 2(1 +cr0)
l∏

j =1

(
−λ2

j

Aj

)nj

.

As E approach−c−1, the second term tends to 0, and using (4.1) and (4.2), we
see that the integral tends to

∫ 1

0


∏

j

(
pj + (p2

j − 4λ2
j )1/2

2c

)nj

−
∏

j

(
pj + (p2

j − 4λ2
j )1/2

2c
− 2λ2

j

c(pj + (p2
j − 4λ2

j )1/2)
(1 − y)2

)nj



·
(

1 + (1− y)2

(1 − y)2

)
dy,

which is positive. Therefore there is someE lying between−1/c and 0 such
that G(E) = 0.

Finally, the positivity of a follows from that of bi and the negativity of
E − c(r + r0)2. This completes the proof of Theorem 1.4.

5 Complete Einstein metrics

We now consider complete Einstein metrics on the 2-plane bundlesVq1,...,ql of
type (1.1) withµi ≡ 0 for all i . By the theorem of Bonnet-Myers, the Einstein
constantc must be non-positive. Smooth functionsf , gi , i = 1, . . . , l give a
complete smooth metric onE iff

(a) (positivity) f is positive on (0,+∞), gi are positive on [0,+∞),
(b) (smoothness at 0) in a neighborhood of 0,f (t) = tφ(t2) for some smooth

functionφ with φ(0) = 1, gi (t) = ψi (t2) for smooth functionsψi .

Note that completeness requires the integral (3.3) to be infinity whenr = R,
where [0,R) is the domain of the functionsa,bi .

We consider first complete Ricci-flat Kähler-Einstein metrics. Applying the
boundary conditions atr = 0, we obtain immediately that−qi = pi for all i . It
follows that Ê in Remark 2.19 equals 2. By completeness, the lengthR of the
interval of definition of the functionsa,bi must be infinite because the volume
of these metrics must be infinite. The positivity conditions are satisfied as long
as Di are positive. Up to homothety we can fix the value of one of theDi , but
we may choose the rest arbitrarily, giving anl − 1 parameter family of solutions
of the Einstein equation.

For Kähler-Einstein metrics with negative constantc, the boundary conditions
at r = 0 force−qi to be larger thanpi . ChoosingÊ ≥ 2 (see Remark (2.19)),
it follows that Di = c−1( 1

2Êqi + pi ) are positive. Changing the value ofÊ only
results in translating the variabler . So we obtain only one solution. Notice that
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R is finite iff the volume is finite, in which case (3.3) would also be finite,
contradicting completeness. Therefore the volume must be infinite.

We consider next the non-K̈ahler case. Forc = 0, it follows from the consis-
tency condition (2.15) thatpi /Ai = E. Since the volume must be infinite,R = +∞,
and, by replacing ˜r by −r̃ if necessary, we may assume thatr0 = E/2 > 0.
HenceAi > 0 and one checks easily thatbi satisfy the positivity condition iff
0 < |qi | < pi for all i . Changing the value ofE only results in a homothetic
metric.

Finally, if c < 0 in the non-K̈ahler case, one sees first that completeness
again implies thatR = +∞. From the boundary conditions atr = 0, one obtains
that r0 is a root of (3.1). Suppose that|qi | ≤ pi . Then we choose 0< E < −c−1,
and

r0 =
1 + (1 +Ec)1/2

−c
, Ai =

pi + (p2
i + Ecq2

i )1/2

2E
.

It follows that bi satisfies the positivity condition. Notice that if|qi | < pi , we
may also chooser0 = −c−1[1 − (1 + Ec)1/2]. As E → −c−1, the two values of
r0 become equal. Also, asE → 0+, Ai tends to +∞.

When |qi | > pi , we may choose 0< E < min(p2
1/q2

1 , . . . ,p
2
l /q2

l ), r0 =
−c−1[1 + (1 + Ec)1/2], and Ai = (pi − (p2

i + Ecq2
i )1/2)/2E. Then bi will satisfy

the positivity condition. We may also chooseE < 0.
Therefore, we obtain a 2-parameter family of Einstein metrics if|qi | > pi for

all i , or if |qi | < pi for all i . We obtain a 1-parameter family of Einstein metrics
in all remaining cases. This completes the proof of Theorem 1.6.

Remark 5.1We now give the discussion of complex structures promised in Re-
mark 2.5. First, note that in order to compare the complex structuresJf and J ,
it suffices to do so on the fibres. OnR2 consider theU (1)-equivariant injection
S given in polar coordinates byS (t , θ) = (σ(t), θ) whereσ is a solution of
the equationσ′f = σ satisfying appropriate boundary conditions so thatS is a
smooth map . ThenS becomes a holomorphic map onR2 equipped with the
complex structureJf on the domain andJ on the range. One then checks that
S is surjective iff ∫ ∞

0

dρ
a(ρ)

= ∞,

wherea(r ) = f (t)2. Looking at our solutions, one finds that the above integral
diverges exactly in the Ricci flat cases. ThusJf andJ are equivalent iffc = 0. In
the negative case,Jf is equivalent toJ restricted to an open disk inR2. This is
exactly the discrepancy observed in [PePo, p.319, remark after (3.14)] between
their example and the corresponding example of Bérard Bergery (see 9.129(c) in
[Be]).

Remark 5.2It is interesting to study other boundary conditions such as the van-
ishing of some of thegi at t = 0. In a forthcoming paper by A. Dancer and the
second author [DW] about K̈ahler-Einstein metrics of cohomogeneity one, the
possibilities for the collapse of the hypersurfacesP × {t} to lower-dimensional
manifolds will be examined in greater detail.
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6 Examples

In this section we first discuss some topological properties of ourS2-bundles and
then we indicate applications of Theorems 1.2–1.4 with explicit examples.

Let χ denote the Euler class
∑

i qiπi
∗αi ∈ H 2(M ; Z) of the principal cir-

cle bundlePq1,...,ql . The associated complex line bundleVq1,...,ql has a unique
compatible holomorphic structure since its Euler class is of type (1,1) andM is
simply connected. ThenWq1,...,ql can be identified with the projectivized bundle
P(V ⊕ 1), where1 denotes the trivial complex line bundle. We will summarise
below some well-known facts which allow us to compute topological invariants
of Wq1,...,ql .

Let ξ = V ⊕ 1 andπ be the projection map fromPξ onto M . Then there is
an exact sequence

0 → γ → π∗ξ → ν → 0,(6.1)

where over each fibre ofPξ, γ is the tautological line bundle andν is the quotient
bundle. Denote−c1(γ) ∈ H 2(Pξ; Z) by s. The Leray-Hirsch theorem asserts that
H ∗(W; Z) is a freeH ∗(M ; Z)-module with generators 1, s and its ring structure
is given by

s2 + (π∗c1(ξ))s + π∗c2(ξ) = 0.

In the present situation, we have

s2 = −π∗c1(V )s = −χ · s,(6.2)

using the module structure.
We will identify the holomorphic tangent bundle ofW (resp.M ) with the

tangent bundleTW (resp. TM ) and denote byF the (holomorphic) tangent
bundle along fibres ofπ : W → M . Then it is well-known that (see [H, p. 102])

F ∼= γ−1 ⊗ ν.(6.3)

Proposition 6.4 We retain the above notation.
(a) The complex manifolds Wq1,...,ql are simply connected with cohomology ring

H ∗(W; Z) = H ∗(M ; Z)[s]/(s2 + χ · s).

(b) c1(W) = π∗(c1(M ) + χ) + 2s, and it is positive iff0 < |qi | < pi for all i .
Moreover, c2(W) = π∗c2(M ) + π∗c1(M ) · (π∗χ + 2s).
(c) p1(W) = π∗p1(M ) + (π∗χ)2.

(d) The second Stiefel-Whitney classw2(W) = π∗c1(M ) +π∗χ (mod2). Hence W
is spin iff for all i , pi and qi are of the same parity.
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Proof.Part (a) follows from the homotopy exact sequence and the remarks before
the proposition. The Chern classes are obtained by routine computations using
(6.1) and (6.3) and the fact thatTW = π∗TM ⊕ F . The Pontrjagin classes are
calculated from the Chern classes using (6.2). SinceW is complex, the 2i th
Stiefel-Whitney class is just the reduction mod 2 of thei th Chern class.

It remains to examine the positivity of the first Chern class. We will compute
the Ricci form of the induced hermitian metric onF for some suitably chosen
hermitian metric onW of the form (1.1). Sincef ∂/∂r is a (real) holomorphic
vector field alongF , the Ricci form is given by−id ′d′′ log f 2. This equals

− f ′′

f
(fdr ∧ θ) − f ′∑

i

qiπ
∗
i ωi .

So 2πc1(W) = 2π(c1(F ) + π∗c1(M )) is represented by

− f ′′

f
(fdr ∧ θ) − f ′∑

i

qiπ
∗
i ωi +

∑
i

piπ
∗
i ωi .

We may choose a K̈ahler metric onW with f (t) = sint . Then the above Ricci
form is positive iff |qi | < |pi |, i = 1,2, . . . , l . This completes the proof of (6.4).

To see that our constructions give non-trivial Einstein metrics, we prove the
following

Proposition 6.5 Let M = CP
n × CP

m.

(a) The total space Wq1,q2 is not homotopy equivalent to the product S2 × M .
(b) For n /= m, Wq1,q2 is homeomorphic to Wr1,r2 iff |q1| = |r1| and |q2| = |r2|.
(c) For n = m, Wq1,q2 is homeomorphic to Wr1,r2, iff either |qi | = |ri |, i = 1,2 or

else|q1| = |r2|, |q2| = |r1|.

Proof. In this case, Proposition 6.4 implies that

H ∗(W; Z) = Z[α1, α2, s]/(αn+1
1 , αm+1

2 , s2 + (q1α1 + q2α2)s),

whereα1 is a generator ofH 2(CP
n; Z) andα2 is a generator ofH 2(CP

m; Z).
To prove (a), one only has to observe that if 2≤ n ≤ m, then the cohomology
ring of W does not contain a 2-dimensional class whose square is 0, and when
1 = n < m, then the only 2-dimensional classes whose squares equal 0 are
proportional toα1. Finally, if 1 = n = m, then such classes are proportional
either toα1 or to α2.

Next, the first Pontrjagin class ofM is p1(M ) = (n + 1)α2
1 + (m + 1)α2

2. So,
by (6.4(c)), the first Pontrjagin class ofW is

p1(W) = (n + q2
1 + 1)α2

1 + (m + q2
2 + 1)α2

2 + 2q1q2α1α2.

Recall that our cohomology rings are torsion free and that rational Pontrjagin
classes are homeomorphism invariants. Suppose there is a homeomorphismΨ
betweenWr1,r2 andWq1,q2 inducing a ring isomorphismΨ∗ between
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H ∗(Wq1,q2; Z) ≈ Z[α1, α2, s]/(αn+1
1 , αm+1

2 , s2 + (q1α1 + q2α2)s)

and
H ∗(Wr1,r2; Z) ≈ Z[β1, β2, t ]/(βn+1

1 , βm+1
2 , t2 + (r1β1 + r2β2)t).

Assume that
Ψ∗(α1) = u1β1 + u2β2 + u3t

Ψ∗(α2) = v1β1 + v2β2 + v3t

Ψ∗(s) = w1β1 +w2β2 +w3t .

For n, m > 1, the conditionΨ∗(s2) = (Ψ∗(s))2 gives rise to the equations

w1[w1 + q1u1 + q2v1] = 0,(6.6)

w2[w2 + q1u2 + q2v2] = 0,(6.7)

2w1w2 +w1[q1u2 + q2v2] + w2[q1u1 + q2v1] = 0,(6.8)

2w1w3 +w1[q1u3 + q2v3] + w3[q1u1 + q2v1] = r1w3[w3 + q1u3 + q2v3],(6.9)

2w2w3 +w2[q1u3 + q2v3] + w3[q1u2 + q2v2] = r2w3[w3 + q1u3 + q2v3].(6.10)

FromΨ∗(p1(Wq1,q2)) = p1(Wr1,r2), we obtain

n + r 2
1 + 1 = (n + q2

1 + 1)u2
1 + (m + q2

2 + 1)v2
1 + 2q1q2u1v1,(6.11)

m + r 2
2 + 1 = (n + q2

1 + 1)u2
2 + (m + q2

2 + 1)v2
2 + 2q1q2u2v2,(6.12)

r 1r2 = (n + q2
1 + 1)u1u2 + (m + q2

2 + 1)v1v2

+q1q2(u1v2 + u2v1).(6.13)

To analyse these equations, there are two cases to consider. First, ifw1 (re-
spectivelyw2) is non-zero, then using (6.8)-(6.10) together with the invertibility
of Ψ∗ and the fact that its determinant is therefore±1, it follows thatw1 = r1w3

andw2 = r2w3 with w2
3 = 1. From (6.11)-(6.13) we then obtain the equations

n + 1 = (n + 1)u2
1 + (m + 1)v2

1,

m + 1 = (n + 1)u2
2 + (m + 1)v2

2,

0 = (n + 1)u1u2 + (m + 1)v1v2.

The desired conclusion then follows easily from these equations.
The second case to consider is whenw1 = w2 = 0, so thatw2

3 = 1 and
u1v2 − v1u2 = ±1. Then, by looking at (6.9) and (6.10), we see that neither
q1u1 + q2v1 nor q1u2 + q2v2 can equal to 0. It follows from (6.11)-(6.13) that this
time we have
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n + 1 ≥ (n + 1)u2
1 + (m + 1)v2

1,

m + 1 ≥ (n + 1)u2
2 + (m + 1)v2

2,

r1r2 = (n + 1)u1u2 + (m + 1)v1v2 + r1r2(w3 + q1u3 + q2v3)2,

where equality holds in the first two inequalities iff (w3 + q1u3 + q2v3)2 = 1. The
desired conclusions again follow easily from these facts.

If n = 1 < m, sinceα2
1 = 0 andβ2

1 = 0, we will not have (6.6) and (6.11).
Also, the terms in (6.11)-(6.13) containing the factorn + q2

1 + 1 will be absent.
However, from the fact thatΨ∗(α1)2 = 0, we obtainu2 = 0 = u3, so thatu2

1 = 1.
Accordingly, similar arguments will yield the desired conclusions in this case as
well.

As for the converses, recall that complex conjugation of the homogeneous
coordinates ofCP

k induces multiplication by−1 onH 2(CP
k ; Z). Hence, pulling

back Pq1,q2 via an appropriate diffeomorphism ofCP
n × CP

m yields the other
circle bundle, and so the associatedS2-bundles are diffeomorphic.

Example 6.14If n1 = n2 = 1, then the possible choices for (q1,q2) are (1,1) and
(1,−1). By Theorem 1.4, we have a non-Kähler Einstein metric onW1,1 and
W1,−1. The integral in Theorem 1.2 forW1,1 is positive if (ε1, ε2) = (1,1) and is
0 if (ε1, ε2) = (1,−1). So we do not get any further Einstein metrics. However,
we do get a K̈ahler-Einstein metric onW1,−1, by the theorem of Koiso-Sakane.
Note thatW1,1 is the Fano 3-fold which is the blow-up of the cone over a smooth
quadric surface inCP

3 and has unstable tangent bundle [St, p.638].W1,−1 is the
Fano 3-fold which is the blow-up ofCP

3 with center two disjoint lines [MM, p.
157]. Notice that by 6.4(d),W1,±1 are non-spin, so they are not diffeomorphic to
S2 × S2 × S2. However, they are diffeomorphic to each other, sinceP1,−1 is the
pull-back ofP1,1 via the orientation reversing diffeomorphism onS2 × S2 which
is the identity on the first factor and a reflection on the second factor.

Example 6.15Let M1 = M2 be any K̈ahler-Einstein manifold with positive first
Chern class and setn1 = n2 = n,p1 = p2 = p. Assume further that 0< |q1| <
|q2| < p. Then by Theorem 1.4 there is always a non-Kähler Einstein metric on
Wq1,q2. On the other hand, by the calculation on p. 612 of [S], the integral

∫ 1

−1
x(

p
|q1| + x)n(

p
|q2| − x)ndx

is negative. It follows from Theorem 1.2 that there is a non-Kähler Einstein metric
of type (ε1, ε2) = (1,−1). The integral in Theorem 1.2 for (ε1, ε2) = ±(1,1) is
positive (resp. negative). Hence no further Einstein metrics arise. Of course,
Sakane proved that there are no Kähler-Einstein metrics.

Example 6.16Let 1 = n1 < n2 = n, then |q1| = 1 and |q2| = k = 1, . . . ,n. As
before, Theorem 1.4 gives a non-Kähler Einstein metric on eachWq1,q2 with the
above values ofqi . As for Theorem 1.2, corresponding to (ε1, ε2) = (1,1), the
integral
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∫ 1

−1
x(x + 2)(x +

n + 1
k

)ndx > 0,

as can be seen by expanding the third factor by the binomial theorem and
integrating the resulting expression term by term. On the other hand, for
(ε1, ε2) = (−1,1), the integral

∫ 1

−1
x(−x + 2)(x +

n + 1
k

)ndx

can be shown to be positive. So if we take (ε1, ε2) to be (1,−1), then the corre-
sponding integral will be negative and we get another non-Kähler Einstein metric
by Theorem 1.2. Note that again Theorem 1.3 does not give any Einstein metrics
on these spaces.

7 Hermitian geometry

In this section we study the Hermitian geometry of the metricsh of the form
(1.1) and then apply some of the results to the Einstein metrics constructed in
Theorems 1.2, 1.4, and 1.6. Recall (see Remark 2.5) thath is Hermitian with
respect toJ , defined byJN = −(1/f )U and the horizontal lift of the complex
structure of the base.

Almost Hermitian metrics can be classified by the covariant derivative of
their fundamental 2-formω. More precisely, if we let∇ denote the Levi Civita
connection ofh, then as a 1-form with values in the skew-Hermitian endomor-
phisms,∇ω decomposes into 4 parts corresponding to the decomposition of the
bundle with respect to the unitary structural group. This classification is due to
A. Gray and L. Hervella [GH]. In the Hermitian case, the components of∇ω
lie in a subbundle denoted by these authors byW3 ⊕ W4. Each summand is
characterized by a tensor identity. For example,h belongs to the componentW4

iff

h((∇AJ )B,C) =
−1

n − 1

{
h(A,B)δω(C) − h(A,C)δω(B)(7.1)

−h(A, JB)δω(JC) + h(A, JC)δω(JB)
}
,

wheren−1 = dim M. (For details, see [GH, pp. 36-41].) Furthermore, all locally
conformally K̈ahler Hermitian metrics (with respect toJ ) lie in W4. In order to
apply this theory, we need the following

Lemma 7.2 Let∇ denote the Levi Civita connection of the metric h, L the shape
operator of the hypersurface P×{t}, andΩ the curvature form of the connection
θ on the circle bundle P. For a horizontal vector X we let

∑
i Xi denote its

decomposition into components “along Mi ”. Let N denote the vector field∂/∂t
and U the vector field such thatθ(U ) = 1. Then
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(a) ∇N J = 0 = ∇U J ,

(b) (∇XJ )(N ) = −∑i

(
λi f
g2

i
+ g′

i
gi

)
JXi ,

(c) (∇XJ )(U ) = fJ ((∇XJ )(N )),

(d) (∇XJ )(Y) =
(
h(J (LX),Y) + 1

2fΩ(X,Y)
)

N −
(

1
f h(LX,Y) + 1

2Ω(X, JY)
)

U .

Hence, the divergence ofω is given by

δω(A) =

(∑
i

2ni

(
g′

i

f gi
+
λi

g2
i

))
h(U ,A).

The proof of the lemma is by straight-forward computation, so we will leave it
to the reader.

Corollary 7.3 Let h be one of the non-K̈ahler Einstein metrics constructed on
Wq1,...,ql by Theorem 1.2 or 1.4, or on Vq1,...,ql by Theorem 1.6. Then h lies in
the familyW4 iff qi /Ai are independent of i , in which case h must be globally
conformally equivalent to some J -Kähler metric. In particular, if qi /pi are not
all equal, then h cannot be locally conformally Kähler.

If h is an Einstein metric from Theorem 1.4 or from Theorem 1.6(b), then it
belongs toW4 iff pi /qi are independent of i. The same is true for an Einstein
metric from Theorem 1.6(d) provided that|qi | ≤ pi for all i or |qi | > pi for all i .

Proof. By the above lemma and the characterization of the classW4, we see that
h lies in W4 iff

g′
i

gi
+
λi f

g2
i

=
1

n − 1

∑
i

2ni

(
g′

i

gi
+
λi f

g2
i

)
.

This holds iffg′
i /gi + (λi f /g2

i ) is independent ofi . Using Lemma 2.14, it follows
that this is equivalent toqi /Ai being independent ofi . When the Einstein constant
c /= 0, then

qi

Ai
=

2
c

[
−pi

qi
± sgn(qi )

(
p2

i

q2
i

+ cE

)1/2
]
.

Note that ifqi /Ai are independent ofi , then by the consistency condition (2.15),
pi /Ai would be independent ofi , which in turn implies thatqi /pi are independent
of i . Finally, recall from [GH, Theorem 4.3] that ifh belongs toW4 then it
is locally (globally) conformally K̈ahler depending on whether the Lee form is
closed (exact). It remains to observe that by Lemma 7.2, the Lee form is precisely

1
n − 1

∑
i

2ni

(
g′

i

gi
+
λi f

g2
i

)
dt,

and that all the manifoldsW andV are simply connected.
In the case of Einstein metrics from Theorem 1.4, note that allAi are negative.

So if h lies in W4, then allqi have the same sign. In this case, the minus sign
occurs in the above formula forqi /Ai , and it follows thatqi /Ai are all equal iff
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pi /qi are all equal. Likewise, in case (b) of Theorem 1.6,Ai /pi are all equal,
so qi /pi are all equal iffqi /Ai are all equal. For Einstein metrics constructed
in Theorem 1.6(d), if|qi | ≤ pi for all i or if |qi | > pi for all i , then there is
a uniform choice of the± sign in the formula forqi /Ai , and so againpi /qi

being all equal is equivalent toqi /Ai being all equal. This completes the proof
of Corollary 7.3.

We turn now to consider the curvature ofh.

Lemma 7.4 The Riemann curvature tensorR of h is given by

1. R(X,Y ,Z ,W) = R(JX, JY, JZ, JW), where X,Y ,Z ,W are horizontal vector
fields,

2. R(X,Y ,Z ,U ) = 0 = R(X,Y ,Z ,N ),
3. R(JN, JU , JU , JN) = R(N ,U ,U ,N ) = −f ′′f ,
4. R(N ,U ,N ,X) = 0 = R(JN, JU , JN, JX),
5. R(X,Y ,U ,N ) = −ff ′Ω(X,Y) + f 2Ω(X,LY) = R(JX, JY, JU , JN),
6. R(X,U ,Y ,N ) = (f 2/2)Ω(X,LY) − (1/2)ff ′Ω(X,Y) = R(JX, JU , JY, JN),
7. R(X,N ,N ,Y) = −∑i (g

′′
i /gi )h(Xi ,Yi ),

8. R(X,U ,U ,Y) = f 2∑
i (

λ2
i f 2

g4
i

− f ′g′
i

f gi
)h(Xi ,Yi ).

The proof of this lemma is again via straight-forward computation, using the
Gauss equation and the O’Neill formulas for a Riemannian submersion. An im-
mediate consequence of the lemma is

Corollary 7.5 The Riemannian curvature tensor of a metric h of type(1.1) on
Wq1,...,ql or Vq1,...,ql satisfies

R(A,B,C ,D) = R(JA, JB, JC, JD)

for all vectors A,B,C , and D iff

g′′
i

gi
− f ′g′

i

f gi
+ λ2

i
f 2

g4
i

= 0

for all i = 1,2, . . . , l .

This corollary gives a geometric interpretation of the assumptionµi ≡ 0 in
the construction of the Einstein metrics onW or V . Furthermore, the question
of whether an Einstein metric of type (1.1) necessarily satisfiesµi ≡ 0 can be
rephrased in terms of the notation of Proposition 4.1 of [FFS]. For Hermitian
manifolds, there is no difference between the classesL2 andL3. So the ques-
tion becomes: what is the effect of the vanishing of theC8 component on the
componentsC6 andC7 in the situation of the manifolds under consideration?
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8 Einstein-Weyl structures

In this section we derive the analogs of Theorem 1.2 and 1.4 for Einstein-Weyl
structures. Recall that the Einstein-Weyl equation for ann-dimensional manifold
with Weyl structure [h, η] is

Ric(h) +

(
n − 2

4

)
D η = Λh,

where
D η(X,Y) = (∇Xη)(Y) + (∇Yη)(X) + η(X)η(Y),

andΛ is the function given by

Λ =

(
n − 2

4

)
|η|2 +

1
2
δη +

sD

n
.

In the above,δη is the codifferential andsD is the conformal scalar curvature of
the Weyl connection.

As mentioned in Sect. 1, we choose a 1-formη = Adt + Bf θ, where A
and B are functions oft . Using the argument for the proof of Lemma 1 in
[EW], for example, one sees that for the bundlesW, the smoothness conditions
for η are as follows. In a neighborhood of 0,A(t) = tφ(t2) for some smooth
functionφ, and (Bf )(t) = ψ(t2) for some smooth functionψ such thatψ(0) = 0.
Analogous conditions should hold in a neighborhood ofT. For the bundlesW,
the smoothness conditions forη are the same except that in a neighborhood of
T, (Bf )(T − t) = ψ̂(t2) for some smooth function̂ψ which need not vanish atT.
Notice that by Theorem 2.2 of [PS2], it suffices to satisfy these conditions up to
first order.

Using (2.1)-(2.3) and the calculations of [PS2] on pp. 107-108, we obtain the
Einstein-Weyl equations below:

− f ′′

f
−

l∑
i =1

2ni
g′′

i

gi
+ nA′ +

n
2

A2 = Λ,(8.1)

− f ′′

f
−

l∑
i =1

2ni
f ′g′

i

f gi
+

l∑
i =1

2niλi
2 f 2

g4
i

+ nA
f ′

f
+

n
2

B2 = Λ,(8.2)

− g′′
i

gi
− f ′g′

i

f gi
−
∑
j /=i

2nj
g′

i g
′
j

gi gj
− (2ni − 1)(

g′
i

gi
)2 +

Li

g2
i

− 2λi
2 f 2

g4
i

+ nA
g′

i

gi
= Λ,(8.3)

B′

B
− f ′

f
+ A = 0,(8.4)

wheren =
∑

ni , andλi = qi /2, i = 1,2, . . . , l .
We may introduce a functionU (t) such that

B = fU −2, A =
2U ′

U
.
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The corresponding boundary conditions forU is that near 0,U should be even,
so that in particular we must haveU ′(0) = 0, and analogously nearT. Then the
Einstein-Weyl equations become

− f ′′

f
−

l∑
i =1

2ni
g′′

i

gi
+ 2n

U ′′

U
= Λ,

− f ′′

f
−

l∑
i =1

2ni
f ′g′

i

f gi
+

l∑
i =1

2niλi
2 f 2

g4
i

+ 2n
U ′f ′

Uf
+

nf 2

2U 4
= Λ,

−g′′
i

gi
− f ′g′

i

f gi
−
∑
j /=i

2nj
g′

i g
′
j

gi gj
− (2ni − 1)(

g′
i

gi
)2 +

Li

g2
i

− 2λi
2 f 2

g4
i

+
2nU ′g′

i

U gi
= Λ.

As before, if we equate the first two equations, we obtain

l∑
i =1

2niµi − 2n

(
U ′′

U
− U ′f ′

Uf
− f 2

4U 4

)
= 0,

whereµi is given by (2.4). We will seek a solution with constantΛ, µi ≡ 0 for
all i , and

U ′′

U
− U ′f ′

Uf
− f 2

4U 4
= 0.(8.5)

We now perform the same variable change as in Sect. 2, defining in addition
u(r ) = U (t)2. Then the Einstein-Weyl equations become

−1
2

a′′ − 1
2

a′(logv)′ − a
l∑

i =1

ni

(
b′′

i

bi
− 1

2
(
b′

i

bi
)2

)

+
n
2

(
a′u′

u

)
+ na

(
u′′

u
− 1

2

(
u′

u

)2
)

= Λ,(8.6)

− 1
2

a′′ − 1
2

a′(logv)′ + 2a
l∑

i =1

ni
λ2

i

b2
i

+
n
2

(
a′u′

u

)
+

n
2

a
u2

= Λ,(8.7)

pi

bi
− 2a

λ2
i

b2
i

− a
2

(
b′′

i

bi
− (

b′
i

bi
)2

)
− a

2
(logv)′

b′
i

bi
− a′b′

i

2bi
+

na
2

(
b′

i u
′

bi u

)
= Λ.(8.8)

If we solve foru, we obtain

u = C(r + r̂ )2 +
1

4C
,(8.9)

where ˆr is a constant andC is a positive constant. In particular, there are no
solutions which are linear inr , andu is everywhere positive. One can derive the
analog of Lemma 2.14 in the same way. The only differences are thatc should
be replaced byΛ andv by vu−n, and part (i) should also assert that ˆr equalsr0.
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One can now go through the proofs of Theorems 1.2 and 1.4 and see that they
can be modified easily to prove Theorems 1.7 and 1.8 respectively. In analysing
the behavior of the analogs ofF (E) and G(E), one needs only to observe that
u−1 is uniformly bounded from above and below on a finite interval by (positive)
constants. Consequently, the desired behavior can be deduced from that ofF (E)
andG(E). Furthermore, the boundary conditions foru are satisfied easily. Since
the constantC is arbitrary, we actually obtain a 1-parameter family of solutions.
Finally, if B is not identically 0, thenη is not closed, hence it cannot be exact.
Thus we obtain Einstein-Weyl structures which are not locally conformal to the
Einstein structures constructed in Theorems 1.2 and 1.4.

Remark 8.10The solution of the Einstein-Weyl equation forl = 1 given in
Theorem 1.8 is not conformally equivalent to that in [PS2]. Indeed, applying a
conformal factor to our solution that makesg(t) constant, one can check using
(8.9) and (2.16) that (4.4) in [PS2] does not hold.

9 Uniqueness of Einstein-Weyl structures on principalS1-bundles

We take this opportunity to include an extension of the main result in [W1] to the
Einstein-Weyl situation. Recall that for each principal circle bundlePq1,...,ql as
in Sect. 1, it was shown in [WZ] that there is an Einstein metric of Kaluza-Klein
type which submerses onto a product of the Kähler-Einstein metrics on the base.
In [W1] it was proved that conversely if a principal circle bundle over a compact
Kähler manifold admits an Einstein metric such that the bundle projection is a
Riemannian submersion with totally geodesic fibres and that the curvature form of
the principal connection is of type (1,1), then in fact the base splits isometrically
into a product of K̈ahler-Einstein manifolds with positive scalar curvature and
the Euler class of the principal bundle is of the form described in Sect. 1.

In [PS1], the above existence theorem of [WZ] was extended to the Einstein-
Weyl case (see Theorem 4.1, p. 388 of [PS1]). It turns out that a similar converse
holds.

Theorem 9.1 Let P be a principal circle bundle over a compact Kähler manifold
M admitting an Einstein-Weyl structure h, η such that the bundle projection is a
Riemannian submersion with totally geodesic fibres onto the Kähler metric of M ,
the curvature formΩ /= 0 of the principal connectionθ is of type(1,1), and the
1-form η = f θ for some smooth function f . Suppose also that the scalar curvature
of M is constant. Then the eigenvalues of the Ricci tensor of M are constant over
M and M is isometric to a product of K̈ahler-Einstein manifolds corresponding
to the eigenspaces of the Ricci tensor of M .

Proof. We refer to [W1] for notation. As before, letU satisfyθ(U ) = 1. We will
view Ω as a closed 2-form onM . Then the Einstein-Weyl equations are given
by

1
4

∑
i ,j

(Ω ij )2 +

(
n − 2

4

)
(2U (f ) + f 2) = Λ,(9.2)
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1
2

∑
j

Ωijj +

(
n − 2

4

)
fi = 0,(9.3)

RicM
ij − 1

4

∑
t

ΩitΩjt = Λδij ,(9.4)

whereΛ is a function. By (9.3)

ei (U (f )) = U (fi ) = − 2
n − 2

U (Ωijj ) = 0.

Therefore,U (f ) = 0 andf is a function constant along the fibres. On the other
hand, again by (9.3)

n − 2
2

fii = −Ωijji = Ωjiji = Ωjiij + K M
ijit Ωjt + K M

ijjt Ωti .

It follows from the last equality that

−Ωijji = K M
ijit Ωjt = RicjtΩjt = 0,

and hencefii = 0. We conclude thatf is a constant, and thereforeΩ is harmonic
by (9.3). SinceM is of constant scalar curvature,Ω has constant norm and the
Ricci curvature ofM has constant eigenvalues by (9.4). The rest of the proof is
the same as that given in [W1].
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