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Introduction

Let .74, be the moduli space of smooth curves of gepus 2 and let. 4, be
the moduli space of principally polarized abelian varietipgal) of dimension
g overC. A (Deligne-Mumford) stable curve of genysis a reduced, connected
and complete curve of arithmetic gengswith only nodes as singularities and
with finite automorphism group. We say that a stable curve is of compact type
if its generalized jacobian is an abelian variety. We denot@ the moduli
space of stable curves of compact type and genoser C. By “density” we
always mean “analytic density” unleis/ we specify otherwise.

Given a subvariety of .#, or .Z, and an integer between 1 and/2,
let Eq(V) be the subset of/ parametrizing curves whose jacobian contains an
abelian variety of dimensiog. We defineEq (V) for V a subvariety of 2, in a
similar fashion. It is well-known tha, (. 2,) is dense in 4, for all . Colombo
and Pirola pose the following question in [3]

Problem 1. When is ((V) dense in V ?

Colombo and Pirola give a sufficient condition for the densityegfV) in
V. They then show thaE;(V) is dense inV for all subvarietiesvV of .75,
of codimension at mosy — 1. They deduce from thisisecond proof of the

noncompleteness of codimensign- 1 subvarieties of 4, which was origi-
nally proved by Diaz in [5], Corollary page 80 (Colombo and Pirola prove the

noncompleteness of codimensign- 1 subvarieties of 7, which meet %, ;
however, if the subvariety is contained.if?, \ .#,, its noncompleteness can
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be easily seen by mapping it (or, in some cases, a double cover of it) to a moduli
space of curves of lower genus).
Using the condition of Colombo and Pirola, we show

Theorem 1. Suppose thay > 2. Let V be a subvariety of codimension at most
g of Z, or .2, then E(V) is dense in V.

This result brings out another fundamental difference between the moduli spaces
in characteristic zero and in positive characteristic (see Section 2 below).
We also obtain

Corollary 1. Suppose thaj > 2. Let V be a complete subvariety of codimension
at mostg of .4,. For all i € {1,...,¢}, denote by E;i(V) the subset of V
parametrizing ppav’s isogenous to a product of a ppav of dimengien and i
elliptic curves. Then

1. the variety V has codimension exacjly

2. foralli € {1, ..., g}, any irreducible component Z of[{V) has the expected
dimension=20="1 +j _ - furthermore, the variety Z parametrizes ppav’s
isogenous to a product offixed elliptic curves (depending only on Z) and
some ppav of dimensign—1i,

3. forallq,1 < g < g/2, any irreducible component ofj&/) has the expected
dimension(g_qxg_qﬂ) + q(q2+1) —gq,

4. the set E4(V) is dense in V. In particular, the set;E(V) is (countable)
infinite and, for all i € {1,...,g}, for all g € {1,...,¢/2}, the sets E;(V)
and E (V) are dense in V (since they contain KV )).

An immediate consequence of Corollary 1 is that complete subvarieties of
-4 have codimension at leagt There are different proofs of this last fact in
[12] (2.5.1 page 231) and [7] (Corollary 1.7). ThereAa/re no known examples
of complete subvarieties of codimensigrof . 2, (or .#2,) except forg = 2,
althoughg is the best known lower bound for the codimension of complete
subvarieties of 4, (and.#2,). It is conjectured in [12] (B page 230) that for
g > 3 the codimension of a complete subvariety. &f, is at leasty + 1.

Let .77, be the locus of hyperelliptic curves iwZ,. Let /7[’9 and.n/éfq be
respectively the moduli space of curves of compact type with lavetructure
(for some fixedh > 3) and the moduli space of ppav’s with levektructure. Let
(S %; — Ay ands; : .,//6; — /4 be the natural morphisms. It is well-
known that. 2 and.7Z; := s }(#¢,) are smooth and that there is a universal
family of abelian varieties with levet structure on,,%’g and a universal family
of (smooth) curves with leveh structure on//z’g. By a “universal” family of
curves or abelian varieties with lewvelstructure we mean a family which solves
the moduli problem for curves or abelian varieties with lemestructure. We
note that the only properties o#Z;, .7, and. ¢, we need are the smoothness
of .72, and. Z; and the existence of the universal families (also note that with
non-abelian level structures or Prym-level structures, one can get smooth covers
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of //Aég as well (see [8] and [14])). We have the following technical consequence
of our results.

CoroIIAaLy 2. Suppose thag > 3. LetV be a complete subvariety of codimAe/nsion
gof Zt,or. 2, 1tV C .2, let\,be the smooth locus of $(V). If V C .7,

let Vo be the smooth locus of $(V N (.#, \ .7%,)). Then the conormal bundle

to \p is isomorphic to the tensor product of the Hodge bundle (the pushforward
of the sheaf of relative one-forms on the universal abelian (or jacobian) variety)
with a subline bundle of the Hodge bundle.

Finally, we point out that, if. 24,4 denotes the moduli space of abelian
varieties of dimensiory and polarization typel = (dy, ..., d,), then there is a
finite correspondence betweer, and. 4, 4 so that our results remain valid if
we replace 4, with .2, 4.

Notation

For any vector space or vector bundle (resp. affine c&neye denote byP(E)
the projective space (resp. projective variety) of line€irand byE* its dual
vector space or vector bundle. We EP™, STE and AME respectively be the
m-th tensor power, then-th symmetric power and thm-th alternating power
of E. For any linear map of vector spaces or vector buntlleE — F, we
denote byl : P(E) — P(F) its projectivization.

For any varietyX and any poink € X, we denote byl X the Zariski tangent
space taX atx and byT;X the dual of TyX. We denote byXs, the subvariety
of smooth points oiX.

For a ppavA, we letp : HO(2})®2 — S2HO(21) be the natural linear
map with kernelA?H°(£23). For a subvariety of . 4 the restriction toV of
the universal family on-¢; gives a family. 2y of ppav's onV (we forget the
level n structure). For a point of V, we let A, be the fiber of 4y att. The
Zariski-tangent space to# att can be canonically identified wit8H °(23 )*.
We denote byr, : S?H O(Qi) — TV the codifferential at of the embedding
V= . 2.

For a smooth curv€, we denote byuc the canonical sheaf & and letxC
be the image o€ in the dual projective spadec |* of the linear systenwc| by
the natural morphism associated to this linear systemA.34fJC is the jacobian
of a smooth curveC, thenH°(23) = HO%(wc). Letm : S2H%we) — HO(wd?)
be multiplication and pug := mp. ForV C .7z, the restriction toV of the
universal family on.ZZ; gives a family &y of curves onV (again we forget
the leveln structure). Fot € V we letC; be the fiber of4, att. The Zariski-
tangent space tMé’g att can be canonically identified withl O(wgz)*. We let
7 Howg?) — TV be the codifferential at of the embeddingy — . 7Z,.

For a stable curveC of compact type (resp. a ppad), we will call the
corresponding point afZ, (resp..#4,) the moduli point ofC (resp.A).
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1. The proofs

In this section we give the proof of Theorem 1 and its corollaries.

We first consider the case wheeis contained in.Z,. We may and will
replaceV with its inverse image inzz;.

The relative jacobian ofzy gives us a family of ppav's orv. We can
therefore apply Theorem (1) on page 162 of [3]: to show B4V ) is dense in
V it is enough to prove the following:

There exists a Zariski dense (Zariski-)open sut$etf V, contained in the
smooth locusvsy, of V, such that, for alt € U, there is a subvector spai
of H%wc,) which has dimension 1 and is such that the composition

W oW & HOWEY) 5 TV

is injective. HereW = is the orthogonal complement & with respect to the
hermitian form orH %(w¢,) induced by the natural polarization €. We sketch
briefly how this condition is obtained in the more general case wkiérbas
dimensiong with 1 < q < g/2 andV C .4, has any dimensio® q(g — Q).

To prove the density oEy(V) in V, it is enough to show that there is a
Zariski dense open subdét of Vs, such that, for alt € U, there is an analytic
neighborhoodJ’ of t, U’ C U, such thatEy(V)NU’ is dense ifJ’. An abelian
variety A contains an abelian subvariety of dimensipiif and only if H(£2%)
contains ag-dimensionalC-subvector space which is the tensor product with
R of a vector subspace of dimensiog 2f H(A, Q) (after identifyingH °(£2%)
with H1(A,R) ¥ H(A,Q) ® R as real vector spaces). Letoe an element of
Vsm. For a contractible analytically open sdt > t contained inVgn, let Fy-
be the Hodge bundle ové#’. Then one can trivializ€&,. as a real vector bun-
dle using the Gauss-Manin connection. Therefore the grassmannian bundle of
2g-dimensional real subvector spacesHgf: is isomorphic toU’ x Gg(2q, 29),
where Gg(2q, 2g) is the Grassmannian ofg2dimensionalR-subvector spaces
of HY(A,R). Hence there is a well-defined mdp: G(q, Fu:) — Gr(29, 29)
whereG(q, Fy-) is the Grassmannian af-dimensionalC-subvector spaces of
Fu.: The map® sends ag-dimensional complex subvector spacel-b?((),?\s)
(with s € U’) to the image of its underlying real vector space under the isomor-
phism H1(As, R) —— HL(A,R) obtained from theR-trivialization of Fy.. Let
Gg(29,2g) C Ggr(29,2g) be the Grassmannian ofjzlimensionalQ-subvector
spaces oH1(A;,Q) and letp : G(q,Fy) — U’ be the natural morphism.
ThenEq(V) NU’ = p(@~1(Gg(24d, 29))). To prove the density oE4(V) N U’
in U’, it is enough to prove that there is a subgt of G(q, Fy-) such that
p(%/) = U’ and $~1(Gp(29,29)) N %/ is dense iny/. Since Gy(29,2g) is
dense inGg(2q, 2g), it is enough to find%/ such thatp(%/) = U’ and ¢,
is an open map. I has maximal rank (i.e., the differentidtd of @ is surjec-
tive) everywhere on//, then®|,, is an open map. Therefofgs(V) N U’ is
dense inU’ if for every s € U’ there is ag-dimensionalC-subvector spac/
of H°(Q,§S) such thatd® is surjective at\\V,s) € G(q,Fy-) (then %/ would
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be the set of suchW{,s)). The tangent spac&w sG(d, Fu-) is isomorphic to
W @ W+ @ TsU’, the tangent space Bg(2q, 2g) at (W, s) is isomorphic to
WeWLtaWeoWE~We W e (W WL)* and the restriction ofld to
theW ® W~ summand offw 5 G(q, Fy-) is an isomorphism onto the/ @ W+
summand off aw s)Gr (24, 2g). Therefored¢ is surjective if and only if the map
it inducesTeU’ = WaSlru) (W @ W) = TewaBel®a29) is surjective,
i.e., if and only if the dualized may/ @ W+ — TzU' is injective. LetF be the
Hodge bundle over the Siegel upper half spatg. The inclusionU’ — .Z,
lifts to an inclusionU’ — 22, becausdJ’ is contractible and there is a family
of ppav’s onU’ (the restriction of 4y ). Factoring® through the Grassmannian
of g-planes inF over 24,, the mapwW ® W+ — T;U’ can be seen to be the
composition
W oWt 25 SPHO(Q)) ™ TgU =TV .

For V contained in//Z_{], we haver, = mm.

Clearly, if mp : W @ H%we,) — TV is injective, then so sty : W ®
W+ — TV, In view of this (and also for use in the proof of Corollary 2) we
show:

Proposition 1.1. Suppose thay > 3. Let V be a subvariety of codimension at
mostg of /4. Let t be a point of Y, and let N be the kernel of : HO(w&?) —
TV,

1. Suppose thatds non-hyperelliptic. Suppose that, for any one-dimensional
subvector space W of Hwc,), the mapry : W @ Ho%we,) — TV is not
injective. Then V has codimension exagtlgnd there is a one-dimensional
subvector space MWof HO(wc,) such that N= u(Wy ® H%wq,))-

2. Suppose that Cis hyperelliptic and that V isot transverse to.77, =
s (. F,) at t (i.e., the sum WV + T.7%, C T.7£} is notequal to T.72)).
Then there exists a one-dimensional subvector space WPfd) such that
the mapru : W ® HO%(we,) — TV is injective.

Proof: Consider the composition
P(H (we)®?) > P(S?H (we,)) > PHOWE?)

The kernel ofm is the spacé,(C;) of quadratic forms vanishing onC;. Hence
the rational mapm is the projection with centéP(1,(C;)). Let.¥ be the image
by p of the Segre embedding” of P(H%(wc,)) x P(H (wc,)) in P(H %(wc,)®?).
Let N’ be the set of rank 2 symmetric tensorsSitH %(wc,) which lie inm=1(N)
(thenP(N’) is thereducedintersection of” andm—1(P(N))).

Suppose that for alW c H%wc,) of dimension 1, the map, : W ®
H%we) — TV is not injective, i.e., for allw € H%wc,), there isw’ €
H%we,) such thatu(w @ w’) € N. This implies that the dimension &(N’) is at
leastg — 1. We will show below that this does not happerCifis hyperelliptic
andV is not transverse to%’g’ att. If C; is non-hyperelliptic, we will show
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that this implies thaP(N’) is a linear subspace o and that its inverse image
in . is the union of two linear subspaces .6f which are two fibers of the
two projections of” onto P9~! and are exchanged under the involution 6f
which interchanges the twi?’—!-factors of.”. The proposition will then easily
follow from this.

Suppose first tha; is norrhyperelliptic. Therm : S2H%(wc,) — HO(w?)
is onto (see [2] page 117). We have

Lemma 1.2. Supposg) = 2 or g > 3 and G is non-hyperelliptic. Suppose that
for all W C H%wc,) of dimensiort, the mapy : W ® H%w¢,) — TV is not
injective. Then the map(N’) — P(N) is generically one-to-one.

Proof: If not, then, for allw € H%wc,), there existav’, wy, w; € H%wc,) such
thatww' = p(w @ w') andwiw] = p(w1 ® w}) are not proportional bun(ww’)
and m(wwy) are proportional elements ®f. Therefore, supposing general,
there exits\ € C, A # 0, such that the elemeatvw’ —wqw] of S?H%wc,) lies in
12(C), i.e., defines a quadrig(w) of rank 3 or 4 (in the canonical spagec, |*)
which contains<C; (the canonical curv&C; is not contained in any quadric of
rank < 2 since it is nondegenerate). ¢f< 3, this is impossible because in that
casely(C;) = 0. If g > 4, the intersectioh. of the two hyperplanes ifwc, |* with
equationsw and w; is an element of a ruling of the quadrifw). Therefore

L cuts a divisor of ag} (a g3 is a pencil of divisors of degred) on C; with

d < g—1 (see [1], Lemmas 2 and 3 page 192). Therefore the divisor of zeros
of w on C; contains a divisor of g}. By the uniform position Theorem (see [2]
Chapter 3, Sect. 1) this does not happenfoin some nonempty Zariski-open
subset oH %(wc,) \ {0}. O

Therefore, since the dimension B{N’) is at leasty — 1 and the dimension
of P(N) is at mostg — 1, the mapP(N’) — P(N) is birational andP(N’) and
P(N) have both dimensiog — 1.

This proves, in particular, that V has codimensiexactly g.

Since no quadrics of rank 2 containkC;, the centeiPl,(C;) of the projec-
tion M does not intersect”. In particular, the spacil,(C;) does not intersect
P(N’). Thereforem restricts to a birationahorphismP(N’) — P(N) and, since
P(N) is a linear subspace @f(H 0(wgz)), the degree oP(N’) (in the projective
spaceP(S?H °(wc,))) is equal to the (generic) degree of the nfgpl’) — P(N).
HenceP(N’) is a linear subspace @(S?H °(wc,)) andm restricts to arisomor-
phismP(N’) —= P(N).

Let N” be the cone of decomposable tensorsHA(wc,)®? which lie
in ©~Y(N) (then P(N”) is the reducedinverse image ofP(N’) in . C
P(H%(wc,)®?)). The map.¥ — .¥ is a finite morphismof degree 2 rami-
fied on the diagonal. Therefore the m&N") — P(N’) is a morphism of
degree< 2. Since the diagonal o =~ S?P(H (wc,)) is irreducible of dimen-
siong — 1 and span®(S?H (wc,)), the spacé?(N’) intersects this diagonal in a
subvariety of dimension at mogt-2. Therefore the morphis(N’") — P(N’)
has degree 2 anBi(N"") has degree 2 if?(H °(wc,)®?).
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If P(N”) is irreducible, it spans a linear subspaBeof P(H%(wc, )®?) of
dimensiong. This implies thatP(A2H %(wc,)) intersectsP in exactly one point.
For w1, w2 € HO%wg,), let w}, w) be such thap(wi @ w}), p(we @ wh) € N. For
w; general,w{ is not proportional taw; sinceP(N”) intersects the diagonal of
" in a subvariety of dimension at mogt— 2. Therefore the lines spanned by
w1 ®w) —w) ®w; andw, ® wh — wh @w, give us elements dP NP(A%H %(wg,))
which is a point. Therefore, for alby, w, € H%wc,) general there exists €
C, A # 0, such that

w1 @ w) — wy ® w1 = Mwz @ wh — wh @ wy)

Complete{ws, w»} to a general basi$w,, wy, ws, ..., w, } Of H%wc,) and write
w = 1< ajw fori =1 or 2. Then from the equation above we deduce
aij = ay = 0 forj > 2. Therefore,w; belongs to the span of; and w,.
Repeating this argument witl; and w3 instead ofw; andw,, we see thatv]
also belongs to the span of andws. Hencew] is proportional tow, (this is the
only part in the proof of Proposition 1.1 where we ngeg 3). Contradiction.
ThereforeP(N”) is reducible, i.e., it is the union of two linear subspaces of
dimensiong — 1. We have

Lemma 1.3. Supposeg 22 2. All linear subspaces of dimensiop — 1 of
S C P(H%we,)®?) =~ P9~ are elements of one of the two rulings.gf =
P(H%we,)) x P(H%(we,)) = P91 x P91,

Proof: Let T be a linear subspace of dimensign- 1 of .. Let p; and p,
be the two projections of” = P9-1 x P9~ onto its two factors. LeH; be a
general element of*|“ps—1(1)| for i =1 or 2. ThenH; N T #H>NT andH;
does not contail. In particular, the intersectiofl; N T is either empty or of
dimensiong — 2. The divisorH; U H; is the intersection of a hyperplah in
P9"~1 with .%. SinceT is not contained irH; nor Ha, the hyperplanéd does
not containT and hencel N H is a linear space of dimensign— 2. Since the
two intersectiond NH; # T N H, are both contained in thg ¢ 2)-dimensional
linear spacd NH and are either empty or have dimensipn 2, we have either
HiNT =0 orH,NT = (. Suppose, for instance, thety N T = 0. It is easily
seen thap;l(pl(Hl)) = Hy impliespy(H1) Np1(T) = p1(HiNT). Thereforep,(T)
does not interseqt; (H1) which is a hyperplane if®?~. Hencep(T) is a point
andT is a fiber ofp;. O

We deduce from the above Lemma titgN"") = P(N;) UP(N,) whereP(N;)
andP(N,) are elements of the two rulings 6f = P9~1xP9~1. The spaceB(N;)
andP(N,) are exchanged by the involution which exchanges the two factors of
. becauseéP(N”) is the inverse image of a linear subspacesn =~ S?Ps—1,
Therefore there exists a one-dimensional subvector spacef H%wc,) such
that, for instancelN; = Wy ® H%wc,) andN, = HO%(we,) ® Wy . SoN = pu(Np) =
w(Wyn ® HOwe,). This proves the Proposition in the non-hyperelliptic case.

Now suppose thaC; is hyperelliptic and thal is not transverse to%g’
at t, i.e., the subspace$;V and Tt.%/g’ do not span Tt.//ég. Let . be the



228 E. Izadi

hyperelliptic involution of C;. Let H%(w&?)* and Howg?)~ be the subvec-
tor spaces ofH 0(wgz) of -invariant and:-anti-invariant quadratic differen-
tials respectively. TherH(wg?)* is the image ofS?H wc,) by m and the
conormal space to%’; att can be canonically identified withi °(w§2)f. The
non-transversality of/ and.7, means thaN N H°wg?)~ # {0}. This im-
plies thatN is not contained inH o(w§2)+_ Since N has dimension at most
g, the dimension oN N H%w&?)* is at mostg — 1. Hence the dimension of
P(N N H%wg?)*) = P(N) N P(H °(wE?)*) = P(N) N M(P(S?H °(wc,))) is at most
g — 2. We have
Lemma 1.4. Supposg; > 2 and G hyperelliptic. The magn : . — .% =

— - . 29 —2
m(.¥") is a finite morphism of degre§< gg, 1 )
Note that the lemma finishes the proof of Proposition 1.1: we saw above that
the dimension ofP(N) N M(P(S?H %(wc,))) is at mostg — 2. A fortiori, since
M(P(S?H%wc,))) D ., the dimension of?(N) N.% is at mostg — 2 and the
dimension ofP(N’) is at mostg — 2 which is what we needed to show (see the
paragraphs preceding Lemma 1.2).

Proof of Lemma 1.4The mapm : . — . is a morphism if and only if
the centerP(I,(C;)) of the projectionm does not intersect”. This is the case
because the canonical cur#€; is nondegenerate and hence not contained in
any quadrics of rankl 2.

Fix a nonzero elemeniw’ = p(w ® w') of S?H%wc,) and suppose that
wiw) € S?HO%wg,) is not proportional toww’ and m(wyw)) = A.m(ww’) for
some\ € C, A # 0. This is equivalent t& (w) + Z(w') = Z(w1) + Z(w}) where
Z(w), for instance, is the divisor of zeros af on the rational normal curve
kCt. So there are only a finite number of possibilities Zfw;) andZ (w3). This

proves tham : . — .7 is quasi-finite and hence finite since it is proper. Any
divisor of degreey — 1 on xC; = P! is the divisor of zeros of some element of

H%wc,) = H(%(g — 1)), hence, since there age( Zgg B 2 ways to write a

1
fixed reduced divisor of degregy2- 2 as a sum of two divisors of degrge- 1,
the degree ofﬁ:.%—m%is%( 299_—12 ) i

Proof of Theorem 1 in the case of curvéss explained in the beginning of this
section, we need to find a Zariski-dense open sublsef Vg, such that, for all
t € U, there exist®V C HO%wc,) (W of dimension 1) such that(W @W-+)NN =
{0}.

First supposeg > 3. We may assume that is irreducible. IfV is contained
in.7Z,, thenV is not transverse anywhere.t&; and hence, by Proposition 1.1,
we may takeU to be all of Vg, If V ¢ .,76;, takeU = Vgn \ .76’9’. Suppose
that there exists € U such that, for alW c Hwc,) of dimension 1, we have
uw(WeW-L)NN # {0}. Then, a fortiori, the hypotheses of part 1 of Proposition 1.1



Subvarieties of moduli spaces of curves or abelian varieties 229

are met andN = u(Wy ® H%(wc,)). Then every element d °(wc,) is orthogonal
to Wy . This is impossible given that the hermitian form Bif(wc,) is positive
definite.

Now supposgy = 2. ThenN has dimensior< 2 andP(N) has dimension
< 1. For eachW C H®%wc,) of dimension 1, the spad&/- also has dimension
1 and hencéV ® W has dimension 1. The line& @ W+ form a real analytic
subset ofP(H %(wc,)®?) of real dimension 2. Sincg : . — .& is finite, we
deduce that the lines(W @ W) = (W @ W) form a real analytic subset of
P(S?H%wc,)) = P(H O(wgz)) >~ P2 of real dimension 2. An easy computation
(with coordinates) will show that this subset is not contained in any projective line
in P(H O(wg‘?f)) and hence is not containedftN ). Hence there exist4/ such that
the lineu(W ®@W+) is not contained itN, in other wordsu(W @ W-)NN = {0}.

O

We now consider the casé C . ;. As before, we first prove

Proposition 1.5. Suppose thayy > 3. Let V be a subvariety of codimen-
sion at mostg of ré’; Let t be a point of ¥, and let N be the kernel of
ma @ SPHO(£23) — TV. Suppose that, for any one-dimensional subvector
space W of H(23 ), the maprap : W @H(£23 ) — TV isnotinjective. Then

V has codimension exactlyand there is a one-dimensional subvector spage W
of HO(£23 ) such that N= p(Wy @ HO(£23)).

Proof: If the mapmap : W ® HO(Qi) — TV is not injective, thenp(W ®
HO(£2%)) NN # {0}. If this holds for everyw CiHO(Q%“) of dimension 1, then
P(N) has dimensiory — 1 and is contained irt” = S2P(H%(£23)). It follows
thatV has codimensiory. The rest of the argument is how analogous to the
proof of part 1 of Proposition 1.1 withl’ = N. O

Proof of Theorem 1 in the case of abelian varietighis proof is now as in the
case of curves. O

Proof of Corollary 1: Let V be a complete subvariety of codimensign- d

(d > 0) of .4,. By Theorem 1, the sef;(V) is dense inV. In particular, it is
nonempty. LetY be an irreducible component & (V). Letr ands be integers
such that for every ppa# with moduli point inY there is an elliptic curv&, a
ppavB and an isogeny : E x B — A of degree at mogt such that the inverse
image of the principal polarization @by v is a polarization of degree at mast

Let Y’ be an irreducible component of the variety parametrizing such quadruples
(E,B,A,v). ThenY’ is a finite cover ofY. The morphismY’ — .2, which

to (E,B, A, v) associates the isomorphism classBbfis constant sincer’ is
complete (and irreducible) and4; is affine.

For any irreducible componedt of E;(.4,), there is a finite correspondance
betweenZ and.-4,_1 x .. In particular, the codimension & in .4, is
gerl) _(9zD) 1+ 1) =g — 1. The varietyY is an irreducible component of the
intersection ofV with such aZ, hence there is a nonnegative integgrsuch
that the codimension o¥ in V is ¢ — 1 — . So the codimension oY in



230 E. Izadi

Agisg—d+g—1—e =29—d—1—e. SinceY’ maps to a point in
-, its imageVy in .4,_1 by the second projection has dimension equal to the
dimension ofY. ThereforeV; has dimensiory(g + 1)/2— (29 —d — 1 — &) =
(9—1)9/2—(9—1—d—ep), i.e., codimensiog—1—d —e < g—1in.4,_1. By
Theorem 1, the séf;(V,) is dense ifV;. In particular, the sdE; (V1) is nonempty.

Let Y; be an irreducible component & (V1) and letY] be the analogue of’

for Y1. Then, as before, the varie¥ has codimensiop—1—-d —e+g—2—¢

in .24_1 (for some nonnegative integey), the varietyY; maps to a point in
.4, and its imagevs in .4,_, has codimensiong — 2 —d — g — €. Repeating

the argument, we obtai in .4,_; of codimensiory —i —d —e—...—&_1
containingy; of codimensiong —i —d —e —...—g_1+g—i—1—¢ in
Aq_i. Fori = g —2, we can repeat the argument one last timeMgr, C . 4,
to obtaian’f2 with imageV,_, in .4, with codimension +d —ey—... —e;_».
Since. 4, is affine, the varietyV,_; is a point andd = g = ... = g;_» = 0.

ThereforeY has codimensiong-1 in. 2, all the varietiesy; have codimension
g—i+tg—i—1=29—-2i —1in.2,_;,V has codimensiog in .24, andV; has
codimensiory —i in.4,_;. In particular, the first part of Corollary 1 is proved.
For eachi, there is an irreducible subvarie® of V which parametrizes
ppav’s isogenous to the product of an elemen¥ofindi fixed elliptic curves
(Z1 = Y) because all the map§’ — . 4, (and alsoY’ — . ;) are constant.
It follows from the above thaZ; has the expected dimensiét 24— +j — g.
Since our choices of th&;’s (andY) and hence our choices of tl®'s were
arbitrary, we have proved the second part of the Corollary as well.
To prove the third part, first observe that a dimension count (similar to the
case ofY) shows that the dimension of any irreducible componéraf Eq(V)
is at leastd@) + G=Q=a"D) _ ;| et X’ be the analogue of’ for X. Then
the imagesXy and X,_q of X’ by the two projections to¢4 and. 4,_q are
complete subvarieties oféy and.4,_q whose codimensions are at legsand
g — g respectively by part 1 of the Corollary. So we have

Aer) 4 =g=at) _ ; < dim(X) = dim(X") = dim(Xg) + dim(X,_q) <
1 —q)(g—q+1 _ 1 —q)(g—g+1
< q(q2+)_q_,_(g q)(g q+)_(g_q)_ q(q2+)+(g q)(g q+)_g.

Therefore we have equality everywhere and part 3 is proved.

Now letV’ be the analytic closure d; ,(V) in V. Since, by Theorem 1, the
setEi(V,_») is dense inV,_, (which is a curve), we see th&t’ containsz, .
Since all of our choices for th¥ andY (and hence for th&;) were arbitrary,
we see thaV’ containsE; ,_»(V). Repeating this reasoning, we see thét
containsEy i (V) for all i, henceV’ containsE;(V) andV’' =V by Theorem 1.

O

Proof of Corollary 2:Let V be a complete codimensian subvariety of. 7
or.#,. Again, by Theorem 1, the sé&; (V) is nonempty. Lety C V be an
irreducible component d&;(V) and defineY’ as in the proof of Corollary 1. As
in loc. cit. the varietyY is a complete subvariety &f , of codimension at most
g —1inV (codimension exactly — 1 by Corollary 1 ifV C.2).
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Suppose thaV C .//6;. Again, sinceY’ is irreducible and complete and
.-¢, affine, the mapY’ — . ¢, is constant, hence its differential has rank 0
everywhere. It follows from [3] pages 172-173 that, forta#t Y NV, and every
one-dimensional subvector spaée of H (wc,), the mapy : W @ HO%we,) —
TV is not injective. Since this noninjectivity is a closed condition aBqVo)
is dense inVy, it follows that it holds for allt € V.

Therefore, by Proposition 1.1 and with the notation there, far al\Vy, there
is a one-dimensional subvector spatR of H%wc,) such thatN = p(Wy ®
HOwe,)).

Let us globalize the constructions in the proof of Proposition 1.1Fyéte the
Hodge bundle oV, and 1etS?P(Fo) be the quotient of the fiber produB(Fo) x v,
P(Fo) by the involutiono exchanging the two factors of the fiber product. Let
T*.Mé; be the cotangent bundle os%; and let 15’ C T*.//éé v, be the conormal
bundle toVy. Denote by./"" (resp../”") the subcone of decomposable tensors
(resp. rank 2 symmetric tensors)Rg® Fo (resp.S?Fo) lying in the inverse image
of .J¢ by the multiplication maB?Fy — T*.7¢,|v,- Then, by Proposition 1.1
and with the notation there, the fibers.dof ™, .47, and. Jg'att are respectively
Wy ®H O(WQ) UH O(CL)Ct) Wy, p(Wy ®H O(WQ)) and u(Wy @ H O(WQ)). Hence
the morphismm : .J”” — _J¢’is an isomorphism because it is an isomorphism
on each fiber and the may(. /") — IP(.Jp) is a double cover which splits on
each fiber. Since the double cover\Gf parametrizing the rulings of the fibers of
P(Fo) xv, P(Fo) overVy is split, the double coveP(. /") — P(A"") = P(1g)
is globally split and hence the varieB(./"') is the union of two subvarieties
of P(Fo) xv, P(Fo) exchanged by and both isomorphic t®(.74") (by the
quotient morphisnP(Fq) xv, P(Fo) — S?P(Fo) ) and toP(Fo) by either of the
two projectionsP(Fo) xv, P(Fo) — P(Fo). In particular, the two components
of P(./") are projective bundles oWy and. /" is the union of two vector
bundles. ;" and. /5" with respective fiber¥Vy @ H%wc, ) andH %(we,) ® Wy
att. Furthermore, we havel;"” Z e 5" (checked on fibers again).
Since P(.1/{") is isomorphic toP(Fo), there is a line bundleZZ” such that
M= @F. S0 W@ Fo.

From the injection/{" < Fo ® Fo we deduce the injectioZ” — Fq
which is the composition of the morphis#” — Fo ® Fo ® F§ (obtained from

W @Fq = " — Fo® Fg) with the morphisnfo @ (Fo @ F{) ey Fo which
is the product of the identity i, Fo and the trace morphisriy @ Fg =
End(Fo) —— (.

ForV C .-, the proof is similar to (and simpler than) the above and uses
Proposition 1.5 instead of Proposition 1.1. O

2. Appendix: A remark on density in positive characteristic

In this section we use the notation of the introduction to denote moduli spaces of
curves and abelian varieties over an algebraically closed Kielficharacteristic
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p > 0. The subvariety, of . 4, parametrizing ppav’s ab-rank 0 is a complete
(connected ifg > 1 by [11] (2.6)(c)) subvariety of codimensignof . 4, (see
[13], (2) in the introduction and [10], the proof of Theorem 1.1a pages 98-99).
We explain below how to deduce from the results of [4, 6, 9] and [11] that the
moduli points of non-simple abelian varieties My are contained in a proper
closed subset 0¥y wheng > 3.

The formal group of an abelian variety of p-rank 0 is isogenous to a sum

Z Gm ,Ni

1<i<r

wherem, andn; are relatively prime positive integers for eactthe summ +n;
is less than or equal tg for all i, the formal groupGy, , has dimensiom and
its dual isG,, m (see [9] chapter IV, Sect. 2). The decomposition is symmetric,
i.e., the groupGn, , appears as many times &, . We call the unordered
r-tuple ((m, n)).<; <, the formal isogeny type of the abelian variety. As in [11],
we define the Symmetric Newton PolygonAto be the lower convex polygon
in the planeR? which starts at (00) and ends at (2 g), whose break-points have
integer coordinates and whose slopes (arranged in increasing order because of
lower convexity) are\; = mnlni with multiplicity my +n; (i.e., on the polygon, the
x-coordinate grows byn; +n; and they-coordinate grows byry). The polygon
is symmetric in the sense that if the slopappears, then the slope-1\ appears
with the same multiplicity. Following [11], we shall say that the Newton Polygon
0 is above the Newton Polygamif for all real numbers € [0, 2g],y,z € [0, g]
such thatX,z) € 3, (X,y) € «, we havez > y. We shall say that; is strictly
abovea if 3 is abovea and 3 # a. Again as in [11], for a Symmetric Newton
Polygonc, we denote by, the set of points in-4, corresponding to abelian
varieties whose Newton Polygon is abaveBy [4] page 91, Newton polygons
go up under specialization. By [6] page 143 Theorem 2.3.1 and Corollary 2.3.2
(see also [11], 2.4), for any Newton polygen the setW,, is closed inVy. By
[11] Theorem (2.6)(a) and Remark (3.3), the abelian vargtwith moduli point
the generic point o¥/y has formal isogeny type ((& — 1), (¢ — 1, 1)). Therefore,
since g > 3, the abelian varietydg is simple. Letag denote the Symmetric
Newton Polygon ofdy. The moduli point of a non-simple ppav pfrank 0 is in
W; for some Symmetric Newton Polygahstrictly aboveag. Therefore the set
of non-simple ppav’s ifVy is contained iNJg stictly above oo Wg. Since there are
only a finite number of Symmetric Newton Polygons (below the ¥ire2y and)
aboveagp, we deduce that all points dfy corresponding to nonsimple abelian
varieties are in a proper closed subseWpf(which is Ug stictly above aoW3)-
ThereforeVy is an example of a subvariey of codimensiory of . 4, (for

all g > 3) or of //AZ; such thatEq(V) is not Zariski-dense itV for anyq.
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stimulating discussions.
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