Density and completeness of subvarieties of moduli spaces of curves or Abelian varieties

E. Izadi

Department of Mathematics, Boyd Graduate Studies Research Center, University of Georgia, Athens, GA 30602-7403, USA (e-mail: izadi@math.uga.edu)

Received: 13 August 1996

Mathematics Subject Classification (1991): 14K99, 14H99

Introduction

Let \mathcal{M}_g be the moduli space of smooth curves of genus $g \geq 2$ and let \mathcal{M}_g be the moduli space of principally polarized abelian varieties (ppav) of dimension g over \mathbb{C} . A (Deligne-Mumford) stable curve of genus g is a reduced, connected and complete curve of arithmetic genus g with only nodes as singularities and with finite automorphism group. We say that a stable curve is of compact type if its generalized jacobian is an abelian variety. We denote by $\widetilde{\mathcal{M}}_g$ the moduli space of stable curves of compact type and genus g over \mathbb{C} . By "density" we always mean "analytic density" unless we specify otherwise.

Given a subvariety V of \mathcal{M}_g or \mathcal{M}_g and an integer q between 1 and g/2, let $E_q(V)$ be the subset of V parametrizing curves whose jacobian contains an abelian variety of dimension q. We define $E_q(V)$ for V a subvariety of \mathcal{A}_g in a similar fashion. It is well-known that $E_q(\mathcal{A}_g)$ is dense in \mathcal{A}_g for all q. Colombo and Pirola pose the following question in [3]

Problem 1. When is $E_q(V)$ dense in V?

Colombo and Pirola give a sufficient condition for the density of $E_q(V)$ in V. They then show that $E_1(V)$ is dense in V for all subvarieties V of \mathscr{M}_g of codimension at most g-1. They deduce from this a second proof of the noncompleteness of codimension g-1 subvarieties of \mathscr{M}_g which was originally proved by Diaz in [5], Corollary page 80 (Colombo and Pirola prove the noncompleteness of codimension g-1 subvarieties of \mathscr{M}_g which meet \mathscr{M}_g ; however, if the subvariety is contained in $\mathscr{M}_g \setminus \mathscr{M}_g$, its noncompleteness can

The author was partially supported by an NSF grant.

be easily seen by mapping it (or, in some cases, a double cover of it) to a moduli space of curves of lower genus).

Using the condition of Colombo and Pirola, we show

Theorem 1. Suppose that $g \ge 2$. Let V be a subvariety of codimension at most g of \mathcal{M}_g or \mathcal{A}_g , then $E_1(V)$ is dense in V.

This result brings out another fundamental difference between the moduli spaces in characteristic zero and in positive characteristic (see Section 2 below).

We also obtain

Corollary 1. Suppose that $g \ge 2$. Let V be a complete subvariety of codimension at most g of \mathcal{A}_g . For all $i \in \{1,...,g\}$, denote by $E_{1,i}(V)$ the subset of V parametrizing ppav's isogenous to a product of a ppav of dimension g-i and i elliptic curves. Then

- 1. the variety V has codimension exactly g,
- 2. for all $i \in \{1, ..., g\}$, any irreducible component Z of $E_{1,i}(V)$ has the expected dimension $\frac{(g-i)(g-i+1)}{2} + i g$; furthermore, the variety Z parametrizes ppav's isogenous to a product of i fixed elliptic curves (depending only on Z) and some ppav of dimension g-i,
- 3. for all $q, 1 \le q \le g/2$, any irreducible component of $E_q(V)$ has the expected dimension $\frac{(g-q)(g-q+1)}{2} + \frac{q(q+1)}{2} g$,
- 4. the set $E_{1,g}(V)$ is dense in V. In particular, the set $E_{1,g}(V)$ is (countable) infinite and, for all $i \in \{1,...,g\}$, for all $q \in \{1,...,g/2\}$, the sets $E_{1,i}(V)$ and $E_q(V)$ are dense in V (since they contain $E_{1,q}(V)$).

An immediate consequence of Corollary 1 is that complete subvarieties of \mathcal{A}_g have codimension at least g. There are different proofs of this last fact in [12] (2.5.1 page 231) and [7] (Corollary 1.7). There are no known examples of complete subvarieties of codimension g of \mathcal{A}_g (or $\widetilde{\mathcal{M}}_g$) except for g=2, although g is the best known lower bound for the codimension of complete subvarieties of \mathcal{A}_g (and $\widetilde{\mathcal{M}}_g$). It is conjectured in [12] (2.3 page 230) that for $g \geq 3$ the codimension of a complete subvariety of \mathcal{A}_g is at least g+1.

Let \mathcal{H}_g be the locus of hyperelliptic curves in \mathcal{M}_g . Let \mathcal{M}_g' and \mathcal{A}_g' be respectively the moduli space of curves of compact type with level n structure (for some fixed $n \geq 3$) and the moduli space of ppav's with level n structure. Let $s_a: \mathcal{A}_g' \longrightarrow \mathcal{A}_g$ and $s_c: \widetilde{\mathcal{M}}_g' \longrightarrow \widetilde{\mathcal{M}}_g$ be the natural morphisms. It is well-known that \mathcal{A}_g' and $\mathcal{M}_g' := s_c^{-1}(\mathcal{M}_g)$ are smooth and that there is a universal family of abelian varieties with level n structure on \mathcal{M}_g' and a universal family of (smooth) curves with level n structure on \mathcal{M}_g' . By a "universal" family of curves or abelian varieties with level n structure we mean a family which solves the moduli problem for curves or abelian varieties with level n structure. We note that the only properties of $\widetilde{\mathcal{M}}_g'$, \mathcal{M}_g' and \mathcal{A}_g' we need are the smoothness of \mathcal{M}_g' and \mathcal{A}_g' and the existence of the universal families (also note that with non-abelian level structures or Prym-level structures, one can get smooth covers

of $\widetilde{\mathcal{M}}'_g$ as well (see [8] and [14])). We have the following technical consequence of our results.

Corollary 2. Suppose that $g \geq 3$. Let V be a complete subvariety of codimension g of \mathcal{M}_g or \mathcal{A}_g . If $V \subset \mathcal{A}_g$, let V_0 be the smooth locus of $s_a^{-1}(V)$. If $V \subset \mathcal{M}_g$, let V_0 be the smooth locus of $s_c^{-1}(V \cap (\mathcal{M}_g \setminus \mathcal{H}_g))$. Then the conormal bundle to V_0 is isomorphic to the tensor product of the Hodge bundle (the pushforward of the sheaf of relative one-forms on the universal abelian (or jacobian) variety) with a subline bundle of the Hodge bundle.

Finally, we point out that, if $\mathcal{A}_{g,d}$ denotes the moduli space of abelian varieties of dimension g and polarization type $d = (d_1, ..., d_g)$, then there is a finite correspondence between \mathcal{A}_g and $\mathcal{A}_{g,d}$ so that our results remain valid if we replace \mathcal{A}_g with $\mathcal{A}_{g,d}$.

Notation

For any vector space or vector bundle (resp. affine cone) E, we denote by $\mathbb{P}(E)$ the projective space (resp. projective variety) of lines in E and by E^* its dual vector space or vector bundle. We let $E^{\otimes m}$, S^mE and A^mE respectively be the m-th tensor power, the m-th symmetric power and the m-th alternating power of E. For any linear map of vector spaces or vector bundles $l: E \longrightarrow F$, we denote by $\overline{l}: \mathbb{P}(E) \longrightarrow \mathbb{P}(F)$ its projectivization.

For any variety X and any point $x \in X$, we denote by T_xX the Zariski tangent space to X at x and by T_x^*X the dual of T_xX . We denote by X_{sm} the subvariety of smooth points of X.

For a ppav A, we let $\rho: H^0(\Omega_A^1)^{\otimes 2} \longrightarrow S^2H^0(\Omega_A^1)$ be the natural linear map with kernel $\Lambda^2H^0(\Omega_A^1)$. For a subvariety V of \mathscr{L}'_g the restriction to V of the universal family on \mathscr{L}'_g gives a family \mathscr{L}_V of ppav's on V (we forget the level n structure). For a point t of V, we let A_t be the fiber of \mathscr{L}_V at t. The Zariski-tangent space to \mathscr{L}'_g at t can be canonically identified with $S^2H^0(\Omega_{A_t}^1)^*$. We denote by $\pi_a: S^2H^0(\Omega_{A_t}^1) \longrightarrow T_t^*V$ the codifferential at t of the embedding $V \hookrightarrow \mathscr{L}'_g$.

For a smooth curve C, we denote by ω_C the canonical sheaf of C and let κC be the image of C in the dual projective space $|\omega_C|^*$ of the linear system $|\omega_C|$ by the natural morphism associated to this linear system. If A=JC is the jacobian of a smooth curve C, then $H^0(\Omega^1_A)\cong H^0(\omega_C)$. Let $m:S^2H^0(\omega_C)\longrightarrow H^0(\omega_C^{\otimes 2})$ be multiplication and put $\mu:=m\rho$. For $V\subset \mathscr{M}'_g$ the restriction to V of the universal family on \mathscr{M}'_g gives a family \mathscr{C}_V of curves on V (again we forget the level n structure). For $t\in V$ we let C_t be the fiber of \mathscr{C}_V at t. The Zariskitangent space to \mathscr{M}'_g at t can be canonically identified with $H^0(\omega_C^{\otimes 2})^*$. We let $\pi:H^0(\omega_C^{\otimes 2})\longrightarrow T_t^*V$ be the codifferential at t of the embedding $V\hookrightarrow \mathscr{M}'_g$.

For a stable curve C of compact type (resp. a ppav A), we will call the corresponding point of $\widetilde{\mathcal{M}}_q$ (resp. \mathscr{A}_q) the moduli point of C (resp. A).

1. The proofs

In this section we give the proof of Theorem 1 and its corollaries.

We first consider the case where V is contained in \mathcal{M}_g . We may and will replace V with its inverse image in \mathcal{M}'_g .

The relative jacobian of \mathcal{C}_V gives us a family of ppav's on V. We can therefore apply Theorem (1) on page 162 of [3]: to show that $E_1(V)$ is dense in V it is enough to prove the following:

There exists a Zariski dense (Zariski-)open subset U of V, contained in the smooth locus V_{sm} of V, such that, for all $t \in U$, there is a subvector space W of $H^0(\omega_{C_t})$ which has dimension 1 and is such that the composition

$$W \otimes W^{\perp} \stackrel{\mu}{\hookrightarrow} H^0(\omega_{C_t}^{\otimes 2}) \stackrel{\pi}{\longrightarrow} T_t^* V$$

is injective. Here W^{\perp} is the orthogonal complement of W with respect to the hermitian form on $H^0(\omega_{C_t})$ induced by the natural polarization of JC_t . We sketch briefly how this condition is obtained in the more general case where W has dimension q with $1 \le q \le g/2$ and $V \subset \mathscr{B}'_q$ has any dimension $\ge q(g-q)$.

To prove the density of $E_q(V)$ in V, it is enough to show that there is a Zariski dense open subset U of V_{sm} , such that, for all $t \in U$, there is an analytic neighborhood U' of $t, U' \subset U$, such that $E_q(V) \cap U'$ is dense in U'. An abelian variety A contains an abelian subvariety of dimension q if and only if $H^0(\Omega^1_A)$ contains a q-dimensional C-subvector space which is the tensor product with \mathbb{R} of a vector subspace of dimension 2q of $H^1(A,\mathbb{Q})$ (after identifying $H^0(\Omega^1_A)$ with $H^1(A,\mathbb{R}) \cong H^1(A,\mathbb{Q}) \otimes \mathbb{R}$ as real vector spaces). Let t be an element of V_{sm} . For a contractible analytically open set $U' \ni t$ contained in V_{sm} , let $F_{U'}$ be the Hodge bundle over U'. Then one can trivialize $F_{U'}$ as a real vector bundle using the Gauss-Manin connection. Therefore the grassmannian bundle of 2q-dimensional real subvector spaces of $F_{U'}$ is isomorphic to $U' \times G_{\mathbb{R}}(2q, 2g)$, where $G_{\mathbb{R}}(2q,2g)$ is the Grassmannian of 2q-dimensional \mathbb{R} -subvector spaces of $H^1(A_t, \mathbb{R})$. Hence there is a well-defined map $\Phi: G(q, F_{U'}) \longrightarrow G_{\mathbb{R}}(2q, 2q)$ where $G(q, F_{U'})$ is the Grassmannian of q-dimensional \mathbb{C} -subvector spaces of $F_{U'}$: The map Φ sends a q-dimensional complex subvector space of $H^0(\Omega^1_{\Delta})$ (with $s \in U'$) to the image of its underlying real vector space under the isomorphism $H^1(A_s,\mathbb{R}) \stackrel{\cong}{\longrightarrow} H^1(A_t,\mathbb{R})$ obtained from the \mathbb{R} -trivialization of $F_{U'}$. Let $G_{\mathbb{Q}}(2q,2g) \subset G_{\mathbb{R}}(2q,2g)$ be the Grassmannian of 2q-dimensional \mathbb{Q} -subvector spaces of $H^1(A_t, \mathbb{Q})$ and let $p: G(q, F_{U'}) \longrightarrow U'$ be the natural morphism. Then $E_q(V) \cap U' = p(\Phi^{-1}(G_{\mathbb{Q}}(2q,2g)))$. To prove the density of $E_q(V) \cap U'$ in U', it is enough to prove that there is a subset \mathscr{Y} of $G(q, F_{U'})$ such that $p(\mathcal{Y}) = U'$ and $\Phi^{-1}(G_{\mathbb{Q}}(2q,2g)) \cap \mathcal{Y}$ is dense in \mathcal{Y} . Since $G_{\mathbb{Q}}(2q,2g)$ is dense in $G_{\mathbb{R}}(2q,2g)$, it is enough to find \mathscr{Y} such that $p(\mathscr{Y})=U'$ and $\Phi|_{\mathscr{U}}$ is an open map. If Φ has maximal rank (i.e., the differential $d\Phi$ of Φ is surjective) everywhere on \mathcal{Y} , then $\Phi|_{\mathcal{V}}$ is an open map. Therefore $E_q(V) \cap U'$ is dense in U' if for every $s \in U'$ there is a q-dimensional \mathbb{C} -subvector space Wof $H^0(\Omega^1_A)$ such that $d\Phi$ is surjective at $(W,s) \in G(q,F_{U'})$ (then \mathscr{Y} would

be the set of such (W,s)). The tangent space $T_{(W,s)}G(q,F_{U'})$ is isomorphic to $W\otimes W^\perp\oplus \underline{T_sU'}$, the tangent space to $G_\mathbb{R}(2q,2g)$ at $\Phi(W,s)$ is isomorphic to $W\otimes W^\perp\oplus \overline{W}\otimes W^\perp\cong W\otimes W^\perp\oplus (W\otimes W^\perp)^*$ and the restriction of $d\Phi$ to the $W\otimes W^\perp$ summand of $T_{(W,s)}G(q,F_{U'})$ is an isomorphism onto the $W\otimes W^\perp$ summand of $T_{\Phi(W,s)}G_\mathbb{R}(2q,2g)$. Therefore $d\Phi$ is surjective if and only if the map it induces $T_sU'=\frac{T_{(W,s)}G(q,F_{U'})}{W\otimes W^\perp}\longrightarrow (W\otimes W^\perp)^*=\frac{T_{\Phi(W,s)}G_\mathbb{R}(2q,2g)}{W\otimes W^\perp}$ is surjective, i.e., if and only if the dualized map $W\otimes W^\perp\longrightarrow T_s^*U'$ is injective. Let F be the Hodge bundle over the Siegel upper half space \mathscr{U}_g . The inclusion $U'\hookrightarrow \mathscr{M}_g'$ lifts to an inclusion $U'\hookrightarrow \mathscr{M}_g$ because U' is contractible and there is a family of ppav's on U' (the restriction of \mathscr{N}_V). Factoring Φ through the Grassmannian of q-planes in F over \mathscr{U}_g , the map $W\otimes W^\perp\longrightarrow T_s^*U'$ can be seen to be the composition

$$W \otimes W^{\perp} \stackrel{\rho}{\longrightarrow} S^2 H^0(\Omega^1_{A_s}) \stackrel{\pi_a}{\longrightarrow} T_s^* U' = T_s^* V$$
.

For *V* contained in \mathscr{M}'_g , we have $\pi_a = \pi m$.

Clearly, if $\pi\mu: W \otimes H^0(\omega_{C_t}) \longrightarrow T_t^*V$ is injective, then so is $\pi\mu: W \otimes W^\perp \longrightarrow T_t^*V$. In view of this (and also for use in the proof of Corollary 2) we show:

Proposition 1.1. Suppose that $g \geq 3$. Let V be a subvariety of codimension at most g of \mathscr{M}'_g . Let t be a point of V_{sm} and let N be the kernel of $\pi: H^0(\omega_{C_t}^{\otimes 2}) \longrightarrow T_t^*V$.

- 1. Suppose that C_t is non-hyperelliptic. Suppose that, for any one-dimensional subvector space W of $H^0(\omega_{C_t})$, the map $\pi\mu: W \otimes H^0(\omega_{C_t}) \longrightarrow T_t^*V$ is not injective. Then V has codimension exactly g and there is a one-dimensional subvector space W_N of $H^0(\omega_{C_t})$ such that $N = \mu(W_N \otimes H^0(\omega_{C_t}))$.
- 2. Suppose that C_t is hyperelliptic and that V is not transverse to $\mathscr{H}_g' := s_c^{-1}(\mathscr{H}_g)$ at t (i.e., the sum $T_tV + T_t\mathscr{H}_g' \subset T_t\mathscr{M}_g'$ is not equal to $T_t\mathscr{M}_g'$). Then there exists a one-dimensional subvector space W of $H^0(\omega_{C_t})$ such that the map $\pi\mu: W\otimes H^0(\omega_{C_t})\longrightarrow T_t^*V$ is injective.

Proof: Consider the composition

$$\mathbb{P}(H^0(\omega_{C_r})^{\otimes 2}) \xrightarrow{\overline{\rho}} \mathbb{P}(S^2H^0(\omega_{C_r})) \xrightarrow{\overline{m}} \mathbb{P}(H^0(\omega_{C_r}^{\otimes 2})).$$

The kernel of m is the space $I_2(C_t)$ of quadratic forms vanishing on κC_t . Hence the rational map \overline{m} is the projection with center $\mathbb{P}(I_2(C_t))$. Let $\overline{\mathscr{S}}$ be the image by $\overline{\rho}$ of the Segre embedding \mathscr{S} of $\mathbb{P}(H^0(\omega_{C_t})) \times \mathbb{P}(H^0(\omega_{C_t}))$ in $\mathbb{P}(H^0(\omega_{C_t})^{\otimes 2})$. Let N' be the set of rank 2 symmetric tensors in $S^2H^0(\omega_{C_t})$ which lie in $m^{-1}(N)$ (then $\mathbb{P}(N')$ is the reduced intersection of $\overline{\mathscr{S}}$ and $\overline{m}^{-1}(\mathbb{P}(N))$).

Suppose that for all $W \subset H^0(\omega_{C_t})$ of dimension 1, the map $\mu: W \otimes H^0(\omega_{C_t}) \longrightarrow T_t^*V$ is not injective, i.e., for all $w \in H^0(\omega_{C_t})$, there is $w' \in H^0(\omega_{C_t})$ such that $\mu(w \otimes w') \in N$. This implies that the dimension of $\mathbb{P}(N')$ is at least g-1. We will show below that this does not happen if C_t is hyperelliptic and V is not transverse to \mathscr{H}_q' at t. If C_t is non-hyperelliptic, we will show

that this implies that $\mathbb{P}(N')$ is a linear subspace of $\overline{\mathscr{S}}$ and that its inverse image in \mathscr{S} is the union of two linear subspaces of \mathscr{S} which are two fibers of the two projections of \mathscr{S} onto \mathbb{P}^{g-1} and are exchanged under the involution of \mathscr{S} which interchanges the two \mathbb{P}^{g-1} -factors of \mathscr{S} . The proposition will then easily follow from this.

Suppose first that C_t is *non*-hyperelliptic. Then $m: S^2H^0(\omega_{C_t}) \longrightarrow H^0(\omega_{C_t}^{\otimes 2})$ is onto (see [2] page 117). We have

Lemma 1.2. Suppose g = 2 or $g \ge 3$ and C_t is non-hyperelliptic. Suppose that for all $W \subset H^0(\omega_{C_t})$ of dimension 1, the map $\mu : W \otimes H^0(\omega_{C_t}) \longrightarrow T_t^*V$ is not injective. Then the map $\mathbb{P}(N') \longrightarrow \mathbb{P}(N)$ is generically one-to-one.

Proof: If not, then, for all $w \in H^0(\omega_{C_t})$, there exists $w', w_1, w'_1 \in H^0(\omega_{C_t})$ such that $ww' := \rho(w \otimes w')$ and $w_1w'_1 := \rho(w_1 \otimes w'_1)$ are not proportional but m(ww') and $m(w_1w'_1)$ are proportional elements of N. Therefore, supposing w general, there exits $\lambda \in \mathbb{C}$, $\lambda \neq 0$, such that the element $\lambda ww' - w_1w'_1$ of $S^2H^0(\omega_{C_t})$ lies in $I_2(C_t)$, i.e., defines a quadric q(w) of rank 3 or 4 (in the canonical space $|\omega_{C_t}|^*$) which contains κC_t (the canonical curve κC_t is not contained in any quadric of rank ≤ 2 since it is nondegenerate). If $g \leq 3$, this is impossible because in that case $I_2(C_t) = 0$. If $g \geq 4$, the intersection L of the two hyperplanes in $|\omega_{C_t}|^*$ with equations w and w_1 is an element of a ruling of the quadric q(w). Therefore L cuts a divisor of a g_d^1 (a g_d^1 is a pencil of divisors of degree d) on C_t with $d \leq g - 1$ (see [1], Lemmas 2 and 3 page 192). Therefore the divisor of zeros of w on C_t contains a divisor of a g_d^1 . By the uniform position Theorem (see [2] Chapter 3, Sect. 1) this does not happen for w in some nonempty Zariski-open subset of $H^0(\omega_{C_t}) \setminus \{0\}$.

Therefore, since the dimension of $\mathbb{P}(N')$ is at least g-1 and the dimension of $\mathbb{P}(N)$ is at most g-1, the map $\mathbb{P}(N') \longrightarrow \mathbb{P}(N)$ is birational and $\mathbb{P}(N')$ and $\mathbb{P}(N)$ have both dimension g-1.

This proves, in particular, that V has codimension exactly q.

Since no quadrics of rank ≤ 2 contain κC_t , the center $\mathbb{P}I_2(C_t)$ of the projection \overline{m} does not intersect $\overline{\mathscr{S}}$. In particular, the space $\mathbb{P}I_2(C_t)$ does not intersect $\mathbb{P}(N')$. Therefore \overline{m} restricts to a birational $morphism \, \mathbb{P}(N') \longrightarrow \mathbb{P}(N)$ and, since $\mathbb{P}(N)$ is a linear subspace of $\mathbb{P}(H^0(\omega_{C_t}^{\otimes 2}))$, the degree of $\mathbb{P}(N')$ (in the projective space $\mathbb{P}(S^2H^0(\omega_{C_t}))$) is equal to the (generic) degree of the map $\mathbb{P}(N') \longrightarrow \mathbb{P}(N)$. Hence $\mathbb{P}(N')$ is a linear subspace of $\mathbb{P}(S^2H^0(\omega_{C_t}))$ and \overline{m} restricts to an *isomorphism* $\mathbb{P}(N') \stackrel{\cong}{\longrightarrow} \mathbb{P}(N)$.

Let N'' be the cone of decomposable tensors in $H^0(\omega_{C_t})^{\otimes 2}$ which lie in $\mu^{-1}(N)$ (then $\mathbb{P}(N'')$ is the *reduced* inverse image of $\mathbb{P}(N')$ in $\mathscr{S} \subset \mathbb{P}(H^0(\omega_{C_t})^{\otimes 2})$). The map $\mathscr{S} \longrightarrow \overline{\mathscr{S}}$ is a finite *morphism* of degree 2 ramified on the diagonal. Therefore the map $\mathbb{P}(N'') \longrightarrow \mathbb{P}(N')$ is a morphism of degree ≤ 2 . Since the diagonal of $\overline{\mathscr{S}} \cong S^2\mathbb{P}(H^0(\omega_{C_t}))$ is irreducible of dimension g-1 and spans $\mathbb{P}(S^2H^0(\omega_{C_t}))$, the space $\mathbb{P}(N')$ intersects this diagonal in a subvariety of dimension at most g-2. Therefore the morphism $\mathbb{P}(N'') \longrightarrow \mathbb{P}(N')$ has degree 2 and $\mathbb{P}(N'')$ has degree 2 in $\mathbb{P}(H^0(\omega_{C_t})^{\otimes 2})$.

If $\mathbb{P}(N'')$ is irreducible, it spans a linear subspace $\widetilde{\mathbb{P}}$ of $\mathbb{P}(H^0(\omega_{C_t})^{\otimes 2})$ of dimension g. This implies that $\mathbb{P}(\Lambda^2 H^0(\omega_{C_t}))$ intersects $\widetilde{\mathbb{P}}$ in exactly one point. For $w_1, w_2 \in H^0(\omega_{C_t})$, let w_1', w_2' be such that $\mu(w_1 \otimes w_1'), \mu(w_2 \otimes w_2') \in N$. For w_i general, w_i' is not proportional to w_i since $\mathbb{P}(N'')$ intersects the diagonal of \mathscr{S} in a subvariety of dimension at most g-2. Therefore the lines spanned by $w_1 \otimes w_1' - w_1' \otimes w_1$ and $w_2 \otimes w_2' - w_2' \otimes w_2$ give us elements of $\widetilde{\mathbb{P}} \cap \mathbb{P}(\Lambda^2 H^0(\omega_{C_t}))$ which is a point. Therefore, for all $w_1, w_2 \in H^0(\omega_{C_t})$ general there exists $\lambda \in \mathbb{C}, \lambda \neq 0$, such that

$$w_1 \otimes w_1' - w_1' \otimes w_1 = \lambda(w_2 \otimes w_2' - w_2' \otimes w_2)$$

Complete $\{w_1, w_2\}$ to a general basis $\{w_1, w_2, w_3, ..., w_g\}$ of $H^0(\omega_{C_i})$ and write $w_i' = \sum_{1 \le j \le g} a_{ij} w_j$ for i = 1 or 2. Then from the equation above we deduce $a_{1j} = a_{2j} = 0$ for j > 2. Therefore, w_1' belongs to the span of w_1 and w_2 . Repeating this argument with w_1 and w_3 instead of w_1 and w_2 , we see that w_1' also belongs to the span of w_1 and w_3 . Hence w_1' is proportional to w_1 (this is the only part in the proof of Proposition 1.1 where we need $g \ge 3$). Contradiction.

Therefore $\mathbb{P}(N'')$ is reducible, i.e., it is the union of two linear subspaces of dimension g-1. We have

Lemma 1.3. Suppose $g \geq 2$. All linear subspaces of dimension g-1 of $\mathscr{S} \subset \mathbb{P}(H^0(\omega_{C_t})^{\otimes 2}) \cong \mathbb{P}^{g^2-1}$ are elements of one of the two rulings of $\mathscr{S} \cong \mathbb{P}(H^0(\omega_{C_t})) \times \mathbb{P}(H^0(\omega_{C_t})) \cong \mathbb{P}^{g-1} \times \mathbb{P}^{g-1}$.

Proof: Let T be a linear subspace of dimension g-1 of \mathscr{S} . Let p_1 and p_2 be the two projections of $\mathscr{S} \cong \mathbb{P}^{g-1} \times \mathbb{P}^{g-1}$ onto its two factors. Let H_i be a general element of $p_i^*|\mathscr{C}_{\mathbb{P}^{g-1}}(1)|$ for i=1 or 2. Then $H_1 \cap T \neq H_2 \cap T$ and H_i does not contain T. In particular, the intersection $H_i \cap T$ is either empty or of dimension g-2. The divisor $H_1 \cup H_2$ is the intersection of a hyperplane H in \mathbb{P}^{g^2-1} with \mathscr{S} . Since T is not contained in H_1 nor H_2 , the hyperplane H does not contain T and hence $T \cap H$ is a linear space of dimension g-2. Since the two intersections $T \cap H_1 \neq T \cap H_2$ are both contained in the (g-2)-dimensional linear space $T \cap H$ and are either empty or have dimension g-2, we have either $H_1 \cap T = \emptyset$ or $H_2 \cap T = \emptyset$. Suppose, for instance, that $H_1 \cap T = \emptyset$. It is easily seen that $p_1^{-1}(p_1(H_1)) = H_1$ implies $p_1(H_1) \cap p_1(T) = p_1(H_1 \cap T)$. Therefore $p_1(T)$ does not intersect $p_1(H_1)$ which is a hyperplane in \mathbb{P}^{g-1} . Hence $p_1(T)$ is a point and T is a fiber of p_1 .

We deduce from the above Lemma that $\mathbb{P}(N'') = \mathbb{P}(N_1) \cup \mathbb{P}(N_2)$ where $\mathbb{P}(N_1)$ and $\mathbb{P}(N_2)$ are elements of the two rulings of $\mathscr{S} \cong \mathbb{P}^{g-1} \times \mathbb{P}^{g-1}$. The spaces $\mathbb{P}(N_1)$ and $\mathbb{P}(N_2)$ are exchanged by the involution which exchanges the two factors of \mathscr{S} because $\mathbb{P}(N'')$ is the inverse image of a linear subspace in $\mathscr{S} \cong S^2\mathbb{P}^{g-1}$. Therefore there exists a one-dimensional subvector space W_N of $H^0(\omega_{C_t})$ such that, for instance, $N_1 = W_N \otimes H^0(\omega_{C_t})$ and $N_2 = H^0(\omega_{C_t}) \otimes W_N$. So $N = \mu(N_1) = \mu(W_N \otimes H^0(\omega_{C_t})$. This proves the Proposition in the non-hyperelliptic case.

Now suppose that C_t is hyperelliptic and that V is not transverse to \mathscr{H}'_g at t, i.e., the subspaces T_tV and $T_t\mathscr{H}'_q$ do not span $T_t\mathscr{M}'_q$. Let ι be the

hyperelliptic involution of C_t . Let $H^0(\omega_{C_t}^{\otimes 2})^+$ and $H^0(\omega_{C_t}^{\otimes 2})^-$ be the subvector spaces of $H^0(\omega_{C_t}^{\otimes 2})$ of ι -invariant and ι -anti-invariant quadratic differentials respectively. Then $H^0(\omega_{C_t}^{\otimes 2})^+$ is the image of $S^2H^0(\omega_{C_t})$ by m and the conormal space to \mathscr{H}'_g at t can be canonically identified with $H^0(\omega_{C_t}^{\otimes 2})^-$. The non-transversality of V and \mathscr{H}'_g means that $N\cap H^0(\omega_{C_t}^{\otimes 2})^-\neq \{0\}$. This implies that N is not contained in $H^0(\omega_{C_t}^{\otimes 2})^+$. Since N has dimension at most g, the dimension of $N\cap H^0(\omega_{C_t}^{\otimes 2})^+$ is at most g-1. Hence the dimension of $\mathbb{P}(N\cap H^0(\omega_{C_t}^{\otimes 2})^+)=\mathbb{P}(N)\cap \mathbb{P}(H^0(\omega_{C_t}^{\otimes 2})^+)=\mathbb{P}(N)\cap \overline{m}(\mathbb{P}(S^2H^0(\omega_{C_t})))$ is at most g-2. We have

Lemma 1.4. Suppose
$$g \geq 2$$
 and C_t hyperelliptic. The map $\overline{m} : \overline{\mathscr{S}} \longrightarrow \overline{\overline{\mathscr{S}}} := \overline{m}(\overline{\mathscr{S}})$ is a finite morphism of degree $\frac{1}{2} \begin{pmatrix} 2g-2 \\ g-1 \end{pmatrix}$.

Note that the lemma finishes the proof of Proposition 1.1: we saw above that the dimension of $\mathbb{P}(N) \cap \overline{m}(\mathbb{P}(S^2H^0(\omega_{C_t})))$ is at most g-2. A fortiori, since $\overline{m}(\mathbb{P}(S^2H^0(\omega_{C_t}))) \supset \overline{\overline{\mathscr{S}}}$, the dimension of $\mathbb{P}(N) \cap \overline{\overline{\mathscr{S}}}$ is at most g-2 and the dimension of $\mathbb{P}(N')$ is at most g-2 which is what we needed to show (see the paragraphs preceding Lemma 1.2).

Proof of Lemma 1.4: The map $\overline{m}: \overline{\mathscr{S}} \longrightarrow \overline{\overline{\mathscr{S}}}$ is a morphism if and only if the center $\mathbb{P}(I_2(C_t))$ of the projection \overline{m} does not intersect $\overline{\mathscr{S}}$. This is the case because the canonical curve κC_t is nondegenerate and hence not contained in any quadrics of rank ≤ 2 .

Fix a nonzero element $ww' = \rho(w \otimes w')$ of $S^2H^0(\omega_{C_t})$ and suppose that $w_1w_1' \in S^2H^0(\omega_{C_t})$ is not proportional to ww' and $m(w_1w_1') = \lambda.m(ww')$ for some $\lambda \in \mathbb{C}, \lambda \neq 0$. This is equivalent to $Z(w) + Z(w') = Z(w_1) + Z(w_1')$ where Z(w), for instance, is the divisor of zeros of w on the rational normal curve κC_t . So there are only a finite number of possibilities for $Z(w_1)$ and $Z(w_1')$. This proves that $\overline{m} : \overline{\mathscr{F}} \longrightarrow \overline{\overline{\mathscr{F}}}$ is quasi-finite and hence finite since it is proper. Any divisor of degree g-1 on $\kappa C_t \cong \mathbb{P}^1$ is the divisor of zeros of some element of $H^0(\omega_{C_t}) = H^0(\mathcal{O}_{\mathbb{P}^1}(g-1))$, hence, since there are $\frac{1}{2}\begin{pmatrix} 2g-2\\ g-1 \end{pmatrix}$ ways to write a fixed reduced divisor of degree 2g-2 as a sum of two divisors of degree g-1, the degree of $\overline{m} : \overline{\mathscr{F}} \longrightarrow \overline{\overline{\mathscr{F}}}$ is $\frac{1}{2}\begin{pmatrix} 2g-2\\ g-1 \end{pmatrix}$.

Proof of Theorem 1 in the case of curves: As explained in the beginning of this section, we need to find a Zariski-dense open subset U of V_{sm} , such that, for all $t \in U$, there exists $W \subset H^0(\omega_{C_t})$ (W of dimension 1) such that $\mu(W \otimes W^{\perp}) \cap N = \{0\}$.

First suppose $g \geq 3$. We may assume that V is irreducible. If V is contained in \mathscr{H}'_g , then V is not transverse anywhere to \mathscr{H}'_g and hence, by Proposition 1.1, we may take U to be all of V_{sm} . If $V \not\subset \mathscr{H}'_g$, take $U = V_{sm} \setminus \mathscr{H}'_g$. Suppose that there exists $t \in U$ such that, for all $W \subset H^0(\omega_{C_t})$ of dimension 1, we have $\mu(W \otimes W^{\perp}) \cap N \neq \{0\}$. Then, a fortiori, the hypotheses of part 1 of Proposition 1.1

are met and $N = \mu(W_N \otimes H^0(\omega_{C_t}))$. Then every element of $H^0(\omega_{C_t})$ is orthogonal to W_N . This is impossible given that the hermitian form on $H^0(\omega_{C_t})$ is positive definite.

Now suppose g=2. Then N has dimension ≤ 2 and $\mathbb{P}(N)$ has dimension ≤ 1 . For each $W\subset H^0(\omega_{C_t})$ of dimension 1, the space W^\perp also has dimension 1 and hence $W\otimes W^\perp$ has dimension 1. The lines $W\otimes W^\perp$ form a real analytic subset of $\mathbb{P}(H^0(\omega_{C_t})^{\otimes 2})$ of real dimension 2. Since $\overline{\rho}:\mathscr{S}\longrightarrow \overline{\mathscr{S}}$ is finite, we deduce that the lines $\rho(W\otimes W^\perp)=\mu(W\otimes W^\perp)$ form a real analytic subset of $\mathbb{P}(S^2H^0(\omega_{C_t}))=\mathbb{P}(H^0(\omega_{C_t}^{\otimes 2}))\cong \mathbb{P}^2$ of real dimension 2. An easy computation (with coordinates) will show that this subset is not contained in any projective line in $\mathbb{P}(H^0(\omega_{C_t}^{\otimes 2}))$ and hence is not contained in $\mathbb{P}(N)$. Hence there exists W such that the line $\mu(W\otimes W^\perp)$ is not contained in N, in other words $\mu(W\otimes W^\perp)\cap N=\{0\}$.

We now consider the case $V \subset \mathscr{R}'_q$. As before, we first prove

Proposition 1.5. Suppose that $g \geq 3$. Let V be a subvariety of codimension at most g of \mathscr{E}'_g . Let t be a point of V_{sm} and let N be the kernel of $\pi_a: S^2H^0(\Omega^1_{A_t}) \longrightarrow T_t^*V$. Suppose that, for any one-dimensional subvector space W of $H^0(\Omega^1_{A_t})$, the map $\pi_a \rho: W \otimes H^0(\Omega^1_{A_t}) \longrightarrow T_t^*V$ is not injective. Then V has codimension exactly g and there is a one-dimensional subvector space W_N of $H^0(\Omega^1_{A_t})$ such that $N = \rho(W_N \otimes H^0(\Omega^1_{A_t}))$.

Proof: If the map $\pi_a \rho: W \otimes H^0(\Omega^1_{A_t}) \longrightarrow T_t^* V$ is *not* injective, then $\rho(W \otimes H^0(\Omega^1_{A_t})) \cap N \neq \{0\}$. If this holds for every $W \subset H^0(\Omega^1_{A_t})$ of dimension 1, then $\mathbb{P}(N)$ has dimension g-1 and is contained in $\overline{\mathscr{S}} \cong S^2 \mathbb{P}(H^0(\Omega^1_A))$. It follows that V has codimension g. The rest of the argument is now analogous to the proof of part 1 of Proposition 1.1 with N' = N.

Proof of Theorem 1 in the case of abelian varieties: This proof is now as in the case of curves. \Box

Proof of Corollary 1: Let V be a complete subvariety of codimension g-d $(d \geq 0)$ of \mathcal{A}_g . By Theorem 1, the set $E_1(V)$ is dense in V. In particular, it is nonempty. Let Y be an irreducible component of $E_1(V)$. Let r and s be integers such that for every ppav A with moduli point in Y there is an elliptic curve E, a ppav B and an isogeny $\nu: E \times B \longrightarrow A$ of degree at most r such that the inverse image of the principal polarization of A by ν is a polarization of degree at most s. Let Y' be an irreducible component of the variety parametrizing such quadruples (E, B, A, ν) . Then Y' is a finite cover of Y. The morphism $Y' \longrightarrow \mathcal{A}_1$ which to (E, B, A, ν) associates the isomorphism class of E is constant since Y' is complete (and irreducible) and \mathcal{A}_1 is affine.

For any irreducible component Z of $E_1(\mathcal{M}_g)$, there is a finite correspondance between Z and $\mathcal{M}_{g-1} \times \mathcal{M}_1$. In particular, the codimension of Z in \mathcal{M}_g is $\frac{g(g+1)}{2} - (\frac{g(g-1)}{2} + 1) = g - 1$. The variety Y is an irreducible component of the intersection of V with such a Z, hence there is a nonnegative integer e_0 such that the codimension of Y in V is $g - 1 - e_0$. So the codimension of Y in

 \mathcal{A}_g is $g-d+g-1-e_0=2g-d-1-e_0$. Since Y' maps to a point in \mathcal{A}_1 , its image V_1 in \mathcal{A}_{q-1} by the second projection has dimension equal to the dimension of Y. Therefore V_1 has dimension $g(g+1)/2 - (2g-d-1-e_0) =$ $(g-1)g/2 - (g-1-d-e_0)$, i.e., codimension $g-1-d-e_0 \le g-1$ in \mathcal{A}_{g-1} . By Theorem 1, the set $E_1(V_1)$ is dense in V_1 . In particular, the set $E_1(V_1)$ is nonempty. Let Y_1 be an irreducible component of $E_1(V_1)$ and let Y_1' be the analogue of Y'for Y_1 . Then, as before, the variety Y_1 has codimension $g-1-d-e_0+g-2-e_1$ in \mathcal{M}_{g-1} (for some nonnegative integer e_1), the variety Y_1' maps to a point in \mathcal{A}_1 and its image V_2 in \mathcal{A}_{g-2} has codimension $g-2-d-e_0-e_1$. Repeating the argument, we obtain V_i in \mathcal{A}_{g-i} of codimension $g-i-d-e_0-...-e_{i-1}$ containing Y_i of codimension $g - i - d - e_0 - ... - e_{i-1} + g - i - 1 - e_i$ in \mathcal{A}_{g-i} . For i=g-2, we can repeat the argument one last time for $V_{g-2} \subset \mathcal{A}_2$ to obtain Y'_{g-2} with image V_{g-1} in \mathcal{A}_1 with codimension $1-d-e_0-\ldots-e_{g-2}$. Since \mathcal{N}_1 is affine, the variety V_{g-1} is a point and $d = e_0 = ... = e_{g-2} = 0$. Therefore Y has codimension 2g-1 in \mathcal{A}_q , all the varieties Y_i have codimension g-i+g-i-1=2g-2i-1 in \mathcal{A}_{g-i} , V has codimension g in \mathcal{A}_g and V_i has codimension g-i in \mathcal{A}_{g-i} . In particular, the first part of Corollary 1 is proved.

For each i, there is an irreducible subvariety Z_i of V which parametrizes ppav's isogenous to the product of an element of V_i and i fixed elliptic curves $(Z_1 = Y)$ because all the maps $Y_i' \longrightarrow \mathscr{M}_1$ (and also $Y' \longrightarrow \mathscr{M}_1$) are constant. It follows from the above that Z_i has the expected dimension $\frac{(g-i)(g-i+1)}{2} + i - g$. Since our choices of the Y_i 's (and Y) and hence our choices of the Z_i 's were arbitrary, we have proved the second part of the Corollary as well.

To prove the third part, first observe that a dimension count (similar to the case of Y) shows that the dimension of any irreducible component X of $E_q(V)$ is at least $\frac{q(q+1)}{2} + \frac{(g-q)(g-q+1)}{2} - g$. Let X' be the analogue of Y' for X. Then the images X_q and X_{g-q} of X' by the two projections to \mathscr{N}_q and \mathscr{N}_{g-q} are complete subvarieties of \mathscr{N}_q and \mathscr{N}_{g-q} whose codimensions are at least q and g-q respectively by part 1 of the Corollary. So we have

$$\frac{q(q+1)}{2} + \frac{(g-q)(g-q+1)}{2} - g \le \dim(X) = \dim(X') = \dim(X_q) + \dim(X_{g-q}) \le$$

$$\le \frac{q(q+1)}{2} - q + \frac{(g-q)(g-q+1)}{2} - (g-q) = \frac{q(q+1)}{2} + \frac{(g-q)(g-q+1)}{2} - g.$$

Therefore we have equality everywhere and part 3 is proved.

Now let V' be the analytic closure of $E_{1,g}(V)$ in V. Since, by Theorem 1, the set $E_1(V_{g-2})$ is dense in V_{g-2} (which is a curve), we see that V' contains Z_{g-2} . Since all of our choices for the Y_i and Y (and hence for the Z_i) were arbitrary, we see that V' contains $E_{1,g-2}(V)$. Repeating this reasoning, we see that V' contains $E_{1,i}(V)$ for all i, hence V' contains $E_1(V)$ and V' = V by Theorem 1.

Proof of Corollary 2: Let V be a complete codimension g subvariety of \mathscr{M}'_g or \mathscr{E}'_g . Again, by Theorem 1, the set $E_1(V)$ is nonempty. Let $Y \subset V$ be an irreducible component of $E_1(V)$ and define Y' as in the proof of Corollary 1. As in loc. cit. the variety Y is a complete subvariety of V, of codimension at most g-1 in V (codimension exactly g-1 by Corollary 1 if $V \subset \mathscr{E}'_g$).

Suppose that $V \subset \widetilde{\mathcal{M}'_g}$. Again, since Y' is irreducible and complete and \mathscr{A}_1 affine, the map $Y' \longrightarrow \mathscr{A}_1$ is constant, hence its differential has rank 0 everywhere. It follows from [3] pages 172-173 that, for all $t \in Y \cap V_0$ and every one-dimensional subvector space W of $H^0(\omega_{C_t})$, the map $\mu : W \otimes H^0(\omega_{C_t}) \longrightarrow T_t^*V$ is *not* injective. Since this noninjectivity is a closed condition and $E_1(V_0)$ is dense in V_0 , it follows that it holds for all $t \in V_0$.

Therefore, by Proposition 1.1 and with the notation there, for all $t \in V_0$, there is a one-dimensional subvector space W_N of $H^0(\omega_{C_t})$ such that $N = \mu(W_N \otimes H^0(\omega_{C_t}))$.

Let us globalize the constructions in the proof of Proposition 1.1. Let F_0 be the Hodge bundle on V_0 and let $S^2\mathbb{P}(F_0)$ be the quotient of the fiber product $\mathbb{P}(F_0)\times_{V_0}$ $\mathbb{P}(F_0)$ by the involution σ exchanging the two factors of the fiber product. Let $T^*\mathscr{M}'_g$ be the cotangent bundle of \mathscr{M}'_g and let $\mathscr{N}_0 \subset T^*\mathscr{M}'_g|_{V_0}$ be the conormal bundle to V_0 . Denote by \mathscr{N}'' (resp. \mathscr{N}') the subcone of decomposable tensors (resp. rank 2 symmetric tensors) in $F_0 \otimes F_0$ (resp. $S^2 F_0$) lying in the inverse image of \mathcal{N}_0 by the multiplication map $S^2F_0 \longrightarrow T^*\mathcal{M}_g'|_{V_0}$. Then, by Proposition 1.1 and with the notation there, the fibers of \mathcal{N}'' , \mathcal{N}' , and \mathcal{N}_0 at t are respectively $W_N \otimes H^0(\omega_{C_t}) \cup H^0(\omega_{C_t}) \otimes W_N$, $\rho(W_N \otimes H^0(\omega_{C_t}))$ and $\mu(W_N \otimes H^0(\omega_{C_t}))$. Hence the morphism $m: \mathcal{N}' \longrightarrow \mathcal{N}_0$ is an isomorphism because it is an isomorphism on each fiber and the map $\mathbb{P}(\mathcal{N}'') \longrightarrow \mathbb{P}(\mathcal{N}_0)$ is a double cover which splits on each fiber. Since the double cover of V_0 parametrizing the rulings of the fibers of $\mathbb{P}(F_0) \times_{V_0} \mathbb{P}(F_0)$ over V_0 is split, the double cover $\mathbb{P}(\mathcal{N}'') \longrightarrow \mathbb{P}(\mathcal{N}') \cong \mathbb{P}(\mathcal{N}_0)$ is globally split and hence the variety $\mathbb{P}(\mathcal{N}'')$ is the union of two subvarieties of $\mathbb{P}(F_0) \times_{V_0} \mathbb{P}(F_0)$ exchanged by σ and both isomorphic to $\mathbb{P}(\mathcal{N}')$ (by the quotient morphism $\mathbb{P}(F_0) \times_{V_0} \mathbb{P}(F_0) \longrightarrow S^2 \mathbb{P}(F_0)$) and to $\mathbb{P}(F_0)$ by either of the two projections $\mathbb{P}(F_0) \times_{V_0} \mathbb{P}(F_0) \longrightarrow \mathbb{P}(F_0)$. In particular, the two components of $\mathbb{P}(\mathcal{N}'')$ are projective bundles on V_0 and \mathcal{N}'' is the union of two vector bundles \mathcal{N}_1'' and \mathcal{N}_2'' with respective fibers $W_N \otimes H^0(\omega_{C_t})$ and $H^0(\omega_{C_t}) \otimes W_N$ at t. Furthermore, we have $\mathcal{N}_1'' \xrightarrow{\cong} \mathcal{N}_0 \xleftarrow{\cong} \mathcal{N}_2''$ (checked on fibers again). Since $\mathbb{P}(\mathcal{N}_1'')$ is isomorphic to $\mathbb{P}(F_0)$, there is a line bundle \mathscr{W} such that $\mathcal{N}_1''' \cong \mathcal{W} \otimes F_0$. So $\mathcal{N}_0 \cong \mathcal{W} \otimes F_0$.

From the injection $\mathscr{N}_1''' \hookrightarrow F_0 \otimes F_0$ we deduce the injection $\mathscr{W} \hookrightarrow F_0$ which is the composition of the morphism $\mathscr{W} \hookrightarrow F_0 \otimes F_0 \otimes F_0^*$ (obtained from $\mathscr{W} \otimes F_0 \cong \mathscr{N}_1''' \hookrightarrow F_0 \otimes F_0$) with the morphism $F_0 \otimes (F_0 \otimes F_0^*) \xrightarrow{id \otimes tr} F_0$ which is the product of the identity $F_0 \xrightarrow{id} F_0$ and the trace morphism $F_0 \otimes F_0^* \cong End(F_0) \xrightarrow{tr} \mathscr{O}_{V_0}$.

For $V\subset \mathscr{M}_g'$ the proof is similar to (and simpler than) the above and uses Proposition 1.5 instead of Proposition 1.1.

2. Appendix: A remark on density in positive characteristic

In this section we use the notation of the introduction to denote moduli spaces of curves and abelian varieties over an algebraically closed field k of characteristic

p > 0. The subvariety V_0 of \mathcal{M}_g parametrizing ppav's of p-rank 0 is a complete (connected if g > 1 by [11] (2.6)(c)) subvariety of codimension g of \mathcal{M}_g (see [13], (2) in the introduction and [10], the proof of Theorem 1.1a pages 98–99). We explain below how to deduce from the results of [4, 6, 9] and [11] that the moduli points of non-simple abelian varieties in V_0 are contained in a proper closed subset of V_0 when $g \ge 3$.

The formal group of an abelian variety A of p-rank 0 is isogenous to a sum

$$\sum_{1 \leq i \leq r} G_{m_i,n_i}$$

where m_i and n_i are relatively prime positive integers for each i, the sum $m_i + n_i$ is less than or equal to g for all i, the formal group G_{m_i,n_i} has dimension m_i and its dual is G_{n_i,m_i} (see [9] chapter IV, Sect. 2). The decomposition is symmetric, i.e., the group G_{m_i,n_i} appears as many times as G_{n_i,m_i} . We call the unordered r-tuple $((m_i, n_i))_{1 \le i \le r}$ the formal isogeny type of the abelian variety. As in [11], we define the Symmetric Newton Polygon of A to be the lower convex polygon in the plane \mathbb{R}^2 which starts at (0,0) and ends at (2g,g), whose break-points have integer coordinates and whose slopes (arranged in increasing order because of lower convexity) are $\lambda_i = \frac{m_i}{m_i + n_i}$ with multiplicity $m_i + n_i$ (i.e., on the polygon, the x-coordinate grows by $m_i + n_i$ and the y-coordinate grows by m_i). The polygon is symmetric in the sense that if the slope λ appears, then the slope $1-\lambda$ appears with the same multiplicity. Following [11], we shall say that the Newton Polygon β is above the Newton Polygon α if for all real numbers $x \in [0, 2g], y, z \in [0, g]$ such that $(x,z) \in \beta$, $(x,y) \in \alpha$, we have $z \geq y$. We shall say that β is strictly above α if β is above α and $\beta \neq \alpha$. Again as in [11], for a Symmetric Newton Polygon α , we denote by W_{α} the set of points in \mathscr{A}_g corresponding to abelian varieties whose Newton Polygon is above α . By [4] page 91, Newton polygons go up under specialization. By [6] page 143 Theorem 2.3.1 and Corollary 2.3.2 (see also [11], 2.4), for any Newton polygon α , the set W_{α} is closed in V_0 . By [11] Theorem (2.6)(a) and Remark (3.3), the abelian variety A_0 with moduli point the generic point of V_0 has formal isogeny type ((1, g-1), (g-1, 1)). Therefore, since $g \geq 3$, the abelian variety A_0 is simple. Let α_0 denote the Symmetric Newton Polygon of A_0 . The moduli point of a non-simple ppav of p-rank 0 is in W_{β} for some Symmetric Newton Polygon β strictly above α_0 . Therefore the set of non-simple ppav's in V_0 is contained in $\bigcup_{\beta \text{ strictly above } \alpha_0} W_{\beta}$. Since there are only a finite number of Symmetric Newton Polygons (below the line x = 2y and) above α_0 , we deduce that all points of V_0 corresponding to nonsimple abelian varieties are in a proper closed subset of V_0 (which is $\bigcup_{\beta \text{ strictly above } \alpha_0} W_{\beta}$).

Therefore V_0 is an example of a subvariety V of codimension g of \mathscr{A}_g (for all $g \geq 3$) or of $\widetilde{\mathscr{M}}_3$ such that $E_g(V)$ is not Zariski-dense in V for any g.

Acknowledgements. I wish to thank F. Oort for mentioning these questions to me and also for stimulating discussions.

References

- A. Andreotti, A. Mayer: On period relations for abelian integrals on algebraic curves, Ann. Scuola Norm. Sup. Pisa 21 (1967), 189–238
- E. Arbarello, M. Cornalba, P.A. Griffiths, J. Harris: Geometry of algebraic curves, vol. 1, New York, Berlin, Heidelberg: Springer, 1985
- 3. E. Colombo, G.P. Pirola: Some density results for curves with non simple jacobians, Math. Ann. **288** (1990), 161–178
- M. Demazure: Lectures on p-divisible groups, Lecture Notes in Math., vol. 302. Berlin, Heidelberg, New York: Springer, 1972
- S. Diaz: Complete subvarieties of the moduli space of smooth curves, Algebraic Geometry, Bowdoin 1985, Proceedings of Symposia in Pure Mathematics, vol. 46, American Mathematical Society, 1987, pp. 77–81
- 6. N.M. Katz: Slope filtrations of F-crystals, Astérisque 63 (1979), 113-164
- G. van der Geer: Cycles on the moduli space of abelian varieties, Algebraic Geometry Preprint, alg-geom 9605011
- 8. E. Looijenga: Smooth Deligne-Mumford compactifications by means of Prym-level structures, Journal of Algebraic Geometry **3** (1994), 283–293
- Y. I. Manin: The theory of commutative formal groups over fields of finite characteristic, Russian Math. Surveys 18 (1963), 1–83
- 10. F. Oort: Subvarieties of moduli spaces, Invent. Math. 24 (1974), 95-119
- F. Oort: Moduli of abelian varieties and Newton polygons, C. R. Acad. Sci. Paris 312 (1991), 385–389
- F. Oort: Complete subvarieties of moduli spaces, Abelian Varieties, Proceedings of the 1993 International Conference at Egloffstein, Berlin: W. de Gruyter, 1995, pp. 225–235
- 13. F. Oort, P. Norman: Moduli of abelian varieties, Annals of Math. 112 (1980), 413-439
- M. Pikaart, A.J. de Jong: Moduli of curves with non-abelian level structure, The Moduli Spaces of Curves, Proceedings of the 1994 Texel conference (R. Dijkgraaf, C. Faber, G. van der Geer, eds.), Progress in Mathematics, vol. 129, Basel: Birkhäuser, 1995, pp. 483–509
- J. Tate: Classes d'isogénie des variétés abéliennes sur un corps fini (d'après T. Honda), Séminaire Bourbaki 21 (1968/69), Exposé 352