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Introduction

Let Mg be the moduli space of smooth curves of genusg ≥ 2 and letAg be
the moduli space of principally polarized abelian varieties (ppav) of dimension
g overC. A (Deligne-Mumford) stable curve of genusg is a reduced, connected
and complete curve of arithmetic genusg with only nodes as singularities and
with finite automorphism group. We say that a stable curve is of compact type
if its generalized jacobian is an abelian variety. We denote bỹMg the moduli
space of stable curves of compact type and genusg over C. By “density” we
always mean “analytic density” unless we specify otherwise.

Given a subvarietyV of Mg or M̃g and an integerq between 1 andg/2,
let Eq(V ) be the subset ofV parametrizing curves whose jacobian contains an
abelian variety of dimensionq. We defineEq(V ) for V a subvariety ofAg in a
similar fashion. It is well-known thatEq(Ag) is dense inAg for all q. Colombo
and Pirola pose the following question in [3]

Problem 1. When is Eq(V ) dense in V ?

Colombo and Pirola give a sufficient condition for the density ofEq(V ) in
V . They then show thatE1(V ) is dense inV for all subvarietiesV of Mg

of codimension at mostg − 1. They deduce from this a second proof of the
noncompleteness of codimensiong − 1 subvarieties ofM̃g which was origi-
nally proved by Diaz in [5], Corollary page 80 (Colombo and Pirola prove the
noncompleteness of codimensiong − 1 subvarieties ofM̃g which meetMg ;

however, if the subvariety is contained iñMg \Mg, its noncompleteness can
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be easily seen by mapping it (or, in some cases, a double cover of it) to a moduli
space of curves of lower genus).

Using the condition of Colombo and Pirola, we show

Theorem 1. Suppose thatg ≥ 2. Let V be a subvariety of codimension at most
g of Mg or Ag, then E1(V ) is dense in V .

This result brings out another fundamental difference between the moduli spaces
in characteristic zero and in positive characteristic (see Section 2 below).

We also obtain

Corollary 1. Suppose thatg ≥ 2. Let V be a complete subvariety of codimension
at mostg of Ag. For all i ∈ {1, ..., g}, denote by E1,i (V ) the subset of V
parametrizing ppav’s isogenous to a product of a ppav of dimensiong − i and i
elliptic curves. Then

1. the variety V has codimension exactlyg,
2. for all i ∈ {1, ..., g}, any irreducible component Z of E1,i (V ) has the expected

dimension(g−i )(g−i +1)
2 + i −g; furthermore, the variety Z parametrizes ppav’s

isogenous to a product of ifixed elliptic curves (depending only on Z ) and
some ppav of dimensiong − i ,

3. for all q, 1≤ q ≤ g/2, any irreducible component of Eq(V ) has the expected
dimension(g−q)(g−q+1)

2 + q(q+1)
2 − g,

4. the set E1,g(V ) is dense in V . In particular, the set E1,g(V ) is (countable)
infinite and, for all i ∈ {1, ..., g}, for all q ∈ {1, ..., g/2}, the sets E1,i (V )
and Eq(V ) are dense in V (since they contain E1,g(V )).

An immediate consequence of Corollary 1 is that complete subvarieties of
Ag have codimension at leastg. There are different proofs of this last fact in
[12] (2.5.1 page 231) and [7] (Corollary 1.7). There are no known examples
of complete subvarieties of codimensiong of Ag (or M̃g) except forg = 2,
althoughg is the best known lower bound for the codimension of complete
subvarieties ofAg (andM̃g). It is conjectured in [12] (2.3 page 230) that for
g ≥ 3 the codimension of a complete subvariety ofAg is at leastg + 1.

Let Hg be the locus of hyperelliptic curves inMg. Let M̃′
g and A′

g be
respectively the moduli space of curves of compact type with leveln structure
(for some fixedn ≥ 3) and the moduli space of ppav’s with leveln structure. Let
sa : A′

g −→Ag and sc : M̃′
g −→ M̃g be the natural morphisms. It is well-

known thatA′
g andM′

g := s−1
c (Mg) are smooth and that there is a universal

family of abelian varieties with leveln structure onA′
g and a universal family

of (smooth) curves with leveln structure onM′
g. By a “universal” family of

curves or abelian varieties with leveln structure we mean a family which solves
the moduli problem for curves or abelian varieties with leveln structure. We
note that the only properties of̃M′

g, M′
g andA′

g we need are the smoothness
of M′

g andA′
g and the existence of the universal families (also note that with

non-abelian level structures or Prym-level structures, one can get smooth covers
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of M̃′
g as well (see [8] and [14])). We have the following technical consequence

of our results.

Corollary 2. Suppose thatg ≥ 3. Let V be a complete subvariety of codimension
g of M̃g or Ag. If V ⊂Ag, let V0 be the smooth locus of s−1

a (V ). If V ⊂ M̃g,
let V0 be the smooth locus of s−1

c (V ∩ (Mg \Hg)). Then the conormal bundle
to V0 is isomorphic to the tensor product of the Hodge bundle (the pushforward
of the sheaf of relative one-forms on the universal abelian (or jacobian) variety)
with a subline bundle of the Hodge bundle.

Finally, we point out that, ifAg,d denotes the moduli space of abelian
varieties of dimensiong and polarization typed = (d1, ..., dg), then there is a
finite correspondence betweenAg andAg,d so that our results remain valid if
we replaceAg with Ag,d.

Notation

For any vector space or vector bundle (resp. affine cone)E, we denote byP(E)
the projective space (resp. projective variety) of lines inE and byE∗ its dual
vector space or vector bundle. We letE⊗m, SmE andΛmE respectively be the
m-th tensor power, them-th symmetric power and them-th alternating power
of E. For any linear map of vector spaces or vector bundlesl : E −→ F , we
denote byl : P(E) −→ P(F ) its projectivization.

For any varietyX and any pointx ∈ X, we denote byTxX the Zariski tangent
space toX at x and byT∗

x X the dual ofTxX. We denote byXsm the subvariety
of smooth points ofX.

For a ppavA, we let ρ : H 0(Ω1
A)⊗2 −→ S2H 0(Ω1

A) be the natural linear
map with kernelΛ2H 0(Ω1

A). For a subvarietyV of A′
g the restriction toV of

the universal family onA′
g gives a familyAV of ppav’s onV (we forget the

level n structure). For a pointt of V , we let At be the fiber ofAV at t . The
Zariski-tangent space toA′

g at t can be canonically identified withS2H 0(Ω1
At

)∗.
We denote byπa : S2H 0(Ω1

At
) −→ T∗

t V the codifferential att of the embedding
V ↪→A′

g.
For a smooth curveC , we denote byωC the canonical sheaf ofC and letκC

be the image ofC in the dual projective space|ωC |∗ of the linear system|ωC | by
the natural morphism associated to this linear system. IfA = JC is the jacobian
of a smooth curveC , thenH 0(Ω1

A) ∼= H 0(ωC ). Let m : S2H 0(ωC ) −→ H 0(ω⊗2
C )

be multiplication and putµ := mρ. For V ⊂ M′
g the restriction toV of the

universal family onM′
g gives a familyCV of curves onV (again we forget

the leveln structure). Fort ∈ V we let Ct be the fiber ofCV at t . The Zariski-
tangent space toM′

g at t can be canonically identified withH 0(ω⊗2
Ct

)∗. We let
π : H 0(ω⊗2

Ct
) −→ T∗

t V be the codifferential att of the embeddingV ↪→M′
g.

For a stable curveC of compact type (resp. a ppavA), we will call the
corresponding point ofM̃g (resp.Ag) the moduli point ofC (resp.A).
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1. The proofs

In this section we give the proof of Theorem 1 and its corollaries.
We first consider the case whereV is contained inMg. We may and will

replaceV with its inverse image inM′
g.

The relative jacobian ofCV gives us a family of ppav’s onV . We can
therefore apply Theorem (1) on page 162 of [3]: to show thatE1(V ) is dense in
V it is enough to prove the following:

There exists a Zariski dense (Zariski-)open subsetU of V , contained in the
smooth locusVsm of V , such that, for allt ∈ U , there is a subvector spaceW
of H 0(ωCt ) which has dimension 1 and is such that the composition

W ⊗W⊥ µ
↪→ H 0(ω⊗2

Ct
)

π−→ T∗
t V

is injective. HereW⊥ is the orthogonal complement ofW with respect to the
hermitian form onH 0(ωCt ) induced by the natural polarization ofJCt . We sketch
briefly how this condition is obtained in the more general case whereW has
dimensionq with 1≤ q ≤ g/2 andV ⊂A′

g has any dimension≥ q(g − q).
To prove the density ofEq(V ) in V , it is enough to show that there is a

Zariski dense open subsetU of Vsm, such that, for allt ∈ U , there is an analytic
neighborhoodU ′ of t , U ′ ⊂ U , such thatEq(V )∩U ′ is dense inU ′. An abelian
variety A contains an abelian subvariety of dimensionq if and only if H 0(Ω1

A)
contains aq-dimensionalC-subvector space which is the tensor product with
R of a vector subspace of dimension 2q of H 1(A, Q) (after identifyingH 0(Ω1

A)
with H 1(A, R) ∼= H 1(A, Q) ⊗ R as real vector spaces). Lett be an element of
Vsm. For a contractible analytically open setU ′ 3 t contained inVsm, let FU ′

be the Hodge bundle overU ′. Then one can trivializeFU ′ as a real vector bun-
dle using the Gauss-Manin connection. Therefore the grassmannian bundle of
2q-dimensional real subvector spaces ofFU ′ is isomorphic toU ′ ×GR(2q, 2g),
where GR(2q, 2g) is the Grassmannian of 2q-dimensionalR-subvector spaces
of H 1(At , R). Hence there is a well-defined mapΦ : G(q, FU ′ ) −→ GR(2q, 2g)
whereG(q, FU ′ ) is the Grassmannian ofq-dimensionalC-subvector spaces of
FU ′ : The mapΦ sends aq-dimensional complex subvector space ofH 0(Ω1

As
)

(with s ∈ U ′) to the image of its underlying real vector space under the isomor-

phism H 1(As, R)
∼=−→ H 1(At , R) obtained from theR-trivialization of FU ′ . Let

GQ(2q, 2g) ⊂ GR(2q, 2g) be the Grassmannian of 2q-dimensionalQ-subvector
spaces ofH 1(At , Q) and let p : G(q, FU ′ ) −→ U ′ be the natural morphism.
Then Eq(V ) ∩ U ′ = p(Φ−1(GQ(2q, 2g))). To prove the density ofEq(V ) ∩ U ′

in U ′, it is enough to prove that there is a subsetY of G(q, FU ′ ) such that
p(Y ) = U ′ and Φ−1(GQ(2q, 2g)) ∩Y is dense inY . Since GQ(2q, 2g) is
dense inGR(2q, 2g), it is enough to findY such thatp(Y ) = U ′ and Φ|Y
is an open map. IfΦ has maximal rank (i.e., the differentialdΦ of Φ is surjec-
tive) everywhere onY , then Φ|Y is an open map. ThereforeEq(V ) ∩ U ′ is
dense inU ′ if for every s ∈ U ′ there is aq-dimensionalC-subvector spaceW
of H 0(Ω1

As
) such thatdΦ is surjective at (W, s) ∈ G(q, FU ′ ) (then Y would
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be the set of such (W, s)). The tangent spaceT(W,s)G(q, FU ′ ) is isomorphic to
W ⊗W⊥ ⊕ TsU ′, the tangent space toGR(2q, 2g) at Φ(W, s) is isomorphic to
W ⊗W⊥ ⊕W ⊗W⊥ ∼= W ⊗W⊥ ⊕ (W ⊗W⊥)∗ and the restriction ofdΦ to
the W⊗W⊥ summand ofT(W,s)G(q, FU ′ ) is an isomorphism onto theW⊗W⊥

summand ofTΦ(W,s)GR(2q, 2g). ThereforedΦ is surjective if and only if the map
it inducesTsU ′ = T(W,s)G(q,FU ′ )

W⊗W⊥ −→ (W ⊗W⊥)∗ = TΦ(W,s)GR(2q,2g)
W⊗W⊥ is surjective,

i.e., if and only if the dualized mapW⊗W⊥ −→ T∗
s U ′ is injective. LetF be the

Hodge bundle over the Siegel upper half spaceUg. The inclusionU ′ ↪→ A′
g

lifts to an inclusionU ′ ↪→Ug becauseU ′ is contractible and there is a family
of ppav’s onU ′ (the restriction ofAV ). FactoringΦ through the Grassmannian
of q-planes inF over Ug, the mapW ⊗W⊥ −→ T∗

s U ′ can be seen to be the
composition

W ⊗W⊥ ρ−→ S2H 0(Ω1
As

)
πa−→ T∗

s U ′ = T∗
s V .

For V contained inM′
g, we haveπa = πm.

Clearly, if πµ : W ⊗ H 0(ωCt ) −→ T∗
t V is injective, then so isπµ : W ⊗

W⊥ −→ T∗
t V . In view of this (and also for use in the proof of Corollary 2) we

show:

Proposition 1.1. Suppose thatg ≥ 3. Let V be a subvariety of codimension at
mostg of M′

g. Let t be a point of Vsm and let N be the kernel ofπ : H 0(ω⊗2
Ct

) −→
T∗

t V .

1. Suppose that Ct is non-hyperelliptic. Suppose that, for any one-dimensional
subvector space W of H0(ωCt ), the mapπµ : W ⊗ H 0(ωCt ) −→ T∗

t V is not
injective. Then V has codimension exactlyg and there is a one-dimensional
subvector space WN of H 0(ωCt ) such that N= µ(WN ⊗ H 0(ωCt )).

2. Suppose that Ct is hyperelliptic and that V isnot transverse toH ′
g :=

s−1
c (Hg) at t (i.e., the sum Tt V + Tt H

′
g ⊂ Tt M

′
g is not equal to Tt M′

g).
Then there exists a one-dimensional subvector space W of H0(ωCt ) such that
the mapπµ : W ⊗ H 0(ωCt ) −→ T∗

t V is injective.

Proof: Consider the composition

P(H 0(ωCt )
⊗2)

ρ−→ P(S2H 0(ωCt ))
m−→ P(H 0(ω⊗2

Ct
)) .

The kernel ofm is the spaceI2(Ct ) of quadratic forms vanishing onκCt . Hence
the rational mapm is the projection with centerP(I2(Ct )). Let S be the image
by ρ of the Segre embeddingS of P(H 0(ωCt ))× P(H 0(ωCt )) in P(H 0(ωCt )

⊗2).
Let N ′ be the set of rank 2 symmetric tensors inS2H 0(ωCt ) which lie in m−1(N )
(thenP(N ′) is the reducedintersection ofS andm−1(P(N ))).

Suppose that for allW ⊂ H 0(ωCt ) of dimension 1, the mapµ : W ⊗
H 0(ωCt ) −→ T∗

t V is not injective, i.e., for allw ∈ H 0(ωCt ), there isw′ ∈
H 0(ωCt ) such thatµ(w⊗w′) ∈ N . This implies that the dimension ofP(N ′) is at
leastg − 1. We will show below that this does not happen ifCt is hyperelliptic
and V is not transverse toH ′

g at t . If Ct is non-hyperelliptic, we will show
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that this implies thatP(N ′) is a linear subspace ofS and that its inverse image
in S is the union of two linear subspaces ofS which are two fibers of the
two projections ofS onto Pg−1 and are exchanged under the involution ofS

which interchanges the twoPg−1-factors ofS . The proposition will then easily
follow from this.

Suppose first thatCt is non-hyperelliptic. Thenm : S2H 0(ωCt ) −→ H 0(ω⊗2
Ct

)
is onto (see [2] page 117). We have

Lemma 1.2. Supposeg = 2 or g ≥ 3 and Ct is non-hyperelliptic. Suppose that
for all W ⊂ H 0(ωCt ) of dimension1, the mapµ : W ⊗ H 0(ωCt ) −→ T∗

t V is not
injective. Then the mapP(N ′) −→ P(N ) is generically one-to-one.

Proof: If not, then, for allw ∈ H 0(ωCt ), there existsw′, w1, w
′
1 ∈ H 0(ωCt ) such

thatww′ := ρ(w⊗w′) andw1w
′
1 := ρ(w1⊗w′

1) are not proportional butm(ww′)
and m(w1w

′
1) are proportional elements ofN . Therefore, supposingw general,

there exitsλ ∈ C, λ /= 0, such that the elementλww′−w1w
′
1 of S2H 0(ωCt ) lies in

I2(Ct ), i.e., defines a quadricq(w) of rank 3 or 4 (in the canonical space|ωCt |∗)
which containsκCt (the canonical curveκCt is not contained in any quadric of
rank≤ 2 since it is nondegenerate). Ifg ≤ 3, this is impossible because in that
caseI2(Ct ) = 0. If g ≥ 4, the intersectionL of the two hyperplanes in|ωCt |∗ with
equationsw and w1 is an element of a ruling of the quadricq(w). Therefore
L cuts a divisor of ag1

d (a g1
d is a pencil of divisors of degreed) on Ct with

d ≤ g − 1 (see [1], Lemmas 2 and 3 page 192). Therefore the divisor of zeros
of w on Ct contains a divisor of ag1

d. By the uniform position Theorem (see [2]
Chapter 3, Sect. 1) this does not happen forw in some nonempty Zariski-open
subset ofH 0(ωCt ) \ {0}. ut

Therefore, since the dimension ofP(N ′) is at leastg − 1 and the dimension
of P(N ) is at mostg − 1, the mapP(N ′) −→ P(N ) is birational andP(N ′) and
P(N ) have both dimensiong − 1.

This proves, in particular, that V has codimensionexactlyg.
Since no quadrics of rank≤ 2 containκCt , the centerPI2(Ct ) of the projec-

tion m does not intersectS . In particular, the spacePI2(Ct ) does not intersect
P(N ′). Thereforem restricts to a birationalmorphismP(N ′) −→ P(N ) and, since
P(N ) is a linear subspace ofP(H 0(ω⊗2

Ct
)), the degree ofP(N ′) (in the projective

spaceP(S2H 0(ωCt ))) is equal to the (generic) degree of the mapP(N ′) −→ P(N ).
HenceP(N ′) is a linear subspace ofP(S2H 0(ωCt )) andm restricts to anisomor-

phismP(N ′)
∼=−→ P(N ).

Let N ′′ be the cone of decomposable tensors inH 0(ωCt )
⊗2 which lie

in µ−1(N ) (then P(N ′′) is the reduced inverse image ofP(N ′) in S ⊂
P(H 0(ωCt )

⊗2)). The mapS −→ S is a finite morphismof degree 2 rami-
fied on the diagonal. Therefore the mapP(N ′′) −→ P(N ′) is a morphism of
degree≤ 2. Since the diagonal ofS ∼= S2P(H 0(ωCt )) is irreducible of dimen-
siong−1 and spansP(S2H 0(ωCt )), the spaceP(N ′) intersects this diagonal in a
subvariety of dimension at mostg−2. Therefore the morphismP(N ′′) −→ P(N ′)
has degree 2 andP(N ′′) has degree 2 inP(H 0(ωCt )

⊗2).
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If P(N ′′) is irreducible, it spans a linear subspaceP̃ of P(H 0(ωCt )
⊗2) of

dimensiong. This implies thatP(Λ2H 0(ωCt )) intersects̃P in exactly one point.
For w1, w2 ∈ H 0(ωCt ), let w′

1, w
′
2 be such thatµ(w1⊗w′

1), µ(w2⊗w′
2) ∈ N . For

wi general,w′
i is not proportional towi sinceP(N ′′) intersects the diagonal of

S in a subvariety of dimension at mostg − 2. Therefore the lines spanned by
w1⊗w′

1−w′
1⊗w1 andw2⊗w′

2−w′
2⊗w2 give us elements of̃P∩P(Λ2H 0(ωCt ))

which is a point. Therefore, for allw1, w2 ∈ H 0(ωCt ) general there existsλ ∈
C, λ /= 0, such that

w1⊗ w′
1− w′

1⊗ w1 = λ(w2⊗ w′
2− w′

2⊗ w2)

Complete{w1, w2} to a general basis{w1, w2, w3, ..., wg} of H 0(ωCt ) and write
w′

i =
∑

1≤j ≤g aij wj for i = 1 or 2. Then from the equation above we deduce
a1j = a2j = 0 for j > 2. Therefore,w′

1 belongs to the span ofw1 and w2.
Repeating this argument withw1 andw3 instead ofw1 andw2, we see thatw′

1
also belongs to the span ofw1 andw3. Hencew′

1 is proportional tow1 (this is the
only part in the proof of Proposition 1.1 where we needg ≥ 3). Contradiction.

ThereforeP(N ′′) is reducible, i.e., it is the union of two linear subspaces of
dimensiong − 1. We have

Lemma 1.3. Supposeg ≥ 2. All linear subspaces of dimensiong − 1 of
S ⊂ P(H 0(ωCt )

⊗2) ∼= Pg2−1 are elements of one of the two rulings ofS ∼=
P(H 0(ωCt ))× P(H 0(ωCt )) ∼= Pg−1× Pg−1.

Proof: Let T be a linear subspace of dimensiong − 1 of S . Let p1 and p2

be the two projections ofS ∼= Pg−1 × Pg−1 onto its two factors. LetHi be a
general element ofp∗

i |OPg−1(1)| for i = 1 or 2. ThenH1 ∩ T /= H2 ∩ T and Hi

does not containT. In particular, the intersectionHi ∩ T is either empty or of
dimensiong − 2. The divisorH1 ∪ H2 is the intersection of a hyperplaneH in
Pg2−1 with S . SinceT is not contained inH1 nor H2, the hyperplaneH does
not containT and henceT ∩ H is a linear space of dimensiong − 2. Since the
two intersectionsT ∩H1 /= T ∩H2 are both contained in the (g− 2)-dimensional
linear spaceT ∩H and are either empty or have dimensiong−2, we have either
H1 ∩ T = ∅ or H2 ∩ T = ∅. Suppose, for instance, thatH1 ∩ T = ∅. It is easily
seen thatp−1

1 (p1(H1)) = H1 impliesp1(H1)∩p1(T) = p1(H1∩T). Thereforep1(T)
does not intersectp1(H1) which is a hyperplane inPg−1. Hencep1(T) is a point
andT is a fiber ofp1. ut

We deduce from the above Lemma thatP(N ′′) = P(N1)∪P(N2) whereP(N1)
andP(N2) are elements of the two rulings ofS ∼= Pg−1×Pg−1. The spacesP(N1)
andP(N2) are exchanged by the involution which exchanges the two factors of
S becauseP(N ′′) is the inverse image of a linear subspace inS ∼= S2Pg−1.
Therefore there exists a one-dimensional subvector spaceWN of H 0(ωCt ) such
that, for instance,N1 = WN ⊗H 0(ωCt ) andN2 = H 0(ωCt )⊗WN . SoN = µ(N1) =
µ(WN ⊗ H 0(ωCt ). This proves the Proposition in the non-hyperelliptic case.

Now suppose thatCt is hyperelliptic and thatV is not transverse toH ′
g

at t , i.e., the subspacesTt V and Tt H
′
g do not span Tt M

′
g. Let ι be the
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hyperelliptic involution of Ct . Let H 0(ω⊗2
Ct

)+ and H 0(ω⊗2
Ct

)− be the subvec-
tor spaces ofH 0(ω⊗2

Ct
) of ι-invariant andι-anti-invariant quadratic differen-

tials respectively. ThenH 0(ω⊗2
Ct

)+ is the image ofS2H 0(ωCt ) by m and the
conormal space toH ′

g at t can be canonically identified withH 0(ω⊗2
Ct

)−. The
non-transversality ofV and H ′

g means thatN ∩ H 0(ω⊗2
Ct

)− /= {0}. This im-
plies that N is not contained inH 0(ω⊗2

Ct
)+. Since N has dimension at most

g, the dimension ofN ∩ H 0(ω⊗2
Ct

)+ is at mostg − 1. Hence the dimension of
P(N ∩H 0(ω⊗2

Ct
)+) = P(N ) ∩ P(H 0(ω⊗2

Ct
)+) = P(N ) ∩m(P(S2H 0(ωCt ))) is at most

g − 2. We have

Lemma 1.4. Supposeg ≥ 2 and Ct hyperelliptic. The mapm : S −→ S :=

m(S ) is a finite morphism of degree12

(
2g − 2
g − 1

)
.

Note that the lemma finishes the proof of Proposition 1.1: we saw above that
the dimension ofP(N ) ∩ m(P(S2H 0(ωCt ))) is at mostg − 2. A fortiori, since

m(P(S2H 0(ωCt ))) ⊃ S , the dimension ofP(N ) ∩ S is at mostg − 2 and the
dimension ofP(N ′) is at mostg − 2 which is what we needed to show (see the
paragraphs preceding Lemma 1.2).

Proof of Lemma 1.4:The mapm : S −→ S is a morphism if and only if
the centerP(I2(Ct )) of the projectionm does not intersectS . This is the case
because the canonical curveκCt is nondegenerate and hence not contained in
any quadrics of rank≤ 2.

Fix a nonzero elementww′ = ρ(w ⊗ w′) of S2H 0(ωCt ) and suppose that
w1w

′
1 ∈ S2H 0(ωCt ) is not proportional toww′ and m(w1w

′
1) = λ.m(ww′) for

someλ ∈ C, λ /= 0. This is equivalent toZ(w) + Z(w′) = Z(w1) + Z(w′
1) where

Z(w), for instance, is the divisor of zeros ofw on the rational normal curve
κCt . So there are only a finite number of possibilities forZ(w1) andZ(w′

1). This

proves thatm : S −→ S is quasi-finite and hence finite since it is proper. Any
divisor of degreeg − 1 on κCt

∼= P1 is the divisor of zeros of some element of

H 0(ωCt ) = H 0(OP1(g−1)), hence, since there are1
2

(
2g − 2
g − 1

)
ways to write a

fixed reduced divisor of degree 2g− 2 as a sum of two divisors of degreeg− 1,

the degree ofm : S −→ S is 1
2

(
2g − 2
g − 1

)
. ut

Proof of Theorem 1 in the case of curves:As explained in the beginning of this
section, we need to find a Zariski-dense open subsetU of Vsm, such that, for all
t ∈ U , there existsW ⊂ H 0(ωCt ) (W of dimension 1) such thatµ(W⊗W⊥)∩N =
{0}.

First supposeg ≥ 3. We may assume thatV is irreducible. IfV is contained
in H ′

g, thenV is not transverse anywhere toH ′
g and hence, by Proposition 1.1,

we may takeU to be all of Vsm. If V 6⊂ H ′
g, take U = Vsm \H ′

g. Suppose
that there existst ∈ U such that, for allW ⊂ H 0(ωCt ) of dimension 1, we have
µ(W⊗W⊥)∩N /= {0}. Then, a fortiori, the hypotheses of part 1 of Proposition 1.1
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are met andN = µ(WN⊗H 0(ωCt )). Then every element ofH 0(ωCt ) is orthogonal
to WN . This is impossible given that the hermitian form onH 0(ωCt ) is positive
definite.

Now supposeg = 2. ThenN has dimension≤ 2 andP(N ) has dimension
≤ 1. For eachW ⊂ H 0(ωCt ) of dimension 1, the spaceW⊥ also has dimension
1 and henceW ⊗W⊥ has dimension 1. The linesW ⊗W⊥ form a real analytic
subset ofP(H 0(ωCt )

⊗2) of real dimension 2. Sinceρ : S −→ S is finite, we
deduce that the linesρ(W ⊗W⊥) = µ(W ⊗W⊥) form a real analytic subset of
P(S2H 0(ωCt )) = P(H 0(ω⊗2

Ct
)) ∼= P2 of real dimension 2. An easy computation

(with coordinates) will show that this subset is not contained in any projective line
in P(H 0(ω⊗2

Ct
)) and hence is not contained inP(N ). Hence there existsW such that

the lineµ(W⊗W⊥) is not contained inN , in other wordsµ(W⊗W⊥)∩N = {0}.
ut

We now consider the caseV ⊂A′
g. As before, we first prove

Proposition 1.5. Suppose thatg ≥ 3. Let V be a subvariety of codimen-
sion at mostg of A′

g. Let t be a point of Vsm and let N be the kernel of
πa : S2H 0(Ω1

At
) −→ T∗

t V . Suppose that, for any one-dimensional subvector
space W of H0(Ω1

At
), the mapπaρ : W⊗H 0(Ω1

At
) −→ T∗

t V is not injective. Then
V has codimension exactlyg and there is a one-dimensional subvector space WN

of H 0(Ω1
At

) such that N= ρ(WN ⊗ H 0(Ω1
At

)).

Proof: If the mapπaρ : W ⊗ H 0(Ω1
At

) −→ T∗
t V is not injective, thenρ(W ⊗

H 0(Ω1
At

)) ∩N /= {0}. If this holds for everyW ⊂ H 0(Ω1
At

) of dimension 1, then

P(N ) has dimensiong − 1 and is contained inS ∼= S2P(H 0(Ω1
A)). It follows

that V has codimensiong. The rest of the argument is now analogous to the
proof of part 1 of Proposition 1.1 withN ′ = N . ut
Proof of Theorem 1 in the case of abelian varieties:This proof is now as in the
case of curves. ut
Proof of Corollary 1: Let V be a complete subvariety of codimensiong − d
(d ≥ 0) of Ag. By Theorem 1, the setE1(V ) is dense inV . In particular, it is
nonempty. LetY be an irreducible component ofE1(V ). Let r ands be integers
such that for every ppavA with moduli point inY there is an elliptic curveE, a
ppavB and an isogenyν : E×B −→ A of degree at mostr such that the inverse
image of the principal polarization ofA by ν is a polarization of degree at mosts.
Let Y ′ be an irreducible component of the variety parametrizing such quadruples
(E, B, A, ν). ThenY ′ is a finite cover ofY . The morphismY ′ −→ A1 which
to (E, B, A, ν) associates the isomorphism class ofE is constant sinceY ′ is
complete (and irreducible) andA1 is affine.

For any irreducible componentZ of E1(Ag), there is a finite correspondance
betweenZ and Ag−1 ×A1. In particular, the codimension ofZ in Ag is
g(g+1)

2 − ( g(g−1)
2 + 1) = g − 1. The varietyY is an irreducible component of the

intersection ofV with such aZ , hence there is a nonnegative integere0 such
that the codimension ofY in V is g − 1 − e0. So the codimension ofY in
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Ag is g − d + g − 1 − e0 = 2g − d − 1 − e0. Since Y ′ maps to a point in
A1, its imageV1 in Ag−1 by the second projection has dimension equal to the
dimension ofY . ThereforeV1 has dimensiong(g + 1)/2− (2g − d − 1− e0) =
(g−1)g/2−(g−1−d−e0), i.e., codimensiong−1−d−e0 ≤ g−1 in Ag−1. By
Theorem 1, the setE1(V1) is dense inV1. In particular, the setE1(V1) is nonempty.
Let Y1 be an irreducible component ofE1(V1) and letY ′

1 be the analogue ofY ′

for Y1. Then, as before, the varietyY1 has codimensiong−1−d−e0 +g−2−e1

in Ag−1 (for some nonnegative integere1), the varietyY ′
1 maps to a point in

A1 and its imageV2 in Ag−2 has codimensiong− 2− d − e0− e1. Repeating
the argument, we obtainVi in Ag−i of codimensiong− i − d − e0− ...− ei −1

containingYi of codimensiong − i − d − e0 − ... − ei −1 + g − i − 1− ei in
Ag−i . For i = g− 2, we can repeat the argument one last time forVg−2 ⊂A2

to obtainY ′
g−2 with imageVg−1 in A1 with codimension 1−d−e0− ...−eg−2.

SinceA1 is affine, the varietyVg−1 is a point andd = e0 = ... = eg−2 = 0.
ThereforeY has codimension 2g−1 in Ag, all the varietiesYi have codimension
g− i +g− i −1 = 2g−2i −1 in Ag−i , V has codimensiong in Ag andVi has
codimensiong− i in Ag−i . In particular, the first part of Corollary 1 is proved.

For eachi , there is an irreducible subvarietyZi of V which parametrizes
ppav’s isogenous to the product of an element ofVi and i fixed elliptic curves
(Z1 = Y) because all the mapsY ′

i −→A1 (and alsoY ′ −→A1) are constant.
It follows from the above thatZi has the expected dimension(g−i )(g−i +1)

2 + i − g.
Since our choices of theYi ’s (and Y) and hence our choices of theZi ’s were
arbitrary, we have proved the second part of the Corollary as well.

To prove the third part, first observe that a dimension count (similar to the
case ofY) shows that the dimension of any irreducible componentX of Eq(V )
is at leastq(q+1)

2 + (g−q)(g−q+1)
2 − g. Let X ′ be the analogue ofY ′ for X. Then

the imagesXq and Xg−q of X ′ by the two projections toAq and Ag−q are
complete subvarieties ofAq andAg−q whose codimensions are at leastq and
g − q respectively by part 1 of the Corollary. So we have

q(q+1)
2 + (g−q)(g−q+1)

2 − g ≤ dim(X) = dim(X ′) = dim(Xq) + dim(Xg−q) ≤
≤ q(q+1)

2 − q + (g−q)(g−q+1)
2 − (g − q) = q(q+1)

2 + (g−q)(g−q+1)
2 − g .

Therefore we have equality everywhere and part 3 is proved.
Now let V ′ be the analytic closure ofE1,g(V ) in V . Since, by Theorem 1, the

setE1(Vg−2) is dense inVg−2 (which is a curve), we see thatV ′ containsZg−2.
Since all of our choices for theYi andY (and hence for theZi ) were arbitrary,
we see thatV ′ containsE1,g−2(V ). Repeating this reasoning, we see thatV ′

containsE1,i (V ) for all i , henceV ′ containsE1(V ) andV ′ = V by Theorem 1.
ut

Proof of Corollary 2: Let V be a complete codimensiong subvariety ofM̃′
g

or A′
g. Again, by Theorem 1, the setE1(V ) is nonempty. LetY ⊂ V be an

irreducible component ofE1(V ) and defineY ′ as in the proof of Corollary 1. As
in loc. cit. the varietyY is a complete subvariety ofV , of codimension at most
g − 1 in V (codimension exactlyg − 1 by Corollary 1 ifV ⊂A′

g).
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Suppose thatV ⊂ M̃′
g. Again, sinceY ′ is irreducible and complete and

A1 affine, the mapY ′ −→ A1 is constant, hence its differential has rank 0
everywhere. It follows from [3] pages 172-173 that, for allt ∈ Y ∩V0 and every
one-dimensional subvector spaceW of H 0(ωCt ), the mapµ : W ⊗ H 0(ωCt ) −→
T∗

t V is not injective. Since this noninjectivity is a closed condition andE1(V0)
is dense inV0, it follows that it holds for allt ∈ V0.

Therefore, by Proposition 1.1 and with the notation there, for allt ∈ V0, there
is a one-dimensional subvector spaceWN of H 0(ωCt ) such thatN = µ(WN ⊗
H 0(ωCt )).

Let us globalize the constructions in the proof of Proposition 1.1. LetF0 be the
Hodge bundle onV0 and letS2P(F0) be the quotient of the fiber productP(F0)×V0

P(F0) by the involutionσ exchanging the two factors of the fiber product. Let
T∗M′

g be the cotangent bundle ofM′
g and letN0 ⊂ T∗M′

g|V0 be the conormal
bundle toV0. Denote byN ′′ (resp.N ′) the subcone of decomposable tensors
(resp. rank 2 symmetric tensors) inF0⊗F0 (resp.S2F0) lying in the inverse image
of N0 by the multiplication mapS2F0 −→ T∗M′

g|V0. Then, by Proposition 1.1
and with the notation there, the fibers ofN ′′, N ′, andN0 at t are respectively
WN ⊗H 0(ωCt )∪H 0(ωCt )⊗WN , ρ(WN ⊗H 0(ωCt )) andµ(WN ⊗H 0(ωCt )). Hence
the morphismm : N ′ −→ N0 is an isomorphism because it is an isomorphism
on each fiber and the mapP(N ′′) −→ P(N0) is a double cover which splits on
each fiber. Since the double cover ofV0 parametrizing the rulings of the fibers of
P(F0)×V0 P(F0) overV0 is split, the double coverP(N ′′) −→ P(N ′) ∼= P(N0)
is globally split and hence the varietyP(N ′′) is the union of two subvarieties
of P(F0) ×V0 P(F0) exchanged byσ and both isomorphic toP(N ′) (by the
quotient morphismP(F0)×V0 P(F0) −→ S2P(F0) ) and toP(F0) by either of the
two projectionsP(F0) ×V0 P(F0) −→ P(F0). In particular, the two components
of P(N ′′) are projective bundles onV0 and N ′′ is the union of two vector
bundlesN ′′

1 andN ′′
2 with respective fibersWN ⊗H 0(ωCt ) andH 0(ωCt )⊗WN

at t . Furthermore, we haveN ′′
1

∼=−→ N0
∼=←− N ′′

2 (checked on fibers again).
Since P(N ′′

1 ) is isomorphic toP(F0), there is a line bundleW such that
N ′′

1
∼= W ⊗ F0. So N0

∼= W ⊗ F0.
From the injectionN ′′

1 ↪→ F0 ⊗ F0 we deduce the injectionW ↪→ F0

which is the composition of the morphismW ↪→ F0⊗ F0⊗ F∗
0 (obtained from

W ⊗F0
∼= N ′′

1 ↪→ F0⊗F0) with the morphismF0⊗ (F0⊗F∗
0 )

id⊗tr−→ F0 which

is the product of the identityF0
id−→ F0 and the trace morphismF0 ⊗ F∗

0
∼=

End(F0)
tr−→ OV0.

For V ⊂ A′
g the proof is similar to (and simpler than) the above and uses

Proposition 1.5 instead of Proposition 1.1. ut

2. Appendix: A remark on density in positive characteristic

In this section we use the notation of the introduction to denote moduli spaces of
curves and abelian varieties over an algebraically closed fieldk of characteristic
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p > 0. The subvarietyV0 of Ag parametrizing ppav’s ofp-rank 0 is a complete
(connected ifg > 1 by [11] (2.6)(c)) subvariety of codimensiong of Ag (see
[13], (2) in the introduction and [10], the proof of Theorem 1.1a pages 98–99).
We explain below how to deduce from the results of [4, 6, 9] and [11] that the
moduli points of non-simple abelian varieties inV0 are contained in a proper
closed subset ofV0 wheng ≥ 3.

The formal group of an abelian varietyA of p-rank 0 is isogenous to a sum

∑
1≤i ≤r

Gmi ,ni

wheremi andni are relatively prime positive integers for eachi , the summi +ni

is less than or equal tog for all i , the formal groupGmi ,ni has dimensionmi and
its dual isGni ,mi (see [9] chapter IV, Sect. 2). The decomposition is symmetric,
i.e., the groupGmi ,ni appears as many times asGni ,mi . We call the unordered
r -tuple ((mi , ni ))1≤i ≤r the formal isogeny type of the abelian variety. As in [11],
we define the Symmetric Newton Polygon ofA to be the lower convex polygon
in the planeR2 which starts at (0, 0) and ends at (2g, g), whose break-points have
integer coordinates and whose slopes (arranged in increasing order because of
lower convexity) areλi = mi

mi +ni
with multiplicity mi +ni (i.e., on the polygon, the

x-coordinate grows bymi + ni and they-coordinate grows bymi ). The polygon
is symmetric in the sense that if the slopeλ appears, then the slope 1−λ appears
with the same multiplicity. Following [11], we shall say that the Newton Polygon
β is above the Newton Polygonα if for all real numbersx ∈ [0, 2g], y, z ∈ [0, g]
such that (x, z) ∈ β, (x, y) ∈ α, we havez ≥ y. We shall say thatβ is strictly
aboveα if β is aboveα andβ /= α. Again as in [11], for a Symmetric Newton
Polygonα, we denote byWα the set of points inAg corresponding to abelian
varieties whose Newton Polygon is aboveα. By [4] page 91, Newton polygons
go up under specialization. By [6] page 143 Theorem 2.3.1 and Corollary 2.3.2
(see also [11], 2.4), for any Newton polygonα, the setWα is closed inV0. By
[11] Theorem (2.6)(a) and Remark (3.3), the abelian varietyA0 with moduli point
the generic point ofV0 has formal isogeny type ((1, g−1), (g−1, 1)). Therefore,
since g ≥ 3, the abelian varietyA0 is simple. Letα0 denote the Symmetric
Newton Polygon ofA0. The moduli point of a non-simple ppav ofp-rank 0 is in
Wβ for some Symmetric Newton Polygonβ strictly aboveα0. Therefore the set
of non-simple ppav’s inV0 is contained in∪β strictly above α0Wβ . Since there are
only a finite number of Symmetric Newton Polygons (below the linex = 2y and)
aboveα0, we deduce that all points ofV0 corresponding to nonsimple abelian
varieties are in a proper closed subset ofV0 (which is∪β strictly above α0Wβ).

ThereforeV0 is an example of a subvarietyV of codimensiong of Ag (for

all g ≥ 3) or of M̃3 such thatEq(V ) is not Zariski-dense inV for any q.
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