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Abstract. This paper establishes and extends a conjecture posed by M. Gromov
which states that every riemannian metricg on Sn that strictly dominates the
standard metricg0 must have somewhere scalar curvature strictly less than that
of g0. More generally, ifM is any compact spin manifold of dimensionn which
admits a distance decreasing mapf : M → Sn of non-zero degree, then either
there is a pointx ∈ M with normalized scalar curvature ˜κ(x) < 1, or M is
isometric toSn. The distance decreasing hypothesis can be replaced by the weaker
assumptionf is contracting on 2-forms. In both cases, the results are sharp.

An explicit counterexample is given to show that the result is no longer valid
if one replaces 2-forms byk-forms with k ≥ 3.
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1 Introduction

The main result in this paper could be characterized as establishing a global
conservation phenomenon for the scalar curvature function on a Riemannian
manifold. A classical example of this phenomenon is given by the Gauss-Bonnet
Theorem in dimension two, which states that the average of the scalar curvature
depends only on the topology of the surface. In high dimensions any conservation
phenomenon for the scalar curvature must be far more delicate since the scalar
curvature is a rather weak measure of the Riemannian structure. Nevertheless,
using Dirac operator methods, certain sharp results are established. Letκg de-
note the scalar curvature function associated with the metricg on a Riemannian
manifold M n of dimensionn. In [2], M. Gromov conjectured the following.

Conjecture. Letg be a Riemannian metric on Sn such thatg ≥ g0 whereg0 is the
standard metric of constant curvature. Then the scalar curvatureκg must become
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small somewhere, more precisely, infκg ≤ c(n)κg0 , where c(n) ≤ 1 is a constant
that depends on the dimension n, with best constant when c(n) = 1.

Let κ̃g denote the normalized scalar curvature, i.e.,κg

n(n−1). Then the following
proves the above conjecture by M. Gromov.

Theorem A. Letg be any Riemannian metric on Sn with the property thatg ≥ g0.
Then, either there exists some x∈ M with κ̃g(x) < 1, or g ≡ g0.

This result can be extended in the following way. A mapf : M −→ N
between Riemannian manifolds is said to beε-contracting if‖ f∗v ‖≤ ε ‖ v ‖
for tangent vectorsv to M .

Theorem B. Let M be a compact Riemannian spin manifold of dimension n.
Suppose there exists a1-contracting map f : (M , g) −→ (Sn, g0) of non-zero
degree. Then, either there exists x∈ M with κ̃g(x) < 1, or M ≡ Sn and f is an
isometry.

Note that the result is sharp since the identityId : (Sn, g0) −→ (Sn, g0) is
1-contracting and ˜κg ≡ 1.

The idea of the proof is to pull back a suitable spinor bundle onSn to M ,
and use it to twist a similar spinor bundle onM . If the assertion on the scalar
curvature were wrong, then a Bochner argument would imply the vanishing of
the index. On the other hand, the Atiyah-Singer index theorem shows that the
index is not equal to zero. This is a well-known method that has been used many
times in vanishing type arguments [see [1, 3, 4, 6]], but the key point of these
results is using the method for the appropriate twisting bundle. The right choice
of the twisting bundle factor makes possible the sharp results.

By weakening the contraction hypothesis onf , Theorem B can be generalized
into

Theorem C. The statement of Theorem B continues to hold if the condition that
f be 1-contracting is replaced by the condition that f be(1, Λ2)-contracting.

The hypothesis onf can not be weakened further in that sense, that is, an
explicit counterexample shows that Theorem B is false for (1, Λk)-contracting
maps withk ≥ 3.

2 Definitions and background results

Let (M , g) be a spin compact Riemannian manifold with metricg. Let (Sn, g0)
be the unit sphere inRn with the standard metricg0. Given a mapf between
two compact manifolds, thedegree of fis defined as

deg(f ) =
∑

p∈f −1(q)

sign(det f∗)p

whereq is a regular value. A mapf : M −→ N is said to beε-contractingif
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‖ f∗v ‖≤ ε ‖ v ‖,

for all tangent vectorsv to M . A map f : M −→ N is said to be (ε, Λk)-
contractingif

‖ f ∗ϕ ‖≤ ε ‖ ϕ ‖,

for all k-forms ϕ ∈ Λk(N ).
The normalized scalar curvatureof a manifoldM of dimensionn is defined

as
κ̃ =

κ

n(n − 1)
,

whereκ is the usual scalar curvature.

Spin structure

A spin manifold is an oriented manifold with a spin structure on its tangent
bundle. Let E be an oriented vector bundle, aspin structureon E is a 2-sheeted
covering

ξ : PSpinn (E) −→ PSOn (E)

such thatξ(p.g) = ξ(p).ξ0(g) for all p ∈ PSpinn (E) andg ∈ Spinn, where

ξ0 : Spinn −→ SOn

is the universal covering homomorphism with kernelZ2, and PSpinn (E) and
PSOn (E) are principalSpinn- andSOn-bundle, respectively.

Note that a manifoldM is spin if and only if the first and second Whitney
classes ofM, ω1 andω2, are both zero.

A spinor bundleon E is a bundle of the form

S(E) = PSpinn (E) ×λ V

whereV is a left module overK (= R or C) for the Clifford algebraCl (K n) = Cln
andλ : Spinn −→ SO(V ) is a representation by left multiplication by elements
of Spinn ⊆ Cl0

n (K n) = Cl0
n The Clifford algebraCl (V ) is generated byV subject

to the relationsv.v = − ‖ v ‖2 for all v ∈ V . The automorphismα : Cln −→ Cln
that extends the mapα(v) = −v gives rise to a decomposition

Cln = Cl0
n ⊕ Cl1

n ,

where Cl i
n = {ϕ ∈ Cln : α(v) = (−1)i v} are the eigenspaces ofα. Spinn =

Pinn ∩ Cl0
n , wherePinn is defined as the subgroup ofCln − {0} generated by

the elementsv, with ‖ v ‖/= 0. Given a manifoldM , Cl (M ) will be the Clifford
bundle ofM , which is the bundle overM whose fiber at a pointp ∈ M is the
Clifford algebraCl (TpM ) of the tangent space atp. Notice thatT(M ) ⊆ Cl (M ).
We extend the metric and the connection ofM to Cl (M ) with the connection∇
preserving the metric and such that
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∇(ϕ · ψ) = (∇ϕ) · ψ + ϕ · (∇ψ)

for all sectionsϕ and ψ ∈ Γ (Cl (M )). Let us consider the following complex
bundle over (M , g), whereM is spin compact 2n-dimensional Riemannian man-
ifold

S = PSpin2n (M ) ×λ Cl2n

with the induced connection, whereλ is the representation by left multiplication
and Cl2n denotes the complexification ofCl2n. Notice that the bundleS is ob-
tained by taking 2n copies of the fundamental spinor bundle.S has aZ2-grading.
Fix p ∈ M and choose local point wise orthonormal tangent vector fields around
p, {e1, e2, ..., e2n} such that (∇ek)p = 0. Letω be the oriented “volume element”
ω = i ne1 · e2... · e2n, where· denotes Clifford multiplication. This is a globally
defined section ofCl (M ) with the following properties:

i ) ∇ω = 0
ii ) ω2 = 1

iii ) ω · e = −e · ω for anye ∈ TM .

ThenS has the decomposition

S = S+ ⊕ S−

into the +1 and−1 eigenvalues of Clifford multiplication byω. For anye ∈ TM ,

e · S+ ⊆ S− ande · S− ⊆ S+.

Over (S2n, g0) we can carry out the same construction to get the bundle

E0 = PSpin2n (S2n) ×λ Cl2n

with the induced metric and connection from (S2n, g0). Fix x ∈ S2n and choose
local point wise orthonormal tangent vector fields aroundx, {ε1, ε2, ..., ε2n} such
that (∇ek)x = 0. Let ω0 be the “volume element”

ω0 = i nε1 · ε2 · ... · ε2n

As before,ω0 gives the splitting

E0 = E+
0 ⊕ E−

0

into the +1 and−1 eigenspaces ofω0 .
Suppose thatf : (M 2n, g) −→ (S2n, g) is a non-zero degree map. We can

pull-back the vector bundleE0 to the vector bundleE = f ∗E0 over (M , g), which
as a bundle overM has also the splitting

E = E+ ⊕ E− = f ∗E+
0 ⊕ f ∗E−

0 .

We consider the tensor product bundleS ⊗ E over M with the tensor product
metric and connection, and
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S ⊗ E = (S+ ⊗ E) ⊕ (S− ⊗ E).

The Dirac operatorof S

D : Γ (S) −→ Γ (S),

in terms of an orthonormal basis of tangent vectors atp, is given by

D =
2n∑

k=1

ek · ∇ek

Moreover, we can consider thetwisted Dirac operator DE on S ⊗ E; which,
on simple elementsϕ ⊗ v ∈ Γ (S ⊗ E), is defined by

DE(ϕ ⊗ v) =
2n∑

k=1

(ek · ∇ek ϕ) ⊗ v +
2n∑

k=1

(ek · ϕ) ⊗ (∇ek v)

This first order operatorDE preservesE+, i.e.

S ⊗ E = S ⊗ E+ ⊕ S ⊗ E−

and

DE(Γ (S ⊗ E+)) ⊆ Γ (S ⊗ E+).

In fact, E = f ∗(E+
0 ) = f ∗({v ∈ E0 : ω0 · v = v}) = {v ∈ E : (f ∗ω0) · v = v},

so if ϕ ⊗ v ∈ Γ (S ⊗ E+), then

DE(ϕ ⊗ v) =
∑2n

i =1 ei · ∇ei (ϕ ⊗ v)

=
∑2n

i =1 ei · (∇i ϕ ⊗ v + ϕ ⊗ ∇i v)

=
∑2n

i =1(ei · ∇ϕ) ⊗ v +
∑2n

i =1(ei · ϕ ⊗ ∇i v)

where∇i = ∇ei .
If v ∈ E+, then∇i v ∈ E+ because∇i v = ∇i (ω · v) = (∇i ω) · v + ω · (∇i v)

and (∇i ω) = 0. Therefore,DE(σ ⊗v) ∈ Γ (S⊗E+). Since any element ofS⊗E+

is the sum of simple elements of the formσ ⊗ v, we can write

DE+ = DE|S⊗E+
.

Furthermore, sincee · S± ⊆ S∓, then

DE+ = D+
E+ ⊕ D−

E+

and

D±
E+ : Γ (S± ⊗ E+) −→ Γ (S∓ ⊗ E+)
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Bochner-Lichnerowicz-Weitzenböck formula

We now recall the fundamental B-L-W formula for the twisted Dirac operator
DE of the bundleS ⊗ E over M ,(see [6])

D2
E = ∇∗∇ +

1
4
κ + RE ,

where the operator∇∗∇ : Γ (S⊗ E) −→ Γ (S⊗ E) is defined in terms of a local
basis of point wise orthonormal tangent vector fields by

∇∗∇ = −
2n∑

k=1

∇ek ∇ek + ∇∇ek
ek ,

κ =
∑

i ,j g(Rei ej ej , ei ) is the scalar curvature ofM , g is the Riemannian metric
and R the curvature tensor ofM . RE is defined on simple elementsσ ⊗ v ∈
Γ (S ⊗ E) by RE(σ ⊗ v) = 1

2

∑2n
k=1(ei · ej · σ) ⊗ (RE

ei ej
v), where RE denotes the

curvature tensor ofE.
Notice thatRE depends linearly on the curvature tensor RE of E. For a more

detailed description see [6].

3 Results for Sn

In this section we examine the problem, originally posed by M. Gromov [2], of
studying perturbations of the canonical metricg on then-sphere with normalized
curvature 1.

Theorem 3.1. Let g be any Riemannian metric on Sn with the property that
g ≥ g0. Then, either there exists some x∈ Sn with κ̃(x) < 1, or g ≡ g0.

Example 3.2.

(Sn, g)
Id−→ (Sn, g0),

whereg = (1 + ε)g, ε > 0, theng ≥ g. In this case ˜κg = 1
1+ε < 1 for all x. This

result is also true when the map between the spheres is of non-zero degree and
not necessarily the identity.

Theorem 3.3.Let f : (Sn, g) −→ (Sn, g0) be a map of non-zero degree. Suppose
that f is 1-contracting. Then, either there exists some x∈ Sn with κ̃g(x) < 1, or
f is an isometry.

Remark 3.4.This result is sharp since the identityId : (Sn, g) −→ (Sn, g0) is
1-contracting and ˜κg0 ≡ 1.

The proof of this result given in this paper, depends only on the existence of
a spin structure on (Sn, g), and therefore, (Sn, g) can be replaced by any compact
spin manifoldM .
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4 Results for a compact spin manifold

Theorem 3.2 can be extended in the following way.

Theorem 4.1. Let M be a compact Riemannian spin manifold of dimension n.
Suppose there exists a1-contracting map f: (M , g) → (Sn, g) of non-zero degree.
Then, either there exists x∈ M with κ̃g(x) < 1, or M ≡ Sn and f is an isometry.

Idea of the proof
Theorem 4.1 will be proved separately for the cases whenM is an even and

an odd dimensional manifold. In both cases, the proofs are done by contradiction
assuming that ˜κg(x) ≥ 1 everywhere. We consider the twisted spinor bundle
S ⊗ E+ over M together with its Dirac operatorDE+ ; and we calculate the index
of this Dirac operator in two ways. First, assuming that ˜κg(x) > 1 all overM and
considering the B-L-W formula forDE+ we see thatIndex(DE+) = 0. Then, using
the Atiyah-Singer Index Theorem we conclude thatIndex(DE+) /= 0. Finally,
assuming that ˜κg(x) ≡ 1, we show thatf must be an isometry.

Proof of Theorem 4.1

Even Dimensional Case.Let M be a compact spin 2n-dimensional Riemannian
manifold with metricg. Let S2n be the unit 2n-sphere with standard metricg0.
Let f : M → S2n be a 1-contracting map of non-zero degree. By contradiction,
assume that ˜κg > 1 all overM . We consider the twisted vector bundleS⊗E+ over
M and its Dirac operatorDE+ as we did in Sect. 2. Recall thatDE+ = DE|S⊗E+ . Fix
p ∈ M . Let {e1, ..., e2n} be ag-orthonormal tangent frame nearp ∈ M such that
(∇ek)P = 0 for eachk. Let {ε1, ..., ε2n} be ag0-orthonormal tangent frame near
f (p) ∈ S2n such that (∇εk)f (p) = 0 for eachk. Moreover, the bases{e1, ..., e2n}
and{ε1, ..., ε2n} can be chosen so thatεj = λj f∗ej for appropriate{λj }2n

j =1. This
is possible sincef∗ is symmetric.

Notice also thatλj ≥ 1 sincef is 1-contracting,

1 = g0(εj , εj ) = g0(λj f∗ej , λj f∗ej ) = λ2
j g0(f∗ej , f∗ej )

therefore,

1 = λ2
j g0(f∗ej , f∗ej ) ≤ λ2

j g(ej , ej ) = λ2
j (4.2)

Considering the inner product<, > on the spaceΓ (S ⊗ E) of cross-sections
defined by

< φ, ψ >=
∫

M
gx(φ, ψ) ∀φ, ψ ∈ Γ (S ⊗ E),

we can write the B-L-W formula as

< D2
Eφ, φ > = < ∇∗∇φ, φ > +1

4κ < φ, φ > + < REφ, φ >

= < ∇φ,∇φ > +1
4κ ‖ φ ‖2 + < REφ, φ >
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therefore,

< D2
Eφ, φ >≥ 1

4
κ ‖ φ ‖2 + < REφ, φ > .

In order to establish the result, we must look at the term< REφ, φ > in more
detail. On simple elementsσ ⊗ v ∈ Γ (S ⊗ E), RE is defined by

RE(σ ⊗ v) =
1
2

2n∑
i ,j =1

(ei · ej · σ) ⊗ (RE
ei ej

v).

More explicitly, (see [6])

RE
ei ej

= RE0
f∗ei f∗ej

=
1
4

∑
k,l

g0(RE0
f∗ei f∗ej

εk , εl )εk · εl

where RE0 is the curvature tensor onS2n and it is considered as an endomorphism
of Ep ≡ (E0)f (p).

Lemma 4.3.

RE
ei ej

≡ 1
2

1
λi λj

εj · εi i /= j

Proof.

RE
ei ej

= 1
4

∑2n
k,l =1[g0(f∗ei , εl )g0(f∗ej , εk) − g0(f∗ej , εl )g0(f∗ei , εk)]εk · εl

= 1
4

∑2n
k,l =1[g0( εi

λi
, εl )g0( εj

λj
, εk) − g0( εj

λj
, εl )g0( εi

λi
, εk)]εk · εl

= 1
4

∑2n
k,l =1[ 1

λi λj
δil δjk − 1

λi λj
δjl δik ]εk · εl

= 1
4[ 1

λi λj
εj · εi − 1

λi λj
εi · εj ]

= 1
4

1
λi λj

2εj · εi i /= j

Thus,

RE
ei ej

=
1
2

1
λi λj

εj · εi i /= j

Let {σα}22n

α=1 be a basis forS and {vβ}22n

β=1 be a basis forE0. Then for any
φ ∈ Γ (S ⊗ E),

φ =
∑
α,β

aαβσα ⊗ vβ

and
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< REφ, φ > = < RE(
∑

α,β aαβσα ⊗ vβ),
∑

k,l aklσk ⊗ vl > (4.4)

= < 1
2

∑
i /=j

∑
α,β aαβei · ej · σα

⊗ 1
2

1
λi λj

εj · εi · vβ ,
∑

k,l aklσk ⊗ vl >

= 1
4

∑
i /=j

∑
k,l

∑
α,β

aαβakl

λi λj
< ei · ej · σα, σk >< εj · εi · vβ , vl >

This suggests choosing the bases{σα}α and{vβ}β “invariant” by ei · ej and
εj · εi , respectively.

For each fixed pair (i , j ), consider the following orthonormal bases. Letσ1 ∈
Γ (S) with ‖ σ1 ‖= 1, sinceei · ej : S → S is such that (ei · ej )2 = −1, the
subspace{σ1, ei · ej · σ1} is invariant underei · ej .

Moreover,σ1 and ei · ej · σ1 are orthonormal. In fact,< σ1, ei · ej · σ1 >=
− < ei · σ1, ej · σ1 >=< ej · ei · σ1, σ1 >= − < ei · ej · σ1, σ1 >; therefore,
< σ1, ei ·ej ·σ1 >= 0; and< ei ·ej ·σ1, ei ·ej ·σ1 >=< ej ·σ1, ej ·σ1 >=< σ1, σ1 >
=‖ σ1 ‖2= 1.

Let σ2 ∈ Γ (S) with ‖ σ2 ‖= 1 andσ2 ⊥ {σ1, ei · ej · σ1}, i.e., < σ2, σ1 >= 0
and< σ2, ei · ej · σ1 >= 0.

Then,{σ1, ei ·ej ·σ1, σ2, ei ·ej ·σ2} is an orthonormal set. It remains to verify
that σ1 ⊥ ei · ej · σ2 and thatei · ej · σ1 ⊥ ei · ej · σ2. From the Clifford structure,
we have that< σ1, ei · ej · σ2 >= − < ei · σ1, ej · σ2 >=< ej · ei · σ1, σ2 >=
− < ei · ej · σ1, σ2 >= 0 by construction. Also,< ei · ej · σ1, ei · ej · σ2 >=<
ej ·σ1, ej ·σ2 >=< σ1, σ2 >= 0 by construction. Continuing with this process, we

obtain an orthonormal basis,{σα, ei ·ej ·σα}22n−1

α=1 for S. The operatorei ·ej leaves
invariant each of these two-dimensional subspaces and permutes the basis up to a
sign. Analogous considerations are true forE0 and we can obtain an orthonormal
basis{vβ , εj · εi · vβ}22n−1

β=1 . Each of the pairs{σα, ei · ej ·σα} and{vβ , εj · εi · vβ}
will give the following four orthonormal basis elements forS ⊗ E.

σα ⊗ vβ σα ⊗ εj · εi · vβ ei · ej · σα ⊗ vβ ei · ej · σα ⊗ εj · εi · vβ

A generic elementφ ∈ Γ (S ⊗ E), in terms of the tensor product basis can be
written as

φ =
∑
α,β

(aαβσα⊗vβ+bαβσα⊗εj ·εi ·vβ+cαβei ·ej ·σα⊗vβ+dαβei ·ej ·σα⊗εj ·εi ·vβ)

Therefore, we have the following

Lemma 4.5.For each fixed pair(i , j ),

<
∑
α,β

aαβei · ej · σα ⊗ εj · εi · vβ ,
∑
k,l

aklσk ⊗ vl >≥ − ‖ φ ‖2,
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where{σα}α and{vβ}β denote generic bases as in (4.4)

Proof. Using the basis for the tensor product constructed above, the sums in
each factor of<, >, can be rewritten in four-term sums. In fact,

< (aαβei · ej · σα ⊗ εj · εi · vβ + bαβei · ej · σα ⊗ (εj · εi )
2 · vβ+

cαβ(ei · ej )
2 · σα ⊗ εj · εi · vβ + dαβ(ei · ej )

2 · σα ⊗ (εj · εi )
2 · vβ),

(aklσk ⊗ vl + bklσk ⊗ εj · εi · vl + ckl ei · ej · σk ⊗ vl + dkl ei · ej · σk ⊗ εj · εi · vl ) >=

aαβdαβδαkδβl − bαβcαβδαkδl β − bαβcαβδkαδβl + aαβdαβδkαδl β

and the only terms of each four-term sum that remain are

aαβdαβ − bαβcαβ − bαβcαβ + aαβdαβ = 2aαβdαβ − 2bαβcαβ .

Since

2aαβdαβ ≥ −(a2
αβ + d2

αβ)

and
−2bαβcαβ ≥ −(b2

αβ + c2
αβ),

we get that each four-term sum for fixed (α, β) is bounded below by

−(a2
αβ + b2

αβ + c2
αβ + d2

αβ).

Summing overα andβ, we obtain‖ φ ‖2.
Now we can find a lower bound for< REφ, φ >.

< REφ, φ > = 1
4

∑
i /=j

∑
k,l

∑
α,β

aαβakl

λi λj
< ei · ej · σα, σk >

× < εj · εi · vβ , vl >

≥ − 1
4

∑
i /=j

1
λi λj

‖ φ ‖2 (by Lemma 4.5)

< REφ, φ >≥ −1
4

∑
i /=j

1
λi λj

‖ φ ‖2 (4.6)

Recall thatλi ≥ 1 by (4.2) and therefore,

< REφ, φ > ≥ − 1
4

∑
i /=j ‖ φ ‖2

≥ − 1
42n(2n − 1) ‖ φ ‖2

Consequently,
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< D2
Eφ, φ > ≥ 1

4κ ‖ φ ‖2 − 1
42n(2n − 1) ‖ φ ‖2

< D2
Eφ, φ > ≥ 1

42n(2n − 1)(κ̃ − 1) ‖ φ ‖2

wherek = κ
2n(2n−1) is the normalized scalar curvature ofM . Therefore; ifκ̃ > 1,

then ker(D2
E) = 0. But ker(D2

E) = ker(DE), see [4]. Since the operatorDE :
Γ ((S ⊗ E+) ⊕ (S ⊗ E−)) → Γ ((S ⊗ E+) ⊕ (S ⊗ E−)) preserves the direct sum,

0 = ker(DE|S⊗E+
) = ker(DE).

We also have thatDE+ = D+
E+ ⊕ D−

E+ , whereD±
E+ : S± ⊗ E+ → S∓ ⊗ E+. Since

0 = ker(DE+) = ker(D+
E+)⊕ker(D−

E+), we getker(D+
E+) = ker(D−

E+) = 0. The index
of DE+ is given by

Index(DE+) = dim(ker(D+
E+)) − dim(ker(D−

E+)) = 0.

However, this index is not zero. In fact, using the Atiyah-Singer Index The-
orem, we get

Index(DE+) = {ch(E+)Â(M )}[M ],

wherech(E+) is the Chern character ofE+ and Â is the totalÂ-class ofM .
Recall thatch(E+) = dim(E+) + ch1(E+) + ... + chn(E+), wherechi is the i th

symmetric polynomial in the Chern classci , with chi ∈ H 2i (M ), [see [5]]; and
that E+ is the pull-back bundle ofE+

0 throughf ∗. On S2n the Chern character of
the vector bundleE+

0 is given by

ch(E+
0 ) = dim(E+

0 ) +
1

(n − 1)!
cn(E+

0 ).

On the pull-back,

ch(E+) = dim(E+
0 ) + 1

(n−1)! f
∗cn(E+

0 )

ch(E+) = 22n−1 + 1
(n−1)! f

∗cn(E+
0 ).

Applying the B-L-W type formula, Atiyah, Hitchin, Lichnerowicz and Singer
showed that a compact spin manifoldM with κ > 0 must haveÂ(M ) = 1. In
our case we are under the assumption that ˜κ > 1, thereforeκ > 0 andÂ(M ) = 1.
Consequently,

Index(DE+) = {(22n−1 + 1
(n−1)! f

∗cn(E+
0 ))Â[M ]}[M ]

Index(DE+) = 1
(n−1)! f

∗cn(E+
0 )[M ]

= 1
(n−1)!

∫
M f ∗cn(E+

0 )

= 1
(n−1)! deg(f )

∫
S2n cn(E+

0 ) /= 0 (4.7)
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sincedeg(f ) /= 0 andcn(E+
0 ) /= 0 on S2n because it is non-zero multiple of the

Euler number ofS2n.
If κ̃ ≡ 1, thenf is an isometry. In fact, ˜κ ≡ 1 is equivalent toκ = 2n(2n−1),

then inequality (4.6) gives

< D2
Eφ, φ > ≥ 1

4κ ‖ φ ‖2 − 1
4

∑2n
i /=j

1
λi λj

‖ φ ‖2

< D2
Eφ, φ > ≥ 1

4 ‖ φ ‖2 [2n(2n − 1) − ∑2n
i /=j

1
λi λj

]

≥ 1
4 ‖ φ ‖2 [

∑2n
i /=j (1 − 1

λi λj
)].

SinceIndex(DE+) /= 0, ker(DE) /= 0, there exists 0/= ϕ ∈ Γ (S ⊗ E) such that
Dϕ = 0, so

0 ≥ 1
4

‖ φ ‖2 [
2n∑
i /=j

(1 − 1
λi λj

)] (4.8)

Recall that eachλi ≥ 1, so 1− 1
λi λj

≥ 0; therefore,

0 ≤ 1 − 1
λi λj

≤ 0 ∀i /= j

or equivalently,

λi λj ≡ 1.

Therefore,λi ≡ 1 for all 1 ≤ i ≤ 2n and f is an isometry.

Odd dimensional case

Let M be a compact spin manifold of dimension 2n−1, with Riemannian metric
g. Let S2n−1

r be (2n − 1)-sphere of radiusr with the standard metricg0. Let
f : M → S2n−1 be a 1-contracting map of non-zero degree. We want to show
that there existsx ∈ M whereκ(x) < 1. Consider

M × S1
r

f × 1
r id−→ S2n−1 × S1 h−→ S2n−1 ∧ S1 ∼= S2n

whereS1
r is the one dimensional sphere of radiusr , f × 1

r id is defined as (f ×
1
r id )(p, t) =(f (p), t

r ) ∀(p, t) ∈ M × S1, and whereh is a 1-contracting map into
the smash product of non-zero degree.

Consider now the following metrics. OnM × S1
r , g + ds2 where ds is the

standard metric onS1
r ; on S2n−1 × S1, g0 + ds2 whereds is the standard metric

on S1; and onS2n, g̃ is the standard metric of the unit sphereS2n.
The compose map̃f = h◦(f × 1

r id ) is of non-zero degree fromM 2n−1×S1 →
S2n. It is also 1-contracting,
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‖ f̃∗(v, t) ‖=‖ h∗(f∗v, t
r ) ‖ ≤ ‖ f∗v ‖ + ‖ t

r ‖

≤ ‖ v ‖ +1
r ‖ t ‖

≤ ‖ v ‖ + ‖ t ‖ .

We assumer > 1.
We can now apply the same method we used for the even-dimensional case.

Construct complex spinor bundlesS over M 2n−1 × S1
r andE0 over S2n, respec-

tively; and consider the bundleS ⊗ E over M 2n−1 × S1
r , whereE = f̃ ∗E+

0 .
Choose a basis{e1, ..., e2n−1, e2n} of (g + ds2)-orthonormal adapted tangent

vectors aroundx ∈ M 2n−1 × S1
r such that (∇ek)x = 0 for eachk and such that

e1, ..., e2n−1 are tangent toM 2n−1 and e2n is tangent toS1
r . As before choose

g̃-orthonormal basis{ε1, ..., ε2n} aroundf̃ (x) in S2n.
Therefore, we can find positive scalars{λi }2n

i =1 such thatεi = λi f̃∗ei . Then
we have that

1 = g̃(εi , εi ) = g̃(λi f̃∗ei , λi f̃∗ei ) = λ2
i g̃(f̃∗ei , f̃∗ei ),

thus for 1≤ i ≤ 2n − 1

1 = λ2
i g̃(f̃∗ei , f̃∗ei ) ≤ λ2

i g0(f∗ei , f∗ei ) ≤ λ2
i g(ei , ei ) = λ2

i

and 1≤ λ2
i .

For j = 2n

1 = λ2
2ng̃(f̃∗e2n, f̃∗e2n) ≤ λ2

2nds2( e2n
r , e2n

r )

1 ≤ λ2n
r 2

r 2 ≤ λ2
2n.

In the B-L-W formula for the twisted bundleS ⊗ E and its Dirac operatorDE ,

D2
E = ∇∗∇ +

1
4
κ + RE , (4.9)

the curvature term (4.3) can be bounded by separating the terms arising from the
S1 factor, as follows (cf. Lemma 4.5),
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< REφ, φ > = 1
4

∑2n−1
i /=j

∑
k,l

∑
α,β

aαβakl

λi λj
< ei · ej · σα, σk >

× < εj · εi · vβ , vl >

+ 1
4

∑2n−1
i =1

∑
k,l

∑
α,β

aαβakl

λi λ2n
< ei · e2n · σα, σk >

× < ε2n · εi · vβ , vl >

+ 1
4

∑2n−1
j =1

∑
k,l

∑
α,β

aαβakl

λ2nλj
< e2n · ej · σα, σk >

× < εj · ε2n · vβ , vl >

Therefore,

< REφ, φ > ≥ 1
4

∑2n−1
i /=j

∑
k,l

∑
α,β aαβakl < σα, σk >< vβ , vl >

− 2[ 1
4

∑2n−1
i =1

∑
k,l

∑
α,β aαβakl < σα, σk >< vβ , vl >]

< REφ, φ > ≥ − 1
4

∑2n−1
i /=j ‖ φ ‖2 −2 1

4r

∑2n−1
i =1 ‖ φ ‖2

< REφ, φ > ≥ − 1
4(2n − 1)(2n − 2) ‖ φ ‖2 − 1

2r (2n − 1) ‖ φ ‖2

Note that in (4.9)k is the unnormalized scalar curvature ofM 2n−1×S1
r which

is equal to the unnormalized scalar curvature ofM 2n−1. The normalized scalar
curvature ofM 2n−1 is κ̃ = κ

(2n−1)(2n−2), consequently,

< D2
Eφ, φ > ≥ [ 1

4κ − 1
4(2n − 1)(2n − 2) − 2n−1

2r ] ‖ φ ‖2

< D2
Eφ, φ > ≥ 1

4(2n − 1)(2n − 2)[κ̃ − 1 − 2
(2n−2)r ] ‖ φ ‖2 .

As before, ifκ̃ ≡ 1, sincef is a 1-contracting map,f is an isometry [see (4.8)].
If κ̃ > 1, since the last inequality is valid for allr > 1, then

ker(D2
E) = ker(DE) = 0.

And ker(D+
E+) = 0, henceIndex(DE+) = 0. But the Atiyah-Singer Index

Theorem gives (see (4.7))
Index(DE+) /= 0

Remark 4.10.Recall that a mapf : M → N between Riemannian manifolds is
(ε, Λk)-contracting if
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‖ f ∗α ‖≤ ε ‖ f ∗α ‖ ∀α ∈ Λk(N ).

Note that “1-contracting” means (1, Λ1)-contracting.
We have the following immediate consequence.

Theorem 4.11.Let M be a compact Riemannian spin manifold of dimension
n. Suppose there exists a(1, Λ2)-contracting map f: (M , g) → (Sn, g0) of non-
zero degree. Then, either there exists x∈ M with κ̃(x) < 1, or M ≡ Sn and f is
an isometry.

Proof. It follows from the proof of Theorem 4.1. We only need to point out that
{λi }n

i =1 satisfy

1 = ‖ εi ∧ εj ‖g0=‖ λi f∗ei ∧ λj f∗ej ‖g0= λi λj ‖ f∗(ei ∧ ej ) ‖g0

≤ λi λj ‖ ei ∧ ej ‖g= λi λj

Thus,λi λj ≥ 1. But this was the condition needed in the proof of Theorem 4.1,
rather than requiring that eachλi ≥ 1.

5 Weaker hypothesis

Are these same results true when the mapf is (1, Λk)-contracting for 3≤ k ≤ n?
The answer is no. The hypothesis onf cannot be further weakened in that sense.
The following construction provides a counterexample fork = 3.

Counterexample 5.1.In R4 we consider the manifold that we get by rotating a
curveαm about thex1-axis.

Fig. 1.

We can assume thatαm is parametrized by its arc-length. Define the mapfm onto
S3 that sends the curveαm into the half circle that when rotated aboutx1 gives
the sphereS3 and eachS2 orthogonal tox1 in M 3

m into S2 orthogonal tox1 in
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Fig. 2.

S3. We provideM 3
m with a metricgm such that ˜κgm ≥ 1. For a pointx ∈ M 3

m we
have that

dfm : Tx(M 3
m) −→ Tfm(x)(S3)

e1 7−→ 1
lm

e1

ej 7−→ c(s)ej j = 2, 3

where lm is the function length ofαm and c(s) is some bounded function ofs,
saya ≤ c(s) ≤ b. These constantsa andb are independent ofm. Thus,fm is a
( b2

lm
, Λ3)-contracting non-zero degree map and ˜κgm > 1 everywhere.

Remark 5.2It has not been established to which extend the spin hypothesis is
necessary for the results. Certainly the method used in this paper lies entirely on
the spin structure of the manifoldM .

Acknowledgement.I want to thank my Ph.D. Adviser, Prof. H. Blaine Lawson, Jr., for his help in
establishing these results.
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