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Abstract. This paper establishes and extends a conjecture posed by M. Gromov
which states that every riemannian metgion S" that strictly dominates the
standard metrigpy must have somewhere scalar curvature strictly less than that
of go. More generally, ifM is any compact spin manifold of dimensianwhich
admits a distance decreasing mlapM — S" of non-zero degree, then either
there is a pointx € M with normalized scalar curvature(X) < 1, or M is
isometric toS". The distance decreasing hypothesis can be replaced by the weaker
assumptiorf is contracting on 2-forms. In both cases, the results are sharp.

An explicit counterexample is given to show that the result is no longer valid
if one replaces 2-forms blg-forms withk > 3.
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1 Introduction

The main result in this paper could be characterized as establishing a global
conservation phenomenon for the scalar curvature function on a Riemannian
manifold. A classical example of this phenomenon is given by the Gauss-Bonnet
Theorem in dimension two, which states that the average of the scalar curvature
depends only on the topology of the surface. In high dimensions any conservation
phenomenon for the scalar curvature must be far more delicate since the scalar
curvature is a rather weak measure of the Riemannian structure. Nevertheless,
using Dirac operator methods, certain sharp results are established, et

note the scalar curvature function associated with the metor a Riemannian
manifold M" of dimensionn. In [2], M. Gromov conjectured the following.

Conjecture. Let g be a Riemannian metric on"S$uch thaty > go wheregg is the
standard metric of constant curvature. Then the scalar curvatymust become
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small somewhere, more precisely, inf < c(n)x,, , Wwhere ¢n) < 1is a constant
that depends on the dimension n, with best constant wf@n=l.

Let £, denote the normalized scalar curvature, kgfj—l) Then the following
proves the above conjecture by M. Gromov.

Theorem A. Letg be any Riemannian metric orf' Svith the property thay > go.
Then, either there exists some=xM with £4(x) < 1, or g = go.

This result can be extended in the following way. A map M — N
between Riemannian manifolds is said to dseontracting if|| f.v [|< e || v ||
for tangent vectors to M.

Theorem B. Let M be a compact Riemannian spin manifold of dimension n.
Suppose there exists lacontracting map f: (M,g) — (S", go) of non-zero
degree. Then, either there existsexM with 5,(x) < 1, or M = S" and f is an
isometry.

Note that the result is sharp since the identdy: (S", go) — (S", g0) is
1-contracting andi, = 1.

The idea of the proof is to pull back a suitable spinor bundleS8rio M,
and use it to twist a similar spinor bundle &h. If the assertion on the scalar
curvature were wrong, then a Bochner argument would imply the vanishing of
the index. On the other hand, the Atiyah-Singer index theorem shows that the
index is not equal to zero. This is a well-known method that has been used many
times in vanishing type arguments [see [1, 3, 4, 6]], but the key point of these
results is using the method for the appropriate twisting bundle. The right choice
of the twisting bundle factor makes possible the sharp results.

By weakening the contraction hypothesisfoiTheorem B can be generalized
into

Theorem C. The statement of Theorem B continues to hold if the condition that
f be 1-contracting is replaced by the condition that f e A?)-contracting.

The hypothesis orfi can not be weakened further in that sense, that is, an
explicit counterexample shows that Theorem B is false fori(}-contracting
maps withk > 3.

2 Definitions and background results

Let (M, g) be a spin compact Riemannian manifold with metrid_et (S", go)
be the unit sphere iR" with the standard metrigg. Given a mapf between
two compact manifolds, thdegree of fis defined as

deg(f)= ) sign(det £),

pef —1(a)

whereq is a regular value. A map: M — N is said to bec-contractingif
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[fol<ellvl,

for all tangent vectorsy to M. A mapf : M — N is said to be {, A¥)-
contractingif

e l<ell el

for all k-forms ¢ € AX(N).
The normalized scalar curvaturef a manifoldM of dimensionn is defined

as
K

n(n — 1)’
wherex is the usual scalar curvature.

K=

Spin structure

A spin manifoldis an oriented manifold with a spin structure on its tangent
bundle. Let E be an oriented vector bundlespin structureon E is a 2-sheeted
covering

€ : Pspin,(E) — Psq,(E)
such thatf(p.g) = £(p).o(g) for all p € Pspin,(E) andg € Spim, where

§o : Spin, — SO,

is the universal covering homomorphism with kerngl, and Pspin,(E) and
Psq,(E) are principalSpin,- and SQ,-bundle, respectively.

Note that a manifoldM is spin if and only if the first and second Whitney
classes oM, w1 andws,, are both zero.

A spinor bundleon E is a bundle of the form

S(E) = PSpim(E) X\ V

whereV is a left module oveK (= R or C) for the Clifford algebraCI(K") = Cl,
and )\ : Spin, — SOQ(V) is a representation by left multiplication by elements
of Spin, C CI9(K™) = CI? The Clifford algebraCl(V) is generated by subject

to the relations).v = — || v ||? for all v € V. The automorphisna : Cl, — Clj
that extends the magp(v) = —v gives rise to a decomposition

Cl,=CllacCl},

whereCl = {p € Cl, : a(v) = (~1)v} are the eigenspaces af Spin, =
Pin, N CI2, wherePin, is defined as the subgroup &f, — {0} generated by
the elements, with || v ||# 0. Given a manifoldM, CI(M) will be the Clifford
bundle ofM, which is the bundle oveM whose fiber at a poinp € M is the
Clifford algebraCl(T,M) of the tangent space pt Notice thatT (M) C CI(M).
We extend the metric and the connectionwfto CI(M) with the connectiorv
preserving the metric and such that
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V(e -9)=Ng)-+p-(Vy)

for all sectionsy and € I'(CI(M)). Let us consider the following complex
bundle over i1, g), whereM is spin compact 2-dimensional Riemannian man-
ifold

S = Pspin, (M) x5 Clzn

with the induced connection, whebeis the representation by left multiplication
and Cl,, denotes the complexification @l,,. Notice that the bundI& is ob-
tained by taking 2 copies of the fundamental spinor bundiehas aZ,-grading.

Fix p € M and choose local point wise orthonormal tangent vector fields around
P, {e1, &, ...,exn} such that Ve, = 0. Letw be the oriented “volume element”

w =i"e - &... - &y, Where- denotes Clifford multiplication. This is a globally
defined section o€l (M) with the following properties:

i) Vw = 0
i) w? =1
i) w-e = —e-wforanyeecTM.

ThenS has the decomposition
S=S"9 S
into the +1 and-1 eigenvalues of Clifford multiplication by. For anye € TM,
e-S"CS ande-S™ CS".
Over (S?", go) we can carry out the same construction to get the bundle
Eo = Pspin, (S") xx Clan

with the induced metric and connection fro®?, o). Fix x € S?" and choose
local point wise orthonormal tangent vector fields aroundle;, e, ..., €20} such
that Ve&)x = 0. Letwg be the “volume element”

szin€1~€2‘ ..t €E2n
As before,wp gives the splitting

E():EJ@E(;

into the +1 and-1 eigenspaces afy .

Suppose that : (M?",g) — (S, g) is a non-zero degree map. We can
pull-back the vector bundIg to the vector bundl& = f *Ey over M, g), which
as a bundle oveM has also the splitting

E=E"®E™ =f"E; &f*E, .

We consider the tensor product bun@ex E over M with the tensor product
metric and connection, and
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S®RE=(S"®E)®(S” ®E).
The Dirac operatorof S
D:I(S)— I'(S),

in terms of an orthonormal basis of tangent vectorp,das given by

2n
D=) &-Ve
k=1
Moreover, we can consider theisted Dirac operator [ on S ® E; which,
on simple elementy ® v € I'(S ® E), is defined by

2n 2n
De(p@v) =) (& Vap) @v+Y (& ¢) @ (Vo)
k=1 k=1

This first order operatobg preserve£?, i.e.

SRE=SQE*"@S®E"~
and

De(I'(S®E™) C I'(S®EY).
Infact, E =f*(Eg) =f*({v € Eg t wo- v =v}) = {v € E: (f*wo) - v = v},
soif p®@wv e I'(S®EY), then

De(p®v) = Y26 Velp®w)

Yre - (Vig@u+pe Viv)

Eizgl(a Vy)@uv+ 2.221(3 “p ® Viv)
whereV; = Vs.

If v € EY, thenVjv € E* becauseViv = Vj(w - v) = (Viw) - v +w - (Viv)
and (Viw) = 0. ThereforePe(c @ v) € I'(S®EY). Since any element 8@ E*
is the sum of simple elements of the form® v, we can write

DE+ = DE'S@E* .
Furthermore, since - S* C ST, then
DE+ = DE+ @ DE_+

and

DZ : (ST ®E*) — I'(ST®EY)
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Bochner-Lichnerowicz-Weitzetdk formula

We now recall the fundamental B-L-W formula for the twisted Dirac operator
De of the bundleS ® E over M ,(see [6])

1
DZ :V*V‘FZK'*'RE,

where the operatoV*V : I'(S®E) — I'(S®E) is defined in terms of a local
basis of point wise orthonormal tangent vector fields by

2n
V'V ==Y VeVe +Vy, &

k=1
K= i d(Ree §, &) is the scalar curvature d¥l, g is the Riemannian metric
and R the curvature tensor ™. RE is defined on simple elements® v ¢
I(S®E)byRE(c®v) =iy 0 (6§ 0)® (RS v), where R denotes the
curvature tensor oE.

Notice thatRE depends linearly on the curvature tensér & E. For a more

detailed description see [6].

3 Results for S"

In this section we examine the problem, originally posed by M. Gromov [2], of
studying perturbations of the canonical megion then-sphere with normalized
curvature 1.

Theorem 3.1.Let g be any Riemannian metric on"Swith the property that
g > go. Then, either there exists some=S" with &(x) < 1, or g = go.

Example 3.2.
(S",9) = (8", o),

whereg = (1 +¢€)g, € > 0, theng > ¢. In this casex; = 1—16 < 1 for all x. This

result is also true when the map between the spheres is of non-zero degree and
not necessarily the identity.

Theorem 3.3.Let f : (S",g) — (S", go) be a map of non-zero degree. Suppose
that f is1-contracting. Then, either there exists some 8" with £,(x) < 1, or
f is an isometry.

Remark 3.4This result is sharp since the identilg : (S",g9) — (S", go) is

1-contracting andig, = 1.

The proof of this result given in this paper, depends only on the existence of
a spin structure ony", g), and therefore,§", g) can be replaced by any compact
spin manifoldM .
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4 Results for a compact spin manifold

Theorem 3.2 can be extended in the following way.

Theorem 4.1.Let M be a compact Riemannian spin manifold of dimension n.
Suppose there existslacontracting map f: (M, g) — (S", ¢g) of non-zero degree.
Then, either there exists& M with 4(x) < 1, or M = S" and f is an isometry.

Idea of the proof

Theorem 4.1 will be proved separately for the cases weis an even and
an odd dimensional manifold. In both cases, the proofs are done by contradiction
assuming that(x) > 1 everywhere. We consider the twisted spinor bundle
S®E* overM together with its Dirac operatddg+; and we calculate the index
of this Dirac operator in two ways. First, assuming thatx) > 1 all overM and
considering the B-L-W formula foDg+ we see thatndex(Dg-+) = 0. Then, using
the Atiyah-Singer Index Theorem we conclude tihadex(De+) # 0. Finally,
assuming thak,(x) = 1, we show thaf must be an isometry.

Proof of Theorem 4.1

Even Dimensional CaselLet M be a compact spinr2dimensional Riemannian
manifold with metricg. Let S be the unit A-sphere with standard metrig.
Letf : M — S be a 1-contracting map of non-zero degree. By contradiction,
assume that, > 1 all overM . We consider the twisted vector bun@eE™ over
M and its Dirac operatdDg+ as we did in Sect. 2. Recall thBg+ = DE e - Fix
p € M. Let{ey,...,exn} be ag-orthonormal tangent frame nepre M such that
(Vep =0 for eachk. Let {ey, ..., e2n} be ago-orthonormal tangent frame near
f(p) € S?" such that Vex) () = O for eachk. Moreover, the basegey, ..., exn}
and{ey, ...,ezn} can be chosen so that = \;f.g for appropriate{ ; }j221. This
is possible sincé, is symmetric.

Notice also that\; > 1 sincef is 1-contracting,

1=g0(q, ) = go(\f.g, Nif.g) = Mgo(f.q, .8)

therefore,

1=Ngolf.g.1.6) < Nolg.8) =N  (4.2)

Considering the inner produet, > on the spacd (S ® E) of cross-sections
defined by

<60 >= /M 6(60) Vo0 e MSEE),
we can write the B-L-W formula as
<DZ¢, ¢ > <V*V¢,¢>+%n<¢,¢>+<RE¢,¢>

< Vo, Vo >+ik| ¢ |2+ <REp, ¢ >
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therefore,
1
<Dgg,0>> 7k ¢ |+ <R6,0>.

In order to establish the result, we must look at the ter®RE ¢, ¢ > in more
detail. On simple elements ® v € I'(S ® E), RE is defined by

1 2n
RE(c @) = > Z(e, 1§ -0)® (quv).
ij=1

More explicitly, (see [6])
RE — pEo _}Z (REO ) .
CE - Rf*af*q - 4 go f*af*q €k, €1 )€k " €|
k|

where F is the curvature tensor " and it is considered as an endomorphism
of Ep = (Eo)f -

Lemma 4.3.
11
E _
RQGJ:E)\I)\JEJ €j |#]
Proof.

RE, = 1Y tlaloo(fee,a)go(f.q ) — golf.q, e)go(fer, e)]ex - €
= 1R l0(5 @)go(5E, ) — o e)go(5E, e)le -
= %Zijzl[ﬁtsu Ok — r&ﬁn diklex - €
= lxxea 6 — xxe 6l
= Zluilxj 2¢ - € P 7]

Thus,
11
E - - -
R “oanda 7

Let {0,}21, be a basis foS and {v3}3.; be a basis fol,. Then for any
¢ € I'(S®E),
¢ = Z 8030a Q V3
a,p
and
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<REG, 9> = <RE(X, sap0a @Up), Yy aiok @u > (4.4)

< %Zi#j Y03 3ap8 § 0q

1 1
Q3% 6 U8 Dk Aok Dy >

-1 A3
= zZi;tj Zk,l Zaﬁ ,\Ajl <€ - § - 0q,0k >< € - € VG,V >

This suggests choosing the bages }, and{vsz}s “invariant’ by g - g and
€ - €, respectively.

For each fixed pairi(j), consider the following orthonormal bases. betc
I'(S) with || o1 ||= 1, sincee - g : S — S is such that§ - g)? = —1, the
subspacgo1,€ - § - o1} is invariant undee - g.

Moreover,o1 ande - g - o1 are orthonormal. In factg 01,6 - - 01 >=
— < §-01,,§ 01 >=<§ -6 01,01 >= — < § - § 01,01 >, therefore,
<01,6-§-01>= 0; and< g '§ 01,6601 >=<601,§ 01 >=<01,01>
=[l oy |2=1.

Let o, € I'(S) with || o2 ||= 1 ando, L {o1,8 - § - 01}, i.e., < 02,00 >=0
and< 02,6 -§ -0y >=0.

Then,{o1,6 -§ -01,02,6 -§ - 02} is an orthonormal set. It remains to verify
thato, 1 & -§ -0z and thatg - g - 01 L & - § - 02. From the Clifford structure,
we have that< 01,6 - § 02 >= — < € - 01,§ - 02 >=< § - § - 01,02 >=
— < & -§ 01,020 >= 0 by construction. Alse; € - § - 01,6 - § - 02 >=<
g -01, 6§ -02 >=< 01,02 >= 0 by construction. Continuing with this process, we
obtain an orthonormal bas{si,, & - § -aa}f:l for S. The operatoe - g leaves
invariant each of these two-dimensional subspaces and permutes the basis up to a
sign. Analogous considerations are true grand we can obtain an orthonormal
basis{vg, ¢ - € -vﬁ}f;!f. Each of the pair§o,, 6 - - 0.} and{vs, ¢ - € -vg}
will give the following four orthonormal basis elements Bz E.

Oa @ Ug Oa @€ - € Vg € -8 -0,8v €8 -0,8¢€ € v

A generic element € I'(S ® E), in terms of the tensor product basis can be
written as

¢ = (AapTa®@VsH00s00 @6 € V5+Cap8 -§ 00 @V +0as8 -6 - 00 @6 € -Vp)
o0

Therefore, we have the following
Lemma 4.5.For each fixed pai(i,j),

<Y Bp8 G 0a D6 6 g Y awok®u >>— | ¢
o, k,l
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where{o, }, and{vg}s denote generic bases as in (4.4)

Proof. Using the basis for the tensor product constructed above, the sums in
each factor ok, >, can be rewritten in four-term sums. In fact,

<(Bap8 G 0a @€ € Vs +Dag8 g 00 @ (g - 6)2 - vgt
Cap(® - §)2 0a @€ € v +dap(8 - §) 00 @ (6 - €)% vp),
(Aamok @u +bhyok @€ € v +Cu -G ok QU A& - § ok Vg - € - V) >=

808Yap0akds1 — PasCapdakdl s — PapCasdkadpl +8apUasdkadls
and the only terms of each four-term sum that remain are

Aapdas — DagCas — DapCap + 8apdas = 2843008 — 2005Cas-

Since

28,500p > —(a%, +d2p)
and
—2ba3Cap > —(035 +C3p),

we get that each four-term sum for fixed, (3) is bounded below by
—(@%+b3; +Chy+d3s).

Summing overa and 3, we obtain|| ¢ ||%.
Now we can find a lower bound for RE¢, ¢ >.

E _ 1 2052
<SRG, O> = 334 2k 2ap )\iﬁ)\jl<a'ej'0'a70k>
X < € "€ V3,V >

> -3 > i lel | o |2 (by Lemma 4.5)

1
pYpY

1
<REpo>>-7% o2 (46)
i7

Recall thath; > 1 by (4.2) and therefore,
<REp 9> > 33l

Y

~1n@n 1) ¢ |?

Consequently,
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<Dip.o> > zrllol?—z2n@n -1 ¢ |?

<DZ¢,6> > in@n-1)FE-1) ¢|?
wherek = m is the normalized scalar curvature Mf. Therefore; ifK > 1,

then ker(D2) = 0. But ker(D2) = ker(Dg), see [4]. Since the operat®g :
I'(S®E"N®(S®RE™)) = I'(S®E") @ (S®E™)) preserves the direct sum,

0= ker(DEls®E+) = ker(Dg).

We also have thaDg+ = DE. @ Dg., whereDZ. : S* ® E* — ST ® E*. Since
0 =ker(Dg-) = ker(DZ.) @ker(Dg.), we getker(Dg.) = ker(Dg-) = 0. The index
of Dg- is given by

Index(De-) = dim(ker(D¢.)) — dim(ker(Dg.)) = O.

However, this index is not zero. In fact, using the Atiyah-Singer Index The-

orem, we get
Index(Dg+) = {ch(E*)A(M)}[M],
wherech(E™) is the Chern character &* andA is the totalA-class ofM.

Recall thatch(E*) = dim(E*) + ch}(E*) + ... + ch"(E*), wherech' is theit"
symmetric polynomial in the Chern class with ch' € HZ (M), [see [5]]; and
thatE™ is the pull-back bundle oEg throughf *. On S?" the Chern character of
the vector bundlés; is given by

ch(Eg) = dim(EZ) + rll)!cnﬁa).
On the pull-back,

ch(E®)

dim(Eg) + gy f *cn(Eg)

ch(E") = 21+ iofreo(E]).

Applying the B-L-W type formula, Atiyah, Hitchin, Lichnerowicz and Singer
showed that a compact spin manifditi with x > 0 must haveAA(M) =1.1In
our case we are under the assumption that I, therefore<x > 0 andA(M) =1.
Consequently,

Index(Dg+)

(@1 + Gyt e (E)AMINM]

Index(Dg+)

oo e(EQ)M]
= ﬁ Ju Fren(Eg)

= momdes() fanaa(E) #0 (47
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sincedeg(f) # 0 andc,(Eg) # 0 on S?" because it is non-zero multiple of the
Euler number 08",

If ¥ =1, thenf is an isometry. In facty = 1 is equivalent tos = 2n(2n —1),
then inequality (4.6) gives

2
<Dép,¢> > rllolP -3 x5 1o 17

Lo P 2n@n — 1) - 37 5]

< D20 > e

Y

\%

> e lPITHa-s50

Sincelndex(De-+) # 0, ker(Dg) # 0, there exists & ¢ € I'(S® E) such that
Dy =0, so

0> 1

2n 1
I ¢ [%_j(l — W_)} (4.8)

BN

Recall that each > 1, so 1— A—lA] > 0; therefore,

1 L.
0<1-——<©0
- /\i)\j_ VI#J

or equivalently,
)\i )\j =1

Therefore,\j = 1 for all 1< i < 2n andf is an isometry.
Odd dimensional case

Let M be a compact spin manifold of dimension-2 1, with Riemannian metric

g. Let =1 be (I — 1)-sphere of radius with the standard metrigo. Let

f : M — S*-1 be a 1-contracting map of non-zero degree. We want to show
that there existx € M wherex(x) < 1. Consider

M x g2 szt g1y g1, gl g

whereS! is the one dimensional sphere of radiys x %id is defined asf( x
id)(p,t) =(f (p), ) V(p,t) € M x S, and whereh is a 1-contracting map into
the smash product of non-zero degree.

Consider now the following metrics. OM x S, g + ds?> whereds is the
standard metric ogt; on S2'~1 x St, g + ds? whereds is the standard metric
on St; and onS?", g is the standard metric of the unit sph&#'.

The compose map = ho(f x 1id) is of non-zero degree froml 21~ x St —
S, It is also 1-contracting,
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I ) =] o, DI < o[+ Fl

IN

Foll+¢ 1t

IN

ol +1el-

We assume > 1.

We can now apply the same method we used for the even-dimensional case.
Construct complex spinor bundi&over M2"~1 x S and E, over S?", respec-
tively; and consider the bund® © E overM~1 x 1, whereE = f*Ej.

Choose a basigey, ..., &xn_1,€n} of (g +ds?)-orthonormal adapted tangent
vectors arounck € M2"~1 x St such that Ye()x = 0 for eachk and such that
e, ...,en_1 are tangent tav >~ and ey, is tangent toS!. As before choose
g-orthonormal basiges, ..., exn} aroundf(x) in S2n.

Therefore, we can find positive scalafs; ?21 such thate; = \if.e. Then
we have that

1=§(e,a) = g(nf.e, nfe) = M5(f.a,fa),
thus for 1<i <2n-1

1=Xj(f.a,f.a) < Ngo(f.e,f.e) < Ng(e,q) = A2

and 1< \2.
Forj =2n

1= A%ng(f:keZI‘hi{keZn) < )\gndsz(%7 %)
1 < 22
r2 < A,

In the B-L-W formula for the twisted bundI8 ® E and its Dirac operatobDg,

DZ=V*V+ %m +RE, (4.9)

the curvature term (4.3) can be bounded by separating the terms arising from the
S? factor, as follows (cf. Lemma 4.5),
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E _ 1 2n—1
<RFg,0> = 30 Yk s s A)\J <€ § 04,0k >
X < € "€ V3, >
+ DS, N e ey 0, 0k >
4 i=1 kIl B A A n " Oa, 0k
X < €2n € VB,V >
2n—1 L
+ 42 Zk,l Za7ﬁ )\zi)\j <®nq ©O0q, 0k >
X < € - €n VB,V >
Therefore,

2n—1
<REG, 0> > 33T Yk Ya s 8apa < Oas 0k >< Ug, 01 >

-1
- 27N 2ok 2aa,p Bapd < Oa, 0k >< Vg, 11 >]

2n—1 2n—1
<Rf¢,¢ > *%Zi% o7 - o lel?

Y

<Rf¢, 0> > —z@n-1@-2)|¢|? -z -1 ¢|?

Note that in (4.9 is the unnormalized scalar curvatureNdf"~1 x S which
is equal to the unnormalized scalar curvatureVo?—1. The normalized scalar
curvature ofM 21 is & = m, consequently,

Déd.¢o > > [3n—3z(@n—1)2n—-2)— 23] | ¢ |?

DE¢,¢ > > Z@n—1)@n-2)F—1- 2511l ¢ |2

As before, ifk' = 1, sincef is a 1-contracting mag, is an isometry [see (4.8)].
If % > 1, since the last inequality is valid for all> 1, then

ker(DZ) = ker(Dg) = 0.

And ker(DZ.) = 0, hencelndex(Dg+) = 0. But the Atiyah-Singer Index
Theorem gives (see (4.7))
Index(Dg+) # 0

Remark 4.10Recall that a map : M — N between Riemannian manifolds is
(¢, A¥)-contracting if
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[fra|<e|f*al  VYae AYN).

Note that “1-contracting” means (4')-contracting.
We have the following immediate consequence.

Theorem 4.11.Let M be a compact Riemannian spin manifold of dimension
n. Suppose there exists(& A2)-contracting map f: (M, g) — (S", go) of non-
zero degree. Then, either there exists M with k(x) < 1,or M =S" and f is
an isometry.

Proof. It follows from the proof of Theorem 4.1. We only need to point out that
{Xi L, satisfy

1

Fei Aei llgo=Il M@ AXNTE (o= Ay || F(&r A 8) g0

IN

AN e Ag [lg=AiN

Thus, i Aj > 1. But this was the condition needed in the proof of Theorem 4.1,
rather than requiring that each > 1.

5 Weaker hypothesis

Are these same results true when the rhag (1, A¥)-contracting for 3< k < n?
The answer is no. The hypothesis foecannot be further weakened in that sense.
The following construction provides a counterexamplekar 3.

Counterexample 5.1n R* we consider the manifold that we get by rotating a
curve oy, about thex;-axis.

ll'.rn

/\J\/\& L __/‘\\/\ C .

Fig. 1.

We can assume that,, is parametrized by its arc-length. Define the nig@nto
S8 that sends the curve,, into the half circle that when rotated abouytgives
the spheres® and eachS? orthogonal tox; in Mz into S? orthogonal tox; in



70 M. Llarull

§
|
TS
I

-
x\V

Fig. 2.

S3. We provideM_2 with a metricgm such that<,, > 1. For a pointx € M3 we

have that
dfy, : TX(MI,TS]) — Tfm(x)(Sg)

Le

& —
g +— c(9)g j=23

wherely, is the function length ofv,, andc(s) is some bounded function &f

saya < c¢(s) < b. These constants andb are independent ah. Thus,f,, is a

(%, A®)-contracting non-zero degree map atyl > 1 everywhere.

Remark 5.2t has not been established to which extend the spin hypothesis is
necessary for the results. Certainly the method used in this paper lies entirely on
the spin structure of the manifold .

Acknowledgementl want to thank my Ph.D. Adviser, Prof. H. Blaine Lawson, Jr., for his help in
establishing these results.
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