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Introduction

The Samuel multiplicity of anm-primary ideal in a local ring (A,m) can be used
to define the intersection number of an irreducible component of an intersection
of two projective varietiesX and Y in Pn

K . If X and Y intersect improperly,
one must also assign intersection numbers to certain embedded components of
X ∩Y , see for example [10], [7]. Some of such components are defined over the
base fieldK and are calledK -rational, others are defined over a field extension
of K . In [1] it was proved thatK -rational components correspond to ideals of
maximal analytic spread and in [2] a multiplicity was defined for such ideals,
which generalizes Samuel’s multiplicity. Here we define a multiplicity sequence
c0(I ,A), . . . , cd(I ,A) for an arbitrary idealI of a d-dimensional local ring (A,m)
(see 2.2), which is closely related to the Stückrad–Vogel intersection cycle. Our
main result, Theorem 4.1, implies that each number of the multiplicity sequence
equals the (local) degree of the part of the cycle in a certain dimension (see
Corollary 4.2). As applications we obtain an interpretation of the Segre classes
of a subscheme as multiplicities in a bigraded ring (see Corollary 4.3) and a
local version of Bezout’s theorem, which improves the one of [3]. If the idealI
has maximal analytic spread, thenc0(I ,A) coincides with the multiplicityµ(I ,A)
defined in [2], and whenI is m-primary,c0(I ,A) is the Samuel multiplicity ofI
and it is the only element of the sequence which is different from zero. Another
case, in which the sequence reduces to only one element different from zero, is
when the embedded join ofX andY has minimal dimension.

The multiplicity sequence is defined by means of the bigraded ringGm(GI (A)),
whereGI (A) is the associated graded ring ofA with respect toI . For this reason,
in Sect. 1 we recall some known facts on Hilbert functions of bigraded rings. In
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Sect. 2 we define the multiplicity sequencec0(I ,A), . . . , cd(I ,A) and we prove
that

∑d
k=0 ck(I ,A) = e(GI (A)). In Sect. 3 , we introduce some extensions of the

Stückrad–Vogel intersection algorithm to filter-regular sequences and study the
deformation to the normal cone in the sense of van Gastel [11]. This allows
the geometric interpretation of the multiplicity sequence, that will be given in
Sect. 4.

1. Hilbert functions of bigraded rings

In this section we recall some well-known facts on Hilbert functions and Hilbert
polynomials of bigraded rings, which will play a central role in the next section.

In the following, by a bigraded ring we mean a ringR = ⊕∞i ,j =0 Rij such that

(i) Rij are additive subgroups,
(ii) Rij · Rkl ⊆ Ri +k,j +l for all nonnegative integersi , j , k, l ,

(iii) R is as anR00-algebra finitely generated by elements ofR01 andR10.

In particular, a polynomial ringS = S00[x0, . . . , xn, y0, . . . , ym] in two sets of
variablesx0, . . . , xn andy0, . . . , ym is a bigraded ring, whereSij are the additive
groups of polynomials homogeneous of degreei in the first set of variables and
homogeneous of degreej in the second one. Every bigraded ring is isomorphic
to a quotient of such a ringS by a bihomogeneous ideala, that is, an ideala
such thata = ⊕∞i ,j =0 a ∩ Sij .

Let R = ⊕∞i ,j =0 Rij be a bigraded ring of dimensiond and assume thatR00 is
an Artinian ring. TheHilbert function of R is defined to be

h(i , j ) = hR(i , j ) = lengthR00
(Rij ) .

The Hilbert seriesof R is the formal power series

HR(s, t) =
∞∑

i ,j =0

hR(i , j )si t j .

For i ,j sufficiently large, the functionhR(i , j ) becomes a polynomialpR(i , j ), the
Hilbert polynomial of R, which can be written in the form

pR(i , j ) =
∑
k,l≥0

k+l≤d−2

akl

(
i
k

)(
j
l

)

with akl ∈ Z and ak,d−2−k ≥ 0 (see [21], Theorem 7, p. 757 and Theorem 11,
p. 759). Moreover, ifR = S/a is as above anda is a prime ideal that isnot
projectively irrelevant, that is, it does not contain a power of (x0, . . . , xn) or of
(y0, . . . , ym), then at least one of the coefficientsak,d−2−k is positive.

Let h(1,0)(i , j ) =
∑i

u=0 h(u, j ) be the so-calledsum transformof h with respect
to the first variable and let
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h(1,1)(i , j ) =
j∑
v=0

h(1,0)(i , v) =
j∑
v=0

i∑
u=0

h(u, v) .

This means for the corresponding series thatH (1,0)(s, t) = 1
1−s H (s, t) and

H (1,1)(s, t) =
1

1− t
H (1,0)(s, t) =

1
(1− s)(1− t)

H (s, t) .

From this description it is clear that, fori , j sufficiently large, alsoh(1,0) and
h(1,1) become polynomials with integer coefficients of degree at mostd − 1 and
exactlyd respectively, that can be written in the form

p(1,0)
R =

∑
k,l≥0

k+l≤d−1

a(1,0)
k,l

(
i
k

)(
j
l

)

with a(1,0)
k+1,l = ak,l for k, l ≥ 0, k + l ≤ d − 2 and

p(1,1)
R =

∑
k,l≥0
k+l≤d

a(1,1)
k,l

(
i
k

)(
j
l

)

with a(1,1)
k+1,l +1 = ak,l for k, l ≥ 0, k + l ≤ d − 2.

Definition 1.1. For the coefficients of the terms of highest degree in p(1,1)
R we

introduce the symbol

ck := ck(R) := a(1,1)
k,d−k for k = 0, . . . , d .

The integersck can be computed by using computer algebra systems as CALI
[12], CoCoA [4] and Macaulay 2 [13], in which the calculation of the numerator
polynomial of the Hilbert series of a multigraded ring has been implemented.

Proposition 1.2. Let R= ⊕i ,j Rij be a d-dimensional bigraded ring such that R00

is a field. Then, for each k= 0, . . . , d:

(i)

ck(R) =
∑
Q

ck(R/Q)

whereQ runs through all primary ideals of highest dimension in an irredun-
dant primary decomposition of the zero ideal of R.

(ii) If Q is a bigradedP-primary ideal of R, then

ck(R/Q) = length(R/Q)P · ck(R/P) .
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Proof. As at the beginning of Sect. 1, let us writeR∼= S/a, wherea is a bigraded
ideal in the bigraded polynomial ringS := S00[x0, . . . , xn, y0, . . . , ym]. We observe
that the numbersck(R) = ck(S/a) are obtained by doing sum transforms of the
Hilbert function ofR with respect to both sets of variables ofS, that is,

ck(R) = ck(S/a) = ak,d−k(S[x, y]/aS[x, y])

with the new variablesx andy added to the former setsx0, . . . , xn andy0, . . . , ym

respectively. Hence we can apply the results of [21] to the latter coefficients
ak,d−k , the so-calleddegreesof aS[x, y].

Now (i) follows by [21], Theorem 8, p. 758 and the fact that the extension
ideal of a in the ringS[x, y] has no irrelevant components.

The result (ii) is a consequence of [21], Sect. 32, p. 767, since

length(R/Q)P = length(R[x, y]/QR[x, y])PR[x,y] .

�

Proposition 1.3. ([21], Sect. 33, p. 768).Let S = K [x0, . . . , xn, y0, . . . , ym] be a
bigraded polynomial ring over a field K with algebraic closurēK , let P be a bi-
homogeneous prime ideal in S and let R= S/P. PutPn+1 = Proj(K̄ [x0, ..., xn, x])
and Pm+1 = Proj(K̄ [y0, . . . , ym, y]). Then, for k= 0, . . . , dimR =: d, the coeffi-
cients ck(R) are the numbers of points in which the subvariety ofPn+1×Pm+1 de-
fined byP meets a subvariety given by k general linear equations in x0, . . . , xn, x
and d− k general linear equations in y0, . . . , ym, y.

Proof. The proposition follows immediately from [21], Sect. 33, p. 768 applied
to the prime idealPS[x, y] in the bigraded ringS[x, y]. �

If R00 is a local ring with maximal idealn, thenR = ⊕u(⊕i +j =u Rij ) is a simply
graded ring with the unique homogeneous maximal idealM = n ⊕ (⊕i +j>0Rij ).
We denote bye(R) the Samuel multiplicity ofR with respect toM.

Proposition 1.4. (cf. [5], Proposition 13.3, or [22]).Let R= ⊕Rij be a bigraded
ring such that R00 is an Artinian local ring and let R+ := (R01 + R10)R. Then

e(R) = e(R+,R) =
d∑

k=0

ck(R) .

Proof. Making use of the well-known binomial identity∑
i +j =n

(
i + k

k

)(
j + l

l

)
=

(
n + k + l + 1

k + l + 1

)
one can compare the leading coefficients of the corresponding Hilbert polynomi-
als in order to get the second equality. The remaining equalitye(R) = e(R+,R)
follows sinceR+ is a reduction of the homogeneous maximal ideal ofR with
respect to the total grading. �
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Proposition 1.5. Let R= ⊕i ,j Rij be a bigraded ring such that R00 is a field, and
let Q ⊂ R be a bigradedP-primary ideal of (Krull-)dimension d. Then:

(i) c0(R/Q) /= 0 if and only if R10 ⊆ P, and in this case c0(R/Q) = e(R/Q).
(ii) cd(R/Q) /= 0 if and only if R01 ⊆ P, and in this case cd(R/Q) = e(R/Q).

(iii) ck(R/Q) = 0 for all 1≤ k ≤ d − 1 if and only if R01 ⊆ P or R10 ⊆ P, that
is, if and only ifQ is projectively irrelevant.

Proof. Since the cased = 0 is trivial, we will assumed > 0.
We will prove (iii) at first. If R01 ⊆ P or R10 ⊆ P, then the Hilbert polynomial

of R/Q is zero, hence 0 =ak,d−2−k(R/Q) = ck+1(R/Q) for 0≤ k ≤ d− 2. Vice
versa, if ck(R/Q) = 0 for all 1 ≤ k ≤ d − 1, then ak,d−2−k(R) = 0 for all
0 ≤ k ≤ d − 2, that is, the Hilbert polynomial ofR/Q is zero. This means that
all bihomogeneous forms of bidegree (i , j ) with i and j sufficiently large, say
i ≥ i0 and j ≥ j0, are inQ, henceRi0

01 · Rj0
10 ⊆ Q ⊆ P. ConsequentlyR01 or R10

must be inP.
In order to prove (i), we observe thatc0(R/Q) = a0,d−1((R/Q)[x]) and

ck(R/Q) = ak−1,d−1−k(R/Q) = ak,d−1−k((R/Q)[x]), see the proof of 1.2. Now
assume thatR10 ⊆ P. Then by (iii)ak,d−1−k((R/Q)[x]) = 0 for all 1≤ k ≤ d−1.
Since the Hilbert polynomial of (R/Q)[x] cannot be zero (QR[x] is a rele-
vant ideal inR[x]), the remaining coefficienta0,d−1((R/Q)[x]) = c0(R/Q) must
be positive. Vice versa, ifc0(R/Q) /= 0, then by Propositions 1.3 and 1.2
the subvariety ofPn+1 × Pm given by d − 1 general linear equations in the
variablesy0, . . . , ym meets the subvariety ofPn+1 × Pm defined byPR[x] in
c0(R/P) = c0(R/Q)/ length(R/Q)P points. This means in particular that the
radicalP of the idealQ must containx0, . . . , xn, that is,R10.

The remaining assertionc0(R/Q) = e(R/Q) follows from (iii), the first part
of (ii) (which one proves in the same way as (i)) and Proposition 1.4. �

Proposition 1.6. Let R= ⊕i ,j Rij be a d-dimensional bigraded ring such that R00

is a field. If`01 ∈ R01 and `01 is a nonzero-divisor of R, then

ck(R) = ck(R/`01R) for k = 0, . . . , d − 1.

In the same way, if̀10 ∈ R10 and `10 is a nonzero-divisor of R, then

ck(R) = ck−1(R/`10R) for k = 1, . . . , d.

Proof. The proposition follows from [21], Theorem 5, p. 756. �

2. A generalized Samuel multiplicity

In this section, for an arbitrary proper idealI in a local ring (A,m) we define a
sequence of nonnegative integersck = ck(I ,A), k = 0, . . . , d which generalizes
Samuel’s multiplicity of anm-primary ideal.



578 R. Achilles, M. Manaresi

Notation 2.1. Let (A,m) be a local ring of dimensiond, let I ⊆ A be a proper
ideal, and letG := GI (A) be the associated graded ring ofA with respect toI . It
is well-known that dimG = dimA =: d. PutR = Gm(GI (A)). ThenR = ⊕∞i ,j =0 Rij

with
Rij = Gi

m(Gj
I (A)) = (mi I j + I j +1)/(mi +1I j + I j +1)

is a bigraded ring of (Krull-)dimensiond, andR00 = A/m is a field.

Definition 2.2. We call the sequence of nonnegative integers

ck := ck(I ,A) := ck(Gm(GI (A)) (0≤ k ≤ d)

the multiplicity sequence of the ideal I⊂ A.

The following result is a slight extension of an unpublished result of P. Schen-
zel. Our proof is different since it contains also the case of height zero.

Proposition 2.3. Let (A,m) be a local ring of dimension d, and let I be a proper
ideal of A. Let s= s(I ) be the analytic spread and q= dim(A/I ). Then

(i) ck = 0 for k < d − s and k> q;
(ii) cd−s =

∑
P e(mGP) · e(G/P),

whereP runs through all highest dimensional associated prime ideals of
G/mG such thatdimG/P + dimGP = dimG;

(iii) cq =
∑

p e(IAp) · e(A/p),

wherep runs through all highest dimensional associated prime ideals of A/I
such thatdimA/p + dimAp = dimA.

Proof. The coefficientsck = a(1,1)
k,d−k (0 ≤ k ≤ d) stem from the Hilbert polyno-

mial of the sum transformh(1,1) of the Hilbert function

h(i , j ) = length(Gi
m(Gj

I (A)) .

We observe thath(1,0)(i , j ) = length(Gj /mi +1Gj ) = length(I j /(mi +1I j + I j +1)) and
put

Mij := (I j ∩mi +1 + I j +1)/(mi +1I j + I j +1) .

Using the exact sequences

0→ Mij → I j /(mi +1I j + I j +1) → A/(mi +1 + I j +1) → A/(mi +1 + I j ) → 0

and the additivity of the length function we get

h(1,1)(i , j ) = length(A/mi +1 + I j +1) + length(⊕j
k=0 Mik ) . (1)

To prove (ii) and the first part of (i), we fixi � 0. Then for j � 0 the
function h(1,1)(i , j ) becomes a polynomial inj . Let us first consider the case in
which the analytic spreads(I ) = dimG/mG = 0, that is, the idealI is nilpotent,
say I m = 0. Then for fixedi � 0 and allj � 0 we have that

h(1,1)(i , j ) = length(A/mi +1) + length(⊕m−1
k=0 Mik ) , (2)
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which does not depend onj . Hencecd is the only coefficient of theck ’s different
from zero. We observe that, by Artin–Rees,

Mik ⊆ (mi +1−cI k + I k+1)/(mi +1I k + I k+1) ,

hence

length(Mik ) ≤ length((mi +1−cI k + I k+1)/(mi +1I k + I k+1))

=
c−1∑
t=0

length((mi +1−c+t I k + I k+1)/(mi +2−c+t I k + I k+1)) (3)

and the lengths in the sum become polynomials ini of degree dim(I k/I k+1) −
1 ≤ dim(A/I ) − 1. In the cases = h = d = 0 it is easy to check thatcd =
length(A) = e(A) = length(G) = e(G) can be written as in (ii) or (iii). Ifd > 0,
the leading coefficient of the polynomial ini on the right-hand side of (2) comes
from length(A/mi +1) = length(G/GI (mi +1,A)), which implies thatcd = e(A) =
e(G). For the latter equality note thatGI (mi +1,A) containsNi +m, whereN is the
homogeneous maximal ideal ofG. On the other hand, by Artin–Rees,GI (mi +1,A)
is contained inNi−c. Taking into account thatI is nilpotent and alsomG is a
reduction ofN, it is now easy to check thatcd can be written as in (ii) or (iii).

If s(I ) > 0, then for fixedi � 0 the leading coefficient of the polynomial in
j (� 0) of the right-hand side of (1) comes from the last term, that is,

h(1,1)(i , j ) = e(N,G/mi +1G)

(
s + j

s

)
+ terms of lower degree

with s = dim(G/mi +1G) = dim(G/mG) = s(I ). To see this, note thatMik =
[G/mi +1G]k if k > i and that the ideal of all elements of positive degree of
G/mi +1G is a reduction ofN · (G/mi +1G). By Nagata’s additivity and reduction
formula we obtain

e(N,G/mi +1G) =
∑

P∈AsshG/mG

length(GP/m
i +1GP) · e(N,G/P) .

But

length(GP/m
i +1GP) = e(mGP,GP)

(
p + i

p

)
+ terms of lower degree

with p := dimGP and the assertions (ii) and the first part of (i) follow.
In order to prove (iii) and the second part of (i), we fixj � 0 in (1). Then

we get for i � 0 a polynomial in i whose leading coefficient comes from
length(A/mi +1 + I j +1) since by (3) the length ofMik does not contribute to the
term of highest degree. Hence

h(1,1)(i , j ) = e(A/I j +1)

(
q + i

q

)
+ terms of lower degree,

whereq := dimA/I . Nagata’s additivity and reduction formula implies
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e(A/I j +1) =
∑

p∈AsshA/I

length(Ap/I j +1Ap) · e(A/p) .

Putting r := dimAp and taking into account that

length(Ap/I j +1Ap) = e(IAp,Ap)

(
r + j

r

)
+ terms of lower degree,

the assertions (iii) and the second part of (i) follow. �

Corollary 2.4. Let the notation be as in Proposition2.3.

(i) If I is m-primary, that is,ht(I ) = s(I ) = d, then c0(I ,A) = e(I ,A) and
c1(I ,A) = · · · = cd(I ,A) = 0.

(ii) If s(I ) = d, then c0(I ,A) = µ(I ,A), the multiplicity defined in[2], (1.2).
(iii) If s(I ) = ht(I ) =: h, then ck(I ,A) = 0 for all k /= d − h and

cd−h(I ,A) =
∑

p∈Assh(A/I )

e(IAp) · e(A/p) =
∑
P

e(mGP) · e(G/P) ,

whereP runs through all highest dimensional associated prime ideals of
G/mG such thatdimG/P + dimGP = dimG.

Proof. The corollary is an immediate consequence of Proposition 2.3. For (ii)
note that if s(I ) = dimA and P ∈ Assh(G/mG), then the local ringGP is
Artinian. For (iii) observe thats(I ) = ht(I ) implies dimA/p + dimAp = dimA for
all p ∈ Assh(A/I ). �

Proposition 2.5. ([5], Sect. 14)Let (A,m) be a local ring of dimension d and let
I be a proper ideal of A. Then

e(GI (A)) =
d∑

k=0

ck(I ,A) .

Proof. Let R := Gm(GI (A)) and letM denote the unique homogeneous maximal
ideal of R. By 1.4 it remains to be shown thate(R) = e(G). If N denotes unique
homogeneous maximal ideal ofG = GI (A) andG+ := ⊕k>0 Gk , then

Nu = (mG0 ⊕G+)u = muG0 ⊕mu−1G1 ⊕ · · · ⊕mGu−1 ⊕ (⊕k≥u Gk)

and

Nu/Nu+1 ∼= (muG0/mu+1G0)⊕ (mu−1G1/muG1)⊕ · · · ⊕ (Gu/mGu)
∼= ⊕i +j =uRij .

On the other hand, sinceM is generated byR01 and R10, we have thatMu is
generated by allRij with i + j = u, and the assertion follows. �
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From the preceding proposition and Corollary 2.4 we have at once the fol-
lowing corollary, which generalizes and improves a result of N. V. Trung ([18],
Theorem 2.2) for ideals of the principal class, that is, idealsI that can be gen-
erated by ht(I ) elements. Note that for ideals of the principal classs(I ) = ht(I ).

Corollary 2.6. Let (A,m) be a local ring of dimension d, and let I be a proper
ideal of A. If s(I ) = ht(I ), then

e(GI (A)) = e(Gm(GI (A)) =
∑

p∈Assh(A/I )

e(IAp) · e(A/p) =
∑
P

e(mGP) · e(G/P) ,

whereP runs through all highest dimensional associated prime ideals of G/mG
such thatdimG/P + dimGP = dimG. �

Remark 2.7.For an idealI in a local ring (A,m) of maximal analytic spread,
let µ(I ,A) be the multiplicity ofI defined in [2]. By Corollary 2.4 and Proposi-
tion 2.5 we have

µ(I ,A) = e(G)−
d∑

k=1

ck(I ,A) = e(G/mt G) ≥ e(G/mG)

for t sufficiently large.

3. Intersection algorithms

In this section we recall the construction of the Stückrad–Vogel intersection cycle
in the projective space. L. J. van Gastel has shown that the Stückrad–Vogel cycle
is invariant under the deformation to the normal cone. We will give an analogous
construction in a local ring and show that also this local intersection algorithm
can be deformed to the normal cone.

3.A. The intersection algorithm of Stückrad and Vogel

Let X, Y be equidimensional closed subschemes ofPn
K = Proj(K [x0, . . . , xn]),

where K is an arbitrary field. For indeterminatesuij (0 ≤ i , j ≤ n) let L be
the pure transcendental field extensionK (uij )0≤i ,j≤n and XL := X ⊗K L etc.
Proving a Bezout theorem for improper intersections, Stückrad and Vogel (see
[7]) introduced a cyclev(X,Y) = v0 + · · · + vn on XL ∩ YL, which is obtained by
an intersection algorithm on the ruled join variety

J := J (XL,YL) ⊂ P2n+1
L = Proj(L[x0, . . . , xn, y0, . . . , yn])

as follows:
Let ∆ be the “diagonal” subspace ofP2n+1

L given by the equations

x0 − y0 = · · · = xn − yn = 0 ,
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let Hi ⊆ J be the divisor given by the equation

`i :=
n∑

j =0

uij (xj − yj ) = 0

and put̀ := (`0, . . . , `n). Then one defines inductively cyclesβk andvk by setting
β0 := [J ]. If βk is already defined, decompose the intersection

βk ∩ Hk = vk+1 + βk+1 (0≤ k ≤ dimJ ) ,

where the support ofvk+1 lies in∆ and where no component ofβk+1 is contained
in ∆. It follows that vk is a (dimJ − k)-cycle onXL ∩ YL

∼= J ∩∆. In general,
v(X,Y) := v(`, J ) :=

∑
vk is a cycle defined overL. By a result of van Gastel

([11], Proposition 3.9), aK -rational subvarietyC of XL ∩ YL occurs inv(X,Y)
if and only if C is a distinguished variety of the intersection ofX and Y in
the sense of Fulton ([10], p. 95), and this is equivalent to the maximality of the
analytic spread (see [2]) or the maximality of the dimension of the so-called limit
of join variety (see [8]).

All these facts follow more or less from the invariance of the Stückrad–Vogel
cyle under the deformation to the normal cone. In order to state the precise result,
let CJ∩∆J denote the normal cone ofJ ∩∆ in J , that is,

CJ∩∆J = Spec(⊕∞i =0 I i /I i +1) ,

whereI ⊂ OJ denotes the ideal sheaf ofJ ∩∆ ⊂ J . Let `∗ = (`∗0, . . . , `
∗
n) be

the sequence of initial forms of̀ := (`0, . . . , `n) in GI (OJ ) := ⊕∞i =0 I i /I i +1.
Then we have the following result of van Gastel [11], Theorem 3.2, see also [7],
Theorem 2.4.7:

Proposition 3.1 (Deformation to the normal cone).

v(`, J ) = v(`∗,CJ∩∆J )

as cycles on J∩∆ ∼= XL ∩ YL ⊆ Pn
L.

3.B. Intersection algorithms for filter-regular sequences

In [2] we introduced two intersection algorithms in a local ring, which are coun-
terparts of the construction of the Stückrad–Vogel cycle, and compared them with
analogous algorithms in the associated graded ring. In order to extend some of
the results of [2] from ideals of maximal analytic spread to arbitrary ideals in a
local ring, we introduce the following notation:

Let now A be an arbitrary Noetherian ring, letI be an ideal in the Jacobson
radical ofA and letG := GI (A) be the associated graded ring. Consider a sequence
a = (a1, . . . , at ) of elements ofI such that

√
aA =

√
I and the sequencea∗ =

(a∗1 , . . . , a
∗
t ) of the initial forms ofa1, . . . , at in G is contained inG1 and is a

filter-regular sequence with respect to the idealG+ = ⊕j≥1 I j /I j +1, that is
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(a∗1 , . . . , a
∗
k−1)G :G a∗k ⊆ (a∗1 , . . . , a

∗
k−1)G :G 〈G+〉

:= {g ∈ G | g · (G+)m ⊆ (a∗1 , . . . , a
∗
k−1)G for somem ∈ N}

for k = 1, . . . , t , or equivalently,a∗k /∈ P for all relevant associated prime
idealsP ∈ AssG(G/(a∗1 , . . . , a

∗
k−1)G for k = 1, . . . , t (see, for example, [17],

Definition 1, p. 252). In particular this implies thata = (a1, . . . , at ) is a filter-
regular sequence inA with respect toI , see, for example, [2], (2.2).

We define a cyclev(a,A) of A supported onV (I ) by the followingintersection
algorithm in A:

Seta−1 := (0), a0 := 0, and inductively

ak := (ak−1 + akA) :A 〈I 〉 (0≤ k ≤ t) .

Observe thatat = A. Then

vk(a,A) :=
∑

p

length(A/ak−1 + akA)p [p] ,

where the sum is taken over all highest dimensional associated prime idealsp of
A/ak−1+akA that containI and [p] denotes the cycle associated withp. We define
v(a,A) :=

∑t
k=0 vk(a,A), and, if (A,m) is a local ring, thedegreeof vk(a,A) by

degvk(a,A) :=
∑

p

length(A/ak−1 + akA)p · e(A/p) .

In the same way, replacinga by a∗ andI by G+, we define a cyclev(a∗,G)
by an intersection algorithm in G= GI (A) with ã−1 := 0 ·G, a∗0 := 0, and

ãk := (ãk−1 + a∗k G) :G 〈G+〉 (0≤ k ≤ t) .

We put
vk(a∗,G) :=

∑
P

length(G/(ãk−1 + a∗k G))P [P] ,

where the sum is over all highest dimensional associated prime idealsP of
G/(ãk−1 +a∗k G) that containG+. Observe that the prime ideals ofv(a; A) contain
I and hence correspond to prime ideals in the ringA/I . On the other hand, the
prime ideals ofv(a∗,G) containG+ and correspond to their contraction ideals in
G0

I (A) = A/I . So both cyclesv(a; A) and v(a∗,G) can be considered as cycles
of A/I . In order to compare them, we need the following lemma:

Lemma 3.2. Let A be a Noetherian ring, let I be an ideal in the Jacobson radical
of A and let a1, . . . , at ∈ I such that

√
(a1, . . . , at )A =

√
I and their initial forms

a∗1 , . . . , a
∗
t in G = GI (A) are of degree one and a filter-regular sequence with

respect to G+ = ⊕j≥1 I j /I j +1. Then, for k= 1, . . . , t , it holds

GI (ak−1,A) :G 〈G+〉 = ãk−1 =

= GI ((a1, . . . , ak−1),A) :G 〈G+〉 = (a∗1 , . . . , a
∗
k−1)G :G 〈G+〉 .

Proof. Analyzing the proof of [2], Lemma (3.4), one gets the result. �
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Theorem 3.3 (Deformation to the normal cone).

v(a,A) = v(a∗,G)

as cycles of A/I .

Proof. At first we will show that there is a 1–1 correspondence of the prime
idealsp of v(a,A) and P of v(a∗,G) given by p/I = P ∩ G0

I (A). Let P be a
prime ideal of the cyclev(a∗,G) and letp ∈ Spec(A) such thatp/I = P∩G0

I (A).
SinceG+ ⊆ P, it holds dim(G/P) = dim(A/p) = dimA− k, and Lemma 3.2
implies (ak−1 + I )/I ⊆ [ãk−1]0 ⊆ p/I , henceak−1 + akA ⊆ p. This shows that
p ∈ Assh(A/ak−1 + akA), because dim(A/ak−1 + akA) = dim(A/p). (Note that,
also by Lemma 3.2,ak−1 /= A if ãk−1 /= G.) Moreoverp containsI , hence [p]
appears invk(a,A).

Now let p be a prime ideal ofvk(a,A). This means thatp containsI and is a
highest dimensional associated prime ideal ofA/ak−1 + akA. We will show that
P := p/I +G+ appears invk(a∗,G), that is,P ∈ Assh(G/ãk−1+a∗k G). Because of
the dimensions it is sufficient to show thatãk−1 + a∗k G ⊆ P, and sinceG+ ⊆ P,
it is even enough to show̃ak−1 ⊆ P. The latter statement is equivalent with
ãk−1GP /= GP, and by Lemma 3.2 withGI (ak−1,A)GP :GP

〈G+
P〉 /= GP. We

observe thatGP
∼= G ⊗A Ap and GI (ak−1,A)GP

∼= GIAp(ak−1Ap,Ap). If it was
ãk−1GP = GP the idealGI (ak−1,A)GP would contain a power ofG+, hence
ak−1Ap would contain a power ofIAp, and this contradicts the definition ofak−1.

It remains to prove the equality of the coefficients of a prime idealp of
vk(a,A) and the corresponding prime idealP of vk(a∗,G), that is,

length(A/ak−1 + akA)p = length(G/ãk−1 + a∗k G)P .

But this follows with the same arguments as in the proof of [2], Proposition (3.6)
by rewriting the lengths as Samuel multiplicities. �

In order to state and to prove our Main Theorem 4.1 we need a third in-
tersection algorithm for a filter-regular sequence in a bigraded ring, which al-
lows to calculate the generalized Samuel multiplicitiesck(I ,A) of Sect. 2. As-
suming the notation of 2.1, consider the bigraded ringR = Gm(GI (A)) with
Rij = Gi

m(Gj
I (A)) and take elementsa1, . . . , as in I such that

√
aA =

√
I and

their imagesao
1 , . . . , a

o
s in R01 = I /mI are a filter-regular sequence with respect

to R01. Note that these conditions imply thatao = (ao
1 , . . . , a

o
s ) is a system of

parameters forG/mG = ⊕∞j =0 R0j and s is the analytic spread ofI . Moreover,
since the ideal (R01) is the initial ideal Gm(G+,G) of G+ = ⊕j≥1 I j /I j +1 in
R = Gm(G), it follows by a standard argument (see, e. g. [2], (2.2)) that the
initial forms a∗1 , . . . , a

∗
s of a1, . . . , as in G are a filter-regular sequence of degree

one with respect toG+.
Imitating the intersection algorithms inA andG introduced at the beginning

of 3.B, we will use nowao = (ao
1 , . . . , a

o
s ) and (R01) to define anintersection

algorithm in R that produces a cyclev(ao,R) of R as follows:
Seta−1 := (0), ao

0 := 0, and inductively
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ak := (ak−1 + ao
k R) :R 〈R01〉 (0≤ k ≤ s) .

Then

vk(ao,R) :=
∑

p

length(R/ak−1 + ao
k R)p [p] ,

where the sum is taken over all highest dimensional associated prime ideals of
R/ak−1 + ao

k R which containR01. We definev(ao,R) :=
∑t

k=0 vk(ao,R).

Proposition 3.4. With the preceding notation,

ck(R) = degvd−k(ao,R) for 0≤ k ≤ d = dimR .

Proof. For k = d we have to prove that

cd(R) =
∑

p

length(Rp) · e(R/p) ,

wherep runs through all highest dimensional associated prime ideals ofR that
containR01. But this follows from Proposition 1.2, since for such primesp one
hase(R/p) = cd(R/p), see Proposition 1.5, (ii).

Again by 1.2 and 1.5, fork = 0, . . . , d − 1 we have thatck(R) = ck(R/a0).
Observe that the filter-regular elementao

1 avoids all the associated prime ideals
of R which do not containR01, hence all associated prime ideals ofR/a0. Thus
by 1.6 we obtain

ck(R) = ck(R/a0) = ck(R/a0 + ao
1 R)

for k = 0, . . . , d − 1. Now the same argument used above in the casek = d
can be applied to the (d − 1)-dimensional bigraded ringR/a0 + a◦1 R and gives
cd−1(R) = degv1(ao,R). Repeating the reasoning one gets the proposition.�

In order to prove our main result 4.1 we need to compare the intersection
algorithm in the associated graded ringG = GI (A) with the intersection algorithm
in the bigraded ringR = Gm(GI (A)). This will be done with the help of the
following analogue of Lemma 3.2:

Lemma 3.5. Let (A,m) be a Noetherian local ring, I a proper ideal in A, G=
GI (A) and R= Gm(GI (A)). Let a1, . . . , at ∈ I such that their images ao1 , . . . , a

o
s

in R01 = I /mI are a filter-regular sequence with respect to R01 and a system of
parameters for G/mG. Denote by a∗1 , . . . , a

∗
k the initial forms of a1, . . . , at ∈ I

in G. Then, for the ideals̃ak and ak (k = 0, . . . , d) produced by the intersection
algorithms in G and R respectively, it holds

Gm(ãk ,G) :R 〈R01〉 = ak =

= Gm((a∗1 , . . . , a
∗
k )G,G) :R 〈R01〉 = (ao

1 , . . . , a
o
k )R :R 〈R01〉 .

Proof. Analyzing the proof of [2], Lemma (3.4), one gets the result. �
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4. The main theorem and applications

Theorem 4.1. Let (A,m) be a d-dimensional local Noetherian ring, I be a proper
ideal in A, G := GI (A) and R:= Gm(GI (A)). Let a1, . . . , as be elements of I such
that the images ao1 , . . . , a

o
s in R01 = I /mI are a filter-regular sequence with

respect to R01 and a system of parameters for G/mG. Then

ck(R) = degvd−k(ao,R) = degvd−k(a∗,G) = degvd−k(a,A)

for k = 0, . . . , d = dimA.

Proof. By 3.3 and 3.4 it remains to prove the second equality

degvd−k(ao,R) = degvd−k(a∗,G) .

From the intersection algorithms inR andG it follows that

degvd−k(ao,R) = e(R/ak−1)− e(R/ak)

and
degvd−k(a∗,G) = e(G/ãk−1)− e(G/ãk) ,

respectively. So we have to prove

e(R/ak) = e(G/ãk) for k = −1, . . . , d . (4)

For k = −1 this means thate(R) = e(G), which has already been shown (cf. the
proof of 2.5). In the general case we obtain by Nagata’s additivity and reduction
formula (see [16], (23.5))

e(R/ak) =
∑
P

e(R/P) · length(RP/akRP) , (5)

whereP runs through all highest dimensional associated prime ideals ofR/ak .
By the definition ofak , these prime idealsP do not containR01, hence 3.5
implies akRP = Gm(ãk ,G)RP. Consequently

e(R/ak) =
∑
P

e(R/P) · length(Gm(G)/Gm(ãk ,G))P . (6)

Let N denote the unique homogeneous maximal ideal ofG. Note thatR =
Gm(G) = ⊕i ,j Gi

m(Gj
I (A)) is the same ring asGN(G) = ⊕∞n=0(⊕i +j =n Rij ) =

⊕n,j Gn−j
m (Gj

I (A)), but taken with another grading (see the proof of 2.5). Sinceãk

is a graded ideal ofGI (A), the initial idealsGm(ãk ,G) andGN(ãk ,G) coincide.
It follows that

e(R/ak) =
∑
P

e(GN(G)/P) · length(GN(G)/Gm(ãk ,G))P (7)

=
∑
P

e(GN(G)/P) · length(GN(G/ãk))P ,
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where the sum is over the highest dimensional associated primes ofGN(G/ãk)
that do not containR01. On the other hand,

e(G/ãk) = e(GN(G/ãk)) = e(GN(G)/GN(ãk ,G)) (8)

=
∑
P

e(GN(G)/P) · length(GN(G/ãk))P ,

where the sum is over the highest dimensional associated primes ofGN(G/ãk).
To prove (4), in view of (7) and (8) it remains to prove that the highest di-
mensional associated prime idealsP of GN(G/ãk) do not containR01. By con-
struction of ãk one has dimR/P = d − k. Put R∗0 := ⊕∞i =0 Ri ,0 = Gm(A/I ) and
p := P ∩ R∗0. If P containedR01, then dimGm(A/I )/p = dimR/P = d − k. On
the other hand, by constructionp must containGN(ãk ,G) ∩ R∗0, hence

dimGm(G0
I (A))/p ≤ dimG0

I (A)/(ãk ∩G0
I (A)) = dimG/ãk + G+ .

But dimG/ãk + G+ < d − k since by definition no associated prime ideal of
G/ãk containsG+. This gives the contradiction dimGm(G0

I (A))/p < d−k, which
finishes the proof. �

Now we want to apply Theorem 4.1 to the intersection algorithm of Stückrad
and Vogel for two equidimensional subschemesX andY of Pn, see Sect. 3.A. We
will use the notation introduced in Sect. 3.A. For an arbitrary subvarietyZ of Pn

L
we putZ∆ := J (Z ,Z)∩∆. By Ĵ andẐ∆ we denote the affine cones of the ruled
join J := J (XL,YL) ⊂ P2n+1

L and Z∆ in the affine spaceA2n+2
L . Then we apply

Theorem 4.1 to the local ringA := OĴ ,Ẑ∆ with maximal idealm, the idealI ⊂ A
of the diagonal subspace∆, whose analytic spread we denote bys, the images of
the “generic” elements̀0, . . . , `s−1 in I and the bigraded ringR := Gm(GI (A)).
In particular we allowZ to be the empty subvariety ofPn. ThenA becomes the
homogeneous ring of coordinates of the ruled joinJ ⊂ P2n+1

L localized at the
irrelevant maximal ideal, that is, we obtain a global picture of the intersection
algorithm. For a subvarietyC ⊆ Pn

L that occurs in the cyclev = v(X,Y) we
denote byj (X,Y ; C) the intersection number of Stückrad and Vogel, and we put
j (X,Y ; C) = 0 if C is not in v(X,Y).

Corollary 4.2. With the preceding notation, if Z= ∅, then d= dimA = dimJ +1,

ck(R) = degvd−k (1≤ k ≤ d) and c0(R) = j (X,Y ; ∅) .

If k > dim(X ∩ Y) + 1, then ck(R) = 0.
If Z /= ∅ and K -rational, then d= dimA = dimJ − dimZ and

ck(R) =
∑

C

j (X,Y ; C) · e(OC,Z ) (0≤ k ≤ d) ,

where C runs over all subvarieties ofPn
L with C ⊇ Z anddimC = dimZ + k.

If k > dim(X ∩ Y)− dimZ , then ck(R) = 0.
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Proof. We apply Theorem 4.1 to the local ringA = OĴ ,Ẑ∆ , the idealI ⊂ A of the
diagonal subspace∆ and the images of the “generic” elements`0, . . . , `s−1 in
A, wheres is the analytic spread ofI . Note that these “generic” elements satisfy
the filter-regularity condition of Theorem 4.1 since, by an argument as in [20],
proof of (2.7), p. 66 (here one needs thatZ is K -rational), they avoid the required
prime ideals. In the same way one can see that the images of`0, . . . , `s−1 in I /mI
are a system of parameters forG/mG. The statement of the corollary follows
by the fact that localization commutes with doing the intersection algorithm. At
the same time the intersection numbersj (X,Y ; C) do not change since they are
by definition lengths of primary ideals contained in the prime ideal at which we
localize. �

By a result of van Gastel [11], Corollary 3.7, see also [7], Corollary 2.4.9,
the Segre class of the normal cones(CJ∩∆J ) is related to the Stückrad–Vogel
cycle v(`, J ) =

∑
vk by

vk =
k∑

i =0

(
k − 1
i − 1

)
c1(O (1))k−i ∩ si (CJ∩∆J )

and

sk(CJ∩∆J ) =
k∑

i =0

(
k − 1
i − 1

)
(−1)k−i c1(O (1))k−i ∩ vi .

Heresi (CJ∩∆J ) denotes the part ofs(CJ∩∆J ) of codimensioni in CJ∩∆J , and
we use the convention that

( m
−1

)
:= 0 for m ≤ 0 and

(−1
−1

)
:= 1.

Corollary 4.3. With the preceding notation, if Z= ∅ then d= dimA = dimJ + 1
and, for k = 0, . . . , d − 1,

cd−k(R) =
k∑

i =0

(
k − 1
i − 1

)
degsi (CJ∩∆J )

and

degsk(CJ∩∆J ) =
k∑

i =0

(
k − 1
i − 1

)
(−1)k−i cd−i (R) .

�

From Corollary 4.2 we obtain immediately a local version of Bezout’s theo-
rem which improves [3], Theorem 2:

Corollary 4.4 (Local version of Bezout’s theorem).Under the assumptions of
Corollary 4.2 it holds

e(OX,Z ) · e(OY,Z ) = e(A) ≤ e(GI (A)) =
∑

C

j (X,Y ; C) · e(OC,Z ) ,

where C runs over all subvarieties ofPn
L with C ⊇ Z .
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Proof. For the first equality see for example [1], (1.1), the inequalitye(A) ≤
e(GI (A)) is known by [5], (6.10), and the second equality follows by 2.5 and
4.2. �

Remark 4.5 (Embedded join).Let X and Y be equidimensional subschemes of
Pn and let A be the homogeneous ring of coordinates of the ruled joinJ =
J (XL,YL) ⊂ P2n+1

L localized at the irrelevant maximal ideal and letI ⊂ A be the
ideal of the diagonal subspace. Denoting byXY the embedded join ofX andY
in Pn one has

dimXY = s(I )− 1 ,

see for example [9], 3.9 or [7], 2.5.9. It is well-known that ht(I ) ≤ s(I ) ≤ dimA,
hence

ht(I )− 1≤ dimXY ≤ dimA− 1 .

This means thatXY has minimal dimensionif and only if ht(I ) = s(I ) and XY
has maximal dimensionif and only if s(I ) = dimA. From 2.5 and 4.2 it follows
that XY has minimal dimension if and only ife(GI (A)) = cd−s(Gm(GI (A)), that
is,

degX · degY =
∑

C

j (X,Y ; C) · degC ,

whereC runs through the irreducible components ofX∩Y with dimC = dim(X∩
Y). This improves one implication of [6], Corollary (3.8).

We conclude with two problems.

Problem 4.6 (Buchsbaum–Rim multiplicities). In the situation of Corollary 4.2
we have a setup in which the generalized Buchsbaum–Rim multiplicities of
Kleiman and Thorup [14], [15] are defined.

With the notation of Kleiman and Thorup one can take

G = L[x0, . . . , xn, y0, . . . , yn]

and consider the following situation:H is theL-vector subspace ofG1 generated
by x0 − y0, . . . , xn − yn, Z is the closed subscheme of Proj(G) defined by the
homogeneous ideal generated byH , M is the r -dimensional homogeneous ring
of coordinates of the join variety andM its associated sheaf.

In this situation, what is the relation between the Buchsbaum–Rim multiplic-
ities ei ,k([M]r ) and our multiplicity sequencec0(R), . . . , cd(R) of 4.2?

Problem 4.7 (Analytic case).In the recent paper [19], P. Tworzewski has con-
structed an intersection cycle of complex analytic subsetsX andY of a manifold
M , which do not intersect necessarily properly. His construction is based on a
pointwise defined intersection multiplicityg(x) = g(X × Y , ∆M , x) for a point
x ∈ ∆M , where∆M is the diagonal ofM ×M andg(x) is the sum of the coor-
dinates of the so-called extended index of intersection ˜g(x), see [19], Definition
(4.2), p. 185.
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Let A = OX×Y,x , let I = I∆M ·OX×Y,x , and putR = Gm(GI (A). It is a natural
question to ask whether

g(x) = e(GI (A))

and whether ˜g(X) is composed of our numbersc0(R), . . . , cdim(X∩Y)(R) and of
zeros.
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