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Introduction

The Samuel multiplicity of am-primary ideal in a local ring4, m) can be used
to define the intersection number of an irreducible component of an intersection
of two projective varietiesX andY in Pg. If X andY intersect improperly,
one must also assign intersection numbers to certain embedded components of
XNY, see for example [10], [7]. Some of such components are defined over the
base fieldKk and are calleK -rational, others are defined over a field extension
of K. In [1] it was proved thaK -rational components correspond to ideals of
maximal analytic spread and in [2] a multiplicity was defined for such ideals,
which generalizes Samuel’'s multiplicity. Here we define a multiplicity sequence
co(l,A),...,cq(l,A) for an arbitrary ideal of ad-dimensional local ring4, m)
(see 2.2), which is closely related to thai&rad—Vogel intersection cycle. Our
main result, Theorem 4.1, implies that each number of the multiplicity sequence
equals the (local) degree of the part of the cycle in a certain dimension (see
Corollary 4.2). As applications we obtain an interpretation of the Segre classes
of a subscheme as multiplicities in a bigraded ring (see Corollary 4.3) and a
local version of Bezout's theorem, which improves the one of [3]. If the itleal
has maximal analytic spread, theg(l , A) coincides with the multiplicityu(l , A)
defined in [2], and whem is m-primary, co(l , A) is the Samuel multiplicity of
and it is the only element of the sequence which is different from zero. Another
case, in which the sequence reduces to only one element different from zero, is
when the embedded join of andY has minimal dimension.

The multiplicity sequence is defined by means of the bigraded3in@, (A)),
whereG, (A) is the associated graded ring Afwith respect td . For this reason,
in Sect. 1 we recall some known facts on Hilbert functions of bigraded rings. In
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Sect. 2 we define the multiplicity sequencgl , A),...,cq(l,A) and we prove

that Zgzo c(l,A) =e(G (A). In Sect 3, weintroduce some extensions of the
Stiickrad—Vogel intersection algorithm to filter-regular sequences and study the
deformation to the normal cone in the sense of van Gastel [11]. This allows
the geometric interpretation of the multiplicity sequence, that will be given in
Sect. 4.

1. Hilbert functions of bigraded rings

In this section we recall some well-known facts on Hilbert functions and Hilbert
polynomials of bigraded rings, which will play a central role in the next section.
In the following, by a bigraded ring we mean a riRg= &5 Rj such that

(i) Ry are additive subgroups,
(i) Rj -Ra C R+ for all nonnegative integerisj, k, I,
(i) R is as anRyg-algebra finitely generated by elementsRaf and Ryo.

In particular, a polynomial rinds = So[Xo, - - - , Xn, Yo, - - -, Ym] in two sets of
variablesxo, ..., X, andyp, ..., ¥m iS a bigraded ring, wherg; are the additive
groups of polynomials homogeneous of degree the first set of variables and
homogeneous of degrgein the second one. Every bigraded ring is isomorphic
to a quotient of such a rin@ by a bihomogeneous ideal that is, an ideah
such thata = &7_ga N ;.

Let R = &7 Rj be a bigraded ring of dimensiahand assume thdkyg is
an Artinian ring. TheHilbert function of R is defined to be

h(i,j) = hr(i.]) = lengthe, (R;) .

The Hilbert seriesof R is the formal power series

Hr(s,t) = i hr(i,j)s't) .

i,j=0

Fori,j sufficiently large, the functiohg(i,j) becomes a polynomigk(i, ), the
Hilbert polynomial of R, which can be written in the form

= 3 2 ) (})

K+ <d—2

with ay € Z anday g_>_x > 0 (see [21], Theorem 7, p. 757 and Theorem 11,
p. 759). Moreover, ifR = S/a is as above and is a prime ideal that isiot
projectively irrelevant that is, it does not contain a power og{...,x,) or of
(Yo, - - -, Ym), then at least one of the coefficierdigq_,_k is positive.

Leth@O(i,j) =37\, h(u,]) be the so-calledum transfornof h with respect
to the first variable and let
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i j
hODG,j) = h®i,0)=> > h(u,v).
v=0 u=0

v=0

This means for the corresponding series #H&%(s,t) = ;*_ H(s,t) and

1
H®Y(s,t) = 1 H L0(s, 1) = H(s,t).

1
(1-91-1)

From this description it is clear that, for j sufficiently large, alsch®® and
h(@-1 become polynomials with integer coefficients of degree at rdostl and
exactlyd respectively, that can be written in the form

(]
e 5 00

Kkl <d—1

with 8l =& fork,| >0,k +1 <d -2 and

-5 ()0)

k,I >0
k+l <d

with al1),; =a fork,1 >0, k+1 <d—2.

Definition 1.1. For the coefficients of the terms of highest degree éfnl)pwe
introduce the symbol

o =a(R) =aly”, fork=0,...,d.

The integergy can be computed by using computer algebra systems as CALI
[12], CoCoA [4] and Macaulay 2 [13], in which the calculation of the numerator
polynomial of the Hilbert series of a multigraded ring has been implemented.

Proposition 1.2. Let R= &; ; R;j be a d-dimensional bigraded ring such thahR
is a field. Then, foreach k O, ..., d:

(i)
«(R) =) «(R/9)
Q

where{ runs through all primary ideals of highest dimension in an irredun-
dant primary decomposition of the zero ideal of R.
(i) If Q is a bigraded-primary ideal of R, then

c(R/Q) = lengthR/Q)y - & (R/P) -



576 R. Achilles, M. Manaresi

Proof. As at the beginning of Sect. 1, let us wriRe= S/a, wherea is a bigraded
ideal in the bigraded polynomial ring := Syo[Xo, - - - , Xn, Yo, - - - , Ym]. We observe
that the numbersy(R) = c(S/a) are obtained by doing sum transforms of the
Hilbert function of R with respect to both sets of variables $f that is,

ok (R) = c(S/a) = ax,a—k(S[x, yl/aS[x, y])

with the new variableg andy added to the former sexs, . .., X, andyp, .. ., ¥m
respectively. Hence we can apply the results of [21] to the latter coefficients
ak d—k, the so-calleddlegreesof aS[x, y].

Now (i) follows by [21], Theorem 8, p. 758 and the fact that the extension
ideal of a in the ring S[x, y] has no irrelevant components.

The result (i) is a consequence of [21], Sect. 32, p. 767, since

lengthR/Q)yp = lengthR[x, y]/QR[X, Y1) prix.y] -
O

Proposition 1.3. ([21], Sect. 33, p. 768).et S= K[Xo,...,%n,Yo,-..,Ym] be a
bigraded polynomial ring over a field K with algebraic closugg let ‘3 be a bi-
homogeneous prime ideal in S and letRS/P. PutP"*! = ProjK [Xo, ..., Xn, X])

and P™! = ProjK[yo,...,Ym,Y]). Then, for k= 0,...,dimR =: d, the coeffi-
cients ¢(R) are the numbers of points in which the subvarietPP®it x P™! de-
fined by 3 meets a subvariety given by k general linear equationg,in. X, Xn, X

and d— k general linear equations ingy. .., Ym,Y.

Proof. The proposition follows immediately from [21], Sect. 33, p. 768 applied
to the prime ideal3S[x, y] in the bigraded ringS[x, y]. O

If Roo is a local ring with maximal ideal, thenR = & (®i+j=u Rj) is a simply
graded ring with the unique homogeneous maximal i@8a+ n & (Bi+j>oR;).
We denote bye(R) the Samuel multiplicity oR with respect tant.

Proposition 1.4. (cf. [5], Proposition 13.3, or [22]).et R= ®R; be a bigraded
ring such that Ry is an Artinian local ring and let R:= (Ry; + Rig)R. Then

d

eR) =e(R,R) = > «(R).

k=0

Proof. Making use of the well-known binomial identity

SO0

one can compare the leading coefficients of the corresponding Hilbert polynomi-
als in order to get the second equality. The remaining eque{R) = e(R:,R)
follows sinceR. is a reduction of the homogeneous maximal ideaRoWith
respect to the total grading. O
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Proposition 1.5. Let R= @; ; R; be a bigraded ring such thatoRis a field, and
let Q C R be a bigradedp-primary ideal of (Krull-)dimension d. Then:

(i) co(R/Q) # 0if and only if Ro C B, and in this case §R/Q) = e(R/NQ).
(i) cg(R/Q) £ 0if and only if Ry C P, and in this case 4AR/Q) = e(R/N).
(i) «(R/Q)=0forall 1<k <d-1ifandonlyif R; C P or Ryp C ‘B, that
is, if and only ifQ is projectively irrelevant.

Proof. Since the casd = 0 is trivial, we will assumed > 0.

We will prove (iii) at first. If Ry; € 3 or Ryg C ‘3, then the Hilbert polynomial
of R/Q is zero, hence 0 3 4—2-k(R/Q) = c+1(R/Q) for 0 < k < d —2. Vice
versa, ifee(R/Q) = 0 for all 1 < k < d — 1, thenacg_2_«k(R) = 0 for all
0 <k <d -2, that is, the Hilbert polynomial dR/Q is zero. This means that
all bihomogeneous forms of bidegreig j) with i andj sufficiently large, say
i >ipandj > jo, are inQ, henceR(')"l- le"o C Q C*B. ConsequentRy; or Ry
must be inB.

In order to prove (i), we observe thay(R/Q) = apq—1((R/Q)[x]) and
(R/Q) = &-14-1-k(R/Q) = aa—1-«(R/Q)[X]), see the proof of 1.2. Now
assume thaRo C P. Then by (i) ax g—1-k(R/Q)[x]) =0 forall1 < k < d-—1.
Since the Hilbert polynomial of R/Q)[x] cannot be zero@QR[x] is a rele-
vant ideal inR[x]), the remaining coefficierty 4—1((R/Q)[X]) = co(R/Q) must
be positive. Vice versa, ith(R/Q) # 0, then by Propositions 1.3 and 1.2
the subvariety ofP™! x P™ given by d — 1 general linear equations in the
variablesyy, . ..,ym meets the subvariety dP"*! x P™ defined byBR[X] in
co(R/P) = co(R/Q)/lengthR/Q)y points. This means in particular that the
radical’l3 of the idealQ must containxy, .. ., Xy, that is,Ryo.

The remaining assertiogy(R/Q) = e(R/Q) follows from (iii), the first part
of (ii) (which one proves in the same way as (i)) and Proposition 1.4. O

Proposition 1.6. Let R= &; ; R; be a d-dimensional bigraded ring such thapR
is a field. If{g1 € Ry1 and /o, is a nonzero-divisor of R, then

Ck(R) = Ck(R/e()lR) fork = o,..., d-1
In the same way, if10 € Ryp and {1 is a nonzero-divisor of R, then
(R) = k—1(R/410R) fork=1,...,d.

Proof. The proposition follows from [21], Theorem 5, p. 756. O

2. A generalized Samuel multiplicity

In this section, for an arbitrary proper iddain a local ring @, m) we define a
sequence of nonnegative integexs= ck(l,A), k = 0,...,d which generalizes
Samuel’s multiplicity of anm-primary ideal.
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Notation 2.1. Let (A,m) be a local ring of dimensiod, let| C A be a proper
ideal, and letG := G, (A) be the associated graded ringAfvith respect td . It
is well-known that dinG = dimA =:d. PutR = G, (G (A)). ThenR = &7, R;
with o S S

Rj = Gr(G] () = (m'l) + 11" /(m™H) +17)
is a bigraded ring of (Krull-)dimensiod, andRyy = A/m is a field.
Definition 2.2. We call the sequence of nonnegative integers

G =l A) =a(Gu(GI(A) (0<k<d)
the multiplicity sequence of the ideal | C A.

The following result is a slight extension of an unpublished result of P. Schen-
zel. Our proof is different since it contains also the case of height zero.

Proposition 2.3. Let (A, m) be a local ring of dimension d, and let | be a proper
ideal of A. Let s= s(l) be the analytic spread andg dim(A/I). Then
(i) cx =0fork <d —s and k> q;

(i) Ca—s =Yy e(mGy) - e(G/P),
where 3 runs through all highest dimensional associated prime ideals of
G/mG such thadimG /g + dimGg = dimG;

(ii)) cq =Y, e(lAy) - e(A/p),
wherep runs through all highest dimensional associated prime ideals/bf A
such thatdimA/p + dimA, = dimA.

Proof. The coefficientsy, = a&(ﬂk (0 < k < d) stem from the Hilbert polyno-

mial of the sum transforrh®Y of the Hilbert function

h(i,j) = lengthG, (G} (A)) -

We observe that@9(i,j) = lengthG! /m'*1G}) = length(! /(m'*J +11*1)) and
put o . L
Mj = (1 Q¥+ 105 /T 4+

Using the exact sequences
0— My — I /(m™*M + 1) - A/ + 1) - A/(m*+17) -0
and the additivity of the length function we get
h®Y(,j) = length@/m' ™ + 11*1) + length(sl _, Mix) . 1)

To prove (ii) and the first part of (i), we fix > 0. Then forj > 0 the
function h@3(i ,j) becomes a polynomial ij. Let us first consider the case in
which the analytic spreas(l ) = dimG/mG = 0, that is, the ideal is nilpotent,
sayl™ = 0. Then for fixed > 0 and allj > 0 we have that

h®Y(i,j) = length@/m'*") + length@-y* Mic) , &)



Multiplicities of a bigraded ring and intersection theory 579

which does not depend gnHencecy is the only coefficient of they's different
from zero. We observe that, by Artin—Rees,

Mik C (mi +1—c| k +1 k+l)/(mi+1| k +1 k+1) ,

hence
|engthMik) < Iength((n”l‘cl k 4+ [ k+1)/(mi+1| k 4+ I k+1))
c—-1
- Z Iength(ﬁn”l_”tl k +1 k+l)/(mi +2—C+t| k +1 k+1)) (3)
t=0

and the lengths in the sum become polynomials of degree dimi(</1 <*1) —
1 < dim(A/l1) — 1. In the cases = h =d = 0 it is easy to check thaty =
length@) = e(A) = lengthG) = e(G) can be written as in (ii) or (iii). Ifd > 0,
the leading coefficient of the polynomial inon the right-hand side of (2) comes
from length@/m'*1) = lengthG /G (m'*1, A)), which implies thatcy = e(A) =
e(G). For the latter equality note th&; (m' ™1, A) contains)'*™, wheredt is the
homogeneous maximal ideal 6f. On the other hand, by Artin—Re&3, (m'*1, A)
is contained iMY' —¢. Taking into account that is nilpotent and alsenG is a
reduction oft, it is now easy to check that can be written as in (i) or (iii).
If s(1) > 0, then for fixedi > 0 the leading coefficient of the polynomial in
j > 0) of the right-hand side of (1) comes from the last term, that is,

h@D(i j) = e(M, G/m'*'G) (S :J> + terms of lower degree

with s = dim(G/m'*1G) = dim(G/mG) = s(I). To see this, note thaily =
[G/m*'G]k if k > i and that the ideal of all elements of positive degree of
G/m'*1G is a reduction of1- (G/m'*1G). By Nagata’s additivity and reduction
formula we obtain

e, G/m*G)= > lengthGy/m'*'Gy) - (0, G/P).
PEAsshG/mG

But
i+1 — p+ [
lengthGy /m' " Gg) = e(mGy, G‘n)( D > + terms of lower degree
with p := dimGg and the assertions (i) and the first part of (i) follow.
In order to prove (iii) and the second part of (i), we fix> 0 in (1). Then
we get fori > 0 a polynomial ini whose leading coefficient comes from

length@/m'* +11*1) since by (3) the length ol does not contribute to the
term of highest degree. Hence

h(l,l)(i ) =e(A/l J'+1) (q;’ ') +terms of lower degree

whereq := dimA/I . Nagata’s additivity and reduction formula implies
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e(A/UI") = > length@,/I1*A,) - e(A/p).

pEAsshA/I

Puttingr := dimA, and taking into account that
- r+j
length@, /11 *1A,) = e(IAp,Ap)< . J) +terms of lower degree

the assertions (iii) and the second part of (i) follow. O

Corollary 2.4. Let the notation be as in Propositich3.
@) If 1 is m-primary, that is,ht(l) = s(I) = d, then ¢(I,A) = e(l,A) and
Cl(l 7A) = :Cd(l 7A) =0.
(i) Ifs(l)=d, theng(l,A) = u(l,A), the multiplicity defined if2], (1.2).
(iii) fs()=ht()=:h, then g(l,A)=0forallk #d —h and

can(l,A= > ellAy)-eA/p) =D emGy) - e(G/P),
pEAssh@/1) B

where P runs through all highest dimensional associated prime ideals of
G/mG such thadimG /P + dimGg = dimG.

Proof. The corollary is an immediate consequence of Proposition 2.3. For (ii)
note that ifs(l) = dimA and € AsshG/mG), then the local ringGy is
Artinian. For (i) observe thas(l) = ht(l) implies dimA/p +dimA,, = dimA for
all p € Assh@/I1). a

Proposition 2.5. ([5], Sect. 14)Let (A, m) be a local ring of dimension d and let
| be a proper ideal of A. Then

d

eGIA) =) «l,A).

k=0

Proof. Let R := G, (G (A)) and let?)t denote the unique homogeneous maximal
ideal of R. By 1.4 it remains to be shown thefR) = e(G). If 91 denotes unique
homogeneous maximal ideal &6 = G, (A) andG™* := @0 GK, then

N =mG’2 G =m'Gom' G e o mG" @ (Bk>u G¥)
and
;ﬁU/muﬂ o (muGO/mu+1GO) o (muflGl/muGl) DD (Gu/mGu)
> @iﬂ:uRjj .

On the other hand, siné®t is generated byRy; and Ryp, we have thatn! is
generated by alR; with i +j = u, and the assertion follows. O
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From the preceding proposition and Corollary 2.4 we have at once the fol-
lowing corollary, which generalizes and improves a result of N. V. Trung ([18],
Theorem 2.2) for ideals of the principal class, that is, idéalkat can be gen-
erated by hi() elements. Note that for ideals of the principal clad9 = ht(l).

Corollary 2.6. Let (A, m) be a local ring of dimension d, and let | be a proper
ideal of A. If 1) = ht(l), then

eGI(A) =eGn(GI(A)= > ellA)-eA/p) =) emGy)- eG/P),
pEAssh@/1) B

where3 runs through all highest dimensional associated prime ideals 6fG
such thatdimG /P + dimGgp = dimG. O

Remark 2.7.For an ideall in a local ring @, m) of maximal analytic spread,
let u(l, A) be the multiplicity ofl defined in [2]. By Corollary 2.4 and Proposi-
tion 2.5 we have

d
p(,A) =eG) - > cll,A) =eG/m'G) > &(G/mG)
k=1

for t sufficiently large.

3. Intersection algorithms

In this section we recall the construction of théi&rad—\Vogel intersection cycle

in the projective space. L. J. van Gastel has shown that tihek@id—\Vogel cycle

is invariant under the deformation to the normal cone. We will give an analogous
construction in a local ring and show that also this local intersection algorithm
can be deformed to the normal cone.

3.A. The intersection algorithm ofi#tkrad and Vogel

Let X, Y be equidimensional closed subscheme®pf= ProjK[xo, ..., %n]),
whereK is an arbitrary field. For indeterminate (0 < i,j < n) let L be
the pure transcendental field extensikifu; )o<ij<n and X_ := X ®k L etc.
Proving a Bezout theorem for improper intersectiongicitad and Vogel (see
[7]) introduced a cycle)(X,Y) =vg+--- +v, on X NY,, which is obtained by
an intersection algorithm on the ruled join variety

J =] (XL7 YL) C Pﬁn+l = PrOj(L[XO, - X, Yo, - - 7Yn])

as follows:
Let A be the “diagonal” subspace &"*! given by the equations

)(O_yO:...:)(n_yn:07
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let Hi C J be the divisor given by the equation

n
6= U —y)=0
j=0
and put? := (4o, . . ., £n). Then one defines inductively cyclgg andwvy by setting
Bo :=[J]. If Bk is already defined, decompose the intersection

Bk NHk =vs1+ Bker (0 <k <dimJ),

where the support afi+; lies in A and where no component Gf.1 is contained
in A. It follows thatvy is a (dimJ — k)-cycle onX, NY_. = J N A. In general,
v(X,Y) = v, J) ;= > w is a cycle defined ovek. By a result of van Gastel
([11], Proposition 3.9), & -rational subvarietyC of X_ N Y_ occurs inv(X,Y)
if and only if C is a distinguished variety of the intersection Xfand Y in
the sense of Fulton ([10], p. 95), and this is equivalent to the maximality of the
analytic spread (see [2]) or the maximality of the dimension of the so-called limit
of join variety (see [8]).

All these facts follow more or less from the invariance of thécRtad—Vogel
cyle under the deformation to the normal cone. In order to state the precise result,
let C;naJ denote the normal cone dfn A in J, that is,

Cinad = Specls, T /.7i+1)’

where.7 C ¢; denotes the ideal sheaf afn A C J. Let ¢* = (¢5,. .., ¢;) be

the sequence of initial forms af := (o, ..., ) in G (%) = &%, 7' /.7
Then we have the following result of van Gastel [11], Theorem 3.2, see also [7],
Theorem 2.4.7:

Proposition 3.1 (Deformation to the normal cone).
v(,Jd) = v(l*,Cynad)

ascycleson N A=X . NnY CP.

3.B. Intersection algorithms for filter-regular sequences

In [2] we introduced two intersection algorithms in a local ring, which are coun-
terparts of the construction of thelfekrad—\Vogel cycle, and compared them with
analogous algorithms in the associated graded ring. In order to extend some of
the results of [2] from ideals of maximal analytic spread to arbitrary ideals in a
local ring, we introduce the following notation:

Let now A be an arbitrary Noetherian ring, letbe an ideal in the Jacobson
radical ofA and letG := G, (A) be the associated graded ring. Consider a sequence
a=(ay...,a) of elements ofl such that,/aA = /I and the sequence* =
@, ...,a") of the initial forms ofa,...,a in G is contained inG! and is a
filter-regular sequence with respect to the id@dl= @;>1 17 /171, that is
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(aika"'aalf—l)G G al: - (aik7"’,a;71)G G <G+>
={geGlg-(GH"C (a],...,a ;)G for somem e N}

for k = 1,...,t, or equivalently,a; ¢ B for all relevant associated prime
idealsB € Asss(G/(ay,...,a; )G for k = 1,...,t (see, for example, [17],
Definition 1, p. 252). In particular this implies that= (a,...,a) is a filter-
regular sequence iA with respect td , see, for example, [2], (2.2).

We define a cycle(a, A) of A supported otV (1) by the followingintersection
algorithm in A

Seta_; :=(0), ag := 0, and inductively

ak = (ak—1 + aA) :a (1) (0<k<t).
Observe thaty = A. Then

w(@,A) = length@/ax_1 +acA), [p],
P

where the sum is taken over all highest dimensional associated prime pdefals
A/ax_1+acAthat contairl and jp] denotes the cycle associated withWe define
v(a, A) = ZL:O w(a,A), and, if (A, m) is a local ring, thedegreeof vy (a, A) by

degu(a, A) = _length@/ax_1 +aA), - e(A/p).
p

In the same way, replacing by a* andl by G*, we define a cycle(a*, G)
by anintersection algorithm in G= G, (A) with a_, :=0- G, a := 0, and

ak == (Ak_1 +a;G) i (G) O<k<t).

We put
u(@*,G) = lengthG /(dk—1 +a; G))y [¥] .
B

where the sum is over all highest dimensional associated prime igeaié
G/(dk—1+a;G) that containG*. Observe that the prime ideals@fa; A) contain

| and hence correspond to prime ideals in the #jd. On the other hand, the
prime ideals ofv(a*, G) containG* and correspond to their contraction ideals in
G (A) = A/I. So both cyclesi(a; A) andv(a*, G) can be considered as cycles
of A/I. In order to compare them, we need the following lemma:

Lemma 3.2. Let A be a Noetherian ring, let | be an ideal in the Jacobson radical
of Aand leta,...,a €| such thaty/(as,...,a)A=+/ and their initial forms
ay,...,a In G = G/(A) are of degree one and a filter-regular sequence with
respect to G = @j>1 11 /11*1. Then, for k=1,...,t, it holds
Gi(ak-1,A) i (G') = k1 =
=Gi(@, .. &-1),A) 6 (G") = (@&,....,&_1)G ¢ (G7).

Proof. Analyzing the proof of [2], Lemma (3.4), one gets the result. |
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Theorem 3.3 (Deformation to the normal cone).
v(a,A) =v(@",G)
as cycles of Al.

Proof. At first we will show that there is a 1-1 correspondence of the prime
idealsp of v(a,A) and*p3 of v(a*,G) given byp/l =B N GP(A). Let P be a
prime ideal of the cycle(a*, G) and letp € Specf) such thap/l = BNG(A).
SinceG* C B, it holds dimG /) = dim(A/p) = dimA — k, and Lemma 3.2
implies @x—1 +1)/1 C [ak—1]o € p/I, henceayx_1 + &A C p. This shows that

p € Assh@/ax_1 + aA), because dind{/ax_1 + axA) = dim(A/p). (Note that,
also by Lemma 3.2qx_1 # A'if ax_1 # G.) Moreoverp containsl, hence p]
appears inx(a, A).

Now letp be a prime ideal ofy(a, A). This means thai containsl and is a
highest dimensional associated prime ideaRgf_; + axA. We will show that
B :=p/l +G* appears inx(a*, G), that is, P € AsshG/dx_1+a;G). Because of
the dimensions it is sufficient to show that 1 +afG C P, and sinceG*™ C ‘P,
it is even enough to show,_; C ‘B. The latter statement is equivalent with
ak_]_Gs;p # Gq3, and by Lemma 3.2 witlG, (ak_]_,A)Gq;g Gy <G;3> 7& Gq3. We
observe thaGy =~ G @A A, and G (ak—1, A)Gyp = G, (ak—1A,, Ap). If it was
ak—1Gp = Gy the idealG, (ak—1, A)Gy would contain a power oG*, hence
ak—1A, would contain a power dfA,, and this contradicts the definition of_.

It remains to prove the equality of the coefficients of a prime idealf
v (a,A) and the corresponding prime ideégl of v (a*, G), that is,

length@/ax_1 + aA), = lengthG/ax_1 + a;G)y .

But this follows with the same arguments as in the proof of [2], Proposition (3.6)
by rewriting the lengths as Samuel multiplicities. O

In order to state and to prove our Main Theorem 4.1 we need a third in-
tersection algorithm for a filter-regular sequence in a bigraded ring, which al-
lows to calculate the generalized Samuel multiplicitigél , A) of Sect. 2. As-
suming the notation of 2.1, consider the bigraded idg= G (G, (A)) with
Rj = G!.(G/(A)) and take elementa;,...,as in | such that,/aA = /I and
their imagesay,...,a2 in Ryy =1 /ml are a filter-reqular sequence with respect
to Ro1. Note that these conditions imply thaf = (a?,...,a2) is a system of
parameters foG/mG = &%, Ry ands is the analytic spread df. Moreover,
since the ideal Ro;) is the initial ideal G,(G*,G) of G* = @j>11/ /11" in
R = G,(G), it follows by a standard argument (see, e. g. [2], (2.2)) that the
initial forms a;’, ..., as of a1, ..., as in G are a filter-regular sequence of degree
one with respect t&G*.

Imitating the intersection algorithms 8 and G introduced at the beginning
of 3.B, we will use nowa® = (a;,...,a2) and Ro1) to define anintersection
algorithm in Rthat produces a cycle(a®, R) of R as follows:

Seta_; :=(0), a5 := 0, and inductively
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ak = (ak—1 + aR) :r (Roz) 0<k<s).

Then

w(@® R) =Y length®/ax 1 +a¢R), [p],
p

where the sum is taken over all highest dimensional associated prime ideals of
R/ax_1 +aJR which containRy;. We definev(a®, R) := ZLZO w(@°% R).

Proposition 3.4. With the preceding notation,
c(R) = degug_k(a®,R) for0<k <d=dimR.

Proof. For k = d we have to prove that

ca(R) =) lengthRy) - e(R/p),
p

wherep runs through all highest dimensional associated prime ideal thit
containRy;. But this follows from Proposition 1.2, since for such prinpesne
hase(R/p) = cq(R/p), see Proposition 1.5, (ii).

Again by 1.2 and 1.5, fok = 0,...,d — 1 we have thatk(R) = c(R/ao).
Observe that the filter-regular elemeaft avoids all the associated prime ideals
of R which do not contairRy;, hence all associated prime idealsRyfag. Thus
by 1.6 we obtain

Ck(R) = Ck(R/Clo) = Ck(R/Clo + afR)

for k = 0,...,d — 1. Now the same argument used above in the ¢ased
can be applied to thed(— 1)-dimensional bigraded ring/ao + a;R and gives
cq—1(R) = degui(a®, R). Repeating the reasoning one gets the propositiofl

In order to prove our main result 4.1 we need to compare the intersection
algorithm in the associated graded ri@g= G, (A) with the intersection algorithm
in the bigraded ringR = G, (G, (A)). This will be done with the help of the
following analogue of Lemma 3.2:

Lemma 3.5. Let (A, m) be a Noetherian local ring, | a proper ideal in A, &
G (A) and R= G (G (A). Let &,...,a < | such that their imagesfa...,ad
in Ro; = | /ml are a filter-regular sequence with respect tg;Rnd a system of
parameters for GmG. Denote by 4, ..., a7 the initial forms of a,...,a € |

in G. Then, for the ideal§x andax (k = 0,...,d) produced by the intersection
algorithms in G and R respectively, it holds

ag =

(af,...,a,f)R ‘R <R01>

Gm(ak, G) :r (Ro1)
= Gu((@},...,a))G,G) r (Ro1)

Proof. Analyzing the proof of [2], Lemma (3.4), one gets the result. O
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4. The main theorem and applications

Theorem 4.1. Let(A, m) be a d-dimensional local Noetherian ring, | be a proper
ideal in A, G:= G, (A) and R:= G,(G, (A)). Let &, ..., as be elements of | such
that the images & ...,a2 in Ryy = | /ml are a filter-reqular sequence with
respect to i and a system of parameters for/@G. Then

c(R) = degug«(a°, R) = degug_«(a", G) = deguq«k(a, A)
fork =0,...,d =dimA.
Proof. By 3.3 and 3.4 it remains to prove the second equality
degug—«(a°, R) = degua—«(@*, G).
From the intersection algorithms R andG it follows that
degud—k(@°,R) = e(R/ak_1) — e(R/ax)

and
degug_k(a*,G) = e(G/ak—1) — e(G/ax),

respectively. So we have to prove
e(R/ax) = e(G/dy) fork=-1,...,d. 4)

For k = —1 this means thag(R) = e(G), which has already been shown (cf. the
proof of 2.5). In the general case we obtain by Nagata's additivity and reduction
formula (see [16], (23.5))

e(R/ax) =Y  e(R/P) - lengthRyp/akRy) )
B

where runs through all highest dimensional associated prime ideal®/ of.
By the definition ofay, these prime ideal§? do not containRy;, hence 3.5
implies axRy = G (ak, G)Ry. Consequently

e(R/ax) = _ e(R/P) - 1engthGm(G)/Gum (@, G))s: - (6)
P

Let 91 denote the unique homogeneous maximal idealGofNote thatR
Gn(G) = @i G, (G](A) is the same ring aBm(G) = Bpo(Pi+j=n Rj)
Dn,j Gn (G (A)), but taken with another grading (see the proof of 2.5). Sice
is a graded ideal o, (A), the initial idealsG,, (dx, G) and Gy (ax, G) coincide.
It follows that

e(R/ak)

> e(Gn(G)/P) - lengthGon(G) /G ik G)) ©)
L

> e(Gn(G)/P) - lengthGn (G /)y

L
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where the sum is over the highest dimensional associated prim®g @ /ax)
that do not contairRy;. On the other hand,

eG/a) = eGn(G/i)) = e(Gn(G)/Gn (G, G)) ®)
= ) e(Gn(G)/P) - lengthGn(G /dk))s
B

where the sum is over the highest dimensional associated prim®s @ /dx).

To prove (4), in view of (7) and (8) it remains to prove that the highest di-
mensional associated prime idedtsof Gy (G/ax) do not containRy;. By con-
struction ofax one has diniR/P = d — k. PutR,o := &R 0 = Gn(A/1) and

p =P N Ry If P containedRy;, then dimG, (A/1)/p =dimR/PB =d — k. On

the other hand, by constructignmust containGe (dx, G) N R.o, hence

dim G (G’(A))/p < dimGP(A)/ (G N G (A)) = dimG /dx + G* .

But dimG/ax + G* < d — k since by definition no associated prime ideal of
G /dx containsG™. This gives the contradiction di®, (G (A))/p < d—k, which
finishes the proof. O

Now we want to apply Theorem 4.1 to the intersection algorithm o€i8ad
and Vogel for two equidimensional subscherfeandY of P", see Sect. 3.A. We
will use the notation introduced in Sect. 3.A. For an arbitrary subvadety P}
we putZ, :=J(Z,Z)N A. By J andZ, we denote the affine cones of the ruled
join J := J(X,Y) C P andZ, in the affine spacé\?"*2. Then we apply
Theorem 4.1 to the local ring := 5 ; = with maximal idealm, the ideall C A
of the diagonal subspac#, whose analytic spread we denotedythe images of
the “generic” elementsgy, ..., ¢s_1 in | and the bigraded ring := G, (G, (A)).

In particular we allowZ to be the empty subvariety &". ThenA becomes the
homogeneous ring of coordinates of the ruled jdinc P?"*! localized at the
irrelevant maximal ideal, that is, we obtain a global picture of the intersection
algorithm. For a subvarietf C ] that occurs in the cycle = v(X,Y) we
denote byj (X, Y; C) the intersection number of &tkrad and Vogel, and we put
j(X,Y;C)=0if C is notinv(X,Y).

Corollary 4.2. With the preceding notation, if Z (), then d= dimA = dimJ +1,
&(R)=degug—k (1<k<d) and @[R)=j(X,Y;0).

If k >dim(X NY)+1,then ¢(R) =0.
If Z # () and K-rational, then d= dimA =dimJ — dimZ and

&(R)=) j(X,Y;C)-e(ez) (0<k<d),
C

where C runs over all subvarieties Bf with C O Z anddimC =dimZ +Kk.
Ifk >dim(XX NY)—-dimzZ, then ¢R) = 0.
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Proof. We apply Theorem 4.1 to the local rirg= 675@, the ideall C A of the
diagonal subspacél and the images of the “generic” elemedts. .., ls_1 in

A, wheres is the analytic spread df. Note that these “generic” elements satisfy
the filter-regularity condition of Theorem 4.1 since, by an argument as in [20],
proof of (2.7), p. 66 (here one needs tHais K -rational), they avoid the required
prime ideals. In the same way one can see that the imagis.of, /s_1 in | /ml

are a system of parameters f6/mG. The statement of the corollary follows
by the fact that localization commutes with doing the intersection algorithm. At
the same time the intersection numbgfX, Y; C) do not change since they are
by definition lengths of primary ideals contained in the prime ideal at which we
localize. O

By a result of van Gastel [11], Corollary 3.7, see also [7], Corollary 2.4.9,
the Segre class of the normal cos;~J) is related to the Sickrad—\Vogel
cyclev(¢,J) => v by

k
> (i 1)ac @y ndensy

and

k
H(Conad) =3 (1) 0 @F
=0

Heres' (CynaJ) denotes the part af(Cyn2J) of codimensiori in Cyn4J, and
we use the convention thgf",) := 0 form < 0 and (_]) := 1.

Corollary 4.3. With the preceding notation, if Z () then d=dimA=dimJ +1
and, fork=0,...,d -1,

K k-1 .
Ca—k(R) = (i B 1) degs'(Cynad)
i—0
and
K —

k
dege!(©a) = Y- ({1 )1 ().
i=0

O

From Corollary 4.2 we obtain immediately a local version of Bezout’s theo-
rem which improves [3], Theorem 2:

Corollary 4.4 (Local version of Bezout's theorem).Under the assumptions of
Corollary 4.2it holds

e(Cxz) - e(Cvz) = e(A) < e(Gi(A) = > j(X,Y:C)-e(Ce 2),
C

where C runs over all subvarieties Bf with C 2> Z.
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Proof. For the first equality see for example [1], (1.1), the inequadify) <
e(G; (A)) is known by [5], (6.10), and the second equality follows by 2.5 and
4.2. O

Remark 4.5 (Embedded joinlet X andY be equidimensional subschemes of
P" and letA be the homogeneous ring of coordinates of the ruled jbirn
J(XL, Y1) C P21 Jocalized at the irrelevant maximal ideal and let A be the
ideal of the diagonal subspace. DenotingXy the embedded join ok andY
in P" one has

dimXY =s(l) -1,

see for example [9], 3.9 or [7], 2.5.9. It is well-known thatiht€ s(1) < dimA,
hence
ht(l) — 1 < dimXY < dimA - 1.

This means thakKY has minimal dimensioifi and only if ht() = s(I) and XY
has maximal dimensioifi and only if s(I) = dimA. From 2.5 and 4.2 it follows
that XY has minimal dimension if and only &(G, (A)) = ¢q4_s(Gwn (G (A)), that
is,
degX - degY = " j(X,Y;C)-degC,
C

whereC runs through the irreducible componentsafY with dimC = dim(Xn
Y). This improves one implication of [6], Corollary (3.8).

We conclude with two problems.

Problem 4.6 (Buchsbaum—Rim multiplicities). In the situation of Corollary 4.2
we have a setup in which the generalized Buchsbaum—Rim multiplicities of
Kleiman and Thorup [14], [15] are defined.

With the notation of Kleiman and Thorup one can take

G:L[X()v"’axnayOv"’ayn]

and consider the following situatioft is theL-vector subspace @b; generated
by Xo — Yo,---,% — Yn, Z is the closed subscheme of P)(defined by the
homogeneous ideal generated By M is ther-dimensional homogeneous ring
of coordinates of the join variety and/# its associated sheaf.

In this situation, what is the relation between the Buchsbaum—Rim multiplic-
ities € X([..#2],) and our multiplicity sequencey(R), ..., cq(R) of 4.2?

Problem 4.7 (Analytic case).In the recent paper [19], P. Tworzewski has con-
structed an intersection cycle of complex analytic subXeamdY of a manifold

M, which do not intersect necessarily properly. His construction is based on a
pointwise defined intersection multiplicity(x) = g(X x Y, Ay, X) for a point

X € Am, WhereAy, is the diagonal oM x M andg(x) is the sum of the coor-
dinates of the so-called extended index of interseciit), see [19], Definition
(4.2), p. 185.



590 R. Achilles, M. Manaresi

Let A= Cxxy x, letl =74, - Ckxv x, and putR = G, (G, (A). It is a natural
guestion to ask whether
g(x) = e(Gi (A)

and whetherg(X) is composed of our numbe(R), ..., Cimxnv)(R) and of
zeros.
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