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0. Introduction

In 1981, J. Bourgain [2] solved a long outstanding problem in Banach space
theory by showing the existence of an uncomplemented subspacendfich is
isomorphic to/!. In that paper, he raises the question of whether it is possible
to find an uncomplemented translation invariant subspace!@@), where G

is a compact abelian group, which is isomorphicltb As a special case he
mentions the question of whether the closed linear subspaté spanned by

the complement of the Rademachers in the Walsh functions is (a) isomorphic to
L%, or (b) anZ:1-space. Bourgain [2, Problem 6] attributes the question to Pisier.
As far as we could trace, it was also previously considered by Kisliakov and
Zippin.

SupposeG is a compact abelian group add its character group. For any
subsetA of I', we defineL%(G) as the closure in.}(G) of the linear span of
{y:v€A}. We PULA = I'\A. Answering in negative questions (a) and (b), we
shall show that ifS C I" is an infinite Sidon set, then the canonical image of
Lé(G) is uncomplemented in its second dual and it is notanspace (Corollary
5.1).

We approach the problem from a purely Banach space point of view. Note that
if Sis a Sidon set, then the m&p: LY(G) — co(S) defined byQf = {fA(’Y)}wes,
wheref denotes the Fourier transform, is a surjection so thanerLé(G) is
the kernel of a quotient map froint(G) onto a space isomorphic ®(S).

We first show (Proposition 2.2) that/ifis a finite measure anfl is a Banach
space containing an isomorphic copyogfthen the canonical image of the kernel
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of any surjectionQ from L(1) onto E is uncomplemented in its second dual;
consequently, ke is non-isomorphic to a Banach lattice. Our argument depends
on an old lifting principle of Lindenstrauss [22].
We then turn to part (b) of the question. Here the idea is to study subspaces

X of an %;-spaceF which areGT-spaces. (Recall, cf. [30], that a Banach space
X is a GT-space if every bounded linear operator frofninto /2 is absolutely
summing.) LetE = F /X so thatX is the kernel of a quotient map onkx Then
we show (Theorem 3.1) that is a GT-space, if and only if every short exact
sequence

0P —-Z—>E—D0

splits, i.e. in the language of [18] every twisted sum/éfand E is naturally
isomorphic to the Cartesian produ@t® E. This leads us to the general question
of characterizing such Banach spa&edNe show that if every twisted sum 6%
andE splits, thenE (i) fails to have any type > 1 (Corollary 4.1, cf. also [8]),
and (ii) has cotype < oo (Corollary 4.2). In particular, iE contains a subspace
isomorphic tocy, thenX is not aGT-space and a fortiori, by the Grothendieck
Theorem fails to be ar¥%;-space.

Coming back to Sidon sets, we would like to mention that our techniques
do not establish whether, 8 is an infinite Sidon set, the spat:é(G) can have
local unconditional structure. (However, see the remark at the end of the section.)
Furthermore, we do not know whether the spab@(ﬁ) depend essentially on
the choice of Sidon set (i.e. B andS; are infinite countable Sidon sets in
and I, respectively, are the spacbé(Gl) and Léz(Gz) isomorphic?)

In order to keep the paper self contained we include proofs of several facts
on twisted sums which have been known for about 20 years but which seem to
be not available in the literature. Many of these facts are contained in the preprint
of Domanski [8]. We are indebted to PawBlomahski, who read the preliminary
version of the paper, for supplying us with additional references and for many
valuable comments.

Remark. After the initial preparation of the paper, W.B. Johnson showed, using
related techniques, that the kernel of the quotient map, @nto c; fails to have
(Gordon-Lewis) local unconditional structure.

1. Auxiliary lemmas

In this section we state three essentially known lemmas on short exact sequences
of Banach spaces (cf. [24, Chapt. Ill] in the language of homology; [28], [18],
[20], [7], [32], [33] in the setting of Banach spaces and topological vector spaces).

If u: X — Y is a (bounded) linear operator acting between normed spaces
X andY, then we put

p(u) = inf{n > 0:Vy € u(X) 3 x € u=*(y) with ||x|| < nlly|}-

Lemma 1.1. Let E, X, F be Banach spaces, uE — X an isomorphic embed-
ding,v : X — F a surjection, YE) = kerv. Then there exists an equivalent norm
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on X andg > 0 such that if X denotes X equipped with the new norm, then
u:E — X is alinear isometric embedding anth : X; — F is a quotient map,
hence E is isometrically isomorphic to a subspace paXd F is isometrically
isomorphic to the quotient of Yoy this subspace.

Proof.Let By denote the unit ball of a normed spa¢eand letcv(W) denote the
absolute — for real spaces (resp. circled — for complex spaces) closed convex
hull of a setW C Y.

We define the new norm oX to be the gauge functional of the set

cu(u(Be) U aBx) N Bv~*(Bk)
where the positive numbers and 3 are chosen so that
cv(u(Be) U aBx) NU(E) = u(Bg) andv(aByx) D (GBE.

The existence oft > 0 and( > 0 in question follows from the assumptions that
u is an isomorphic embedding and thatbeing a surjection, is open. O

Our next lemma in the setting of Banach spaces is often called “Kisliakov’'s
Lemma”.

Lemma 1.2. Let X,Y, X; be Banach spaces, let X be a subspace08id let

u: X — Y be a bounded linear operator. Then there exist a Banach space
Y, and a linear operator y: X; — Y; such that Y is a subspace of,Y; is

a norm preserving extension of u and the quotient spaggX>and Y /Y are
isometrically isomorphic. Precisely the following diagram commutes

X — 3 Xy /X

X

bl

% Y, Y1/Y
J Q

where j and J are natural inclusions, g and Q quotient maps, and | is an iso-
metric isomorphism. Moreover, if u is an isometric isomorphism or an isometric
embedding, then so iguin generalp(u) = p(uy).

For a proof except the “moreover part” see [5, pp. 316-317].

Proof of the “moreover part”.Without loss of generality assume thiai| = 1.
Our assumption says that thereciswith 0 < ¢ < 1 such that|u(x)||y > c||X||x
for x € X. Recall thaty; is defined to be the quotient space of thesumX;®1Y
by the subspace

W ={(x,—u(x)) e X B1Y : x € X},

andu; is defined to be the restriction of the quotient m&p®s; Y — Y; to the
subspaceX; @3 {0} naturally identified withX;. For fixedx; € X; we have
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[Jur(%a) v, inf (|2 — X[|x, + [lu()lly)
xeX

Y

inf (et — ), +clx])

Y%

ClIXallx -

We also need a dual version of Kisliakov's Lemma.

Lemma 1.3. Let Y,Z,Z; be Banach spaces. Let Z be a quotient of Y via the
guotient map g and let u Z; — Z be a bounded linear operator. Then there
exist a Banach space; $uch that 4 is a quotient of Y via the quotient map
and a linear operator u: Y — Y; with |u|| = ||uz|| such that qu = ug; and

the spaces X kerq and X = kerq; are isometrically isomorphic. Precisely the
following diagram commutes

X — 5y 4

I

X4 Y, Z
J 1

where | is an isometric isomorphism and j andaye natural inclusions.
Moreover, if u is a quotient map onto a subspace of Z, then sg igrecisely

p(u) = p(Uy).
Proof. Put
Yi={(y,z) €Y & Z1: q(y) = u(z1) }
where the norm irY @ Z; is defined by||(y, z1)|| = max(|y|l, [|z|])-
Defineq; : Y1 — Z3 andu; : Y1 — Y by

q(ly,z)) =z andu((y,z)) =Y.

We omit the routine verification. O

2. Quotient maps from anL!-space whose kernels are uncomplemented
in their second duals

We begin with a result which was known to several experts in the field. It gen-
eralizes an old theorem of Lindenstrauss [22]. To make the paper self-contained
we include the proof which is essentially the same as Lindenstrauss’ original
argument. For related references cf. [18] and [19, Chapt. VI] where the results
refer top-homogeneous spaces<{0p < 1); [8] and [9] in the setting of operator
ideals.

Here and in the sequel we identify a Banach space with its canonical image
in its second dual.
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Proposition 2.1. (Lindenstrauss Lifting Principle) Let Y and E be Banach spaces
and let Q: Y — E be a surjection. Assume

kerQ is complemented in its second dual. (2.1)

Then for everyZ;-space F every bounded linear operator. F — E admits
a lifting, i.e. there exists a bounded linear operafor F — Y suchthat@ =T

Proof. The assumption thd is an_%;-space means that there exist & [1, co)
and a subnetH,).c; of the net of all finite dimensional subspaced-oflirected
by inclusion such that eadh, is at mosto isomorphic tof§, . Let T, = T,
where T denotes the restriction 6f to F,. The lifting property of(§ ¢
yields the existence of a linear operaffy : F, — Y with QT, = T, and
[Tl < o. SinceQ is a surjection, the open mapping theorem yigk®) > 0.
Thus, givenn > p(Q), there exists a functiop : E — Y (in general neither
linear nor continuous) such th@y(e) = e and||¢(e)|| < n||e|| for e € E. Now,
put Ye = kerQ and, for 0<r < oo let

B(r) ={y™ € (Ye)™ : |ly""|| < r} equipped with theXg)* topology of (Vg)**.

ThenB(r) is a compact topological space. Hence, by the Tychonoff theorem, the

product
I1=1I8W+nITIIfD

feF

is also compact. For every € (2 definer,, € IT by

_f Talf) = ¢T(f) forf eF,
malf) = { 0 for f ¢ F,

Let = be a limit point of the set#,).cq; the existence ofr is a consequence
of the compactness aff.
Let us put

'T:F’71'+g0T7

whereP : (Yg)*™* — Yg is the projection granted by (2.1).

To verify thatT is the desired operator, first note trﬂa;(f) —T(f) € Ye
for everyf € F, and fora € §2; hencen,(f) € B((c + n)|IT|IfI) N Ye
for everyf € F and for everya € 2. Thus=(f) € B((oc +n)||T|||f]]) and
Px(f) € B((o +n)|IP[T|If[) N Ye. Since|[P|| > 1, we get

ITE) < [IPll(c+2p)[T|[[f|| forf €F. (2.2)

To complete the proof one has to verify the linearityTafin view of (2.1)
and the fact thatJ,,., F. = F, it is enough to show

T +£") =T +T(E") forf',f” €U, .p,Fa (2.3)
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To this end pickng so tha;j’,f” € F,, and letF, D F,,. Taking into account
that T, (f' +f") = To(f) = To(f”) =0 andeT(f' +f") — oT(E') — oT({") € Ye
we get

To(f +17) = ma(f) = ma(f”) = [T +17) —oT(f') — T ()]
for a € £2 such thatF,, D F,,.
Thus, remembering that is a limiting point of the net#,).cn, we get
7" +f") —n(f) —w(f") = —[@TE +£") — oTE)+T(E")] € Ye.
Applying to both sides of the latter identiy, we get
Pr(f’' +f") — Pr(f’) — Pr(f") = —[@T (' +1") — oT(f') — oT(f")].
which yields (2.3). O

Next we discuss relationships of Lindenstrauss’ Lifting Principle with the
Radon Nikodym Property (=RNP). We follow the terminology and notation of
[6].

Recall ([6, Chap. lll]) that a linear operatdr : L'(x) — E (E a Banach
spacey a finite measure on a measure spa@eX, 1)) is representable if there
exists a Bochner integrable functi@(-) € L°>°(u; E) such that/|e(-)||ec = ||T||
and

Tf :/ f(s)e(s)u(ds) for f € LY(p).
(%

A Banach spac& has RNP provided for every finite measuréequivalently
for some non purely atomig) every bounded linear operator from(y) into E
is representable.

It is interesting to compare Proposition 2.1 with the well known

Fact. The assertion of Proposition 2.1 remains valid if the assumption (2.1) is
replaced by
E has RNP and F is an abstract L-space. (2.4)

Proof. Assume first thaF = LY(x) with 4 finite. Then everye(:) € L>=(y; E)

can be represented as a sum of an absolutely convergent seti&ginE) of
countably valued functions. Hence, by the open mapping principle there exist
6 > 0 and a functiory(-) € L*(u; Y) such thatQ(y(s)) = e(s) for s € 2 n a.e.
and|ly(-)|lss < 8/le(")]|s0. Thus ife(-) representd : L1(1) — E, then we define
T:LYu) — Y by

Tr= [1OyOuy forf e L)

The general case follows from the observation that by Kakutani's repre-
sentation theorem every abstrdcspace is the/t-sum of a family of spaces
(LY(ta))aea With i, finite for all o € A. O

A simple consequence of Proposition 2.1 is
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Corollary 2.1. If E fails RNP and Q: ¢1(A) — E is a surjection, thetkerQ is
not complemented itkerQ)**.

Proof. If E fails RNP, then there exists a finite measprand a bounded linear
operatorT : L(1) — E which is not representable. Since every bounded linear
operatoru : L*(x) — ¢*(A) is representable ([6, p.83, Corollary 8]), soQs!. If
kerQ were complemented in (k&)** then, by Proposition 2.1IT would be of

the formQu, a contradiction. O

Our next result is more sophisticated.

Proposition 2.2. Let Q : L}(x) — E be a surjection. Assume that the measure
w is finite and E contains a subspace, say Eomorphic to g. ThenkerQ is
uncomplemented itkerQ)**.

In particular the kernel of a surjection bf(;) ontocy(A) is uncomplemented
in its second dual whenevé is infinite andu is a finite measure.

Proof. Assume first thaE is separable. Then, by Sobczyk’s Theorem ([23, I,

onto

Theorem 2.f.5]), there exists a projectiéh : E — E;. Let (e, &), be

the biorthogonal system irE(, E;") induced by the unit vector basis of. Put

on = (PQ)*(e¥) for n = 1,2,.... Then (on) C L>(u) = [L}(w)]*. Regarding

(¢n) as a sequence i’(1) we infer thate, — 0 weakly inL?() asn — oo
(becausegr — 0 in the ¢y topology of /* = (co)* asn — 0). By Mazur's
Theorem some convex combinations of thg's tend to O strongly inL?(y).

Hence, by a result of F. Riesz, a subsequence of these convex combinations tends
to 0 u-almost everywhere. Thus there is an increasing sequence of the indices
0=ky < kg < ---, asequencey;) C L>(u) such that), = ij‘;knflﬂa,-gpj with

g >0 andzj'“;kﬂflﬂaj =1(mn=12..), and
Iinm Yn(s) =0 forse 2 u-ae. (2.5)

We put

n=1 \j=kn_1+1 j=kn_1+1

R(iﬁ%) :i( i tiai> ( zkn: Q)fOF(tJ)ECo-

ThenRis a projection fronk; onto its subspack, isomorphic tocy and spanned
oo
by the sequence of “characteristic 1‘unctionézj'“;kn_l+1 q) . Thus the natural
n=
embedding) : Ey — E satisfiesRPJ = idg,. Clearly Ey being isomorphic tap
fails RNP. Thus there is a bounded linear operafor L' — E; which is
not representabld_t denotes the space of absolutely Lebesgue integrable scalar
valued functions on [QL]). Now, if kerQ were complemented in (k&)** then,
by Proposition 2.1, there would exist a bounded linear ope@tokt — L(u)
such thatQS = JT. ThusRPQS = RPJT=T. Now, observe that
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o0 Kn
RPQ(F) =Y /Q fS)en@©)u@s) | Y g | forfel(y).
n=1

j=kn—1+1

Note that the sequencﬂ‘;kn_lﬂq)gil is equivalent to the unit vector basis of
Co. Thus the condition (2.5) yields that the operator RPQ is representable (cf.
[6, p.75, Remark after the proof of Lemma 2.11]). Hefice RPQS would be
representable because an operator ftdu) to a Banach space is representable
iff it factors through/*(A) (cf. [6, Chapt. Ill, Sect. 1, proof of Theorem 8)), a
contradiction. O

The argument for non separalifeis almost the same. Instead of Sobczyk’s
Theorem we use the following generalization.

Lemma 2.1. Let E be a quotient of 4(x) with p-finite measure. Assume that E
contains a subspace;Esomorphic to g. Then & is complemented in E.

Proof. If 4 is finite then the natural injection df(x) into L(;) is bounded and
has a dense range, herlcgy.) is a WCG space. Thug is a WCG space. There-
fore every separable subspacebois contained in a separable subspace which
is a range of a contractive projection fragn(cf. [4, pp. 237-240]). Combining
this fact with Sobczyk’s Theorem we get the desired conclusion. O

Remarks

1. The assertion of Proposition 2.2 remains valid if the assumptiefinite” is
replaced by i o- finite” because every!(v) with v o-finite is isomorphic
as a Banach space with(u) for some finite measurg.

2. After reading a preliminary version of this paper, S. Kwapien has shown us
an alternative proof of Proposition 2.2 which does not use the Lindenstrauss
Lifting Principle. We present his argument with his permission.

Let Xo be a subspace of a Banach spaceThen K /Xp)* can be identified
with Xg- and Xg* with Xz~ where
Xg- {x* € X* 1 x*(x) =0 for x € Xo},
Xgt = {x* e X*ox*(x*) =0 for x* € X5}

The subspace + X3+ of X** is norm closed. The conditioX, is comple-
mented inXj* is equivalent to the existence of a bounded linear projection
p 1 Xg-t—Xo.

onto

Forj = 0,1, 2 denote byctﬁ))ﬁgl the unit vector basis af, /%, /2 respectively.

Proposition A. If Xp is complemented inX then for every bounded operator
T : co — X/Xo there exists a weakly null sequen@g) C X such that T6©) =
Q(xy) forn=1,2,... where Q: X — X /X is the quotient map.

Proof. First note that the formula
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BOc+X) =X+ P (x € X, X" € X5

well defines a projection fronX @ X5+ onto X with ||| < ||p|| + 2.

Let S = IT* : X-——¢2—¢2 wherel : ¢ — ¢2 is the natural embedding
sincel is 2-summing, so i§. ThusS extends to a bounded operafr X* — (2,
Putx:* = (S)*(6@) forn=1,2,.... Thenx* € X € X5-*. Indeed, picky, € X
so thatQ(yn) = T(6©). Thenx}* =y, + (x* — yn) andx;* —y, € X5~ because
for everyx* € X5~ one has

X (X*) = 5r(12)(§ X = (5[(12)(5)@) - 6r(11)(-|—*x*) — X*(T(ér(]O))),

Now putx, = p(x**) for n = 1,2,.... Sincex, = p(S)*(6@) and ¢®) is
a weakly null sequence if?, so is &,) in X. Finally Q(x,) = Q(y,) because
X = PYn + (X7 — Yn)) = Yo + P(X3 — Yn) @ndp(x;™ — yn) € Xo. O

Definition. A Banach space X has propelffy) if for an arbitrary weak* null
sequencéyr) C X* there exists a CCC sequen@g;) such that

IiLn ¥x (%) = 0 for every weakly null sequengr;) C X. (2.6)

“CCC” stands for “consecutive convex combinationgyy) is a CCC sequence
for () if there exist an increasing sequence of the indiBesny < n; < ...
and a sequencg\,) of non-negative scalars such that

Nk Nk
de= > Ngrwith > N =1 k=12..)

j =ng—1+1 J =ng_1+1
Proposition B. L(x) has(K) for every finite measurg.

Proof. If (7)) C L>(u) = (L*(u))* is a weak* star null sequence then some
subsequence ofyf) is a weakly null sequence ih?(u). Hence, by Mazur's
theorem, some CCC sequeneg ) for (¢;) strongly converges to zero I (u).
Since weakly null sequenceslis are equi-integrable one easily checks tht)(
satisfies (2.6) (cf. the argument at the end of the proof of Lemma 5.2) O

The spacey fails (K) in the following strong sense:

Proposition C. If (yy) is a CCC sequence fqp(M) C * = (co)* then there
exists a bounded linear projection Mcy — ¢ such that

inf yi (V 69y >0 O (2.7)

Proof of Proposition 2.2. Let U : ¢g — E be an isomorphic embedding.
Since Sobczyk’s theorem generalizes to quotients?¢f) for y finite (Lemma
2.1), there exists a projectio® : E — E with P(E) = U(cy). Put ¢} =
Q*P*(U H*(6M) € (L*(w)* for n = 1,2,.... Since §Y) is a weak* null se-
quence in¢* = (co)*, so is (o)) in (LY(u))*. By Proposition B there exists a
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CCC sequencey) for (¢7) which satisfies (2.6). Letyf) be the CCC se-
quence for ) of the same convex combinations as the sequengefor (¢7).
LetV : ¢ — ¢ be that of Proposition C. Puit : UV : ¢ — E. Assume that
kerQ = Xo C L(u) were complemented iX;*. Then, by Proposition A (applied
to X = L(x)) there would exist a weakly null sequence sequengk € L (1)
such thatT(éf(O)) = Q) for k=12,.... On the other hand we have

PE) = Ve (V) fork=12...

This would lead to a contradiction with (2.7), becauseglifi(x) = 0 by (2.6)1

Finally note that Proposition B and accordingly Proposition 2.2 can be gen-
eralized to preduals df *-algebras with finite faithful trace.
Our last result in this section is a partial converse to Corollary 2.1.

Proposition 2.3. Suppose E has RNP and is complemented‘in Ehen for every
quotient map Q ¢*(A) — E, kerQ is complemented itkerQ)**.

Proof. Denote byP a bounded projection frofe** ontoE and byIT : /*(A)** —
(1(A) the canonical projection.

We start by observing that & is an abstract-space, then every operator
T : Z — E factors through a spad@(B). This follows from the fact thaZ can
be decomposed as @&h-sum ofL*(1.,) spaces where eagh, is a finite measure
and from the Lewis-Stegall theorem (cf. [23], [6, Chapt. Ill, Sect. 1, Theorem
8]). Since¢(B) is projective, this implies thal also factors througlQ. We
apply these remarks t8 = (¢(A))** and toT = PQ** to deduce the existence
of a bounded linear operat&: [¢/*(A)]** — (*(A) such thattQ** = QS.

Now letV = S+ (I — S)IT : [A(A)]** — (*(A). Clearly V is a projec-
tion onto ¢*(A). FurthermoreV (kerQ**) = kerQ (indeed letx** < kerQ**.
Putx = 7x** € (%(A). ThenQSx* = PQ**x** = 0 andPQ**x = PQx = Qx.
ThereforeQVx** = Q(I — S)x = Qx — PQ**x = Q). However keQ** is the
weak*-closure of ke® in [(*(A)]** (sinceQ is a quotient map) and so is natu-
rally isomorphic to (keQ)**. O

3. Subspaces of an%;-space which are GT spaces

Recall that a Banach spadgeis a twisted sum of Banach spac¥sand Z, in
symbolsY = X& Z provided

0-XLy%z_o

is a short exact sequence, ij€X) = kerq, with j being an isometrically iso-
morphic embedding and being a quotient map. We say that a twisted sum
Y = X& Z splits provided it is naturally isomorphic to the Cartesian product
X & Z, i.e. there exists a bounded linear operatorZ — Y such that
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qu = idz (3.1)

where i¢ denotes the identity operator @h Note that ifv satisfies (3.1) then
idy —vq is a projection fromY onto X. Conversely, ifp: Y — X is a bounded
linear projection ontoX then the formulav(z) =y — p(y) for anyy € Y such
thatq(y) = z well definesv : Z — Y which satisfies (3.1), hencé Z splits.
Next recall that every Banach space is a quotient spacé (@) for an
appropriate seA.
We begin with a “purely formal” but useful fact.

Proposition 3.1. Suppose we are given Banach spaces E and H and a quotient
map G : /(A — E and let X% = kerge.
Then the following conditions are equivalent

(i) every bounded linear operator fromgXnto H extends to a bounded linear
operator from¢1(A) into H;
(i) every twisted sum K E splits.

Proof. (i) = (i). By Lemma 1.2 a bounded linear operator Xg — H extends
to a linear operaton; : ¢*(A) — H& E. By (ii) there existsv : E — HE E
with quv = idg whereq : H& E — E is the quotient map with ker = H. Put
p = idyee — vg. Thenp is a projection fromH & E onto H and puy, is the
desired extension af.

(i) = (ii). Fix a twisted sumY =H&E and letq : Y — E be the quotient map
with kerq = H. Fix ¢ > 1. The lifting property of/*(A) yields the existence
of a bounded linear operatgr : /*(A) — Y such thatqy = ge and||¢|| < c.
Obviously p(Xg) C H = kerq. Thus, by (i), the restriction op to Xg extends
to a bounded linear operator, say. /*(A) — H. Let us consider the operator
¢ — v LY(A) — Y. Clearly ker(p — v) D Xg. Hencey — v factors throughgg,
precisely the formulai(e) = (¢ —v)(€) for e = ge(£) € E well defines a bounded
linear operatou : E — Y such thatuge = ¢ — v. Sincequ = 0, we have

QUG =gy = CQe.
Thusqu = idg becausege (¢*(A)) = E. HenceH & E splits. O

Remark For an analogue of Proposition 3.1 in Frechet spaces cf. [33], [34].

Under the additional assumption thdtis complemented in its second dual,
Proposition 3.1 generalizes t&1-spaces.

Proposition 3.2. Let E and H be Banach spaces. Assume that H is complemented
in its second dual. Then the following conditions are equivalent

(i) every twisted sum k E splits;

(iii) for every %1-space F and every quotient map qF — E every bounded
linear operator from X% = kerge into H extends to a bounded linear operator
from F into H;
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(iv) there exists an¥%;-space F and a quotient map=q: F — E such that
Xe = kerge has the above extension property.

Proof. (i) = (iii). The proof is the same as that of the implication &) (i) of
Proposition 3.1.

(iii) = (iv). Trivial.

(iv) = (ii). The proof differs from the proof of the implication (i (ii) of
Proposition 3.1 only how the bounded linear operatowhich lifts ge is con-
structed. Instead of using the lifting property @&{A) we apply Proposition 2.1.
At this place the assumption theit is complemented ifd ** is used. O

RemarkCondition (ii) has isomorphic character in the following senseHIf E)

is a pair of Banach spaces such that every twistedidunk splits and if Hy, E;)

is another pair such th&l is isomorphic toH; andE is isomorphic toE; then
every twisted sunH; & E; splits. This is an immediate consequence of Lemma
1.1. Thus Propositions 3.1 and 3.2 remain valid if one repl&éy a Banach
space isomorphic t& or equivalently ifge is an arbitrary surjection onth.

Next we discuss a qualitative and a local version of condition (ii).
For a twisted sunY = X& Z put

_ [ +ooif Y does not split
spllY) = { inf([Jo]|2 + [icky — vq[2)}

where the infimum extends over all: Z — Y satisfying (3.1).

Our next proposition can be deduced from some results in Dekia Ph.D.
Thesis (Pozna1986) which are stated in terms of operator ideals (cf. [8, Theorem
[1.1.1 and Theorem 11.3.1]; cf. also [9]).

(3.2)

Proposition 3.3. For every pair of Banach spaces E and H the following condi-
tions are equivalent

(ii) every twisted sum K E splits;
(V) supspl(H @E) = C < +o00, where the supremum extends over all twisted sums
H&E.

Moreover, if H is complemented in*¥ and there exists a famiH,).cs, of
finite dimensional subspaces of H directed by inclusion and such_thatH,,
is dense in H and each His the range of projectionr, : H — H, with
SUp,cp, lITall < +oo then the equivalent conditions (i) and (v) are equivalent
to

(vi) supspl(H,&E) = C; < oo, where the supremum extends overcalt (2 and
all twisted sums H& E.

Proof. (i) = (v). Let L(X,Y) denote the Banach space of all bounded linear
operators fromX into Y. A restatement of condition (i) of Proposition 3.1 says
that the restriction operator mapé&/*(A), H) onto L(Xg, H). Hence, by the open
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mapping principle, there exists a € (0,00) such that everyu € L(Xg,H)
extends to any € L(¢/1(A),H) with ||uy|| < M||u]l. Now the analysis of the
proof of the implication (i)= (ii) yields (v) with C < \/M2+(M + 1)2.

(v) = (ii). Trivial.

(v) = (vi). Fix a twisted sumH,& E and denote by : H, — H the natural
inclusion. By Lemma 1.2 there exists a twisted sHnf E and an isometrically

isomorphic embedding : H,& E — H & E which extends. By (v) for every

a > 1 there exists a projection: H& E OﬂEOH with ||p|| < aC. PutP = m,pl.

ThenP : H, € E — H, is a projection withP(H,& E) = H, and ||P| <
acCsup, ||7a|| = Co. Thusspl(H,& E) < C; whereCy = \/CZ + (1 +Cy)2.

(vi) = (v). LetH & E be a twisted sum. By Lemma 1.2 for eagle {2 there exist
a twisted sunmH,& E and a linear operatofl,, which extendsr,, and satisfies
[II.|| = ||7a||. Fix @ > 1. By (vi) there exists a projectiop, : Ho& E — H,
with p,(H,& E) = H, and ||p.| < aC;. Consider the family of operators
(iaPally)acs- Clearly

iaPalls :HEE — H, CH C H™ and|iapalla| < aCisup||ma-
[e%

Note that
if he H, andH,, D H, theni,p,I1,(h) =4 Po I (h) = h. (3.3)

Now, in the StoneZech compactificatiof(¢2) of the discrete sef2, consider
the family €l,)qc Where

Co={d"€2:Hy DH,} forae 2

and clW denotes the closure of a s@t. Clearly the family ¢.)o.c IS cen-
tered. Hence the intersectién, ., ¢l is non-empty. Pick & € (., €I @a.
Denote by limy(f) the evaluation at of the unique continuous extension of
a bounded scalar-valued functidnon (2 to a continuous function orm(2).
For eachy € He E and eachh* € H* let f, . be the scalar valued func-
tion on (2 defined byfyh-(a) = [iaPa ], ()I(h*) (we identify H with its
canonical image irH**). For eachy € H& E define the functionT (y) on
H* by T(y)(h*) = limgfyh-. It can be easily verified thal(y) € H** and
T:H&E — H* defined byy — T(y) fory € H& E is a linear operator
with ||T|| < aCysup, ||7a]|. It follows from (3.3) and the density ¢, Ha

in H thatT(h) = h for h € H. Now if S is a bounded linear projection from
H** onto H thenP = ST is the desired projection froril & E onto H with

[P|| < aCy||S|| sup, |7« = uCo. This yields (v) withC < \/coz +(Co+1R2. 0

We get an important application of Proposition 3.1-3.3 by specifyin¢p
be an infinite dimensional Hilbert space, sdy= (2. The theory of absolutely
summing operators enters. First we recall some results on absolutely summing
operators essentially due to Grothendieck [16] with Maurey’s [25] improvement
of (jjj) for p < 1 (cf. [30, pp. 60]).
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(G) Let X be a closed linear subspace of & -space F. Then for every bounded
linear operator u: X — ¢2 the following conditions are equivalent
() u extends to a bounded linear operator from F irfo
(i) u is 2-absolutely summing;
(i) u is p-absolutely summing for g [O; 2];
(i) for every bounded linear operator : /2 — X the composition uis in
the Hilbert-Schmidt class.

Recall that a Banach spa¥eis called a GT-space (cf. [23]) if every bounded
linear operator fronX into /2 is 1-absolutely summing.

Combining (G) with Propositions 3.1-3.3 and with the Remark after Propo-
sition 3.2 we get

Theorem 3.1. Let E be a Banach space and let Q be a linear surjection from an
Z1-space F onto E. LetX= kerQ. Then the following conditions are equivalent

(+) Xe is a GT-space;

(++) every twisted sunf’c E splits;

(+++) sup,spl(f3@ E) < +oo, where the supremum extends over all twisted
sumsf2& E and over positive integers n.

4. Banach space& with a non-trivial twisted sum of £2 and E

We begin with two known lemmas (cf. e.g. [8, Chapt. | Sect. 5 and Chapt. Il
Sect. 5]).

Lemma 4.1. Let E,F,H be Banach spaces. Assume that there exist linear op-
eratorsp : E — F andy : F — E such thatpy = idg, ||¢|| < C and

||l < C, so that F is @—equivalent to a C -complemented subspace .Gfiien
there exists a twisted sum®HE such that

splHEE) >C~? <é supspl Y — i) (4.1)

where the supremum extends over all twisted surasH/& F.
In particular, if there exists a twisted sumdF which does not split, then
there is a twisted sum H E which does not split.

Proof. Pick a twisted sunH & F so that 2pl(H & F) > supspl(Y). By Lemma
1.3 there exist a twisted su & E and a linear operatob : HEFE - H&EF
such that||®|| = ||¢|| andq® = pq; whereq: H&F — F andg; :HEE — E
are quotient maps with ker=kerq; =H. If H& E does not split, we are done.
Otherwise there exists a bounded linear operator E — H& E such that
guv1 = ide and||v1]| < 2spl(H & E). Putv = dv1¢p : F — H& F. Clearly,

gu = qPv1y) = vy = e = idr

and
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o]l < C2|Jus| < 2C?spl(H & E).
On the other hand,
2|v|| + 1> spl(H&F) > 2~ supspl(Y).
The last two chains of inequalities obviously yield (4.1). O
Remembering that the adjoint of a linear isometric embedding is a quotient

map and vice versa, and applying directly formula (3.2) we get

Lemma 4.2. Let H& E be a twisted sum of Banach spaces, precisely
0-HLHeE SE 0

Then .
0—E*LHeE)*LH*—0

is also a twisted sum, say*E& H *; we have
spl(HEE) > spl(E*&H ™).

Moreover, if E= H is reflexive, equivalently if E and H are reflexive, then
splHEE) =spl(E*&H™).

Next we recall the profound result due to Enflo, Lindenstrauss and Pisier [12]
(cf. [17], [18] for further examples).

(ELP) There exists a twisted sufic £2 which does not split.

A simple and known consequence of (ELP) are the next two Corollaries (cf.
[8, Theorem IV.6.1].

Corollary 4.1. If a Banach space E contair uniformly isomorphic and uni-
formly complementeth = 1,2, ...) then there exists a twisted suffe E which
does not split.

Proof. By (ELP) and Theorem 3.1 fon = 1,2,... there exists a twisted sum
Y, = 2@ (2 such that supspl(Y,) = +oco. Thus, by Lemma 4.1 we have
sup, spl(Yy) = +oo becauseY,; = (2 (3 is reflexive (0 = 1,2,...). By our
assumption oife there is aC € [1, c0) such that fom = 1,2, ... there are linear
operatorsp, : E — £2 andvy, : £2 — E satisfying (4.1) withF = /2, ¢ = ¢, and

1 = 1)n. Thus, by Lemma 4.1 there exists a sequedg® ¢f twisted sumg2c E
such that supspl(Z,) = +oco. Thus, by Proposition 3.3 there exists a twisted sum
/2@ E which does not split. O

Corollary 4.2. If a Banach space E is K-convex and infinite dimensional, then
there exists a twisted sufi@ E which does not split.
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Proof. By [5, Theorem 19.3] every infinite dimension&tconvex Banach space
satisfies the assumption of Corollary 4.1. (For the definitioK afonvex Banach
spaces see [5, Chapt. 13]. O

A less obvious although also “formal” consequence of (ELP) is the following

Theorem 4.1. If E is an infinite dimensional Banach space such thatig& of
cotype 2, then there exists a twisted stfi@ E which does not split.

Proof. Similarly, as in the proof of Corollary 4.2, pick far = 1,2, ... twisted
sumsY, = (2@ (2 so that supspl(Yn) = sup,spl(Yy) = +oco. By the dual
version of Dvoretzky's Theorem ([31, Theorem 7.1]) there exists a bounded
linear surjectionu, : E — £2 with |Jun||[p(ur)]~* < 2. Thus, by Lemma 1.3
there exist a twisted suM/, = /2@ E and a surjectiotd, : W, — Y,© such that
OnUn = unQ, whereqgy @ Y, — Eﬁ andQ, : W, — E are quotient maps with the
kernels isometrically isomorphic & and ||U,||p(Un) < 2.

By Proposition 3.3 it is enough to show that gspl W, = +co. Assume on
the contrary that sypspl W, = C < +oo. Then, by Lemma 4.2 syspl(W;) <
C. ThusW; would beC-isomorphic to the cartesian produgt & ¢2 hence the
cotype 2 constant dfv; would be bounded by a consta@i independent of.
SinceY, is reflexive andJ, is a surjectionU> is an isomorphic embedding of
Yn into W, moreover the Banach Mazur distarat@r,,, U, (Yn)) < 2. Thus the
cotype 2 constants of thé,’s would be uniformly bounded by(. Since the
Yn's are twisted sums of Hilbert spaces, they have for ewery O uniformly
bounded type (2- €) constants (cf. [12]).

Thus, by a result of Pisier [29], thi€-convexity constants of th&,’s are
uniformly bounded, say b¥s. Thus, by the Maurey-Pisier duality theorem (cf.
[27], [31, Proposition 12.8]) the&/,”’s would have uniformly bounded type 2
constants, say b€, = C4(Cy, C,). Now letq, : Y, — ¢2 be the quotient map
with X, = kerq, isometrically isomorphic to2. Then the map ig could be
regarded as an operator from a subspécef a spacey,” of type 2 into a space
/2 of cotype 2. Thus, by Maurey’s extension theorem (cf. [26]; [31, Theorem
13.13]), idk, would extend to a projectiop, : Y, — X,. Moreover, the norms
Ipn]| would be uniformly bounded by a constant dependingCaronly. Hence
sup, spl(Y,) < +oo, a contradiction. O

The analysis of the proofs of Corollary 4.2 and Theorem 4.1 shows that the
“local version” of these assertions also holds. Precisely one has

Corollary 4.3. For each C € [1,0) there exists a sequendas) of positive
numbers withlim, a = +oo such that if E is an n-dimensional Banach space
such that either the K-convexity constant of E or the cotype 2 constant of E
does not exceed C, then there exists a twisted @aE with spl(¢’E E) > af
(n=212,..)).
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Corollary 4.4. If a Banach space E either contaif§® uniformly isomorphic

or for some pe (1, c0) contains/h uniformly isomorphic and uniformly com-
plemented (= 1,2,...), then there exists a twisted suifi* E which does not
split.

Proof. Recall the following well known facts. For each fixgd € (1,00)

the spacegh have uniformly bounded -convexity constants and the spaces
(¢2°)* = ¢% have uniformly bounded cotype 2 constams=(1, 2, ...); the space

£3° is norm one complemented in every larger Banach space in which it is iso-
metrically embeddedn(= 1,2,...). Now, combine Corollary 4.3 with Lemma
4.2 and Proposition 3.3. O

Corollary 4.5. For every infinite set A there exists a twisted sifrm co(A) which
does not split.

Remarks:

1. Corollaries 4.4 and 4.5 can be deduced from some results of the forthcoming
paper [3] where a different argument is used.

2. The results of this section indicates that there are “few” Banach spgafms
which every twisted suni’c E splits. Since the[0} space is a GT space,
Theorem 3.1 yields that & is an. %~ space, then every twisted sufhz E
splits. A more sophisticated example is the following. Xebe a subspace
of ¢* which is isomorphic to/* but uncomplemented i’ (The existence
of X follows from a result of Bourgain [2]). PUE = ¢1/X. SinceX being
isomorphic to/! is a GT-space, Theorem 3.1 yields that every twisted sum
(2 E splits. On the other hand is not an ¥;-space because otherwise
it would follow from Proposition 2.1 that id lifts to ¢, i.e. there exists
T : E — ¢! such thatQT = idg whereQ : ¢ — ¢1/X is the quotient map.
This would yield thatX is complemented iif, a contradiction. It seems to
be an interesting problem to characterize all Banach sgacegh that every
twisted sum¢2cE splits.

5. An application to Sidon sets

Let G be a compact abelian group, its dual.L°(G) denotes the.P space with
respect to the normalized Haar measureGofdenoted either bydx or by A
(1 < p < ). M(G) stands for the space of all complex Borel measure§on
with finite variation.

Given a setA C I, putA=I'\A,

L ={f eLP(G):f(7)=0 foryeA} (1<p< o)
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where
f(y) = /G F0709dx (7 € T, f € LYG)).

Note that for 1< p < oo,
p_ .
L% = the closed linear subspace Iof generated bA.

Recall that anS C I" is a Sidon seff S regarded as a subspacelsf(G)
is equivalent to the unit vector basis 6f(S). A classical characterization of a
Sidon set says

(*) S is a Sidon set iff the map QY(G) — co(S) defined by Qf= (f(v))wes is
a surjection. ClearljkerQ = Lz(G).

Thus,

Corollary 5.1. Let S be an infinite Sidon set. Then

(i) The canonical image of3(G) is uncomplemented ifL£(G))**.
(i) Lé(G) not isomorphic to a complemented subspace of a Banach lattice.
(iif) There exists a bounded linear operator froré(G) into a Hilbert space which
is not 2-absolutely summing.
(iv) LL(G) is not an “;-space.

Proof. (i). Combine (*) with Proposition 2.2.

(ii). First note thaﬂ_é(G) is a weakly sequentially complete Banach space being

a closed subspace of a weakly sequentially complete Banach sp&k Next,
observe that if a Banach spakeis complemented in its second dual, then every
complemented subspace ¥f has the same property. Furthermore, a weakly
sequentially complete complemented subspace of a Banach lattice is isomorphic
to a complemented subspace of a weakly sequentially complete Banach lattice
([23, 1, Proposition 1.c.6]; [13]). Finally, a weakly sequentially complete Banach
lattice is complemented in its second dual ([23, II, Theorem 1.c.4]). Combining
these facts with (i), we get (ii). Note that this argument also applies to the kernel
of any surjection onta, in place ofLé(G).

(iif). Combine (*) with Theorem 3.1 and Corollary 4.5.

(iv). Combine (iii) with (G) in Sect. 3. O

It is interesting to compare Corollary 5.1 (iii) with the following known fact
(cf. [21, Theorem 2.1 and Proposition 3.2]).

Corollary 5.2. Let S ¢ I" be a Sidon set. Let u Lé(G) — H be a bounded
linear operator into a Hilbert space H. Lekl: Lg(G) — Lé(G) be the natural
embedding. Then a) gt Lé(G) — H belongs to the Hilbert-Schmidt class; b) if
v Lé(G) — L%(G) is a translation invariant bounded linear operator, thens
p-absolutely summing for all g [0, 2].
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Proof. SinceS is a Sidon set, there existsiac M (G) such that
()| > 1 for~y e Sandi(y)=0foryeS. (5.1)

The existence of g € M (G) satisfying (5.1) is a consequence of Drury’s Lemma
[10] (cf. also [15] and [14, Chapt. 2]).
For a) consider the factorizatidg = M,,li ﬁgl, i.e.

1

15:L4(0) - L&(E) - L¥6) - L(@) - Li(e)

Where,ugl is the diagonal operator in the character basis {5 taking v into
a(y)~t -~ for v € S; i the natural isometrically isomorphic inclusioh;the
natural embeddingM,, the operator of convolution withu. Thus ulg factors
throughL'(G) and the desired conclusion follows from (G) of Sect. 3.

For b), note that the assumption orimplies thatv(y) = .,y and fory € S
for some scalar functionaf), 5. By a), vlg is in the Hilbert Schmidt class,
hence)_ s |a,|? = es [v(7)13 < +o0. Thusv™: LY(G) — LE(G) defined by
0(y) = ayy for v € S and () = 0 for v € S is a bounded linear operator and
we have the factorization = vi wherei : Lé(G) — LY(G) denotes the natural
isometrically isomorphic inclusion. The desired conclusion again follows from
(G) of Sect. 3. O

Our last result shows that 8 is a Sidon set then the spabé(G) shares an
important property of.! spaces.

Recall that a linear operatdr: X — Y is called Dunford-Pettis or completely
continuous if it takes weakly compact sets Xhinto norm compact sets. A
Banach spaceX is said to have the Dunford-Pettis property provided every
weakly compact operator frold is Dunford-Pettis.

Theorem 5.1. Let S be a Sidon set. Theé(G) has the Dunford-Pettis property.

Remark For the special case whegeconsists of the Rademachers, this is stated
without proof by Bourgain [2].

The proof is based upon some properties of the Lions-Péetfenctional
interpolating between thé and¢? norms onI". R

Let ¥ € L%(G). Let (ym) be an enumeration afupp? = {yerI:v¥(y) %0}
into a sequence such that the sequem@%)p is non-increasing. Put

Kio@,0)= > |@(vm)|+t<2@(vm)|2> for t > 0. (5.2)

1<m<t2 m>t2

If the setsupp@ is finite, say it haang elements, then the right hand side of
(5.2) is understood to be equﬁm’:l |@(’ym)| whenevert? > my.

The qualitative version of the following deep result of Asmar and Mont-
gomery-Smith ([1, Theorem 3.9]) plays the crucial role in our proof
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(AM) Let SC I" be a Sidon set. Then there is a constant © dzepending only
on S so that i € LZ(G), then\{|¥| > c Ky 2(¥,t)} > c~ e~ forallt > 0.

We apply the qualitative analogue of (AM) via a “correction lemma” which
is stated next.

Lemma 5.1. Let Sc I'. Assume that there existe 0 and a strictly decreasing
function a: (0, +oo) — (0, +00) with lim;_, ., a(t) = 0 such that

M|P| > c Koo, 1)} >at)  (t>0,¥ e L3(G)).

Let go = lim¢_q+/a(t). Then there exists a function: (0,&p) — (0, +o0) with
lim,—0 6(n) = 0 such that ifp € L>°(G) ande € (0, ¢o) satisfy
Y1800 < g% (5.3)
'yeé

then there existe € L>°(G) such that

() ¢ = d(7) foryes;
(") ”50”00 < (2C+1)||¢||oo; (5-4)
Qi) Jlollz < [10llod(E).

Proof. If ¢ € LL(G) putp =0. Leto ¢ LL(G). Putw = Zves qAS('y)'y. Clearly
¥ € LE(G), ¢ #¥ and (by (5.3))

17— ¢lI3 = 160 < €765 (5.5)
'yeg
If £ € (0,e0) thene? = a(t) for somet € (0, +o0). Hence
M7 > ¢ Ko, 1)} > €2 (5.6)
On the other hand, combining (5.5) with the inclusion
(2] > 2l|6lloc} € {1 — 6] > [|6]loc}
and with a weak type estimate
MW =6 > [[9]loo} < ¥ = ¢l5- 16117

we obtain
M| > 2)|¢)loc} < €2 (5.7)

Moreover, the equality in (5.7) implie®| = 2[|¢||ocL{jw|>2¢| ..} PECaAUSE the
equality in the weak type estimate impligs — ¢| = Lo _g|>| ¢/}
The inequalities (5.6), (5.7) and the “moreover” remark imply

K12(Z, 1) < 26| o- (5.8)

We puty = ¢ — 371 -2 “(7m)ym. Then (5.4) (i) is obvious. Since
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lelloe < lllss + > [ZOm)| < lI6]loo + Ka2(?, 1),

1<m<t2

the inequality (5.8) implies (5.4) (ii).
Let b : (0,e0) — (0,+c0) be the inverse function of the functiogra. In
particularb(e) = t. Defineé : (0,eq) — (0, +o0) by

8(n)? =n? +4c?[b(n)] 2 for n € (0, e0).

Clearly lim,_.0 6(n) = 0 because lig.q b(n) = +co. We have

lelz = lo—wI3+ > 1é0vm)?
m>t2
< o)A +t 2 Keo(#, 1)]?  (by (5.2) and (5.5))
< (E@+4c’bE)] )% (by (5.8)
= (6)|9l0)?
which verifies (5.4) (iii). O

Let B , denote the closed unit ball dl%(G). SinceBs , is a weakly compact
subset oLé(G), every Dunford-Pettis operator frohé(G) mapsBs , into a norm
compact set. Conversely one has

Lemma 5.2. Let S C I" satisfy the assertion of Lemma 5.1. Let [[é(G) —Y
(Y an arbitrary normed space) be a bounded linear operator such t(B4 J) is
norm compact. Then T is Dunford-Pettis.

Proof. Let K C Lé(G) be a weakly compact set. Then
sup{|[hfl1:h e K} =A< +oo,

and K is uniformly absolutely integrable, in particular, there is a function
(0, +00) — (0, +00) such that

iMoo w(@) 0

Ih—hls < w(@) fora>0andheK, .

whereh® =h . 1{|h\§a}
We shall show thafl (K) is a norm totally bounded set, hence it is norm
compact. To this end it suffices to verify

for everyo > 0 there existg > 0 such that

T(K) C 0By +T (#Bg,) (5.10)

(By denotes the unit ball of).
Fix f € K. Lete € (0,¢0) be given £ is that of Lemma 5.1). We shall
chooses for o later on. Put

p=int(T) -7 (%) €8s,
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By the Separation Theorem ([11, Theorem V.2.12]) there exists a linear functional
xX* € Y* such that

p=supRex ) : Iyl < ) = nf(Rex”(T) T (24 < B,

Clearly [|x*[| = 1. Let¢* = T*(x*) € (L§(G))* and letg € L>(G) = (L(G))*
be a norm preserving extension #f. Then

ohdx = x*(T(h)) forhe Lé(G),
G
[¢lls < [T
Since Oc Bg ,, we have
p<| [ ot o < Aol (5.11)

Thus, ifg € Bg , then

Re/¢2?gdx >—p+ Re/ ¢f dx > —2A|9|0o-

Consequently, taking into account tH2y , is a circled set

y/¢@dmf;dwnm for g € B

The latter inequality implies (5.3).
Now, giveno > 0 invoking (5.9), one picks > 0 so that

If =122 < o2(2c+ D(T| + 1)L for f e K.

Next we choose € (0,s0) so thaté(e) < o(2y/a(||T|| + 1))~ whereé(-) is
the function of Lemma 5.1. Finally, fop which has been constructed for fixed
f € K ande just chosen ¢ satisfies (5.3) andl¢||- < ||T||) we apply Lemma
5.1 to constructy satisfying (5.4). Then

| [ ot ax

|/<pf dx| (by (i) becausd € K C LE(G))

< 1 [ ot -t [ ofeax
G G

< Npllolif = 03+ llpllz/a

< o (by (i) and ().

Thus, by (5.11)p < o. HenceT(f) € 0By + T(**Bg ,) which yields (5.9). O

Lemma 5.3. Assume that for some 8 I' there exists au € M (G) satisfying
(5.1). Let T be a weakly compact operator fro@(G). Then TBs ,) is a norm
compact set.



Kernels of surjections froni/;-spaces 157

Remark.Note that the conditionT(Bs ;) norm compact” is equivalent to “the
operatorTl z ) is compact” wheré : L?(G) — LY(G) is the natural embedding.

Proof.Let M, : LYG) — Lé(G) be the operator of convolution with (by (5.1),
M,(LYG)) C LE(G)). Then the sef'M,(Bs ,) is norm compact because(G)
has the Dunford-Pettis property ([11, Theorem VI1.8.12]). ThgBs ,) is norm
compact because N, is regarded as an operator frdri(G) into Lé(G) then
the restrictionMMLg(G) is, by (5.1), invertible. O

Proof of Theorem 5.1If S C I" is a Sidon set, then, by [1]5 satisfies the

assumption of Lemma 5.1, while by the result of Drury [10] mentioned ab®ve,
satisfies the assumption of Lemma 5.3. Now Theorem 5.1 follows directly from
Lemmas 5.1-5.3. O

RemarkWe do not know if a subspace of L; has the Dunford-Pettis property
wheneverl; /X is isomorphic toco.
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