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0. Introduction

In 1981, J. Bourgain [2] solved a long outstanding problem in Banach space
theory by showing the existence of an uncomplemented subspace ofL1 which is
isomorphic to`1. In that paper, he raises the question of whether it is possible
to find an uncomplemented translation invariant subspace ofL1(G), where G
is a compact abelian group, which is isomorphic toL1. As a special case he
mentions the question of whether the closed linear subspace ofL1 spanned by
the complement of the Rademachers in the Walsh functions is (a) isomorphic to
L1, or (b) anL1-space. Bourgain [2, Problem 6] attributes the question to Pisier.
As far as we could trace, it was also previously considered by Kisliakov and
Zippin.

SupposeG is a compact abelian group andΓ its character group. For any
subsetA of Γ , we defineL1

A(G) as the closure inL1(G) of the linear span of
{γ : γ ∈ A}. We putÃ = Γ\A. Answering in negative questions (a) and (b), we
shall show that ifS ⊂ Γ is an infinite Sidon set, then the canonical image of
L1

S̃
(G) is uncomplemented in its second dual and it is not anL1-space (Corollary

5.1).
We approach the problem from a purely Banach space point of view. Note that

if S is a Sidon set, then the mapQ : L1(G) → c0(S) defined byQf = {f̂ (γ)}γ∈S,
where f̂ denotes the Fourier transform, is a surjection so that kerQ = L1

S̃
(G) is

the kernel of a quotient map fromL1(G) onto a space isomorphic toc0(S).
We first show (Proposition 2.2) that ifµ is a finite measure andE is a Banach

space containing an isomorphic copy ofc0, then the canonical image of the kernel
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of any surjectionQ from L1(µ) onto E is uncomplemented in its second dual;
consequently, kerQ is non-isomorphic to a Banach lattice. Our argument depends
on an old lifting principle of Lindenstrauss [22].

We then turn to part (b) of the question. Here the idea is to study subspaces
X of anL1-spaceF which areGT-spaces. (Recall, cf. [30], that a Banach space
X is a GT-space if every bounded linear operator fromX into `2 is absolutely
summing.) LetE = F/X so thatX is the kernel of a quotient map ontoE. Then
we show (Theorem 3.1) thatX is a GT-space, if and only if every short exact
sequence

0→ `2 → Z → E → 0

splits, i.e. in the language of [18] every twisted sum of`2 and E is naturally
isomorphic to the Cartesian product`2⊕E. This leads us to the general question
of characterizing such Banach spacesE. We show that if every twisted sum of`2

andE splits, thenE (i) fails to have any typep > 1 (Corollary 4.1, cf. also [8]),
and (ii) has cotypeq <∞ (Corollary 4.2). In particular, ifE contains a subspace
isomorphic toc0, thenX is not aGT-space and a fortiori, by the Grothendieck
Theorem fails to be anL1-space.

Coming back to Sidon sets, we would like to mention that our techniques
do not establish whether, ifS is an infinite Sidon set, the spaceL1

S̃
(G) can have

local unconditional structure. (However, see the remark at the end of the section.)
Furthermore, we do not know whether the spacesL1

S̃
(G) depend essentially on

the choice of Sidon set (i.e. ifS1 and S2 are infinite countable Sidon sets inΓ1

andΓ2 respectively, are the spacesL1
S̃1

(G1) andL1
S̃2

(G2) isomorphic?)
In order to keep the paper self contained we include proofs of several facts

on twisted sums which have been known for about 20 years but which seem to
be not available in the literature. Many of these facts are contained in the preprint
of Dománski [8]. We are indebted to Pawel´ Dománski, who read the preliminary
version of the paper, for supplying us with additional references and for many
valuable comments.
Remark. After the initial preparation of the paper, W.B. Johnson showed, using
related techniques, that the kernel of the quotient map ofL1 onto c0 fails to have
(Gordon-Lewis) local unconditional structure.

1. Auxiliary lemmas

In this section we state three essentially known lemmas on short exact sequences
of Banach spaces (cf. [24, Chapt. III] in the language of homology; [28], [18],
[20], [7], [32], [33] in the setting of Banach spaces and topological vector spaces).

If u : X → Y is a (bounded) linear operator acting between normed spaces
X andY , then we put

ρ(u) = inf{η > 0 : ∀y ∈ u(X) ∃ x ∈ u−1(y) with ‖x‖ ≤ η‖y‖}.
Lemma 1.1. Let E,X,F be Banach spaces, u: E → X an isomorphic embed-
ding,v : X → F a surjection, u(E) = kerv. Then there exists an equivalent norm
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on X andβ > 0 such that if X1 denotes X equipped with the new norm, then
u : E → X1 is a linear isometric embedding andβv : X1 → F is a quotient map,
hence E is isometrically isomorphic to a subspace of X1 and F is isometrically
isomorphic to the quotient of X1 by this subspace.

Proof.Let BY denote the unit ball of a normed spaceY and letcv(W) denote the
absolute — for real spaces (resp. circled — for complex spaces) closed convex
hull of a setW ⊂ Y .

We define the new norm onX to be the gauge functional of the set

cv(u(BE) ∪ αBX ) ∩ βv−1(BF )

where the positive numbersα andβ are chosen so that

cv(u(BE) ∪ αBX ) ∩ u(E) = u(BE) andv(αBX ) ⊃ βBF .

The existence ofα > 0 andβ > 0 in question follows from the assumptions that
u is an isomorphic embedding and thatv, being a surjection, is open. �

Our next lemma in the setting of Banach spaces is often called “Kisliakov’s
Lemma”.

Lemma 1.2. Let X,Y ,X1 be Banach spaces, let X be a subspace of X1 and let
u : X → Y be a bounded linear operator. Then there exist a Banach space
Y1 and a linear operator u1 : X1 → Y1 such that Y is a subspace of Y1, u1 is
a norm preserving extension of u and the quotient spaces X1/X and Y1/Y are
isometrically isomorphic. Precisely the following diagram commutes

X
j−−−−→ X1

q−−−−→ X1/Xyu

yu1

yI

Y −−−−→
J

Y1 −−−−→
Q

Y1/Y

where j and J are natural inclusions, q and Q quotient maps, and I is an iso-
metric isomorphism. Moreover, if u is an isometric isomorphism or an isometric
embedding, then so is u1; in generalρ(u) = ρ(u1).

For a proof except the “moreover part” see [5, pp. 316–317].

Proof of the “moreover part”.Without loss of generality assume that‖u‖ = 1.
Our assumption says that there isc, with 0< c ≤ 1 such that‖u(x)‖Y ≥ c‖x‖X

for x ∈ X. Recall thatY1 is defined to be the quotient space of the`1-sumX1⊕1Y
by the subspace

W = {(x,−u(x)) ∈ X1 ⊕1 Y : x ∈ X},
andu1 is defined to be the restriction of the quotient mapX1 ⊕1 Y → Y1 to the
subspaceX1 ⊕1 {0} naturally identified withX1. For fixedx1 ∈ X1 we have
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‖u1(x1)‖Y1 = inf
x∈X

(‖x1 − x‖X1 + ‖u(x)‖Y )

≥ inf
x∈X

(‖c(x1 − x)‖X1 + c‖x‖X )

≥ c‖x1‖X1.

�

We also need a dual version of Kisliakov’s Lemma.

Lemma 1.3. Let Y,Z ,Z1 be Banach spaces. Let Z be a quotient of Y via the
quotient map q and let u: Z1 → Z be a bounded linear operator. Then there
exist a Banach space Y1 such that Z1 is a quotient of Y1 via the quotient map q1
and a linear operator u1 : Y → Y1 with ‖u‖ = ‖u1‖ such that qu1 = uq1 and
the spaces X= kerq and X1 = kerq1 are isometrically isomorphic. Precisely the
following diagram commutes

X
j−−−−→ Y

q−−−−→ ZxI

xu1

xu

X1 −−−−→
J1

Y1 −−−−→
q1

Z1

where I is an isometric isomorphism and j and j1 are natural inclusions.
Moreover, if u is a quotient map onto a subspace of Z , then so is u1, precisely

ρ(u) = ρ(u1).

Proof. Put
Y1 = {(y, z1) ∈ Y ⊕∞ Z1 : q(y) = u(z1)}

where the norm inY ⊕∞ Z1 is defined by‖(y, z1)‖ = max(‖y‖, ‖z1‖).
Defineq1 : Y1 → Z1 andu1 : Y1 → Y by

q((y, z1)) = z1 andu1((y, z1)) = y.

We omit the routine verification. �

2. Quotient maps from an L1-space whose kernels are uncomplemented
in their second duals

We begin with a result which was known to several experts in the field. It gen-
eralizes an old theorem of Lindenstrauss [22]. To make the paper self-contained
we include the proof which is essentially the same as Lindenstrauss’ original
argument. For related references cf. [18] and [19, Chapt. VI] where the results
refer top-homogeneous spaces (0< p < 1); [8] and [9] in the setting of operator
ideals.

Here and in the sequel we identify a Banach space with its canonical image
in its second dual.
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Proposition 2.1. (Lindenstrauss Lifting Principle) Let Y and E be Banach spaces
and let Q : Y → E be a surjection. Assume

kerQ is complemented in its second dual. (2.1)

Then for everyL1-space F every bounded linear operator T: F → E admits
a lifting, i.e. there exists a bounded linear operatorT̃ : F → Y such that Q̃T = T

Proof.The assumption thatF is anL1-space means that there exist aσ ∈ [1,∞)
and a subnet (Fα)α∈Ω of the net of all finite dimensional subspaces ofF directed
by inclusion such that eachFα is at mostσ isomorphic tò 1

dim Fα . Let Tα = T|Fα ,
where T|Fα denotes the restriction ofT to Fα. The lifting property of`1

dim Fα

yields the existence of a linear operatorT̃α : Fα → Y with QT̃α = Tα and
‖T̃α‖ ≤ σ. SinceQ is a surjection, the open mapping theorem yieldsρ(Q) > 0.
Thus, givenη > ρ(Q), there exists a functionϕ : E → Y (in general neither
linear nor continuous) such thatQϕ(e) = e and‖ϕ(e)‖ ≤ η‖e‖ for e ∈ E. Now,
put YE = kerQ and, for 0≤ r <∞ let

B(r ) = {y∗∗ ∈ (YE)∗∗ : ‖y∗∗‖ ≤ r } equipped with the (YE)∗ topology of (YE)∗∗.

ThenB(r ) is a compact topological space. Hence, by the Tychonoff theorem, the
product ∏

=
∏
f∈F

B((σ + η)‖T‖‖f ‖)

is also compact. For everyα ∈ Ω defineπα ∈ Π by

πα(f ) =

{
T̃α(f )− ϕT(f ) for f ∈ Fα

0 for f /∈ Fα

Let π be a limit point of the set (πα)α∈Ω ; the existence ofπ is a consequence
of the compactness ofΠ.

Let us put

T̃ = Pπ + ϕT,

whereP : (YE)∗∗ → YE is the projection granted by (2.1).
To verify that T̃ is the desired operator, first note thatT̃α(f ) − ϕT(f ) ∈ YE

for every f ∈ Fα and for α ∈ Ω; henceπα(f ) ∈ B((σ + η)‖T‖‖f ‖) ∩ YE

for every f ∈ F and for everyα ∈ Ω. Thus π(f ) ∈ B((σ + η)‖T‖‖f ‖) and
Pπ(f ) ∈ B((σ + η)‖P‖‖T‖‖f ‖) ∩ YE . Since‖P‖ ≥ 1, we get

‖T̃(f )‖ ≤ ‖P‖(σ + 2η)‖T‖‖f ‖ for f ∈ F . (2.2)

To complete the proof one has to verify the linearity ofT̃. In view of (2.1)
and the fact that

⋃
α∈Ω Fα = F , it is enough to show

T̃(f ′ + f ′′) = T̃(f ′) + T̃(f ′′) for f ′, f ′′ ∈ ⋃α∈Ω Fα. (2.3)
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To this end pickα0 so thatf ′, f ′′ ∈ Fα0 and letFα ⊃ Fα0. Taking into account
that T̃α(f ′ + f ′′)− T̃α(f ′)− T̃α(f ′′) = 0 andϕT(f ′ + f ′′)−ϕT(f ′)−ϕT(f ′′) ∈ YE

we get

πα(f ′ + f ′′)− πα(f ′)− πα(f ′′) = −[ϕT(f ′ + f ′′)− ϕT(f ′)− ϕT(f ′′)]

for α ∈ Ω such thatFα ⊃ Fα0.

Thus, remembering thatπ is a limiting point of the net (πα)α∈Ω , we get

π(f ′ + f ′′)− π(f ′)− π(f ′′) = −[ϕT(f ′ + f ′′)− ϕT(f ′) + ϕT(f ′′)] ∈ YE .

Applying to both sides of the latter identityP, we get

Pπ(f ′ + f ′′)− Pπ(f ′)− Pπ(f ′′) = −[ϕT(f ′ + f ′′)− ϕT(f ′)− ϕT(f ′′)].

which yields (2.3). �

Next we discuss relationships of Lindenstrauss’ Lifting Principle with the
Radon Nikodym Property (=RNP). We follow the terminology and notation of
[6].

Recall ([6, Chap. III]) that a linear operatorT : L1(µ) → E (E a Banach
space;µ a finite measure on a measure space (Ω,Σ, µ)) is representable if there
exists a Bochner integrable functione(·) ∈ L∞(µ; E) such that‖e(·)‖∞ = ‖T‖
and

Tf =
∫
Ω

f (s)e(s)µ(ds) for f ∈ L1(µ).

A Banach spaceE has RNP provided for every finite measureµ (equivalently
for some non purely atomicµ) every bounded linear operator fromL1(µ) into E
is representable.

It is interesting to compare Proposition 2.1 with the well known

Fact. The assertion of Proposition 2.1 remains valid if the assumption (2.1) is
replaced by

E has RNP and F is an abstract L-space. (2.4)

Proof. Assume first thatF = L1(µ) with µ finite. Then everye(·) ∈ L∞(µ; E)
can be represented as a sum of an absolutely convergent series inL∞(µ; E) of
countably valued functions. Hence, by the open mapping principle there exist
δ > 0 and a functiony(·) ∈ L∞(µ; Y) such thatQ(y(s)) = e(s) for s ∈ Ω µ a.e.
and‖y(·)‖∞ ≤ δ‖e(·)‖∞. Thus if e(·) representsT : L1(µ) → E, then we define
T̃ : L1(µ) → Y by

T̃ f =
∫

f (s)y(s)µ(ds) for f ∈ L1(µ).

The general case follows from the observation that by Kakutani’s repre-
sentation theorem every abstractL-space is thè 1-sum of a family of spaces
(L1(µα))α∈A with µα finite for all α ∈ A. �

A simple consequence of Proposition 2.1 is
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Corollary 2.1. If E fails RNP and Q: `1(A) → E is a surjection, thenkerQ is
not complemented in(kerQ)∗∗.

Proof. If E fails RNP, then there exists a finite measureµ and a bounded linear
operatorT : L1(µ) → E which is not representable. Since every bounded linear
operatoru : L1(µ) → `1(A) is representable ([6, p.83, Corollary 8]), so isQu. If
kerQ were complemented in (kerQ)∗∗ then, by Proposition 2.1,T would be of
the formQu, a contradiction. �

Our next result is more sophisticated.

Proposition 2.2. Let Q : L1(µ) → E be a surjection. Assume that the measure
µ is finite and E contains a subspace, say E1, isomorphic to c0. ThenkerQ is
uncomplemented in(kerQ)∗∗.

In particular the kernel of a surjection ofL1(µ) ontoc0(A) is uncomplemented
in its second dual wheneverA is infinite andµ is a finite measure.

Proof. Assume first thatE is separable. Then, by Sobczyk’s Theorem ([23, I,
Theorem 2.f.5]), there exists a projectionP : E

onto−→ E1. Let (en, e∗n )∞n=1 be
the biorthogonal system in (E1,E∗

1 ) induced by the unit vector basis ofc0. Put
ϕn = (PQ)∗(e∗n ) for n = 1, 2, . . .. Then (ϕn) ⊂ L∞(µ) = [L1(µ)]∗. Regarding
(ϕn) as a sequence inL2(µ) we infer thatϕn → 0 weakly in L2(µ) as n → ∞
(becausee∗n → 0 in the c0 topology of `1 = (c0)∗ as n → 0). By Mazur’s
Theorem some convex combinations of theϕn’s tend to 0 strongly inL2(µ).
Hence, by a result of F. Riesz, a subsequence of these convex combinations tends
to 0 µ-almost everywhere. Thus there is an increasing sequence of the indices
0 = k0 < k1 < · · ·, a sequence (ψn) ⊂ L∞(µ) such thatψn =

∑kn

j =kn−1+1 ajϕj with

aj ≥ 0 and
∑kn

j =kn−1+1 aj = 1 (n = 1, 2, . . .), and

lim
n
ψn(s) = 0 for s ∈ Ω µ-a.e. (2.5)

We put

R

 ∞∑
j =1

tj ej

 =
∞∑

n=1

 kn∑
j =kn−1+1

tj aj

 kn∑
j =kn−1+1

ej

 for (tj ) ∈ c0.

ThenR is a projection fromE1 onto its subspaceE0 isomorphic toc0 and spanned

by the sequence of “characteristic functions”,
(∑kn

j =kn−1+1 ej

)∞
n=1

. Thus the natural

embeddingJ : E0 → E satisfiesRPJ = idE0. Clearly E0 being isomorphic toc0

fails RNP. Thus there is a bounded linear operatorT : L1 → E0 which is
not representable (L1 denotes the space of absolutely Lebesgue integrable scalar
valued functions on [0, 1]). Now, if kerQ were complemented in (kerQ)∗∗ then,
by Proposition 2.1, there would exist a bounded linear operatorS̃ : L1 → L1(µ)
such thatQS̃ = JT. ThusRPQS̃ = RPJT = T. Now, observe that



142 N.J. Kalton, A. Pel´ czyński

RPQ(f ) =
∞∑

n=1

∫
Ω

f (s)ψn(s)µ(ds)

 kn∑
j =kn−1+1

ej

 for f ∈ L1(µ).

Note that the sequence (
∑kn

j =kn−1+1 ej )∞n=1 is equivalent to the unit vector basis of
c0. Thus the condition (2.5) yields that the operator RPQ is representable (cf.
[6, p.75, Remark after the proof of Lemma 2.11]). HenceT = RPQS̃ would be
representable because an operator fromL1(µ) to a Banach space is representable
iff it factors through`1(A) (cf. [6, Chapt. III, Sect. 1, proof of Theorem 8]), a
contradiction. �

The argument for non separableE is almost the same. Instead of Sobczyk’s
Theorem we use the following generalization.

Lemma 2.1. Let E be a quotient of L1(µ) with µ-finite measure. Assume that E
contains a subspace E1 isomorphic to c0. Then E1 is complemented in E.

Proof. If µ is finite then the natural injection ofL2(µ) into L1(µ) is bounded and
has a dense range, henceL1(µ) is a WCG space. ThusE is a WCG space. There-
fore every separable subspace ofE is contained in a separable subspace which
is a range of a contractive projection fromE (cf. [4, pp. 237–240]). Combining
this fact with Sobczyk’s Theorem we get the desired conclusion. �

Remarks

1. The assertion of Proposition 2.2 remains valid if the assumption “µ-finite” is
replaced by “µ σ- finite” because everyL1(ν) with ν σ-finite is isomorphic
as a Banach space withL1(µ) for some finite measureµ.

2. After reading a preliminary version of this paper, S. Kwapien has shown us
an alternative proof of Proposition 2.2 which does not use the Lindenstrauss
Lifting Principle. We present his argument with his permission.

Let X0 be a subspace of a Banach spaceX. Then (X/X0)∗ can be identified
with X⊥

0 andX∗∗
0 with X⊥⊥

0 where

X⊥
0 = {x∗ ∈ X∗ : x∗(x) = 0 for x ∈ X0},

X⊥⊥
0 = {x∗∗ ∈ X∗∗ : x∗∗(x∗) = 0 for x∗ ∈ X⊥

0 }.
The subspaceX + X⊥⊥

0 of X∗∗ is norm closed. The conditionX0 is comple-
mented inX∗∗

0 is equivalent to the existence of a bounded linear projection
p : X⊥⊥

0 −→
onto

X0.

For j = 0, 1, 2 denote by (δ(j )
n )∞n=1 the unit vector basis ofc0, `1, `2 respectively.

Proposition A. If X0 is complemented in X∗∗0 then for every bounded operator
T : c0 → X/X0 there exists a weakly null sequence(xn) ⊂ X such that T(δ(0)

n ) =
Q(xn) for n = 1, 2, . . . where Q: X → X/X0 is the quotient map.

Proof. First note that the formula
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p̃(x + x∗∗) = x + p(x∗∗) (x ∈ X, x∗∗ ∈ X⊥⊥
0 )

well defines a projection fromX ⊕ X⊥⊥
0 onto X with ‖p̃‖ ≤ ‖p‖ + 2.

Let S = IT ∗ : X⊥
o

T∗−→`1 I−→`2 where I : `1 → `2 is the natural embedding
sinceI is 2-summing, so isS. ThusS extends to a bounded operatorS̃ : X∗ → `2.
Put x∗∗n = (S̃)∗(δ(2)

n ) for n = 1, 2, . . .. Thenx∗∗n ∈ X ∈ X⊥⊥
0 . Indeed, pickyn ∈ X

so thatQ(yn) = T(δ(0)
n ). Thenx∗∗n = yn + (x∗∗n − yn) andx∗∗n − yn ∈ X⊥⊥

0 because
for everyx∗ ∈ X⊥

0 one has

x∗∗n (x∗) = δ(2)
n (S̃ x∗) = δ(2)

n (Sx∗) = δ(1)
n (T∗x∗) = x∗(T(δ(0)

n )).

Now put xn = p̃(x∗∗n ) for n = 1, 2, . . .. Sincexn = p̃(S̃)∗(δ(2)
n ) and (δ(2)

n ) is
a weakly null sequence iǹ2, so is (xn) in X. Finally Q(xn) = Q(yn) because
xn = p̃(yn + (x∗n − yn)) = yn + p(x∗n − yn) andp(x∗∗n − yn) ∈ X0. �

Definition. A Banach space X has property(K ) if for an arbitrary weak* null
sequence(ϕ∗n) ⊂ X∗ there exists a CCC sequence(ψ∗n ) such that

lim
k
ψ∗k (xk) = 0 for every weakly null sequence(xk) ⊂ X. (2.6)

“CCC” stands for “consecutive convex combinations”;(ψ∗k ) is a CCC sequence
for (ϕ∗n) if there exist an increasing sequence of the indices0 = n0 < n1 < . . .
and a sequence(λn) of non-negative scalars such that

ψ∗k =
nk∑

j =nk−1+1

λjϕ
∗
j with

nk∑
j =nk−1+1

λj = 1 (k = 1, 2, . . .).

Proposition B. L1(µ) has(K ) for every finite measureµ.

Proof. If (ϕ∗n) ⊂ L∞(µ) = (L1(µ))∗ is a weak* star null sequence then some
subsequence of (ϕ∗n) is a weakly null sequence inL2(µ). Hence, by Mazur’s
theorem, some CCC sequence (ψ∗k ) for (ϕ∗n) strongly converges to zero inL2(µ).
Since weakly null sequences inL1 are equi-integrable one easily checks that (ψ∗k )
satisfies (2.6) (cf. the argument at the end of the proof of Lemma 5.2) �

The spacec0 fails (K ) in the following strong sense:

Proposition C. If (y∗k ) is a CCC sequence for(δ(1)
n ) ⊂ `1 = (c0)∗ then there

exists a bounded linear projection V: c0 → c0 such that

inf
k

y∗k (V (δ(0)
k )) > 0 � (2.7)

Proof of Proposition 2.2. Let U : c0 → E be an isomorphic embedding.
Since Sobczyk’s theorem generalizes to quotients ofL1(µ) for µ finite (Lemma
2.1), there exists a projection,P : E → E with P(E) = U (c0). Put ϕ∗n =
Q∗P∗(U−1)∗(δ(1)

n ) ∈ (L1(µ))∗ for n = 1, 2, . . .. Since (δ(1)
n ) is a weak* null se-

quence in`1 = (c0)∗, so is (ϕ∗n) in (L1(µ))∗. By Proposition B there exists a
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CCC sequence (ψ∗k ) for (ϕ∗n) which satisfies (2.6). Let (y∗k ) be the CCC se-
quence for (δ(1)

n ) of the same convex combinations as the sequence (ψ∗k ) for (ϕ∗n).
Let V : c0 → c0 be that of Proposition C. PutT : UV : c0 → E. Assume that
kerQ = X0 ⊂ L1(µ) were complemented inX∗∗

0 . Then, by Proposition A (applied
to X = L1(µ)) there would exist a weakly null sequence sequence (xk) ⊂ L1(µ)
such thatT(δ(0)

k ) = Q(xk) for k = 1, 2, . . .. On the other hand we have

ψ∗k (xk) = y∗k (V (δ(0)
k )) for k = 1, 2, . . .

This would lead to a contradiction with (2.7), because limk ψ
∗
k (xk) = 0 by (2.6).�

Finally note that Proposition B and accordingly Proposition 2.2 can be gen-
eralized to preduals ofC∗-algebras with finite faithful trace.

Our last result in this section is a partial converse to Corollary 2.1.

Proposition 2.3. Suppose E has RNP and is complemented in E∗∗. Then for every
quotient map Q: `1(A) → E, kerQ is complemented in(kerQ)∗∗.

Proof.Denote byP a bounded projection fromE∗∗ ontoE and byΠ : `1(A)∗∗ →
`1(A) the canonical projection.

We start by observing that ifZ is an abstractL-space, then every operator
T : Z → E factors through a spacè1(B). This follows from the fact thatZ can
be decomposed as an`1-sum ofL1(µα) spaces where eachµα is a finite measure
and from the Lewis-Stegall theorem (cf. [23], [6, Chapt. III, Sect. 1, Theorem
8]). Since`1(B) is projective, this implies thatT also factors throughQ. We
apply these remarks toZ = (`1(A))∗∗ and toT = PQ∗∗ to deduce the existence
of a bounded linear operatorS : [`1(A)]∗∗ → `1(A) such thatPQ∗∗ = QS.

Now let V = S + (I − S)Π : [`1(A)]∗∗ → `1(A). Clearly V is a projec-
tion onto `1(A). FurthermoreV (kerQ∗∗) = kerQ (indeed letx∗∗ ∈ kerQ∗∗.
Put x = πx∗∗ ∈ `1(A). Then QSx∗∗ = PQ∗∗x∗∗ = 0 andPQ∗∗x = PQx = Qx.
ThereforeQVx∗∗ = Q(I − S)x = Qx − PQ∗∗x = Q). However kerQ∗∗ is the
weak*-closure of kerQ in [`1(A)]∗∗ (sinceQ is a quotient map) and so is natu-
rally isomorphic to (kerQ)∗∗. �

3. Subspaces of anL1-space which are GT spaces

Recall that a Banach spaceY is a twisted sum of Banach spacesX and Z , in
symbolsY = X⊂+ Z provided

0→ X
j→ Y

q→ Z → 0

is a short exact sequence, i.e.j (X) = kerq, with j being an isometrically iso-
morphic embedding andq being a quotient map. We say that a twisted sum
Y = X⊂+ Z splits provided it is naturally isomorphic to the Cartesian product
X ⊕ Z , i.e. there exists a bounded linear operatorv : Z → Y such that
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qv = idZ (3.1)

where idZ denotes the identity operator onZ . Note that ifv satisfies (3.1) then
idY − vq is a projection fromY onto X. Conversely, ifp : Y → X is a bounded
linear projection ontoX then the formulav(z) = y − p(y) for any y ∈ Y such
that q(y) = z well definesv : Z → Y which satisfies (3.1), henceX⊂+ Z splits.

Next recall that every Banach space is a quotient space of`1(A) for an
appropriate setA.

We begin with a “purely formal” but useful fact.

Proposition 3.1. Suppose we are given Banach spaces E and H and a quotient
map qE : `1(A) → E and let XE = kerqE.

Then the following conditions are equivalent

(i) every bounded linear operator from XE into H extends to a bounded linear
operator from`1(A) into H ;

(ii) every twisted sum H⊂+ E splits.

Proof. (ii) ⇒ (i). By Lemma 1.2 a bounded linear operatoru : XE → H extends
to a linear operatoru1 : `1(A) → H⊂+ E. By (ii) there existsv : E → H⊂+ E
with qv = idE whereq : H⊂+ E → E is the quotient map with kerq = H . Put
p = idH⊂+ E − vq. Then p is a projection fromH⊂+ E onto H and pu1 is the
desired extension ofu.
(i) ⇒ (ii). Fix a twisted sumY = H⊂+ E and letq : Y → E be the quotient map
with kerq = H . Fix c > 1. The lifting property of`1(A) yields the existence
of a bounded linear operatorϕ : `1(A) → Y such thatqϕ = qE and ‖ϕ‖ < c.
Obviouslyϕ(XE) ⊂ H = kerq. Thus, by (i), the restriction ofϕ to XE extends
to a bounded linear operator, sayv : `1(A) → H . Let us consider the operator
ϕ− v : L1(A) → Y . Clearly ker(ϕ− v) ⊃ XE . Henceϕ− v factors throughqE ,
precisely the formulau(e) = (ϕ−v)(ξ) for e = qE(ξ) ∈ E well defines a bounded
linear operatoru : E → Y such thatuqE = ϕ− v. Sinceqv = 0, we have

quqE = qϕ = qE .

Thusqu = idE becauseqE(`1(A)) = E. HenceH⊂+ E splits. �

Remark.For an analogue of Proposition 3.1 in Frechet spaces cf. [33], [34].

Under the additional assumption thatH is complemented in its second dual,
Proposition 3.1 generalizes toL1-spaces.

Proposition 3.2. Let E and H be Banach spaces. Assume that H is complemented
in its second dual. Then the following conditions are equivalent

(ii) every twisted sum H⊂+ E splits;
(iii) for every L1-space F and every quotient map qE : F → E every bounded

linear operator from XE = kerqE into H extends to a bounded linear operator
from F into H ;
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(iv) there exists anL1-space F and a quotient map qE : F → E such that
XE = kerqE has the above extension property.

Proof. (ii) ⇒ (iii). The proof is the same as that of the implication (ii)⇒ (i) of
Proposition 3.1.
(iii) ⇒ (iv). Trivial.
(iv) ⇒ (ii). The proof differs from the proof of the implication (i)⇒ (ii) of
Proposition 3.1 only how the bounded linear operatorϕ which lifts qE is con-
structed. Instead of using the lifting property of`1(A) we apply Proposition 2.1.
At this place the assumption thatH is complemented inH ∗∗ is used. �

Remark.Condition (ii) has isomorphic character in the following sense. If (H ,E)
is a pair of Banach spaces such that every twisted sumH⊂+ E splits and if (H1,E1)
is another pair such thatH is isomorphic toH1 andE is isomorphic toE1 then
every twisted sumH1⊂+ E1 splits. This is an immediate consequence of Lemma
1.1. Thus Propositions 3.1 and 3.2 remain valid if one replacesE by a Banach
space isomorphic toE or equivalently ifqE is an arbitrary surjection ontoE.

Next we discuss a qualitative and a local version of condition (ii).
For a twisted sumY = X⊂+ Z put

spl(Y) =

{
+∞ if Y does not split
inf(‖v‖2 + ‖idY − vq‖2)

1
2

(3.2)

where the infimum extends over allv : Z → Y satisfying (3.1).
Our next proposition can be deduced from some results in Domański’s Ph.D.

Thesis (Poznán 1986) which are stated in terms of operator ideals (cf. [8, Theorem
II.1.1 and Theorem II.3.1]; cf. also [9]).

Proposition 3.3. For every pair of Banach spaces E and H the following condi-
tions are equivalent

(ii) every twisted sum H⊂+ E splits;
(v) supspl(H⊂+E) = C < +∞, where the supremum extends over all twisted sums

H⊂+ E.

Moreover, if H is complemented in H∗∗ and there exists a family(Hα)α∈Ω of
finite dimensional subspaces of H directed by inclusion and such that∪α∈ΩHα

is dense in H and each Hα is the range of projectionπα : H → Hα with
supα∈Ω ‖πα‖ < +∞ then the equivalent conditions (ii) and (v) are equivalent
to

(vi) supspl(Hα⊂+ E) = C1 <∞, where the supremum extends over allα ∈ Ω and
all twisted sums Hα⊂+ E.

Proof. (ii) ⇒ (v). Let L(X,Y) denote the Banach space of all bounded linear
operators fromX into Y . A restatement of condition (i) of Proposition 3.1 says
that the restriction operator mapsL(`1(A),H ) ontoL(XE ,H ). Hence, by the open
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mapping principle, there exists anM ∈ (0,∞) such that everyu ∈ L(XE ,H )
extends to anu1 ∈ L(`1(A),H ) with ‖u1‖ ≤ M ‖u‖. Now the analysis of the
proof of the implication (i)⇒ (ii) yields (v) with C ≤

√
M 2 + (M + 1)2.

(v) ⇒ (ii). Trivial.
(v) ⇒ (vi). Fix a twisted sumHα⊂+ E and denote byi : Hα → H the natural
inclusion. By Lemma 1.2 there exists a twisted sumH⊂+ E and an isometrically
isomorphic embeddingI : Hα⊂+ E → H⊂+ E which extendsi . By (v) for every

a > 1 there exists a projectionp : H⊂+ E
onto→ H with ‖p‖ ≤ aC. PutP = παpI .

Then P : Hα ∈ E → Hα is a projection withP(Hα⊂+ E) = Hα and ‖P‖ ≤
aC supα ‖πα‖ = C2. Thusspl(Hα⊂+ E) ≤ C1 whereC1 =

√
C2

2 + (1 + C2)2.
(vi) ⇒ (v). Let H⊂+ E be a twisted sum. By Lemma 1.2 for eachα ∈ Ω there exist
a twisted sumHα⊂+ E and a linear operatorΠα which extendsπα and satisfies
‖Πα‖ = ‖πα‖. Fix a > 1. By (vi) there exists a projectionpα : Hα⊂+ E → Hα

with pα(Hα⊂+ E) = Hα and ‖pα‖ ≤ aC1. Consider the family of operators
(iαpαΠα)α∈Ω . Clearly

iαpαΠα : H⊂+ E → Hα ⊂ H ⊂ H ∗∗ and‖iαpαΠα‖ ≤ aC1 sup
α
‖πα‖.

Note that

if h ∈ Hα andHα′ ⊃ Hα then iαpαΠα(h) = iα′pα′Πα′ (h) = h. (3.3)

Now, in the Stone-̌Cech compactificationβ(Ω) of the discrete setΩ, consider
the family (clOα)α∈Ω where

Oα = {α′ ∈ Ω : Hα′ ⊃ Hα} for α ∈ Ω

and clW denotes the closure of a setW. Clearly the family (Oα)α∈Ω is cen-
tered. Hence the intersection

⋂
α∈Ω clOα is non-empty. Pick aφ ∈ ⋂α∈Ω clOα.

Denote by limφ(f ) the evaluation atφ of the unique continuous extension of
a bounded scalar-valued functionf on Ω to a continuous function onβ(Ω).
For eachy ∈ H⊂+ E and eachh∗ ∈ H ∗ let fy,h∗ be the scalar valued func-
tion on Ω defined by fy,h∗ (α) = [iαpα

∏
α(y)](h∗) (we identify H with its

canonical image inH ∗∗). For eachy ∈ H⊂+ E define the functionT(y) on
H ∗ by T(y)(h∗) = limφ fy,h∗ . It can be easily verified thatT(y) ∈ H ∗∗ and
T : H⊂+ E → H ∗∗ defined byy → T(y) for y ∈ H⊂+ E is a linear operator
with ‖T‖ ≤ aC1 supα ‖πα‖. It follows from (3.3) and the density of

⋂
α∈Ω Hα

in H that T(h) = h for h ∈ H . Now if S is a bounded linear projection from
H ∗∗ onto H then P = ST is the desired projection fromH⊂+ E onto H with

‖P‖ ≤ aC1‖S‖ supα ‖πα‖ = uC0. This yields (v) withC ≤
√

C2
0 + (C0 + 1)2. �

We get an important application of Proposition 3.1–3.3 by specifyingH to
be an infinite dimensional Hilbert space, sayH = `2. The theory of absolutely
summing operators enters. First we recall some results on absolutely summing
operators essentially due to Grothendieck [16] with Maurey’s [25] improvement
of (jjj) for p < 1 (cf. [30, pp. 60]).
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(G) Let X be a closed linear subspace of anL1-space F. Then for every bounded
linear operator u: X → `2 the following conditions are equivalent
(j) u extends to a bounded linear operator from F into`2;
(jj) u is 2-absolutely summing;
(jjj) u is p-absolutely summing for p∈ [0; 2];
(jjjj) for every bounded linear operatorv : `2 → X the composition uv is in

the Hilbert-Schmidt class.

Recall that a Banach spaceX is called a GT-space (cf. [23]) if every bounded
linear operator fromX into `2 is 1-absolutely summing.

Combining (G) with Propositions 3.1–3.3 and with the Remark after Propo-
sition 3.2 we get

Theorem 3.1. Let E be a Banach space and let Q be a linear surjection from an
L1-space F onto E. Let XE = kerQ. Then the following conditions are equivalent

(+) XE is a GT-space;
(++) every twisted sum̀2⊂+ E splits;
(+++) supn spl(`2

n⊂+ E) < +∞, where the supremum extends over all twisted
sums̀ 2

n⊂+ E and over positive integers n.

4. Banach spacesE with a non-trivial twisted sum of `2 and E

We begin with two known lemmas (cf. e.g. [8, Chapt. I Sect. 5 and Chapt. II
Sect. 5]).

Lemma 4.1. Let E,F ,H be Banach spaces. Assume that there exist linear op-
eratorsϕ : E → F and ψ : F → E such thatϕψ = idF , ‖ψ‖ ≤ C and
‖ϕ‖ ≤ C , so that F is C2−equivalent to a C -complemented subspace of E. Then
there exists a twisted sum H⊂+ E such that

spl(H⊂+ E) ≥ C−2

(
1
8

supspl Y− 1
4

)
(4.1)

where the supremum extends over all twisted sums Y= H⊂+ F.
In particular, if there exists a twisted sum H⊂+ F which does not split, then

there is a twisted sum H⊂+ E which does not split.

Proof. Pick a twisted sumH⊂+ F so that 2spl(H⊂+ F ) ≥ supspl(Y). By Lemma
1.3 there exist a twisted sumH⊂+ E and a linear operatorΦ : H⊂+ E → H⊂+ F
such that‖Φ‖ = ‖ϕ‖ andqΦ = ϕq1 whereq : H⊂+ F → F andq1 : H⊂+ E → E
are quotient maps with kerq = kerq1 = H . If H⊂+ E does not split, we are done.
Otherwise there exists a bounded linear operatorv1 : E → H⊂+ E such that
q1v1 = idE and‖v1‖ ≤ 2spl(H⊂+ E). Putv = Φv1ψ : F → H⊂+ F . Clearly,

qv = qΦv1ψ = ϕq1v1ψ = ϕψ = idF

and
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‖v‖ ≤ C2‖v1‖ ≤ 2C2spl(H⊂+ E).

On the other hand,

2‖v‖ + 1≥ spl(H⊂+ F ) ≥ 2−1 supspl(Y).

The last two chains of inequalities obviously yield (4.1). �

Remembering that the adjoint of a linear isometric embedding is a quotient
map and vice versa, and applying directly formula (3.2) we get

Lemma 4.2. Let H⊂+ E be a twisted sum of Banach spaces, precisely

0→ H
j→ H⊂+ E

q→ E → 0.

Then

0→ E∗ j ∗→ (H⊂+ E)∗
q∗→ H ∗ → 0

is also a twisted sum, say E∗⊂+ H ∗; we have

spl(H⊂+ E) ≥ spl(E∗⊂+ H ∗).

Moreover, if E⊂+ H is reflexive, equivalently if E and H are reflexive, then

spl(H⊂+ E) = spl(E∗⊂+ H ∗).

Next we recall the profound result due to Enflo, Lindenstrauss and Pisier [12]
(cf. [17], [18] for further examples).

(ELP) There exists a twisted sum̀2⊂+ `2 which does not split.

A simple and known consequence of (ELP) are the next two Corollaries (cf.
[8, Theorem IV.6.1].

Corollary 4.1. If a Banach space E contains̀2n uniformly isomorphic and uni-
formly complemented(n = 1, 2, . . .) then there exists a twisted sum̀2⊂+ E which
does not split.

Proof. By (ELP) and Theorem 3.1 forn = 1, 2, . . . there exists a twisted sum
Yn = `2

n⊂+ `2 such that supn spl(Yn) = +∞. Thus, by Lemma 4.1 we have
supn spl(Y∗

n ) = +∞ becauseY∗
n = `2⊂+ `n

2 is reflexive (n = 1, 2, . . .). By our
assumption onE there is aC ∈ [1,∞) such that forn = 1, 2, . . . there are linear
operatorsϕn : E → `2

n andψn : `2
n → E satisfying (4.1) withF = `2

n, ϕ = ϕn and
ψ = ψn. Thus, by Lemma 4.1 there exists a sequence (Zn) of twisted sums̀ 2⊂+ E
such that supn spl(Zn) = +∞. Thus, by Proposition 3.3 there exists a twisted sum
`2⊂+ E which does not split. �

Corollary 4.2. If a Banach space E is K -convex and infinite dimensional, then
there exists a twisted sum̀2⊂+ E which does not split.



150 N.J. Kalton, A. Pel´ czyński

Proof. By [5, Theorem 19.3] every infinite dimensionalK -convex Banach space
satisfies the assumption of Corollary 4.1. (For the definition ofK -convex Banach
spaces see [5, Chapt. 13]. �

A less obvious although also “formal” consequence of (ELP) is the following

Theorem 4.1. If E is an infinite dimensional Banach space such that E∗ is of
cotype 2, then there exists a twisted sum`2⊂+ E which does not split.

Proof. Similarly, as in the proof of Corollary 4.2, pick forn = 1, 2, . . . twisted
sums Yn = `2

n⊂+ `2 so that supn spl(Yn) = supn spl(Y∗
n ) = +∞. By the dual

version of Dvoretzky’s Theorem ([31, Theorem 7.1]) there exists a bounded
linear surjectionun : E → `2

n with ‖un‖[ρ(un)]−1 ≤ 2. Thus, by Lemma 1.3
there exist a twisted sumWn = `2⊂+ E and a surjectionUn : Wn → Y∗

n such that
qnUn = unQn whereqn : Y∗

n → `2
n andQn : Wn → E are quotient maps with the

kernels isometrically isomorphic tò2 and‖Un‖ρ(Un) ≤ 2.
By Proposition 3.3 it is enough to show that supn spl Wn = +∞. Assume on

the contrary that supn spl Wn = C < +∞. Then, by Lemma 4.2 supn spl(W∗
n ) ≤

C . ThusW∗
n would beC-isomorphic to the cartesian productE∗ ⊕ `2 hence the

cotype 2 constant ofW∗
n would be bounded by a constantC2 independent ofn.

SinceYn is reflexive andUn is a surjection,U ∗
n is an isomorphic embedding of

Yn into W∗
n , moreover the Banach Mazur distanced(Yn,U ∗

n (Yn)) ≤ 2. Thus the
cotype 2 constants of theYn’s would be uniformly bounded by 2C2. Since the
Yn’s are twisted sums of Hilbert spaces, they have for everyε > 0 uniformly
bounded type (2− ε) constants (cf. [12]).

Thus, by a result of Pisier [29], theK -convexity constants of theYn’s are
uniformly bounded, say byC3. Thus, by the Maurey-Pisier duality theorem (cf.
[27], [31, Proposition 12.8]) theY∗

n ’s would have uniformly bounded type 2
constants, say byC4 = C4(C1,C2). Now let qn : Y∗

n → `2
n be the quotient map

with Xn = kerqn isometrically isomorphic tò 2. Then the map idXn could be
regarded as an operator from a subspaceXn of a spaceY∗

n of type 2 into a space
`2 of cotype 2. Thus, by Maurey’s extension theorem (cf. [26]; [31, Theorem
13.13]), idXn would extend to a projectionpn : Y∗

n → Xn. Moreover, the norms
‖pn‖ would be uniformly bounded by a constant depending onC4 only. Hence
supn spl(Y∗

n ) < +∞, a contradiction. �

The analysis of the proofs of Corollary 4.2 and Theorem 4.1 shows that the
“local version” of these assertions also holds. Precisely one has

Corollary 4.3. For each C ∈ [1,∞) there exists a sequence(ac
n) of positive

numbers withlimn ac
n = +∞ such that if E is an n-dimensional Banach space

such that either the K -convexity constant of E or the cotype 2 constant of E∗

does not exceed C , then there exists a twisted sum`2⊂+ E with spl(`2⊂+ E) ≥ ac
n

(n = 1, 2, . . .).
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Corollary 4.4. If a Banach space E either contains`∞n uniformly isomorphic
or for some p∈ (1,∞) contains`p

n uniformly isomorphic and uniformly com-
plemented (n= 1, 2, . . .), then there exists a twisted sum̀2⊂+ E which does not
split.

Proof. Recall the following well known facts. For each fixedp ∈ (1,∞)
the spaces̀ p

n have uniformly boundedK -convexity constants and the spaces
(`∞n )∗ = `1

n have uniformly bounded cotype 2 constants (n = 1, 2, . . .); the space
`∞n is norm one complemented in every larger Banach space in which it is iso-
metrically embedded (n = 1, 2, . . .). Now, combine Corollary 4.3 with Lemma
4.2 and Proposition 3.3. �

Corollary 4.5. For every infinite set A there exists a twisted sum`2⊂+ c0(A) which
does not split.

Remarks:

1. Corollaries 4.4 and 4.5 can be deduced from some results of the forthcoming
paper [3] where a different argument is used.

2. The results of this section indicates that there are “few” Banach spacesE for
which every twisted sum̀2⊂+ E splits. Since the{0} space is a GT space,
Theorem 3.1 yields that ifE is anL 1 space, then every twisted sum̀2⊂+ E
splits. A more sophisticated example is the following. LetX be a subspace
of `1 which is isomorphic tò 1 but uncomplemented iǹ1 (The existence
of X follows from a result of Bourgain [2]). PutE = `1/X. SinceX being
isomorphic to`1 is a GT-space, Theorem 3.1 yields that every twisted sum
`2⊂+ E splits. On the other hand,E is not anL1-space because otherwise
it would follow from Proposition 2.1 that idE lifts to `1, i.e. there exists
T̃ : E → `1 such thatQT̃ = idE whereQ : `1 → `1/X is the quotient map.
This would yield thatX is complemented iǹ1, a contradiction. It seems to
be an interesting problem to characterize all Banach spacesE such that every
twisted sum`2⊂+E splits.

5. An application to Sidon sets

Let G be a compact abelian group,Γ its dual.Lp(G) denotes theLp space with
respect to the normalized Haar measure ofG denoted either bydx or by λ
(1 ≤ p ≤ ∞). M (G) stands for the space of all complex Borel measures onG
with finite variation.

Given a setA⊂ Γ , put Ã = Γ\A,

Lp
Ã

=
{

f ∈ Lp(G) : f̂ (γ) = 0 for γ ∈ A
}

(1≤ p ≤ ∞),
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where

f̂ (γ) =
∫

G
f (x)γ(x)dx (γ ∈ Γ, f ∈ L1(G)).

Note that for 1≤ p <∞,

Lp
Ã

= the closed linear subspace ofLp generated byA.

Recall that anS ⊂ Γ is a Sidon setif S regarded as a subspace ofL∞(G)
is equivalent to the unit vector basis of`1(S). A classical characterization of a
Sidon set says

(*) S is a Sidon set iff the map Q: L1(G) → c0(S) defined by Qf= (f̂ (γ))γ∈S is
a surjection. ClearlykerQ = L1

S̃
(G).

Thus,

Corollary 5.1. Let S be an infinite Sidon set. Then

(i) The canonical image of L1
S̃

(G) is uncomplemented in(L1
S̃

(G))∗∗.

(ii) L 1
S̃

(G) not isomorphic to a complemented subspace of a Banach lattice.

(iii) There exists a bounded linear operator from L1
S̃

(G) into a Hilbert space which
is not 2-absolutely summing.

(iv) L1
S̃

(G) is not anL1-space.

Proof. (i). Combine (*) with Proposition 2.2.
(ii). First note thatL1

S̃
(G) is a weakly sequentially complete Banach space being

a closed subspace of a weakly sequentially complete Banach spaceL1(G). Next,
observe that if a Banach spaceX is complemented in its second dual, then every
complemented subspace ofX has the same property. Furthermore, a weakly
sequentially complete complemented subspace of a Banach lattice is isomorphic
to a complemented subspace of a weakly sequentially complete Banach lattice
([23, II, Proposition 1.c.6]; [13]). Finally, a weakly sequentially complete Banach
lattice is complemented in its second dual ([23, II, Theorem 1.c.4]). Combining
these facts with (i), we get (ii). Note that this argument also applies to the kernel
of any surjection ontoc0 in place ofL1

S̃
(G).

(iii). Combine (*) with Theorem 3.1 and Corollary 4.5.
(iv). Combine (iii) with (G) in Sect. 3. �

It is interesting to compare Corollary 5.1 (iii) with the following known fact
(cf. [21, Theorem 2.1 and Proposition 3.2]).

Corollary 5.2. Let S ⊂ Γ be a Sidon set. Let u: L1
S̃

(G) → H be a bounded
linear operator into a Hilbert space H . Let IS̃ : L2

S̃
(G) → L1

S̃
(G) be the natural

embedding. Then a) uIS̃ : L1
S̃

(G) → H belongs to the Hilbert-Schmidt class; b) if
v : L1

S̃
(G) → L2

S̃
(G) is a translation invariant bounded linear operator, thenv is

p-absolutely summing for all p∈ [0, 2].
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Proof. SinceS is a Sidon set, there exists aµ ∈ M (G) such that

|µ̂(γ)| ≥ 1 for γ ∈ S̃ and µ̂(γ) = 0 for γ ∈ S. (5.1)

The existence of aµ ∈ M (G) satisfying (5.1) is a consequence of Drury’s Lemma
[10] (cf. also [15] and [14, Chapt. 2]).

For a) consider the factorizationIS̃ = MµIi µ̂−1
S̃

, i.e.

IS̃ : L2
S̃(G)

µ̂−1
S̃−→ L2

S̃(G)
i−→ L2(G)

I−→ L1(G)
Mµ−→ L1

S̃(G)

where µ̂−1
S̃

is the diagonal operator in the character basis (γ)γ∈S̃ taking γ into

µ̂(γ)−1 · γ for γ ∈ S̃; i the natural isometrically isomorphic inclusion;I the
natural embedding;Mµ the operator of convolution withµ. Thus uIS̃ factors
throughL1(G) and the desired conclusion follows from (G) of Sect. 3.

For b), note that the assumption onv implies thatv(γ) = αγγ and forγ ∈ S̃
for some scalar function (αγ)γ∈S̃. By a), vIS̃ is in the Hilbert Schmidt class,
hence

∑
γ∈S̃ |αγ |2 =

∑
γ∈S̃ ‖v(γ)‖2

2 < +∞. Thusṽ : L1(G) → L2
S̃

(G) defined by

ṽ(γ) = αγγ for γ ∈ S̃ and ṽ(γ) = 0 for γ ∈ S is a bounded linear operator and
we have the factorizationv = ṽi where i : L1

S̃
(G) → L1(G) denotes the natural

isometrically isomorphic inclusion. The desired conclusion again follows from
(G) of Sect. 3. �

Our last result shows that ifS is a Sidon set then the spaceL1
S̃

(G) shares an
important property ofL1 spaces.

Recall that a linear operatorT : X → Y is called Dunford-Pettis or completely
continuous if it takes weakly compact sets inX into norm compact sets. A
Banach spaceX is said to have the Dunford-Pettis property provided every
weakly compact operator fromX is Dunford-Pettis.

Theorem 5.1. Let S be a Sidon set. Then L1
S̃

(G) has the Dunford-Pettis property.

Remark.For the special case whereS consists of the Rademachers, this is stated
without proof by Bourgain [2].

The proof is based upon some properties of the Lions-PeetreK -functional
interpolating between thè1 and`2 norms onΓ .

Let Ψ ∈ L2(G). Let (γm) be an enumeration ofsuppΨ̂ = {γ ∈ Γ : Ψ̂ (γ) /= 0}
into a sequence such that the sequence (|Ψ̂ (γm)|) is non-increasing. Put

K1,2(Ψ̂ , t) =
∑

1≤m≤t2

|Ψ̂ (γm)| + t

(∑
m>t2

|Ψ̂ (γm)|2
) 1

2

for t > 0. (5.2)

If the set suppΨ̂ is finite, say it hasm0 elements, then the right hand side of
(5.2) is understood to be equal

∑m0

m=1 |Ψ̂ (γm)| whenevert2 ≥ m0.
The qualitative version of the following deep result of Asmar and Mont-

gomery-Smith ([1, Theorem 3.9]) plays the crucial role in our proof
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(AM) Let S⊂ Γ be a Sidon set. Then there is a constant c> 0 depending only
on S so that ifΨ ∈ L2

S(G), thenλ{|Ψ | ≥ c−1K1,2(Ψ̂ , t)} ≥ c−1e−ct2
for all t > 0.

We apply the qualitative analogue of (AM) via a “correction lemma” which
is stated next.

Lemma 5.1. Let S⊂ Γ . Assume that there exist c> 0 and a strictly decreasing
function a: (0,+∞) → (0,+∞) with limt→∞ a(t) = 0 such that

λ{|Ψ | ≥ c−1K1,2(Ψ̂ , t)} ≥ a(t) (t > 0, Ψ ∈ L2
S(G)).

Let ε0 = limt→0
√

a(t). Then there exists a functionδ : (0, ε0) → (0,+∞) with
limη→0 δ(η) = 0 such that ifφ ∈ L∞(G) andε ∈ (0, ε0) satisfy∑

γ∈S̃

|φ̂(γ)|2 ≤ ε2‖φ‖2
∞, (5.3)

then there existsϕ ∈ L∞(G) such that

(i ) ϕ̂(γ) = φ̂(γ) for γ ∈ S̃;
(ii ) ‖ϕ‖∞ ≤ (2c + 1)‖φ‖∞;
(iii ) ‖ϕ‖2 ≤ ‖φ‖∞δ(ε).

(5.4)

Proof. If φ ∈ L∞S (G) put ϕ = 0. Let φ /∈ L∞S (G). PutΨ =
∑

γ∈S φ̂(γ)γ. Clearly
Ψ ∈ L2

S(G), φ /= Ψ and (by (5.3))

‖Ψ − φ‖2
2 =
∑
γ∈S̃

|φ̂(γ)|2 ≤ ε2‖φ‖2
∞. (5.5)

If ε ∈ (0, ε0) thenε2 = a(t) for somet ∈ (0,+∞). Hence

λ{|Ψ | ≥ c−1K1,2(Ψ̂ , t)} ≥ ε2. (5.6)

On the other hand, combining (5.5) with the inclusion

{|Ψ | ≥ 2‖φ‖∞} ⊂ {|Ψ − φ| ≥ ‖φ‖∞}
and with a weak type estimate

λ{|Ψ − φ| ≥ ‖φ‖∞} ≤ ‖Ψ − φ‖2
2 · ‖φ‖−2

∞

we obtain
λ{|Ψ | ≥ 2‖φ‖∞} ≤ ε2. (5.7)

Moreover, the equality in (5.7) implies|Ψ | = 2‖φ‖∞1{|Ψ |≥2‖φ‖∞} because the
equality in the weak type estimate implies|Ψ − φ| = 1{|Ψ−φ|≥‖φ‖∞}.

The inequalities (5.6), (5.7) and the “moreover” remark imply

K1,2(Ψ̂ , t) ≤ 2c‖φ‖∞. (5.8)

We putϕ = φ−∑1≤m≤t2 Ψ̂ (γm)γm. Then (5.4) (i) is obvious. Since
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‖ϕ‖∞ ≤ ‖φ‖∞ +
∑

1≤m≤t2

|Ψ̂ (γm)| ≤ ‖φ‖∞ + K1,2(Ψ̂ , t),

the inequality (5.8) implies (5.4) (ii).
Let b : (0, ε0) → (0,+∞) be the inverse function of the function

√
a. In

particularb(ε) = t . Defineδ : (0, ε0) → (0,+∞) by

δ(η)2 = η2 + 4c2[b(η)]−2 for η ∈ (0, ε0).

Clearly limη→0 δ(η) = 0 because limη→0 b(η) = +∞. We have

‖ϕ‖2
2 = ‖φ− Ψ‖2

2 +
∑
m>t2

|φ̂(γm)|2

≤ ε2‖φ‖2
∞ + t−2[K1,2(Ψ̂ , t)]2 (by (5.2) and (5.5))

≤ (ε2 + 4c2[b(ε)]−2)‖φ‖2
∞ (by (5.8))

= (δ(ε)‖φ‖∞)2

which verifies (5.4) (iii). �

Let BS̃,2 denote the closed unit ball ofL2
S̃

(G). SinceBS̃,2 is a weakly compact
subset ofL1

S̃
(G), every Dunford-Pettis operator fromL1

S̃
(G) mapsBS̃,2 into a norm

compact set. Conversely one has

Lemma 5.2. Let S⊂ Γ satisfy the assertion of Lemma 5.1. Let T: L1
S̃

(G) → Y
(Y an arbitrary normed space) be a bounded linear operator such that T(BS̃,2) is
norm compact. Then T is Dunford-Pettis.

Proof. Let K ⊂ L1
S̃

(G) be a weakly compact set. Then

sup{‖h‖1 : h ∈ K} = A < +∞,

and K is uniformly absolutely integrable, in particular, there is a functionω :
(0,+∞) → (0,+∞) such that

limα→∞ ω(α) = 0,
‖h − hα‖1 ≤ ω(α) for α > 0 andh ∈ K ,

(5.9)

wherehα = h · 1{|h|≤α}.
We shall show thatT(K ) is a norm totally bounded set, hence it is norm

compact. To this end it suffices to verify

for everyσ > 0 there existsε > 0 such that
T(K ) ⊂ σBY + T

(
2A
ε BS̃,2

) (5.10)

(BY denotes the unit ball ofY).
Fix f ∈ K . Let ε ∈ (0, ε0) be given (ε0 is that of Lemma 5.1). We shall

chooseε for σ later on. Put

ρ = inf{‖T(f )− T

(
2A
ε
g

)
‖ : g ∈ BS̃,2}.
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By the Separation Theorem ([11, Theorem V.2.12]) there exists a linear functional
x∗ ∈ Y∗ such that

ρ = sup{Rex∗(y) : ‖y‖ ≤ ρ} = inf{Rex∗(T(f )− T

(
2A
ε
g

)
) : g ∈ BS̃,2}.

Clearly ‖x∗‖ = 1. Let φ∗ = T∗(x∗) ∈ (L1
S̃

(G))∗ and letφ ∈ L∞(G) = (L1(G))∗

be a norm preserving extension ofφ∗. Then∫
G
φh dx = x∗(T(h)) for h ∈ L1

S̃
(G),

‖φ‖∞ ≤ ‖T‖.
Since 0∈ BS̃,2, we have

ρ ≤ |
∫

G
φf dx| ≤ A‖φ‖∞. (5.11)

Thus, if g ∈ BS̃,2 then

Re
∫

φ
2A
ε
g dx ≥ −ρ + Re

∫
φf dx ≥ −2A‖φ‖∞.

Consequently, taking into account thatBS̃,2 is a circled set

|
∫

φg dx| ≤ ε‖φ‖∞ for g ∈ BS̃,2.

The latter inequality implies (5.3).
Now, givenσ > 0 invoking (5.9), one picksα > 0 so that

‖f − f a‖1 ≤ σ(2(2c + 1)(‖T‖ + 1))−1 for f ∈ K .

Next we chooseε ∈ (0, ε0) so thatδ(ε) ≤ σ(2
√
α(‖T‖ + 1))−1 where δ(·) is

the function of Lemma 5.1. Finally, forφ which has been constructed for fixed
f ∈ K andε just chosen (φ satisfies (5.3) and‖φ‖∞ ≤ ‖T‖) we apply Lemma
5.1 to constructϕ satisfying (5.4). Then

|
∫

φf dx| = |
∫

ϕf dx| (by (i) becausef ∈ K ⊂ L1
S̃

(G))

≤ |
∫

G
ϕ(f − f α)dx| + |

∫
G
ϕf α dx|

≤ ‖ϕ‖∞‖f − f α‖1 + ‖ϕ‖2
√
α

≤ σ (by (ii) and (iii)).

Thus, by (5.11),ρ ≤ σ. HenceT(f ) ∈ σBY + T( 2A
ε BS̃,2) which yields (5.9). �

Lemma 5.3. Assume that for some S⊂ Γ there exists aµ ∈ M (G) satisfying
(5.1). Let T be a weakly compact operator from L1

S̃
(G). Then T(BS̃,2) is a norm

compact set.



Kernels of surjections fromL1-spaces 157

Remark.Note that the condition “T(BS̃,2) norm compact” is equivalent to “the
operatorTI|L2

S̃
(G) is compact” whereI : L2(G) → L1(G) is the natural embedding.

Proof.Let Mµ : L1(G) → L1
S̃

(G) be the operator of convolution withµ (by (5.1),
Mµ(L1(G)) ⊂ L1

S̃
(G)). Then the setTMµ(BS̃,2) is norm compact becauseL1(G)

has the Dunford-Pettis property ([11, Theorem VI.8.12]). ThenT(BS̃,2) is norm
compact because ifMµ is regarded as an operator fromL2(G) into L2

S̃
(G) then

the restrictionMµ|L2
S̃

(G) is, by (5.1), invertible. �

Proof of Theorem 5.1.If S ⊂ Γ is a Sidon set, then, by [1],S satisfies the
assumption of Lemma 5.1, while by the result of Drury [10] mentioned above,S
satisfies the assumption of Lemma 5.3. Now Theorem 5.1 follows directly from
Lemmas 5.1–5.3. �

Remark.We do not know if a subspaceX of L1 has the Dunford-Pettis property
wheneverL1/X is isomorphic toc0.
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28. A. Pel´ czyński: Projections in certain Banach spaces, Studia Math.19 (1960), 209–228.
29. G. Pisier: Holomorphic semi-groups and the geometry of Banach spaces, Ann. of Math.115

(1982), 375–392.
30. G. Pisier: Factorisation of Linear Operators and Geometry of Banach spaces, CBMS Regional

Conferences Series No. 60, Amer. Math. Soc., Providence R.I., 1986.
31. N. Tomczak-Jaegermann: Banach-Mazur Distances and Finite-Dimensional Operator Ideals,

Longman Scientific and Technical, 1989.
32. D. Vogt: Subspaces and quotient spaces of (s), Functional Analysis Surveys and Recent Results,

K.D. Bierstedt, B. Fuchssteiner (eds.), Amsterdam: North-Holland Math. Studies27 (1977),
167–187.

33. D. Vogt: Some results on continuous linear maps between Frechet spaces, Functional Analy-
sis Surveys and Recent Results III, K.D. Bierstedt, B. Fuchssteiner (eds.), Amsterdam: North-
Holland 1984, pp. 349–381.

34. D. Vogt: On the functorsExt1(E, F ) for Frechet spaces, Studia Math.85 (1987), 163–197.


