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1 Introduction

Let X" be a real analytic manifold, a natural way to complexify it is by thicking
each coordinate patdd c R" to CU  C". This process makeSX a complex
manifold since the coordinate changesXofare real analytic maps, they can be
complexified as holomorphic transition function$.is then a maximal totally
real submanifold ofCX. Suppose now thaX is equipped with a Riemannian
metric, one interesting problem is to know how to associatewith a Kahler
metric such that the correspondingider structure is canonically defined. Since
all Kahler forms come from taking derivatives with respect to strictly plurisubhar-
monic functions, it is kind of natural to think about the strictly plurisubharmonic
functions that Grauert had discovered on this complexification process: given
compact real analytic manifol¥, there exists a neighborhodd of X in CX

and a smooth strictly plurisubharmonic functipn M — [0, 1) such thatX is

the zero set op. This p is clearly not uniquely defined, sincg ande” — 1 keep

the positivity and the strictly plurisubharmonicity for any positiweRecently,
Lempert and Sike ( and independently Guillemin and Stenzel) put two extra
datum to assert the uniqueness of sucp. &hey first asked that the &hler
metric induced by the Khler form ‘288p coincides with the original Rieman-
nian metricg when restricted tX, and,/p satisfies the complex homogeneous
Monge-Amgre equationdd,/p)" =0 onM — X. Such ap is uniquely defined

for any given real analytic compact Riemannian manifold (cf. [L-S]), we view
this as the canonical way to complexify a Riemannian manifolds and call the set
X = {p < r?} as the Grauert tube of radiusover centerX = {p = 0}. The
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author has shown in [K], by computing a global CR invariant on boundaries of
Grauert tubes, tha)l((g1 is not biholomorphic tO((E2 for differentr, andr,.

From the construction, it is easy to see that three elements: the cénter
the Riemannian metric of the center and the radius of the tube determine the
Grauert tube uniquely. Naturally, giving two isometric Riemannian manifolds
(X1,91) and (X, g2), we expect that the two Grauert tubes of the same radius
constructed over these two centers respectively are biholomorphically equivalent,
which was proved by Lempert and &= in [L-S]. Burns [B] proved the other
direction of the theorem, namely, if two Grauert tubes of the same radius are
biholomorphically equivalent then their corresponding centers are isometrically
the same. These two theorems provide some kind of uniqueness of Grauert tubes.
However, due to the strong symmetry of the tube, we expect that for a Grauert
tube of fixed radius, any two centers are not only isometrically equivalent but
also identically the same as point sets. More precisely, the uniqueness problem
we are interested in is the following. L&t = X{, be a Grauert tube of some real
analytic compact Riemannian manifold () of radiusr < co. Could {2 be the
Grauert tubeYy, of another compact Riemannian manifoM, f) of radiusr?

(The reason we keep the same radius is because rescaling the original metric will
give us a trivial example of nonuniqueness.) If not, this uniqueness property shall
tell us more about the behavior of the isometry groupX @aind the automorphism
group ofX(,, namely, the center is unique if and only if IsSoX)(is isomorphic to
Aut(f2), and therefore the rigidity of Grauert tubes. The answer to this problem
is in general unknown except for the homogeneous cases proved by Burns in
[B]. Burns proved that ifX;, is the Grauert tube constructed over a homogeneous
Riemannian manifolK of finite radiusr, then thisX is the only possible center

we could find inside this Grauert tulye = X¢.

In this paper, we would like to show that the uniqueness statement holds
for some special Grauert tubes—Grauert tubes covered by the unit ball. We show
further that there is only one way to obtain such Grauert tubes: all Grauert tubes
covered byB" come from the complexification of real compact hyperbolic space.
We state the main result as following:

Theorem. Let 2 = X, be a Grauert tube covered by the unit ball' Bthen
X =H"/I" for some discrete subgroup of O(n,1) and 2 =B"/TI".

Remark. Grauert tubes covered by the ball are Stein manifolds with compact
spherical boundary. On the other hand, D. Burns informed me he has a proof that
Stein manifolds with compact spherical boundary are in fact covered by the unit
ball. In this case, our result would imply that: Let= X;, be a spherical Grauert
tube, thenX =H"/I" for some discrete subgroup of O(n,1) andf2 =B"/TI".

At the end, we give a couple of examples to assert that the compactness of
the center and the finiteness of the radius are essential to the above theorem.
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2 Some properties ofB" and Grauert tubes covered by the ball

A standard way to realize the complex unit ball@ is by writing

n
B"={(z1.2,--,z,) € C": ) 3> < 1}.
j=1
The Bergman metrigg of B" has constant sectional curvaturd at all points.

We first examine some interesting properties, important to us later, of antiholo-
morphic involutions of the unit ball.

Proposition 2.1.Letr be an antiholomorphic involution of the unit bal'BThere
exists f€ Aut(B") such that frf ~! = &, the standard antiholomorphic involution
of B" fixing B" N IR". The fixed point set X of is an n-dimensional totally real
submanifold, such that(K) = B" N IR".

Proof. We first show that- has a fixed point insidB". Pickp € B", if pis not a
fixed point of r, thenp # 7(p). Since B", gg) has negative sectional curvature,
there exist a unique geodesjt) joining p and 7(p).

70)=p, (1) =7(p).

As every antiholomorphic map &" is an isometry of B", gg), the curver(~(t))
is a geodesic as well.

T(v(0) =7(p), 7(+(1)) =7(7(p)) = p.

By the uniqueness of geodesic through two points in a manifold of nonpositive
sectional curvaturer(+(t)) is simply a reparametrization of(t).

T(y(1) = (-t +1).

The pointy(}) = q € B" is then fixed byr.
For any givenqg € B", there exists a € Aut(B") exchangingq and the
origin. ¢ - 7 - ¢t is an antiholomorphic involution aB".

¢-7-¢H0)=¢-7(q) = ¢(q) = 0.

¢ - 7 - ¢~1is a biholomorphic map d8", fixing the origin. By a classical result of
Cartan,¢ - 7 - ¢~ 1 is a linear transformation.e., there exist a matrixJ € U (n),
such that

(2.1) 670 H2)=U(2)=U(2), VzeB"
¢-7-¢~1is an involution impliesUU (z) =z, vz € B", i.e.,
(2.2) UU =lnun.

On the other hand, every unitary matrix could be diagonalized.
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That is to say that there exisBs € U (n) such that

ei 61
ei [
(2.3) BUB 1= _ =D,

ei On

a diagonal matrix, wheré, € [0, 2x],j =0,---,n.

DenotingG = BB~! = (gy) € U (n), the conditionUU =1 holds if and only
if
(2.4) DGD =G.

It is not hard to examine the matr& more closely, sinc® is a relatively simple
matrix, a diagonal one. In terms of the notatigR ), there are two possible cases
by solving (2.4).

(1) 6 =6, Vk,I. ThenD =€?l,,, = U, for somed € [0, 2r].
(2) gu = €™ 8y for someny € [0, 2n],i.e., G is a diagonal matrix.

Notice that, the standard antiholomorphic involution of the unit badi(s) = z.
In the first case,

¢-7-¢(2) U(2) =U(o(2)

e_ielnxna(z)

8_2‘9|n><n(7(ei§ Z)
Let Z = ez, then

e?p.r o Ne)Z = o2)
eip-7-(€79)Z = 0(2)

f =e? ¢ does the job.
In the second case, let

—i(n1—01)
2

—i(np—062)
2

—i(nn—6n)
2

Letf =HBg, then
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f.rf7Y2) = HB¢-7-6B H Y2
= HBUB ‘H-1(2)
= HBUB'H 'z
= HBB 'DBB !HZ
= HDGHZ
= zZ=0(2).

Since

for-f*B"NRE") = o(B"NRE")=B"NR",
T f1B"NR") = B NRY.

f~1(B" N k") is then part of the fixed point set af On the other hand, ¥ is
not in B" N IR", f ~1(y) is fixed by . As

oy)y=f-r-fHy)=f -f 1 (y)=y.

y is fixed by 7 and hence is iB" N R", a contradiction. The fixed point sit
of 7 is exactlyf ~1(B" N R"). Thereforef (X) = B" N RX. O

Remark.Antiholomorphism as well as involution is crucial in the above propo-
sition. We give two examples here.

(1) For 0% |a| < 1,¢a(z) = 7%, is a holomorphic involution o8 which fixes

a single pointl_\/;‘alz.

(2) Ya(z) = 2%, is an antiholomorphic map dB which has no fixed point
inside the unit ball. The fixed point set contains two boundary péretsa+
V—1v/1— (Re g2 only.

It is interesting that not all of the fixed point sets of antiholomorphic invo-
lutions of B" have good symmetries, i.e. not all of them come from rotations of
B"NR". A simple example is the fO”OWiﬂga%Ud)% has;b%(B“ NR") as its fixed
point set which stays away from the origin.

In order to describe the automorphism group of the unit ball, we need another
way of viewing the ball. LeZ = (2o, - - -, Z,) be the homogeneous coordinates
for CP", { , ) be the standard positive Hermitian inner product@f!. An
(n+1)x (n+1) matrix A is inU(n, 1) if A satisfiesACA* = C where

-1 0
C= .
< 0 Inxn >
Define an inner producf( , )) on CP":

(z.2)) = (€z.z) )
= —ZolotZiZy -+ ZnZy.

We shall identify the unit balB" as
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B" = {ZE€CP":-ZoZo+ZiZy+ - +ZnZy = 0}

{ZeCP": ((2,2)) =0}

For anyA e U(n,1),
((AZ,AZ)) = (CAZ,AZ) = (A"CAZ,Z) = (CZ,Z) = ((Z,Z)).

A is a unitary matrix with respect to this inner produgt, )) and keepsB"
invariant. ActuallyPU(n, 1) = U (n, 1)/center a non-compact Lie group, is the
full group of biholomorphism oB".

Still, there is the third way to look at the ball. We consider the real hyperbolic
spaceH" as the unit ball irk".

H'={xcR": |x?< 1}
with the complete Riemannian metric

(1 [x[A)(C dx?) + (X % dx)*

(25) g=(+1) € KPP

i

which has constant sectional curvatwjgi) whenn > 1. Geodesics are straight
line segments. The natural complexificationtf is the unit ballB" = {z ¢
C" : |z|? < 1} in which H" is contained a8" N R". The complexified metric
turns out to be the Bergman metric of the ball

(1 - [2(Cdzdz) + (Czdz) (3 z2dz)

(2.6) g8 = (n+1) a2y

We usually call B", gg) the complex hyperbolic space. This metric has very
good properties:

(1) The sectional curvature as well as holomorphic sectional curvatquﬁjs

(2) Biholomorphic maps and antiholomorphic maps of the ball act as isometries
of (B", gg)

(3) Giving m,m2 € 0B", there exist a unique geodesj¢t) with endpointsn;
andr,

) = 1+iw N et teR
g T+et+iw ™ 1+et+iw ™ ’
w Im < ng,m2 >

1-Re< N, N2 >

We also review some necessary background about Grauert tubes in this sec-
tion. A Grauert tubeX{, is a Stein manifold since we could takelog(r? — p) as
an exhaustion function. Its automorphism group Xui(is a compact Lie group
(cf.[Sz],[M]). This shows us that the unit ball can’'t be a Grauert tube since its
automorphism group is not compact.

More generally, we would like to consider those Grauert tubes everywhere
locally like the ball. A connected real hypersurfalge in a complex manifold
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X is spherical if, at every poirpp € M, there is a local holomorphic coordinate
system %y, - - -, z,) of X such thatM is defined by

‘Zl|2+"'+|zn‘2:1~

Call a Grauert tubé? = X, a spherical Grauert tube if its boundaty? = {p =r}
is a spherical hypersurface.

In [K] and [L], the authors constructed Grauert tubes by taking quotient to
the unit ball and the hyperbolic center. They are the only spherical Grauert tubes
we could find so far. It is interesting to know whether this is the only possible
case. We first notice that if a Grauert tube is covered by the unit ball then it must
be a spherical Grauert tube since its boundary is just part of the sphere quotient.
They are part of the family of Stein manifolds with compact spherical boundary.

The characterization of Stein manifolds with compact spherical boundaries
has been well-known since 1976 by Burns and Shnider (cf.[B-S]). They proved
that a Stein manifold with compact spherical bound@yis either the complex
ball B" or M has infinite fundamental group.

As Grauert tubes have connected boundaries, this theorem will imply that the
fundamental group of Grauert tubes covered by the unit ball is infinite.

3 Proof of the theorem

Let 2 = Xz = {p < 1} be a Grauert tube covered by the bail, be the cor-
responding antiholomorphic involution ¢ which hasX as its fixed point set.
We denote this tube asX( X, p, 7x). Let 92 = {p = 1} be the spherical hyper-
surface. The fundamental group, acting freely and properly discontinuously
on B" as a covering transformation, ¢f lifts X to a totally realn-dimensional
submanifoldX of B"; p to a non-negative strictly plurisubharmonic function ~
7 to an antiholomorphic involution of B"

p(2) = p((2]), vz €B".

The fixed point set ofris exactly X, X = {z € B" : j(z) = 0}. The
fundamental group? of (2 lifts the Grauert tube to a Monge-Arae model
{B", X, p, 7}, which is, roughly speaking, a Grauert tube of complete center.

Proposition 3.1.Let (2, X, p, 7x) be a Grauert tube covered by the ball, then the
fundamental groug? of (2 lifts the compact center X to a non-compact Xet
the spherical boundarps? to S*"~* — SP~*, where $7* = 9X is a totally real

(n — 1)-sphere.

Proof. The fundamental groupl of (2 lifts the Grauert tube @, X, p, 7x) to
{B", X, p, 7}, by the discussion above, wherds an antiholomorphic involution
of B". Proposition 2.1 tells us, without loss of generality, we may assume

X=B"NR", 7(2)=2Z
OX =9(B"NR") =S"1 the real 6 — 1)— sphere.
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Let £2 :~{p < r}. The fundamental grouff lifts (2, to a strictly pseudoconvex
domain {2 in B".

={0<p<r}cB", VOo<r<1
AsB"={p<1},

2, CscCcB", O0<r<s<li1

{Qr} is actually a family of strictly pseudoconvex domains exhausiigeach
, containsB" NR" as a subset. A&, ={0< j <r}andX = {j =0},

{p=riuo{p=0}
{p=ryus"t

o0,

where{p =r} = II({p =r}) is a (h—1)—dimensional hypersurface approaching
the boundary of the unit ball whengoes to 1. Therefore,

{ﬁ - 1} - aBn o Sr‘l—l - SZn—l o Sn_l.

So,
oY) =1I({p=1)={p=1=s*"1_g"1 i

Let (2, X, p, 7x) be a Grauert tube covered by the ball, suppose there exists
another centel such that (2,Y, ¢, 7v) is a Grauert tube, and

Q2 ={p<1={p<1},
02 ={p=1={p=1}

At one hand, the fundamental group of 2 lifts 902 to S?~1 — §X. On the
other hand/7 lifts 9?2 to~82”*1: dY . We conclude that: above on the universal
coveringB" of (2, bothX andY share the same boundary,

(3.1) OX = 9Y = an ( — 1)-circle

We would like to show thaK andY are actually the same point set. For this
purpose, we need the help of some nice metric on the ball. Equip the ball with
the Bergman metrigg on (2.6).

X is the fixed point sets of the antiholomorphic maps( hence isomefry).
with the induced metric is then a totally geodesic submanifold86f ¢g), this
means every geodesic & with respect to the induced metric is a geodesic
of (B", gg). Moreover, giving any two pointp, q € dX, there exists a unique
geodesic lying orX with endpointsp andgq. Similarly, the situation hold folY
with the induced metric.

Since X = AY, we choosep,q € 9X N JY, a geodesicyx on X and a
geodesicyy on Y ending at the same points and q. Both yx and 4y are
geodesics off", gg), simply becaus& andY are totally geodesic submanifolds.
~vx =y then follows from the uniqueness of the geodesics. Notice that all points
of X and ¥ will be covered by such kind of geodesics. We conclude ¥at
Y.



Characterization of Grauert tubes covered by the ball 79

By the constructionX = X /IT =Y /IT =Y, which proves that the center of
a spherical Grauert tube is unique.
A simple application is the following corollary:

Corollary. Letf € Aut(B") = PU(n, 1), fixing d(B"NRR"). Then f sends BORR"
to itself, i.e., fe O(n, 1).

Let (B, X, 5, 7) be the universal lifting of a Grauert tub€(X, p, 7), f be the
biholomorphic map oB" sendingX to B" NR". The Kahler metric induced by
the Kahler formw = \/2*188;3 is well-defined sincep Ts IT invariant. We could
take the target space as

(B",f(X),pf L7 1) =(B",B"NR",5f 1 0).
Let I’ be the conjugate groupl’ = f I7f —1.
(3.1) (B"/IT',(B" NE")/IT', 5 2, 0)

is a Grauert tube of radius 1; the Riemannian metric of the cdften " /11’
is 500(5f ~1)|gnrme /11

On the other hand,
3.2 (B"/II',H"/II', ¢, 0)

is a Grauert tube of radius 1, where
4 .
©(z) = tanltanh (the Kobayashi distance pfto H")
™

is O(n, 1) invariant and the Ehler metric induced from the &hler form iza&p

is the real hyperbolic metric when restricted to the ceht&y 11’ (cf. [K],[L]).
Comparing (3.1) and (3.2), two Grauert tube structures of the same ra-

dius 1 are given in the same sBt'/II’. Both of the strictly plurisubhar-

monic functionspf —! and ¢ satisfy the complex homogeneous Monge-Ame

equation onB"/II’ — (B" N R")/II’; are continuous up to the boundary of

B"/II' — (B" N R")/II’; and share the same values on boundary points. The

maximal principle of Monge-Amgre equations (cf.[B-T]) confirmsf =1 and

are identically the same on the whole tuB®/II’. We therefore conclude that

the Kahler metric induced from the functigsi =1 coincides with the one induced

from ¢. The hyperbolic metric of the center and of the submanifBI4(R")/IT’,

as well as of the original manifold must have negative curvature sindé& /11’

has constant curvaturel. This completes the proof of our main theoremO

Finally, we would like to assert the essence of the compactness of centers and
the finiteness of radii by examining the difference of Grauert tubes and Grauert
tubes of non-compact centers.

(1) Instead of having only finitely many antiholomorphic involutions in Grauert
tubes (cf.[B]), there are infinitely many anti-holomorphic involutions inside
B". Some obvious examples afgo¢, for anya in B" N RR".
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(2) The uniqueness doesn’t hold if we allow the centers of Grauert tubes to be
non-compact. Taking € U(n,1),g ¢ O(n,1), thisg shiftsH" to a totally
real submanifoldy(H ") such thatB", g(H"), pg~1, gog~?) is a Grauert tube
of non-compact center different fromB{,H", , o).

(3) Centers of spherical Grauert tubes are not necessarily hyperbolic if we allow
the radii of centers are infinite. One example could been found in [K], where
the author constructed a spherical Grauert tube of infinite radius above the
unit sphere of constant curvature 1.
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