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1. Preliminaries

Throughout this paper all three-manifolds and surfaces will be assumed to be
compact, orientable and connected.

A complete collection of compressing digks a three-manifoldV is a col-
lection of properly embedded disk§ such thatM cut alongA is a collection
of 3-balls.

A handlebody His a homeomorph of a regular neighborhood of a connected
graph inS3. The image of the grapt¥,, is called thespine of the handlebody H
Equivalently, a handlebody is a three-manifold which has a complete collection
of compressing disks.

Let F be a surface with a single boundary component which is embedded in
a three-manifoldv . Let X’ be a graph embedded in the surfé€esuch thatF
cut alongX’' is an annulus. Then we call' a spine of the surface F Note that
as a regular neighborhood &f, N(F), is a handlebody which retracts onfo
which in turn retracts ontd, X is also a spine for the handlebotii(F).

A Heegaard splittingof a three-manifold M is a decompositiodl, = Hy U
H,, whereH; andH, are handlebodies such that= 0H; = OH, = HiNH,. The
genus of the splittings the genus of the surfade.

Note that the sping’ of the handlebodyH; determines a Heegaard splitting
M = N(X) UN(X)¢ which is isotopic to the original splittingyl = Hy; Ug Ho.

As we are only interested in Heegaard splittings up to isotopy and the spine
X represents this splitting, we will call' a spine of the Heegaard splitting
M = H; Ug H. Also note that an ambient isotopy &f or manipulatingX’ by
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edgeslides (see [ST]) does not change the isotopy class of the Heegaard splitting.
Thus if X can be manipulated t&’ through isotopies and edgeslides we will
write X ~ X, and consider the two to be equivalent. As Heegaard splittings
determined by the handlebody, the spine of the handlebody, and the neighborhood
of the spine are equivalent we will use these designations interchangeably.

Call H; U N («) a stabilization of the Heegaard splitting M H; Ug H; if «
is an arc properly embedded Hy that is parallel to an arc oR. This stabilized
splitting is represented by stabilization of the spinel U 3, where g is an
arc properly embedded X and parallel to an arc itt. As stabilization is
unique up to isotopy of the handlebody, the splitting determined by stabilization
is independent of the choice a@f or 5. Following the notation in [SC] the
stabilized spineX U 8 will be denotedS(X). DenoteS(S(X)) by S?(X) and so
forth.

Let X and X’ be spines of splittings of genysandq respectivelyp < q.
We say that the splittings represented Byand X’ are equivalent after one
stabilizationif S4—P*(X) ~ S1(2).

For more information regarding Heegaard splittings see [RS] or [ST2].

2. Twisting Surfaces

Let F be an orientable spanning surface for a kKoin S®. If there exists an
embedded spher® in S® which intersects in two non-separating arcs, and
8, we can form a new spanning surface for the kidot

Fig. 1a,b. The original and twisted surfaces

First choose a homeomorphidmfrom S to the standard sphef& such that
« and g are sent taxg and 3y as pictured in Fig. 1a. This homeomorphism must
be chosen so that opposite faced-oéire facing upwards atg and3y. Form the
unique (up to isotopy) extension of to the rest ofS%. This fills in the inside
of &, a ball we will callBy. Now form a sphereS;, parallel to and insidé,.
Let the ball insideS; be calledB;. We will consider all manipulations to occur
in the originalS® by conjugating changes we make with the homeomorptiism
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We now form the new surface. Sevéralong«; and ;. RotateB; through
180 along a horizontal axis as indicated. Position the knot as indicated in Fig. 1b
and form the new surface by attaching the piecé dfside B; to the piece of
F on the outside 0By by using the new piece iBy, — B; as indicated in the
figure.

We have now twisted the surfaéeto a new surfacé’. Note that the new
surface is orientable as we required opposite facds tf appear aty and 5.
Also note that we have increased the genus of the surface by two.

We can choose a sping for the surface to intersect each of the curves
and 3 exactly once. A spine’ for F’ is indicated in Fig. 1bY"” is assembled
by flipping X N B, through 180, reattaching it ta¥’ N BS and adding the arcs
~1 and~z which run along the twisted bands.

Note that the construction depended on the homeomorphidiar which
there is no canonical choice. Any two such homeomorphisms will differ by an
automorphism o862 that fixesN (aU3). As the group (of isotopy classes) of such
automorphisms is isomorphic tH we note that this process actually generates
an infinite family of surfaces all of the same genus. Alsoand 5 are now
non-separating arcs d&’. Thus, we can repeat the process in order to generate
an infinite family of surfaces. Each of these surfaces will have genus two greater

than its predecessor.
N // N N ?/%

s TR

é/

Fig. 2. The standard projection (5-1;, .., —1,5,5, 11, .., 1,41,5),r >0

It may appear that the above process is a trivial manipulation of the surface,
but, the work of Parris demonstrates that this is not the case. Parris considers
pretzel knots with a standard projectigm (.., pn) such that eaclp; is odd and
n is odd. The standard projection determines an obvious Seifert suffdoe
the given knot. Parris [PA] was able to give conditions to determine whether or
not this surface is incompressible in the knot complement. For a specific set of
examples, examine the pretzel knot projectipq, 0, ps, 1, ps) where|p;| > 5.

By twisting the surface according to the above process we obtain the projec-
tions @1, —11,.., —1r,P2,P3, 11, .., 1r+1,P4),r > O (see Fig. 2). The conditions

of Parris guarantee that, for each valuer pthe surfaceF, is incompressible in

the knot complement. Thus, each of these knots possesses an infinite number of
incompressible surfaces of arbitrarily high genus.
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3. Forming Heegaard splittings

Fix a knotK and consider the knot complemeXit= S® — N(K). Let F be a
spanning surface fd€. ThenN(F) is always a handlebody. Additionally assume
that N (F)C is also a handlebody. Lél = K (a/b) be the manifold obtained by
an a/b Dehn filling on X. Call the filling solid torusT. We can think of the
manifold as being decomposed into two piedéér) andN (F)© UT, whereT is
glued toN (F)® along an annulus. It is well known (see for example [MS]) that
after gluingT to N(F) along an annulus\l (F)¢ UT will also be a handlebody
if the filling slope is ¥q for someq.

Then, for any spanning surfagefor which N (F)® is a handlebody we obtain
a Heegaard splittingyl = N(F) U (N(F)¢ U T), of the manifoldM = K (1/q).
Casson and Gordon ([CG],[KQ]) proved thatFfis an incompressible spanning
surface that induces a Heegaard splittivy,= N(F) U (N(F)¢ UT), of M =
K(1/q) and|g| > 6 [MS], then the induced splitting is irreducible.

Let K be the pretzel knot with standard presentatigns<14, .., —1;, p2, Ps,
11,.,L+1,pa),r > 0,|pi| > 5. Then the surfack, is incompressible and as seen
in Fig. 2,N(F)¢ is a handlebody. Thus each of the manifoMs= K (1/q) has
an infinite number of irreducible Heegaard splittings of arbitrarily high genus.

We now examine the general case. lE€t be a surface obtained from a
spanning surfac€ as in Sect. 2. We show th&t' induces a Heegaard splitting
if F does. A technical lemma is needed first.

Lemma 1. Let H be a handlebody @ahA a separating annulus embedded in H.
Let A separate H into two pieces; tdnd H,. If A is incompressible thenand
H, are handlebodies.

Proof. As H is a handlebody, it contains a complete collection of compressing
disks A which intersect the annulu& minimally. A standard innermost loop
argument shows thaft must intersec either in essential arcs, essential loops,
or not at all.

If it intersects in essential arcs (Fig. 3a) théncut alongA will contain a
complete collection of compressing disks for eachHafand H, showing that
they are handlebodies . If it interseddsin essential loops (Fig. 3b), then an
innermost loop oA will contain a compressing disk fak. If they are disjoint
(Fig. 3c), thenA is compressible being properly embedded in one of the balls
resulting after cutting alongj.

() OAnA
©

Fig. 3a—c.
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Lemma 2. Let F be a spanning surface for a knot K. Letlfe obtained from F
by twisting as in Sect. 2. If (F)C is a handlebody then (f’)C is a handlebody.

Proof. N(F")¢ is obtained fromN (F)C by replacingBy — B; — N(F) by By —

B; — N(F’). Temporarily use edge slides to moygand~, onto . Notice that
S — N(ap U o) is a separating annulus and ti8t— N (o U Bo) — N (71 U 72)

is two disks (see Fig. 4).

% Bo

Fig. 4. The annulussy — N (ap U Bo)

FormingN (F")¢ corresponds to cuttinly (F)¢ along this separating annulus
and gluing the resulting two pieces together along the two disks. The annulus is
incompressible, if not it would compress to one one sid&goimplying that«
and g3 separate, contrary to our assumption . Thus, according to Lemma 1, after
cutting along the annulus the two pieces will be handlebodies Niid)©, the
result of gluing these two handlebodies along two disks is also a handlebody.

4. Stabilizing the Heegaard splittings

In this sectionK will be a knot inS3, F a spanning surface fdk such that
N(F)C is a handlebody, anél = K (1/q) the manifold obtained from a/j Dehn
filling on the knot complement. We have seen thahduces a Heegaard splitting,
M =N(F)U(N(F)CUT). If F’ is obtained fronF by twisting thenN (F')C is a
handlebody and we obtain another Heegaard splitvhg; N (F/)U(N (F/)€UT).
In this section we show that these splittings are equivalent after one stabilization.
As stabilization is unique it follows that any two splittings obtained in this manner
are equivalent after one stabilization.

Note that these splittings are represented®bwand X’ which are the spines
of the surface$ andF’, respectively. We now prove the main theorem:

Theorem 1. SY(X') ~ S3(2).
But first a lemma:

Lemma 4. Let I" and I"" be spines of Heegaard splittings of genus p and g
respectively, p< . If IV D I' then S—P(I") ~ I,

Proof. ON(I") is a splitting surface for the handlebodl)(1")°. As any splitting
of a handlebody is just a stabilization of its boundary [ST], the boundary in this
case bein@dN(I"), I’ represents a stabilization @f. ThusI” ~ S9=P(I).
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Fig. 6a,b. Changing crossings

Proof (Proof of Theorem 3)We show thatS}(X’) D X. The proof then follows
from Lemma 4. We proceed in three steps:

Step 1 - Stabilizing.Remember thaF’ cut along X’ is an annulus, call this
annulusA’. View 9T in filling coordinates. One component 6/’ is a curve
representing the longitude. The meridianddf is given by the filling that yields
S3. Let 6 be a standard /g curve ondT; we performed a Aq surgery thuss
bounds a disk ifT . Also ¢ intersects the chosen component@f exactly once.
(See Fig. 5a). AddN (6) to the handlebody (F’); this represents a stabilization
of the splitting determined b (F').
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A
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SY()
Fig. 6¢c—e.Rotating

Step 2 - UnwindingNow slide the foot ofé along the curvedF’ in order to
obtainé’, a 1/0 curve in the surgery coordinates (See Fig. 5b). This represents
an isotopy of the stabilized handlebobtl(F’) U N (6). The spineS!(X’) which
represents the splitting now appears’3sJ§’ U X', where)’ is an arc inA’ with

one endpoint at’ and the other af’. Call the endpoint at.’ the foot of \’

(Fig. 5c).

Step 3 - Changing Crossings and Rotatillge can use?d’ to guide edgeslides.
Slide &’ alongK to x; and the foot of\’ along %’ to x, as marked in Fig. 6a.
Now perform an edgeslide that wraps aroundK as pictured in Fig. 7a—c.
Notice that we have disrupted the annuldsin a neighborhood of the point.
We now slided’ to y; and the foot of\’ to y, as marked in Fig. 6a. We cannot
useA’ to guide the slide in a neighborhood xf but we can go in the opposite
direction, see Fig. 8. Now wra, aroundK to result in Fig. 6b. Pully; towards
the front of § and~, towards the back. We can now rotate the tgllthrough
180 back to its original position. The feet df’, protruding fromBy, will slide
along the arcgy; and~s,, (see Fig. 6¢c—e).

We have manipulate8'(X’) by isotopy and edgeslides. Note ti&l( ') O
Y. Thus, by Lemma 4SY(X’) ~ S3(X).
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Fig. 7a—c.Changing crossings

Fig. 8. Using A’ to guide edgeslides

In particular, we have shown that the infinite family of irreducible Heegaard
splittings due to Casson and Gordon are equivalent after one stabilization.
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