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1 Introduction

We are concerned in this paper with blow-up solutions of


∂u
∂t

= ∆u+ F(|u|)u in Ω × [0, T )
u = 0 on ∂Ω × [0, T )

u(.,0) = u0 in Ω

(1)

where
u : (x, t) ∈ Ω × [0, T ) → R

M , u0 : Ω → R
M ,

Ω is a bounded convex regular open set ofR
N orΩ = R

N , T > 0,
(∆u)i = ∆ui , |u| is the euclidian norm ofu in R

M

F : R → R is aC1 function satisfying

F(|u|) ∼ |u|p−1 as|u| → +∞
(in a suitable norm) with

p > 1 and(3N − 4)p < 3N + 8. (2)

We also consider the following condition onp valid for scalar equations
(M = 1) with nonnegative initial data:

u0 ≥ 0 and(N − 2)p < N + 2. (3)

F. Merle
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The Cauchy problem for system (1) can be solved (for example) inL∞(RN,

R
M). If the maximal solutionu(t) is defined on[0, T ) with T < +∞, then

lim
t→T

‖u(t)‖L∞ = +∞.

We say thatu(t) blows-up at timeT . If a ∈ Ω satisfies|u(xn, tn)| → +∞ as
n → +∞ for some sequence(xn, tn) → (a, T ), thena is called a blow-up point
of u. The set of all blow-up points ofu(t) is called the blow-up set ofu(t) and
will be denoted byS.

The existence of blow-up solutions for systems of the type (1) has been
proved by several authors (Friedman [Fri65], Fujita [Fuj66], Levine [Lev73],
Ball [Bal77],..). Many authors have been concerned by the asymptotic behavior
of u(t) at blow-up time, near blow-up points. Let us point out that a great deal
of the known results are valid only for scalar equations with nonnegative initial
data (case (3)), typically for the equation

∂u

∂t
= ∆u+ up, p > 1,

(
N ≤ 2 orp <

N + 2

N − 2

)
; (4)

indeed, in the case (3), one can use the maximum principle which does not hold
in general in the case (2). On the contrary, the results in the vectorial case or even
in the scalar case with no positivity condition remain very poor.

Let us give a sketch of the known results both in cases (2) and (3). For
simplicity in the notations, we assume that

F(|u|) = |u|p−1

and consider the equation

∂u

∂t
= ∆u+ |u|p−1u. (5)

Consideru(t) a solution of (5) which blows-up at timeT at a pointa ∈ Ω. The
study of the behavior ofu(t) near(a, T ) has been done through the introduction
of the following similarity variables:

y = x − a√
T − t

, s = − log(T − t), wa(y, s) = (T − t)
1

p−1u(x, t). (6)

It is readily seen from (5) thatwa (or simplyw) satisfies the following equation:
∀s ≥ − logT , ∀y ∈ Wa,s ≡ e

s
2 (Ω − a),

∂w

∂s
= ∆w − 1

2
y.∇w − w

p − 1
+ |w|p−1w. (7)
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The following Lyapunov functional is associated with (7):

E(w) =
∫
Wa,s

(
1

2
|∇w|2 + |w|2

2(p − 1)
− |w|p+1

p + 1

)
ρ(y)dy (8)

where

ρ(y) = e−
|y|2

4

(4π)N/2
. (9)

In the case (3) (equation (4)), Giga and Kohn showed in [GK85], [GK87] and
[GK89] that

∀x ∈ Ω, ∀t ∈ [0, T ), |u(x, t)| ≤ C(T − t)
− 1
p−1 (10)

for some constantC > 0. They also showed that

wa(y, s) → κ ≡ (p − 1)−
1

p−1 ass → +∞, (11)

uniformly on compact sets. This estimate has been refined until the higher order
by Filippas, Kohn and Liu [FK92], [FL93], Herrero and Vel´azquez [HV93],
[HV92a], [HV92b], [Vel93a]. A notion of limiting blow-up profile has been
developed both in variables(x, t) and(y, s) by Bricmont and Kupiainen [BK94],
Merle and Zaag [MZ97], Zaag [Zaa98], Herrero and Vel´azquez.

In [MZ98a], a further step was accomplished in the understanding of the
behavior of nonnegative scalar solutions of (1). We proved there the following
Liouville Theorem for equation (7):

Letw be a nonnegative solution of (7) defined for all(y, s) ∈ R
N × R such

thatw ∈ L∞(RN × R). Then, necessarily one of the following cases occurs:

w ≡ 0 or w ≡ κ or ∃s0 ∈ R such thatw(y, s) = ϕ(s − s0) (12)

whereϕ(s) = κ(1 + es)
− 1
p−1 andκ = (p − 1)−

1
p−1 .

From this Theorem we derived in [MZ98a] the following localization theo-
rem:

∀ε > 0, ∃Cε > 0 such that∀t ∈ [T2 , T ), ∀x ∈ R
N ,∣∣∣∣∂u∂t − up

∣∣∣∣ ≤ εup + Cε. (13)

We also derived in [MZ98b] the following uniform estimates of order one (in
the caseΩ = R

N ):
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∃Ci > 0, i = 1,2,3 such that∀ε > 0, ∃s0(ε) ≥ − logT such that∀s ≥ s0,
∀a ∈ R

N ,

κ ≤ ‖wa(s)‖L∞ ≤ κ +
(
Nκ

2p
+ ε

)
1

s
, ‖∇ iwa(s)‖L∞ ≤ Ci

si/2
for i = 1,2,3,

(14)

wherewa is defined in (6) and∇ iw stands for the differential ofw of orderi.
The results (14) and (13) are direct consequences of the Liouville Theorem

(12) which is valid only for positive scalar solutions of (1).

As to the case (2), the starting point was the proof by Giga and Kohn [GK87]
of the validity of the global estimate (10). In [FM95], Filippas and Merle showed
that

wa(y, s) → κωa ass → +∞
uniformly on compact sets, for someωa ∈ SM−1. No other results were known.

In this paper, we extend the validity of the Liouville Theorem (12) to the
vectorial case and obtain the following theorem which classifies all connections
in L∞

loc between critical points of (7) (which are according to [GK85]: 0 andκω

for all ω ∈ SM−1). This Theorem is in some sense a classification of “critical
points at infinity” (in a parabolic sense) for equation (7).
Note that this Theorem is valid not only forp satisfying (2) but for all subcritical
p, that is under the condition

p > 1 and(N − 2)p < N + 2. (15)

Theorem 1 (Liouville Theorem for equation (7)) Assume (15) and consider
w a solution of (7) defined for all(y, s) ∈ R

N × R such thatw ∈ L∞(RN ×
R,RM). Then necessarily one of the following cases occurs:
i) w ≡ 0,
ii) ∃ω0 ∈ SM−1 such thatw ≡ κω0,
iii) ∃s0 ∈ R, ∃ω0 ∈ SM−1 such thatw(y, s) = ϕ(s − s0)ω0 where

ϕ(s) = κ(1 + es)
− 1
p−1 .

Remark.In [GK85], Giga and Kohn assumed in addition to the hypotheses of
Theorem 1 that

lim sup
s→+∞

|w(0, s)| > 0, (16)

and proved that in this case, ii) occurs (Theorem 2 page 310). Indeed, under
assumption (16), it follows directly from energy arguments thatw is a station-
ary solution of Equation (7). We concentrate in our proof on the classification
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of non stationary solutions. This will need introduction of new tools such as a
combination of the linearization of the equation ass goes to−∞, the use of a
geometric invariance of equation (4) and a blow-up criterion for equation (7),
sharp for data close to stationary solutions.
This Theorem has an equivalent formulation for solutions of (5) via the transfor-
mation (6).

Corollary 1 (A Liouville Theorem for equation (5)) Assume that (15) holds
and thatu is a solution inL∞ of (5) defined for(x, t) ∈ R

N × (−∞, T ). Assume

in addition that|u(x, t)| ≤ C(T − t)− 1
p−1 . Thenu ≡ 0 or there existT0 ≥ T and

ω0 ∈ SM−1 such that∀(x, t) ∈ R
N × (−∞, T ), u(x, t) = κ(T0 − t)

− 1
p−1ω0.

Our second contribution in this paper is to show that the global estimate (10) of
Giga and Kohn which is valid in the cases (2) and (3) is in fact uniform with
respect tou0.

Theorem 2 (Uniform estimates with respect tou0) Assume condition (2) holds
and consideru a solution of (5) which blows-up at timeT < T0 and satis-
fies ‖u(0)‖C2(Ω) ≤ C0. Then, there existsC(C0, T0) such that∀t ∈ [0, T ),
‖u(t)‖L∞(Ω) ≤ Cv(t) wherev(t) = κ(T − t)

− 1
p−1 is the solution of

v′ = vp andv(T ) = +∞.

Remark.We suspect that this result is true with no condition onT .
Let us remark that we suspect this Theorem to be valid in the case (15).

Theorems 1 and 2 have important consequences in the understanding of the
blow-up behavior for equation (5) in the case (2). We have the following local-
ization result which compares (5) with the associated ODE

u′ = up.

Theorem 3 (Uniform ODE Behavior) Assume that (2) holds and considerT ≤
T0 and‖u0‖C2(Ω) ≤ C0. Then,∀ε > 0, there isC(ε, C0, T0) such that∀x ∈ Ω,
∀t ∈ [0, T ), ∣∣∣∣∂u∂t (x, t)− |u|p−1u(x, t)

∣∣∣∣ ≤ ε|u(x, t)|p + C.

Remark.Note that the conditionu(0) ∈ C2 in Theorems 2 and 3 is not restrictive,
because of the regularizing effect of the heat equation.

As direct consequences of Theorem 3, we have the following striking corol-
lary:
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Corollary 2 Assume that (2) holds and consideru(t)a solution of (5). Leta ∈ Ω
be a blow-up point ofu(t). Then,
i) |u(x, t)| → +∞ as(x, t) → (a, T ),
ii) (Approximate scalar behavior of |u|) ∃δ > 0 such that∀x ∈ B(a, δ),
∀t ∈ [T − δ, T ),

∂|u|
∂t
(x, t) > 0 and|u(x, t)| > 0.

iii) If M = 1 andu(a, t) ∼ εκ(T − t)− 1
p−1 whereε ∈ {−1,1}, then∃δ > 0 such

that∀x ∈ B(a, δ), ∀t ∈ [T − δ, T ),

εu(x, t) > 0 andε
∂u

∂t
(x, t) > 0.

We now set in the case (2) some results which were known before only in the
scalar case with nonnegative initial data. These results follow from Theorems 1
and 2 and the proofs of the positive case.

Theorems 1 and 2 yield the following uniform estimates of order 1 for solution
of (5):

Theorem 4 (L∞ refined estimates forw(s) andu(t) at blow-up) Assume that
(2) holds. Then, there exist positive constantsCi for i = 1,2,3 such that ifu is
a solution of (5) which blows-up at timeT and satisfiesu(0) ∈ C3(RN), then
∀ε > 0, there existss1(ε) ≥ − logT such that

i) ∀s ≥ s1, ∀a ∈ R
N ,

‖wa(s)‖L∞ ≤ κ + (Nκ2p + ε)1
s
, ‖∇wa(s)‖L∞ ≤ C1√

s
,

‖∇2wa(s)‖L∞ ≤ C2
s
, ‖∇3wa(s)‖L∞ ≤ C3

s3/2
,

whereκ = (p − 1)−
1

p−1 ,
ii) ∀t ≥ T − e−s1,

‖u(t)‖L∞ ≤
(
κ + (Nκ2p + ε) 1

| log(T−t)|
)
(T − t)

− 1
p−1 ,

‖∇ iu(t)‖L∞ ≤ Ci
(T−t)−(

1
p−1+ i

2 )

| log(T−t)|i/2

for i = 1,2,3.

Remark.Note that these estimates are sharp (see for example [MZ97]). Ifv :
R
N → R is regular,∇ iv stands for the differential of orderi of v. For all

y ∈ R
N , we define|∇v(y)|2 =

N∑
j=1

(
∂jv(y)

)2
, |∇2v(y)| = sup

z∈RN

∣∣zT∇2v(y)z
∣∣

|z|2
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and|∇3v(y)| = sup
α,β,γ∈RN

∣∣∣∣∣∣
∑
i,j,k

αi

|α|
βj

|β|
γk

|γ |∂
3
i,j,kv(y)

∣∣∣∣∣∣.
In addition,‖v‖L∞ = sup

y∈RN

|v(y)| and‖∇ iv‖L∞ = sup
y∈RN

|∇ iv(y)|.
We also obtain information on the limiting blow-up profile for equation (7):

Proposition 1 (Existence of a blow-up profile for equation (5))Assume (2) holds
and consideru(t) a solution of (5) which satisfiesu(0) ∈ H 1(RN) and blows-up
at (a, T ). Then, there existωa ∈ SM−1, Q a N × N orthonormal matrix and
l ∈ {0, ..., N} such that∀K > 0

sup
|y|≤K√

s

∣∣∣∣∣∣wa(Qy, s)−
(
p − 1 + (p − 1)2

4p

l∑
i=1

y2
i

s

)− 1
p−1

ωa

∣∣∣∣∣∣ → 0 ass → +∞.

(17)

Remark.In the casel = 0, Proposition 1 yields(p − 1)−
1

p−1 = κ as asymptotic
behavior forwa. This corresponds to a degenerate blow-up rate, and one can
find an other blow-up profile in the scaley ∼ exp

(+ s
2

(
1 − 1

k

))
for somek ∈

N\{0,1}.
Remark.In the case of single point blow-up withl = N andM = 1, we use
the Liouville Theorem and show with Fermanian-Kammerer in [FKMZ] that
the behavior (17) is stable under perturbations of initial data. Moreover, the
convergence is uniform in a neighborhood of a given initial data. In other words,
if û(t) is a solution of (4) which blows-up at timêT only at one point̂a with
the behavior (17) (withl = N andωa = 1), then, there exists a neighborhood
V0 of û(0) such that for allu0 ∈ V0, the solutionu(t) of (4) with initial datau0

blows-up in finite timeT (u0) at only one blow-up point and for allK > 0,

sup
u0∈V0, |y|≤K√

s

∣∣∣∣∣wa,T (y, s)−
(
p − 1 + (p − 1)2

4p

|y|2
s

)− 1
p−1
∣∣∣∣∣ → 0 ass → +∞

wherewa,T = wa(u0),T (u0) is defined fromu(t) by (6). Moreover,a(u0) → â and
T (u0) → T̂ asu0 → û(0).

Theorem 3 shows that the blow-up phenomenon is continuous with respect
to initial data. In [Mer92], Merle shows that the blow-up time is continuous
with respect to initial data inL∞ ∩ H 1(Ω). If S is the blow-up set ofu(t), we
know from standard parabolic estimates that we can define the blow-up profile
u∗ ∈ C(Ω\S) outside the singular set by

∀x ∈ Ω\S, u∗(x) = lim
t→T

u(x, t),
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and that the convergence is uniform on every compact set ofΩ\S. In the following
Proposition, we show that the blow-up profile is continuous with respect to initial
data.

Proposition 2 (Continuity of the blow-up profile with respect to initial data)
Assume that condition (2) holds. Letu0n → u0 in L∞ ∩ H 1(Ω) and denote by
un(x, t) the solution of (5) with initial datau0n. Denote byTn andu∗

n the blow-up
time and profile ofun(t).
(A) Continuity at the regular points ofu(t).

i) u∗
n → u∗ asn → +∞ uniformly on compact sets ofΩ\S.

ii) If tn → T , thenun(x, tn) → u∗(x) uniformly on compact sets ofΩ\S.
(B) Continuity at the blow-up points ofu(t).

∀A > 0, ∃ε > 0, ∃n0 ∈ N, ∃t0 < T such that∀n ≥ n0, ∀x ∈ Ω such that
d(x, S) ≤ ε, ∀t ∈ [t0, Tn), |un(x, t)| ≥ A.

Remark.(A) was proved in [Mer92]. In the contrary, only a local version (local-
ized near a blow-up point ofu(t) of a particular type) was proved in [Mer92].

By the same techniques as in [MZ98b], we have the following equivalence
result of several notions of blow-up profiles for equation (5):

Proposition 3 (Equivalence of different notions of blow-up profiles at a sin-
gular point) Assume that condition (2) holds. Letx0 ∈ R

N be an isolated blow-up
point ofu(t) solution of (4) such thatu0 ∈ H 1(RN) andω ∈ SM−1. The fol-
lowing blow-up behaviors ofu(t) nearx0 or w(s) = wx0(s) (defined in (6)) are
equivalent:

(A) ∀R > 0, sup
|y|≤R

∣∣∣∣w(y, s)−
[
κ + κ

2ps
(N − 1

2
|y|2)

]
ω

∣∣∣∣ = o

(
1

s

)
ass →

+∞ whereκ = (p − 1)−
1

p−1 ,

(B) ∃ε0 > 0 such that
∥∥∥w(y, s)− f0(

y√
s
)ω

∥∥∥
L∞(|y|≤ε0es/2)

→ 0 ass → +∞
with f0(z) = (p − 1 + (p−1)2

4p |z|2)− 1
p−1 ,

(C) ∃ε0 > 0 such that if|x − x0| < ε0, thenu(x, t) → u∗(x) as t → T and

u∗(x) ∼
[

8p| log |x−x0||
(p−1)2|x−x0|2

] 1
p−1
ω asx → x0.

One further result concerns the size of the blow-up set:

Proposition 4 (Size of the blow-up set)Assume that (2) holds andM = 1.
Consideru(t) ∈ H 1 ∩ L∞(Ω) a solution of (5) that blows-up at timeT . LetS
be its blow-up set. ThenS is compact and the(N − 1)−Hausdorff measure ofS
is finite.

We now present in section 2 the proof of the Liouville Theorem 1 in the scalar
case. Section 3 is devoted to the control of‖u(t)‖L∞ (Theorem 2) and the ODE
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behavior (Theorem 3) uniformly with respect to initial data. In section 4, we
use modulation theory to adapt to the vectorial case the proof of the Liouville
Theorem 1.

2 Liouville Theorem for equation (7)

In this section, we prove Theorem 1 in the caseM = 1. Similar ideas with the
use of the modulation theory yield the result for generalM (see section 4 for the
caseM ≥ 2).
Note that for the Liouville Theorem, we assume thatp satisfies the more general
condition (15) and not only the condition (2).

The proof follows the same pattern as the analogous one presented in [MZ98a]
in the case of nonnegative data. Indeed, all the arguments presented in [MZ98a]
remain valid for solutions with no sign, except the following blow-up criterion
for equation (7) which is specific for nonnegative data:

Letw be a nonnegative solution of (7) and assume that∫
RN
w(y, s0)ρ(y)dy > κ

∫
RN
ρ(y)dy for somes0 ∈ R. Then,w blows-up at

some timeS > s0.

Note that the criterion breaks even in the caseM = 1 if there is no sign
condition. Therefore, it is enough to replace this criterion by another suitable
one, valid for solutions with no sign, so that the proof of [MZ98a] can be adapted
in the current case (and in the vectorial case).

Let us first introduce the following functional defined for allW ∈ H 1
ρ (R

N)

I (W) = −2E(W)+ p − 1

p + 1

(∫
RN

|W(y)|2ρ(y)dy
) p+1

2

(18)

whereE is defined in (8), and the following blow-up criterion valid for vectorial
solutions of (7):

Proposition 2.1 (Blow-up criterion for vectorial solutions of (7))
Letw be a solution of (7) which satisfies

I (w(s0)) > 0 (19)

for somes0 ∈ R. Then,w blows-up at some timeS > s0.

Remark.This Proposition and the fact thatI (κ) = 0 yield informations on the
solutions of (7) close toκ in the energy space.
In the following, we will prove Proposition 2.1 and then give a sketch of the
arguments of the proof of the Liouville Theorem, since they are the same as
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those in [MZ98a]. Only the arguments related to the new blow-up criterion will
be expanded.

Proof of Proposition 2.1.We proceed by contradiction and suppose thatw is
defined for alls ∈ [s0,+∞). According to (7) and (8), we have∀s ≥ s0,

d

ds

∫
|w(y, s)|2ρdy = 2

∫ (
−|∇w(y, s)|2 − |w(y, s)|2

p − 1
+ |w(y, s)|p+1

)
ρdy

= −4E(w(s))+ 2(p − 1)

p + 1

∫
|w|p+1ρdy

≥ −4E(w(s0))+ 2(p − 1)

p + 1

(∫
|w|2ρdy

) p+1
2

where we used Jensen’s inequality (
∫
ρdy = 1) and the fact thatE is decreasing

in time.
If we set

z(s) =
∫

|w(y, s)|2ρdy, α = −4E(w(s0)) andβ = 2(p − 1)

p + 1
, (20)

then this reads:

∀s ≥ s0, z
′(s) ≥ α + βz(s)

p+1
2 . (21)

With (20) and (18), the condition (19) reads:α + βz(s0)
p+1

2 > 0. By a classical
argument, we have from this and from (21)

∀s ≥ s0, z
′(s) > 0 andα + βz(s)

p+1
2 > 0.

Using a direct integration, we obtain:

∀s ≥ s0, s − s0 ≤
∫ z(s)

z(s0)

dx

α + βx
p+1

2

≤
∫ +∞

z(s0)

dx

α + βx
p+1

2

= C(z(s0)) < +∞

sincep > 1. Thus, a contradiction follows and Proposition 2.1 is proved.ut
Proof of Theorem 1 in the scalar case.We assumep > 1 andp < N+2

N−2 if N ≥ 3,
and considerw ∈ L∞(RN × R,R) a solution of (7). We proceed in two parts in
order to show thatw depends only ons:
- In Part I, we show from the dissipative character of the equation thatw has a
limit w±∞ ass → ±∞ with w±∞ a critical point of (7), that isw±∞ ≡ 0, κ or
−κ. We then focus on the nontrivial case(w−∞, w+∞) = (κ,0) and show from
a linear study of the equation aroundκ thatw goes toκ ass → −∞ in three
possible ways.
- In Part II, we show that one of these three ways corresponds tow(y, s) =
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ϕ(s − s0) for somes0 ∈ R whereϕ(s) = κ(1 + es)
− 1
p−1 . In the two other cases,

we find a contradiction from nonlinear informations:
- the blow-up criterion of Proposition 2.1 (forw close toκ),
- the following geometrical transformation:

a ∈ R
N → wa defined bywa(y, s) = w(y + ae

s
2 , s) (22)

which keeps (7) invariant (thanks to the translation invariance of equation (5)).

Part I: Possible behaviors ofw ass → ±∞
We proceed in two steps: First, we find limitsw±∞ for w ass → ±∞. In a
second step, we focus on the linear behavior ofw as s → −∞, in the case
w−∞ = κ.

Step 1: Limits of w ass → ±∞
Proposition 2.2 (Limits ofw ass → ±∞) w+∞(y) = lim

s→+∞w(y, s)exists and

is a critical point of (7). The convergence holds inL2
ρ , theL2 space associated to

the Gaussian measureρ(y)dy whereρ is defined in (9), and uniformly on each
compact subset ofRN . The same statement holds forw−∞(y) = lim

s→−∞w(y, s).

Proof.See Step 1 in section 3 in [MZ98a]. ut
Proposition 2.3 (Stationary problem for (7)) The only nonnegative
bounded global solutions inRN of

0 = ∆w − 1

2
y.∇w − w

p − 1
+ |w|p−1w (23)

are the constant ones:w ≡ 0, w ≡ −κ andw ≡ κ.

Proof.One can derive the following Pohozaev identity for each bounded solution
of equation (7) inRN (see Proposition 2 in [GK85]):

(N + 2 − p(N − 2))
∫

|∇w|2ρdy + p − 1

2

∫
|y|2|∇w|2ρdy = 0. (24)

Hence, for(N−2)p ≤ N+2,w is constant. Thus,w ≡ 0 orw ≡ κ orw ≡ −κ.
ut

From Propositions 2.2 and 2.3, we havew±∞ ≡ 0 orw±∞ ≡ κ or w±∞ ≡
−κ. SinceE is a Lyapunov functional forw, one gets from (8) and (7):∫ +∞

−∞
ds

∫
RN

∣∣∣∣∂w∂s (y, s)
∣∣∣∣
2

ρdy = E(w−∞)− E(w+∞). (25)

Therefore, sinceE(κ) = E(−κ) > 0 = E(0), there are only two cases:
1 - E(w−∞) − E(w+∞) = 0. This implies by (25) that∂w

∂s
≡ 0, hencew is a
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stationary solution of (7) andw ≡ 0 orw ≡ κ orw ≡ −κ by Proposition 2.3.
2 - E(w−∞) − E(w+∞) > 0. This occurs only ifw+∞ ≡ 0 andw−∞ ≡ κ or
−κ. It remains to treat this case. Since (7) is invariant under the transformation
w → −w, it is enough to focus on the case:

(w−∞, w+∞) ≡ (κ,0). (26)

Remark.The case 1 contains the case studied in [GK85]. Indeed, the authors
had thereE(w−∞) = E(w+∞) andw+∞ > 0 (assuming (16)). Thereforew is a
stationary solution of (7).

Step 2: Linear behavior ofw near κ ass → −∞
Let us introducev = w−κ. From (7),v satisfies the following equation:∀(y, s) ∈
R
N+1,

∂v

∂s
= Lv + f (v) (27)

whereLv = ∆v − 1

2
y.∇v + v and

f (v) = |v + κ|p−1(v + κ)− κp − pκp−1v. (28)

Sincew is bounded inL∞, we assume|v(y, s)| ≤ C and|f (v)| ≤ C|v|2.
L is self-adjoint onD(L) ⊂ L2

ρ . Its spectrum is

spec(L) = {1 − m

2
| m ∈ N}, (29)

and it consists of eigenvalues. The eigenfunctions ofL are derived from Hermite
polynomials:

– N = 1:
All the eigenvalues ofL are simple. For 1− m

2 corresponds the eigenfunction

hm(y) =
[m2 ]∑
n=0

m!
n!(m− 2n)!(−1)nym−2n. (30)

– N ≥ 2:
We write the spectrum ofL as

spec(L) = {1 − m1 + ...+mN

2
|m1, ..., mN ∈ N}.

For (m1, ..., mN) ∈ N
N , the eigenfunction corresponding to

1 − m1+...+mN
2 is

h(m1,...,mN ) : y −→ hm1(y1)...hmN (yN), (31)
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wherehm is defined in (30). In particular,
*1 is an eigenvalue of multiplicity 1, and the corresponding eigenfunction is

H0(y) = 1, (32)

* 1
2 is of multiplicity N , and its eigenspace is generated by the orthogonal

basis{H1,i(y)|i = 1, ..., N}, withH1,i(y) = h1(yi); we note

H1(y) = (H1,1(y), ..., H1,N (y)), (33)

*0 is of multiplicity N(N+1)
2 , and its eigenspace is generated by the orthogonal

basis{H2,ij (y)|i, j = 1, ..., N, i ≤ j}, withH2,ii(y) = h2(yi), and fori < j ,
H2,ij (y) = h1(yi)h1(yj ); we note

H2(y) = (H2,ij (y), i ≤ j). (34)

Since the eigenfunctions ofL constitute a total orthonormal family ofL2
ρ , we

expandv as follows:

v(y, s) =
2∑

m=0

vm(s).Hm(y)+ v−(y, s) (35)

where
v0(s) is the projection ofv onH0,
v1,i(s) is the projection ofv onH1,i , v1(s) = (v1,i(s), ..., v1,N (s)),H1(y) is given
by (33),
v2,ij (s) is the projection ofv onH2,ij , i ≤ j, v2(s) = (v2,ij (s), i ≤ j),H2(y) is
given by (34),
v−(y, s) = P−(v) andP− is the projector on the negative subspace ofL.

With respect to the positive, null and negative subspaces ofL, we write

v(y, s) = v+(y, s)+ vnull(y, s)+ v−(y, s) (36)

wherev+(y, s) = P+(v) = ∑1
m=0 vm(s).Hm(y),

vnull(y, s) = Pnull(v) = v2(s).H2(y),P+ andPnull are theL2
ρ projectors respec-

tively on the positive subspace and the null subspace ofL.

Now, we show that ass → −∞, eitherv0(s), v1(s) or v2(s) is predominant
with respect to the expansion (35) ofv in L2

ρ . At this level, we are not able
to use a center manifold theory to get the result (see [FK92] page 834-835 for
more details). In some sense, we are not able to say that the nonlinear terms in
the function of space are small enough. However, using similar techniques as in
[FK92], we are able to prove the result. We have the following:
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Proposition 2.4 (Linear classification of the behaviors ofw ass → −∞) As
s → −∞, one of the following cases occurs:
i) |v1(s)| + ‖vnull(y, s)‖L2

ρ
+ ‖v−(y, s)‖L2

ρ
= o(v0(s)),

∀s ≤ s0, v
′
0(s) = v0(s)+O

(
v0(s)

2
)

(37)

and there existsC0 ∈ R such that

‖v(y, s)− C0e
s‖H1

ρ
= o(es), (38)

and∀ε > 0,

v0(s) = C0e
s +O(e(2−ε)s) andv1(s) = O(e(2−ε)s). (39)

ii) |v0(s)| + ‖vnull(y, s)‖L2
ρ
+ ‖v−(y, s)‖L2

ρ
= o(v1(s)) and∃C1 ∈ R

N\{0} such

that‖v(y, s)− e
s
2C1.y‖H1

ρ
= o(e

s
2 ), v1(s) ∼ C1e

s/2 andv0(s) ∼ p

κ
|C1|2es ,

iii) ‖v+(y, s)‖L2
ρ

+ ‖v−(y, s)‖L2
ρ

= o(‖vnull(y, s)‖L2
ρ
) and there existsl ∈

{1, ..., N} andQ an orthonormalN ×N matrix such that∥∥∥∥∥v(Qy, s)− κ
4ps

(
2l −

l∑
i=1

y2
i

)∥∥∥∥∥
H1
ρ

= o(1
s
),

vnull(Qy, s) = κ
4ps

(
2l −

l∑
i=1

y2
i

)
+ O

(
1
s1+δ

)
, v1(s) = O

(
1
s2

)
and v0(s) =

O
(

1
s2

)
for someδ > 0.

Proof. See Propositions 3.5, 3.6, 3.9 and 3.10 in [MZ98a]. Although onlyL2
ρ

norms appear in those Propositions, one can see that the proof of Proposition 3.5
in [MZ98a] can be adapted without difficulties to yieldH 1

ρ estimates (see section
6 in [FK92] for a similar adaptation). ut

Part II: Conclusion of the proof

The crucial point is to note thatI (κ) = 0 whereI is defined in (18). Thus, the use
of the geometrical transformationw → wa (see (22)) and the blow-up argument
of Proposition 2.1 applied towa(s) will introduce some rigidity on the behavior
of w(s) ass → −∞.
We proceed in two steps:
- In Step 1, we show that if the casei) of Proposition 2.4 occurs, thenw(y, s) =
ϕ(s − s0) for somes0 ∈ R.
- In Step 2, we show by means of Proposition 2.1 and the transformation (22)
that casesii) andiii) of Proposition 2.4 yield a contradiction.

Step 1: Casei) of Proposition 2.4: the relevant case
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Proposition 2.5 Assume that casei) of Proposition 2.4 occurs, then:
i) C0 < 0,

ii) ∀y ∈ R
N , ∀s ∈ R, w(y, s) = ϕ(s − s0) whereϕ(s) = κ(1 + es)

− 1
p−1 and

s0 = − log
(
− (p−1)C0

κ

)
.

Proof.
i)We proceed by contradiction in order to eliminate successively the casesC0 = 0
andC0 > 0.
- SupposeC0 = 0, then one can see from (37) and (39) that∀s ≤ s1, v0(s) = 0
for somes1 ∈ R. Since‖v(s)‖L2

ρ
∼ v0(s) as s → −∞, we have∀s ≤ s2,

∀y ∈ R
N , v(y, s) = 0 andw(y, s) = κ for somes2 ∈ R. From the uniqueness

of the solution of the Cauchy problem for equation (7), we havew ≡ κ in all
R
N × R, which contradicts the fact thatw → 0 ass → +∞ (see (26)). Hence,

C0 6= 0.
- Suppose now thatC0 > 0. We will prove that

I (w(s)) = −2E(w(s))+ p − 1

p + 1

(∫
RN

|w(y, s)|2ρ(y)dy
) p+1

2

> 0 (40)

for somes ∈ R, which is the blow-up condition of Proposition 2.1, in contradic-
tion with the global boundedness ofw.

Sincew = κ+v andκ is a critical point ofE : H 1
ρ (R

N) → R (see Proposition
2.3), we have

E(w(s)) = E(κ)+O
(
‖v(s)‖2

H1
ρ

)
= κ2

2(p + 1)
+O

(
‖v(s)‖2

H1
ρ

)
. (41)

For the second term in (40), we usew = κ + v and write∫ |w(y, s)|2ρdy = κ2 + 2κ
∫
v(y, s)ρdy + ∫ |v(y, s)|2ρdy

= κ2 + 2κv0(s)+ ∫ |v(y, s)|2ρdy. Therefore,
p−1
p+1

(∫ |w(y, s)|2ρdy) p+1
2 = κ2

p+1 +κv0(s)+O(‖v(s)‖2
L2
ρ
). Combining this with

(41) and using (39) and (38), we end up with

I (w(s)) ∼ κv0(s) ∼ κC0e
s > 0 ass → −∞

which is the blow-up condition of Proposition 2.1. Contradiction. Thus,C0 < 0.

ii) Let us introduceV (y, s) = w(y, s)−ϕ(s−s0)whereϕ(s) = κ(1+es)− 1
p−1

ands0 = − log
(
− (p−1)C0

κ

)
. Sinceϕ is a solution of

ϕ′(s) = − ϕ(s)

p − 1
+ ϕ(s)p,
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we see from (7) thatV satisfies the following equation:

∂V

∂s
= (L + l(s))V + F(V ) (42)

whereL = ∆− 1
2y.∇ + 1, l(s) = − pes−s0

(p−1)(1+es−s0) and

F(V ) = |ϕ+V |p−1(ϕ+V )−ϕp−pϕp−1V . Note that∀s ≤ 0, |F(V )| ≤ C|V |2.
Besides, we have fromi) of Proposition 2.4 and the choice ofs0 that

|V0(s)| + |V1(s)| = O(e(2−ε)s) and‖Vnull(s)‖L2
ρ
+ ‖V−(s)‖L2

ρ
= o(es) (43)

ass → −∞. Using the linear classification at infinity of solutions of equation
(42) under the conditions (43) (see Proposition 3.7 in [MZ98a]), we getV ≡ 0
onR

N × R. Thus,∀y ∈ R
N , ∀s ∈ R,

w(y, s) = ϕ(s − s0).

ut
Step 2: Casesii) and iii) of Proposition 2.4: blow-up casesIn both cases
ii) andiii) of Proposition 2.4, we will finds0 ∈ R and|a0| ≤ e−

s0
2 such that

I (wa0(s0)) > 0 whereI is defined in (18), which implies by Proposition 2.1
thatwa0 blows-up in finite timeS > s0, in contradiction with‖wa0‖L∞(RN×R) =
‖w‖L∞(RN×R) < +∞. We give in the following lemma an expansion ofI (wa(s))
ass → −∞ andaes/2 → 0, which will allow us to conclude:

Lemma 2.6
a - Assume that caseii) or iii) of Proposition 2.4 holds, then

I (wa(s)) = κ

∫
v(y, s)ρ(y − aes/2)dy +O

(
‖v(s)‖2

H1
ρ

)
ass → −∞ andaes/2 → 0. Moreover,
b - In caseii):

∫
v(y, s)ρ(y − aes/2)dy = a.C1e

s + o (|a|es)+O(ses),
c - In caseiii):

∫
v(y, s)ρ(y − aes/2)dy =

κ
4p|s|

l∑
i=1

∫
(z2
i −2)(Qaes/2.z)2ρ(z)dz+O

(
1

s2

)
+O

( |a|2es
|s|1+δ

)
+O

(
|a|3e 3s

2

|s|

)
.

Proof.see Appendix A. ut
This lemma allows us to conclude. Indeed,
– if caseii) of Proposition 2.4 holds, then
I (wa(s)) = κa.C1e

s + o (|a|es) + O (ses). We fix s0 negative enough and
a0 = 1

|s0|
C1
|C1|e

−s0/2 to get

I (wa0(s0)) ≥ 1

2
κa0.C1e

s0 = κ
es0/2

2|s0| |C1| > 0.
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This implies by Proposition 2.1 thatwa0 blows-up at timeS > s0. Contradiction.
– If caseiii) of Proposition 2.4 holds, then

I (wa(s)) = κ2

4p|s|

l∑
i=1

∫
(z2
i −2)(Qaes/2.z)2ρ(z)dz+O

(
1

s2

)
+O

( |a|2es
|s|1+δ

)
+

O

(
|a|3e 3s

2

|s|

)
. We fix s0 negative enough anda0 = e−s0/2

|s0|1/4Q
−1e1 wheree1 =

(1,0, ...,0) so that we get

I (wa0(s0)) ≥ 1

2

κ2

4p|s0|
l∑
i=1

∫
(z2
i − 2)(

e1

|s0|1/4 .z)
2ρ(z)dz = κ2

p|s0|3/2 > 0

by (9). This implies by Proposition 2.1 thatwa0 blows-up at timeS > s0. Con-
tradiction.

This concludes the proof of Theorem 1 in the scalar case. ut

3 Uniform estimates for nonlinear heat equations

In this section, we prove uniform bounds on solutions of (5) (Theorem 2) and
deduce several applications of Theorems 1 and 2 for nonlinear heat equations. In
particular, we prove uniform bounds and the ODE like behavior of the solution
(Theorems 3 and 4 and Corollary 2). We treat only the caseΩ = R

N . The case
whereΩ is a convex boundedC2,α domain can be treated in the same way, by
using regularity results near the boundary (see [GK87], lemma 3.4).
In the end of the section, we give a sketch of the proof of various consequences
of Theorems 3 and 4 presented in the introduction.

Proof of Theorem 2: UniformL∞ bounds on the solution.

Consideru0 ∈ C2 such that‖u0‖C2 ≤ C0 andu(t) solution of (5) with initial
datau0 blows-up atT with T < T0. We claim that there isC = C(C0, T0) such
that‖u(t)‖L∞ is controlled byCv(t)wherev is the solution of the ODEv′ = vp

which blows-up at the same timeT asu(t). The result mainly follows from
blow-up argument giving local energy estimates and the fact that these estimates
yieldL∞ estimates (from Giga-Kohn [GK87]).

Step 1: Estimates onu(t) for small time

Lemma 3.1 (C2 bounds for small time) There ist0 = t0(C0) > 0 such that:
i) for all t ∈ [0, t0], ‖u(t)‖L∞ ≤ 2C0,
ii) for all t ∈ [0, t0], ‖u(t)‖C2 ≤ 2C0,
iii) for all α ∈ (0,1), ‖∆u‖Cα(D) ≤ C1(α, C0)where

‖a‖α = sup
(x,t)6=(x′,t ′)∈D

∣∣a(x, t)− a(x ′, t ′)
∣∣(|x − x ′| + |t − t ′|1/2)α
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whereD = R
N × [ t02 , t0].

Proof: We start withi) andii). Sinceu satisfies

u(t) = S(t)u0 +
∫ t

0
S(t − s)|u(s)|p−1u(s)ds,

we have

‖u(t)‖L∞ ≤ ‖u0‖L∞ +
∫ t

0
‖u(s)‖pL∞ds.

Thus, by a priori estimates, we have∀t ∈ [0, t0], ‖u(t)‖L∞ ≤ 2C0 wheret0 =
2−pC1−p

0 .
Similarly, we obtain∀t ∈ [0, t0], ‖u(t)‖C2 ≤ 2C0 wheret0 = t0(C0).

iii)We use the following lemma:

Lemma 3.2 Assume thath solves

∂h

∂τ
= ∆h+ a(ξ, τ )h

for (ξ, τ ) ∈ D whereD = B(0,3)×[0, t0] andt0 ≤ T0. Assume in addition that
‖a‖L∞ + |a|α,D is finite, where

|a|α,D = sup
(ξ,τ ),(ξ ′,τ ′)∈D

∣∣a(ξ, τ )− a(ξ ′, τ ′)
∣∣(|ξ − ξ ′| + |τ − τ ′|1/2)α (44)

andα ∈ (0,1). Then,

‖h‖C2(D′) + |∇2h|α,D′ ≤ K‖h‖L∞(D)

whereK = K
(‖a‖L∞(D) + |a|α,D

)
andD′ = B(0,1)× [ t02 , t0].

Proof: see Lemma 2.10 in [MZ98b]. ut

Step 2: Energy bounds in similarity variables

From the blow-up argument for equation (7) (Proposition 2.1) and the mono-
tonicity of the energyE, we have:

Lemma 3.3 There isC1 = C1(C0, T0) such that∀s ≥ s0 = − logT , ∀a ∈ R
N ,

i) |E(wa(s))| ≤ C1 and
∫ |wa(y, s)|2ρ(y)dy ≤ C1,

ii)
∫ s+1
s

∫ (|wa(y, s)|p+1 + |∇wa(y, s)|2 + ∣∣ ∂wa
∂s
(y, s)

∣∣2) ρ(y)dyds ≤ C1,

iii)
∫ s+1
s

(∫ |wa(y, s)|p+1ρ(y)dy
)2
ds ≤ C1 wherewa andE are defined respec-

tively in (6) and (8).
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Proof.Following [GK87], we notew = wa.
i)First we have that∀s ∈ [s0,+∞), d

ds
E(wa(s)) ≤ 0,E(wa(s)) ≤ E(wa(s0))

≤ C(C0, T0). Let us note from the blow-up result of Proposition 2.1 that∀s ∈
[s0,+∞),

I (w(s)) = −2E(w(s))+ p − 1

p + 1

(∫
|w(y, s)|2ρ(y)dy

) p+1
2

≤ 0.

Thus,
(∫ |w(y, s)|2ρ(y)dy) p+1

2 ≤ 2(p+1)
p−1 E(w(s)) ≤ C(C0, T0) and we havei).

ii)We have

d

ds

∫
|w(y, s)|2ρ(y)dy = −2E(w(s))+ p − 1

p + 1

∫
|w(y, s)|p+1ρ(y)dy.

Therefore, by integration andi),
∫ s+1
s

∫ |w(y, s)|p+1ρ(y)dyds ≤ C1.
From the bound on

∫ |w(y, s)|2ρ(y)dy, E(w(s)) and∫ s+1
s

∫ |w(y, s)|p+1ρ(y)dyds, we obtain the bound on∫ s+1
s

∫ |∇w(y, s)|2ρ(y)dyds, and from the variation of the energy,∣∣∣∫ s+1
s

∫ ∣∣ ∂w
∂s
(y, s)

∣∣2 ρ(y)dyds∣∣∣ ≤ |E(w(s))| + |E(w(s + 1))| ≤ 2C1.

iii)We write
− ∫ |∇w(y, s)|2ρ(y)dy + ∫ |w(y, s)|p+1ρ(y)dy

= ∫
∂w
∂s
(y, s)w(y, s)ρ(y)dy + 1

p−1

∫ |w(y, s)|2ρ(y)dy.

Since
∣∣∣∫ |∇w(y, s)|2ρ(y)dy − 2

p+1

∫ |w(y, s)|p+1ρ(y)dy

∣∣∣ ≤ C1, we have∫ |w(y, s)|p+1ρ(y)dy ≤ C1

(∫ ∣∣ ∂w
∂s
(y, s)

∣∣2 ρdy) 1
2 (∫ |w(y, s)|2ρ(y)dy) 1

2 +C1,

then,(∫ |w(y, s)|p+1ρ(y)dy
)2 ≤ C1

(
1 + ∫ ∣∣ ∂w

∂s
(y, s)

∣∣2 ρ(y)dy).

Thus, by integration we have the conclusion. ut
Step 3:L∞ bound in similarity variables

We have the following proposition, whereL∞ bound can be derived from energy
bounds:

Proposition 3.4 (Giga-Kohn,L∞ bound onw ) Assume that we have the
bounds of lemma 3.3 onw in the interval[s, s + 1] for a givenC1, then for
all δ ∈ (0,1), there existsC2(C1, δ) such that|wa(0, s + δ)| ≤ C2.

Proof.See lemma 3.2 in [GK87]. ut
Step 4: Conclusion of the proof:L∞ bounds with respect toC0 and T0

We can see that these arguments yield uniform bounds on the solution.
- On one hand, we have from Step 1,
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∀t ∈ [0, t0(C0)], ‖u(t)‖L∞ ≤ 2C0. (45)

- On the other hand, we have from Proposition 3.4 and Step 2, for allδ0 ∈ (0,1),
∀s ∈ [s0 + δ0,+∞), ‖w(s)‖L∞ ≤ C2(C1, δ0), therefore

∀t ∈ [T (1 − e−δ0), T ), ‖u(t)‖L∞ ≤ C2

(T − t)
1

p−1

. (46)

Takingδ0 = δ0(T0, t0) such thatT0(1 − e−δ0) ≤ t0
2 , and using (45) and (46) we

obtain∀t ∈ [0, T ), ‖u(t)‖L∞ ≤ C3

(T−t)
1

p−1
where

C3(C0, T0) = max(C2(C1, δ0),2C0T
1

p−1
0 ).

This concludes the proof of Theorem 2. ut
Let us prove now the uniform pointwise control of the diffusion term by the

nonlinear term, which asserts that the solutionu(t) behaves everywhere like the
ODEv′ = vp.

Proof of Theorem 3 (Uniform ODE behavior).The main ideas are the same as
in [MZ98a] where the proof was presented for a given positive solution. But we
will present the proof in a different way which allows us to obtain a constant
uniform with respect to initial data.

We argue by contradiction. Let us considerun solution of (5) with initial data
u0n such that‖u0n(t)‖C2 ≤ C0, un(t) blows-up at timeTn < T0 and for some
ε0 > 0, the statement

|∆u| ≤ ε0|u|p + n onR
N × [0, Tn) (47)

is not valid. Therefore, there is(xn, tn) ∈ R
N × [0, Tn) such that

|∆un(xn, tn)| ≥ ε0|un(xn, tn)|p + n. (48)

Consideringũn(x, t) = un(xn + x, t), we can assume

xn = 0.

From the uniform estimates and the parabolic regularity, we have

Tn − tn → 0 asn → +∞.

Indeed, from Theorem 2,∃C2(C0, T0) > 0 such that∀t ∈ [0, Tn),
‖un(t)‖L∞ ≤ C2

(Tn−t)
1

p−1
.

Introducingwn(y, s) for all y ∈ R
N ands ≥ s0n = − logTn by

y = x − a√
Tn − t

, s = − log(Tn − t), wn(y, s) = (Tn − t)
1

p−1un(x, t),
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we have∀s ∈ [s0n,+∞), ‖wn(s)‖L∞ ≤ C2, wheres0n = − logTn. From
parabolic regularity applied to equations (5) and (7), there isC ′ such that∀s ∈
[s0,+∞), ‖∆wn(s)‖L∞ ≤ C ′.
Thus,∀t ∈ [0, Tn), ‖∆un(t)‖L∞ ≤ C′

(Tn−t)
p
p−1

.

From (48), we have

C ′

(Tn − tn)
p
p−1

≥ ‖∆un(tn)‖L∞ ≥ |∆un(xn, tn)| ≥ n

andTn − tn → 0 asn → +∞.

Let us now consider two cases.
In the region where the solutionun(t) is of the same order as the solution of the
ODE blowing-up atTn (called the very singular region), the Liouville Theorem
1 in similarity variables yields a contradiction.
For the other regions, we can control the nonlinear term by using in some sense
wellposedness for small data in some localized energy space (subcritical behav-
ior). This allows us to transport the information from the very singular region
everywhere.

i) Estimates in the very singular region.|un(0, tn)|(Tn − tn)
1

p−1 → δ0 6= 0 as
n → +∞.

A compactness procedure and the Liouville Theorem yield a contradiction.
We now consider̃wn(y, s) = wn(sn + s, y) wheresn = − log(Tn − tn) → +∞
asn → +∞.
w̃n is a solution of (7) for(y, s) ∈ R

N×[s0n−sn,+∞) such that∀s ≥ s0n−sn+1,
‖w̃n(s)‖L∞(RN) ≤ C, ∀R > 0, ‖w̃n‖C2,1

α (B(0,R)×[−R,R]) ≤ C ′(R), and

|∆w̃n(0,0)| ≥ ε0|w̃n(0,0)|p ≥ ε0
δ
p
0
2 ≥ δ′

0 > 0, where for allD ⊂ R
N × R,

‖w‖
C

2,1
α (D)

= ‖w‖L∞(D) + ‖∇w‖L∞(D) + ‖∇2w‖L∞(D) + ‖∇2w‖α,D
+ ‖∂w

∂t
‖L∞(D) + ‖∂w

∂s
‖ α

2 ,D

and ‖u‖α,D is defined in (44). Note thatsn → +∞ and s0n = − logTn ≤
− log t0(C0) by lemma 3.1. Therefore,s0n − sn → −∞. By compactness proce-
dure,w̃n → w asn → +∞ on compact sets ofRN × R wherew is solution of
(7) for (y, s) ∈ R

N × R such that

∀s ∈ R, ‖w(s)‖L∞ ≤ C and|∆w(0,0)| ≥ δ′
0 > 0.

From Theorem 1, we have a contradiction, since all the globally bounded solu-
tionsw of (7) defined onRN × R satisfyw(y, s) = w(s) and∆w(y, s) = 0.

ii) Estimates in the singular region:un(0, tn)(Tn − tn)
1

p−1 → 0.
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We now consider the case where

u(0, tn)(Tn − tn)
1

p−1 → 0 asn → +∞. (49)

Again, by the Liouville Theorem and the local energy estimates (which allow
us to control the nonlinear term), we transport the information obtained in the
very singular region to obtain a contradiction in this case.

Step 1: Compactness procedure outside the singular region

We have from Theorem 2 and its proof

∀t ∈ [0, Tn), ∀n, ‖un(t)‖L∞ ≤ C

(Tn − t)
1

p−1

and‖un(t)‖C2 ≤ C

(Tn − t)
p
p−1
.

By a compactness procedure, we can assume thatTn → T ∗ wheret0(C0) <

T ∗ ≤ T0 andun(x, t) → u(x, t) in C2,1
loc (R

N × [0, T ∗)) where∀t ∈ [0, T ∗),
∂u
∂t

= ∆u+ |u|p−1u,

‖u(t)‖L∞ ≤ C1

(T ∗ − t)
1

p−1

and‖u(t)‖C2 ≤ C1

(T ∗ − t)
p
p−1
,

and for allD ⊂ R
N × R,

‖u‖C2,1(D) = ‖u‖L∞(D) + ‖∇u‖L∞(D) + ‖∇2u‖L∞(D) + ‖∂u
∂t

‖L∞(D).

We claim:

Lemma 3.5 u(t) blows-up atT ∗ and0 is a blow-up point ofu(t).

Let us recall the following result which asserts that the smallness of the
following weighted energy (related to the energyE(wa) defined in (8)):

Ea,t (u) = t
2

p−1−N
2 +1

∫ [
1

2
|∇u(x)|2 − 1

p + 1
|u(x)|p+1

]
ρ(
x − a√
t
)dx

+ 1

2(p − 1)
t

2
p−1−N

2

∫
|u(x)|2ρ(x − a√

t
)dx

implies anL∞ bound onu(x, t) locally in space-time.

Proposition 3.6 (Local energy smallness result)There existsσ0 > 0such that
for all δ′ > 0 andθ ′ > 0, ∀t ′ ∈ [0, Tn − θ ′], if ∀x ∈ B(0, δ′), Ex,Tn−t ′(un) ≤ σ0,
then
- ∀|x| ≤ δ′, ∀t ∈ [ t ′+Tn2 , Tn), |un(x, t)| ≤ Cσθ0

(Tn−t)
1

p−1

- Moreover, if∀|x| ≤ δ′, |un(x, t ′+Tn2 )| ≤ M ′ then∀|x| ≤ δ′
2 , ∀t ∈ [ t ′+Tn2 , Tn),

|un(x, t)| ≤ M∗ whereM∗ = M∗(M ′, δ′, θ ′).
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Proof.See [GK89] and [Mer92] (Proposition 2.5). ut
Proof of lemma 3.5.By contradiction, there isM, δ > 0 such that

∀|x| ≤ 4δ, ∀t ∈ [0, T ∗), |u(x, t)| ≤ M. (50)

From a stability result with respect to the initial data of this property, we obtain
a contradiction.
Indeed, from (50) and direct calculations, there is thent∗ such that∀|x| ≤ δ,
Ex,T ∗−t∗(u(t∗)) ≤ σ0

2 . We now fixt∗. Then, forn large,∀|x| ≤ δ,
Ex,Tn−t∗(un)(t∗) ≤ σ0, and∀|x| ≤ δ,∀t ∈ [0, t∗+Tn2 ], |un(x, t)| ≤ 2M.Therefore,
form Proposition 3.6,∀|x| ≤ δ

2, ∀t ∈ [ t∗+Tn2 , Tn), |un(x, t)| ≤ M∗.
By a classical regularity argument, we have∀|x| ≤ δ

4, ∀t ∈ [3Tn
4 , Tn),|∆un(0, tn)| ≤ M∗∗(M∗,M)which is a contradiction with the fact that|∆un(0, tn)|

→ +∞ asn → +∞ and the fact thatTn − tn → 0. This concludes the proof of
Lemma 3.5. ut
Step 2: Choice of the scaling parameter

From the fact that 0 is a blow-up point ofu, we are able to choose a suitable
scaling parameter connecting(0, tn) and the “very singular region” ofun. We are
now reduced to the same proof as in [MZ98a]. Considerκ0 ∈ (0, κ) a constant
such thatE0,1(κ0) ≤ σ0

2 (E0,1(0) = 0 yields the existence of such aκ0).
Since 0 is a blow-up point ofu,

u(0, t)(T ∗ − t)
1

p−1 → κω.

whereω ∈ SM−1. (Note that this follows from the results of Giga and Kohn
[GK89] and Filippas and Merle [FM95]. IfM = 1, thenω = ±1).

In particular, there ist0 ≥ 0 such that∀t ∈ [t0, T ∗), |u(0, t)|(T ∗− t) 1
p−1 ≥ 3κ+κ0

4 .
Therefore, by continuity arguments, for allt ∈ [t0, T ∗), there is an(t) such that

∀n ≥ n(t), |un(0, t)|(Tn − t)
1

p−1 ≥ κ + κ0

2
. (51)

From (49) and (51), we have the existence oft̃n ∈ [0, tn] such that
|un(0, t̃n)|(Tn − t̃n)

1
p−1 = κ0 and∀t ∈ (t̃n, tn], |un(0, t)|(Tn − t)

1
p−1 < κ0.

We will see in Step 3 thatu(0, t̃n) ∼ C

(Tn−t̃n)
1

p−1
.

We havet̃n → T ∗ from (51).
Let us now consider

vn(ξ, τ ) = (Tn − t̃n)
1

p−1un(ξ
√
Tn − t̃n, t̃n + τ(Tn − t̃n)).
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Step 3: Conclusion of the proof

From the Liouville Theorem stated for equation (5) (Corollary 1) and energy
estimates, we show that the nonlinear term is “subcritical” on compact sets of
R
N × (−∞,1]. In particular, we havevn(ξ, τ ) → v(τ)ω0 whereω0 ∈ SM−1,

v′ = vp andv(0) = κ0 uniformly on compact sets ofRN × (−∞,1] (Note that

v(τ) = κ

((
κ
κ0

)p−1 − τ

)− 1
p−1

andv(1) < +∞).

We have from the definition ofvn that
- vn is defined for allτ ∈ [τn,1) whereτn → −∞ (sinceTn − t̃n → 0) and
satisfies

∂vn

∂τ
= ∆vn + |vn|p−1vn.

- ‖vn(τ )‖L∞ ≤ C (Tn−t̃n)
1

p−1

[(1−τ)(Tn−t̃n)]
1

p−1
≤ C

(1−τ)
1

p−1
, ‖vn(τ )‖C2 ≤ C′

(1−τ)
p
p−1

and

|vn(0,0)| = κ0.
We can assumevn → v in C2,1

loc (R
N × (−∞,1)) where

∂v

∂τ
= ∆v + |v|p−1v

|v(0,0)| = κ0 and‖v(τ)‖L∞ ≤ C ′

(1 − τ)
1

p−1

.

From Corollary 1, (that is using in some sense the Liouville Theorem in the very
singular region), we havev(ξ, τ ) = v(τ)ω0 for someω0 ∈ SM−1. Thanks to this
result, we have uniformly with respect to|ξ | ≤ 2,

Eξ,1(vn(0)) → Eξ,1(v(0)) = Eξ,1(κ0) ≤ σ0

2
.

Thus, forn large,∀|ξ | ≤ 2, Eξ,1(vn(0)) ≤ σ0, |vn(ξ, 1
2)| ≤ 2v(1

2), and by
Proposition 3.6,∀|ξ | ≤ 1

2, ∀τ ∈ [1
2,1), |vn(ξ, τ )| ≤ M∗.

By lemma 3.2, there isM∗ such that∀|ξ | ≤ 1
4, ∀τ ∈ [3

4,1],∣∣ ∂vn
∂t

∣∣
1
2 ,[− 1

4 ,
1
4 ]N×[ 3

4 ,1] +|∆vn| 1
2 ,[− 1

4 ,
1
4 ]N×[ 3

4 ,1] ≤ M∗∗ where|a|α,D is defined in (44).

In particular, |∆vn| and
∣∣ ∂vn
∂t

∣∣ are uniformly continuous on(ξ, τ ) ∈ B1/4 ×
[3

4,1] (with a constant independent fromn). Thus,vn(0, τ ) → v(τ)ω0 and
∆vn(0, τ ) → ∆v(0, τ )ω0 = 0 uniformly for τ ∈ [0,1] asn → +∞.
For τn = tn−t̃n

Tn−t̃n ∈ [0,1], we have from (47)

|∆vn(τn,0)| = (Tn − t̃n)
p
p−1 |∆un(0, tn)| ≥ ε0

2 |un(0, tn)|p(Tn − t̃n)
p
p−1

≥ ε0
2 |vn(0, τn)|p. Let n → +∞, we obtain

0 ≥ ε0

2

(
min
τ∈[0,1] v(τ)

)p
≥ ε0

2
κ
p

0
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which is a contradiction. This concludes the proof of Theorem 3. ut
Let us sketch some consequences of these Theorems.

Corollary 2. It is obvious thatiii) is an immediate consequence ofii). For i)
andii), see section 2.2 in [MZ98a] and work with|u| instead ofu. ut
Theorem 4.The proof is divided in two parts. In a first part, by a contradiction
argument, we prove that∀a ∈ R

N , ‖wa(s)‖L∞ → κ and‖∇ iwa(s)‖L∞ → 0 as
s → +∞. The proof of Theorem 1.1 in [MZ98a] is valid in this case.

In a second part, by slightly adapting the proof presented in [MZ98b], we
use a priori estimates and a contradiction argument to get the conclusion. More
precisely, one should use the new blow-up criterion of equation (7) of Proposition
2.1, rather than the one specific for nonnegative data in the scalar case.ut
Proposition 1.The proof of Theorem 2 in [MZ98b] is valid in this case, with
obvious changes. ut
Proposition 2.For (A), see Proposition 2.3 in [Mer92].
(B) is a direct consequence of continuity arguments and the uniform ODE

behavior of Theorem 3. ut
Proposition 3.The proof of Theorem 3 in [MZ98b] is valid in this case. ut
Proposition 4.Thanks to the results of Giga and Kohn in [GK89],S is compact.

Using iii) of Corollary 2, we find for eacha ∈ S, εa > 0 andta < T such
thatu(x, t) has a constant sign onB(a, εa)×[ta, T ). SinceS is compact, we can
extract a finite collectiona1, ....,al such that

S ⊂ ∪li=1B(ai,
εai

2
). (52)

Sinceuhas a constant sign onB(a, εai )×[tai , T ), we can defineui ∈ C(RN×
[0, T ),R) such that:
i) suppui ⊂ B(ai, εai )× [tai , T ),
ii) ∃ηi ∈ {−1,1} such that∀(x, t) ∈ B(ai, εai2 )×[ tai+T2 , T ),ui(x, t) = ηiu(x, t),
iii) ∀(x, t) ∈ R

N × [0, T ), ui(x, t) ≥ 0 and

∂ui

∂t
= ∆ui + u

p

i + gi(x, t), (53)

with suppgi ⊂ { εai2 ≤ |x| ≤ εai }.
iv) ui blows-up at timeT , on a blow-up setSi containingS ∩B(0, εai2 ) (use ii)).

We claim that the results of Vel´azquez in [Vel93a], [Vel92] and [Vel93b] are
valid for equation (53), therefore, the(N − 1) dimensional Hausdorff measure
of Si is finite.

Using iv) and (52), we get the conclusion. ut
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4 Generalization to the vectorial case

We prove Theorem 1 in the vectorial case in this section. The proof follows
the same structure as the scalar case presented in section 2. Therefore, we will
summarize the similar arguments and focus on those which are particular to the
vectorial structure.
We recall that we consider all subcritical values ofp (condition (15)) and not
only the condition (2).

Part I: Possible behaviors ofw ass → ±∞
Step 1: Limits of w ass → ±∞
The knowledge of the stationary solutions associated to (7) is crucial. The Po-
hozaev equality (24) is still valid, therefore, the stationary solutions are formed
by the isolated point 0 and the continuumκω whereω ∈ SM−1, and this is the
main difficulty in handling the vectorial case. Indeed, if all the possible limits
were isolated points, no real difficulty would be encountered. Nevertheless, by
using the compactness procedure as in the scalar case, one can show that:
- either‖w(s)‖L2

ρ
→ 0 ass → +∞,

- or min
ω∈SM−1

‖w(s)− κω‖L2
ρ

→ 0 ass → +∞.

In this latter case, using a modulation theory, Filippas and Merle in [FM95],
prove thatw actually approaches a particular stationary solutionκω+∞ in the
continuumκSM−1 ass → +∞.
In conclusion, we havew(y, s) → w+∞ in L2

ρ as s → +∞, wherew+∞ ∈
{0} ∪ κSM−1.
Symmetrically, using similarly a modulation theory as in [FM95], we also have
w(y, s) → w−∞ ass → −∞, wherew−∞ ∈ {0} ∪ κSM−1. The convergence
holds also uniformly on compact sets ofR

N .
Using the energy estimate (25) and the fact that∀ω, ω′ ∈ SM−1,

E(κω) = E(κω′) > 0 andE(0) = 0, we see that unlessw ≡ 0 orw ≡ κω for
someω ∈ SM−1, there is only one non trivial case to consider:

(w−∞, w+∞) = (κω−∞,0) (54)

whereω−∞ ∈ SM−1.
From the rotation invariance of (7), we can assume thatω−∞ = ε1, the first

element of the canonical base ofR
M . Let us remark that the modulation theory

method presented in [FM95] yields also

∀s ≤ −1, ‖w(s)− κε1‖L2
ρ

≤ C

s
. (55)

In the following, we will finds0 ∈ R such that∀(y, s) ∈ R
N × R,w(y, s) =

κ(1 + es−s0)−
1

p−1ε1, which will conclude the proof of the Theorem.
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Step 2: Linear behavior ofw near κε1 ass → −∞

Let v = w − κε1. We expandv(y, s) =
M∑
i=1

vi(y, s)εi with respect to the

canonical base ofRM , wherevi : R
N × R → R. From (7), we see thatv

satisfies the following equation:∀(y, s) ∈ R
N+1,

∂v

∂s
= LMv + f (v) (56)

whereLM is the self-adjoint diagonal operator(D(L))M → (
L2
ρ(R

N,R)
)M

given by

LM =




L 0 .. 0
0 L − 1 .. 0
.. .. .. 0
0 0 .. L − 1


 (57)

and defined byLM(v) = (Lv1, (L − 1)v2, ..., (L − 1)vM), L = ∆− 1
2y.∇ + 1

andf (v) = |κε1 + v|p−1(κε1 + v)− κ
p−1ε1 − v

p−1 − v1ε1.
From (29), the spectrum ofLM is

spec(LM) = {1 − m

2
| m ∈ N}.

The set of all eigenfunctions ofLM is

{h(m1,..,mN )εi | (m1, ..., mN) ∈ N
N, 1 ≤ i ≤ M}

whereh(m1,..,mN ) is defined in (31) and satisfies

LM
(
h(m1,...,mN )ε1

) =
(

1 − m1 + ..+mN

2

)
h(m1,...,mN )ε1,

∀i ≥ 2, LM
(
h(m1,...,mN )εi

) = −m1 + ..+mN

2
h(m1,...,mN )εi .

Let Pn be theL2
ρ(R

N,R) projector on

{h(m1,...,mN ) | m1 + ...+mN = n}. (58)

We expand each coordinatevi of v and thenv as follows

vi(y, s) =
∑
n∈N

Pn(vi(s))

v(y, s) =
∑
n∈N

M∑
i=1

Pn(vi)εi
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Let us use this notation and give the projection ofv on the eigenspace ofLM
corresponding to the eigenvalueλ, in the caseλ = 1, 1

2 or 0:
λ = 1: the projection isP0(v1),
λ = 1

2: the projection isP1(v1),

λ = 0: the projection isP2(v1)+
M∑
i=2

P0(vi).

The following Proposition (analogous to Proposition 2.4) asserts that when
s → −∞, the projection ofv on the eigenspace ofLM corresponding to 1,12 or
0 dominates the others.

Proposition 4.1 (Linear estimates)One of the following cases occurs ass →
−∞:
i) (eigenspace ofλ = 1): ‖v − P0(v1)‖L2

ρ
= o

(
‖P0(v1)‖L2

ρ

)
,

ii) (eigenspace ofλ = 1
2): ‖v − P1(v1)‖L2

ρ
= o

(
‖P1(v1)‖L2

ρ

)
,

iii) (eigenspace ofλ = 0):∥∥∥∥∥v −
(
P2(v1)+

M∑
i=2

P0(vi)

)∥∥∥∥∥
L2
ρ

= o



∥∥∥∥∥P2(v1)+

M∑
i=2

P0(vi)

∥∥∥∥∥
L2
ρ


.

Proof.The proof of Proposition 3.5 in [MZ98a] is valid in this case with obvious
adaptations. ut

Part II: Conclusion of the proof

We handle in this Part the three cases of Proposition 4.1 to show that the first case

corresponds to the solutionw(y, s) = ϕ(s − s0)ε1 whereϕ(s) = κ(1+ es)
− 1
p−1

for somes0 ∈ R, whereas the two others yield a contradiction.
The proof is the same as in the scalar case thanks to the following facts:
- Nonlinear estimate: The blow-up criterion and its proof hold without any

adaptations in the vectorial case.
- Linear estimate: Consideringv1, we reduce the study to the scalar case.

Indeed, from (56),v1 satisfies the following equation:

∂v1

∂s
= Lv1 + f1(v) (59)

wheref1(v) = |κε1+v|p−1(κ+v1)− κ
p−1 − p

p−1v1, which is almost the same as
the equation (27) satisfied byv in the scalar case. We have in fact the following
Proposition:

Proposition 4.2 In all cases,i), ii) andiii) of Proposition 4.1,v(s) ∼ v1(s) in
theL2

ρ norm.

Proof.See Appendix B. ut
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We now reduce the problem to the study ofv1, so that all the asymptotic
computations performed onv in the scalar case remain valid forv1 in the vectorial
case. Therefore, we conclude as follows:

Assume that casei) of Proposition 4.1 holds. Then,w(y, s) = ϕ(s − s0)ε1

whereϕ(s) = κ(1 + es)
− 1
p−1 for somes0 ∈ R.

Assume that caseii) or iii) of Proposition 4.1 holds. Then, there existsa0 ∈
R
N such thatwa0 defined in (22) blows-up in finite timeS > s0. Contradiction.

This concludes the proof of Theorem 1 in the vectorial case. ut

A Proof of Lemma 2.6

Proof of a -: Sincew = κ + v, we write from (18), (8) and (22):∀a ∈ R
N ,

∀s ∈ R, I (wa(s)) = I1 + I2 + I3 where
I1 = −2

∫ |∇v(y, s)|2ρ(y − α)dy,
I2 = −2

∫
G(v(y, s))ρ(y − α)dy,

I3 = p−1
p+1

(∫
RN

|κ + v(y, s)|2ρ(y − α)dy
) p+1

2 ,

α = aes/2 and

G(v) = |κ + v|2
2(p − 1)

− |κ + v|p+1

p + 1
. (60)

Let us expand in the followingI1, I2 andI3 ass → −∞ andα = aes/2 → 0.

For I1, we write from (9):ρ(y − α) = √
ρ(y)

√
ρ(y)e−

|α|2
4 e

α.y
2 . By Cauchy-

Schwartz’s inequality, we deduce
|I1| ≤ C

(∫ |∇v(y, s)|4ρ(y)dy)1/2 (∫ eα.yρ(y)dy)1/2. Since|α| ≤ 1, we have

eα.y ≤ exp
(
9|α|2 + |y|2

9

)
, therefore,

∫
eα.yρ(y)dy ≤ C. Hence,

|I1| ≤ C

(∫
|∇v(y, s)|4ρ(y)dy

)1/2

. (61)

The following lemma asserts that|∇v|2 is in fact quadratic in theL2
ρ norm, both

in casesii) andiii) of Proposition 2.4.

Lemma A.1 (v2 and |∇v|2 are quadratic in L2
ρ) Assume that caseii) or iii)

of Proposition 2.4 holds, then,∀s ≤ s0(∫ |v(y, s)|4ρ(y)dy)1/4 ≤ C
(∫ |v(y, s)|2ρ(y)dy)1/2 and(∫ |∇v(y, s)|4ρ(y)dy)1/4 ≤ C
(∫ |∇v(y, s)|2ρ(y)dy)1/2.
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This property has been noticed by Filippas and Liu [FL93] who used a result by
Herrero and Vel´azquez [HV93] that asserts that allLq norms ofv and∇v with
respect to the measureρdy are equivalent, with a controlled delay in time. For
more details, see the proof of lemma A.1 below.

With this lemma and (61), we get∀s ≤ s0, ∀|α| ≤ 1,

|I1| ≤ C‖v(s)‖2
H1
ρ
. (62)

We focus now onI2. We get from (60)G(0) = κ2

2(p+1) and∇G(0) = 0. Since

v is globally bounded, we deduce that
∣∣∣G(v)− κ2

2(p+1)

∣∣∣ ≤ C|v|2. Therefore,

I2 = − κ2

p+1 +O
(∫ |v(y, s)|2ρ(y − α)dy

)
.

As we did forI1, we can use Cauchy-Schwartz’s inequality and lemma A.1 to
get ∫

|v(y, s)|2ρ(y − α)dy = O

(∫
|v(y, s)|2ρ(y)dy

)
. (63)

Therefore,

I2 = − κ2

p + 1
+O

(
‖v(s)‖2

H1
ρ

)
. (64)

For I3, we write

I3 = p−1
p+1

(∫
RN

|κ + v(y, s)|2ρ(y − α)dy
) p+1

2

= p−1
p+1

(
κ2 + 2κ

∫
v(y, s)ρ(y − α)dy + ∫

v2ρ(y − α)dy
) p+1

2

= κ2

p+1

(
1 + 2

κ

∫
v(y, s)ρ(y − α)dy +O

(
‖v(s)‖2

H1
ρ

)) p+1
2

according to (63).

By Cauchy-Schwartz’s inequality and (63), we have:(∫
v(y, s)ρ(y − α)dy

)2 ≤ ∫
v(y, s)2ρ(y − α)dy ≤ C‖v(s)‖2

L2
ρ
.

Since‖v(s)‖H1
ρ

→ 0 ass → −∞, we end up with

I3 = κ2

p + 1
+ κ

∫
v(y, s)ρ(y − α)dy +O

(
‖v(s)‖2

H1
ρ

)
. (65)

Gathering (62), (64) and (65), we get

I (wa(s)) = κ

∫
v(y, s)ρ(y − α)dy +O

(
‖v(s)‖2

H1
ρ

)
ass → −∞ andα = aes/2 → 0.

It remains then to prove lemma A.1 in order to conclude the proof of lemma
2.6 a -.
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Proof of lemma A.1.The main feature in the proof of this lemma is an a priori
estimate on bounded solutions of

ψs ≤ (L + C)ψ (66)

due to Herrero and Vel´azquez. Their result asserts that allLq norms with respect
to ρdy are equivalent up to a controlled delay in time.

Lemma A.2 (Herrero-Velázquez) Assume thatψ solves (66) and|ψ | ≤ B <

∞. Then for anyr > 1, q > 1 and L > 0, there exists∗0 = s∗0(q, r) and
C = C(r, q, L) > 0 such that(∫

|ψ(y, s + s∗)|rρdy
)1/r

≤ C

(∫
|ψ(y, s)|qρdy

)1/q

for anys ∈ R and anys∗ ∈ [s∗0, s∗0 + L].
Proof.See lemma 2.3 in [HV93]. ut

According to (7) and (27), v and∇v satisfy

∂v

∂s
= Lv + f (v),

∂∇v
∂s

= L∇v −
(

1

p − 1
+ 1

2

)
∇v + p|v|p−1∇v

with |f (v)| ≤ C|v|2.
Sincev is bounded,∇v is also globally bounded by the parabolic regularity, and
we deduce that|v| and|∇v| satisfy (66). Therefore, lemma A.2 is valid for|v|
and|∇v|.
We prove the estimate of lemma A.1 only for∇v in the case whereii) of Propo-
sition 2.4 holds. The three other cases follow in the same way.
Notice that in this case‖∇v(s)‖L2

ρ
∼ C0e

s/2 ass → −∞ for someC0 > 0.
Therefore,∀s ≤ s0,

C0

2
es/2 ≤

(∫
|∇v(y, s)|2ρdy

)1/2

≤ 2C0e
s/2. (67)

Sets∗ = s0(2,4) andC∗ = C(4,2,1). Then, according to lemma A.2 and (67):
∀s ≤ s0,(∫ |∇v(y, s)|4ρdy)1/4 ≤ C∗ (∫ |∇v(y, s − s∗)|2ρdy)1/2 ≤ C∗ × 2C0e

s−s∗
2 ≤

2C∗e−s∗/2 × 2
(∫ |∇v(y, s)|2ρdy)1/2 which is the desired estimate.

Proof of b -.Useii) of Proposition 2.4 and see the proof ofii) of Proposition
3.9 in [MZ98a].

Proof of c -.Useiii) of Proposition 2.4 and see the proof ofii) of Proposition
3.10 in [MZ98a]. ut
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B Proof of Proposition 4.2

The result is obvious from Proposition 4.1 if casei) or ii) holds. Thus, we assume
that caseiii) of Proposition 4.1 holds.

We claim the following lemma

Lemma B.1 Assume that Caseiii) of Proposition 4.1 holds. Then∥∥∥∥∥
M∑
i=2

P0(vi)

∥∥∥∥∥
L2
ρ

= o
(
‖P2(v1)‖L2

ρ

)
.

With this lemma,iii) of Proposition 4.1 yields

‖v − P2(v1)‖L2
ρ

= o(‖P2(v1)‖L2
ρ
) ass → −∞.

Therefore,v1 dominates allvi for i ≥ 2, and Proposition 4.2 follows. It remains
for us then to prove lemma B.1.

Proof of lemma B.1.We proceed in 3 steps. In Steps 1 and 2, we find equations
satisfied byP2(v1) andP0(vi) for i ≥ 2. In Step 3, we use these equations to
compare them ass → −∞.

Step 1: Equation satisfied byP2(v1)

Arguing as in Proposition C.1 in [MZ98a], we can write from (58) and (31):

P2(v1)(y, s) = yT A(s)y − 2trA(s)

whereA(s) is aC1 symmetricN×N matrix, and deduce form (59) the equation
satisfied byA(s):

A′(s) = 4p

κ
A(s)2 + o

(
‖v(s)‖2

L2
ρ(R

N ,RM)

)
. (68)

We can also introduceN C1 eigenvalues ofA(s), (λk(s))k=1,..,N which satisfy
by (68):

∀k ∈ {1, .., N}, λ′
k(s) = 4p

κ
λk(s)

2 + o
(
‖v(s)‖2

L2
ρ(R

N ,RM)

)
(69)

and
1

c

N∑
k=1

λk(s)
2 ≤ ‖P2(v1)‖2

L2
ρ

≤ c

N∑
k=1

λk(s)
2 (70)

for somec > 0 (see lemmas C.4 and C.5 in [MZ98a]).

Step 2: Equation satisfied byP0(vi), i ≥ 2

We have the following lemma:
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Lemma B.2 ∀i ≥ 2,

dP0(vi(s))

ds
= o

(
‖v(s)‖2

L2
ρ(R

N ,RM)

)
ass → −∞. (71)

Proof.According to (56),∀i ≥ 2, vi satisfies the following equation:

∂vi

∂s
= (L − 1)vi + fi(v) (72)

wherefi(v) = |κε1 + v|p−1vi − vi
p−1. SinceP0(vi) = ∫

vi(y, s)ρ(y)dy and∫
(L − 1)viρdy = 0 (see (30) withm = 0), equation (72) gives

dP0(vi(s))

ds
=
∫

RN

fi(v)ρ(y)dy. (73)

Since|v(y, s)| ≤ C0 < +∞, we expandfi(v) until the third order as follows:∣∣fi(v)− viv1
κ

∣∣ ≤ C|v|3. Therefore,∣∣∣∣
∫

RN

fi(v)ρdy − I

∣∣∣∣ ≤ CII (74)

whereI = 1
κ

∫
vi(y, s)v1(y, s)ρ(y)dy andII = ∫ |v(y, s)|3ρ(y)dy.

Let us estimateI first:
I = 1

κ
P0(vi)

∫
v1(y, s)ρdy + 1

κ

∫
(vi − P0(vi))v1(y, s)ρdy

= 1
κ
P0(vi)P0(v1)+ 1

κ

∫
(vi − P0(vi))v1(y, s)ρdy. Hence,

|I | ≤ C|P0(vi)||P0(v1)| + ‖vi − P0(vi)‖L2
ρ
‖v1(s)‖L2

ρ
. Since Caseiii) of Propo-

sition 4.1 holds, we have|P0(v1)| + ‖vi − P0(vi)‖L2
ρ

= o(‖v(s)‖L2
ρ
). Thus,

|I | = o(‖v(s)‖2
L2
ρ
). (75)

We use the following lemma to estimateII :

Lemma B.3 There existsδ0 > 0 and an integerk > 4 such that for allδ ∈
(0, δ0), ∃s0 ∈ R such that∀s ≤ s0,

∫
|v|2|y|kρdy ≤ c0(k)δ

4−k
∫ [

P2(v1)
2 +

M∑
i=2

P0(vi)
2

]
ρdy.

Proof.The proof is in all points similar to the proof of lemma C.2 in [MZ98a].ut
Using the same techniques as in the proof of Proposition C.1 in [MZ98a],

one can easily show that

II = o
(
‖v(s)‖2

L2
ρ

)
. (76)

Combining (73), (74) and (76) concludes the proof of lemma B.2. ut
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Step 3: Comparison ofP2(v1) and
M∑
i=2

P0(vi)

Let

X(s)2 =
M∑
i=2

P0(vi(s))
2 andZ(s)2 = X(s)2 +

N∑
k=1

λk(s)
2. (77)

According to (70), it is enough to prove that

X(s) = o



√√√√ N∑

k=1

λk(s)2


 ass → −∞. (78)

Since‖v(s)‖L2
ρ

∼
∥∥∥∥∥P2(v1)+

M∑
i=2

P0(vi)

∥∥∥∥∥
L2
ρ

, we have from (69), (71), (77) and

(70):

{
λ′
k = 4p

κ
λ2
k + o(Z(s)2) for k = 1, .., N

X′ = o(Z(s)2)
(79)

ass → −∞, and from (55),Z(s)2 = O
(

1
s2

)
. This gives by (79)

X(s) = o

(
1

s

)
. (80)

From (77) and (79), we have by simple calculations:

Z′(s) ≤ CZ(s)2 (81)

for someC > 0.Z(s) can never be zero. Indeed, ifZ(s0) = 0 for somes0 ∈ R,
then‖v(s0)‖L2

ρ
= 0, andv ≡ 0 on R

N × [s0,+∞) by the uniqueness of the
solution to the Cauchy problem of (27). This contradicts the fact thatv → −κε1

ass → +∞ (see (54)). Therefore, (81) yields:∀s ≤ s1,

Z(s) ≥ C ′

|s| (82)

for somes1 ∈ R andC ′ > 0. Combining (80), (82) and (77) gives the conclusion
(78) and concludes the proofs of lemma B.1 and Proposition 4.2 too. ut
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