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1 Introduction

We are concerned in this paper with blow-up solutions of

= Au+ F(luu in 2 x[0,T)
u=0~0 on a2 x[0,7) D
u(.,0) =ug in 2

where

u:(x,t) e x[0,T) = R” up: 2 - RM,

2 is a bounded convex regular open seRéfor 2 =R, T > 0,
(Au); = Au;, |u| is the euclidian norm of in RY

F : R — Ris aC? function satisfying

F(lu|) ~ |u|?~* as|u| — 400
(in a suitable norm) with
p>2land(3N —4)p < 3N +8. 2)

We also consider the following condition g valid for scalar equations
(M = 1) with nonnegative initial data:

up>0and(N —2)p < N + 2. )

F. MERLE

IUF, Département de matimatiques, Universitde Cergy-Pontoise, 2 avenue Adolphe Chauvin,
BP 222, Pontoise, F-95302 Cergy-Pontoise cedex, France (e-mail: merle@math.pst.u-cergy.fr)
H. Zaac

CNRS UMR 8553, Rpartement de maghiatiques et informatiqué&cole Normale Sugrieure,

45 rue d’UIm,

F-75230 Paris cedex 05, France (e-mail: Hatem.Zaag@ens.fr)



104 F. Merle, H. Zaag

The Cauchy problem for system (1) can be solved (for examplEJiR",
RM). If the maximal solution:(¢) is defined ori0, T) with T < +oo0, then

lim [lu(t)|| ~ = +00.
t—T

We say that«(¢) blows-up at timeT'. If a € §2 satisfiequ(x,, t,)| — +oco as
n — +oo for some sequende,, t,) — (a, T), thena is called a blow-up point
of u. The set of all blow-up points af(¢) is called the blow-up set af(r) and
will be denoted bys.

The existence of blow-up solutions for systems of the type (1) has been
proved by several authors (Friedman [Fri65], Fujita [Fuj66], Levine [Lev73],
Ball [Bal77],..). Many authors have been concerned by the asymptotic behavior
of u(¢) at blow-up time, near blow-up points. Let us point out that a great deal
of the known results are valid only for scalar equations with nonnegative initial
data (case (3)), typically for the equation

au

E:Au—i—u”, p>1 <N§20rp<

N+2>; (@)

N -2
indeed, in the case (3), one can use the maximum principle which does not hold

in general in the case (2). On the contrary, the results in the vectorial case or even
in the scalar case with no positivity condition remain very poor.

Let us give a sketch of the known results both in cases (2) and (3). For
simplicity in the notations, we assume that

F(ul) = |ul”™
and consider the equation

2—? = Au+ |ul”tu. (5)
Considen(¢) a solution of (5) which blows-up at timE at a pointz € £2. The
study of the behavior af(¢) near(a, T) has been done through the introduction
of the following similarity variables:

X —a

— 5= —10g(T — 1), w(y.5) = (T - N7 Tux, ). (6)

y:

Itis readily seen from (5) that,, (or simplyw) satisfies the following equation:
Vs > —logT,Vy € W, = e2(2 — a),

1
—=Aw——y.Vw—L+|w|”_ w. (7
p—1
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The following Lyapunov functional is associated with (7):

1 |w|? |w|1’+1)
E = v 2 _ J o
" /w (2| Wit 2p0—-1) p+1 p(y)dy (8)

where

2
e 4

In the case (3) (equation (4)), Giga and Kohn showed in [GK85], [GK87] and
[GK89] that

p(y) = ()]

Vx € 2, Vi € [0,T), |u(x,t)| < C(T — 1)~ 71 (10)

for some constant’ > 0. They also showed that
we(y,s) >k =(p— 1)71’%1 ass — +0o, (12)

uniformly on compact sets. This estimate has been refined until the higher order
by Filippas, Kohn and Liu [FK92], [FL93], Herrero and lquez [HV93],
[HV92a], [HV92b], [Vel93a]. A notion of limiting blow-up profile has been
developed bothin variablé€s, r) and(y, s) by Bricmont and Kupiainen [BK94],
Merle and Zaag [MZ97], Zaag [Zaa98], Herrero anda#ejlez.

In [MZ98a], a further step was accomplished in the understanding of the
behavior of nonnegative scalar solutions of (1). We proved there the following
Liouville Theorem for equation (7):

Letw be a nonnegative solution of (7) defined for@ll s) € RV x R such
thatw € L*(R" x R). Then, necessarily one of the following cases occurs:

w = 0o0rw = « or3sg € R such thatw(y, s) = ¢(s — s0) (12)
wheregp(s) = xk (1 + es)‘n%l andk = (p — 1)‘%1,

From this Theorem we derived in [MZ98a] the following localization theo-
rem:
Ve > 0,3C. > Osuch thatvs € [, T), Vx € RV,

ou
R

<eu? + C.. 13
Py <euf + C, (13)

We also derived in [MZ98Db] the following uniform estimates of order one (in
the case? = RV):
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3AC; > 0,i = 1, 2, 3such thatve > 0, 3sg(¢) > —log T such thatvs > s,
Ya € RV,

Nk 1 : C,’ .
K < Nlwag()llpee <k + (5= +€) =, IV'wu(s)llpo < —5fori =1,2,3,
2p s si/?
(14)

wherew, is defined in (6) and@’w stands for the differential af of orderi.
The results (14) and (13) are direct consequences of the Liouville Theorem
(12) which is valid only for positive scalar solutions of (1).

As to the case (2), the starting point was the proof by Giga and Kohn [GK87]
of the validity of the global estimate (10). In [FM95], Filippas and Merle showed
that

wy(y,s) > Kw, ass — +00

uniformly on compact sets, for somg € S¥~1. No other results were known.

In this paper, we extend the validity of the Liouville Theorem (12) to the
vectorial case and obtain the following theorem which classifies all connections
in Ly;. between critical points of (7) (which are according to [GK85]: 0 and
for all w € S¥~1). This Theorem is in some sense a classification of “critical
points at infinity” (in a parabolic sense) for equation (7).

Note that this Theorem is valid not only fprsatisfying (2) but for all subcritical
p, that is under the condition

p>2land(N -2)p <N+ 2 (15)

Theorem 1 (Liouville Theorem for equation (7)) Assume (15) and consider
w a solution of (7) defined for ally, s) € RY x R such thatw € L®(RY x
R, RM). Then necessarily one of the following cases occurs:

i)w=0,

i) Jwo € S¥~1 such thatw = kwo,

iii) 3so € R, Jwg € SM~1 such thatw(y, s) = ¢(s — so)wo Where

o(s) = k(14 ) 7.

Remark.In [GK85], Giga and Kohn assumed in addition to the hypotheses of
Theorem 1 that

lim sup|w(0, s)| > 0, (16)

§——+00
and proved that in this case, ii) occurs (Theorem 2 page 310). Indeed, under
assumption (16), it follows directly from energy arguments thas a station-
ary solution of Equation (7). We concentrate in our proof on the classification
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of non stationary solutions. This will need introduction of new tools such as a
combination of the linearization of the equationsagoes to—oo, the use of a
geometric invariance of equation (4) and a blow-up criterion for equation (7),
sharp for data close to stationary solutions.

This Theorem has an equivalent formulation for solutions of (5) via the transfor-
mation (6).

Corollary 1 (A Liouville Theorem for equation (5)) Assume that (15) holds
and thatu is a solution inL* of (5) defined fofx, t) € RN x (—oo, T). Assume
in addition that|u(x, t)| < C(T —t)_Til. Thenu = 0or there existy > T and
wo € SM-1such thatv(x, 1) € RV x (—o0, T), u(x, 1) = k(To — 1) 7 Lap.

Our second contribution in this paper is to show that the global estimate (10) of
Giga and Kohn which is valid in the cases (2) and (3) is in fact uniform with
respect tauo.

Theorem 2 (Uniform estimates with respect ta:g) Assume condition (2) holds
and considem: a solution of (5) which blows-up at timE < T and satis-
fies |u(0)[lc2i2y < Co. Then, there exist€’(Co, Tp) such thatv:r e [0, T),

lu(@®) || L2y < Cv(t) wherev(r) = k(T — t)‘v%1 is the solution of
v =v?” andv(T) = +o0.

RemarkWe suspect that this result is true with no conditionzan
Let us remark that we suspect this Theorem to be valid in the case (15).

Theorems 1 and 2 have important consequences in the understanding of the
blow-up behavior for equation (5) in the case (2). We have the following local-
ization result which compares (5) with the associated ODE

u' =u?.

Theorem 3 (Uniform ODE Behavior) Assumethat(2) holds and consider
To and|luollc2(2y < Co. ThenYe > 0, there isC (e, Co, Tp) such thatvx € £2,
VvVt € [0, T),

ou 1
E(x,t)—lul” u(x,t)| <e€lulx, |’ +C.

RemarkNote that the condition(0) € C?in Theorems 2 and 3 is not restrictive,
because of the regularizing effect of the heat equation.

As direct consequences of Theorem 3, we have the following striking corol-
lary:
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Corollary 2 Assume that (2) holds and considgr) a solution of (5). Let € £2
be a blow-up point ofi(¢). Then,
i) Ju(x,t)| > +ocas(x,t) - (a, T),
i) (Approximate scalar behavior of |u|) 3§ > 0 such thatvx € B(a,J),
Viel|T —-6,T),

Oul

W(X’ t) > 0and|u(x, )| > 0.

i If M =21andu(a,t) ~ ex(T —t)_l'%l wheree € {—1, 1}, then3s > Osuch
thatvx € B(a, §),Vt € [T —45,T),

d
cu(x,t) > Oandea—I:(x, t) > 0.

We now set in the case (2) some results which were known before only in the
scalar case with nonnegative initial data. These results follow from Theorems 1
and 2 and the proofs of the positive case.

Theorems 1 and 2 yield the following uniform estimates of order 1 for solution
of (5):

Theorem 4 (L*° refined estimates forw(s) and u(¢) at blow-up) Assume that
(2) holds. Then, there exist positive constatit$or i = 1, 2, 3 such that ifu is
a solution of (5) which blows-up at tinie and satisfies/(0) € C3(R"), then
Ve > 0, there existsy(¢) > —log T such that

i) Vs > s1,Va € RV,

N 1 C
lwa®) e < &+ (55 + 7, Vwa®)llze < G,
V2w, ()~ < <2, V3w, ()l < 53,

1

wherex = (p — 1)" 71,
iyVe>T —e™1,

Nk 1 -4
@)l = (i + (B + ) gy ) (T = 0772,
(T_[)—<ﬁ+’§)

IViu@)llp~ < CiW

fori =1, 2, 3.

Remark.Note that these estimates are sharp (see for example [MZ9%)): If
RY — R is regular,Viv stands for the differential of orderof v. For all
N Tx72
\Y%
y € R, we definelVu(y)2 = ) (3v(»)°, IV2v(1)| = sup 0z

2
j=1 zeRN |Z|
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o i
and|V3u(y)| = sup Z—ﬂﬁa?jkv(y) .
apyern |57 el 1Bl Iy]
In addition,||v]|z~ = sup [v(y)| and||Viv| .~ = sup|Viv(y)|.
yeRN yeRN

We also obtain information on the limiting biow-up profile for equation (7):

Proposition 1 (Existence of a blow-up profile for equation (5))Assume (2) holds
and consider (¢) a solution of (5) which satisfieg0) € H*(R") and blows-up

at (a, T). Then, there exisb, € S¥~1, 0 a N x N orthonormal matrix and

1 €{0,..., N} suchthatvk > 0

_ 1
_12 l 2 p—1
sup wa(Qy,S)—<p—1+(p4—)§ 2 w,| — 0ass — +oo.
lyI<K+/s y4 = s

7

Remarkln the casé = 0, Proposition 1 yieldgp — 1)‘ﬁ = Kk as asymptotic
behavior forw,. This corresponds to a degenerate blow-up rate, and one can
find an other blow-up profile in the scaje~ exp(+3 (1 — %)) for somek ¢
N\{0, 1}.

Remark.In the case of single point blow-up with= N andM = 1, we use

the Liouville Theorem and show with Fermanian-Kammerer in [FKMZ] that
the behavior (17) is stable under perturbations of initial data. Moreover, the
convergence is uniform in a neighborhood of a given initial data. In other words,
if i(¢) is a solution of (4) which blows-up at tini only at one point with

the behavior (17) (with = N andw, = 1), then, there exists a neighborhood
Vo of i2(0) such that for alkg € Vy, the solutionu(z) of (4) with initial dataug
blows-up in finite timeT (u«p) at only one blow-up point and for akl > 0,

sup — 0ass > +©

uoeVo, |y|<K+/s

(p— 17 |y|2>‘vll

wa,T(y,S)_(P_l'i‘ 4
P N

wherew, r = Wawu). 7w 1S defined fromu(r) by (6). Moreovera(ug) — a and
T (ug) — T asug — i(0).

Theorem 3 shows that the blow-up phenomenon is continuous with respect
to initial data. In [Mer92], Merle shows that the blow-up time is continuous
with respect to initial data iL> N H(£2). If S is the blow-up set ofi(¢), we
know from standard parabolic estimates that we can define the blow-up profile
u* € C(£2\S) outside the singular set by

Vx € 2\S, u*(x) = Iimr u(x, ),
t—
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andthatthe convergence is uniform on every compact st 6f In the following
Proposition, we show that the blow-up profile is continuous with respect to initial
data.

Proposition 2 (Continuity of the blow-up profile with respect to initial data)
Assume that condition (2) holds. L&j, — ug in L>* N H(£2) and denote by
u, (x, t) the solution of (5) with initial data,. Denote byr,, andu’ the blow-up
time and profile ofi, (¢).
(A) Continuity at the regular points of(z).

i) u: — u* asn — +oo uniformly on compact sets 6\ S.

i) If t, > T, thenu,(x,t,) — u*(x) uniformly on compact sets &#\ S.
(B) Continuity at the blow-up points af).

YA > 0,3e > 0,3ng € N, g < T such thatvn > ng, Vx € £2 such that
d(x,S) <e€,Vt € to, Tp)), |u,(x, t)] > A.

Remark(A) was proved in [Mer92]. In the contrary, only a local version (local-
ized near a blow-up point of(¢) of a particular type) was proved in [Mer92].

By the same techniques as in [MZ98b], we have the following equivalence
result of several notions of blow-up profiles for equation (5):

Proposition 3 (Equivalence of different notions of blow-up profiles at a sin-
gular point) Assume that condition (2) holds. Lgte R" be anisolated blow-up
point of u(¢) solution of (4) such thaty € H*(R") andw € S¥~1. The fol-
lowing blow-up behaviors af(r) nearxg or w(s) = wy,(s) (defined in (6)) are
equivalent:

(A)VR > 0, sup |w(y, s) — |:K + L(N — 1'|y|2)]a)' =o0 (}) ass —
lyI<R 2ps 2 s

+o0 wherexk = (p — 1)’ﬁ,

(B) 3¢9 > Osuch that“w(y, 5) — fo(%)w” — 0ass — +oo

, . L (|y|<eges/?)
with fo(z) = (p — 1+ L2522 77,
(C) F¢¢ > Osuch that ifix — x| < €g, thenu(x, ) — u*(x) ast — T and
1

* ~ | 8Bplloglx—xq|| [7-1
u*(x) [—m_l) ol ] w asx — xg.

One further result concerns the size of the blow-up set:

Proposition 4 (Size of the blow-up set)Assume that (2) holds antf = 1.
Consideru(t) € H* N L>(£2) a solution of (5) that blows-up at timE. Let S
be its blow-up set. Thefiis compact and théN — 1)—Hausdorff measure of
is finite.

We now present in section 2 the proof of the Liouville Theorem 1 in the scalar
case. Section 3 is devoted to the contro|ofz)| .~ (Theorem 2) and the ODE
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behavior (Theorem 3) uniformly with respect to initial data. In section 4, we
use modulation theory to adapt to the vectorial case the proof of the Liouville
Theorem 1.

2 Liouville Theorem for equation (7)

In this section, we prove Theorem 1 in the ca$e= 1. Similar ideas with the

use of the modulation theory yield the result for genéfalsee section 4 for the
caseM > 2).

Note that for the Liouville Theorem, we assume thaatisfies the more general
condition (15) and not only the condition (2).

The prooffollows the same pattern as the analogous one presented in [MZ98a]
in the case of nonnegative data. Indeed, all the arguments presented in [MZ98a]
remain valid for solutions with no sign, except the following blow-up criterion
for equation (7) which is specific for nonnegative data:

Letw be a nonnegative solution of (7) and assume that
Jev w(y, s0)p()dy > k [pv p(y)dy for somesy € R. Then,w blows-up at
some timeS > so.

Note that the criterion breaks even in the cdge= 1 if there is no sign
condition. Therefore, it is enough to replace this criterion by another suitable
one, valid for solutions with no sign, so that the proof of [MZ98a] can be adapted
in the current case (and in the vectorial case).

Let us first introduce the following functional defined for 8l e Hj(RN)

p+1

_1 2
I(W)=-2E(W)+ P—- (/ IW(y)Izp(y)dy> (18)
p +1 RN

whereE is defined in (8), and the following blow-up criterion valid for vectorial
solutions of (7):

Proposition 2.1 (Blow-up criterion for vectorial solutions of (7))
Letw be a solution of (7) which satisfies

I(w(sp)) >0 (19)
for somesy € R. Then,w blows-up at some timg > sp.

Remark.This Proposition and the fact thatx) = 0 yield informations on the
solutions of (7) close te in the energy space.

In the following, we will prove Proposition 2.1 and then give a sketch of the
arguments of the proof of the Liouville Theorem, since they are the same as
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those in [MZ98a]. Only the arguments related to the new blow-up criterion will
be expanded.

Proof of Proposition 2.1We proceed by contradiction and suppose thas
defined for alls € [so, +00). According to (7) and (8), we haw& > so,

d w(y, 5)|? ,
ds / w0, 9)Fpdy = 2/ —|Vw(y, 9)I* = —=—=+|w(y. )" ) pdy
ds p— 1

2(p -1 41
—4E(w(s))+W/|w|p pdy

p+1

2(p—1 2
> _4E(w(s0)) + % ( / |w|2pdy)

where we used Jensen’s inequalifyddy = 1) and the fact thak is decreasing
in time.

If we set
z(s) = / lw(y, s)|°pdy, o = —4E(w(s)) andp = 2([)—4:11), (20)
then this reads:
Vs > so. 2(s) > o + Bz(s) "7 . (21)

With (20) and (18), the condition (19) reads:+ ,3z(s0)’%1 > 0. By a classical
argument, we have from this and from (21)

Vs > s0, Z'(s) > 0 ando + ﬂz(s)”%l > 0.
Using a direct integration, we obtain:

W) dx oo dx
Vszso,s—sos/ —sf Y Cs) < +oo
w0 o0 + Bx 2z 20 o+ Bx

sincep > 1. Thus, a contradiction follows and Proposition 2.1 is proved O

Proof of Theorem 1 in the scalar cas®e assume > 1 andp < x—jg if N > 3,
and considew € L*(RY x R, R) a solution of (7). We proceed in two parts in
order to show thatv depends only on:

- In Part I, we show from the dissipative character of the equationtHads a
limit wis ass — Foo With w., a critical point of (7), that isv1., = 0, « or
—k. We then focus on the nontrivial caée_ .., w, ) = (k, 0) and show from
a linear study of the equation arourdhatw goes tox ass — —oo in three
possible ways.

- In Part I, we show that one of these three ways corresponds(i9s) =
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(s — sp) for somesg € R wherep(s) = «(1+ e‘Y)‘Til. In the two other cases,
we find a contradiction from nonlinear informations:

- the blow-up criterion of Proposition 2.1 (far close tok),

- the following geometrical transformation:

a € RY — w, defined byw, (v, s) = w(y + ae?,s) (22)

which keeps (7) invariant (thanks to the translation invariance of equation (5)).

Part I: Possible behaviors ofw ass — +oo

We proceed in two steps: First, we find limits., for w ass — +oo. In a

second step, we focus on the linear behaviowodss — —oo, in the case

W =K.

Step 1: Limits of w ass — +oo

Proposition 2.2 (Limits of w ass — +00) wis(y) = IirD w(y, s) existsand
—+00

N

is a critical point of (7). The convergence hoIdsLif;l, the L2 space associated to

the Gaussian measuyg(y)dy wherep is defined in (9), and uniformly on each

compact subset @”". The same statement holds for.,(y) = lim w(y, s).
§—>—00

Proof. See Step 1 in section 3 in [MZ98a]. |
Proposition 2.3 (Stationary problem for (7)) The only nonnegative
bounded global solutions iR" of

1
OzAw——y.Vw—L—i—lwW*lw (23)
2 p—1

are the constant onesy = 0, w = —x andw = «.
Proof.One can derive the following Pohozaev identity for each bounded solution
of equation (7) irR" (see Proposition 2 in [GK85]):
p—1
(V42 pv =2 [ 1Vwitpdy+ P25 [ yAvulody =0, (29
Hence, folN —2)p < N+2,wisconstant. Thugy = 00orw =k orw = —«.
O

From Propositions 2.2 and 2.3, we havg,, = 0 O wiy = k OF Wiy =
—k. SinceE is a Lyapunov functional fow, one gets from (8) and (7):

+00
[
—00 RN

Therefore, sinc& (k) = E(—«) > 0= E(0), there are pnly two cases:
1- E(w_s) — E(w4s) = 0. This implies by (25) that” = 0, hencew is a

2
pdy = E(W_x) — E(W4o0)- (25)

W ys)
_ , S
as Y
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stationary solution of (7) and = 0 orw = « or w = —« by Proposition 2.3.
2-E(w_o) — E(wis) > 0. This occurs only ifw, ., = 0 andw_,, = « or
—k. It remains to treat this case. Since (7) is invariant under the transformation
w — —w, itis enough to focus on the case:

(W_00, Wioo) = (x,0). (26)

Remark.The case 1 contains the case studied in [GK85]. Indeed, the authors
had thereE (w_») = E(ws) andw, > 0 (assuming (16)). Thereforeis a
stationary solution of (7).

Step 2: Linear behavior of w nearx ass — —oo

Letusintroduce = w—«. From (7) satisfies the following equatio¥(y, s) €

RN—!-l’

8_v = Lv+ f(v) 27)
as

1
whereLv = Av — Ey.Vv +vand
f@) =v+eP v +1) =k = piP o, (28)
Sincew is bounded inL>, we assuméuv(y, s)| < C and|f(v)| < C|v|?.
L is self-adjoint orD(£) C Lf). Its spectrum is
specL) = (1- % |m € NJ, (29)

and it consists of eigenvalues. The eigenfunctions afe derived from Hermite
polynomials:
- N=1
All'the eigenvalues of are simple. For & 7 corresponds the eigenfunction
[

hw (y) =
n=0

]

[N

m!
— (=D, 30
n!(m—Zn)!( )"y (30)
- N >2:

We write the spectrum of as

specLl) = {1— L;m’ﬁml, ..,my €N},

For (my, ..., my) € NV, the eigenfunction corresponding to
1— m1+.é+mN iS

h(ml,...,mN) Yy — hml(yl)---th(yN)v (31)
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wheren,, is defined in (30). In particular,
*1 is an eigenvalue of multiplicity 1, and the corresponding eigenfunction is

*% is of multiplicity N, and its eigenspace is generated by the orthogonal
basis{H1,;(y)|i =1, ..., N}, with Hy;(y) = hi(y;); we note

Hi(y) = (Hp1(y), ..., HLn (), (33)

*0 is of multiplicity %*1) and its eigenspace is generated by the orthogonal
basis{Hz;;(V)li, j =1, ..., N,i < j}, with Hp;;(y) = h2(y:), andfori < j,
Hy;;(y) = hi(yi)ha(y;); we note

Hy(y) = (Hz,;j(y),i < J). (34)

Since the eigenfunctions @fconstitute a total orthonormal family diﬁ we
expandv as follows:

2
V(3. 8) = V(). Hu(y) + v_(y, 5) (35)

m=0

where

vo(s) is the projection ob on Hy,

v1;(s) isthe projection ob on Hy ;, vi(s) = (v1.i(s), ..., vi.n(s5)), H1(y) iSgiven

by (33),

v2,;(s) is the projection ob on Ha;;,i < j, va(s) = (v2;;(s),i < j), Ha(y) is

given by (34),

v_(y,s) = P_(v) and P_ is the projector on the negative subspacé& of
With respect to the positive, null and negative subspacés ofe write

v(yas):U+(yvs)+vnull(y’s)+v—(y’s) (36)

wherev, (y,s) = Py (v) = Y b0, (8). Hu(¥),
Va1 (¥, 8) = P (v) = va(s).Ho(y), P, andP,,,; are theLf) projectors respec-
tively on the positive subspace and the null subspaa& of

Now, we show that as — —oo, eithervg(s), vi(s) or va(s) is predominant
with respect to the expansion (35) ofin Lf). At this level, we are not able
to use a center manifold theory to get the result (see [FK92] page 834-835 for
more details). In some sense, we are not able to say that the nonlinear terms in
the function of space are small enough. However, using similar techniques as in
[FK92], we are able to prove the result. We have the following:
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Proposition 2.4 (Linear classification of the behaviors ofv ass — —o0) As
s — —o0, one of the following cases occurs:

D) [va(] + 10 (v, )2 + lv-(y, 9122 = o(vo(s)),
Vs < 50, vp(s) = vo(s) + O (vo(s)?) (37)
and there exist€ € R such that
[v(y, $) = Coe’ |l u2 = o(e”), (38)
andVe > 0,
vo(s) = Coe’ + 0(e*") andus(s) = 0 (e* ). (39)

i) [vo()] + vnun (v, )z + lv-(y, )iz = o(va(s)) and3Cs € R™\{0} such
that|v(y, ) — e2C1.yll g1 = o(e?), vi(s) ~ C1e*/? anduo(s) ~ £|C1)%",

i) vy (v, 9llzz + 1o-(, 9z = oy, $)2) and there exists e
{1,..., N} and Q an orthonormalN x N matrix such that

I
v(Qy, 5) — 75 (21 - Zy?)

i=1

=o(3),

1
Hp

l

vnull(Qy’S) = 4’(? (21 - Z)’?) + 0 (S_.I}Ts)l 'U]_(S) =0 (5_12) and UO(S) =
i=1

O (%) for somes > 0.

Proof. See Propositions 3.5, 3.6, 3.9 and 3.10 in [MZ98a]. Although a{rily
norms appear in those Propaositions, one can see that the proof of Proposition 3.5
in [MZ98a] can be adapted without difficulties to yie‘lzc);l estimates (see section

6 in [FK92] for a similar adaptation). |

Part Il: Conclusion of the proof

The crucial pointis to note thdix) = O wherel is defined in (18). Thus, the use

of the geometrical transformation — w, (see (22)) and the blow-up argument

of Proposition 2.1 applied to, (s) will introduce some rigidity on the behavior

of w(s) ass — —oo.

We proceed in two steps:

- In Step 1, we show that if the cageof Proposition 2.4 occurs, then(y, s) =

(s — so) for somesg € R.

- In Step 2, we show by means of Proposition 2.1 and the transformation (22)
that casesi) andiii) of Proposition 2.4 yield a contradiction.

Step 1: Case) of Proposition 2.4: the relevant case
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Proposition 2.5 Assume that case of Proposition 2.4 occurs, then:
I) Co <0,
1
i) Vy € RV, Vs € R, w(y,s) = ¢(s — so) Wherep(s) = k(14 ¢*) 71 and
50 = —log <_M>

K

Proof.

i) We proceed by contradiction in order to eliminate successively the Cgses)
andCy > 0.

- Suppose&’y = 0, then one can see from (37) and (39) tat< s1, vo(s) =0
for somes; € R. Since|v(s)llz2 ~ vo(s) ass — —oo, we haveVs < s,
Vy € RY, v(y,s) = 0 andw(y, s) = « for somes, € R. From the uniqueness
of the solution of the Cauchy problem for equation (7), we have: « in all
RY x R, which contradicts the fact that — 0 ass — +oo (see (26)). Hence,
Co #0.

- Suppose now thaty > 0. We will prove that

p+1

— 2
I(w(s)) = —2E(w(s)) + r—1 </ lw(y, S)Izp(y)dy> >0 (40)
p+1\Ury
for somes € R, which is the blow-up condition of Proposition 2.1, in contradic-
tion with the global boundedness of
Sincew = x+v andk is acritical point ofE : Hj(RN) — R (see Proposition
2.3), we have

2

__ K 2
=555+ (IIv(s)IIH/}) .4

E@() = E®) + 0 (Iv)12;)

For the second term in (40), we uge= « + v and write

[w@, ) Ppdy = k?+ 2« [v(y, s)pdy + [ |v(y, s)[*pdy
= k2 + 2kvo(s) + [ [v(y, s)[>pdy. Therefore,

2

2l . .
ﬁ—j ( |w(y’s)|zpdy)z - pH+Kv0(s)+0(||v(s)||§%). Combining this with
(41) and using (39) and (38), we end up with

I(w(s)) ~ kvo(s) ~ kCpe’ > 0 ass - —oo
which is the blow-up condition of Proposition 2.1. Contradiction. Thilgs< O.
ii) Letusintroduce/ (y, s) = w(y, s)—@(s—sg) wherep(s) = K(1+et?)—ﬁ

andso = — log <—(”’Kﬂ>. Sincey is a solution of

o) = =281 4 oy,
p—1



118 F. Merle, H. Zaag

we see from (7) thay satisfies the following equation:

88_‘; = (L+1($)V + F(V) (42)

_ 1 _ S*SO
wherel = A — iyV +1,I(s) = _(pff;il#’so) and
F(V) = |o+V|P Yo+ V)—¢?—peP~1V.Notethatvs < 0,|F(V)| < C|V|%.

Besides, we have from) of Proposition 2.4 and the choice gfthat
[Vo(s)| + [Va(s)] = 0(e* ") and|| Vo (s)llz2 + IV-()ll2 = o(e’)  (43)

ass — —oo. Using the linear classification at infinity of solutions of equation
(42) under the conditions (43) (see Proposition 3.7 in [MZ98a]), wé/get O
onRY x R. Thus,Yy e RV, Vs e R,

w(y,s) = ¢(s — s0).

O

Step 2: Casesi) and iii) of Proposition 2.4: blow-up casedn both cases
ii) andiii) of Proposition 2.4, we will findg € R and|ag| < e~7 such that

I (wg,(s0)) > 0 wherel is defined in (18), which implies by Proposition 2.1
thatw,, blows-up in finite timeS > sq, in contradiction with|wg, | L@y xr) =
lwll L ®yxr) < +00. We give in the following lemma an expansion/@iu, (s))
ass — —oo andae*’?2 — 0, which will allow us to conclude:

Lemma 2.6
a - Assume that case) or iii) of Proposition 2.4 holds, then

1w, 6) = [ 00500 = aeay + 0 (v,
ass — —oo andae*/? — 0. Moreover,

b - In caseii): f v(y, $)p(y —ae’’?)dy = a.Cie® + o (Jale’) + O(se’),
c-Incaseiii): [v(y,s)p(y —ae’’?)dy =

l 3s
1 la|?e* lale?
K 2 s/2 _\2 -
4,,.X|;f(z,- 2)(Qae'’?.2) p(Z)dZ+0(sz)+0<|s|1+s)+0( i)

Proof. see Appendix A. O

This lemma allows us to conclude. Indeed,

— if caseii) of Proposition 2.4 holds, then

I(w,(s)) = ka.Cie® + o (Jale’) + O (se*). We fix sg negative enough and
a0 = oiche "% to get

50/2

2|sol

1
I (W, (S0)) > E/{ao.Cleso =K |Cq] > 0.
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This implies by Proposition 2.1 that,, blows-up at time§ > so. Contradiction.
— If caseiii) of Proposition 2.4 holds, then
|Cl|2€S

) 1
I (wa() = g5 D f (22— 2)(Qae*’?.2)*p(2)dz + O (S—2> +0 <|s|—1+s) +
i=1

3 3
altez . . —s0/2
al . We fix so negative enough anay = ﬁﬂ ~le; wheree; =

Is|
(1,0, ..., 0) so that we get

2

—_— >
4p| [sol plsol®/?

by (9). This implies by Proposition 2.1 that,, blows-up at timeS > so. Con-
tradiction.

H (s = i/(z—zx 4 Dp()dz =
Wqq (S0 = 24p)50 2 Z; 129 P@)dz =

This concludes the proof of Theorem 1 in the scalar case. |

3 Uniform estimates for nonlinear heat equations

In this section, we prove uniform bounds on solutions of (5) (Theorem 2) and
deduce several applications of Theorems 1 and 2 for nonlinear heat equations. In
particular, we prove uniform bounds and the ODE like behavior of the solution
(Theorems 3 and 4 and Corollary 2). We treat only the ¢ase R". The case
whereg2 is a convex bounded?* domain can be treated in the same way, by
using regularity results near the boundary (see [GK87], lemma 3.4).

In the end of the section, we give a sketch of the proof of various consequences
of Theorems 3 and 4 presented in the introduction.

Proof of Theorem 2: Unifornk>° bounds on the solution.

Considery € C? such that|ugllc2 < Co andu(t) solution of (5) with initial
dataug blows-up atT with T < T,. We claim that there i€ = C(Co, Tp) such
that||u(2)|| .~ is controlled byCv(¢) wherev is the solution of the ODR’ = v”

which blows-up at the same tinié asu(¢). The result mainly follows from
blow-up argument giving local energy estimates and the fact that these estimates
yield L* estimates (from Giga-Kohn [GK87]).

Step 1: Estimates oru(z) for small time

Lemma 3.1 (C? bounds for small time) There istg = 75(Co) > 0 such that:
i) forall ¢ € [0, to], lu(@®)|l= < 2Co,

ii) forall ¢ € [0, ro], lu@)|lc2 < 2Co,

iii) for all « € (0, 1), || Au|lcepy < C1(a, Co)Where

la a0 —ate', 1)
allg = sup
(x,0)#,t")eD (Ix — x|+ |t — t/|1/2)°‘
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whereD = R" x [%, 1o].

Proof. We start withi) andii). Sinceu satisfies

u(r) =S(t)uo+/ St — $)|u(s) P u(s)ds,
0
we have
Ja(®)ll < Nl +/0 Ju(s) [ ds.

Thus,lby a priori estimates, we have e [0, 7], ||u()|L~ < 2Co Wherety =
2rcy "
Similarly, we obtainvr € [0, fo], |u(?)|lc2 < 2Co Wherety = 15(Co).

iii) We use the following lemma:
Lemma 3.2 Assume that solves

oh
— =Ah+a(&, 1)h
ot

for (¢, t) € D whereD = B(0, 3) x [0, o] andzg < Ty. Assume in addition that
lallLe + lalq,p is finite, where

|a(§7 T) - a(é/v T/)l

|a|a,D = o (44)
€0.¢.ep (1§ =&+t —1'[¥?)
anda € (0,1). Then,
Ihllc2pry + 1V2hla.pr < KllAl L)
whereK = K (llall ~p) + lale,p) and D’ = B(0, 1) x [2, 1].
Proof. see Lemma 2.10 in [MZ98b]. |

Step 2: Energy bounds in similarity variables

From the blow-up argument for equation (7) (Proposition 2.1) and the mono-
tonicity of the energye, we have:

Lemma 3.3 There isC; = C1(Co, To) such thatvs > so = —log T, Ya € RY,
i) |E(wa ()] < Crand [ |w,(y, s)>p(y)dy < Cu,

o\ ps 9w 2

i) S (1wa G )P 4 Vg (v, )+ |25y, 9)[°) p(0)dyds < Ca,

i) [;” (f lwa(y, s)|P+1p(y)dy)2ds < C; wherew, andE are defined respec-
tively in (6) and (8).
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Proof. Following [GK87], we notew = w,.

i) Firstwe havethats € [sg, +00), %E(wa(s)) < 0,E(w,(s)) < E(w,(s0))
< C(Cy, Tp). Let us note from the blow-up result of Proposition 2.1 thate
[s0, +00),

—1 2
I(w(s)) = —2E(w(s)) + Tl (/ lw(y, S)Izp(y)dy) <0
Thus, (/ [w(y, s)|2p(y)dy) EP 2(p+l)E(w(s)) < C(Co, Tp) and we have).

ii) We have
d -1
" / (. ) p()dy = ~2E ) + 2 / (v, )17 (3)dy.

Therefore, by integration and, fﬁlf lw(y, $)|?T1p(y)dyds < C.
From the bound orf [w(y, s)|?0(y)dy, E(w(s)) and

fsSJrl [ 1w(y, )IP p(y)dyds, we obtain the bound on
fSHf IVw(y, s)[>p(y)dyds, and from the variation of the energy,

S8 0,9 pdyds| < IE@()] + | EQw(s + D) = 2C;.

iii) We write
—fIVw(y s)| p(y)dy+flw(y P p(y)dy
= [ 220>, Hw(y, S)p(y)dy+ L [w@, 9)Pp(y)dy.

Since p—+1f lw(y, s)|P+1,o(y)dy) < C1, we have

[ 1w )1y = €1 ([]50.9)] pdy) (f Iw(y, )2p()dy) 2 +C1,
then,

(f lw(y, )IP*p(ndy)® < € (1+f| L(y,s)| p(y)dy>
Thus, by integration we have the conclusmn. |

Step 3: L*° bound in similarity variables

We have the following proposition, whefé® bound can be derived from energy
bounds:

Proposition 3.4 (Giga-Kohn,L* bound onw ) Assume that we have the
bounds of lemma 3.3 ow in the interval[s, s + 1] for a givenCy, then for
all § € (0, 1), there exist€>(Cy, §) such thafw, (0, s + §)| < C».

Proof. See lemma 3.2 in [GK87]. ]
Step 4: Conclusion of the proof:L* bounds with respect toCy and Ty

We can see that these arguments yield uniform bounds on the solution.
- On one hand, we have from Step 1,
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Vi € [0, 10(Co)l, lu(@®)llr~ = 2Co. (45)

- On the other hand, we have from Proposition 3.4 and Step 2, féy al0, 1),
Vs € [so + o, +00), [w(s)|l= < C2(C1, do), therefore

C
Vi e [TA—e ), T), u()|ie < ——. (46)

(T — )71

Taking 8o = 8o(To, to) such thatTy(1 — e~%) < %0 and using (45) and (46) we
obtainVz € [0, T), ||u(?)| .~ < —+ where

(T—1) p—1
1
C3(Co, To) = Max(Cz(C1, 8o), 2CoT, ).
This concludes the proof of Theorem 2. O

Let us prove now the uniform pointwise control of the diffusion term by the
nonlinear term, which asserts that the solutign behaves everywhere like the
ODE v = v”.

Proof of Theorem 3 (Uniform ODE behavioilhe main ideas are the same as
in [MZ98a] where the proof was presented for a given positive solution. But we
will present the proof in a different way which allows us to obtain a constant
uniform with respect to initial data.

We argue by contradiction. Let us consiaggrsolution of (5) with initial data
uo, such thatj|ug,()||c2 < Co, u,(¢t) blows-up at timeT,, < Ty and for some
€o > 0, the statement

|Au| < eolul? +nonRY x [0, T,,) (47)
is not valid. Therefore, there is,, t,) € RY x [0, T,) such that

| Ay (X, t)| = €0lttn (X, )17 + 1. (48)

Consideringi, (x, t) = u,(x, + x, t), we can assume
x, = 0.
From the uniform estimates and the parabolic regularity, we have
T, —t, — 0asn — +oo.

Indeed, from Theorem AC,(Cy, Tp) > 0 such thavr € [0, T,),

||’/tn(t)||L°O = L2 T -
(T—n71

Introducingw, (v, s) for all y € RN ands > sq, = — log 7, by

X —a
T, —1t

y= L5 = —10g(T, — 1), wa(y,8) = (T, — D7 Luy (x, 1),
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parabolic regularity applied to equations (5) and (7), thek& isuch thatvs <
[s0, +00), [[Aw, (s) [z < C".
Thus,Vr € [0, T,,), [| Au, ()] 1 <

From (48), we have

we haveVs € [sg., +00), |w,(s)|lz= < C», wheresg, = —log7,. From

(Ty—1)P~1 .

/

—— = [Aup (@)l = [Auy (X, 1) = 1
(Tn - tn)p_l

and7, —t, — O0asn — +o0.

Let us now consider two cases.
In the region where the solutian, (¢) is of the same order as the solution of the
ODE blowing-up atT;, (called the very singular region), the Liouville Theorem
1 in similarity variables yields a contradiction.
For the other regions, we can control the nonlinear term by using in some sense
wellposedness for small data in some localized energy space (subcritical behav-
ior). This allows us to transport the information from the very singular region
everywhere.

i) Estimates in the very singular regioj., (0, #,)|(T,, — tn)lil — 8o #0as

n — +o0.

A compactness procedure and the Liouville Theorem yield a contradiction.
We now considefo, (v, s) = w,(s, + s, y) wheres, = —log(T,, — t,) — 400
asn — —+o0.
w, isasolution of (7) fory, s) € RN x[sq,—s,, +00) suchtha¥s > sq,—s,+1,
||11~J,,(S)||L00(RN) = C,VR > Ov ”Lbn”Coz/l(B(O,R)x[fR,R]) = C/(R), and

| A, (0, 0)] > €oliD, (0, )| > €02 > 8, > 0, where for allD ¢ RY x R,

lwll 21y = lwllem) + IVwlem) + V2wl ) + V2 Wllao
ow ow
+ ||§||L°C(D) + | 35 le.p
and ||lu|l,.p is defined in (44). Note that, — +oo andsg, = —log7, <

—log1(Co) by lemma 3.1. Thereforey, — s, — —oo. By compactness proce-
dure,w, — w asn — +oo on compact sets @&" x R wherew is solution of
(7) for (v, s) € R x R such that

Vs € R, [w(s)|l.~ < C and|Aw(0, 0)] > & > O.

From Theorem 1, we have a contradiction, since all the globally bounded solu-
tionsw of (7) defined orR"Y x R satisfyw(y, s) = w(s) andAw(y, s) = 0.

i) Estimates in the singular region, (O, £,) (T, — tn)ﬁ — 0.
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We now consider the case where
u(0, t,)(T,, — tn)ﬁ — 0asn — +oo. (49)
Again, by the Liouville Theorem and the local energy estimates (which allow
us to control the nonlinear term), we transport the information obtained in the
very singular region to obtain a contradiction in this case.
Step 1: Compactness procedure outside the singular region
We have from Theorem 2 and its proof

C
Vi € [0, T,), Va, luy@) e < ———— andlu, ()llc2 < -
(T'n — t) p—1 (Tn — [) p—1

By a compactness procedure, we can assumeTthat T* wherety(Co) <
T* < Tp andu,(x,1) — u(x, ) in CZHRN x [0, T*)) wherev: € [0, T*),
u __ -1

o = Au+ ulP"u,

C,

—andllu(®)llcz < ————,
(T* — t)71 (T* —1)rt

C
()| < L

and for allD c RY x R,
2 ou
lullczapy = llullLeopy + IVullLeepy + I VullLopy + ||§||L°°(D)-

We claim:
Lemma 3.5 u(¢) blows-up atT* andO is a blow-up point ofi(z).

Let us recall the following result which asserts that the smallness of the
following weighted energy (related to the eneyw,) defined in (8)):

2 N 1
&, —t ;1‘2"’1/ v/ 2 _
a(u) =1 |:2| u(x)] P

I zzfl"zvf|u(x)|2 D) ax
20— 1) SV

implies anL* bound onu(x, t) locally in space-time.

|u<x)|”+1] p(%)dx

7

Proposition 3.6 (Local energy smallness result)rhere existsy > 0such that
forall 8 > 0andé’ > 0,Vt' € [0, T, — 0'], if Vx € B(0,8), E.1,—r(uy) < 00,
then

/ 0
-Vix| <8,V € [ T, Jug (x, 1)] < —20

(Ty—1) 71
- Moreover, if¥|x| < &, [u, (x, S52)| < M’ thenV|x| < &, Vr € [S52, T,),
lu,(x, 1) < M* whereM* = M*(M’,§,0").



A Liouville theorem 125

Proof. See [GK89] and [Mer92] (Proposition 2.5). |

Proof of lemma 3.5By contradiction, there i34, § > 0 such that
Vix| <45, Vt €[0,T"), |u(x,t)| < M. (50)

From a stability result with respect to the initial data of this property, we obtain
a contradiction.
Indeed, from (50) and direct calculations, there is thiesuch thatv|x| < §,
Evre—p(u(t*)) < Z. We now fixt*. Then, forn large,V|x| < 6,
Exty—r () (t*) < 09, andV¥|x| < 8,Vt € [0, “5, |u, (x, 1)| < 2M. Therefore,
form Proposition 3.6¥|x| < 3, V1 € [“5%, T;), lu,(x, 1)] < M*

By a classical regularity argument, we havg| < 2, Vi € [3T" T,
|Au, (0, t,)| < M**(M*, M)whichis acontradiction with thefactth|atun(0, t)|
— 400 asn — +oo and the fact thal,, — r, — 0. This concludes the proof of
Lemma 3.5. O

Step 2: Choice of the scaling parameter

From the fact that 0 is a blow-up point ef we are able to choose a suitable
scaling parameter connectif@ ¢,) and the “very singular region” of,,. We are
now reduced to the same proof as in [MZ98a]. Consigdes (0, ) a constant
such thatp 1(ko) < 7 (£0.1(0) = 0 yields the existence of sucheg).

Since 0 is a blow-up point af,

w0, )(T* — 71 = ko.

wherew € SM~1 (Note that this follows from the results of Giga and Kohn

[GK89] and Filippas and Merle [FM95]. #1 = 1, thenw = +1).

In particular, there iy > 0 suchthaVr € [r, T*), |u(0, t)|(T*—t)ﬁ

Therefore, by continuity arguments, for al€ [#, T*), there is au () such that

K + Ko
>

From (49) and (51) we have the existence,of [0, t,] such that
110 (0, 5) (T, — £,) 71 = kg andVt € (7, t,], 12 (0, )](T, — )71 < ko,
We will see in Step 3 that(0, 7,) ~ —&—.

(Ty—fn) P71

3k+ko
> SKkTko
- 4

Vi = n(0), |un (0, O|(Tp — )71 >

(51)

We haver, — T* from (51).
Let us now consider

V(€. T) = (T, — i) Py 6N T,y — iy, 1y + (T, — T,)).
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Step 3: Conclusion of the proof

From the Liouville Theorem stated for equation (5) (Corollary 1) and energy
estimates, we show that the nonlinear term is “subcritical” on compact sets of
RY x (=00, 1]. In particular, we have, (£, T) — v(t)wo Wherewy € SM—1,
v’ = v” andv(0) = «p uniformly on compact sets @”" x (—oo, 1] (Note that
1

p—1 1
v(t) =« <Kio> -7 andv(l) < +o0).
We have from the definition af, that
- v, is defined for allz € [z,, 1) wheretr, — —oo (sinceT,, — ¢, — 0) and
satisfies

% _
. :Avn+|vn|p 1vn-
ot
s
Ty—th) P~ C C’
- Non ()l < C—L= < — € v, (D)2 < ——— and
[A—7) (T —in)] P71 1-7r-1 1-7)r-1

[v,(0, 0)| = Ko.
We can assume, — v in Cz’l(]RN x (—00, 1)) where

loc

v
— = Av+ "N
ot

/
[v(0, 0)| = ko and[lv(7)llpe < ——.
1—1)r1
From Corollary 1, (that is using in some sense the Liouville Theorem in the very
singular region), we have(&, t) = v(1)wo for somewy € S¥~1. Thanks to this
result, we have uniformly with respect g < 2,

Ee1(02(0) = E1(0(0)) = e 1(ko) < %

Thus, forn large, V|§| < 2, &.1(v,(0)) < oo, |v.(£,3)| < 2v(3), and by
Proposition 3.6Y|£| < 1,V € [3, 1), v, (5, T)| < M*.
By lemma 3.2, there i8/* such thaw|| < 7, Vt € [3, 1],

f— 4!
B L3z AU 3 gy < M wherelal, p is defined in (44).

In particular, |Av,| and |aa"t" are uniformly continuous on¢, r) € By X
[%, 1] (with a constant independent from). Thus,v,(0,7) — v(t)we and
Av, (0, 1) - Av(0, T)wo = 0 uniformly fort € [0, 1] asn — +o0.

Forz, = 7= € [0, 1], we have from (47)

| A, (T2, O] = (T, — 1) 71| At (0, 1,)] = Lt (O, 1,)7 (T, — 7,) 71
> 2|v,(0, 7,)|”. Letn — o0, we obtain

€0 . p €0 p
0> > rremn v(t) ] > EKO
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which is a contradiction. This concludes the proof of Theorem 3. |
Let us sketch some consequences of these Theorems.

Corollary 2. It is obvious thatiii) is an immediate consequenceidf. Fori)
andii), see section 2.2 in [MZ98a] and work witl| instead ofi. ]

Theorem 4The proof is divided in two parts. In a first part, by a contradiction
argument, we prove thalz € RY, |w,(s)||z~ — « and||Viw,(s)|[z~ — 0 as
s — 4o00. The proof of Theorem 1.1 in [MZ98a] is valid in this case.

In a second part, by slightly adapting the proof presented in [MZ98b], we
use a priori estimates and a contradiction argument to get the conclusion. More
precisely, one should use the new blow-up criterion of equation (7) of Proposition
2.1, rather than the one specific for nonnegative data in the scalar casen

Proposition 1.The proof of Theorem 2 in [MZ98b] is valid in this case, with
obvious changes. ]

Proposition 2.For (A), see Proposition 2.3 in [Mer92].
(B) is a direct consequence of continuity arguments and the uniform ODE
behavior of Theorem 3. ]

Proposition 3.The proof of Theorem 3 in [MZ98b] is valid in this case. O

Proposition 4. Thanks to the results of Giga and Kohn in [GK88]is compact.
Usingiii) of Corollary 2, we find for each € S, ¢, > 0 andr, < T such
thatu(x, t) has a constant sign @, ¢,) x [t,, T). SinceS is compact, we can
extract a finite collectiomy, ....,q; such that
S c U_,B(a;, %) (52)
Sincex has a constant sign dia, €,,) x [1,,, T), we candefine; € C(R" x
[0, T), R) such that:
I) Suppul C B(ais Eai) X [tal'v T)1
”) 37’], € {_1’ 1} such thaV(.x, t) € B(aiv éﬁ) X [t”i;T’ T),Mi(.x, t) = r’iu(-x’ t)v

2
i) V(x,1) e RN x [0, T), u;(x,t) > 0 and

% = Au; +ul + gi(x, 1), (53)
with suppg; C {9 < |x| < €}
iv) u; blows-up at timeT", on a blow-up ses; containings N B(0, %) (use ii)).
We claim that the results of V@fquez in [Vel93a], [Vel92] and [Vel93b] are
valid for equation (53), therefore, th@&/ — 1) dimensional Hausdorff measure
of S; is finite.
Using iv) and (52), we get the conclusion. O
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4 Generalization to the vectorial case

We prove Theorem 1 in the vectorial case in this section. The proof follows
the same structure as the scalar case presented in section 2. Therefore, we will
summarize the similar arguments and focus on those which are particular to the
vectorial structure.

We recall that we consider all subcritical valuespofcondition (15)) and not

only the condition (2).

Part I: Possible behaviors ofw ass — +o00
Step 1: Limits of w ass — 400

The knowledge of the stationary solutions associated to (7) is crucial. The Po-
hozaev equality (24) is still valid, therefore, the stationary solutions are formed
by the isolated point 0 and the continuum wherew € S¥~1, and this is the
main difficulty in handling the vectorial case. Indeed, if all the possible limits
were isolated points, no real difficulty would be encountered. Nevertheless, by
using the compactness procedure as in the scalar case, one can show that:

- either||w(s)||L% — 0 ass — +o0,

-or min |jw(s) — kwl/;2 - 0ass — +oc.
weSM-1 4

In this latter case, using a modulation theory, Filippas and Merle in [FM95],
prove thatw actually approaches a particular stationary solutian .. in the
continuumk S¥-1 ass — +o0.
In conclusion, we haver(y,s) — w,e in L3 ass — +oco, wherew.,o, €
{0} UkSY-T,
Symmetrically, using similarly a modulation theory as in [FM95], we also have
w(y,s) = W_o aSs — —o0, Wherew_o, € {0} UxSM~1. The convergence
holds also uniformly on compact sets®f .

Using the energy estimate (25) and the fact thatw' € S¥-1,
E(w) = E(ko') > 0andE(0) = 0, we see that unless = 0 orw = xw for
somew € SM~1 there is only one non trivial case to consider:

(W_00) Wioo) = (KW _co, 0) (54)

wherew_,, € S¥-1.

From the rotation invariance of (7), we can assume ¢hat = ¢, the first
element of the canonical baseRY . Let us remark that the modulation theory
method presented in [FM95] yields also

C
Vs < =1, [lw(s) —kerllpz < —. (55)
N
In the following, we will findsg € R such thav(y, s) € RY x R, w(y, s) =

k(1 + eS‘SO)_ﬁel, which will conclude the proof of the Theorem.
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Step 2: Linear behavior of w near ke; ass — —oo

M
Letv = w — kep. We expandv(y, s) = Zv,-(y,s)e,- with respect to the
i=1
canonical base oR™, wherev; : RY x R — R. From (7), we see that
satisfies the following equatiolyy, s) € RN+,

8_v =Lyv+ f(v) (56)
as

where £, is the self-adjoint diagonal operat¢P(£))” — (Lf)(RN,R))M
given by

L 0 . 0
0L—-1.. O

Lu=|_ """ o (57)
0 0 .£-1

and defined byCy (v) = (Lvy, (£ — Dvg, ..., (L= Doy), L=A—1y.V+1
and f(v) = |key + v|P (ke + v) — pL_lel — pL_l — vi€1.
From (29), the spectrum d,, is

spedLy) = (1— % | m e NJ.
The set of all eigenfunctions @, is
(himy...mpr€i | (m1, ...omy) e NV, 1 <i < M}
whereh,,. .my) is defined in (31) and satisfies

mi+. +m
[’M (h(ml,...,mN)El) = (1 - fl\/) h(ml,...,mN)Ela

Vi = 2» ﬁM (h(ml ,,,,, mN)Ei) = _w

Let P, be theL2(R", R) projector on
{h(ml,...,mN) | mi+..+my= I’l}. (58)
We expand each coordinateof v and therv as follows

vi(y,8) =Y Pu(vi(s))

neN

M
v(y, ) =YY Pu(ve

neN i=1
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Let us use this notation and give the projectiorvadn the eigenspace dfy,
corresponding to the eigenvaligin the case. = 1, % orO:
A = 1: the projection isPy(vy),
A = 1: the projection isPy (vy),
M
A = 0: the projection isP,(v1) + Z Po(v;).

i=2
The following Proposition (analogous to Proposition 2.4) asserts that when
s — —o0, the projection ob on the eigenspace df,, corresponding to 1% or
0 dominates the others.

Proposition 4.1 (Linear estimates) One of the following cases occurs as>
—00:

) (eigenspace of = 1): v — Po(vp)ll1z = o (I PoCon)ll3),

i) (eigenspace of. = 3): v — Py(wp)lliz = o (IPwpl3),

iii) (eigenspace ok = 0):

M
v — (Pz(vl) + Z Po(Ui)>

i=2

=0

M
Py(v1) + Y Po(vi)

i=2

2 2
L3 L3

Proof. The proof of Proposition 3.5 in [MZ984a] is valid in this case with obvious
adaptations. |

Part Il: Conclusion of the proof

We handle in this Part the three cases of Proposition 4.1 to show that the first case
corresponds to the solutian(y, s) = ¢(s — sp)e1 wherep(s) = k(1 + es)‘ﬁ
for somesy € R, whereas the two others yield a contradiction.

The proof is the same as in the scalar case thanks to the following facts:

- Nonlinear estimateThe blow-up criterion and its proof hold without any
adaptations in the vectorial case.

- Linear estimate Consideringv;, we reduce the study to the scalar case.
Indeed, from (56)y, satisfies the following equation:

dv
— = Lui+ fi(v) (59)
as

wherefi(v) = |ker+v|P Lk +v1) — pL_l — —£7v1, which is almost the same as

the equation (27) satisfied hyin the scalar case. We have in fact the following
Proposition:

Proposition 4.2 In all casesy), ii) andiii) of Proposition 4.1p(s) ~ v1(s) in
the L2 norm.

Proof. See Appendix B. |
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We now reduce the problem to the studywaf so that all the asymptotic
computations performed arin the scalar case remain valid fgrin the vectorial
case. Therefore, we conclude as follows:

Assume that casg of Proposition 4.1 holds. Them(y, s) = ¢(s — so)e1
1
wheregp(s) = k(1 + ¢*)” »-1 for somesg € R.

Assume that caseé) or iii) of Proposition 4.1 holds. Then, there exigtse
R" such thatw,, defined in (22) blows-up in finite timg> so. Contradiction.

This concludes the proof of Theorem 1 in the vectorial case. O

A Proof of Lemma 2.6

Proof of a < Sincew = « + v, we write from (18), (8) and (22\a e RV,
Vs € R, I (w,(s)) = I + I, + I3 where
IL==2[|Vu(y,)?p(y —a)dy,
IL==-2[G(y, $))p(y —ady, B

Pro
I3 = 55 (Jan Ik + v, )P (v — e)dy) 2,
o = ae*’? and

Kk +v|?> |k +ov|Ptt
2(p-1) p+1

G(v) = (60)

Let us expand in the following, I, and/; ass — —oo anda = ae*’? — 0.

Ot2 a.y
For I, we write from (9):p(y — o) = Vo)V p(y e By Cauchy-
Schwartz’s inequality, we deduce

Ll < C(f IVv(y,s)l“,o(y)a’y)l/2 (fe"‘-y,o(y)dy)l/z. Since|a| < 1, we have
e < exp(g|a|2 + %) therefore, ¢*? p(y)dy < C. Hence,

1/2
1] <C (/ IVv(y,S)I“p(y)dy) : (61)

The following lemma asserts thiatv|? is in fact quadratic in the§ norm, both
in casesi) andiii) of Proposition 2.4.

LemmaA.1 (v and |Vv|® are quadratic in L2) Assume that case) or iii)
of Proposition 2.4 holds, theNs < sg
1/4 1/2
(f (. 9o mdy) Y < € ([ Iv(y, )2 (»dy)** and
1/4 1/2
(/ IVuy, )4 p(dy)"* < € ([ IVu(y, )12p(ndy) "2
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This property has been noticed by Filippas and Liu [FL93] who used a result by
Herrero and Velzquez [HV93] that asserts that &1 norms ofv and Vv with
respect to the measugely are equivalent, with a controlled delay in time. For
more details, see the proof of lemma A.1 below.

With this lemma and (61), we g&t < sq, V]| < 1,

|11] = Cllu(s)II7- (62)
We focus now orl,. We get from (60)G (0) = FIRESN) +1> andVG(0) = 0. Since
v is globally bounded, we deduce tjai(v) — m‘ < C|v[2 Therefore,

I = l+0(f|v(y 2o (y — a)dy).
As we d|d for I, we can use Cauchy-Schwartz’s inequality and lemma A.1 to
get

l/wwwﬁp@—awy=0</W@Jﬂ%0&@)- (63)

Therefore,

2

+0 (o)) (64)

L= —
2 p+1

For I3, we write 1
)+
Iy = 255 (Jan I + 00, 9)Pp(y — a)dy) =
p+1
- ;Izﬁ (k2 + 2 [v(y, $)p(y — )y + [v2p(y —a)dy) *

p+l
- (1+ 2 [u(y, 5)p(y — a)dy + O <||v(s)|| )) > according to (63).
By Cauchy- Schwartzs inequality and (63), we have:
(S v, 9)p(y — )dy) < [v(y, $)2p(y — a)dy < Cllv(S)Ili%
Since||v(s)||H/} — 0 ass - —oo, we end up with
2
L=~

e [ 10000 —ady+ 0 (OIE) . (69)

Gathering (62), (64) and (65), we get
T o) = [ 00500 =@y + 0 (W61,

ass — —oo anda = ae’’? — 0.

It remains then to prove lemma A.1 in order to conclude the proof of lemma
26a-.
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Proof of lemma A.1The main feature in the proof of this lemma is an a priori
estimate on bounded solutions of

Vs < (L+O) (66)
due to Herrero and Va¥quez. Their result asserts thatlallnorms with respect
to pdy are equivalent up to a controlled delay in time.

Lemma A.2 (Herrero-Velazquez) Assume that, solves (66) andiy| < B <
oo. Then for anyr > 1,4 > landL > O, there existsj = s5(¢,r) and
C =C(r,q, L) > Osuch that

1/r 1/q
(/|w(y,s+s*>|’pdy) sc</|w<y,s>|quy)

foranys € R and anys* € [s§, s + L].
Proof. See lemma 2.3 in [HV93]. ]
According to (7) and (27), v andlv satisfy

3
L= Lo+ f),
os

IV 1 1 b1
3s —;CVU— <m+§) Vv+p|v| Vv
with | f(v)| < Clv[%,

Sincev is boundedy v is also globally bounded by the parabolic regularity, and
we deduce thafv| and|Vv| satisfy (66). Therefore, lemma A.2 is valid far]
and|Vv]|.

We prove the estimate of lemmaA.1 only fép in the case wher&) of Propo-
sition 2.4 holds. The three other cases follow in the same way.

Notice that in this cas@Vv(s)nL% ~ Coe'’? ass — —oo for someCy > 0.
Thereforey¥s < sq,

Co s/2 2 b2 s/2
¢ = IVu(y,s)I“pdy | < 2Coe"". (67)
Sets* = s0(2,4) andC* = C(4, 2, 1). Then, according to lemmaA.2 and (67):
Vs < sg,

(f Vo, )I*pdy)"* < C* ([ IVo(y, s — sM)Pody)"? < C* x 2Coe™? <
2C* e 2 x 2([ IVu(y, s)|2,ody)1/2 which is the desired estimate.

Proof of b -.Useii) of Proposition 2.4 and see the proofi@f of Proposition
3.9in [MZ98a].

Proof of ¢ -.Useiii) of Proposition 2.4 and see the proofiof of Proposition
3.10 in [MZ98a]. ]



134 F. Merle, H. Zaag

B Proof of Proposition 4.2

Theresultis obvious from Proposition 4.1 if cagerii) holds. Thus, we assume
that caseii) of Proposition 4.1 holds.
We claim the following lemma

Lemma B.1 Assume that Caséi) of Proposition 4.1 holds. Then

M
> Po(v)
i=2

With this lemmayjii) of Proposition 4.1 yields

= o (I1P2wp)ll3)

2
L3

lv = P2(v)ll 2 = o(|| P2(v1)]12) aSs — —oo.

Thereforep; dominates alb; fori > 2, and Proposition 4.2 follows. It remains
for us then to prove lemma B.1.

Proof of lemma B.1We proceed in 3 steps. In Steps 1 and 2, we find equations

satisfied byP,(v1) and Py(v;) for i > 2. In Step 3, we use these equations to

compare them as — —oo.

Step 1: Equation satisfied byP,(v;)

Arguing as in Proposition C.1 in [MZ98a], we can write from (58) and (31):
Pa(v1)(y, 8) = y" A(s)y — 2tr A(s)

whereA(s) is aC! symmetricN x N matrix, and deduce form (59) the equation

satisfied byA(s):

4
A'5) = =LA@ +0 (10O 123 vz ) - (68)

We can also introduc& C* eigenvalues ofA(s), (A (s));—1.. y Which satisfy
by (68):

4
Vi € (Lo N 1(0) = 2?40 (100 v am)  (69)

1 .
and =) A(9)? = [Papllf; < ¢ ) hs)? (70)
k=1 k=1

for somec > 0 (see lemmas C.4 and C.5 in [MZ98a]).

Step 2: Equation satisfied byPy(v;),i > 2
We have the following lemma:
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LemmaB.2 Vi > 2,

d Po(v;(s))
iT —0 <||v(s)||i%(RN‘RM)> ass — —oo. (71)
Proof. According to (56)Vi > 2, v; satisfies the following equation:
v;
S = (L= Dvi + £ (72)

where f;(v) = |ker + v|Pty; — p”—_"l. Since Po(v;) = [ vi(y, s)p(y)dy and
[(L = Dv;pdy = 0 (see (30) withn = 0), equation (72) gives

d Po(v;(s))

) / F@pOdy. (73)
S RN

Since|v(y, s)| < Co < 400, we expandf; (v) until the third order as follows:
| fi(v) — 2| < C|v[3. Therefore,

<cCII (74)

/ fiw)pdy — 1
RN

wherel = %fvi(y,s)vl(y,s)p(y)dy and/] = f |v(y,s)|3p(y)dy.

Let us estimatd first:

I = 2Po(v;) [v1(y,s)pdy + 2 [(v; — Po(v;))va(y, s)pdy

= ¢ Po(vi) Po(vy) + ¢ [ (vi — Po(vi)va(y, s)pdy. Hence,

[1| < C|Po(v)||Po(vy)| + |lv; — Po(vi)lngllvl(S)Ing- Since Caseii) of Propo-
sition 4.1 holds, we havgPy(vy)| + |lv; — Po(vi)lng = 0(||v(s)||L%). Thus,

|11 = o(llv)lIZ2)- (75)

We use the following lemma to estimaté:

Lemma B.3 There exist$y > 0 and an integelk > 4 such that for all§ €
(0, 8g), Asg € R such thatvs < sq,

M
f I?yl*pdy < colk)s*™* f {Pz(vl)z +> Po(v,-f} pdy.
i=2

Proof.The proofis in all points similar to the proof of lemma C.2 in [MZ98a}
Using the same techniques as in the proof of Proposition C.1 in [MZ98a],
one can easily show that

11=0(IvG)IZ;). (76)

Combining (73), (74) and (76) concludes the proof of lemma B.2. |
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M
Step 3: Comparison of P,(v;) and Z Py(v)
i=2

Let

M N
X(5)2 =) Po(vi(s)? andZ(s)? = X ()2 + Y M(s)%. (77)

i=2 k=1

According to (70), it is enough to prove that

N
X(s)=o0 ( Zkk(s)z) ass — —oo. (78)

k=1

M
Py(v1) + Y Po(v)

i=2

Since||v(s)||L% ~ , we have from (69), (71), (77) and

2
L3

(70):

Ao=2)2+o0(Z(s)D) fork=1,.,N
X' = o0(Z(s)?)

(79)
ass — —oo, and from (55) Z(s)? = O (). This gives by (79)

1
X(s)=o0 (—) . (80)
S
From (77) and (79), we have by simple calculations:
Z'(s) < CZ(s)? (81)

for someC > 0. Z(s) can never be zero. Indeed 4fsg) = 0 for somesg € R,
then ||v(so)||L5 = 0, andv = 0 onR¥ x [sq, +00) by the uniqueness of the
solution to the Cauchy problem of (27). This contradicts the factthat —k¢;
ass — +oo (see (54)). Therefore, (81) yieldgs < s,

/

Z(s) > c (82)

s

for somes; € RandC’ > 0. Combining (80), (82) and (77) gives the conclusion
(78) and concludes the proofs of lemma B.1 and Proposition 4.2 too. O
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