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In this paper, first of al we provide an alternative proof to the local existence
and uniqueness result of the generalized polar decomposition. What is new in our
approach isthat we derive differential equations obeyed by the two factors and solve
them analyticaly, thereby providing explicit Lie-algebrarecurrence relationsfor the
coefficients of the series expansion.

Second, we discuss additional properties of the two factors. In particular, when
o isaCartan involution, we prove that the subgroup factor obeys similar optimality
properties to the orthogonal polar factor in the classical matrix setting both locally
and globally, under suitable assumptions on the Lie group G.

1. Introduction

It iswell known in linear algebrathat any N x N matrix A can be decomposed
into the product

A=HU, (1.1)

whereU and H aretwo N x N matrices, the first unitary and the second Hermi-
tian positive semidefinite [10]. Furthermore, if A isinvertible, then H is positive
definite. The decomposition (1.1) is called polar decomposition and was intro-
duced in 1902 by Autonne [3] as a matrix analog of the polar form of a complex
number

z=ré?, r>0, 0<60 <.

The popularity of the polar decomposition ismainly dueto the best approximation
properties of itsfactors. It is proved in [6] that

min{|A-Ql: Q"Q=1}=[A-UJ,

where || - || is any unitary invariant norm, a property saying that U is the best
unitary (orthogonal in the real case) approximant to A in any unitary invariant
norm. Optimality results for the factor H are discussed in [8].

It is well known that when A is real, the matrix U is orthogonal and H is
symmetric. In the remaining part of this section, we shall restrict ourselvesto the
case when A isrea and invertible, A € G ¢ GL(R, N), hence H is positive
definite. We recall that

AAT = HUUTHT = H?,

from which it follows that H is the (unique) positive definite square root of the
matrix AAT and, consequently,

U=HT1A=(AA)1?2A

In arecent investigation of symmetric spaces and their connection with numer-
ical analysis [15], the authors observed that a number of techniques in numeri-
cal analysis can be related to involutive automorphisms (defining subgroups of a
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given group) and symmetric spaces, the polar decomposition being one of such
techniques, aswe shall seein thispaper. In other words, the polar decompositionis
equivalent to decomposing agroup element in the product of aterminasymmetric
subspace and aterm in a subgroup of the given Lie group.

There exist a number of papers on the polar decomposition in Lie groups and
itsgeneralization to semigroups (Ol’ shanskii decomposition), many of them rather
recent. A proof of the existence and uniqueness of the polar decomposition in a
large portion of aLie group G can be found, for instance, in [12].

In this paper, we present an alternative proof to the local existence and unique-
ness of the polar decompositioninaliegroup G. We derive differential equations
obeyed by the two factors and solve them analytically, thereby obtaining Lie-
algebra recurrence relations for the coefficients of the series expansion of each
factor. We show that the subgroup factor is expanded in odd powers of time only,
aresult of interest in the context of numerical analysis applications, such as the
development of numerical integrators for ODEs, and finally prove optimality re-
sults for semisimple Lie groups with right-invariant metrics inherited from the
Killing—Cartan form.

The paper isorganized asfollows. In Section 2 weintroduce background theory
on symmetric spaces and Lie triple systems. The main results of this paper are
presented in Sections 3-5. The differential equations for the generalized polar
factorsand the resulting recurrence relations areintroduced in Section 3, wherewe
also show that the subgroup factor expandsin odd powersof time only. In Section 4
weprovelocal optimality propertiesof the subgroup factor asan approximant tothe
original Lie-group element. Section 5 is devoted to the extension of the optimality
result to aglobal result, under suitable conditionson the Liegroup G. Thissection
isbased on notes kindly provided to us by E. van den Ban, although any errors are
of course ours. In Section 6 we discuss various applications to computations and,
finally, Section 7 is devoted to conclusions.

2. Background Theory

Let G beaconnected Liegroupando: G — G aninvolutive automorphism, i.e.,
o #idand o? = id. Let G” denote the set of fixed points of o

G’ ={x e G: a(x) =x},
and let G, denote the set of anti-fixed points of o:
G, ={xeG: o(x) =x71}.

The set G° is a subgroup of G and may be disconnected, so that GZ denotes its
connected component including the identity. The set G, does not have a group
structure, but is a symmetric space when endowed with the nonassociative multi-
plication x - y = xy~*x. We recall that a symmetric space is a manifold endowed
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with a differentiable multiplication - obeying the following conditions:

(i) x-x=x;

(i) x-(x-y)=y;

(i) x-(y-2)=(x-y) - (X-2);
and, moreover,

(iv) every x hasaneighborhood U suchthat x - y = y impliesy = x for al y
inU.

Theinvolutive automorphism o can belifted to the Liealgebrag of G and thislift
will be denoted by do. Let X € g and consider x = exp(t X). Then

do (X) := % o(exptX)), VXeg. (2.2)
t=0

Consider the spaces
t={Xeg do(X) =X}
of fixed points of do, and

p={Xeg do(X)=-X}

of anti-fixed points of do. The space ¢ isasubalgebraof g, whilep isaLietriple
system, namely, a vector space that is closed under the double commutator ad?.
One has

g=pdt (2.2

(direct sum), thus every Lie-algebra element X can be uniquely written as two
components, one being fixed under o and the other being anti-fixed. Thisiscalled
ageneralized Cartan decomposition. The projection in each subspace is given by
the formula

X = 1(X+do (X)) + 5(X — do (X)), (2.3

where X + do(X) € ¢ and X — do(X) € p. Note aso that if K € ¢, then
exp(tK) € G°. By asimilar token, P € p impliesthat exp(tP) € G, .

As an example let GL(N) be the group of N x N invertible real matrices.
Consider the map

o(xX) =x"T, x € GL(N). (2.4)

Itisclear that o isan involutive automorphism of GL(N). Then, from above, the
set G, = {x € GL(N): o(x) = x~1} isa symmetric space. The set G,, is the
set of invertible symmetric matrices. The symmetric space G,, is disconnected.
Its connected component containing the identity matrix | isthe set of symmetric
positive definite matrices. Similarly, G° is the set of orthogona matrices and
is a subgroup of GL(N) and GZ corresponds to orthogonal matrices with unit
determinant (the Lie group SO(N)).
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We compute do making use of (2.1). Given X € gl(N):

do(X) = —| o(exptX)) = d (I +tX +0@?)7 T (2.5)
dt ;o dtf_o
d
= — | +tXT t?)l= — | —tXT t2
. t=0( + + O(t9) o t=0( + O(t9)
= X", (2.6)
hence we deduce that

= {X € gl(N): do(X) = X} = s0(N),
the classical algebra of skew-symmetric matrices, while
p = {X € gl(N): do(X) = =X}

isthe classical set of symmetric matrices. Thisset isnot asubalgebraof gl(N) (the
commutator of two symmetric matrices is not a symmetric matrix) but is closed
under ad? (the double commutator of symmetric matrices is a symmetric matrix)
and isalLietriple system.

The decomposition (2.3) is nothing other than the canonical decomposition of
amatrix into its skew-symmetric and symmetric part

X = 3(X +do (X)) + 3(X —do (X)) = 3(X — XT) + 3(X + XD).

However, asmentioned in the Introduction, the above procedureisvery general.
If G is a subgroup of the matrix group GL, we may choose a matrix S such
that S> = | and define an automorphism on G as o(g) = SgS, which leads
to do(X) = SXS. This type of “inner” automorphisms on GL is discussed in
Section 6.

As yet another example one can choose G = Diff(M),! the group of dif-
feomorphisms of a manifold M, and set o (¢) = ReR ™1, with R an involutive
diffeomorphism of M onto M. If F denotes a vector field, so that ¢ = exp(tF),
then the sets G, (resp., G?) correspond precisely to the vector fields that possess
R as areversing symmetry (irony of a sort, thisis a symmetric space!) (resp. R
as a symmetry). The existence of the polar decomposition in a general Lie-group
context implies that, given R, every diffeomorphism? can be written as the com-
position of two flows, one possessing R as a symmetry and the other possessing

1 The group of diffeomorphisms of amanifold does not have the structure of a Lie group, and the
exponential map is not onto, even in very small neighborhoods of the identity map [2],[5]. However,
our procedure hereisintended to be formal and we assume that it is possible to verify the convergence
of the formulas presented here by other means. Under these premises, we assume that Diff(M) is
essentially aLie group.

2 Seefootnote 1.



302 H. Z. Munthe-Kaas, G. R. W. Quispel, and A. Zanna

R as areversing symmetry. Such a decomposition has fundamental implications
in the numerical analysis of differential equations and numerical integration of
systems with symmetries and reversing symmetries, an issue that has long been
under the spotlight of researchersin thefield of numerical analysis and dynamical
systems (see, for instance, [14] and references therein). An application to vector
fields with polynomial coefficientsis discussed in Section 6.

For those who are interested in further reading on symmetric spaces and Lie
triple systems, we refer to [7] and [13].

3. Generalized Polar Decomposition in Lie Groups

Given ageneric Lie group G, we wish towritez € G asz = xy, wherex € G,
andy € G°. Wecall thedecomposition z = xy ageneralized polar decomposition
of z, in analogy to the terminology of linear algebra.

Theorem3.1. Letz = exp(tZ) € G, where Z = K + P, do(K) = K, and
do (P) = —P, is the decomposition of Z in ¢ & p. Then, for sufficiently small
t, z admits a differentiable generalized polar decomposition z = xy where x =
exp(X (1)) € G,, with X(t) € pandy = exp(Y(t)) € G?, where Y(t) € ¢.
Moreover, such a decomposition islocally unique.

Proof. Set
P=3Z~-do(2), K=3Z+do(2),
sothat Z=K + Panddo(P) = —P anddo (K) = K. Let

X(t) = tX; +t2Xo +t3Xg+ - - -,
Y(t) = tY, +t2Yo +t3Ya + - - -,
wherethe X;’sarein p and the Y;’sarein . Imposing
exp(tZ) = exp(X(t)) exp(Y(t))
and making use of the BCH formula, one could derive the following formal con-
ditions:
X, = P, Y, = K,
Xo = —3[P, K], Y, =0,
X3=—3[K,[P.K]l,  Ys=—3[P.[P.K]],
etc. As we shall see later, all the X;’sand Y;’s can be algorithmically calculated
and are uniquely determined interms of P and K.

In what follows, we derive the Cauchy problem obeyed by X, find its solution
as a series expansion, and prove that, in case G is finite dimensional (with more
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generality, when the adjoint operator ad is bounded), such a series convergesfor t
sufficiently close to zero. The convergence of Y (t) will follow from that of X and
by the BCH formula.

Differentiating exp(tZ) = exp(X) exp(Y) and multiplying by exp(—t Z) onthe
right, we derive

dexpy X' = Z — Adegp(x) d expyY'.
We apply to both sides the operator Ade,—x), resulting in
Adexp(—X) d EXPyx X' = Adexp(—X) Z-—d eXpy Y'.
Recall that Adepvy = exp(ady), hence the equality

elv-1
—u

X' =exp(ad_x)(K + P) —d exp,Y'.
u=ady

Our goal isto decompose the above expression in £ @ p. To thisend, observe that
dexpy Y’ € tsinceY, Y’ € tand ¢ isasubalgebraof g. Next, we analyze theterm
exp(ad_x)(K + P). Recall that

[e%e) _1 k
exp(ad_x)(K + P) =) D

k=0

hence the term ad‘§((K) isin ¢ for even k while it isin p for odd values of k.
Conversely, we have ad¥™(P) € ¢, and add™(P) e pform = 0,1,2,....In
summary,

exp(ad_x)(K + P) = (—sinhu(K) 4 coshu(P)) + (coshu(K) — sinhu(P)),

€p et

u = ady.

A similar procedure appliesto theterme™ — 1/ — U|y=aq, X SinCe X, X € p:,

et'-1 , 1<e”—1 e”—l)
X = +
u=ady 2 —u u

X/
u=ady

—u

ct

X'.

1
X' — Z(coshu — 1)
u u=ady

1
—sinhu
u

u=ady

Now, since X evolves in p, it must depend only on terms that are in p. As a
conseguence,

(K) + coshu
u=ady

(P).

1
—sinhu X' = —sdgnhu
u u=adyx

u=ady
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Inverting the operator on theleft-hand side, we deducethat X obeysthedifferential
equation

cosh u

= —[X.K =
D Kl+ugin] P
X(0) = 0. (3.2)
Note that
coshu - oK
uSinhu =1+kX=:C2ku , lul <,

isthe series expansion of the function u coth(u), with coefficients

22k sz

—_— k=12...,
(2k)|7 9 &

Cok =

By being the kth Bernoulli number [1].
Equation (3.1), intandemwith the seriesexpansion X(t) = Y .~ ; tk Xy, implies
that the terms Xy obey the recurrence relation

K+ DXerr = —[X KI+D e D [Xep [Xepo - [Xey P

=1 £9.00lpp>0
2=k £+l =k

k=12...,
X, = P, (3.2)

as can be easily verified by comparison of powers of t.

We do not report here the proof of convergence of X (t), since the existence of
such adecomposition is awell-established result. However, for completeness, the
convergence of X (t) isproved in the Appendix. O

For completeness’ sake, we derive a differential equation obeyed by Y (t).
Matching termsin €, we obtain

—é(coshu — X' =coshu(K) — sinhu(P) —dexp, Y’,
where u = ady, which, after some simple algebra, reduces to
dexpy Y’ = K + (cschu — cothu)(P), u=ady.
Using the series expansion of csch(u) and coth(u), and inverting the d exp,, oper-

ator, we find
(P)> ,
U=aj)(

22k 1)Bx Y21
Y = dexpy, ( —ZZ @0
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intandemwiththeinitial conditionY (0) = 0. Notethat, inthisformulation, solving
for Y (t) requirestheknowledge of thefunction X (t). In[19] therecurrencerelation
for Y (t) is derived following a different approach, solving an implicit differential
equation for Y that does not require the direct knowledge of X but only that of Z
and —do (Z) = P — K. More specificaly,

Y: = K,
Yo, = O, n=012..., (3.3)
2@2n+ DYy = — ZZ Z
a=1 = (2k+ U B

X [Yk19 . [Yk2k, Yg(n,q)Jrl], .. ]

2(n—m) +1
Sy Ao m

2m)! adZ™ Yom_mys1

m=1

2(n—1) 2(n—1)— —gq—j—1/;
TN T EDTTIT G 4D ns g

@n—q-j-n 7

a=0  j=0
x ﬁ Z [le""’[ij’Yj+1]...]

k>1 ( + ) 10 jk=0

ksq+1 it ik=a+1
— E (2£)| Z 1"-~’[Y£21,’P_K]a~~-]~ (34)

Let z = xy be the differentiable generalized polar decomposition of z defined
by . Note that

o (X) = o exp(X(t)) = exp(do (X (1)) = exp(—X (1) = x*,
and, by asimilar token,
o(y) =
It follows that
20(2) 7t = xyo (xy) ' = xyy 'x = X%,
hence
X = (zo (2)"HY2.
In particular, setting Z = P + K, one has
X = exp(X(t)), X)) = %bch(t(P + K), t(P — K)), (3.5

where bch(-, -) isthe operator of the BCH formula, so that

exp(V) exp(W) = exp(bch(V, W)),
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foral V, W e g of sufficiently small norm (see[18]). Furthermore,
y=x"1z=(z0(2"H Y2z (3.6)

Equations (3.5) and (3.6) arederivedin[12] asthepolar factorsinthe polar decom-
position of z. Lawson's method of proof is based on generalizing an application
of the Bony—Brezistheorem [9].

The first terms (up to t8) in the expansion of X and Y are displayed below:

X = Pt — 3[P, K]t* — §[K, [P, K]]t?
+ (z[P. [P, [P, K]II - %K, [K, [P, K]IDt*
+ (35l K, [P, [P, [P, KINI — 35[K, [K, [K, [P, K]]I]
— 1l[P. KL [P, [P, K]IDt®
+ (—555[P. [P, [P, [P, [P, KNI + 555K, [K, [P, [P, [P, KIIII]
— 22l K, [KL KL KL [P, KT + 75510P, K1, [K, [P, [P, K111
+ 15[ P. [P, KII, [K, [P, KIIDt® + O(t),
Y = Kt — [P, [P, KIJt® + ([P. [P. [P, [P, K]]I]
+ 235[ K, [K, [P, [P, KNIl = 5%[P, K1, [K, [P, KJIDt® + O(th).
Proposition 3.2. Let xy be the differentiable generalized polar decomposition

of z = exp(tZ), where Z = P + K asin Theorem 3.1. The function Y (t), such
that y = exp(Y(t)), isan odd function of t.

Proof. Let exp(tZ) = exp(X(t)) exp(Y(t)) be the generalized polar decompo-
sition of z according to Theorem 3.1. Taking the inverse on both sides, we find
exp(—tZ) = exp(—Y (1)) exp(— X (t)), aterm that we write as

exp(—tZ) = exp(—Y (1)) exp(— X (1)) exp(Y (1)) exp(=Y (1)).
Clearly, exp(=Y (1)) € G°. Set
X = exp(—Y (1)) exp(— X (1)) (exp(Y (1)) = y *x7ty.

Since o(X) = o(y Ho(xHo(y) = yIxy = X1, we deduce that X € G,,
hence z7* = Xy~! is the generalized polar decomposition of z~*. On the other
hand,

exp(—tZ) = exp(X(—t)) exp(Y (—1)),

and because of the uniqueness of the generalized polar decomposition, weconclude
that exp(Y (—t)) = exp(—Y(t)), from which the assertion follows by taking the
logarithm of both sides. O
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Corollary 3.2.1. Given z = xy asin Theorem 3.1, then we also have
z= VX,
with§ € G” and X € G,. Moreover, ¥ = y and X = exp(—X(—t)).

Proof. Asabove, onehasexp(—tZ) = exp(—Y(t)) exp(—X(t)). Next, we make
use of Proposition 3.2, henceexp(—Y (1)) = exp(Y(—t)). Replacingt with —t, we
find z = exp(tZ) = exp(Y (1)) exp(—X(—t)) = yX, where X = exp(—X(-t)),
which concludes the proof. O

4. Local Optimality Results

We have mentioned that the orthogonal factor in the polar decomposition of matri-
ces has certain optimality properties, namely it isthe best orthogonal approximant
to agiven matrix in any unitary invariant norm. In this section we shall seethat, as
well asfor the polar decomposition in asemisimple Lie group asimilar optimality
result holds, provided o defines a Cartan decomposition. To do so, we need to
introduce a distance on the Lie group.

Let G bealLiegroup. Wesay that adistancefunction on G (obeying the standard
metricaxioms, i.e., positivity, symmetry, and triangleinequality),d(:, -): GxG —
R* isright (resp., left) invariant if

d(xg, yg) =d(x,y) VgegG,

(resp., d(gx, gy) = d(x, y)). Before proceeding further, let us review some basic
facts about invariant norms on Lie groups.

Any inner product (-, -) on g induces a left (resp., right) invariant Riemannian
metric on G. By right trivializing tangents to G in the usual manner, T,G = {Xg |
X € g}, weabtain

(Xg.Yg) = (X.Y).

The Riemannian length of acurve y (t) € G betweent = O0andt = lisgivenas

1
length(y) = [ (0, 7).
The shortest curve (minimizing geodesic) between two sufficiently close points x
and y isgiven by
y (1) = exp(t2)x,
whereexp(Z) = yx 1.
The right invariant metric on G is now defined as

d(x,y)= min length(y) = (Z, Z)Y/?.
(X, y) Lo n _leng (v) =(Z,2)
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Let us now introduce a canonical inner product (-, -) on g: Recal that the
Cartan—Killing formon g:

B(X,Y) = tr(adx ady) VX Yeg,

is symmetric and bilinear, moreover, provided that g is semisimple, it is also
nondegenerate.

Definition 4.1. Let g beasemisimpleLiealgebraand do aninvolutive automor-
phism on g as above, so that g = p & ¢. This decomposition is called a Cartan
decomposition if the symmetric bilinear form

Bus (X, Y) = —B(X, do (Y)) VX, Yeg,
is positive definite on g.
The Cartan decomposition is unique up to an inner automorphism [7].

Lemmad.l |If g = p & t is a Cartan decomposition, then the p and ¢ are
orthogonal with respect to the inner product

(X,Y) = Bygs (X, Y) VX, Y eg. (4.1)

Proof. Theorthogonality of thetwo subspacesisimmediate: let X € pandY € ¢.
Then

—(X,Y) = =By (X,Y) = B(X,do (Y))
= B(X,Y) = B(—=do(X),Y) = —=B(do(X),Y) = Bgs (X, Y)
= (X, Y),
from which it followsthat (X, Y) = 0. O

Lemma4.2. With respect to the positive definite bilinear form (4.1), each ady,
X € p, issymmetric and each ady, Y € ¢, is skew-symmetric. Moreover, By, is
Ad(K) invariant, k € G°.

Proof. See[7,Lemmal.2, p. 253]. O

Let y € G. We say that y lies in the normal neighborhood of the identity
e if there exists Y e g such that the curve y (t) = exp(tY) is the minimizing
geodesic connecting e and y (namely, ¥ (0) = e, ¥ (1) = vy, and y isthe curve of
minimal length connecting e and y) [17]. Note that if y isin such adomain, then
d(y,e) = Y|l = (Y, Y)¥2. Moreover, if x € G and y (t) = exp(tV)x isthe
geodesic connecting x and y, thend(x, y) = ||V
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Lemma4.3. Let G be a semisimple Lie group. Let x € G, andy € G? be
sufficiently close to the identity (so that the generalized polar decomposition of
Theorem 3.1 exists). Moreover, assume that x and xy~! are in the normal neigh-
borhood of the identity, otherwise arbitrary. Then

d(x,e) <d(x,y)

in the right invariant metric induced by (4.1).

Proof. Since x is in the norma neighborhood, there exists X in g such that
x = exp(X) and, moreover, d(x, €) = || X||. Set z = xy~* and Z = log z, so that
Z = exp(Z). Then, from aboveit followsthat d(x, y) = || Z||. To provethelemma
isthus sufficient to provethat | X|| < || Z]].

Let Z = P + K be the Cartan decomposition of Z inp @ ¢ and set z(t) =
exp(tZ). By virtue of Theorem 3.1 we can perform the generalized polar decom-
position of z(t) and this decomposition is uniquewhen z is sufficiently closeto the
identity. Hence there exists x(t) € G, and w(t) € G° such that z(t) = x(t)w(t).
Moreover, X(t) = exp(X(t)), where X(t) € p obeys the differential equation
(3.1). However, sincez(1) = z = xy~ 1, withx € G, andy* € G, itistruethat
x(1) = x and w(1) = y~. In particular, exp X (1) = exp X and || X|| = || X (D]

Note that

gIIX(t)II2 = E<>< X) =2(X, X)
dt Cdt T T

Making use of (3.1) and recalling that, by virtue of Lemma 4.2, (adx W, Z) =
(W, adx Z) for X € p, W, Z € g, we deduce that

(X', X)

(P. X) — (adx K, X) + Y _ cafady P, X)
k=1

(P.X) — (K, adx X) + Y _ ca(P, ady X)
k=1

= (P, X) < IPIIIXII
holdsfor al t. On the other hand,

d 2 _ ’
allx(t)ll = 2| XOIHXMOI,

hence
IXOI < IPI, IX©OI =0,
from which we deduce
IXOI < IIPIIt,
thus
X1 = 1IXDI = P
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Furthermore, |Z|| = [P+ K| = (P+ K, P+ K)¥2 = ((P, P) + 2(P, K) +
(K, KNHY?2 = (JIP|I? + |IK|?)? because of Lemma 4.1, since P and K belong
to orthogonal subspaces. Hence

dix,e) = [X| < IPI < (IPI2+ KDY = |1Z] = d(x, ),

which completes our proof. O

We are ready to present the main result of this section.
In what follows, we assume, without further ado, that all Lie-group elements
are in the normal neighborhood of the identity.

Theorem 4.4. Let g be a semisimple Lie algebra and let d(-, -) be the G right-
invariant metric induced by the symmetric bilinear form

Bda(xv Y) = _B(X» dU(Y))a an Y € g.

Inthisnorm, y = exp(Y(t)) of Theorem 3.1 is a differentiable best approximant
to exp(tZ) in the subgroup G in the domain of convergence of the generalized
polar decomposition of Theorem 3.1.

Proof. Letybeany differentiableelementin G? other thany, suchthat ¥(0) = e.
Now, for the G right-invariant metric it is true that

d(z,y) = d(xy,y) =d(x,e),
d(z, §) = d(xy,y) =dx, gy ™).

Since yy~! = w € G°, the assertion follows directly from Lemma 4.3. O

5. Global Optimality Resultsvia the Iwasawa (QR) Decomposition

In the last section we have shown local optimality results for the subgroup factor
in the polar decomposition. There, we have made explicit use of the differential
equation for the function X (t) derived in Theorem 3.1 and of the fact that, on Lie
groups, the geodesic exponential map Exp equals the usual exponential map exp
whenever we consider elements close enough to theidentity (with the choice of the
“standard connection” derived by the choice of the metric induced by the Cartan—
Killing form). In general, even in the case when G is connected, the standard
exponential map exp may fail to be surjective on the whole group G (a typica
exampleisthe group G = SL(2, R)), hence Exp need not equal exp on the whole
group G.

Inthissection, wewill extend thelocal optimality resultsderived in Section 4 to
global results under suitable assumptions on the underlying Lie group G. We shall
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seethat the optimality of the subgroup factor holds globally whenever the polar de-
compositionisglobal as, for instance, in the case of connected real semisimpleLie
groups with afinite center [ 7]. To this end, we introduce some further background
on Riemannian manifolds.

Let M be a Riemannian manifold with distance function d, let H be a Lie
group acting smoothly on M by isometries, and let S ¢ M be asmooth manifold.
Assume that the map

. Hx S—= M, (h,s) e HxS— hse M,

isadiffeomorphism from H x Sonto M. Let f denotethe Lieagebraof H. The
infinitesimal action of h on M is denoted by

d
Xeh - vx(m):a exptXyme M, me M.
t=0

Lemmab5.1l. Leta e Sandlet T;Sand T,(Ha) be the tangent spacesto Sand
Ha, respectively. Assume that for every a € Sitistruethat T,Sis orthogonal to
Ta(Ha):

TaS L Ta(Ha). (5.1)
Then, for all s;, s, € Sand hy, hy, € H, itistruethat

d(s1, 8) < d(hisg, hosp). (5.2

Moreover, M iscompleteif and onlyif S, equipped with therestriction of themetric
d, iscomplete.
If M iscomplete, then (5.2) hold as an equality if and only if hy = h,.
Finally, Sis a completely geodesic submanifold of M .2

Proof. Consider c(t): [0, 1] — M asaC? curvejoining the two manifold points
h1s; (c(0) = hi1s;) and hys, (c(1) = hysy). Denoteby B(t) € H and y (t) € Sthe
unique C* curves such that c(t) = B(t)y (t). Then

d
dsl. g Bt +s)y®) + p Szoﬁ(t)y(t +9)

= Lyplvxo @) + 7' )],

c'(t)

where the infinitesimal action is given in termsof X (t) = d/ds|._o B(t)"1B(t +
S) € h and L’ denotes the tangent map of the left multiplication by g (lifting ¢ to
the corresponding tangent space, keeping the S argument fixed).

3 A submanifold N of a Riemannian manifold M is said to be totally geodesic if for al x € N the
geodesic Exp(t X) € N coincideswith exp(t X) for al X € TyN for small valuesof t. N iscompletely
geodesic if it istotally geodesic and complete.
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Since H acts by isometries, one has
I'®1 = llvxe (v ®) + ¥ O,
and, because of the orthogonality condition (5.1), it follows that
IO = lloxae) (v O + Iy O,
fromwhichit is easily deduced that
ly'®1 < IO, t [0, 1],
hence

d(s1, 82) < length(y) < length(c)

(recall that length(y) = fol [ly'(t)||dt). Because of the arbitrariness of c(t), the
above relation holds passing to the infimum over all connecting curves c and, in
particular, for the geodesic curve. Hence,

d(s1, ) < d(his;, hosp).

We next prove the completeness of M given that Sis complete. Let {m;};-1 be
a Cauchy sequence in M. Since ¢ is onto, there exist h;, s; in H, S, respectively,
such that m; = hjsj, j = 1,2,.... However, from the above it follows that
d(s,s) < d(hs, hjs) = d(m;, m;), which implies that {s;}j>1 is a Cauchy
sequencein S. Hence

jIim §=s¢€S
since Siscomplete. Let ¢ > 0, such that B(s; ¢), the closed ball of center s and
radius ¢, is compact. Then B(hs, ¢) is compact for every h € H. Fix N € N
such that d(s;, s) < ¢/2 and d(m;, m;) < ¢/2 for @l indicesi, j > N. Then
d(m;, hys) < eforal j > N and afixed element hy € H. Thus, the sequence
{m;} is a Cauchy sequence in B(hn; &) and hence it converges to alimit m e
B(hy; ), from which the completeness of M follows.

Inwhat follows, let usassumethat M iscomplete. Since ¢ isadiffeomorphism,
Sisclosedin M and henceis complete aswell. Now, if d(h;S1, hosy) = d(sg, ),
there exists a geodesic curve ¢ connecting his; and h,s, with length equal to
d(s1, ). With the notation above, length(c) = length(y), and because ||c/(t)|| >
Iy’ |, itistruethat ||c'(t)| = ||y'(t)| foral t € [0, 1]. Thus,

v (¥ (1) = O,
and, inturn, X(t) = O for all t. Hence B(t) isaconstant curve, from which
h1 = B(0) = B(1) = hy,

and this part of the lemmafollows.
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To completethe proof of thelemma, it remainsto show that Sistotally geodesic
at every point a € S. For this purpose, consider the geodesic exponential map
Exp,: TaM — M at a, which is well defined because of the completeness of
M. Let @ be a open ball centered at 0 € T,M with the property that Exp, |
is a diffeomorphism, and for every X e Q the geodesic c: t — Exp,(tX) has
length exactly equal to d(a, Exp, X). Thus, if Exp,(X) € S, then the curvecis
containedin S. Hence the smooth manifold S of €2, consisting of X € Q such that
Exp,(X) € S, must equal T,SU Q. From thisit follows that Sistotally geodesic
a a. O

We apply the above resultsto the Iwasawa decomposition for areal semisimple
Liegroup G. Let K be asubgroup of G suchthat GZ c K C G, and let £ beits
Lie algebra. Assume, moreover, that G is connected and has a finite center. Then
the map

(k, X) e K x p —> G kexp(X)
isadiffeomorphism onto (see[7],[18]), hencein thiscase, the polar decomposition
G =Kexpp

is global. Note that here, for simplicity, we consider the decomposition G =
K expp instead of G = exppK asin the previous sections. However, as already
observed, these two formalisms are equivalent, hence the same results apply to the
other case as well, since the subgroup factor is essentially the same.

From the Cartan decomposition, we construct the Iwasawa decomposition as
follows. Let a be the maximal abelian subspace of p. One has the following prop-
erties:

e Every element of p is K -conjugate to an element of q, i.e.,
p = Ad(K)a.
o If A isalinear functional on a, then define
g={Xeg [H,X]=A2(H)X,H € a}.

Sincedo (X) = —X for X € a, onehasdo (g,) = g_,, and go isinvariant
under do. Hence go U p, = a. Set m = go U &, the centralizer of ain ¢,.
Then, go=m® a.

e Denote by X the set of roots of a in g. Then X isaroot system and

g=moad @ga.
aeX

e Theset T isthedigoint union of &+ and — =+, where £+ isthe set of roots

that are positive on a fixed Weyl chamber C. Set

n:@ga.

aeXt

Then n isanilpotent subalgebra of g.
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e Theexp function is a diffeomorphism from n to N, a closed subgroup of G.
Denote A = exp(a). Then the map

(k,a,nNe KxAxN — kaneG

isadiffeomorphism and thedecomposition G = K AN iscalled thelwasawa
decomposition.

In the case of matrix Lie groups with the choice o (z) = z~T, one can observe
that K correspondsto the group of orthogonal matrices, A correspondsto matrices
with positive diagonal entries, and N corresponds to the group of upper triangular
matrices, with one on the main diagonal. Then, the decomposition z = kan is
equivalent to the well-known QR decomposition of matrices, by identifying Q
with the k factor and R with the an factor.

The inner product (X, Y) = —B(X, do (Y)), introduced in Section 4, induced
aright G-invariant Riemannian metric on G, with distance function d. Then, as
a consequence of Lemma 5.1, G is a complete Riemannian manifold (choose
M=G,S={e},andH = G).

Lemma5.2. For all a € A, thetangent spaces T, A and T,(KaN) are orthogo-
nal.

Proof. Leta e A. We show first that aNa—! = N. For this purpose, let v € N.
Thenv =expV, V € n. One has

1

ava ! =aexpVa ! = expAd@V € N,

since Ad(A) = e |eaves n invariant.

Thus, right multiplication by a—! maps the set A onto itself and the set KaN
onto KaNa~! = K N as a consequence of the argument above. Therefore, it is
sufficient to establish the result for a = e. Recall that

TeA=a and  To(KN) =€ +n,

hence it suffices to show that a L ¢ + n. We already know that a L n because
of the properties of the root-space decomposition described above. Therefore it
remains to show that a L €. Tothisend, let X € €. Then X decomposes as

X =Xn+Xat Y Xo+ Xa),

aexrt

where X, € m, X, € a,and X, € g, for « € Z. Since do(X) = X and
do (Xy) = X_,, wededucethat X, = O, hence X L a. |

Corollary 5.2.1. Let z= kan e G, the lwasawa decomposition of z. Then

d(a, e) < d(kan, e).
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whereby the above relation holds as an equality if and only if k = n = e. Further-
more, A isa totally geodesic submanifold of G and Exp, |, = expl|a.

Proof. Weapply Lemmab.1withM =G, S= A,and H = K x N. Theaction
of H on G isgiven by

(k,n)-g=kgnt.
Notethat, because of Lemma4.2, thescalar product (-, -) isAd(K) invariant, hence
the Riemannian metric on G isleft K invariant aswell. Thus, the group H acts by
isometries. Furthermore, as a consequence of the above lemma, all hypotheses of
Lemma 5.1 are satisfied hence all assertions but the last follow.

To prove the last assertion, note that, since a is totally geodesic, Exp, |, is the
geodesic exponential map of A equipped with the restriction metric. Since the set
a is abelian, the exponential map is an isometry from the Euclidean space a onto
A. Thus, if X € qa, then the geodesic curve c in a, emanating from 0 with velocity
c'(0) = X, isgiven by c(t) = tX. Hence, Exp,(X) = exp(c(t))|i=1 = exp(X),
which completes the proof of the result. O

Corollary 5.2.2. Letx € G, = expp. Then, for all k € K, it istrue that
d(x, e) < d(kx,e),

with equality if and only if k = e. Moreover, Exp,|, = expl,.

Proof. Letx € G, = expp. Sincep isAd(K) conjugateto a, thereexistsk; € K
anda € A such that x = kyak; *. Then,

d(kx, e) = d(kkjak; %, e) = d(k; kksa, €),

where the last passage follows by left invariance of the metric under the subgroup
K. Because of the previous corollary,

d(k; 'kkia, e) > d(a, &) = d(x, e),

with equality if and only if kl‘lkkl = e, in other words, k = e.

For the last assertion, let X € p. Thenthereexistsk € K and V € A such that
X = Ad(k)V. Since Ady: x — kxk=isan isometry with tangent map Ad(k), it
follows that

Expe(X) = KExpo(V)k ™! = kexp(V)k ™! = expAd(k)V = exp X

(the second equality follows from Corollary 5.2.1), which proves our state-
ment. O

Now we have al the tools to extend the optimality of the polar decomposition
to aglobal result.
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Theorem 5.3. Let z € G and denote z = kp the polar decomposition of z, with
ke G° and p € G, = expp. Then, for all k; € G, itistruethat

d(z, k) < d(z ky),

withequalityifandonlyif k; = k. Hence, thepolar factor k isthe best approximant
of zin G°.

Proof. Let z = kp be the polar decomposition of z. Now, by left invariance of
the metric under G, one has

d(z, k) = d(kp, k) = d(p, e).
On the other hand, if k; isan arbitrary element in G°, one has
d(z, ky) = d(kp, ky) = d(k; ‘kp, e),

where again we have made use of theleft invariance of the metric under G°. Thus,
the result follows by Corollary 5.2.2. O

6. Applicationsto Computations
6.1. Approximation of the Matrix Exponential

The first example consists in the numerical approximation of the exponential of
a matrix from a Lie algebra to a Lie group. Such computations are ubiquitous
in the numerical solution of ODES on Lie groups [11]. A particularly hard case
iswhen g = sl(N) and G = SL(N), since any analytical approximation of the
matrix exponential isbound to fail unlessthe exponential is computed exactly [4].
The procedure described below isavery general nonanalytical approximation that
can be applied, among others, to the approximation of the exponential in GL(N),
SO(N), and SO(p, q). With small modifications, a very similar approach can be
applied to the case of the symplectic group Sp(N). We refer to [16] for further
details.

Assume that we wish to approximate the exponential exp(tZ) € SL(N) of a
matrix Z € sl(N), so that the approximation F(t, Z) € SL(N). Consider the
involutive automorphism o (z) = SzSon SL(N), where Sisthe diagona matrix

-1 0 ---0
0 1
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Then, it easily verified that do (Z) = SZSand

0 |z FARY,

1 221 0 0
P=1z-s29= , ,

ZN 1 0 0

711 | 0 0

L 0 | 22 N

K =1z+529 = ,
0 |Zn2 -+ Zan

We truncate the series X (t) and Y (t) to agiven order of accuracy p, and approxi-
mate

p p
exp(tZ) ~ F(t, Z) = exp (Z Xnt“> exp (Z Ynt”) ,
n=0 n=0

where the X,,’sand Y,,’s are determined in terms of the matrices P and K above.
Notethat both 3"5_, Xnat"and 3°F_ Yqt" are zero-trace matrices hence their exact
exponential isamatrix with determinant equal toone. Hence, F (t, Z) isguaranteed
tositin SL(N). Thetruncation of X(t) only possess one row and one column and
its exponential is very easy to compute exactly. Commutators of matricesin p and
£ can be computed employing only matrix—vector products, amounting to O(N?)
operations. The procedure is repeated for the new matrix Z[% = 3°F_v,t", with
the new automorphism deVv = FUv U where

1 0O --- 0
gu_|0 -1

.10

o ... 0 1

Proceeding in asimilar manner, after n steps one obtains the approximation
exp(t2) ~ exp(XH () exp(XE 1)) - - - exp(XM 1)),

whereall the matrices X[, fori = 1,2, ..., N — 1, possess only one row and one
column, while XINI is a diagonal matrix.

Practical algorithmsthat follow this approach are described at greater lengthin
[16]. For large N, these algorithms approximate the matrix exponential fromsIi(N)
to SL(N) in O(33N3), O(7N®), O(9N?) floating point operations and order 2, 3
and 4, respectively—very competitive with standard methods for the computation
of the matrix exponential.
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6.2. Centro-Symmetric Matrix Approximants

Wewill now discuss amatrix decomposition which is much less familiar than the
classical polar decomposition. Let F be the N x N “flip” matrix, defining the
following action on an arbitrary n vector:

F)(J)=(N+1-})) for j=1,...,N.

That is, F isamatrix with ones on the main lower-left to upper-right diagonal, and
zeros elsewhere. We say that a matrix A is centro-symmetric if FAF = A, and
that it is centro-skew if FAF = —A. Since A — FAF isa180° rotation about
the matrix center, this means that elements situated symmetrically with respect
to the center are either equal or equal under a sign change. As a motivation,
consider, e.g., discretizations of spatial differential operators. A central difference
approximation of d?/dx? is centro-symmetric, while d/dx is centro-skew. On
the Lie group of al real nonsingular N x N matrices we define the involutive
authomorphism o (a) = FaF, which inducesthe same authomorphism onthelLie
algebrag = gl(N):

do (A) = FAF.

The projection 7, = %(I + do) projects g onto the subalgebra ¢ C g of centro-
symmetric matrices, while 7, = %(I — do) projects onto the Lie triple system
consisting of centro-skew matrices. Thus, in the algebra, we have introduced a
decomposition of ageneral matrix into the sum of acentro-symmetric and acentro-
skew matrix. At the group level this automorphism defines the two spaces G =
{k € G | FKF = k} (centro-symmetric) and G, = {p € G | FpF = p™1},
which we may call centro-orthogonal matrices. It iseasily verified that the matrix
exponential maps ¢ into G” and p into G,. The centro-symmetric matrices G
form a Lie group while the centro-orthogonal matrices form a symmetric space
closed under the symmetric product x - y = xy~x. Compare this to the classical
polar decomposition, where the symmetric matrices form a symmetric space and
the orthogonal matrices form a Lie group.

Theorem 3.1 thus states that any matrix z = exp(Z) can be written as z = xy,
where x = exp(X) is centro-orthogona and y = exp(Y) is centro-symmetric.
Letting Z = P + K where P is centro-skew and K is centro-symmetric, we find
that X = Y .2, Xk and Y = Y 7, Y, where Xy and Y, are given in (3.2) and
(3.4), and wefind that z is decomposed as

Z=exp(£) = exp(X) exp(Y). (6.1

From Section 4 we know that y = exp(Y) is the best centro-symmetric approxi-
mation to z, and that the distance between y and z is given as

dz y) = IXI = [IP =3[P, K] +---1, (6.2)

where || - || isthe Frobenius norm.
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6.3. Decomposition of Vector Fields with Polynomial Coefficients

In thislast example we apply the generalized polar decomposition to vector fields
with polynomial coefficients. Consider the differential equation

Y v
W = , V),
glt} (6.3)
E = Q(Uv U),

where p(u, v) and q(u, v) aretwo polynomialsin u and v. We wish to decompose
the vector field F (u, v) = p(u, v)d, + q(u, v)d, into two vector fields, one that
hasthetransformation R: (u, v) — (U, —v) asasymmetry, and the other one that
has R as areversal symmetry. To thisgoal, we consider the Lie group of flows ¢,
of vector fields with polynomial coefficients and consider the automorphism

opr = RpR,

SE

Since the map R is alinear transformation, the corresponding algebra automor-
phism on the vector field Z is

where R isthe matrix

doZ = RZR,
hence
F(u,v) = P(u,v) + K(u, v),
where
Pu,v) = %((p(u, v) — p(U, —v))dy + (U, v) + q(U, —v))d,)
and
K(u,v) = 2((p(u, v) + p(u, —v))dy + (U, v) — q(U, —v))d,).

We can construct the series X (t) and Y (t) in terms of the vector fields P and K
above as in Section 3—the commutator being the usual Jacobi bracket of vector
fields. In this manner, one obtains the decomposition

@ = exp(tF) = exp(X (1)) exp(Y (1)),

where now exp(Y(t)) has R as a symmetry and exp(X(t)) has R as a reversd
symmetry, in other words,

Rexp(X (1)) R = exp(—X(1)), Rexp(Y (1)) R = exp(Y (1)).
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For instance, assume p(u, v) = (1 — u)v, q(u, v) = 2u — 3v. Onehas P(u, v) =
(1 —uwwvdy + 2vdv, K(u, v) = —3vd,, [P, K] = 3v(1 — u)d, — 6ud,, etc. Note
that vector fieldsin ¢ and p have reflection with respect to the u axis asasymmetry
and antisymmetry, respectively.

L et usrestrict our attention to polynomial vector fieldsof degreeat mostr < oo.
ToobtainaLiealgebra, we modify the Jacobi bracket truncating all the polynomial
terms of degree higher than r. For instance, if P(u,v) = (1 — u)vdy + 2ud,,
K(u, v) = —3vd,,andr = 2, then

[P’ [P7 K]]f = 6(“ - U2 + vz)aw

whereas the classical Jacobi bracket would give [P, [P, K]] = 6(u — u? 4+ v? —
uv?)d,.

The corresponding Lie algebra g isnow finite dimensional and we can consider
the distance d induced by the canonical Cartan—Killing form, tr(ad adg), which
now reduces to computing traces of appropriate matrices describing the adjoint
operator.* Thus one has the following optimality result: in the metric defined by d,
thetime-1 map of ther -degree polynomial vector field Y (t) isthe best approxi mant
to exp(tF) among al time-1 flows of polynomial vector fields of degreer that are
symmetric with respect to the u axis. The distance in the approximation is given
by IIX()]l.

7. Conclusions

In this paper we have discussed some issues related to the polar decomposition
in Lie groups as analogous to the polar decomposition of matrices. Such a fac-
torization always exists and its factors are differentiable, provided that the group
element we wish to factorize is sufficiently close to the group identity. Moreover,
the decomposition is well known to be global under certain assumptions on the
group G. Our contribution to the understanding of the subject is twofold: first of
all, we have derived explicitly the Lie-algebra series expansions that determine
the factors uniquely near the identity. Second, we have proved that the subgroup
factor possesses certain optimality properties, namely, given a Lie-group element
z that has polar decomposition z = xy, where x € G, is the symmetric space
factor and y € G isthe subgroup factor, then y isthe best approximant to z, both
locally and globally, under the assumption that o defines a Cartan decomposition.
Thisresult isaLie-group analog of the optimality of the orthogonal factor in the
polar decomposition of matrices.

The existence of this decomposition in such a general setting is very relevant,
among others, in the context of integration of dynamical systems possessing ge-
ometric attributes such as symmetries and reversing symmetries. Numerical inte-

4 We assume that this Lie algebra is semisimple, otherwise one can always perform the Levi
decomposition of g into a semisimple and nilpotent subalgebra.
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symmetries, and ad hoc numerical schemes need to be introduced instead or pro-
jection techniquesto be employed. Thus, one could perform a“ polar factorization”
of the numerical integrator and discard the factor that is not relevant for the given
problem. For instance, thewell-known generalized Scovel projection for numerical
methods to preserve reversing symmetries [14] corresponds to an approximation
of the p factor of the polar decomposition introduced in this paper, under the choice
of asuitable automorphism o [15].

It would also beinteresting to investigate whether linear al gebratechniquesfor
computing the polar factorization of matrices can be extended in some respect to
the genera Lie-group case. It would also be of interest as to whether the recur-
rence relations for the polar factors presented in this paper can be used to devise
numerical methods competitive with the standard algorithms for computing the
polar decomposition [8]. These issues are currently under investigation and we
hope to come up with further resultsin afuture paper.

8. Appendix

With the same notation as Theorem 3.1, we prove that the series Y r2 | Xit, with
the Xy’sasin (3.2), is absolutely converging.

Assume that g is a Banach space and that the ad operator is bounded (which is
alwaysthe case when g isfinite dimensional). Let i be the smallest constant such
that

Y1, Y2]II < il YalllIYall, VY1, Y2 €g,
and denote @ = max(||K ||, ||P|). From (3.2) we deduce that
K+ D[ Xl
<o | Xl + Y leaelie® Y Xl Xl 1 X ] (81)

=1 €10 bpg>0
20<k £+-+lpp=k

Consider next the differential equation

dw = h(w), w(0) =0, (8.2
du

where

hu)=1+u+ ) lcalu™,
k=1
which has an analytic solution for some constant 0 < § < m. Set w(u) =
> re, wiu for |ul < §. Itiseasily verified that the wy’s are positive and obey the
recurrence relation

K+ Dwpr=wi+ Y [l Y wypwewe,,  k=12.... (83

=1 £1.0rbpp>0
2e<k £y ++Ep=k
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with starting value w, = 1. We claim that || Xy < p* lakwy fork = 1,2, ....
Clearly, the statement is true for k = 1, since || X1|| = |P|| < ¢ and wy = 1.
Next, assume that the statement istrue form = 1, 2, ..., k. From the induction
hypothesis, together with (8.1) and (8.3), we deduce

K+ D Xpall < i wet+a Y leplp® Y w e wew, - we,

>1 01,0 bp >0
20<k £+l =k

A

= oMK+ Dwgya.

It follows that the series Y. | || X [It% is converging in the disk of radius 8/ (o),
being bounded by the absolutely converging series (1/14) Y reo wk(taw)®. This
completes the proof of Theorem 3.1. O
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