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Abstract. The change of zero locus of a global holomorphic 2-form on a threefold under birational
transformations is investigated. It is proved that existence of 2-forms with certain conditions on
their zero loci on a threefold of nonnegative Kodaira dimension limits types of terminal singularities
appearing on its minimal models. As a result of the restriction on the types of terminal singularities
and Reid’s Riemann-Roch formula, a universal bothid found such that the linear systéwk
defines a birational map from a threefold of general type admitting those 2-forms, Khetbe
canonical bundle of the threefold.
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1 Introduction

Let X be a complex projective manifold of dimensiarwith some nontrivial
global holomorphic forms, i.e; there is® w € H°(X, 2%) for somep > 1.
It is known that the dimension of all global holomorphic forarfk X, 2%) =
h?(X, Oy) is a birational invariant. Furthermore X’ is another complex pro-
jective manifold which is birational t&, anw € H°(X, £2%) corresponds to a
uniquew’ € HO(X, 2%). Let Z(w) be the zero locus ab. We are interested in
the following general question:

Question 1.1.How doesZ (w) change under birational transformations?
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The question is trivial for = 1. Whenn = 2, two birationally equivalent
algebraic surfaces are connected by a sequence of blowing ups(downs) of points
((-1) curves). So itis sufficient to understand the changé(af) after one such
operation. Letr : (X, E) — (Y, P) be a blow up at a smooth poitandE the
exceptional curve. Then locall¥/(r*(w)) = E fora 2-form andZ (n*(w)) = E
or Z(m*(w)) = Q € E for a 1-form depending on wheth& e Z(w).

The situation is more involved in dimension 3. It is easy to see that blowing
up a point onX creates a two dimensional zero locus for the pull backs of the
2-forms while blowing up a smooth curve creates at least one dimensional zero
locus. A some what interesting phenomenon is that one never creates isolated
point as zero locus for pull backs of the 2-forms by simply blowing up along
smooth centers.

Let us assume that the Kodaira dimensioXds nonnegative. Itis now well
known after the completion of Mori’s program that to get to a minimal model of
X one needs to perform a sequence of birational transformations which are called
extremal contractions and flips. Two minimal models are connected by flops. So
our question of understanding the changes @$) could be interpreted as that of
understanding the changestfw) after those “elementary” ones. An unpleasant
feature of doing extremal contractions and flips is that one gets into the category
of singular varieties. More precisely we have to deal with threefolds with terminal
singularities, which are isolated and are of quotient (or hyperquotiefit§ ¢br
someV (F) c C* by a cyclic groupG.

Our study is primarily motivated by the following open problem on pluri-
canonical systems in dimension bigger than 2:

Problem 1.2 Let X be athreefold of general type, i.e; a smooth projective variety
of dimension 3 ovefC whose Kodaira dimension is also 3.
Find a universalN such thaiN K| defines a birational map froix.

In [L1] we have considered the subshéafjenerated by global 2-forms in
£22 and used it to construct maps frakh Using the properties of those maps,
we are able to construct sections in pluricanonical systems,drence giving
answer to the problem in the cases when the rargkisfl or 3.

We also investigated the case when the ranK & 2 in [L2], where some
partial results are obtained. However as pointed out there, it is not know whether
1.2 has an affirmative answer even in the case whism rank 2 vector bundle.

It should be pointed out that problem 1.2 has an affirmative answer for ir-
regular threefolds of general type thanks to the work of [Ko1], for threefolds
having minimal models over which the canonical sheaves are invertible [EL].
From another point of view for threefolds of nonnegative Kodaira dimension,
one may ask whether there isVasuch that the linear systepy K| has a non-
trivial member. The existence of such a bound is given for cagg$ = 0, 1, 2
by Kawamata, Mori, and Kadlf respectively in [Kal],[Mr3],and [Ko2].
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Assume now that the rank éfis 2.

Definition 1.3. The degenerating locug(£) of £ is the closed subset af such
that< w|,, w € H%(X, 222) > is a vector space of dimension less than or equal
tolforanyx € D(&).

Obviously dimD (&) could be 0, 1, 2 because of the rank 2 assumption.
Based on the understanding of changes of zero locus of a global 2-form after
extremal divisorial contractions and flips, we are able to show

Theorem 6.1. Let X be a smooth complex projective threefold of general type.
Assuméi?(X, Ox) > 2 and dimD(E£) < 1. Then there is a universay such
that N Ky defines a birational map frorm.

Hence whenX has enough global holomorphic 2-forms such that they gen-
erate a rank 2 vector bundle, problem 1.2 has an affirmative answer. We hope a
generalization of our methods will allow us to treat the case whed#n = 2
at least in terms of number of 2 dimensional irreducible componenix(&)
and vanishing orders of 2-forms on each component.

The proof of Theorem 6.1 also rests upon the following result obtained purely
from analysis of contributions of singularities in Riemann-Roch formula.

Theorem 5.3. Let X be a smooth threefold of general type whose minimal model
: " 1 . .
has singularities of type (1, —1, 1) afterQ smoothing as in [R] for > 2. Then
r
there is a universaN such thatN Ky defines a birational map from.

Our study is also motivated by a result in an earlier version of a paper by
F. Campana and T. Peternell [CP] which says that if a threefold has a global
holomorphic 2-form with isolated points as its zero locus, then the canonical
bundleK must be nef.

Indeed we have a counterexample to the above claim. However the following
result is true and the example shows that the conditions given are sharp.

Theorem 2.2. Let X be a smooth threefold af(X) > 0 with n°(X, 22) =
h?(X, Ox) =1 > 4. Assume that there is subspacec H°(X, £22) of dimen-
sion 4 and dimension & (w) is bounded from above by 1 fOr£ w € V. Then
X has a smooth minimal model.

Our study is guided by the principle that the existence of nontrivial global
holomorphic forms on a threefold should reflect certain properties on its min-
imal models. For example at the moment we have very little knowledge about
what kind of combination of terminal singularities may appear on a minimal
model, despite of quite extensive understanding of birational transformations in
dimension 3. Indeed our study shows that the conditions put on the global 2-
forms limit the types of singularities appearing in the process going to a minimal
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model. We hope that our study will shed some light on determining the “basket”
of singularities on a minimal model via geometric global constraints.

Thereis also afundamental question regarding the existence (and its structure)
of zero locus of holomorphic forms on a threefold of general type. For example
[Z] shows a global 1-form has nontrivial zero locus when the canonical bundle
is ample. In [LZ] we will show that any globatform, 1 < i < 3, has nontrivial
zero locus on a threefold of general type.

More precisely the paper is organized as following:

In Sect. 2we discuss the change of zero locus of 2-forms on a smooth threefold
under divisorial extremal contractions which result in a smooth minimal model.
Theorem 2.2 is proved.

In Sect. 3 we identify global 2-forms on a threefold with terminal singularities
aslocally invariant 2-forms which come from the corresponding cyclic covers
locally around the singularities and study the change of zero locus under special
resolutions. Special (partial) resolutions are constructed for certain types of ter-
minal singularities over which a 2-form nonzero at the singularity corresponds to
a 2-form with only isolated points in its zero locus along the exceptional locus.

In Sect.4 change of zero locus of locally invariant 2-forms under a flip is
considered, with an assumption that the dimension of degenerating loéus of
is bounded from above by 1. Indeed we predict the types of singularities in the
flipped neighborhood when the types of singularities in the flipping neighborhood
are restricted.

Reid’s Riemann-Roch formula is investigated in Sect.5 when the types of

contributing singularities are of types(1, —1, 1). We obtain a universaw,

independent of indices and humber cr)f singularities, such that the linear system
N K| has at least two nontrivial elements. Theorem 5.4 is proved.

Finally combining results in sections 3, 4, and 5, Theorem 6.1 is proved in
Sect. 6 based on the fact that our assumption on the global holomorphic 2-forms
imply that types of terminal singularities on a minimal model are limited (even
though the number of them and their indices are not limited). Examples are
discussed.

AcknowledgementsThe author would like to thank T. Peternell for sending the revised version
of [CP]. The comments of J. Kall, T. Peternell, and V. Shokurov are greatly appreciated. The
remarks from the referee are very helpful inimproving the presentation of the paper. Partial support
was provided by a grant from National Security Agency.
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2 The smooth case

We begin with a lemma describing the zero locus of twisted 1-form&%on

Lemma 2.1. The vector spac& °(P?, £2p2(2)) has dimension 3Z(0) is a point
for0# 6 € HO(P?, 2p2(2)).

Proof. The result about the dimension is well known. &3, U1, Us be the
standard covering d# with homogeneous coordinatgs, z1, z2]. It is easy to
list three independent sectiofs 65, 63 in HO(P?, 2p2(2)):

OnUg:

Z Z
1—z0d( ) 02 = —2022d(2) + 2022d (2), 93—Zod(—)
20 20
OnU;y.
Z Z Z
0 = —23d(>2), 92—Zd( ) 03 = —2120d (=2 + z022d (2),
Z1 <1 <1
OnUs:
Z Z Z
01 = —2122d(22) + 2022d (Z2), 0 = —22d(Z), 3= — Zd( .
72 22 22

The conclusion o1Z () is now clear. O

The following result tells us when one can expect smooth minimal model by
looking at the zero locus of global 2-forms.

Theorem 2.2. LetX be a smooth threefold @{X) > 0. Assume that®(X, 22)
= h%(X,0Ox) = | > 4. Assume that there is subspagec H(X, 222) of
dimension 4 and dimension Bi{w) is bounded from above by 1 f0r£ w € V.
ThenX has a smooth minimal model.

Proof. If Ky is nef, there is nothing to prove.

AssumeKy is not nef. Letf : X — Y be an extremal contraction. Mori
[Mr1] says thatf is divisorial with the exceptional divis@? with normal bundle
O(—1) or O(-2) , Pt x P! with normal bundle?(—1) ® O(—1), a coneE over
rational normal curve of degree 2 with normal bun@le-1), aP*-bundle over
a smooth curve. The last case is the only one in which a divisor is contracted to
acurve.

We will show that under the assumption of the theorem, divisor to curve is
the only possible case that could happen. This is achieved through a case by case
analysis.

Let E be the exceptional divisor of the contraction. One has

0— Tg — Tx - Ng/x — 0,
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whose dual is
0— Ng/x = 2x - 2 — 0.

Taking wedge product one has
0— Ng/x ® 25 — 22 - 22 50

Itis left as an exercise to check that when= P? with normal bundle)(—1),
E ~ P! x P! with normal bundle?(—1) ® O(—1), andE ~ a singular quadric
surface inP3 with normal bundle®; ® Ops(—1), one always hav&€ C Z(w)
for everyw € H°(X, £22). This is impossible because of the existenc& of
WhenE ~ P? with normal bundle?(—2), one has

hP(P?, 2p2(2)) = 3, hO(P?, 2p2) = O.

HenceH°(P?, 222) is a three dimensional vector space, identified vifth(P?,
2p2(2)) when restricting orE by Lemma 2.1.

Considering the restriction map : HO(X, 22) — H°(P?, 22) on the
subspaceV, there is a 0# o € HO(X, 22) such thatE C Z(w), which is
impossible by our assumption.

When f contracts a divisor to a curve, Y is again a smooth threefold of non-
negative Kodaira dimension. In this case, the 2-formXare the pullbacks of
those or¥'. So we have oiif a subspac®’ ¢ HO(Y, £22) suchthatthe dimension
of Z(«') is bounded from above by 1 for every nonzerfoe HO(Y, 222). We
may repeat the process wh&n is not nef. Since divisorial contraction reduces
Picard number, after finitely many steps a smooth threefold of the same Kodaira
dimension with nef canonical bundle is reached. Thusas a smooth minimal
model. O

Remark. The proof of Theorem 2.2 follows closely to that of a statement by
Campana and Peternell (an earlier version of Theorem 3.3 in [CP]) which says

Claim 2.3. Let X be a projective threefold anda 2-form onX with finite zero
setZ(w).

(1) Assumec(X) = —oo. ThenX is aP!-bundle over a K3-surface or a torus
andw is a pull back.
(2) If k(X) = 0, thenKy is nef.

The following example was used in [L1] for a different purpose. It actually
provide us a counterexample to the claim. The example also demonstrates that
the conditions in the previous theorem are effectively sharp.

Example 2.4.Let C be an elliptic curve with an involution. LetY = C x C x

C/t, where the action is defined a¢x, y, z) = (tx, ty, t2). Y is a threefold
with index 2 terminal singularities 4f them). LetX be the blowup of all the
singular pointsX is of Kodaira dimension 0 and not minimal. Y&thas three
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linearly (actually polynomially) independent 2-forms with isolated points (on
the exceptional divisors) as their zero locus by Lemma 2.1.

The claim on the zero locus can also be checked by a local computation. We
work this out in detail since it serves as the starting point of what we do next in
Sect. 3.

Locally around each singularit@ of Y, the action oft is simply

(tx, 7y, 12) = (—x, —y, —2),

where is the image of0, 0, 0). The affine coordinate ring 8[uq, u1, 12, vo,

v1, v21/1, wherel is generated byious = v3, uiu; = v, uouz = v3. The
blow up of the origin atC® resolve the singularity with the exceptional locus
P2 ¢ W = Blo(V(I)) C C® x P° The invariant 2-formiy A dz is written as

dui Nd
22 Onthe open sty # 0,
21)1
dui A dus
o = tdug N ds + sdt N dug + updt Ads,
v1

whereu; = uot?, us = ugs?, which has one point as its zero locus whiteA dy

anddz Adx have no zero locus on this open set. This way we see that the invariant
2-formsdx ndy, dy ndz, dz Adx correspond to three 2-forms on the resolution
having exactly one point in the exceptior®las their zero locus.

Remark. If one takes a hyperelliptic curv€ and does the same construction,
there are two dimensional components in the zero loci of 2-forms considered
above. However it is easy to check that a general 2-form has only isolated points
in its zero locus.

Combining the proof of the above theorem and the rank 2 condition on the
global 2-forms, we have

Corollary 2.5. Let X be a threefold ok (X) > 0 andh%(X, £22) > 4. Assume
that there is a subspacé c H(X, £22) of dimension 4 such that it generates
arank 2 subsheaf @22 and any two linearly independent member/alo not
share dimension 2 zero locus. ThErhas a smooth minimal model.

Proof. As in the proof of theorem 2.2 whekiy is not nef, we need to show
contraction ofP? with normal bundleD(—2) is impossible.

Let f : X — Y be such a contraction arft be the exceptional divisor. It is
shown thatH°(E, 22) ~ H°(E, 2(2)), a three dimensional vector space in
which any non-zero member has one point as its zero loc#saccording to
Lemma 2.1. Now let

p: H'(X, 2%) — H%E, 2£(2))

be the restriction map composed with the above identification pk.ebe the
restriction ofp on V. We see that the image @f, has at most dimension 2
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because the members BP(X, 222) generate a rank 2 subsheaf. This implies
that the kernel ofy is at least of dimension 2. Le#;, w, € ker(py) and be
linearly independent. Clearly C Z(w1) N Z(wy) which is a contradiction. O

Benveniste [B] showed that whexi is a smooth threefold of general type
with Kx nef, 8Ky defines a birational map. Hence our results imply

Corollary 2.6. LetX be athreefold of general type witA(X, £22) > 4. Assume
that there is subspack c HO(X, £22) of dimension 4 such that one of the
following is satisfied;

(1) Dimension ofZ(0) is bounded from above by 1 for£ 0 € V.
(2) V generates a rank 2 subsheaf @€ and any two linearly independent
members o¥/ do not share dimension 2 zero locus.

Then8Ky defines a birational map.

3 Zero locus under an extremal contraction

In this section we investigate the changes of zero locus of global 2-forms under
certain extremal contractions. As mentioned before one encounters threefolds
with terminal singularities after contractions. To keep track of changes of zero
loci of global 2-forms it is convienient to identify global holomorphic forms
on the smooth locus of a normal variety with (hyper)quotient singularities as
thoseglobal locally invariantholomorphic forms because of the nature of the
singularities involved. The cumbersome (and misleading as pointed out by the
referee) name comes from the fact thaf'if ¥ — X is a resolution of singu-
larities, on a neighborhooll around each singularity of X and for a global
holomorphic formw onY, w|s-1,_-1p = wly_p, and the latter comes from an
invariant holomorphic form o©2 (or onC* restricting on a hypersurface). So
one identifies a “global holomorphic" form a%i with a holomorphic form on

the non-singular locus o patched together with those locally defined on the
covering of each singularity which are invariant under the corresponding group
action.

As explained in the introduction, the primary goal in this section is to identify
those terminal singularities having the property of, under a particular resolution,
admitting two independent 2-forms with isolated zeros on the exceptional di-
visors whose discrepancies are less than 1. This is a crucial step for the later
development.

A three dimensional terminal singularity, P) of index bigger than 1 has
been classified by Mori (See [R] for details) as either a cyclic quotieadf

1 _ _ . .
type —(a, —a, 1) with (r,a) = 1 or one of the following hyperquotient singu-
r
larities, one main series and 5 exceptional ones:
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(1) %(a, —a,1,0;0) : xy + g(z’, w), whereg € m?, (r,a) =1

(2 %(1, 1,3,2,2) : xy + 2%+ g(w) or x® + 22 + ¢ (y, w), whereg € m*
3) %(O, 1,1,1;0) : xy + g(z, w), whereg € m*

(4) %(o, 2,1,1;0) : x>+ y* + g(z, 1), whereg € m®

(5) %(1, 0,110 : x*+ g(v. 2, w) + h(z, w), whereg € m* h € m*
(6) %(1, 0,1,1,0) : x*+ y> + yg(z, w) + h(z, w), whereg, h € m*

wherem = mp, the maximal ideal ofP.
Indeed the functiong andh in (4)-(6) can be further specified. Itis proved in
[KSB] that every isolated singularity of type among (1)-(6) is actually terminal.
We first recall the main result in [L3], where the concept of index increasing
divisorial contraction is defined and a classification is made.

Proposition 3.1. Assumer : (X, E) — (Y, P) is an index increasing extremal

divisorial contraction. TherP is a quotient singularity of type (a, —a, 1) or
r
a hyperquotient singularity of type (1) with qgd = 1 andx is the weighted
blow up which gives the coefficientfor the exceptional divisor K x.
r

We want to understand the change of zero locus when pulling back a locally
invariant 2-form aroundP to X. First let us focus on the situation where

is a quotient singularity. In this case is the weighted blow up with weight
a r—a l . . 1 1
-, , — | andX hastwo singularities oftypes(r, —r, 1) and——(—r, r,
r r r a r—a

1), which are covered by three open sBts U1, Us.

More precisely, letx : C* — (Y, P) be the quotient map. Let : A =
C3 — C3 be the finite map which “homogenizes" the group action, defined by
B(x,y,z) = (x% y"%, z). The action ofG =< o > is then lifted to an action

on A by

o(x, Y 7) = (§x, Srya §:2)

whereg, is a primitiver-th root of unity. Obviouslylx® A dy"—¢, which is the
pull back ofdx A dy to A, is invariant under the group action. The weighted
blow up is realized by blowing up the origin gf

Ax P25 Bly(A) 0% %% — 34 34y, P).

Let [Zo, Z1, Z>] be the coordinates d?. On the open set whet®, # 0, The
groupsG = %Z,, Gy = Z, =< o1 >, andGy, = Z,_, =< o0, > act on



716 T. Luo

VA Z
C3 = (x, s, 1), wheres = =% andt = =2, by
Zo Zo

o(x,s, t) = (&x,s,1),00(x,s8,1) = (x,&_y4s,1).

So the quotient by; x G, is aC? with invariant coordinateéx”, s" ¢, t).
Uy is the quotient ofC2 with coordinatesx”, s"~¢, t) with G, =< o1 >
action
O’]_(Xr, sr—u’ T) — (Sé:xr’ %-a—(r—a)sr—a’ Sa_lt)'

Usings, t, ® = dx® A dy"~® becomesix® A dx"%s"~%. If we view o on U,
it becomesy = cdx” A ds"~® wherec is a nonzero constant. So it has no zero
locus onU,.
Similarly U, is the quotient o®® (the quotient ofC® = (s, y, ) under action
of G x G1) with coordinategs?, y”, ¢) with G, =< o, > action

oa(s”, ¥ 1) = (5% &y ELD,

4 V4 .
wheres = 22 andr = Z_2 Usings,t, ® = dx* A dy"™® becomesw =

d(y*s®) Ady" . If we view i}[ onUs, it becomesis® A dy”". It has no zero locus
onU.

U, is actually aC® with coordinateg(s¢, "¢, z"). Usings, t, ® = dx® A
dy"™® becomesw = d(z%s*) A dZ 7. If we view it on Uy, it becomes
Zdz ANdt"T + 57 AdtTT4 + 1 4ds? AdZ . Ithas zero locus 0, 0, 0) on
Us.

If « = 1 orr — 1, there is another linearly independent 2-fatyi—* A dz
(ordx"~ A dz) which is not zero aP.

Summarizing the computation, we have

Lemma 3.2. Letn : (X, E) — (Y, P) be an index increasing extremal con-
traction whereP is a quotient terminal singularity. Let be a 2-form aroundP.
ThenZ(7*(w)) containsE if Z(w) containsP and Z(*(w)) contains exactly
one isolated poinQ around E which is smooth orX if » does not vanish at
P. There are at least two such 2-forms which are linearly independent®vfer
andonly ifla| =1 (i.e;a =1orr —1).

Remark.We have seen in Sect. 2 that wheg= 2 there are three such 2-forms
nonzero atP.

The hyperquotient case is treated similarly. We discuss type (1) singularity
next. In the process we abuse the notation by identifying locally a 2-foom
the hypersurfac® (F) with a restriction of a 2-form from the ambient sp&te

0— Ny sy, x ® 2v(F) > Q8 — 20 — 0,
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away from the isolated singular point, whe¥g .,y is the dual of the normal
bundle generated hyF .

Even though this identification is not unique, one checks that it has no effect
on the statement regarding the nature of zero locus of

Definition 3.3. A singularity of type (1) in Mori's listis called type (1.1)if= 1
or r — 1 and the order of is 1.

Let (Y, P) be a terminal singularity of type (1) with order gf= 1. The

index increasing extremal contraction corresponds to the weighted blow up with

weights E, - -, 1), which is covered by four open set®, Uy, Uz, Us.
r r r

Itis realized by

blow up at O

A x P25 Bly(A) A=C* L B=C*>V(F) S, P) C C4G.

« is the quotient maps homogenizes the action 6f = Z, =< o >:

Bx,y,z,t) =x“y " z,t"),0(x,y,2,t) = (§x,§,82,&1).

B isthe quotient oA under groupG; =< 01 > xGy =< 02 > XG4 =< 04 >
action via

o1(x,y,z,t) = (§,x,y,2,1),02(x, ¥, 2, 1) = (x,5_4y,2, 1),

64(x’ v, I, t) = (-xv v, 2, grt)

Let[Zo, Z1, Z», Z3] be the coordinates &°. Uy is the hyperquotient of* with
coordinatesgx”, "%, v, w") underG, action:

o1 (" u T v, w") = (E X ETT U T e, £ w")

- . V4 Y4
and the defining equation! = + g(x"v", x"w")x ™", whereu = Z_l v = Z_2
0 0
Z3 . : 3 1
andw = 7z Uy is a quotient ofC* of type —(r, —1, —r).
0 a
U, is the hyperquotient of* with coordinategu“, y", v, w") underG, ac-
tion:
o2,y v, w) = (& u &y L E v £ wh)
- . _ Zo Z>
and the defining equation? + g(y"v", y"w")y~", whereu = 7 V= 7 and
1 1

Z3
w = Z_ U, is a quotient ofC® of typ

1, —r).
U, is smooth.
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Us is the hyperquotient of* with coordinatesu®, v =%, w, t") underG,4
action:
0,4(ua, Ur—u’ w, tr) — (Sr—aua’ ri_.;z—rvr—a’ %-r—lw’ S:tr)
Zo Z1

and the defining equatiom®v"~* + g(t"w", t")t ", whereu = 70 v = 70
3 3

V4 1
andw = Z_2 Us is a hyperquotient of* of type = (—a, a, —1, 0).
3 r

As before one checks that 2-forix® A dy"~* does not have zero locus on
Uy, U1, U,. It has one point as its zero locus b because

dx* ANdy ™" =dut)* Ad(vt)"™
=t"du® ANdv' T+ coudt” Adv"T + c3v" " du Adt",

wherecs, ¢, are nonzero scalars. The zero locus is the singular poibion
Assumez = 1 (orr — 1).dy ™t A dz (or dx"~* A dz) also has the singular
point onUj3 as its zero locus.
The discussion leads to

Lemma3.4. Letw : (X, E) — (Y, P) be an index increasing extremal con-
traction whereP is of type (1). Letw be a 2-form aroundP. ThenZ (7 *(w))
containsk if Z(w) containsP and Z (7 *(w)) contains an isolated poin® on

E which is a type (1) terminal singularity oX if » does not vanish aP. There
are at least two such 2-forms which are linearly independent @vifrand only

if P is of type (1.1).

The above analysis shows

Corollary 3.5. Let(Y, P) be aterminal singularity of quotient type wiil = 1

or type (1.1) withr = 2. Then for any resolutioi of P and E any exceptional
divisor with discrepancy less than 1, the pull back of any nonzero locally invariant
2-form aroundP does not vanish oB. There are two linearly independent (over
P) 2-forms nonzero aP whose pull backs oX are nonzero orE.

Proof. One needs only the fact that there is a one-to-one birational correspon-
dence between exceptional divisors of discrepancies less than 1 on two resolu-
tionsof P. O

For our purpose it is important to identify those terminal singularities with
the similar property as the ones in 3.5.

Definition 3.6. A singularity of type (4) in Mori’s list is called of type (4.a) if
the degre@ homogeneous componentgois z° + 3.

Lemma 3.7. Let (Y, P) be a singularity of type (4.a) and : (X, E) — (Y, P)
211
be the weighted blow up with weights, 33 :—3). Then the pull backs of 2-

forms represented ¥y A dz, dy A dt have an isolated point in their zero loci
on E and the point is a quotient terminal singularity of indéx
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Proof. The weighted blow up is covered by four open 9&3sUs, U,, Uz and is
realized through

A x5 Blo(A) "L =t L B=C* 5 V(F) S (Y, P) C CYG.

« is the quotient maps homogenizes the action 6f = Z3 =< o >:

IB('x’ Y, 2, t) = (x3, yz’ 2, t),a(x, ¥, 2, t) = (€3x’$3yv $3Z’€3t)'

B is the quotient ofA under groupG, =< o1 > xG, =< o0 > action via

o1(x,y,z,t) = (§3x,y,2,1),02(x,y,2,1) = (x, &3y, 2, 1).

Let[Zo, Z1, Z», Z3] be the coordinates &°. On the open sefy # 0, the action

Z Z Z3 .
—l,v:—z,andwzz—s,ls

of G x Goon(x,u, v, w), whereu =
0 Zo 0

o(x,u,v,w) = (&x,u,v,w), oz2(x,u,v,w) = (x, u, v, w).

The quotient is £* with invariant coordinateé®, u?, v, w). The defining equa-
tion becomes

B3+ 03+ w4+ =0
Uy is the quotient ofx3, u?, v, w) under action oG :

3 2 3 £-2.2 -1 -1
Ul(x U ,U,UJ)Z(X 553 u 5&3 v?é?, w)

. . . 1 . .
So Uy has the quotient singularity of typ:?(l, —1, —1). The invariant 2-form
dy? A dz on Uy becomes

1 1
dx%u?® A dxv = x3du® A dv + §u2dx3 Adv + évdu2 Adx3,

which has one point as its zero locus. Note that this point is the singular point of
Uo.
Zo

Onthe open set; # 0, the action of5 x Gion(u, y, v, w), wherey = 70
1

4 Z3 .
v= 2% andw = =2, is
VA VA
o(u,y,v,w) =&y, v,w),o1(u,y,v,w) = (&u,y, v, w).

The quotient is £* with invariant coordinateg:2, y3, v, w). The defining equa-
tion becomes

uby P+ 14+ 03 +uwd+....=0.
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1
SoU; has the quotient singularity of typze(l, 1, 1). The invariant 2-formly? A
dz onUgp becomes

2 1 3
dy /\dyv=§dy Adv,

which has no zero locus.

One checks thafy? A dz does not have zero locus @, Us. The same
process is applied tdy? A dt to show that it has one point as its zero locus,
which is the singular point otyy. O

The combination of 3.4 and 3.7 yields

Corollary 3.8. If (Y, P) is of type (1.1) with- > 2, or type (4.a), then for any
resolutionX, there are exceptional divisors; and E, with discrepancies less
than 1 such that there are two 2-forms which are linearly independent éver
and their pull backs oX do not containE; as their zero loci. The pull back of
any 2-form onX haskEj in its zero locus.

Proof. The first claim is clear from 3.4 and 3.7. For the second claim, we
perform weighted blow up at the singular point with certain weights where the
pull backs of the 2-forms vanish after the first weighted blow up. This produces

2 (2
an exceptional divisoE, with discrepancy- <§) for type (1.1) (type (4.2)).
r
All pull back 2-forms vanish oiE,. 0O
As for singularities of other types, we have

Lemma 3.9. AssumgY, P) is not one of quotient type, type (1.1), type (4.a) .
Then there exists a partial resolution: (X, E) — (Y, P) with E having the
minimal discrepancy such that there is at most one (up to linear dependency over
P) 2-formw, 7'[*(0))|E #+ 0.

Proof. This is a case by case checking using the explicit weighted blowups
by Kawamata as described in [Ka2]. We work out only the case whéof

type (1) withk = order ofg bigger than 1. Kawamata’s blow up uses weight

kr —a 1 . .
C—l, d a,—,l . The resultingX is covered by four open set®, Us, Uy, Us.
r r r

It is realized by

Ax P35 Blo(A) "L At LB =5 V(F) S (Y, P) C CYG.

« is the quotient maps homogenizes the action 6f = 7, =< o >:

Blx,y,z,8) = (% Y 72, t7), 0 (x, ¥, 2, 1) = (E:x, &Y, &2, &1).

B isthe quotient oA under groupG; =< 01 > xGy =< 02 > XG4 =< 04 >
action via

01(x7 Y, 2, t) = (Eaxv Y, Z, l‘),O’z()C, Y, Z, t) = (x’skr—ay’ <, t),
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o4(x,y,z, 1) =(x,y,2,§1).

Let[Zo, Z1, Z», Z3] be the coordinates &°. Uy is the hyperquotient of* with
coordinatesx”, u*" =%, v, w") underG, action:

O’]_()Cr, ukr—a’ v, wr) — (%.t;xr’ sg—krukr—a, %.a—lv’ Ea—rwr)

. . Z Z
and the defining equation® —* 4 g(x"v", x’w’)x" whereu = Z_l v = Z_2
0 0
Z3
andw = Zo Uy is a quotient ofC® of type (r 1, —r). The nonzero 2-form

represented byx A dy (dx* A dy*—“ on A) onUpis
dx* Ad(xu) = = ") Vax" A dut .

whenk > 1, the 2-form vanishes ori = 0, which defines the exceptional locus
in the corresponding open subsets

So after all we have

Proposition 3.10. Quotient singularities, type (1.1) with= 2 are the only types
of terminal singularities with indices bigger tharnwhich admit a resolution such
that there are two linearly independent 2-forms on each exceptional digisor
with discrepency less thdh

Remark. The above analysis should be compared with what may happen with
index decreasing extremal contractions. The simplest example is to blow up a
smooth pointP € X to get ak, ~ P? ¢ X1 with normal bundle?(—1). Then
we blow up a line inE; to getF, U F, C X, where F; = P? is the proper
transform ofE; with normal bundle?(—2). Y is obtained fromX, by blowing
down F;. Let w be a 2-form non zero ak. The pullback ofw on X, vanishes
on bothF; and F>, which corresponds to a 2-form dghvanishing on the proper
transform ofF,.

We end this section with the following observation. Given a smooth threefold
X with nontrivial global holomorphic 2-forms. A smooth threefdidbirational
equivalent toX is called “simpler” thanX if

Max{number of isolated points i@ (9), 6 € H°(X, £22 1<

Max{number of isolated points i (9), 6 € H(X', £22,}.

An interesting question to be answered is that how one predicts the maximum of
the number of isolated points in the zero locus for a global holomorphic 2-form
on a "simplest” model and how two such models are related. For examyle if
and X’ are birational equivalent and have corresponding 2-fasms’ with the

same number of isolated zeros (counting multiplicities), is it true Xhahd X’

are isomorphic in codimension 1? Our calculation seemed to suggest Hat if
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admits a global 2-form with isolated (nondegenerate) zeros, then the number of
singularities on a minimal model should be bounded from above by, in terms of
Chern classes,

€3 — €12,
which isc3(£22). This kind of result is related to that in [Mi]. We plan to discuss
it in the future.

4 Zero locus under a flip

In this section we study restriction of types of singularities which appear after
a flip under the assumption that the degenerating locus of global holomorphic
2-forms is of dimension bounded from above by 126n

Let¢ : X — Y be a small extremal contraction. Let: (X, C) — (Y, P)
be a corresponding extremal neighborhood. We plan to study the structure of a
flip when the locally invariant 2-forms coming from those global forms around
each singular point ok alongC generate a rank 2 sheaf with no degenerating
locus.

Letot : (X+,CT) — (¥, P) be the flipped neighborhood. First we have

Lemma 4.1. AssumeX™ has a terminal singularityD* of indexr* > 1 along
C™. Letw be a locally invariant 2-form which is not zero at the singularities of

1

X alongC. Assume the singularities &f along C are of types-(a, —a, 1), or
r

type (1.1) with inde®, or index 1. Them™ is not zero atQ*.

Proof. Let
X
A
(X,C) --» (X*,CH

be acommonresolution of singularitieg&f, C) and(X*, C*) which dominates
the resolution of singularities @, C) constructed in 3.5.
The fact thatk y+ is ample along” " implies that onX we have

Ky =g"Kx+ + ZaiEi

with ¢; > 0 andE; exceptionala; > O if f(E;) C C.
Now there is a£ on X such thag(E) = Q" and
K3 = g"Kx+ + aE + others
where O< a < 1. This implies that

Ky = f*Kx + bE + others
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withO < b <a < 1. SOf(E) = Q whereQ is a singular point o alongC
of index larger than 1.

As in 3.5,&, the pull back ot on X, is not zero orE since the discrepancy
of E is less than 1. This says that is not zero ap™. O

As a consequence of the previous result we have

Theorem 4.2. Notations as before. Assume there are global locally invariant
2-forms which generate a rank two sheaf whose degenerating locus does not
contain singularities ofX along C. Suppos&X, C) has singularities along”

1
of types—(a, —a, 1) with |a| = 1, or type (1.1) with inde®, or index1. Then
r

1

(X, C*) has singularities of types(a, —a, 1) with |a| = 1, or type (1.1) with
r

index2, or index1 alongC™.

Proof. Pick two locally invariant 2-forms,, w, which generate a rank 2 sheaf
and are not zero at the singularities¥ofllongC. Let 9 be a singularity o *
alongC*. Then the corresponding 2-formag , w3 on X* can not be zero a@*

if the index of O is bigger than 1 by lemma 4.1. Moreover in any resolution of
O™, the pull backs of these 2-forms do not vanish on exceptional divisors whose
discrepancies are less than 1 by the proof of 4.1. According to the classification
done in 3.100" must be of desired type.O

5 Riemann-Roch revisited

Let us first recall Reid’s Riemann-Roch formula as described in [F] and [R].
Some of the intermediate formulas are needed later.

Let X be a threefold with terminal singularities of tyée{a, —a, 1) (same
as that of}(l, —1, b) for ab = 1mod r). Let, be a primitiven-th root of unity

and define .

_ &'
oem= ; (I—EDL— g0) (L &)

for the singularity Q. Then

—Dn2n -1 *Kyx - co(Y

X (Oxnky) = "IN D ks 10y + R D)
1

*) +Zg(6(Q,n)—a(Q,0)),

)

wherer : Y — X is aresolution of singularities.
Since
n—1 2

- - ~1
5(Q.n) =Y bok(rg — bok) + er4 (1— 27),
k=1
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here? means ? modulg,, we have

= - 2 4
0(Q.m) —a(0.0) = ;ka(rQ — kbo) — le .

By a result of Kawamata, we know that

r2 —1
7Ky - coY) = ) £ — 24(Ox).

0 0
We have also
rQ rQ 1
S ( -1
> “kbg(rg — kbg) = Z k(rg —k) = —2——

k=1

Now putting everything together, we have

—Dn2n -1
K (O@Ky) = )'1(2 ) K3 4 (1= 20)x(Ox)
iy i kby(ro — ka)
0 k=1 27‘Q

If we further assume that is minimal and of general type&K x is both nef
and big. As a consequence we have the vanishirg 6@ (n K x)) fori > 1 and
n > 2. So one can describe the plurigenus by the Riemann-Roch formula. That
isforn > 2

P(n) : = h°nkKy)

_(n—=Dn(2n -1
B 12

ka(VQ - ka)

K3 +@1- 2n)X(OX)+ZZ 24

0 k=1

If we define

we have the following

Lemmab5.1. Assume thatP(n) = O, forn = 2,3,..., N. ThenS, can be

written as

-2 2
(*%) S, = %(53 — )+ S

forn=2,3,...,N — 1.
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Proof. SinceP(n) =0,forn =2,3,... N, lettingQ,, be P(n + 1) — P(n), we
get

2
0, ="K}~ 2x(00) +5,=0 for n=2...N-1

Repeat the step fap,,, we have

on—1
Qn—Qn_lznTngJrSn—sn_l:o for n=3..N-L1

Thus one gets

S, — S,_ S3 —
—1 = const= 3 S2
2n—1

forn=3,..,N — 1.
The Lemma follows by taking sum of the above expressions fron:3 ta

1
Now for our purpose we assume that each singuladity of type— (1, —1,
r

[0
1), we definex (k) such thatry (k) is the positive integer which satisfies

(agk) + Dro > k > ag(k)rg,

then
k(ro — k) (k —ag(k)ro)(ro —k + ag(k)rg)
S = —_— = ,
k Z 27’Q Z ZI’Q
0 0
and also
k —2)(k +2) k? —4 k*(rg —5) + 6rg
Sp= —————(S3— 8§ Sy = N ,
k 5 (S3—82) + 52 50 Ne rQZ>3 10r

whose first few terms are
kK> —4 18 — 2k? 24 — k?

— N N, N
20 "2t T3 et o M
+3N+k2+36N+2k2+42N+
5° 60 ° 70 T

whereN; is the number of singularities with= i in the Riemann-Roch formula.
Equating these two expressions$fwe have, by letting = 4,5, 6, 7, 8, 9,
10,11, 12, 13, a sequence of 10 equations:

4N3—N4=3N2+ZN,‘

i>5
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7A@'+’2AM,:=4Ab'+-3ZZ:)%
i>5

9N3+4N4:8N2+N5+GZN,~

i>6

3N3+ N4y = 2Ns + Ng %—222{: N;

i>7

4N3+N4:3N2+N6+2N7+3ZN1'

i>8
24N3 + 9N, = 18NQ—Ffﬁ3+—6A%-+—11AH-+—16A@-+—212£:f%
i>9
32N3 + 12N, = 24N, + 3Ns + 8Ng + 13N7 + 18Ng + 23Ng + 282 N;

i>10

39N3+ 14N, = 28N2+N5+11N6+16N7+21N8+26Ng+31N10+362 N,
i>11

9N3 + 3N4 = 7Ny 4+ 3Ng + 4N7 + 5Ng + 6Ng + TN1g+ 8N11 + 9 Z N;
i>12

11N3+4Ny = 8N3+2Ne+5N7+6Ng+7Ng+8N10+9N11+10N1,+11) ~ N,
i>13
in which the coefficients oiV; repeat after certain
From the first 5 equations we obtain the following information:
N3 = Ng= N5 = Ny

and
Ny = Ng =0,

N3 = ZNi.

i>8

Jointly with next three equations, one gets

and

Ng = Ng = N1p=0.
The 9-th equation provides
Ni1=N3, N; =0
fori > 12. The last equation says
N3 = 10N12 + 11Nz + 11Ny + ... = 0.

Thus we have
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Theorem 5.2. Let X be a smooth threefold of general type whose minimal model
1

has singularities of type (1, —1, 1) afterQQ smoothing as in [R] for > 2. Then
r

there is anN < 14 such thatP(N) > 1.

Proof. Ifthereis ak < 14 such tha®P (k) > 1, we are done. Otherwise the above
analysis implies that there are no singularities of indices bigger than 1. When
that is so,X is invertible. P (n) is a polynomial of degree 3 im by formula (*).
Thereisa < 5suchthatP(s) > 1. O

Indeed our numerical analysis provides us more information from Reid’s
Riemann-Roch formula.

Corollary 5.3. Notations as in 5.2. There is a such thatP(N;) > 2.

Proof. By assumingP(n) = 0 or 1 forn = 2, 3, ..., 14 and replacing in (**)

Sk by S; = Sk + & wheres, = —1, or O, or 1, the above analysis shows that
the number of singularities is bounded from above. The only thing one needs to
be careful is that instead of obtaining equalities betwEgn one gets equalities
involve certain constants which are bounded from above. The relation

N3 =C1+ 10N12 + 11IN13+ 1IN1s + ... = Cy,

whereC; are bounded, says the total number of singularities is bounded from
above.

As done in Sect.5 of [L1], by putting contributions from singularities of
indices 2 to the right hand sides, we have fré®2) and Q,:

13-1) _, 14— 1(5 — 1)
6 8  ° 10
23— 2) 24-2)  25-2)

2K3 — 2x(Ox) = N — N, =Py,
x — 2x(Ox) 35 - 5710 2

where| F;| are constants bounded from above. They imply

1
~K3¥ —3x(Ox) — N3

v = F,
> 1

1 N3 Ny Ns
SK3 3y (Oy) — 3 _ 405
2 Kx =3O =F =5~ 75 1
Ns Ns Ns
2K3 — 24 (Oy) — 42 _ a2 _ 225 _FL
x = 2x(Ox) =45 8 10 ’

where| F/| are bounded from above since the number of singularities is bounded.
From these equations we obtain

10x (Ox) = F; — 4F,

which implies thaty (Ox) is bounded from above. Theorem 5.1 in [L1] then
claims that there is aiV; with P(N1) > 2. 0O

An immediate consequence is
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Theorem 5.4. Let X be a smooth threefold of general type whose minimal model
. " 1 . .
has singularities of type (1, —1, 1) afterQQ smoothing as in [R] for > 2. Then
r
there is a universalN such thatNV K x defines a birational map from.

Proof. By Corollary 5.3 there is a universal; such thatP (N;) > 2. A result
of Kollar [Kol] says ifN = 11N; 4+ 5, NK defines birational map. O

6 An application to plurigenera

Let X be a smooth projective threefold afiche subsheaf af22 generated by
global 2-forms . Our main theorem in this section is

Theorem 6.1. AssumeX is of general typeks?(0) > 2 and the degenerating
locus of€ is of dimension bounded from above by 1. Then there is a univsrsal
such thatV K defines a birational map frorx.

Proof. We run minimal model program oX. In the process of doing divisorial
extremal contractions and flips, terminal singularities may appear. When a sin-
gularity is not of index 1, we argue that the singularities have to be among types
—(a, —a, 1) with |a| = 1, or type (1.1) with index 2 and there are two locally
.
invariant 2-forms nonzero and linearly independent at each singularity. This is
proved inductively with the first step being obvious.

By results in Sect. 3, when a singulariByis a result of a divisor to point
extremal contractiory; : (X;, E;) — (X;.1, P), the bound on the dimension

. - 1 .
of degenerating locus assures that it is of type, —a, 1) with |a| = 1, type
r

(1) with |a| = 1 or exceptional. We claim that the singularity must be of type

—(a, —a, 1) with |a| = 1, or type (1.1) with index 2. For otherwise we consider
.
a common resolution:

X
ay NP
(X;, Ep) (X', E)
i L&
(Xit1, P)

whereg; is the partial resolution constructed in 3.9. By inductinhas only
those specified singularities. This implies thatfon X exceptional ovek;

with discrepancy less than ¢f; o )" (w;) ; # O for j = 1, 2, wherew;, w; are
two nonzero 2-forms aroun# linearly independent oveP by 3.7. But this is
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against the conclusion of 3.9 consideriag o 8)*(w;) when they are restricted
on the proper transform @&’ on X.

The same argument is applied to the divisorial contraction situation
(X;, E;) — (X;41, C) where a divisor is contracted to a cu@elet P € C be
a terminal singularity of index bigger than X; has to have a singularit@ on
E; of index bigger than 1. By inductiop is of the desired type and there are
two nonzero locally invariant 2-forms linearly independenfatNow argue as
in the previous case, we see tlRamust be of desired type.

Now let¢; : (X;, C;) --» (X;7, C;") be aflip. 4.2 says that a singularity (of
index bigger than 1) ok alongC;" must be of the desired type.

As a conclusion we see that singularities occur on a minimal moggh are

. . 1 : - .
either ofindex 1, oF-(a, —a, 1) with |a| = 1, or type (1.1) with index 2, or index

"
1. Using notations from Sect.5, we may assume the singularities contributing
to the plurigenus formula are all of tydgl, —1,1). Theorem 5.4 gives us the
desired conclusion. O

We construct an example of a (regular) threefold with the required conditions:

Example 6.2.Let S be a smooth (regular) projective surface wift($22) > 2.

Let X C S x S be a general hypersurface section. Using a result of Lefschetz
we see thatX is (regular) and there is an isomorphism betwdgh X, 22)

and H(S x S, 22 ), which is generated by the pull backs of 2-forms$n
through the two projections. So the 2-forms ¥rgenerate a shedfof rank 2.
Moreover the degenerating locus&has dimension bounded from above by 1

if the canonical system ofi has only isolated base points.

Examples of a (regulary with #2(0) > 2 and type (1) singularities with
arbitrarily high indices may be obtained by modifying an example of Reid in
[RI:

Example 6.3.Let V be a smooth (regular) threefold witt(©) > 2. Consider
the productV x P with an order cyclic groupG action

g(x, [0, 21, 22, 23]) = (%, [20, & 21, £ 22, &-23]),

wheret is ar-th primitive root of 1. Letr = V xP%/G. Let X be an intersection

of three general hypersurface sectiokiss a (regular) threefold of general type
with quotient terminal singularities of the same ty%)a, —1,1). The global
2-forms onV are invariant under the group action, hence can be view as global
locally invariant 2-forms onX. Let X’ be the economical resolution of those
guotient singularities oX. X’ is a smooth threefold of general type with those
singularities on its minimal models. Moreover, if the 2-forms¥orgenerate a
rank two vector bundle, the 2-forms off generate a rank two sheaf whose
degenerating locus is of dimension bounded from above by O.
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