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Abstract. The change of zero locus of a global holomorphic 2-form on a threefold under birational
transformations is investigated. It is proved that existence of 2-forms with certain conditions on
their zero loci on a threefold of nonnegative Kodaira dimension limits types of terminal singularities
appearing on its minimal models.As a result of the restriction on the types of terminal singularities
and Reid’s Riemann-Roch formula, a universal boundN is found such that the linear systemNK

defines a birational map from a threefold of general type admitting those 2-forms, whereK is the
canonical bundle of the threefold.
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1 Introduction

Let X be a complex projective manifold of dimensionn with some nontrivial
global holomorphic forms, i.e; there is 0�= ω ∈ H 0(X,Ω

p

X) for somep ≥ 1.
It is known that the dimension of all global holomorphic formsh0(X,Ω

p

X) =
hp(X,OX) is a birational invariant. Furthermore ifX′ is another complex pro-
jective manifold which is birational toX, anω ∈ H 0(X,Ω

p

X) corresponds to a
uniqueω′ ∈ H 0(X′,Ωp

X′). LetZ(ω) be the zero locus ofω. We are interested in
the following general question:

Question 1.1.How doesZ(ω) change under birational transformations?
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The question is trivial forn = 1. Whenn = 2, two birationally equivalent
algebraic surfaces are connected by a sequence of blowing ups(downs) of points
((-1 ) curves). So it is sufficient to understand the change ofZ(ω) after one such
operation. Letπ : (X,E)→ (Y, P ) be a blow up at a smooth pointP andE the
exceptional curve. Then locallyZ(π∗(ω)) = E for a 2-form andZ(π∗(ω)) = E

or Z(π∗(ω)) = Q ∈ E for a 1-form depending on whetherP ∈ Z(ω).
The situation is more involved in dimension 3. It is easy to see that blowing

up a point onX creates a two dimensional zero locus for the pull backs of the
2-forms while blowing up a smooth curve creates at least one dimensional zero
locus. A some what interesting phenomenon is that one never creates isolated
point as zero locus for pull backs of the 2-forms by simply blowing up along
smooth centers.

Let us assume that the Kodaira dimension ofX is nonnegative. It is now well
known after the completion of Mori’s program that to get to a minimal model of
X one needs to perform a sequence of birational transformations which are called
extremal contractions and flips. Two minimal models are connected by flops. So
our question of understanding the changes ofZ(ω) could be interpreted as that of
understanding the changes ofZ(ω) after those “elementary” ones.An unpleasant
feature of doing extremal contractions and flips is that one gets into the category
of singular varieties. More precisely we have to deal with threefolds with terminal
singularities, which are isolated and are of quotient (or hyperquotient) ofC3 (or
someV (F) ⊂ C4) by a cyclic groupG.

Our study is primarily motivated by the following open problem on pluri-
canonical systems in dimension bigger than 2:

Problem 1.2.LetX be a threefold of general type, i.e; a smooth projective variety
of dimension 3 overC whose Kodaira dimension is also 3.

Find a universalN such that|NK| defines a birational map fromX.

In [L1] we have considered the subsheafE generated by global 2-forms in
Ω2

X and used it to construct maps fromX. Using the properties of those maps,
we are able to construct sections in pluricanonical systems onX, hence giving
answer to the problem in the cases when the rank ofE is 1 or 3.

We also investigated the case when the rank ofE is 2 in [L2], where some
partial results are obtained. However as pointed out there, it is not know whether
1.2 has an affirmative answer even in the case whenE is a rank 2 vector bundle.

It should be pointed out that problem 1.2 has an affirmative answer for ir-
regular threefolds of general type thanks to the work of [Ko1], for threefolds
having minimal models over which the canonical sheaves are invertible [EL].
From another point of view for threefolds of nonnegative Kodaira dimension,
one may ask whether there is aN such that the linear system|NK| has a non-
trivial member. The existence of such a bound is given for casesκ(X) = 0,1,2
by Kawamata, Mori, and Koll´ar respectively in [Ka1],[Mr3],and [Ko2].
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Assume now that the rank ofE is 2.

Definition 1.3. The degenerating locusD(E) ofE is the closed subset ofX such
that< ω|x, ω ∈ H 0(X,Ω2

X) > is a vector space of dimension less than or equal
to 1 for anyx ∈ D(E).

Obviously dimD(E) could be 0, 1, 2 because of the rank 2 assumption.
Based on the understanding of changes of zero locus of a global 2-form after

extremal divisorial contractions and flips, we are able to show

Theorem 6.1. LetX be a smooth complex projective threefold of general type.
Assumeh2(X,OX) ≥ 2 and dimD(E) ≤ 1. Then there is a universalN such
thatNKX defines a birational map fromX.

Hence whenX has enough global holomorphic 2-forms such that they gen-
erate a rank 2 vector bundle, problem 1.2 has an affirmative answer. We hope a
generalization of our methods will allow us to treat the case when dimD(E) = 2
at least in terms of number of 2 dimensional irreducible components inD(E)
and vanishing orders of 2-forms on each component.

The proof of Theorem 6.1 also rests upon the following result obtained purely
from analysis of contributions of singularities in Riemann-Roch formula.

Theorem 5.3. LetX be a smooth threefold of general type whose minimal model

has singularities of type
1

r
(1,−1,1) afterQ smoothing as in [R] forr ≥ 2. Then

there is a universalN such thatNKX defines a birational map fromX.

Our study is also motivated by a result in an earlier version of a paper by
F. Campana and T. Peternell [CP] which says that if a threefold has a global
holomorphic 2-form with isolated points as its zero locus, then the canonical
bundleK must be nef.

Indeed we have a counterexample to the above claim. However the following
result is true and the example shows that the conditions given are sharp.

Theorem 2.2. Let X be a smooth threefold ofκ(X) ≥ 0 with h0(X,Ω2
X) =

h2(X,OX) = l ≥ 4. Assume that there is subspaceV ⊂ H 0(X,Ω2
X) of dimen-

sion 4 and dimension ofZ(ω) is bounded from above by 1 for0 �= ω ∈ V . Then
X has a smooth minimal model.

Our study is guided by the principle that the existence of nontrivial global
holomorphic forms on a threefold should reflect certain properties on its min-
imal models. For example at the moment we have very little knowledge about
what kind of combination of terminal singularities may appear on a minimal
model, despite of quite extensive understanding of birational transformations in
dimension 3. Indeed our study shows that the conditions put on the global 2-
forms limit the types of singularities appearing in the process going to a minimal
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model. We hope that our study will shed some light on determining the “basket”
of singularities on a minimal model via geometric global constraints.

There is also a fundamental question regarding the existence (and its structure)
of zero locus of holomorphic forms on a threefold of general type. For example
[Z] shows a global 1-form has nontrivial zero locus when the canonical bundle
is ample. In [LZ] we will show that any globali-form, 1≤ i ≤ 3, has nontrivial
zero locus on a threefold of general type.

More precisely the paper is organized as following:
In Sect.2 we discuss the change of zero locus of 2-forms on a smooth threefold

under divisorial extremal contractions which result in a smooth minimal model.
Theorem 2.2 is proved.

In Sect.3 we identify global 2-forms on a threefold with terminal singularities
aslocally invariant2-forms which come from the corresponding cyclic covers
locally around the singularities and study the change of zero locus under special
resolutions. Special (partial) resolutions are constructed for certain types of ter-
minal singularities over which a 2-form nonzero at the singularity corresponds to
a 2-form with only isolated points in its zero locus along the exceptional locus.

In Sect.4 change of zero locus of locally invariant 2-forms under a flip is
considered, with an assumption that the dimension of degenerating locus ofE
is bounded from above by 1. Indeed we predict the types of singularities in the
flipped neighborhood when the types of singularities in the flipping neighborhood
are restricted.

Reid’s Riemann-Roch formula is investigated in Sect.5 when the types of

contributing singularities are of types
1

r
(1,−1,1). We obtain a universalN ,

independent of indices and number of singularities, such that the linear system
|NK| has at least two nontrivial elements. Theorem 5.4 is proved.

Finally combining results in sections 3, 4, and 5, Theorem 6.1 is proved in
Sect.6 based on the fact that our assumption on the global holomorphic 2-forms
imply that types of terminal singularities on a minimal model are limited (even
though the number of them and their indices are not limited). Examples are
discussed.

Acknowledgements.The author would like to thank T. Peternell for sending the revised version
of [CP]. The comments of J. Koll´ar, T. Peternell, and V. Shokurov are greatly appreciated. The
remarks from the referee are very helpful in improving the presentation of the paper. Partial support
was provided by a grant from National Security Agency.
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2 The smooth case

We begin with a lemma describing the zero locus of twisted 1-forms onP2.

Lemma 2.1. The vector spaceH 0(P2,ΩP2(2)) has dimension 3.Z(θ) is a point
for 0 �= θ ∈ H 0(P2,ΩP2(2)).

Proof. The result about the dimension is well known. LetU0, U1, U2 be the
standard covering ofP2 with homogeneous coordinates[z0, z1, z2]. It is easy to
list three independent sectionsθ1, θ2, θ3 in H 0(P2,ΩP2(2)):

OnU0:

θ1 = z2
0d(

z1

z0
), θ2 = −z0z2d(

z1

z0
)+ z0z1d(

z2

z0
), θ3 = z2

0d(
z2

z0
),

OnU1:

θ1 = −z2
1d(

z0

z1
), θ2 = z2

1d(
z2

z1
), θ3 = −z1z2d(

z0

z1
)+ z0z1d(

z2

z1
),

OnU2:

θ1 = −z1z2d(
z0

z2
)+ z0z2d(

z1

z2
), θ2 = −z2

2d(
z1

z2
), θ3 = −z2

2d(
z0

z2
).

The conclusion onZ(θ) is now clear. ��
The following result tells us when one can expect smooth minimal model by

looking at the zero locus of global 2-forms.

Theorem 2.2. LetX be a smooth threefold ofκ(X) ≥ 0. Assume thath0(X,Ω2
X)= h2(X,OX) = l ≥ 4. Assume that there is subspaceV ⊂ H 0(X,Ω2

X) of
dimension 4 and dimension ofZ(ω) is bounded from above by 1 for0 �= ω ∈ V .
ThenX has a smooth minimal model.

Proof. If KX is nef, there is nothing to prove.
AssumeKX is not nef. Letf : X → Y be an extremal contraction. Mori

[Mr1] says thatf is divisorial with the exceptional divisorP2 with normal bundle
O(−1) or O(−2) , P1×P1 with normal bundleO(−1)⊗O(−1), a coneE over
rational normal curve of degree 2 with normal bundleO(−1), aP1-bundle over
a smooth curve. The last case is the only one in which a divisor is contracted to
a curve.

We will show that under the assumption of the theorem, divisor to curve is
the only possible case that could happen. This is achieved through a case by case
analysis.

Let E be the exceptional divisor of the contraction. One has

0→ TE → TX → NE/X → 0,
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whose dual is
0→ N∗E/X → ΩX → ΩE → 0.

Taking wedge product one has

0→ N∗E/X ⊗ΩE → Ω2
X → Ω2

E → 0.

It is left as an exercise to check that whenE � P2 with normal bundleO(−1),
E � P1×P1 with normal bundleO(−1)⊗O(−1), andE � a singular quadric
surface inP3 with normal bundleOE ⊗ OP3(−1), one always haveE ⊂ Z(ω)

for everyω ∈ H 0(X,Ω2
X). This is impossible because of the existence ofV .

WhenE � P2 with normal bundleO(−2), one has

h0(P2,ΩP2(2)) = 3, h0(P2,ΩP2) = 0.

HenceH 0(P2,Ω2
X) is a three dimensional vector space, identified withH 0(P2,

ΩP2(2)) when restricting onE by Lemma 2.1.
Considering the restriction mapρ : H 0(X,Ω2

X) → H 0(P2,Ω2
X) on the

subspaceV , there is a 0�= ω ∈ H 0(X,Ω2
X) such thatE ⊂ Z(ω), which is

impossible by our assumption.
Whenf contracts a divisor to a curve, Y is again a smooth threefold of non-

negative Kodaira dimension. In this case, the 2-forms onX are the pullbacks of
those onY . So we have onY a subspaceV ′ ⊂ H 0(Y,Ω2

Y ) such that the dimension
of Z(ω′) is bounded from above by 1 for every nonzeroω′ ∈ H 0(Y,Ω2

Y ). We
may repeat the process whenKY is not nef. Since divisorial contraction reduces
Picard number, after finitely many steps a smooth threefold of the same Kodaira
dimension with nef canonical bundle is reached. ThusX has a smooth minimal
model. ��
Remark. The proof of Theorem 2.2 follows closely to that of a statement by
Campana and Peternell (an earlier version of Theorem 3.3 in [CP]) which says

Claim 2.3. LetX be a projective threefold andω a 2-form onX with finite zero
setZ(ω).

(1) Assumeκ(X) = −∞. ThenX is aP1-bundle over a K3-surface or a torus
andω is a pull back.

(2) If κ(X) ≥ 0, thenKX is nef.

The following example was used in [L1] for a different purpose. It actually
provide us a counterexample to the claim. The example also demonstrates that
the conditions in the previous theorem are effectively sharp.

Example 2.4.LetC be an elliptic curve with an involutionτ . LetY = C×C×
C/τ , where the action is defined asτ(x, y, z) = (τx, τy, τz). Y is a threefold
with index 2 terminal singularities (43 of them). LetX be the blowup of all the
singular points.X is of Kodaira dimension 0 and not minimal. YetX has three
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linearly (actually polynomially) independent 2-forms with isolated points (on
the exceptional divisors) as their zero locus by Lemma 2.1.

The claim on the zero locus can also be checked by a local computation. We
work this out in detail since it serves as the starting point of what we do next in
Sect.3.

Locally around each singularityQ of Y , the action ofτ is simply

(τx, τy, τz) = (−x,−y,−z),
whereQ is the image of(0,0,0). The affine coordinate ring isC[u0, u1, u2, v0,

v1, v2]/I , whereI is generated byu0u1 = v2
0, u1u2 = v2

1, u0u2 = v2
2. The

blow up of the origin atC6 resolve the singularity with the exceptional locus
P2 ⊂ W = BlO(V (I)) ⊂ C6 × P5. The invariant 2-formdy ∧ dz is written as
du1 ∧ du2

2v1
. On the open setZ0 �= 0,

du1 ∧ du2

2v1
= tdu0 ∧ ds + sdt ∧ du0+ u0dt ∧ ds,

whereu1 = u0t
2, u2 = u0s

2, which has one point as its zero locus whiledx∧dy

anddz∧dx have no zero locus on this open set. This way we see that the invariant
2-formsdx∧dy, dy∧dz, dz∧dx correspond to three 2-forms on the resolution
having exactly one point in the exceptionalP2 as their zero locus.

Remark. If one takes a hyperelliptic curveC and does the same construction,
there are two dimensional components in the zero loci of 2-forms considered
above. However it is easy to check that a general 2-form has only isolated points
in its zero locus.

Combining the proof of the above theorem and the rank 2 condition on the
global 2-forms, we have

Corollary 2.5. LetX be a threefold ofκ(X) ≥ 0 andh0(X,Ω2
X) ≥ 4. Assume

that there is a subspaceV ⊂ H 0(X,Ω2
X) of dimension 4 such that it generates

a rank 2 subsheaf ofΩ2
X and any two linearly independent members ofV do not

share dimension 2 zero locus. ThenX has a smooth minimal model.

Proof. As in the proof of theorem 2.2 whenKX is not nef, we need to show
contraction ofP2 with normal bundleO(−2) is impossible.

Let f : X→ Y be such a contraction andE be the exceptional divisor. It is
shown thatH 0(E,Ω2

X) � H 0(E,ΩE(2)), a three dimensional vector space in
which any non-zero member has one point as its zero locus inE according to
Lemma 2.1. Now let

ρ : H 0(X,Ω2
X)→ H 0(E,ΩE(2))

be the restriction map composed with the above identification. LetρV be the
restriction ofρ on V . We see that the image ofρV has at most dimension 2
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because the members ofH 0(X,Ω2
X) generate a rank 2 subsheaf. This implies

that the kernel ofρV is at least of dimension 2. Letω1, ω2 ∈ ker(ρV ) and be
linearly independent. ClearlyE ⊂ Z(ω1)∩Z(ω2) which is a contradiction. ��

Benveniste [B] showed that whenX is a smooth threefold of general type
with KX nef, 8KX defines a birational map. Hence our results imply

Corollary 2.6. LetX be a threefold of general type withh0(X,Ω2
X) ≥ 4.Assume

that there is subspaceV ⊂ H 0(X,Ω2
X) of dimension 4 such that one of the

following is satisfied;

(1) Dimension ofZ(θ) is bounded from above by 1 for0 �= θ ∈ V .
(2) V generates a rank 2 subsheaf ofΩ2

X and any two linearly independent
members ofV do not share dimension 2 zero locus.

Then8KX defines a birational map.

3 Zero locus under an extremal contraction

In this section we investigate the changes of zero locus of global 2-forms under
certain extremal contractions. As mentioned before one encounters threefolds
with terminal singularities after contractions. To keep track of changes of zero
loci of global 2-forms it is convienient to identify global holomorphic forms
on the smooth locus of a normal variety with (hyper)quotient singularities as
thoseglobal locally invariantholomorphic forms because of the nature of the
singularities involved. The cumbersome (and misleading as pointed out by the
referee) name comes from the fact that iff : Y → X is a resolution of singu-
larities, on a neighborhoodU around each singularityP of X and for a global
holomorphic formω onY , ω|f−1U−f−1P = ω|U−P , and the latter comes from an
invariant holomorphic form onC3 (or onC4 restricting on a hypersurface). So
one identifies a “global holomorphic" form onX with a holomorphic form on
the non-singular locus ofX patched together with those locally defined on the
covering of each singularity which are invariant under the corresponding group
action.

As explained in the introduction, the primary goal in this section is to identify
those terminal singularities having the property of, under a particular resolution,
admitting two independent 2-forms with isolated zeros on the exceptional di-
visors whose discrepancies are less than 1. This is a crucial step for the later
development.

A three dimensional terminal singularity(Y, P ) of index bigger than 1 has
been classified by Mori (See [R] for details) as either a cyclic quotient ofC3 of

type
1

r
(a,−a,1) with (r, a) = 1 or one of the following hyperquotient singu-

larities, one main series and 5 exceptional ones:
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(1)
1

r
(a,−a,1,0;0) : xy + g(zr, w), whereg ∈ m2, (r, a) = 1

(2)
1

4
(1,1,3,2;2) : xy + z2+ g(w) or x2+ z2+ g(y,w), whereg ∈ m4

(3)
1

2
(0,1,1,1;0) : xy + g(z,w), whereg ∈ m4

(4)
1

3
(0,2,1,1;0) : x2+ y3+ g(z, t), whereg ∈ m3

(5)
1

2
(1,0,1,1;0) : x2+ g(y, z,w)+ h(z,w), whereg ∈ m3, h ∈ m4

(6)
1

2
(1,0,1,1;0) : x2+ y3+ yg(z,w)+ h(z,w), whereg, h ∈ m4

wherem = mP , the maximal ideal ofP .
Indeed the functionsg andh in (4)-(6) can be further specified. It is proved in

[KSB] that every isolated singularity of type among (1)-(6) is actually terminal.
We first recall the main result in [L3], where the concept of index increasing

divisorial contraction is defined and a classification is made.

Proposition 3.1. Assumeπ : (X,E)→ (Y, P ) is an index increasing extremal

divisorial contraction. ThenP is a quotient singularity of type
1

r
(a,−a,1) or

a hyperquotient singularity of type (1) with ord(g) = 1 andπ is the weighted

blow up which gives the coefficient
1

r
for the exceptional divisor inKX.

We want to understand the change of zero locus when pulling back a locally
invariant 2-form aroundP to X. First let us focus on the situation whereP
is a quotient singularity. In this caseπ is the weighted blow up with weight(
a

r
,
r − a

r
,

1

r

)
andX has two singularities of types

1

a
(r,−r,1)and

1

r − a
(−r, r,

1), which are covered by three open setsU0, U1, U2.
More precisely, letα : C3 → (Y, P ) be the quotient map. Letβ : A =

C3 → C3 be the finite map which “homogenizes" the group action, defined by
β(x, y, z) = (xa, yr−a, z). The action ofG =< σ > is then lifted to an action
onA by

σ(x, y, z) = (ξrx, ξry, ξrz)

whereξr is a primitiver-th root of unity. Obviouslydxa ∧ dyr−a, which is the
pull back ofdx ∧ dy to A, is invariant under the group action. The weighted
blow up is realized by blowing up the origin ofA

A× P2 ⊃ BlO(A)
blow up at O→ A = C3 β→C3 α→(Y, P ).

Let [Z0, Z1, Z2] be the coordinates ofP2. On the open set whereZ0 �= 0, The
groupsG = Zr , G1 = Za =< σ1 >, andG2 = Zr−a =< σ2 > act on
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C3 = (x, s, t), wheres = Z1

Z0
andt = Z2

Z0
, by

σ(x, s, t) = (ξrx, s, t), σ2(x, s, t) = (x, ξr−as, t).

So the quotient byG×G2 is aC3 with invariant coordinates(xr, sr−a, t).
U0 is the quotient ofC3 with coordinates(xr, sr−a, t) with G1 =< σ1 >

action

σ1(x
r, sr−a, t) = (ξ r

a x
r, ξ−(r−a)a sr−a, ξ−1

a t).

Using s, t , ω = dxa ∧ dyr−a becomesdxa ∧ dxr−asr−a. If we view ω on U0,
it becomesω = cdxr ∧ dsr−a wherec is a nonzero constant. So it has no zero
locus onU0.

SimilarlyU1 is the quotient ofC3 (the quotient ofC3 = (s, y, t) under action
of G×G1) with coordinates(sa, yr, t) with G2 =< σ2 > action

σ2(s
a, yr, t) = (ξ−ar−as

a, ξ r
r−ay

r, ξ−1
r−at),

where s = Z0

Z1
and t = Z2

Z1
. Using s, t , ω = dxa ∧ dyr−a becomesω =

d(yasa)∧ dyr−a. If we view it onU1, it becomesdsa ∧ dyr . It has no zero locus
onU1.

U2 is actually aC3 with coordinates(sa, t r−a, zr). Using s, t , ω = dxa ∧
dyr−a becomesω = d(zasa) ∧ dzr−at r−a. If we view it on U2, it becomes
zrdza ∧ dtr−a + sadzr ∧ dtr−a + t r−adsa ∧ dzr . It has zero locus at(0,0,0) on
U2.

If a = 1 or r − 1, there is another linearly independent 2-formdyr−1 ∧ dz

(or dxr−1 ∧ dz) which is not zero atP .
Summarizing the computation, we have

Lemma 3.2. Let π : (X,E) → (Y, P ) be an index increasing extremal con-
traction whereP is a quotient terminal singularity. Letω be a 2-form aroundP .
ThenZ(π∗(ω)) containsE if Z(ω) containsP andZ(π∗(ω)) contains exactly
one isolated pointQ aroundE which is smooth onX if ω does not vanish at
P . There are at least two such 2-forms which are linearly independent overP if
and only if|a| = 1 (i.e; a = 1 or r − 1).

Remark.We have seen in Sect.2 that whenr = 2 there are three such 2-forms
nonzero atP .

The hyperquotient case is treated similarly. We discuss type (1) singularity
next. In the process we abuse the notation by identifying locally a 2-formω on
the hypersurfaceV (F) with a restriction of a 2-form from the ambient spaceC4:

0→ N∗V (F)/X ⊗ΩV (F)→ Ω2
C4 → Ω2

V (F)→ 0,
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away from the isolated singular point, whereN∗V (F)/X is the dual of the normal
bundle generated bydF .

Even though this identification is not unique, one checks that it has no effect
on the statement regarding the nature of zero locus ofω.

Definition 3.3. A singularity of type (1) in Mori’s list is called type (1.1) ifa = 1
or r − 1 and the order ofg is 1.

Let (Y, P ) be a terminal singularity of type (1) with order ofg = 1. The
index increasing extremal contraction corresponds to the weighted blow up with

weights

(
a

r
,
r − a

r
,

1

r
,1

)
, which is covered by four open setsU0, U1, U2, U3.

It is realized by

A× P3 ⊃ BlO(A)
blow up at O→ A = C4 β→B = C4 ⊃ V (F)

α→(Y, P ) ⊂ C4/G.

α is the quotient map.β homogenizes the action ofG = Zr =< σ >:

β(x, y, z, t) = (xa, yr−a, z, t r ), σ (x, y, z, t) = (ξrx, ξry, ξrz, ξr t).

B is the quotient ofA under groupG1 =< σ1 > ×G2 =< σ2 > ×G4 =< σ4 >

action via

σ1(x, y, z, t) = (ξax, y, z, t), σ2(x, y, z, t) = (x, ξr−ay, z, t),

σ4(x, y, z, t) = (x, y, z, ξr t).

Let [Z0, Z1, Z2, Z3] be the coordinates ofP3.U0 is the hyperquotient ofC4 with
coordinates(xr, ur−a, v, wr) underG1 action:

σ1(x
r, ur−a, v, wr) = (ξ r

a x
r, ξ a−r

a ur−a, ξ−1
a v, ξ−ra wr)

and the defining equation:ur−a + g(xrvr, xrwr)x−r , whereu = Z1

Z0
, v = Z2

Z0
,

andw = Z3

Z0
. U0 is a quotient ofC3 of type

1

a
(r,−1,−r).

U1 is the hyperquotient ofC4 with coordinates(ua, yr, v, wr) underG2 ac-
tion:

σ2(u
a, yr, v, wr) = (ξ−ar−au

a, ξ r
r−ay

r, ξ−1
r−av, ξ

−r
r−aw

r)

and the defining equation:ua + g(yrvr, yrwr)y−r , whereu = Z0

Z1
, v = Z2

Z1
, and

w = Z3

Z1
. U1 is a quotient ofC3 of type

1

r − a
(r,−1,−r).

U2 is smooth.



718 T. Luo

U3 is the hyperquotient ofC4 with coordinates(ua, vr−a, w, tr) underG4

action:
σ4(u

a, vr−a, w, tr) = (ξ−ar ua, ξa−r
r vr−a, ξ−1

r w, ξ r
r t

r )

and the defining equation:uavr−a + g(trwr, t r )t−r , whereu = Z0

Z3
, v = Z1

Z3
,

andw = Z2

Z3
. U3 is a hyperquotient ofC4 of type

1

r
(−a, a,−1,0).

As before one checks that 2-formdxa ∧ dyr−a does not have zero locus on
U0, U1, U2. It has one point as its zero locus onU3 because

dxa ∧ dyr−a = d(ut)a ∧ d(vt)r−a

= t rdua ∧ dvr−a + c2u
adtr ∧ dvr−a + c3v

r−adua ∧ dtr ,

wherec1, c2 are nonzero scalars. The zero locus is the singular point onU3.
Assumea = 1 (or r − 1). dyr−1 ∧ dz (or dxr−1 ∧ dz) also has the singular

point onU3 as its zero locus.
The discussion leads to

Lemma 3.4. Let π : (X,E) → (Y, P ) be an index increasing extremal con-
traction whereP is of type (1). Letω be a 2-form aroundP . ThenZ(π∗(ω))

containsE if Z(ω) containsP andZ(π∗(ω)) contains an isolated pointQ on
E which is a type (1) terminal singularity onX if ω does not vanish atP . There
are at least two such 2-forms which are linearly independent overP if and only
if P is of type (1.1).

The above analysis shows

Corollary 3.5. Let(Y, P ) be a terminal singularity of quotient type with|a| = 1
or type (1.1) withr = 2. Then for any resolutionX of P andE any exceptional
divisor with discrepancy less than 1, the pull back of any nonzero locally invariant
2-form aroundP does not vanish onE. There are two linearly independent (over
P ) 2-forms nonzero atP whose pull backs onX are nonzero onE.

Proof. One needs only the fact that there is a one-to-one birational correspon-
dence between exceptional divisors of discrepancies less than 1 on two resolu-
tions ofP . ��

For our purpose it is important to identify those terminal singularities with
the similar property as the ones in 3.5.

Definition 3.6. A singularity of type (4) in Mori’s list is called of type (4.a) if
the degree3 homogeneous component ofg is z3+ t3.

Lemma 3.7. Let (Y, P ) be a singularity of type (4.a) andπ : (X,E)→ (Y, P )

be the weighted blow up with weights(1,
2

3
,

1

3
,

1

3
). Then the pull backs of 2-

forms represented bydy ∧ dz, dy ∧ dt have an isolated point in their zero loci
onE and the point is a quotient terminal singularity of index3.
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Proof. The weighted blow up is covered by four open setsU0, U1, U2, U3 and is
realized through

A× P3 ⊃ BlO(A)
blow up at O→ A = C4 β→B = C4 ⊃ V (F)

α→(Y, P ) ⊂ C4/G.

α is the quotient map.β homogenizes the action ofG = Z3 =< σ >:

β(x, y, z, t) = (x3, y2, z, t), σ (x, y, z, t) = (ξ3x, ξ3y, ξ3z, ξ3t).

B is the quotient ofA under groupG1 =< σ1 > ×G2 =< σ2 > action via

σ1(x, y, z, t) = (ξ3x, y, z, t), σ2(x, y, z, t) = (x, ξ3y, z, t).

Let [Z0, Z1, Z2, Z3] be the coordinates ofP3. On the open setZ0 �= 0, the action

of G×G2 on (x, u, v,w), whereu = Z1

Z0
, v = Z2

Z0
, andw = Z3

Z0
, is

σ(x, u, v,w) = (ξ3x, u, v,w), σ2(x, u, v,w) = (x, ξ2u, v,w).

The quotient is aC4 with invariant coordinates(x3, u2, v, w). The defining equa-
tion becomes

x3+ x3(u2)3+ v3+ w3+ .... = 0.

U0 is the quotient of(x3, u2, v, w) under action ofG1:

σ1(x
3, u2, v, w) = (x3, ξ−2

3 u2, ξ−1
3 v, ξ−1

3 w).

SoU0 has the quotient singularity of type
1

3
(1,−1,−1). The invariant 2-form

dy2 ∧ dz onU0 becomes

dx2u2 ∧ dxv = x3du2 ∧ dv + 1

3
u2dx3 ∧ dv + 1

3
vdu2 ∧ dx3,

which has one point as its zero locus. Note that this point is the singular point of
U0.

On the open setZ1 �= 0, the action ofG×G1 on(u, y, v,w), whereu = Z0

Z1
,

v = Z2

Z1
, andw = Z3

Z1
, is

σ(u, y, v,w) = (u, ξ3y, v,w), σ1(u, y, v,w) = (ξ3u, y, v,w).

The quotient is aC4 with invariant coordinates(u3, y3, v, w). The defining equa-
tion becomes

u6y3+ 1+ v3+ w3+ .... = 0.
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SoU1 has the quotient singularity of type
1

2
(1,1,1). The invariant 2-formdy2∧

dz onU0 becomes

dy2 ∧ dyv = 1

3
dy3 ∧ dv,

which has no zero locus.
One checks thatdy2 ∧ dz does not have zero locus onU2, U3. The same

process is applied tody2 ∧ dt to show that it has one point as its zero locus,
which is the singular point onU0. ��

The combination of 3.4 and 3.7 yields

Corollary 3.8. If (Y, P ) is of type (1.1) withr > 2, or type (4.a), then for any
resolutionX, there are exceptional divisorsE1 andE2 with discrepancies less
than1 such that there are two 2-forms which are linearly independent overP

and their pull backs onX do not containE1 as their zero loci. The pull back of
any 2-form onX hasE2 in its zero locus.

Proof. The first claim is clear from 3.4 and 3.7. For the second claim, we
perform weighted blow up at the singular point with certain weights where the
pull backs of the 2-forms vanish after the first weighted blow up. This produces

an exceptional divisorE2 with discrepancy
2

r

(
2

3

)
for type (1.1) (type (4.a)).

All pull back 2-forms vanish onE2. ��
As for singularities of other types, we have

Lemma 3.9. Assume(Y, P ) is not one of quotient type, type (1.1), type (4.a) .
Then there exists a partial resolutionπ : (X,E) → (Y, P ) with E having the
minimal discrepancy such that there is at most one (up to linear dependency over
P ) 2-formω, π∗(ω)|E �= 0.

Proof. This is a case by case checking using the explicit weighted blowups
by Kawamata as described in [Ka2]. We work out only the case whenP is of
type (1) withk = order ofg bigger than 1. Kawamata’s blow up uses weight(
a

r
,
kr − a

r
,

1

r
,1

)
. The resultingX is covered by four open setsU0, U1, U2, U3.

It is realized by

A× P3 ⊃ BlO(A)
blow up at O→ A = C4 β→B = C4 ⊃ V (F)

α→(Y, P ) ⊂ C4/G.

α is the quotient map.β homogenizes the action ofG = Zr =< σ >:

β(x, y, z, t) = (xa, ykr−a, z, t r ), σ (x, y, z, t) = (ξrx, ξry, ξrz, ξr t).

B is the quotient ofA under groupG1 =< σ1 > ×G2 =< σ2 > ×G4 =< σ4 >

action via

σ1(x, y, z, t) = (ξax, y, z, t), σ2(x, y, z, t) = (x, ξkr−ay, z, t),
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σ4(x, y, z, t) = (x, y, z, ξr t).

Let [Z0, Z1, Z2, Z3] be the coordinates ofP3.U0 is the hyperquotient ofC4 with
coordinates(xr, ukr−a, v, wr) underG1 action:

σ1(x
r, ukr−a, v, wr) = (ξ r

a x
r, ξ a−kr

a ukr−a, ξ−1
a v, ξ−ra wr)

and the defining equation:ukr−a + g(xrvr, xrwr)x−r , whereu = Z1

Z0
, v = Z2

Z0
,

andw = Z3

Z0
. U0 is a quotient ofC3 of type

1

a
(r,−1,−r). The nonzero 2-form

represented bydx ∧ dy (dxa ∧ dykr−a onA) onU0 is

dxa ∧ d(xu)kr−a = (xr)(k−1)dxr ∧ dukr−a.

whenk > 1, the 2-form vanishes onxr = 0, which defines the exceptional locus
in the corresponding open subset.��

So after all we have

Proposition 3.10. Quotient singularities, type (1.1) withr = 2are the only types
of terminal singularities with indices bigger than1which admit a resolution such
that there are two linearly independent 2-forms on each exceptional divisorE

with discrepency less than1.

Remark. The above analysis should be compared with what may happen with
index decreasing extremal contractions. The simplest example is to blow up a
smooth pointP ∈ X to get aE1 � P2 ⊂ X1 with normal bundleO(−1). Then
we blow up a line inE1 to getF1 ∪ F2 ⊂ X2 whereF1 = P2 is the proper
transform ofE1 with normal bundleO(−2). Y is obtained fromX2 by blowing
downF1. Let ω be a 2-form non zero atP . The pullback ofω on X2 vanishes
on bothF1 andF2, which corresponds to a 2-form onY vanishing on the proper
transform ofF2.

We end this section with the following observation. Given a smooth threefold
X with nontrivial global holomorphic 2-forms. A smooth threefoldX′ birational
equivalent toX is called “simpler” thanX if

Max{number of isolated points inZ(θ), θ ∈ H 0(X,Ω2
X} <

Max{number of isolated points inZ(θ), θ ∈ H 0(X′,Ω2
X′ }.

An interesting question to be answered is that how one predicts the maximum of
the number of isolated points in the zero locus for a global holomorphic 2-form
on a "simplest" model and how two such models are related. For example ifX

andX′ are birational equivalent and have corresponding 2-formsω, ω′ with the
same number of isolated zeros (counting multiplicities), is it true thatX andX′
are isomorphic in codimension 1? Our calculation seemed to suggest that ifX
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admits a global 2-form with isolated (nondegenerate) zeros, then the number of
singularities on a minimal model should be bounded from above by, in terms of
Chern classes,

c3− c1c2,

which isc3(Ω
2
X). This kind of result is related to that in [Mi]. We plan to discuss

it in the future.

4 Zero locus under a flip

In this section we study restriction of types of singularities which appear after
a flip under the assumption that the degenerating locus of global holomorphic
2-forms is of dimension bounded from above by 1 onX.

Let φ : X → Y be a small extremal contraction. Letφ : (X,C) → (Y, P )

be a corresponding extremal neighborhood. We plan to study the structure of a
flip when the locally invariant 2-forms coming from those global forms around
each singular point ofX alongC generate a rank 2 sheaf with no degenerating
locus.

Let φ+ : (X+, C+)→ (Y, P ) be the flipped neighborhood. First we have

Lemma 4.1. AssumeX+ has a terminal singularityQ+ of indexr+ > 1 along
C+. Letω be a locally invariant 2-form which is not zero at the singularities of

X alongC. Assume the singularities ofX alongC are of types
1

r
(a,−a,1), or

type (1.1) with index2, or index 1. Thenω+ is not zero atQ+.

Proof. Let
X̄

f ↙ ↘ g

(X,C) ��� (X+, C+)
be a common resolution of singularities of(X,C)and(X+, C+)which dominates
the resolution of singularities of(X,C) constructed in 3.5.

The fact thatKX+ is ample alongC+ implies that onX̄ we have

f ∗KX = g∗KX+ +
∑
i

aiEi

with ai ≥ 0 andEi exceptional.ai > 0 if f (Ei) ⊂ C.
Now there is aE on X̄ such thatg(E) = Q+ and

KX̄ = g∗KX+ + aE + others,

where 0< a < 1. This implies that

KX̄ = f ∗KX + bE + others,



Global holomorphic 2-forms and pluricanonical systems on threefolds 723

with 0 < b ≤ a < 1. Sof (E) = Q whereQ is a singular point ofX alongC
of index larger than 1.

As in 3.5,ω̄, the pull back ofω on X̄, is not zero onE since the discrepancy
of E is less than 1. This says thatω+ is not zero atQ+. ��

As a consequence of the previous result we have

Theorem 4.2. Notations as before. Assume there are global locally invariant
2-forms which generate a rank two sheaf whose degenerating locus does not
contain singularities ofX alongC. Suppose(X,C) has singularities alongC

of types
1

r
(a,−a,1) with |a| = 1, or type (1.1) with index2, or index1. Then

(X+, C+) has singularities of types
1

r
(a,−a,1) with |a| = 1, or type (1.1) with

index2, or index1 alongC+.

Proof. Pick two locally invariant 2-formsω1, ω2 which generate a rank 2 sheaf
and are not zero at the singularities ofX alongC. LetQ+ be a singularity ofX+
alongC+. Then the corresponding 2-formsω+1 , ω+2 onX+ can not be zero atQ+
if the index ofQ+ is bigger than 1 by lemma 4.1. Moreover in any resolution of
Q+, the pull backs of these 2-forms do not vanish on exceptional divisors whose
discrepancies are less than 1 by the proof of 4.1. According to the classification
done in 3.10,Q+ must be of desired type.��

5 Riemann-Roch revisited

Let us first recall Reid’s Riemann-Roch formula as described in [F] and [R].
Some of the intermediate formulas are needed later.

Let X be a threefold with terminal singularities of type1
r
(a,−a,1) (same

as that of1
r
(1,−1, b) for ab ≡ 1mod r). Letξr be a primitiven-th root of unity

and define

σ(Q, n) =
r−1∑
k=1

ξnk
r

(1− ξk
r )(1− ξak

r )(1− ξ−akr )

for the singularity Q. Then

χ(OX(nKX)) = (n− 1)n(2n− 1)

12
K3

X + χ(OX)+ nπ∗KX · c2(Y )

12

+
∑
Q

1

rQ
(σ (Q, n)− σ(Q,0)),(*)

whereπ : Y → X is a resolution of singularities.
Since

σ(Q, n) =
n̄−1∑
k=1

bQk(rQ − bQk)+
r2
Q − 1

24
(1− 2n̄),
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here?̄ means ? modulorQ, we have

σ(Q, n)− σ(Q,0) =
n̄−1∑
k=1

kbQ(rQ − kbQ)−
r2
Q − 1

12
n̄.

By a result of Kawamata, we know that

π∗KX · c2(Y ) =
∑
Q

r2
Q − 1

rQ
− 24χ(OX).

We have also

rQ∑
k=1

kbQ(rQ − kbQ) =
rQ−1∑
k=1

k(rQ − k) = rQ(r
2
Q − 1)

6
.

Now putting everything together, we have

χ(O(nKX)) = (n− 1)n(2n− 1)

12
K3

X + (1− 2n)χ(OX)

+
∑
Q

n−1∑
k=1

kbQ(rQ − kbQ)

2rQ
.

If we further assume thatX is minimal and of general type,KX is both nef
and big. As a consequence we have the vanishing ofHi(O(nKX)) for i ≥ 1 and
n ≥ 2. So one can describe the plurigenus by the Riemann-Roch formula. That
is for n ≥ 2

P(n) : = h0(nKX)

= (n− 1)n(2n− 1)

12
K3

X + (1− 2n)χ(OX)+
∑
Q

n−1∑
k=1

kbQ(rQ − kbQ)

2rQ
.

If we define

Sk =
∑
Q

kbQ(rQ − kbQ)

2rQ
,

we have the following

Lemma 5.1. Assume thatP(n) = 0, for n = 2,3, . . . , N . ThenSn can be
written as

Sn = (n− 2) (n+ 2)

5
(S3− S2)+ S2(**)

for n = 2,3, . . . , N − 1.
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Proof. SinceP(n) = 0, forn = 2,3, . . . N , lettingQn beP(n+ 1)−P(n), we
get

Qn = n2

2
K3

X − 2χ(OX)+ Sn = 0 for n = 2, . . . , N − 1.

Repeat the step forQn, we have

Qn −Qn−1 = 2n− 1

2
K3

X + Sn − Sn−1 = 0 for n = 3, . . . N − 1.

Thus one gets

Sn − Sn−1

2n− 1
= const= S3− S2

5
for n = 3, ..., N − 1.

The Lemma follows by taking sum of the above expressions from 3 ton. ��
Now for our purpose we assume that each singularityQ is of type

1

rQ
(1,−1,

1), we defineαQ(k) such thatαQ(k) is the positive integer which satisfies

(αQ(k)+ 1)rQ > k ≥ αQ(k)rQ,

then

Sk =
∑
Q

k(rQ − k)

2rQ
=

∑
Q

(k − αQ(k)rQ)(rQ − k + αQ(k)rQ)

2rQ
,

and also

Sk = (k − 2)(k + 2)

5
(S3− S2)+ S2 = k2− 4

20
N2+

∑
rQ≥3

k2(rQ − 5)+ 6rQ
10rQ

,

whose first few terms are

= k2− 4

20
N2 + 18− 2k2

30
N3+ 24− k2

40
N4

+ 3

5
N5+ k2+ 36

60
N6+ 2k2+ 42

70
N7+ ...,

whereNi is the number of singularities withr = i in the Riemann-Roch formula.
Equating these two expressions ofSk we have, by lettingk = 4,5,6,7,8,9,

10,11,12,13, a sequence of 10 equations:

4N3−N4 = 3N2+
∑
i≥5

Ni



726 T. Luo

7N3+ 2N4 = 4N2+ 3
∑
i≥5

Ni

9N3+ 4N4 = 8N2+N5+ 6
∑
i≥6

Ni

3N3+N4 = 2N2+N6+ 2
∑
i≥7

Ni

4N3+N4 = 3N2+N6+ 2N7+ 3
∑
i≥8

Ni

24N3+ 9N4 = 18N2+N5+ 6N6+ 11N7+ 16N8+ 21
∑
i≥9

Ni

32N3+ 12N4 = 24N2+ 3N5+ 8N6+ 13N7+ 18N8+ 23N9+ 28
∑
i≥10

Ni

39N3+14N4 = 28N2+N5+11N6+16N7+21N8+26N9+31N10+36
∑
i≥11

Ni

9N3+ 3N4 = 7N2+ 3N6+ 4N7+ 5N8+ 6N9+ 7N10+ 8N11+ 9
∑
i≥12

Ni

11N3+4N4 = 8N2+2N6+5N7+6N8+7N9+8N10+9N11+10N12+11
∑
i≥13

Ni

in which the coefficients ofNi repeat after certaini.
From the first 5 equations we obtain the following information:

N3 = N4 = N5 = N7

and
N2 = N6 = 0,

and
N3 =

∑
i≥8

Ni.

Jointly with next three equations, one gets

N8 = N9 = N10 = 0.

The 9-th equation provides

N11 = N3, Ni = 0

for i ≥ 12. The last equation says

N3 = 10N12+ 11N13+ 11N14+ .... = 0.

Thus we have
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Theorem 5.2. LetX be a smooth threefold of general type whose minimal model

has singularities of type
1

r
(1,−1,1) afterQ smoothing as in [R] forr ≥ 2. Then

there is anN ≤ 14 such thatP(N) ≥ 1.

Proof. If there is ak ≤ 14 such thatP(k) ≥ 1, we are done. Otherwise the above
analysis implies that there are no singularities of indices bigger than 1. When
that is so,K is invertible.P(n) is a polynomial of degree 3 inn by formula (*).
There is as ≤ 5 such thatP(s) ≥ 1. ��

Indeed our numerical analysis provides us more information from Reid’s
Riemann-Roch formula.

Corollary 5.3. Notations as in 5.2. There is anN1 such thatP(N1) ≥ 2.

Proof. By assumingP(n) = 0 or 1 forn = 2,3, ...,14 and replacing in (**)
Sk by S ′k = Sk + δk whereδk = −1, or 0, or 1, the above analysis shows that
the number of singularities is bounded from above. The only thing one needs to
be careful is that instead of obtaining equalities betweenNis, one gets equalities
involve certain constants which are bounded from above. The relation

N3 = C1+ 10N12+ 11N13+ 11N14+ .... = C2,

whereCi are bounded, says the total number of singularities is bounded from
above.

As done in Sect.5 of [L1], by putting contributions from singularities of
indices 2 to the right hand sides, we have fromP(2) andQ2:

1

2
K3

X − 3χ(OX)−N3
1(3− 1)

6
−N4

1(4− 1)

8
−N5

1(5− 1)

10
.... = F1,

2K3
X − 2χ(OX)−N3

2(3− 2)

6
−N4

2(4− 2)

8
−N5

2(5− 2)

10
.... = F2,

where|Fi | are constants bounded from above. They imply

1

2
K3

X − 3χ(OX)− N3

6
− N4

8
− N5

10
.... = F ′1,

2K3
X − 2χ(OX)− 4

N3

6
− 4

N4

8
− 4

N5

10
.... = F ′2,

where|F ′i | are bounded from above since the number of singularities is bounded.
From these equations we obtain

10χ(OX) = F ′2− 4F ′1,

which implies thatχ(OX) is bounded from above. Theorem 5.1 in [L1] then
claims that there is anN1 with P(N1) ≥ 2. ��

An immediate consequence is
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Theorem 5.4. LetX be a smooth threefold of general type whose minimal model

has singularities of type
1

r
(1,−1,1) afterQ smoothing as in [R] forr ≥ 2. Then

there is a universalN such thatNKX defines a birational map fromX.

Proof. By Corollary 5.3 there is a universalN1 such thatP(N1) ≥ 2. A result
of Koll ár [Ko1] says ifN = 11N1+ 5,NK defines birational map.��

6 An application to plurigenera

Let X be a smooth projective threefold andE the subsheaf ofΩ2
X generated by

global 2-forms . Our main theorem in this section is

Theorem 6.1. AssumeX is of general type,h2(O) ≥ 2 and the degenerating
locus ofE is of dimension bounded from above by 1. Then there is a universalN

such thatNK defines a birational map fromX.

Proof. We run minimal model program onX. In the process of doing divisorial
extremal contractions and flips, terminal singularities may appear. When a sin-
gularity is not of index 1, we argue that the singularities have to be among types
1

r
(a,−a,1) with |a| = 1, or type (1.1) with index 2 and there are two locally

invariant 2-forms nonzero and linearly independent at each singularity. This is
proved inductively with the first step being obvious.

By results in Sect.3, when a singularityP is a result of a divisor to point
extremal contractionfi : (Xi, Ei) → (Xi+1, P ), the bound on the dimension

of degenerating locus assures that it is of type
1

r
(a,−a,1) with |a| = 1, type

(1) with |a| = 1 or exceptional. We claim that the singularity must be of type
1

r
(a,−a,1) with |a| = 1, or type (1.1) with index 2. For otherwise we consider

a common resolution:
X̄

α ↙ ↘ β

(Xi, Ei) (X′, E′)

fi ↘ ↙ gi

(Xi+1, P )

wheregi is the partial resolution constructed in 3.9. By inductionXi has only
those specified singularities. This implies that forĒ onX̄ exceptional overXi+1

with discrepancy less than 1,(fi ◦ α)∗(ωj )|Ē �= 0 for j = 1,2, whereω1, ω2 are
two nonzero 2-forms aroundP linearly independent overP by 3.7. But this is
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against the conclusion of 3.9 considering(gi ◦ β)∗(ωj ) when they are restricted
on the proper transform ofE′ on X̄.

The same argument is applied to the divisorial contraction situationfi :
(Xi, Ei)→ (Xi+1, C) where a divisor is contracted to a curveC. LetP ∈ C be
a terminal singularity of index bigger than 1.Xi has to have a singularityQ on
Ei of index bigger than 1. By inductionQ is of the desired type and there are
two nonzero locally invariant 2-forms linearly independent atQ. Now argue as
in the previous case, we see thatP must be of desired type.

Now letφi : (Xi, Ci) ��� (X+i , C
+
i ) be a flip. 4.2 says that a singularity (of

index bigger than 1) ofX+i alongC+i must be of the desired type.
As a conclusion we see that singularities occur on a minimal modelXmin are

either of index 1, or
1

r
(a,−a,1) with |a| = 1, or type (1.1) with index 2, or index

1. Using notations from Sect.5, we may assume the singularities contributing
to the plurigenus formula are all of type1

r
(1,−1,1). Theorem 5.4 gives us the

desired conclusion. ��
We construct an example of a (regular) threefold with the required conditions:

Example 6.2.Let S be a smooth (regular) projective surface withh0(Ω2
S) ≥ 2.

Let X ⊂ S × S be a general hypersurface section. Using a result of Lefschetz
we see thatX is (regular) and there is an isomorphism betweenH 0(X,Ω2

X)

andH 0(S × S,Ω2
S×S), which is generated by the pull backs of 2-forms onS

through the two projections. So the 2-forms onX generate a sheafE of rank 2.
Moreover the degenerating locus ofE has dimension bounded from above by 1
if the canonical system onS has only isolated base points.

Examples of a (regular)X with h2(O) ≥ 2 and type (1) singularities with
arbitrarily high indices may be obtained by modifying an example of Reid in
[R]:

Example 6.3.Let V be a smooth (regular) threefold withh2(O) ≥ 2. Consider
the productV × P3 with an orderr cyclic groupG action

g(x, [z0, z1, z2, z3]) = (x, [z0, ξrz1, ξ
r−1
r z2, ξrz3]),

whereξ is ar-th primitive root of 1. LetY = V ×P3/G. LetX be an intersection
of three general hypersurface sections.X is a (regular) threefold of general type
with quotient terminal singularities of the same type1

r
(1,−1,1). The global

2-forms onV are invariant under the group action, hence can be view as global
locally invariant 2-forms onX. Let X′ be the economical resolution of those
quotient singularities onX. X′ is a smooth threefold of general type with those
singularities on its minimal models. Moreover, if the 2-forms onV generate a
rank two vector bundle, the 2-forms onX′ generate a rank two sheaf whose
degenerating locus is of dimension bounded from above by 0.
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