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Abstract
This paper focuses on the existence of normalized solutions for the followingKirchhoff
equation:

{− (
a + b

∫
R3 |∇u|2dx)�u + λu = u5 + μ|u|q−2u, x ∈ R

3,∫
R3 u2dx = c,

where a, b, c > 0, μ ∈ R and 2 < q < 6, λ ∈ R will arise as a Lagrange multiplier
that is not a priori given. By using new analytical techniques, the paper establishes
several existence results for the case μ > 0:

(1) The existence of two solutions, one being a local minimizer and the other of
mountain-pass type, under explicit conditions on c when 2 < q < 10

3 .
(2) The existence of a mountain-pass type solution under explicit conditions on c

when 10
3 ≤ q < 14

3 .
(3) The existence of a ground state solution for all c > 0 when 14

3 ≤ q < 6.

Furthermore, the paper presents the first non-existence result for the case μ ≤ 0 and
2 < q < 6. In particular, refined estimates of energy levels are proposed, suggesting
a new threshold of compactness in the L2-constraint. This study addresses an open
problem for 2 < q < 10

3 and fills a gap in the case 10
3 ≤ q < 14

3 . We believe
that our approach can be applied to a broader range of nonlinear terms with Sobolev
critical growth, and the underlying ideas have potential for future development and
applicability.
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1 Introduction

In this paper, we study the existence of normalized solutions for the following Kirch-
hoff equation:

{− (
a + b

∫
R3 |∇u|2dx)�u + λu = u5 + μ|u|q−2u, x ∈ R

3,∫
R3 u2dx = c,

(1.1)

where a, b > 0 and c > 0 are given constants, λ ∈ R will arise as a Lagrange
multiplier and is not a priori given, μ ∈ R and 2 < q < 6. Here 6 is the Sobolev
critical exponent. Normalized solutions to (1.1) can be obtained as critical points of
the energy functional � : H1(R3) → R defined by

�(u) = a

2

∫
R3

|∇u|2dx + b

4

(∫
R3

|∇u|2dx
)2

− 1

6

∫
R3

u6dx − μ

q

∫
R3

|u|qdx
(1.2)

restricted on

Sc =
{
u ∈ H1(R3) : ‖u‖22 = c

}
. (1.3)

The first equation of (1.1) is a special form of the Kirchhoff type equation

−
(
a + b

∫
RN

|∇u|2dx
)

�u + λu = f (u), (1.4)

where N ≥ 1 and f ∈ C(R,R), which was proposed by Kirchhoff as an extension
of the classical D’Alembert’s wave equations, describing free vibrations of elastic
strings. Mathematically, (1.4) is often referred to be nonlocal as the appearance of
the term

(∫
RN ∇u|2dx)�u implies that (1.4) is no longer a pointwise identity. This

phenomenon causes some mathematical difficulties, which make the study of (1.4)
particularly interesting. After the pioneering work of Lions [13], where a functional
analysis approach was proposed, the Kirchhoff type equations began to call attention
of researchers.

For the study of (1.4), there exist two distinct options regarding the frequency
parameter λ, leading to two different research fields. A possible choice is fixing λ ∈ R,
or even with an additional external and fixed potential V (x). This direction has been
extensively studied in the last ten years, there are numerous relevant literature sources,
and we will not list them here.

Alternatively, it is of great interest to investigate solutions to (1.4) that possess
a prescribed L2-norm, which are commonly referred to as normalized solutions. In
this situation, the frequency λ ∈ R is an unknown parameter and acts as a Lagrange
multiplier with respect to the constraint SN (c) = {

u ∈ H1(RN ) : ‖u‖22 = c
}
. Nor-

malized solutions to (1.4) can be obtained as critical points of the energy functional
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Normalized solutions for Kirchhoff equations with Sobolev critical...

�N : H1(RN ) → R defined by

�N (u) = a

2

∫
RN

|∇u|2dx + b

4

(∫
RN

|∇u|2dx
)2

−
∫
RN

F(u)dx (1.5)

on the constraint SN (c), where F(u) := ∫ u
0 f (t)dt . From the physical point of view,

finding normalized solutions seems to be particularly meaningful because the L2-
norm of such solutions is a preserved quantity of the evolution and their variational
characterization can help to analyze the orbital stability or instability, see, for example,
[2, 14]. Despite its physical relevance, there have been few works available on this
topic. In particular, when considering the critical growth case, we are only aware of
the papers [11, 12, 21]. Before delving into the results motivate our research, let us
highlight some novel aspects in the study of (1.4) with an L2-constraint in the next
subsection.

1.1 Previous developments and some perspectives

From a variational point of view, besides the Sobolev critical exponent 2∗ := 2N
N−2

for N ≥ 3 and 2∗ = ∞ for N = 1, 2, a new L2-critical exponent qN := 2 + 8
N

arises that plays a pivotal role in the study of normalized solutions to (1.4). This
threshold determines whether the constrained functional �N remains bounded from
below onSN (c) and consequently influences our choice of approaches when searching
for constrained critical points. As far as we know, in this regard, the first results for
(1.4) with f (u) = |u|q−2u can be attributed to the work by Ye in a sequence of papers
[18–20]. These results are summarized in Table 1.

In particular, for q > 2+ 8
N , �N is always unbounded from below on SN (c) since

it can be easily derived that �N
(
t N/2ut (x)

) → −∞ as t → ∞, where

ut (x) := u(t x), ∀ x ∈ R
N , t > 0 (1.6)

is a dilation preserving the L2-norm, that is ‖t N/2ut‖2 = ‖u‖2 for t > 0, and this situa-
tion corresponds towhat is termed as an L2-supercritical case. In this case,more efforts
are always needed since one cannot search for a global minimum of �N restricted

Table 1 Results on (1.4) with f (u) = |u|q−2u

q c Type of solutions

2 < q < 2 + 4
N c > 0 A global minimizer

2 + 4
N ≤ q < 2 + 8

N c > cq

q = 2 + 8
N 0 < c < c∗ No solution

2 + 8
N < q < 2∗ c > 0 A mountain pass type solution
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on SN (c) and only identify a suspected critical level. Later, the results in the case
2 + 8

N < q < 2∗ of Table 1 were further extended in [6] to the more general L2-
supercritical case with Sobolev subcritical growth, where f (u) ∼ ∑m

i=1 |u|qi−2u
(2 + 8

N < qi < 2∗ and m ≥ 2). Furthermore, as observed from Table 1, when
p ∈ (2, 2 + 8

N ), the exponent 2 + 4
N also plays an important role in the investigation

of normalized solutions. In fact, it corresponds to the L2-critical exponent in the study
of normalized solutions to the Schrödinger equation, specifically (1.4) with b = 0. It is
worth emphasizing that for the Schrödinger equation (1.4) with b = 0, the L2-critical
exponent is always strictly smaller than the Sobolev critical exponent, specifically
2 + 4

N < 2N
N−2 . However, for the Kirchhoff equation (1.4) with b > 0, the L2-critical

exponent is strictly smaller than the Sobolev critical exponent only when N ≤ 3, that
is, qN = 2 + 8

N < 2∗ = 2N
N−2 if and only if N ≤ 3. This explains why the research

on normalized solutions for the Kirchhoff equation is predominantly focused on the
case of N ≤ 3, and when the nonlinearity exhibits Sobolev critical growth, it suffices
to consider the case of N = 3.

It is well-known that compared to the subcritical growth case, the Sobolev critical
growth case of (1.4) presents additional challenges in terms of the compactness anal-
ysis, especially when considering the L2-constraint. To the best of our knowledge, the
first work on the Sobolev critical growth case is due to Zhang–Han [21]. They estab-
lished the existence of normalized solutions to (1.1) when μ = 1 and 14

3 ≤ q < 6
by calculating the threshold of the mountain pass level. Subsequently, Li–Nie–Zhang
[12] obtained similar results in the L2-supercritical case 14

3 < q < 6 using a different
method that relies on the Sobolev subcritical approximation. However, their results
require μ > 0 to be large enough in (1.1). More recently, Li–Luo–Yang [11] further
extended these results on (1.1). However, their work is restricted to the power ranges:
2 < q < 10

3 or 14
3 ≤ q < 6, and leaves a gap: 10

3 ≤ q < 14
3 . The significant findings

from their research are summarized in Table 2.
In Table 2, despite explicitly identifying the range of existence for local minima

with respect to μ for 2 < q < 10
3 , the expression for the upper bound μ∗(c, q)

is excessively convoluted. Moreover, two open problems, labeled as (Q1) and (Q2),
remain unaddressed. It is noteworthy that 103 and 14

3 are the L2-critical exponents in the
case of N = 3 to (1.4) with b = 0 and (1.4) with b > 0, respectively. When b = 0, Eq.
(1.1) reduces to the three-dimensional scenario (N = 3) of the Schrödinger equation

Table 2 Existence results on (1.1) in [11]

q μ (c > 0) Type of solutions Open problem

2 < q < 10
3 μ < μ∗(c, q)

small enough
A local minimizer (Q1): Is there a second solution?

10
3 ≤ q < 14

3 ? ? (Q2):What happens?
14
3 ≤ q < 6 μ > 0 A mountain pass type solution
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Table 3 Existing results on (1.7)

q Type of solutions Energy level References

2 < q < 2 + 4
N One local minimizer := mc < 0 [5, 8, 15]

A second solution < mc + 1
N S N

2 [9] for N ≥ 4

[5, 16] for N ≥ 3

2 + 4
N ≤ q < 2∗ A mountain pass type solution < 1

N S N
2 [5, 10, 15, 16]

with Sobolev critical growth:

{−�u + λu = μ|u|q−2u + |u|2∗−2u, x ∈ R
N , N ≥ 3,∫

RN u2dx = c,
(1.7)

which can be viewed as a counterpart of the classical Brezis–Nirenberg problem in
the context of L2-constraint. In addition to the Sobolev critical growth, an important
feature of this kind of problem lies in the fact that the presence of multiple powers
destroys the scale invariance of the homogeneous equation, and thus it is called amixed
problem. Such a problem has become an active research topic, as seen in references
such as [5, 8–10, 15, 16]. In these references, some existence results were established
for certain small values of c > 0, some of which are summarized in Table 3.

Here and in the rest of the paper, S denotes the best constant for the Sobolev
inequality, i.e., for any N ≥ 3 there exists an optimal constant S > 0 depending only
on N , such that

S‖u‖22∗ ≤ ‖∇u‖22, ∀ u ∈ D1,2(RN ). (Sobolev inequality) (1.8)

Remark that the existence of a second solution to (1.7) when 2 < q < 2 + 4
N had

been raised as an open problem in [15], subsequently, it was addressed, as presented
in Table 3.

Compared to the caseb = 0, the study of (1.1)withb > 0 ismuchmore challenging,
due to the additional difficulties caused by the combined effect of the nonlocal term
of (‖∇u‖22)�u and multiple powers. For example,

(i) The functional � is comprised of four distinct terms that exhibit varying scaling
behavior with respect to the dilation t3/2u(t ·). The intricate interplay among
these terms makes it more difficult to ascertain the types of critical points for �

on Sc.
(ii) It is widely recognized that establishing the compactness in critical growth prob-

lems hinges on obtaining rigorous upper bound estimates for theminimax levels.
This has only been achieved when b = 0, specifically:

M(c) <

{
mc + 1

3S
3
2 , if 2 < q < 10

3 , where mc is defined in Table 3,
1
3S

3
2 , if 10

3 ≤ q < 6.
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In the case of b > 0, there is also a need to establish a similar inequality.
However, at present, only one result is available for the range 14

3 ≤ q < 6, while
the cases of 2 < q < 10

3 and 10
3 ≤ q < 14

3 remain unresolved due to the strong
competitive effect of the term ‖∇u‖42 in �, more precisely,

M(c) <

⎧⎪⎪⎨
⎪⎪⎩

?, if 2 < q < 10
3 ,

?, if 10
3 ≤ q < 14

3 ,

�∗ := abS3

4 + b3S6

24 +
(
b2S4+4aS) 32

24 , if 14
3 ≤ q < 6.

(1.9)

Hence, the crucial outstandingmatter is how to ascertain the compactness thresh-
old for the problem when 2 < q < 10

3 and 10
3 ≤ q < 14

3 , and subsequently
develop the appropriate energy estimates tomitigate the unavoidable competitive
impact of the term ‖∇u‖42 in the functional �.

(iii) Even when the aforementioned difficulties can be addressed, establishing the
compactness of (PS) sequences becomes more complicated compared to the
case when b = 0. This is primarily due to the presence of the term ‖∇u‖42 in �,
which implies that the weak convergence un⇀u in H1(R3) does not guarantee
the convergence

‖∇un‖22
∫
R3

∇un · ∇ϕdx → ‖∇u‖22
∫
R3

∇u · ∇ϕdx for all ϕ ∈ C∞
0 (R3).

Consequently, when b > 0, it becomes even more intricate to rule out the
possibility of vanishing and dichotomy for (PS) sequences, preventing its strong
convergence in H1(R3).

1.2 Highlights of the paper andmain results

Motivated by the aforementioned work, this paper aims to thoroughly investigate the
existence and multiplicity of normalized solutions for (1.1), covering the complete
range of subcritical perturbations within the interval 2 < q < 6. In the study of
(1.1), we classify the power q into three intervals: 2 < q < 10

3 ,
10
3 ≤ q < 14

3 ,
and 14

3 ≤ q < 6, taking into account the combined effect of �u and (‖∇u‖22)�u.
Notably, we use new analytical techniques and ideas to overcome the aforementioned
challenges and address two open problems, denoted as (Q1) and (Q2) in Table 3, while
also filling the research gap for the interval 10

3 ≤ q < 14
3 . Specifically, for μ > 0 and

under suitable conditions on the mass c, we establish the following results:

(i) When 2 < q < 10
3 ,� exhibits a geometry of local minima on Sc, suggesting the

existence of an additional mountain pass geometry originating from the local
minimizer.

(ii) When 10
3 ≤ q < 14

3 and 14
3 ≤ q < 6, � possesses a mountain pass geometry on

Sc.
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Table 4 Geometry of local minima

q c (μ > 0) Type of solutions Energy level

2 < q < 10
3 c ∈ (0, c0) One local minimizer = infSc∩As0

� < 0

c ∈ (0,min{c0, c1}) A second solution of mountain pass type < infSc∩As0
� + �∗

Table 5 Mountain pass geometry

q c (μ > 0) Type of solutions Energy level

10
3 < q < 14

3 c ∈ (0,min{c2, c3}) A mountain pass type solution
14
3 ≤ q < 6 c > 0 A ground state solution < �∗, defined by (1.9)

Based on these observations, our research is divided into two parts, which are summa-
rized in Tables 4 and 5. Additionally, we establish the non-existence result for μ ≤ 0
and 2 < q < 6.

Here the number�∗ is defined by (1.9), the numbers s0, c0, c1, c2 and c3 are defined
by:

s0 :=
[
(10 − 3q)aS3

6 − q

] 1
2

, (1.10)

c0 :=
⎡
⎣ 4aq

3(6 − q)μCqq

(
4q

3(10 − 3q)μCqqS3

) 3q−10
3(6−q)

⎤
⎦

3
2

, (1.11)

c1 :=
{[

4q

μ(6 − q)Cqq

][(
a

3
+ b2S3

6
+ bS

√
b2S4 + 4(a + bs0)S

12

)
s(10−3q)/4
0

+ b

12
s(14−3q)/4
0

]} 4
6−q

, (1.12)

c2 :=
(

5a

3μC10/310/3

) 3
2

(1.13)

and

c3 :=
[

4q

μ(6 − q)Cqq

] 4
6−q [ b

3(3q − 10)

] 3q−10
6−q

×
[

4

14 − 3q

(
a

3
+ b2S3

6
+ bS

12

√
b2S4 + 4aS

)] 14−3q
6−q

,

(1.14)
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the functional � : H1(R3) → R is defined by

�(u) := (b2S4 + 4aS)
3
2

24

[(
1 + 4b

b2S3 + 4a
‖∇u‖22

) 3
2 − 1

]
+
(
a

2
+ b2S3

4

)
‖∇u‖22

+ b

4
‖∇u‖42 − 1

6
‖u‖66 − μ

q
‖u‖qq , (1.15)

and the set Aρ is defined by

Aρ :=
{
u ∈ H1(R3) : ‖∇u‖22 < ρ

}
,

where, and in the rest of the paper, Cs , determined by s, denotes the best constant for
the Gagliardo–Nirenberg inequality in R3 (see [1]),

‖u‖s ≤ Cs‖u‖(6−s)/2s
2 ‖∇u‖3(s−2)/2s

2 for 2 < s < 6. (Gagliardo-Nirenberg inequality)

(1.16)

To state our main results, we define the L2-Pohozaev functional

P(u) = a
∫
R3

|∇u|2dx + b

(∫
R3

|∇u|2dx
)2

−
∫
R3

u6dx − 3μ(q − 2)

2q

∫
R3

|u|qdx .
(1.17)

It is well known that any solution to (1.1) belongs to the L2-Pohozaevmanifold defined
by

M(c) := {u ∈ Sc : P(u) = 0}. (1.18)

We recall a solution u to be a ground state solution on Sc if u minimizes the functional
� among all the solutions to (1.1), i.e.,

�
∣∣′Sc

(u) = 0 and �(u) = inf
{
�(u) : ‖u‖22 = c, �

∣∣′Sc
(u) = 0

}
.

Our results are as follows.

Theorem 1.1 Let 2 < q < 10
3 ,μ > 0 and c ∈ (0, c0). Then (1.1) has a couple solution

(ũc, λ̃c) ∈ (Sc ∩ H1(R3)) × (0,+∞) such that

ũc ∈ Sc ∩ As0 , ũc > 0, �(ũc) = m(c) := inf
Sc∩As0

� < 0. (1.19)
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Theorem 1.2 Let 2 < q < 10
3 , μ > 0 and c ∈ (0,min{c0, c1}). Then (1.1) has a

second couple solution (ūc, λ̄c) ∈ (Sc ∩ H1
rad(R

3)) × (0,+∞) such that

0 < �(ūc) < inf
Sc∩As0

� + �∗. (1.20)

Theorem 1.3 Let 10
3 ≤ q < 14

3 , μ > 0 and c ∈ (0,min{c2, c3}). Then (1.1) has a
couple solution (ūc, λc) ∈ (Sc ∩ H1

rad(R
3)) × (0,+∞) such that

0 < �(ūc) < �∗. (1.21)

Theorem 1.4 Let 14
3 ≤ q < 6, μ > 0 and c ∈ (0,+∞). Then (1.1) has a couple

solution (ūc, λc) ∈ H1(R3) × (0,+∞) such that

�(ūc) = inf
M(c)

�. (1.22)

Theorem 1.5 Let 2 < q < 6, μ ≤ 0 and c ∈ (0,+∞). Then (1.1) has no solutions in
H1(R3) × (0,+∞).

Remark 1.6 Our research can be considered as a counterpart of the Brezis-Nirenberg
problem in the context of normalized solutions to Kirchhoff equations, and appears
to be a significant contribution in this regard. This is particularly noteworthy because
our study covers the entire interval of 2 < q < 6 with subcritical lower exponents.
To be more specific, Theorems 1.2 and 1.3 address the open problems (Q1) and (Q2)
mentioned in Table 2, respectively, while filling the research gap in the interval 10

3 ≤
q < 14

3 . The statements highlighted in red in Tables 4 and 5 further illustrate this
point. Additionally, Theorem 1.5 establishes the first result of nonexistence for (1.1)
when μ < 0.

Remark 1.7 (i) Our approach to constructing (PS) sequences in the proofs of Theorems
1.1–1.4 is fundamentally different from the work of [11]. It is based on several critical
point theorems on manifolds that we have recently developed in [5] for the study of
(1.7). Our method offers several advantages over Ghoussoub’s minimax approach
introduced in [7], as it is technically simpler and does not rely on the decomposition
of Pohozaev manifolds. Consequently, it is applicable to a wider range of nonlinear
terms.

(ii) From Theorem 1.2, one might wonder why it is necessary to introduce a new
functional� definedby (1.15). In fact, it plays a crucial role in proving the compactness
of (PS) sequences. By using new analytical techniques and refined energy estimates,
we establish rigorous inequalities concerning the energy levels, which are given as
follows:

M(c) <

⎧⎪⎪⎨
⎪⎪⎩
infSc∩As0

� + �∗, if 2 < q < 10
3 ,

�∗, if 10
3 ≤ q < 14

3 ,

�∗, if 14
3 ≤ q < 6,

(1.23)
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complementing the corresponding result from previous studies, namely the inequality
(1.9). The right-hand side of the inequalities represents the compactness threshold of
the problem, belowwhich the (PS) condition holds. The derivation of these inequalities
is one of the noteworthy highlights of this paper. The argument in the case where
2 < q < 10

3 is the most delicate, making it the key and pivotal element in proving
Theorem 1.2.

Let us now highlight the key difficulties encountered and outline our research strat-
egy for proving Theorem 1.2, which we believe is the most inspiring part of this
paper.

Motivated by the results on (1.7) in Table 3, it is natural to expect that (1.1) has a
second solution of the mountain pass type when 2 < q < 10

3 . However, achieving this
result poses the greatest challenge, as mentioned in Remark 1.7-(ii). Drawing upon
our experience studying (1.7) in [5], we conjecture that the value m(c) + �∗ may
serve as a potential candidate for the compactness threshold in the case 2 < q < 10

3 ,
where m(c) is given by (1.19). Following our ideas in [5], in order to establish the
strict inequality M(c) < m(c) + �∗, we consider a superposition of the minimizer
of m(c) and the Aubin-Talenti bubbles associated with the Sobolev inequality, while
ensuring that the resulting function remains constrained toSc through appropriate tech-
nical modifications. The interplay between these components is expected to lead to a
decrease in the corresponding energy value, ultimately yielding M(c) < m(c) + �∗.
Unfortunately, unlike in the study of (1.7), the additional term ‖∇u‖42 in � causes
the energy value to exceed the anticipated compactness threshold. Specifically, con-
sidering �(u) := φ(u) + b

4‖∇u‖42, we can observe from (1.24) that controlling the
mountain pass level from above using m(c) + �∗ is not feasible due to the presence
of undesirable cross-term interferences:

�(u1 + u2) = φ(u1 + u2) + b

4

(
‖∇u1‖42 + ‖∇u2‖42

)

+b

(
‖∇u1‖22 + ‖∇u2‖22 +

∫
R3

∇u1 · ∇u2dx

)∫
R3

∇u1 · ∇u2dx

+b

2
‖∇u1‖22‖∇u2‖22, ∀ u1, u2 ∈ H1(R3). (1.24)

This observation indicates that the aforementioned conjecture does not hold, neces-
sitating the implementation of new ideas to address this problem. Precisely, instead
of starting from the local minimizer of m(c), we introduce the auxiliary functional �
and search for a local minimizer of � as the first step, as follows:

Step 1: Prove the existence of ûc ∈ H1
rad(R

3) such that �(ûc) = m̂(c) :=
infSc∩As0

�.
Step 2: Using the function ûc obtained in Step 1 as the starting point, construct a path

set of the mountain pass type:

�c = {
γ ∈ C([0, 1],Sc) : γ (0) = ûc,�(γ (1)) < 2m(c)

}
,
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and prove that for c ∈ (0, c0), there exists κ > 0 such that

M(c) = inf
γ∈�c

max
t∈[0,1] �(γ (t)) ≥ κ > sup

γ∈�c

max {�(γ (0)),�(γ (1))} .

Remarkably, the combination of this inequality and the next step will allow
us to obtain a good (PS) sequence {un} ⊂ Sc such that

�(un) → M(c) ∈ (0, m̂(c) + �∗), �|′Sc
(un) → 0 and P(un) → 0. (1.25)

Step 3: For each n ∈ N and t > 0, construct a family of new sequences of testing
functions restricted on Sc:

Wn,t (x) := √
τ [ûc(τ x) + tUn(τ x)]

with τ = τn,t := ‖ûc + tUn‖2/√c and Un(x) := �n(|x |) and

�n(r) = 4
√
3

⎧⎪⎪⎨
⎪⎪⎩

√
n

1+n2r2
, 0 ≤ r < 1;√

n
1+n2

(2 − r), 1 ≤ r < 2;
0, r ≥ 2,

and prove that

�(Wn,t ) < �∗ + �(ûc) − O

(
1√
n

)
, ∀ t > 0.

This novel inequality allows us to find large two numbers n̄ ∈ N and t̂ > 0
such that

Wn̄,0 = ûc and �(Wn̄,t̂ ) < 2m(c).

In this way, we find a suitable path γn̄(t) := Wn̄,t t̂ such that γn̄ ∈ �c, and thus
M(c) ≤ maxt∈[0,1] �(γn̄(t)) < m̂(c) + �∗, see Lemmas 3.11 and 3.12 for
more details.

Step 4: Prove the compactness of the (PS) sequence {un} obtained in (1.25). The
boundedness of {un} can be deduced from the additional propertyP(un) → 0.
By contradiction and using the strict inequality M(c) < m̂(c)+�∗ < �∗, we
establish two key elements: (i) excluding the possibility of vanishing, which
implies the existence of ū ∈ H1

rad(R
3) with 0 < ‖ū‖22 ≤ c such that un⇀ū in

H1
rad(R

3); (ii) showing ‖∇(un − ū)‖22 → 0, which is necessary to verify that
ū ∈ Sc is a second solution of (1.1). The proof of the former is not difficult
since, if ū = 0, a standard argument yields M(c) + o(1) = �(un) ≥ �∗,
contradicting the strict inequality. The essential difficulty lies in deducing
‖∇(un − ū)‖22 → 0. To derive a contradiction with M(c) < m̂(c) + �∗, we
need to establish the relationship between �(ū), �(ū), and �∗ based on the
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definition of m̂(c). To accomplish this, we employ fresh analytical techniques
by distinguishing two cases: ‖∇ū‖22 < s0 and ‖∇ū‖22 ≥ s0. This process also
sheds light on why the value m̂(c)+�∗ appears as the compactness threshold
of the problem.

The paper is organized as follows. Section2 is devoted to some preliminary results,
which will be used in the rest of paper. In Sect. 3, we study the case 2 < q < 10

3 , and
give the proofs of Theorems 1.1 and 1.2. In Sect. 4, we study the case 10

3 ≤ q < 14
3 ,

and finish the proof of Theorem 1.3. In Sect. 4, we study the case 14
3 ≤ q < 6, and

finish the proof of Theorem 1.4, moreover, Theorem 1.5 is proved in this section.

Throughout the paper, we make use of the following notations:

• H1
rad(R

3) := {u ∈ H1(R3)
∣∣ u(x) = u(|x |) a.e. in R3};

• Ls(R3)(1 ≤ s < ∞) denotes the Lebesgue space with the norm ‖u‖s =(∫
R3 |u|sdx)1/s ;

• For any u ∈ H1(R3) and t > 0, we set ut (x) := u(t x);
• For any x ∈ R

3 and r > 0, Br (x) := {y ∈ R
3 : |y − x | < r} and Br = Br (0);

• C1,C2, . . . denote positive constants possibly different in different places.

2 Preliminary results

Let H be a real Hilbert space whose norm and scalar product will be denoted respec-
tively by ‖ · ‖H and (·, ·)H . Let E be a real Banach space with norm ‖ · ‖E . We assume
throughout this section that

E ↪→ H ↪→ E∗ (2.1)

with continuous injections, where E∗ is the dual space of E . Thus H is identified
with its dual space. We will always assume in the sequel that E and H are infinite
dimensional spaces. We consider the manifold

M := {u ∈ E : ‖u‖H = 1}. (2.2)

M is the trace of the unit sphere of H in E and is, in general, unbounded. Throughout
the paper, M will be endowed with the topology inherited from E . Moreover M is a
submanifold of E of codimension 1 and its tangent space at a given point u ∈ M can
be considered as a closed subspace of E of codimension 1, namely

TuM := {v ∈ E : (u, v)H = 0}. (2.3)

We consider a functional ϕ : E → R which is of class C1 on E . We denote by ϕ|M
the trace of ϕ on M . Then ϕ|M is a C1 functional on M , and for any u ∈ M ,

〈ϕ|′M (u), v〉 = 〈ϕ′(u), v〉, ∀ v ∈ TuM . (2.4)
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In the sequel, for any u ∈ M , we define the norm
∥∥ϕ|′M (u)

∥∥ by

∥∥ϕ|′M (u)
∥∥ = sup

v∈TuM,‖v‖E=1
|〈ϕ′(u), v〉|. (2.5)

Let E × R be equipped with the scalar product

((u, τ ), (v, σ ))E×R := (u, v)H + τσ, ∀ (u, τ ), (v, σ ) ∈ E × R,

and corresponding norm

‖(u, τ )‖E×R :=
√

‖u‖2H + τ 2, ∀ (u, τ ) ∈ E × R.

Next, we consider a functional ϕ̃ : E × R → R which is of class C1 on E × R. We
denote by ϕ̃|M×R the trace of ϕ̃ on M ×R. Then ϕ̃|M×R is a C1 functional on M ×R,
and for any (u, τ ) ∈ M × R,

〈ϕ̃|′M×R
(u, τ ), (v, σ )〉 := 〈ϕ̃′(u, τ ), (v, σ )〉, ∀ (v, σ ) ∈ T̃(u,τ )(M × R), (2.6)

where

T̃(u,τ )(M × R) := {(v, σ ) ∈ E × R : (u, v)H = 0}. (2.7)

In the sequel, for any (u, τ ) ∈ M × R, we define the norm
∥∥ϕ̃|′M×R

(u, τ )
∥∥ by

∥∥ϕ̃|′M×R
(u, τ )

∥∥ = sup
(v,σ )∈T̃(u,τ )(M×R),‖(v,σ )‖E×R=1

|〈ϕ̃′(u, τ ), (v, σ )〉|. (2.8)

Lemma 2.1 [5] Let ϕ ∈ C1(E,R), S ⊂ M, ã ∈ R, ε, δ > 0 such that

u ∈ M ∩ ϕ−1([ã − 2ε, ã + 2ε]) ∩ S2δ ⇒ ∥∥ϕ|′M (u)
∥∥ ≥ 8ε

δ
. (2.9)

Then, there exists η ∈ C([0, 1] × M, M) such that

(i) η(t, u) = u, if t = 0, or if u /∈ M ∩ ϕ−1([ã − 2ε, ã + 2ε]) ∩ S2δ;
(ii) η

(
1, ϕã+ε ∩ S

) ⊂ ϕã−ε;
(iii) for every t ∈ [0, 1], η(t, ·) : M → M is a homeomorphism;
(iv) ‖η(t, u) − u‖ ≤ δ, ∀ u ∈ M, t ∈ [0, 1];
(v) for every u ∈ M, ϕ(η(t, u)) is non-increasing on t ∈ [0, 1];
(vi) ϕ(η(t, u)) < ã, ∀ u ∈ M ∩ ϕã ∩ Sδ, t ∈ [0, 1].
Lemma 2.2 [3] Let {un} ⊂ M be a bounded sequence in E. Then the following are
equivalent:

(i) ‖ϕ|′M (un)‖ → 0 as n → ∞;
(ii) ϕ′(un) − 〈ϕ′(un), un〉un → 0 in E ′ as n → ∞.
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Lemma 2.3 [5] Let ϕ ∈ C1(E,R) and K ⊂ E. If there exists ρ > 0 such that

ã := inf
v∈M∩K

ϕ(v) < b̃ := inf
v∈M∩(Kρ\K )

ϕ(v), (2.10)

where Kρ := {v ∈ E : ‖v − u‖E < ρ, u ∈ K }, then, for every ε ∈ (0, (b̃ − ã)/2),
δ ∈ (0, ρ/2) and w ∈ M ∩ K such that

ϕ(w) ≤ ã + ε, (2.11)

there exists u ∈ M such that

(i) ã − 2ε ≤ ϕ(u) ≤ ã + 2ε;
(ii) ‖u − w‖E ≤ 2δ;
(iii)

∥∥ϕ|′M (u)
∥∥ ≤ 8ε/δ.

Corollary 2.4 [4] Let ϕ ∈ C1(E,R) and K ⊂ E. If there exist ρ > 0 and ū ∈ M ∩ K
such that

ϕ(ū) = inf
v∈M∩K

ϕ(v) < inf
v∈M∩(Kρ\K )

ϕ(v), (2.12)

then ϕ|′M (ū) = 0.

Lemma 2.5 [5] Assume that θ1, θ2 ∈ R and ϕ̃ ∈ C1(E × R,R) satisfies

ã := inf
γ̃∈�̃

max
t∈[0,1] ϕ̃(γ̃ (t)) > b̃ := sup

γ̃∈�̃

max {ϕ̃(γ̃ (0)), ϕ̃(γ̃ (1))} , (2.13)

where

�̃ := {γ̃ ∈ C([0, 1], M × R) : ϕ̃(γ̃ (0)) ≤ θ1, ϕ̃(γ̃ (1)) < θ2} .

Let {γ̃n} ⊂ �̃ be such that

sup
t∈[0,1]

ϕ̃(γ̃n(t)) ≤ ã + 1

n
, ∀ n ∈ N. (2.14)

Then there exists a sequence {(vn, τn)} ⊂ M × R satisfying

(i) ã − 2
n ≤ ϕ̃(vn, τn) ≤ ã + 2

n ;
(ii) mint∈[0,1] ‖(vn, τn) − γ̃n(t)‖E×R ≤ 2√

n
;

(iii)
∥∥ϕ̃|′M×R

(vn, τn)
∥∥ ≤ 8√

n
.
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3 The Case when 2 < q < 10
3

In this section, we study the case 2 < q < 10
3 , and give the proofs of Theorems 1.1

and 1.2.

For any c > 0, we consider the function gc(s) defined on s ∈ (0,+∞) by

gc(s) := a

2
− μCqq

q
c(6−q)/4s(3q−10)/4 − s2

6S3 . (3.1)

By some simple calculations, we easily verify the following lemma.

Lemma 3.1 There hold

(i) (1 + st)
3
2 − 1 ≤ t

3
2

[
(1 + s)

3
2 − 1

]
, ∀ s ≥ 0, t ≥ 1;

(ii) (1 + s + t)
3
2 − 1 ≥

[
(1 + s)

3
2 − 1

]
+
[
(1 + t)

3
2 − 1

]
, ∀ s, t ≥ 0.

Similar to [8, Lemma 2.1], we can prove the following lemma.

Lemma 3.2 Let 2 < q < 10
3 and μ > 0. Then for each c > 0, the function gc(s) has

a unique global maximum and the maximum value satisfies

max
0<s<+∞ gc(s) = gc(sc)

⎧⎪⎨
⎪⎩

> 0, if c < c0,

= 0, if c = c0,

< 0, if c > c0,

(3.2)

where c0 is defined by (1.11), and

sc :=
[
3(10 − 3q)μCqqS3

4q

] 4
3(6−q)

c
1
3 . (3.3)

In particular, we have sc0 = s0.

Lemma 3.3 Let 2 < q < 10
3 and μ > 0. Then for each c > 0, we have that

�(u) ≥ �(u) ≥ ‖∇u‖22 gc(‖∇u‖22), ∀ u ∈ Sc. (3.4)

Proof From (1.2), (1.8), (1.15), (1.16) and (3.1), one has

�(u) ≥ �(u)

= a

2
‖∇u‖22 + b

4
‖∇u‖42 − 1

6
‖u‖66 − μ

q
‖u‖qq

≥ a

2
‖∇u‖22 − 1

6S3 ‖∇u‖62 − μCqq
q

c(6−q)/4‖∇u‖3(q−2)/2
2

= ‖∇u‖22 gc(‖∇u‖22), ∀ u ∈ Sc.

��
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Set

Aρ :=
{
u ∈ H1(R3) : ‖∇u‖22 < ρ

}
,

m(c) := inf
u∈Sc∩As0

�(u), m̂(c) := inf
u∈Sc∩As0

�(u).

Lemma 3.4 Let 2 < q < 10
3 and μ > 0. Then for any c ∈ (0, c0), the following

properties hold,

m(c) = inf
u∈Sc∩As0

�(u) < 0 < inf
u∈∂(Sc∩As0 )

�(u) (3.5)

and

m̂(c) = inf
u∈Sc∩As0

�(u) < 0 < inf
u∈∂(Sc∩As0 )

�(u). (3.6)

Proof For any u ∈ Sc, since t3/2ut ∈ Sc and ‖∇(t3/2ut )‖22 = t2‖∇u‖22 < s0 for small
t > 0, it follows that t3/2ut ∈ Sc ∩ As0 for small t > 0. Furthermore, we have

�(t3/2ut ) ≤ �(t3/2ut )

= (b2S4 + 4aS)
3
2

24

⎡
⎣(1 + 4bt2

b2S3 + 4a
‖∇u‖22

) 3
2

− 1

⎤
⎦

+
(
a

2
+ b2S3

4

)
t2‖∇u‖22

+ bt4

4
‖∇u‖42 − t6

6
‖u‖66 − μt3(q−2)/2

q
‖u‖qq

≤
(
a

2
+ b2S3

4
+ bS√

b2S4 + 4aS
3

)
t2‖∇u‖22 + bt4

4
‖∇u‖42

− t6

6
‖u‖66 − μt3(q−2)/2

q
‖u‖qq < 0, for small t > 0, (3.7)

due to 2 < q < 10
3 . In the above second inequality, we have used the following fact:

(1 + s)
3
2 ≤ 1 + 2s, for small s > 0.

(3.7) shows that infu∈Sc∩As0
�(u) ≤ infu∈Sc∩As0

�(u) < 0. Therefore, (3.5) and
(3.6) follow from Lemmas 3.2 and 3.3. ��
Lemma 3.5 Let 2 < q < 10

3 and μ > 0. Then it holds that

(i) Let c ∈ (0, c0). Then for all α ∈ (0, c), we have m(c) ≤ m(α) +m(c − α), and
if m(α) or m(c − α) is reached then the inequality is strict.
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(ii) The function c �→ m(c) is continuous on (0, c0).

Lemma 3.5 can be proved by the similar arguments as the following lemma, so we
omit it.

Lemma 3.6 Let 2 < q < 10
3 and μ > 0. Then it holds that

(i) Let c ∈ (0, c0). Then for all α ∈ (0, c), we have m̂(c) ≤ m̂(α) + m̂(c − α), and
if m̂(α) or m̂(c − α) is reached then the inequality is strict.

(ii) The function c �→ m̂(c) is continuous on (0, c0).

Proof (i) Fix α ∈ (0, c). By (3.1) and (3.2), we have

gα

(
θα

c
s0

)
= a

2
− μCqq

q
α(6−q)/4

(
θα

c
s0

)(3q−10)/4

− (θα)2s20
6c2S3

≥ a

2
− μCqq

q

(α

c

)(q−2)/2
c(6−q)/4s(3q−10)/4

0 − (θα)2s20
6c2S3

≥ gc(s0) = gc(sc0) > gc0(sc0) = 0, ∀ θ ∈ [1, c/α]. (3.8)

Let {un} ⊂ Sα ∩ As0 be such that limn→∞ �(un) = m̂(α). Since m̂(α) < 0, it
follows from (3.4) that for large n ∈ N,

0 > �(un) ≥ ‖∇un‖22gα(‖∇un‖22),

which, together with (3.8), implies that for large n ∈ N,

‖∇un‖22 <
α

c
s0. (3.9)

For any θ ∈ (1, c/α]. Set vn(x) := un(θ−1/3x). Then ‖vn‖22 = θ‖un‖22 = θα,
‖vn‖p

p = θ‖un‖p
p for 2 ≤ p ≤ 6, and

‖∇vn‖22 = θ
1
3 ‖∇un‖22 ≤

( c
α

) 1
3 α

c
s0 < s0. (3.10)

Hence, it follows from (1.15), (3.6), (3.10) and Lemma 3.1 (i) that

m̂(θα) ≤ �(vn)

= (b2S4 + 4aS)
3
2

24

⎡
⎣
(
1 + 4bθ

1
3

b2S3 + 4a
‖∇un‖22

) 3
2

− 1

⎤
⎦

+
(
a

2
+ b2S3

4

)
θ

1
3 ‖∇un‖22

+ bθ
2
3

4
‖∇un‖42 − θ

6
‖un‖66 − μθ

q
‖un‖qq
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<
θ(b2S4 + 4aS)

3
2

24

[(
1 + 4b

b2S3 + 4a
‖∇un‖22

) 3
2 − 1

]

+ θ

(
a

2
+ b2S3

4

)
‖∇un‖22

+ bθ

4
‖∇un‖42 − θ

6
‖un‖66 − μθ

q
‖un‖qq

= θ�(un) = θm̂(α) + o(1), (3.11)

which implies that

θ ∈
(
1,

c

α

]
⇒ m̂(θα) ≤ θm̂(α). (3.12)

If m̂(α) is reached by u ∈ Sα ∩ As0 , then we choose un ≡ u in (3.11), and thus the
strict inequality follows. Hence, it follows from (3.12) that

m̂(c) = c − α

c
m̂(c) + α

c
m̂(c) ≤ m̂(c − α) + m̂(α),

with a strict inequality if m̂(α) or m̂(c − α) is reached.
(ii) Let c ∈ (0, c0) be arbitrary and {c̃n} ⊂ (0, c0) be such that c̃n → c. For any

α ∈ (0, c0), by the definition of m̂(α) and Lemma 3.4, one has m̂(α) < 0. If c̃n < c,
then it follows from (i) that

m̂(c) ≤ m̂(c̃n) + m̂(c − c̃n) < m̂(c̃n). (3.13)

If c̃n ≥ c, we let un ∈ Sc̃n ∩ As0 be such that �(un) ≤ m̂(c̃n) + 1
n . Set vn =

√
c
c̃n
un .

Then vn ∈ Sc ∩ As0 . Furthermore, we have

m̂(c) ≤ �(vn) = �(un) + [�(vn) − �(un)]
= �(un)

+ (b2S4 + 4aS)
3
2

24

⎡
⎣
(
1 + 4bc‖∇un‖22

c̃n
(
b2S3 + 4a

)
) 3

2

−
(
1 + 4b‖∇un‖22

b2S3 + 4a

) 3
2
⎤
⎦

+
(
a

2
+ b2S3

4

)
c − c̃n
c̃n

‖∇un‖22 + b
(
c2 − c̃2n

)
4c̃2n

‖∇un‖42

− c3 − c̃3n
6c̃3n

‖un‖66 −
μ
(
cq/2 − c̃q/2

n

)

qc̃q/2
n

‖un‖qq
= �(un) + o(1) ≤ m̂(c̃n) + o(1). (3.14)
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Combining (3.13) with (3.14), we have

m̂(c) ≤ m̂(c̃n) + o(1). (3.15)

Now, for any ε > 0 sufficiently small, there exists u ∈ Sc ∩ As0 such that

�(u) < m̂(c) + ε. (3.16)

Set wn =
√

c̃n
c u. Then wn ∈ Sc̃n ∩ As0 for n large enough. Since �(wn)

→ �(u), then

m̂(c̃n) ≤ �(wn) = �(u) + [�(wn) − �(u)] = �(u) + o(1) < m̂(c) + ε + o(1).

Therefore, since ε > 0 is arbitrary, we deduce that m̂(c̃n) → m̂(c) from the above
inequality and (3.15). ��
Proof of Theorem 1.1 Let {un} ⊂ Sc ∩ As0 be a minimizing sequence for m(c). Since
{|un|} ⊂ Sc ∩ As0 is also a minimizing sequence for m(c), so we can assume that
un ≥ 0. Then by Lemma 3.4, we have

‖un‖22 = c, ‖∇un‖22 < s0 < +∞, �(un) = m(c) + o(1) < 0. (3.17)

To obtain the existence of solutions for (1.1), we split the proof into several steps.
Step 1. Set δ := lim supn→∞ supy∈R3

∫
B1(y)

|un|2dx . If δ = 0, then by Lions’

concentration compactness principle [17, Lemma 1.21], we have un → 0 in Ls(R3)

for 2 < s < 6. It follows that

∫
R3

|un|qdx = o(1). (3.18)

From (1.2), (1.8), (3.1), (3.2), (3.17) and (3.18), one has

m(c) + o(1) = a

2
‖∇un‖22 + b

4
‖∇un‖42 − μ

q
‖un‖qq − 1

6
‖un‖66

≥ a

2
‖∇un‖22 − 1

6S3 ‖∇un‖62 + o(1)

≥ ‖∇un‖22
(
a

2
− s20

6S3

)
+ o(1)

= ‖∇un‖22
[
gc(s0) + μCqq

q
c(6−q)/4s(3q−10)/2

0

]
+ o(1)

≥ o(1). (3.19)

This contradiction shows that δ > 0 due to m(c) < 0.
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Going if necessary to a subsequence, we may assume the existence of yn ∈ R
3

such that
∫
B1(yn)

|un|2dx >
δ

2
. (3.20)

Let ũn(x) = un(x + yn). Then

∫
B1(0)

|ũn|2dx >
δ

2
, (3.21)

and so there exists ũ ∈ H1(R3)\{0} with ũ ≥ 0 such that, passing to a subsequence,

ũn⇀ũ in H1(R3), ũn → ũ in Ls
loc(R

3) for s ∈ (1, 6), ũn → ũ a.e. on R
3.

(3.22)

Moreover, (3.17) gives

0 < ‖ũ‖22 ≤ ‖ũn‖22 = c, ‖∇ũn‖22 < s0, �(ũn) = m(c) + o(1). (3.23)

Step 2. Set vn := ũn − ũ. By (3.22), we have

‖∇ũn‖22 = ‖∇ũ‖22 + ‖∇vn‖22 + o(1) (3.24)

and

‖∇ũn‖42 = ‖∇ũ‖42 + ‖∇vn‖42 + 2‖∇ũ‖22‖∇vn‖22 + o(1). (3.25)

Hence, by (1.2), (3.24), (3.25) and the Brezis–Lieb lemma, we have

�(ũn) = �(ũ) + �(vn) + b

2
‖∇ũ‖22‖∇vn‖22 + o(1). (3.26)

Step 3. By (3.22) and (3.23), we have

‖vn‖22 = ‖ũn‖22 − ‖ũ‖22 + o(1) = c − ‖ũ‖22 + o(1). (3.27)

Now, we claim that ‖vn‖22 → 0. In order to prove this, let us denote c̃ := ‖ũ‖22 > 0.
By (3.27), if we show that c̃ = c then the claim follows. We assume by contradiction
that c̃ < c. In view of (3.24) and (3.27), for n ∈ N large enough, we have

αn := ‖vn‖22 ≤ c, ‖∇vn‖22 ≤ ‖∇ũn‖22 < s0. (3.28)

Hence, we obtain that

vn ∈ Sαn ∩ As0 , �(vn) ≥ m(αn) := inf
u∈Sαn∩As0

�(u). (3.29)
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From (3.23), (3.26) and (3.29), we have

m(c) + o(1) = �(ũn) = �(ũ) + �(vn) + b

2
‖∇ũ‖22‖∇vn‖22 + o(1)

≥ �(ũ) + m(αn) + b

2
‖∇ũ‖22‖∇vn‖22 + o(1). (3.30)

Since the map c �→ m(c) is continuous (see Lemma 3.5 (ii)) and in view of (3.27), we
deduce

m(c) ≥ �(ũ) + m(c − c̃). (3.31)

We also have that ũ ∈ Sc̃ ∩ As0 by the weak limit. This implies that �(ũ) ≥ m(c̃). If
�(ũ) > m(c̃), then it follows from (3.31) and Lemma 3.5 (i) that

m(c) > m(c̃) + m(c − c̃) ≥ m(c),

which is impossible. Hence, we have �(ũ) = m(c̃). So, using Lemma 3.5 (i) with the
strict inequality, we deduce from (3.31) that

m(c) ≥ m(c̃) + m(c − c̃) > m(c),

which is impossible. Thus, the claim follows and from (3.27) we deduce that ‖ũ‖22 = c
and so ũ ∈ Sc ∩ As0 by the weak limit. It follows from (1.8), (3.1), (3.2), (3.23), (3.26)
and �(ũ) ≥ m(c) that

o(1) ≥ a

2
‖∇vn‖22 + b

4
‖∇vn‖42 − μ

q
‖vn‖qq − 1

6
‖vn‖66 + b

2
‖∇ũ‖22‖∇vn‖22

≥ a

2
‖∇vn‖22 − 1

6S3 ‖∇vn‖62 + o(1)

≥ ‖∇vn‖22
(
a

2
− s20

6S3

)
+ o(1)

= ‖∇vn‖22
[
gc(s0) + μCqq

q
c(6−q)/4s(3q−10)/2

0

]
+ o(1). (3.32)

It follows from that ‖∇vn‖22 = o(1). Since ‖vn‖22 = o(1), we have ũn → ũ in H1(R3).
Hence,

‖ũ‖22 = c, ‖∇ũ‖22 ≤ s0, �(ũ) = m(c),

which, together with Lemma 3.4, implies ‖∇ũ‖22 < s0. Hence, Corollary 2.4 implies
that �|′Sc

(ũ) = 0, and so there exists a Lagrange multiplier λ̃c ∈ R such that

−
(
a + b‖∇ũ‖22

)
�ũ + λ̃cũ = ũ5 + μ|ũ|q−2ũ, x ∈ R

3.
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It is easy to verify that λ̃c > 0. Since ũ ≥ 0 and ũ �= 0, the strong maximum principle
implies that ũ > 0. ��
Lemma 3.7 Let 2 < q < 10

3 , μ > 0 and c ∈ (0, c0). Then m̂(c) is reached by
a positive, radially symmetric function, denoted ûc ∈ Sc ∩ As0 that satisfies, for a
λc ∈ R,

−
[
a + b2S3

2
+ b‖∇ûc‖22 + bS

2

√
b2S4 + 4

(
a + b‖∇ûc‖22

)S
]

�ûc + λcûc

= û5c + μ|ûc|q−2ûc. (3.33)

Proof Let {un} ⊂ Sc ∩ As0 be a minimizing sequence for m̂(c). It is not restrictive
to assume that {un} is radially decreasing for every n (if this is not the case, we can
replace un with |un|∗, the Schwarz rearrangement of |un|). Then by Lemma 3.4, we
have

‖un‖22 = c, ‖∇un‖22 < s0, �(un) = m̂(c) + o(1) < 0. (3.34)

Since {un} ⊂ H1
rad(R

3) is bounded, we may thus assume, passing to a subsequence if
necessary, that

⎧⎪⎨
⎪⎩
un⇀û, in H1

rad(R
3);

un → û, in Ls(R3), ∀ s ∈ (2, 6);
un → û, a.e. on R

3.

(3.35)

To prove the lemma, we split the proof into several steps.
Step 1. û �= 0. Otherwise, we have un → 0 in Ls(R3) for s ∈ (2, 6). It follows that

∫
R3

|un|qdx = o(1). (3.36)

From (1.8), (1.15), (3.1), (3.2), (3.34), (3.35) and (3.36), one has

m̂(c) + o(1) = �(un)

≥ a

2
‖∇un‖22 + b

4
‖∇un‖42 − 1

6
‖un‖66 − μ

q
‖un‖qq

≥ a

2
‖∇un‖22 − 1

6S3 ‖∇un‖62 + o(1)

≥ ‖∇un‖22
(
a

2
− s20

6S3

)
+ o(1)

= ‖∇un‖22
[
gc(s0) + μCqq

q
c(6−q)/4s(3q−10)/2

0

]
+ o(1)

≥ o(1). (3.37)
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This contradiction shows that û �= 0 due to m̂(c) < 0.
Step 2. Set vn := un − û. By (3.35), we have

‖∇un‖22 = ‖∇û‖22 + ‖∇vn‖22 + o(1) (3.38)

and

‖∇un‖42 = ‖∇û‖42 + ‖∇vn‖42 + 2‖∇û‖22‖∇vn‖22 + o(1). (3.39)

Hence, by (1.15), (3.38), (3.39), Lemma 3.1 (ii) and the Brezis-Lieb lemma, we have

�(un) ≥ �(û) + �(vn) + b

2
‖∇û‖22‖∇vn‖22 + o(1). (3.40)

Step 3. By (3.34) and (3.35), we have

‖vn‖22 = ‖un‖22 − ‖û‖22 + o(1) = c − ‖û‖22 + o(1). (3.41)

Now, we claim that ‖vn‖22 → 0. In order to prove this, let us denote c̃ := ‖û‖22 > 0.
By (3.41), if we show that c̃ = c then the claim follows. We assume by contradiction
that c̃ < c. In view of (3.38) and (3.41), for n ∈ N large enough, we have

αn := ‖vn‖22 ≤ c, ‖∇vn‖22 ≤ ‖∇un‖22 < s0. (3.42)

Hence, we obtain that

vn ∈ Sαn ∩ As0 , �(vn) ≥ m̂(αn) := inf
u∈Sαn∩As0

�(u). (3.43)

From (3.34), (3.40) and (3.43), we have

m̂(c) + o(1) = �(un)

≥ �(û) + �(vn) + b

2
‖∇û‖22‖∇vn‖22 + o(1)

≥ �(û) + m̂(αn) + b

2
‖∇û‖22‖∇vn‖22 + o(1). (3.44)

Since the map c �→ m̂(c) is continuous (see Lemma 3.6 (ii)) and (3.41), we deduce

m̂(c) ≥ �(û) + m̂(c − c̃). (3.45)

We also have that û ∈ Sc̃ ∩ As0 by the weak limit. This implies that �(û) ≥ m̂(c̃). If
�(û) > m̂(c̃), then

m̂(c) > m̂(c̃) + m̂(c − c̃) ≥ m̂(c),
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which is impossible. Hence, we have �(û) = m̂(c̃). So, using Lemma 3.6 (i) with the
strict inequality, we deduce from (3.45) that

m̂(c) ≥ m̂(c̃) + m̂(c − c̃) > m̂(c),

which is impossible. Thus, the claim follows and from (3.41) we deduce that ‖û‖22 = c
and so û ∈ Sc∩ As0 by the weak limit. It follows from (1.8), (3.1), (3.2), (3.34), (3.40),
(3.41) and �(û) ≥ m̂(c) that

o(1) ≥ �(vn) + b

2
‖∇û‖22‖∇vn‖22 + o(1)

≥ a

2
‖∇vn‖22 + b

4
‖∇vn‖42 − μ

q
‖vn‖qq − 1

6
‖vn‖66

≥ a

2
‖∇vn‖22 − 1

6S3 ‖∇vn‖62 + o(1)

≥ ‖∇vn‖22
(
a

2
− s20

6S3

)
+ o(1)

= ‖∇vn‖22
[
gc(s0) + μCqq

q
c(6−q)/4s(3q−10)/2

0

]
+ o(1). (3.46)

It follows from that ‖∇vn‖22 = o(1). Since ‖vn‖22 = o(1), we have un → û in
H1
rad(R

3). Hence,

‖û‖22 = c, ‖∇û‖22 ≤ s0, �(û) = m̂(c),

which, together with Lemma 3.4, implies ‖∇û‖22 < s0. Hence, Corollary 2.4 implies
that �|′Sc

(û) = 0, and so there exists a Lagrange multiplier λc ∈ R such that � ′(û)+
λcû = 0, which implies (3.33) holds with ûc = û. Since ûc ≥ 0 and ûc �= 0, the
strong maximum principle implies that ûc > 0. ��

Since � ′(ûc) + λcûc = 0, by a standard argument, we have the following lemma
immediately.

Lemma 3.8 Let 2 < q < 10
3 , μ > 0 and c ∈ (0, c0). Then there holds

[
a + b2S3

2
+ bS

2

√
b2S4 + 4

(
a + b‖∇ûc‖22

)S
]

‖∇ûc‖22

+ b‖∇ûc‖42 − ‖ûc‖66 − 3μ(q − 2)

2q
‖ûc‖qq = 0. (3.47)

To apply Lemma 2.5, we let E = H1
rad(R

3) and H = L2(R3). Define the norms of
E and H by
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‖u‖E :=
[∫

R3

(
|∇u|2 + u2

)
dx

]1/2
, ‖u‖H := 1√

c

(∫
R3

u2dx

)1/2

, ∀ u ∈ E .

(3.48)

After identifying H with its dual, we have E ↪→ H ↪→ E∗ with continuous injections.
Set

M :=
{
u ∈ E : ‖u‖22 =

∫
R3

u2dx = c

}
. (3.49)

Let us define a continuous map β : H1
rad(R

3) × R → H1(R3) by

β(v, t)(x) := e3t/2v(et x) for v ∈ H1
rad(R

3), ∀ t ∈ R, x ∈ R
3, (3.50)

and consider the following auxiliary functional:

�̃(v, t) := �(β(v, t))

= ae2t

2
‖∇v‖22 + be4t

4
‖∇v‖42 − e6t

6
‖v‖66 − μe3(q−2)t/2

q
‖v‖qq . (3.51)

We see that �̃ is of class C1, and for any (w, s) ∈ H1
rad(R

3) × R,

〈
�̃′(v, t), (w, s)

〉
=
〈
�̃′(v, t), (w, 0)

〉
+
〈
�̃′(v, t), (0, s)

〉

= e2t
(
a + e2t b‖∇v‖22

) ∫
R3

∇v · ∇wdx

+ e2t s
(
a + e2t b‖∇v‖22

)
‖∇v‖22

−
∫
R3

[
e6tv5w + μe3(q−2)t/2|v|q−2vw

]
dx

− s
∫
R3

[
e6tv6 + 3μ(q − 2)

2q
e3(q−2)t/2|v|q

]
dx

= 〈
�′(β(v, t)), β(w, t)

〉 + sP(β(v, t)). (3.52)

Let

u(x) := β(v, t)(x) = e3t/2v(et x), φ(x) := β(w, t)(x) = e3t/2w(et x).

(3.53)

Then

(u, φ)H = 1

c

∫
R3

u(x)φ(x)dx = 1

c

∫
R3

v(x)w(x)dx = (v,w)H . (3.54)
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This shows that

φ ∈ Tu(Sc) ⇔ (w, s) ∈ T̃(v,t)(Sc × R), ∀ t, s ∈ R. (3.55)

It follows from (3.52), (3.53) and (3.55) that

|P(u)| =
∣∣∣〈�̃′(v, t), (0, 1)

〉∣∣∣ ≤
∥∥∥�̃|′Sc×R

(v, t)
∥∥∥ (3.56)

and

∥∥∥�|′Sc
(u)

∥∥∥ = sup
φ∈Tu(Sc)

1

‖φ‖E
∣∣〈�′(u), φ

〉∣∣

= sup
φ∈Tu(Sc)

1√
‖∇φ‖22 + ‖φ‖22

∣∣〈�′(β(v, t)), β(w, t)
〉∣∣

= sup
φ∈Tu(Sc)

1√
‖∇φ‖22 + ‖φ‖22

∣∣∣〈�̃′(v, t), (w, 0)
〉∣∣∣

≤ sup
(w,0)∈T̃(v,t)(Sc×R)

e|t |

‖(w, 0)‖E×R

∣∣∣〈�̃′(v, t), (w, 0)
〉∣∣∣

≤ e|t |
∥∥∥�̃|′Sc×R

(v, t)
∥∥∥ . (3.57)

Lemma 3.9 Let 2 < q < 10
3 , μ > 0 and c ∈ (0, c0). Then there exists κ > 0 such

that

M(c) := inf
γ∈�c

max
t∈[0,1] �(γ (t)) ≥ κ > sup

γ∈�c

max {�(γ (0)),�(γ (1))} , (3.58)

where

�c =
{
γ ∈ C([0, 1],Sc ∩ H1

rad(R
3)) : γ (0) = ûc,�(γ (1)) < 2m(c)

}
. (3.59)

Proof Set κ := infu∈∂(Sc∩As0 ) �(u). By (3.5), κ > 0. Let γ ∈ �c be arbitrary. By
Lemma 3.7, γ (0) = ûc ∈ (Sc∩As0)\(∂(Sc∩As0)), and�(γ (1)) < 2m(c) < m(c) <

0, necessarily in view of (3.5), γ (1) /∈ Sc ∩ As0 . By continuity of γ (t) on [0, 1], there
exists a t0 ∈ (0, 1) such that γ (t0) ∈ ∂(Sc ∩ As0), and so maxt∈[0,1] �(γ (t)) ≥ κ .
Since �(γ (0)) = �(ûc) < �(ûc) = m̂(c) < 0. Thus, (3.58) holds. ��
Remark 3.10 In Lemma 3.9, one may wonder why the starting point of the path set
�c, defined by (3.59), is chosen as ûc (the solution of the auxiliary problem (3.33)),
rather than the solution of the original constraint problem (1.1) as we did previously
in the case of b = 0 ( [5, Lemma 4.2]). It is worth noting that when 2 < q < 10

3 ,
the new compactness threshold for the constraint problem (1.1) is m̂(c) + �∗, not
m(c) + �∗ as in the case of b = 0, as we mentioned in Remark 1.7 and subsequent
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remarks after it. Importantly, ûc is precisely the minimizer of m̂(c), which will be
crucial in our subsequent proof of Lemma 3.12 that the mountain pass level is below
the compactness threshold. Therefore, the solution of the original constraint problem
(1.1) is not suitable as the starting point of the path set. This reveals an essential
difference between the constraint problem (1.1) in the case of b = 0 and b > 0, and
also explains why the methods developed for the study of the case b = 0 cannot be
directly applied to the case b > 0.

Lemma 3.11 Let 2 < q < 10
3 , μ > 0 and c ∈ (0, c0). Then there exists a sequence

{un} ⊂ Sc ∩ H1
rad(R

3) such that

�(un) → M(c) > 0, �|′Sc
(un) → 0 and P(un) → 0. (3.60)

Proof By Lemma 3.7, ûc ∈ Sc ∩ H1
rad(R

3). Let �̃ be defined by (3.51),

�̃c :=
{
γ̃ ∈ C([0, 1], (Sc ∩ H1

rad(R
3)) × R) : γ̃ (0) = (ûc, 0), �̃(γ̃ (1)) < 2m(c)

}
(3.61)

and

M̃(c) := inf
γ̃∈�̃c

max
t∈[0,1] �̃(γ̃ (t)). (3.62)

For any γ̃ ∈ �̃c, it is easy to see that γ = β ◦ γ̃ ∈ �c defined by (3.59). By (3.58),
there exists κ ′

c > 0 such that

max
t∈[0,1] �̃(γ̃ (t)) = max

t∈[0,1] �(γ (t)) ≥ κc > κ ′
c > max {�(γ (0)),�(γ (1))}

= max
{
�̃(γ̃ (0)), �̃(γ̃ (1))

}
.

It follows that M̃(c) ≥ M(c), and

inf
γ̃∈�̃c

max
t∈[0,1] �̃(γ̃ (t)) ≥ κc > κ ′

c ≥ sup
γ̃∈�̃c

max
{
�̃(γ̃ (0)),�(γ̃ (1))

}
. (3.63)

This shows that (2.13) holds with ϕ̃ = �̃.
On the other hand, for any γ ∈ �c, let γ̃ (t) := (γ (t), 0). It is easy to verify that

γ̃ ∈ �̃c and �(γ (t)) = �̃(γ̃ (t)), and so, we trivially have M̃(c) ≤ M(c). Thus
M̃(c) = M(c).

For any n ∈ N, (3.59) implies that there exists γn ∈ �c such that

max
t∈[0,1] �(γn(t)) ≤ M(c) + 1

n
. (3.64)
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Set γ̃n(t) := (γn(t), 0). Then applying Lemma 2.5 to �̃, there exists a sequence
{(vn, tn)} ⊂ (Sc ∩ H1

rad(R
3)) × R satisfying

(i) M(c) − 2
n ≤ �̃(vn, tn) ≤ M(c) + 2

n ;
(ii) mint∈[0,1] ‖(vn, tn) − (γn(t), 0)‖E×R ≤ 2√

n
;

(iii)
∥∥∥�̃|′Sc×R

(vn, tn)
∥∥∥ ≤ 8√

n
.

Let un = β(vn, tn). It follows from (3.56), (3.57) and (i)–(iii) that (3.60) holds. ��

Now we define functions Un(x) := �n(|x |), where

�n(r) = 4
√
3

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
n

1+n2r2
, 0 ≤ r < 1;√

n
1+n2

(2 − r), 1 ≤ r < 2;
0, r ≥ 2.

(3.65)

Computing directly, we have

‖Un‖22 =
∫
R3

|Un |2dx = 4π
∫ +∞
0

r2|�n(r)|2dr

= 4
√
3π

[∫ 1

0

nr2(
1 + n2r2

)dr +
(

n

1 + n2

)∫ 2

1
r2(2 − r)2dr

]

= 4
√
3π

[
n − arctan n

n2
+ 8

15

(
n

1 + n2

)]
= O

(
1

n

)
, n → ∞,

(3.66)

‖∇Un‖22 =
∫
R3

|∇Un |2dx = 4π
∫ +∞
0

r2|�′
n(r)|2dr

= 4
√
3π

[∫ 1

0

n5r4(
1 + n2r2

)3 dr + n

1 + n2

∫ 2

1
r2dr

]

= S3/2 + 4
√
3π

[
−
∫ +∞
n

s4(
1 + s2

)3 ds + 7n

3(1 + n2)

]

= S3/2 + O

(
1

n

)
, n → ∞ (3.67)

and

‖Un‖66 =
∫
R3

|Un|6dx = 4π
∫ +∞

0
r2|�n(r)|6dr

= 12
√
3π

[∫ 1

0

n3r2(
1 + n2r2

)3 dr +
(

n

1 + n2

)3 ∫ 2

1
r2(2 − r)6dr

]
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= 12
√
3π

[∫ n

0

s2(
1 + s2

)3 ds +
(

n

1 + n2

)3 ∫ 1

0
s6(2 − s)2ds

]

= S3/2 + O

(
1

n3

)
, n → ∞. (3.68)

Both (3.66) and (3.67) imply that Un ∈ H1
rad(R

3).

Lemma 3.12 Let 2 < q < 10
3 , μ > 0 and c ∈ (0, c0). Then there holds:

M(c) < m̂(c) + �∗. (3.69)

Proof Let ûc ∈ Sc ∩ H1
rad(R

3) be given in Lemma 3.7. Then by Lemmas 3.7 and 3.8,
we have

‖ûc‖22 = c, �(ûc) = m̂(c), λc‖ûc‖22 = μ(6 − q)

2q
‖ûc‖qq , ûc(x) > 0, ∀ x ∈ R

3

(3.70)

and

[
a + b2S3

2
+ b‖∇ûc‖22 + bS

2

√
b2S4 + 4

(
a + b‖∇ûc‖22

)S
] ∫

R3
∇ûc · ∇Undx

=
∫
R3

(
û5c + μûq−1

c − λcûc
)
Undx . (3.71)

Set B := inf |x |≤1 ûc(x). Then B > 0. Hence, it follows from (3.65), (3.66) and (3.71)
that

∫
R3

ûcUndx = O

(
1√
n

)
, n → ∞, (3.72)

∣∣∣∣
∫
R3

∇ûc · ∇Undx

∣∣∣∣ =
∣∣∣∣
∫
R3

Un�ûcdx

∣∣∣∣ = O

(
1√
n

)
, n → ∞, (3.73)

∫
R3

ûq−1
c Undx ≤

[∫
R3

û2(q−1)
c dx

∫
|x |≤2

U 2
n dx

] 1
2 = O

(
1√
n

)
, n → ∞

(3.74)

and

∫
R3

ûcU
5
n dx ≥ 4πB

∫ 1

0
r2|�n(r)|5dr
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= 12π 4
√
3B

∫ 1

0

n5/2r2(
1 + n2r2

)5/2 dr

≥ 12π 4
√
3B√

n

∫ 1

0

s2(
1 + s2

)5/2 ds := B0√
n
. (3.75)

By (3.66) and (3.70), one has

‖ûc + tUn‖22 = c + t2‖Un‖22 + 2t
∫
R3

ûcUndx

= c + 2t
∫
R3

ûcUndx + t2
[
O

(
1

n

)]
, n → ∞. (3.76)

Let τ = τn,t := ‖ûc + tUn‖2/√c. Then

τ 2 = 1 + 2t

c

∫
R3

ûcUndx + t2
[
O

(
1

n

)]
, n → ∞. (3.77)

Now, we define

Wn,t (x) := √
τ [ûc(τ x) + tUn(τ x)]. (3.78)

Then one has

‖∇Wn,t‖22 = ‖∇(ûc + tUn)‖22, ‖Wn,t‖66 = ‖ûc + tUn‖66 (3.79)

and

‖Wn,t‖22 = τ−2‖ûc + tUn‖22 = c, ‖Wn,t‖qq = τ (q−6)/2‖ûc + tUn‖qq . (3.80)

Set

t2∗ = 1

2

[
bS 3

2 +
√
b2S3 + 4

(
a + b‖∇ûc‖22

)]
. (3.81)

Then (3.71) can be rewritten as

(
a + b‖∇ûc‖22 + bS 3

2 t2∗
) ∫

R3
∇ûc · ∇Undx =

∫
R3

(
û5c + μ|ûc|q−2ûc − λcûc

)
Undx .

(3.82)

By (1.9) and (3.81), we can deduce
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S 3
2

[(
a + b‖∇ûc‖22

)
2

t2 + bS 3
2

4
t4 − 1

6
t6
]

< S 3
2

[(
a + b‖∇ûc‖22

)
2

t2∗ + bS 3
2

4
t4∗ − 1

6
t6∗

]

= S 3
2

[(
a + b‖∇ûc‖22

)
3

t2∗ + bS 3
2

12
t4∗

]

=
(
a + b‖∇ûc‖22

)
6

S 3
2

[
bS 3

2 +
√
b2S3 + 4

(
a + b‖∇ûc‖22

)]

+ bS3

48

[
bS 3

2 +
√
b2S3 + 4

(
a + b‖∇ûc‖22

)]2

= bS3
(
a + b‖∇ûc‖22

)
4

+ b3S6

24
+

[
b2S4 + 4

(
a + b‖∇ûc‖22

)S] 3
2

24

= �∗ + (b2S4 + 4aS)
3
2

24

[(
1 + 4b

b2S3 + 4a
‖∇ûc‖22

) 3
2 − 1

]

+ b2S3

4
‖∇ûc‖22,∀ t ∈ (0, t∗) ∪ (t∗,+∞). (3.83)

It is easy to verify that

(1 + t)p ≥ 1 + pt + pt p−1 + t p, ∀p ≥ 3, t ≥ 0 (3.84)

and

(1 + t)p ≥ 1 + pt p−1 + t p, ∀p ≥ 2, t ≥ 0. (3.85)

From (1.2), (1.15), (3.66)–(3.68), (3.70) and (3.72)–(3.85), we have

�(Wn,t )

= a

2
‖∇Wn,t‖22 + b

4
‖∇Wn,t‖42 − 1

6
‖Wn,t‖66 − μ

q
‖Wn,t‖qq

= a

2
‖∇(ûc + tUn)‖22 + b

4
‖∇(ûc + tUn)‖42 − 1

6
‖ûc + tUn‖66 − μτ(q−6)/2

q
‖ûc + tUn‖qq

≤ a

2
‖∇ûc‖22 + b

4
‖∇ûc‖42 − 1

6
‖ûc‖66 − μτ(q−6)/2

q
‖ûc‖qq + at2

2
‖∇Un‖22

+ bt4

4
‖∇Un‖42 − t6

6
‖Un‖66 − t

∫
R3

û5cUndx − t5
∫
R3

ûcU
5
n dx

− μτ(q−6)/2t
∫
R3

ûq−1
c Undx + bt2

2
‖∇ûc‖22‖∇Un‖22

+
(
a + b‖∇ûc‖22 + bt2‖∇Un‖22

)
t
∫
R3

∇ûc · ∇Undx + bt2
(∫

R3
∇ûc · ∇Undx

)2
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= a

2
‖∇ûc‖22 + b

4
‖∇ûc‖42 − 1

6
‖ûc‖66 − μ

q
‖ûc‖qq + at2

2
‖∇Un‖22 + bt4

4
‖∇Un‖42 − t6

6
‖Un‖66

+
μ
(
1 − τ (q−6)/2

)
q

‖ûc‖qq + μ
(
1 − τ (q−6)/2

)
t
∫
R3

ûq−1
c Undx − λct

∫
R3

ûcUndx

+ bt2

2
‖∇ûc‖22‖∇Un‖22 + b

(
t2‖∇Un‖22 − t2∗S

3
2

)
t
∫
R3

∇ûc · ∇Undx − t5
∫
R3

ûcU
5
n dx

+ t2
[
O

(
1

n

)]

≤ a

2
‖∇ûc‖22 + b

4
‖∇ûc‖42 − 1

6
‖ûc‖66 − μ

q
‖ûc‖qq + S 3

2

⎡
⎣
(
a + b‖∇ûc‖22

)
2

t2 + bS 3
2

4
t4 − 1

6
t6

⎤
⎦

+ μ‖ûc‖qq
q

{
1 −

[
1 + 2t

c

∫
R3

ûcUndx + t2
(
O

(
1

n

))](q−6)/2
}

− λct
∫
R3

ûcUndx

+ μ

{
1 −

[
1 + 2t

c

∫
R3

ûcUndx + t2
(
O

(
1

n

))](q−6)/2
}
t
∫
R3

ûq−1
c Undx

+ bS 3
2
(
t2 − t2∗

)
t
∫
R3

∇ûc · ∇Undx − t5
∫
R3

ûcU
5
n dx +

(
t2 + t6

) [
O

(
1

n

)]

≤ a

2
‖∇ûc‖22 + b

4
‖∇ûc‖42 − 1

6
‖ûc‖66 − μ

q
‖ûc‖qq + S 3

2

⎡
⎣
(
a + b‖∇ûc‖22

)
2

t2 + bS 3
2

4
t4 − 1

6
t6

⎤
⎦

− B0t
5

√
n

+ bS 3
2
(
t2 − t2∗

)
t

[
O

(
1√
n

)]
+
(
t2 + t6

) [
O

(
1

n

)]
(3.86)

≤ �∗ + (b2S4 + 4aS)
3
2

24

⎡
⎣
(
1 + 4b

b2S3 + 4a
‖∇ûc‖22

) 3
2 − 1

⎤
⎦ +

(
a

2
+ b2S3

4

)
‖∇ûc‖22

+ b

4
‖∇ûc‖42 − 1

6
‖ûc‖66 − μ

q
‖ûc‖qq − O

(
1√
n

)

= �∗ + �(ûc) − O

(
1√
n

)

= m̂(c) + �∗ − O

(
1√
n

)
, ∀ t > 0. (3.87)

Hence, it follows from (3.87) that there exists n̄ ∈ N such that

sup
t>0

�(Wn̄,t ) < m̂(c) + �∗. (3.88)

Next, we prove that (3.69) holds. Let n̄ ∈ N be given in (3.88). By (3.76), (3.78),
(3.79) and (3.80), we have

Wn̄,t (x) := τ̄ 1/2[ûc(τ̄ x) + tUn̄(τ x)], ‖Wn̄,t‖22 = c (3.89)

and
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‖∇Wn̄,t‖22 = ‖∇(ûc + tUn̄)‖22
= ‖∇ûc‖22 + t2‖∇Un̄‖22 + 2t

∫
R3

∇ûc · ∇Un̄dx, (3.90)

where

τ̄ 2 = ‖ûc + tUn̄‖22/c = 1 + 2t

c

∫
R3

ûcUn̄dx + t2‖Un̄‖22. (3.91)

It follows from (3.86), (3.89) and (3.90) that Wn̄,t ∈ Sc for all t > 0, Wn̄,0 = ûc and
�(Wn̄,t ) < 2m(c) for large t > 0. Thus, there exists t̂ > 0 such that

�(Wn̄,t̂ ) < 2m(c). (3.92)

Let γn̄(t) := Wn̄,t t̂ . Then γn̄ ∈ �c defined by (3.59). Hence, it follows from (3.58)
and (3.88) that (3.69) holds. ��
Proof of Theorems 1.2 In view of Lemmas 3.11 and 3.12, there exists {un} ⊂ Sc ∩
H1
rad(R

3) such that

‖un‖22 = c, �(un) → M(c) ∈ (0, m̂(c) + �∗), �|′Sc
(un) → 0, P(un) → 0.

(3.93)

It follows from (1.2), (1.17) and (3.93) that

M(c) + o(1) = a

2
‖∇un‖22 + b

4
‖∇un‖42 − 1

6
‖un‖66 − μ

q
‖un‖qq (3.94)

and

o(1) = a‖∇un‖22 + b‖∇un‖42 − ‖un‖66 − 3μ(q − 2)

2q
‖un‖qq . (3.95)

Both (3.94) and (3.95), together with (1.16), show that

M(c) + o(1) = a

3
‖∇un‖22 + b

12
‖∇un‖42 − μ(6 − q)

4q
‖un‖qq

≥ a

3
‖∇un‖22 + b

12
‖∇un‖42 − μ(6 − q)

4q
Cqq c(6−q)/4‖∇un‖3(q−2)/2

2 .

(3.96)

Since 2 < q < 10
3 , it follows that {‖un‖} is bounded. By Lemma 2.2, one has

�′(un) + λnun → 0, (3.97)

123



S. Chen, X. Tang

where

− λn = 1

‖un‖22
〈�′(un), un〉 = 1

c

[(
a + b‖∇un‖22

)
‖∇un‖22 − μ‖un‖qq − ‖un‖66

]
.

(3.98)

Since {‖un‖} is bounded, it follows from (3.98) that {|λn|} is also bounded. Thus, we
may thus assume, passing to a subsequence if necessary, that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λn → λc, ‖∇un‖22 → A2;
un⇀ū, in H1

rad(R
3);

un → ū, in Ls(R3), ∀ s ∈ (2, 6);
un → ū, a.e. on R3.

(3.99)

First, we prove that ū �= 0. Otherwise, we assume that ū = 0. Then ‖un‖qq → 0. It
follows from (3.95) that

o(1) = a‖∇un‖22 + b‖∇un‖42 − ‖un‖66. (3.100)

Up to a subsequence, we assume that

‖∇un‖22 → l̂1 ≥ 0, ‖un‖66 → l̂2 ≥ 0. (3.101)

Then it follows from (1.8), (3.100) and (3.101) that al̂1 +bl̂21 = l̂2 ≤ S−3l̂31 . If l̂1 > 0,
an elementary calculation yields that

l̂1 ≥ S
2

[
bS2 +

√
b2S4 + 4aS

]
. (3.102)

From (3.94), (3.100), (3.101) and (3.102), we obtain

M(c) + o(1) = a

2
‖∇un‖22 + b

4
‖∇un‖42 − 1

6
‖un‖66

= a

3
‖∇un‖22 + b

12
‖∇un‖42

≥ abS3

4
+ b3S6

24
+

(
b2S4 + 4aS)3/2

24
+ o(1) = �∗ + o(1),

which contradicts with (3.93). Thus, ‖∇un‖22 → 0, and so it follows from (3.94) that
M(c) = 0, which contradicts with (3.93) also. Therefore, ū �= 0.

Define I (u) as follows:

I (u) := a + bA2

2
‖∇u‖22 − 1

6
‖u‖66 − μ

q
‖u‖qq . (3.103)
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By (3.97), (3.98), (3.99) and (3.103) and a standard argument, we can deduce

I ′(ū) + λcū = 0. (3.104)

It follows that
(
a + bA2

)
‖∇ū‖22 + λc‖ū‖22 − μ‖ū‖qq − ‖ū‖66 = 0. (3.105)

By the Pohozaev type identity for the functional (3.103), one has

(
a + bA2

)
‖∇ū‖22 + 3λc‖ū‖22 − 6μ

q
‖ū‖qq − ‖ū‖66 = 0. (3.106)

Combining (3.105) with (3.106), one has

PI (ū) := (a + bA2)‖∇ū‖22 − ‖ū‖66 − 3μ(q − 2)

2q
‖ū‖qq = 0 (3.107)

and

λc‖ū‖22 = μ(6 − q)

2q
‖ū‖qq . (3.108)

Let vn := un − ū. Then vn⇀0 in H1
rad(R

3) and vn → 0 in Ls(R3) for all s ∈ (2, 6).
Using Brezis–Lieb lemma, one has

⎧⎪⎨
⎪⎩

‖vn‖22 = ‖un‖22 − ‖ū‖22 + o(1);
‖vn‖66 = ‖un‖66 − ‖ū‖66 + o(1);
A2 = ‖∇un‖22 + o(1) = ‖∇ū‖22 + ‖∇vn‖22 + o(1).

(3.109)

From (3.95), (3.107), and (3.109), we deduce

o(1) =
(
a + b‖∇un‖22

)
‖∇un‖22 − ‖un‖66 − 3μ(q − 2)

2q
‖un‖qq

=
(
a + bA2

)
‖∇ū‖22 − ‖ū‖66 − 3μ(q − 2)

2q
‖ū‖qq

+
(
a + bA2

)
‖∇vn‖22 − ‖vn‖66 + o(1)

=
(
a + bA2

)
‖∇vn‖22 − ‖vn‖66 + o(1)

=
(
a + b‖∇ū‖22

)
‖∇vn‖22 + b‖∇vn‖42 − ‖vn‖66 + o(1). (3.110)

Up to a subsequence, we assume that

‖∇vn‖22 → l1 ≥ 0, ‖vn‖66 → l2 ≥ 0. (3.111)
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Then it follows from (3.110) and (3.111) that

(
a + b‖∇ū‖22

)
l1 + bl21 = l2. (3.112)

If l1 > 0, by (1.8), (3.111) and (3.112), we have

l1 ≥ S
[(

a + b‖∇ū‖22
)
l1 + bl21

]1/3
,

which implies

l1 ≥ S
2

[
bS2 +

√
b2S4 + 4

(
a + b‖∇ū‖22

)S
]

. (3.113)

From (1.2), (3.94), (3.109) and (3.110), we obtain

M(c) + o(1) = a

2
‖∇un‖22 + b

4
‖∇un‖42 − 1

6
‖un‖66 − μ

q
‖un‖qq

= a

2
‖∇vn‖22 + b

4
‖∇vn‖42 − 1

6
‖vn‖66 + b

2
‖∇ū‖22‖∇vn‖22 + �(ū) + o(1)

= a

3
‖∇vn‖22 + b

12
‖∇vn‖42 + b

3
‖∇ū‖22‖∇vn‖22 + �(ū) + o(1).

(3.114)

There are two cases to distinguish.
Case 1). ‖∇ū‖22 < s0. Then it follows from Lemmas 3.4 and 3.6 that

�(ū) ≥ m̂(‖ū‖22) ≥ m̂(c). (3.115)

From (1.15), (3.111), (3.113), (3.114) and (3.115), we obtain

M(c) + o(1)

= a

3
‖∇vn‖22 + b

12
‖∇vn‖42 + b

3
‖∇ū‖22‖∇vn‖22 + �(ū) + o(1)

= a + b‖∇ū‖22
3

l1 + b

12
l21 + �(ū) + o(1)

≥ (a + b‖∇ū‖22)S
6

[
bS2 +

√
b2S4 + 4

(
a + b‖∇ū‖22

)S
]

+bS2

48

[
bS2 +

√
b2S4 + 4

(
a + b‖∇ū‖22

)S
]2

+ �(ū) + o(1)

=abS3

4
+ b3S6

24
+

[
b2S4 + 4

(
a + b‖∇ū‖22

)S]3/2
24

+ b2S3

4
‖∇ū‖22 + �(ū) + o(1)

= abS3

4
+ b3S6

24
+

(
b2S4 + 4aS)3/2

24
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+ (b2S4 + 4aS)
3
2

24

[(
1 + 4b

b2S3 + 4a
‖∇ū‖22

) 3
2 − 1

]

+
(
a

2
+ b2S3

4

)
‖∇ū‖22 + b

4
‖∇ū‖42 − 1

6
‖ū‖66 − μ

q
‖ū‖qq + o(1)

= �∗ + �(ū) + o(1) ≥ �∗ + m̂(c) + o(1),

which contradicts with (3.93).
Case 2). ‖∇ū‖22 ≥ s0. Then it follows from (1.2), (1.12), (1.16), (3.107), (3.109),

(3.111) and (3.114) that

M(c) + o(1)

= a

3
‖∇vn‖22 + b

12
‖∇vn‖42 + b

3
‖∇ū‖22‖∇vn‖22 + �(ū) + o(1)

= a

3
‖∇vn‖22 + b

12
‖∇vn‖42 + b

6
‖∇ū‖22‖∇vn‖22 + a

3
‖∇ū‖22 + b

12
‖∇ū‖42

− μ(6 − q)

4q
‖ū‖qq + o(1)

= 2a + b‖∇ū‖22
6

l1 + b

12
l21 + a

3
‖∇ū‖22 + b

12
‖∇ū‖42 − μ(6 − q)

4q
‖ū‖qq + o(1)

≥ (2a + b‖∇ū‖22)S
12

[
bS2 +

√
b2S4 + 4

(
a + b‖∇ū‖22

)S
]

+bS2

48

[
bS2 +

√
b2S4 + 4

(
a + b‖∇ū‖22

)S
]2

+ a

3
‖∇ū‖22 + b

12
‖∇ū‖42

−μ(6 − q)

4q
‖ū‖qq + o(1)

= abS3

4
+ b3S6

24
+ b2S4 + 2

(
2a + b‖∇ū‖22

)S
24

√
b2S4 + 4

(
a + b‖∇ū‖22

)S
+
(
a

3
+ b2S3

6

)
‖∇ū‖22 + b

12
‖∇ū‖42 − μ(6 − q)

4q
‖ū‖qq + o(1)

≥ abS3

4
+ b3S6

24
+

(
b2S4 + 4aS)3/2

24

+
(
a

3
+ b2S3

6
+ bS

√
b2S4 + 4(a + bs0)S

12

)
‖∇ū‖22

+ b

12
‖∇ū‖42 − μ(6 − q)

4q
‖ū‖qq + o(1)

≥ �∗ +
(
a

3
+ b2S3

6
+ bS

√
b2S4 + 4(a + bs0)S

12

)
‖∇ū‖22 + b

12
‖∇ū‖42

− μ(6 − q)

4q
Cqq c(6−q)/4‖∇ū‖3(q−2)/2

2 + o(1)
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≥ �∗ +
[(

a

3
+ b2S3

6
+ bS

√
b2S4 + 4(a + bs0)S

12

)
s(10−3q)/4
0 + b

12
s(14−3q)/4
0

−μ(6 − q)

4q
Cqq c(6−q)/4

]
‖∇ū‖3(q−2)/2

2 + o(1)

≥ �∗ + o(1),

which contradicts with (3.93). Both Cases 1) and 2) show that l1 = 0, i.e. ‖∇vn‖ → 0,
and so

‖∇un‖22 → ‖∇ū‖22, ‖un‖66 → ‖ū‖66. (3.116)

Now from (1.2), (3.93), (3.94), (3.97), (3.98), (3.99), (3.105), (3.108) and (3.116), it
is easy to deduce that

λc > 0, ‖ū‖22 = c, �′(ū) + λcū = 0, �(ū) = M(c).

��

4 The case when 10
3 ≤ q < 14

3

In this section, we study the case 10
3 ≤ q < 14

3 , and finish the proof of Theorem 1.3.

Lemma 4.1 Let 10
3 ≤ q < 14

3 , μ > 0 and c ∈ (0, c2]. Then
(i) there exist ϑ ′

c > ϑc > 0 such that �(u) > 0 if u ∈ Aϑ ′
c
, and

0 < sup
u∈Aϑc

�(u) < inf
{
�(u) : u ∈ Sc, ‖∇u‖22 = ϑ ′

c

}
, (4.1)

where

Aϑc =
{
u ∈ Sc : ‖∇u‖22 < ϑc

}
and Aϑ ′

c
=
{
u ∈ Sc : ‖∇u‖22 < ϑ ′

c

}
; (4.2)

(ii) �̂c = {γ ∈ C([0, 1],Sc ∩ H1
rad(R

3)) : ‖∇γ (0)‖22 < ϑc,�(γ (1)) < 0} �= ∅ and

M̂(c) := inf
γ∈�̂c

max
t∈[0,1] �(γ (t)) ≥ κ̂c := inf

{
�(u) : u ∈ Sc, ‖∇u‖22 = ϑ ′

c

}

> max
γ∈�̂c

max{�(γ (0)),�(γ (1))}. (4.3)

Proof (i) We distinguish two cases.
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Case 1). 10
3 < q < 14

3 . In this case, one has 0 <
3q−10

2 < 2. By (1.2), (1.8) and
(1.16), one has

�(u) = a

2
‖∇u‖22 + b

4
‖∇u‖42 − μ

q
‖u‖qq − 1

6
‖u‖66

≤ ‖∇u‖22
(
a

2
+ b

4
‖∇u‖22

)
, ∀ u ∈ Sc (4.4)

and

�(u) = a

2
‖∇u‖22 + b

4
‖∇u‖42 − μ

q
‖u‖qq − 1

6
‖u‖66

≥ ‖∇u‖22
[
a

2
− μc(6−q)/4Cqq

q
‖∇u‖(3q−10)/2

2 − 1

6S3 ‖∇u‖42
]

, ∀ u ∈ Sc.

Since 0 <
3q−10

2 < 2, the above inequalities show that there exist ϑ ′
c > ϑc > 0 such

that (i) holds.
Case 2). q = 10

3 . By (1.2), (1.8) and (1.16), one has

�(u) = a

2
‖∇u‖22 + b

4
‖∇u‖42 − 3μ

10
‖u‖10/310/3 − 1

6
‖u‖66

≥ ‖∇u‖22
(
a

2
+ b

4
‖∇u‖22 − 3μ

10
C10/310/3c

2/3 − 1

6S3 ‖∇u‖42
)

, ∀ u ∈ Sc.

Since c ≤ c2, the above inequality and (4.4) show that there exist ϑ ′
c > ϑc > 0 such

that (i) holds also.
(ii) For any givenw ∈ Sc ∩H1

rad(R
3), we have ‖t3/2wt‖2 = ‖w‖2, and so t3/2wt ∈

Sc ∩ H1
rad(R

3) for every t > 0. Then (1.2) yields

�
(
t3/2wt

)
= at2

2
‖∇w‖22 + bt4

4
‖∇w‖42 − μt3(q−2)/2

q
‖w‖qq

− t6

6
‖w‖66 → −∞ as t → +∞. (4.5)

Thus we can deduce that there exist t1 > 0 small enough and t2 > 0 large enough
such that

∥∥∥∇ (
t3/21 wt1

)∥∥∥2
2

= t21‖∇w‖22 < ϑc, and �
(
t3/22 wt2

)
< 0. (4.6)

Let γ0(t) := [t1 + (t2 − t1)t]3/2wt1+(t2−t1)t . Then γ0 ∈ �̂c, and so �̂c �= ∅. Now using
the intermediate value theorem, for any γ ∈ �̂c, there exists t0 ∈ (0, 1), depending on
γ , such that ‖∇γ (t0)‖22 = ϑ ′

c and

max
t∈[0,1] �(γ (t)) ≥ �(γ (t0)) ≥ inf

{
�(u) : u ∈ Sc, ‖∇u‖22 = ϑ ′

c

}
,
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which, together with the arbitrariness of γ ∈ �̂c, implies

M̂(c) = inf
γ∈�̂

max
t∈[0,1] �(γ (t)) ≥ inf

{
�(u) : u ∈ Sc, ‖∇u‖22 = ϑ ′

c

}
. (4.7)

Hence, (4.3) follows directly from (4.1) and (4.7), and the proof is completed. ��
Lemma 4.2 Let 10

3 ≤ q < 14
3 , μ > 0 and c ∈ (0, c2]. Then there exists a sequence

{un} ⊂ Sc ∩ H1
rad(R

3) such that

�(un) → M̂(c) > 0, �|′Sc
(un) → 0 and P(un) → 0. (4.8)

Proof Let �̃ be defined by (3.51),

�̃c :=
{
γ̃ ∈ C([0, 1], (Sc ∩ H1

rad(R
3)) × R) : γ̃ (0) = (γ̃1(0), 0), ‖∇γ̃1(0)‖22 < ϑc,

�̃(γ̃ (1)) < 0
}

(4.9)

and

M̃(c) := inf
γ̃∈�̃c

max
t∈[0,1] �̃(γ̃ (t)). (4.10)

For any γ̃ ∈ �̃c, it is easy to see that γ = β ◦ γ̃ ∈ �̂c. By (4.3), there exists κ̂ ′
c ∈ (0, κ̂c)

such that

max
t∈[0,1] �̃(γ̃ (t)) = max

t∈[0,1] �(γ (t)) ≥ κ̂c > κ̂ ′
c > max {�(γ (0)),�(γ (1))}

= max
{
�̃(γ̃ (0)), �̃(γ̃ (1))

}
.

It follows that M̃(c) ≥ M̂(c), and

inf
γ̃∈�̃c

max
t∈[0,1] �̃(γ̃ (t)) ≥ κc > κ ′

c ≥ sup
γ̃∈�̃c

max
{
�̃(γ̃ (0)), �̃(γ̃ (1))

}
. (4.11)

This shows that (2.13) holds with ϕ̃ = �̃.
On the other hand, for any γ ∈ �̂c, let γ̃ (t) := (γ (t), 0). It is easy to verify that

γ̃ ∈ �̃c and �(γ (t)) = �̃(γ̃ (t)), and so, we trivially have M̃(c) ≤ M̂(c). Thus
M̃(c) = M̂(c).

For any n ∈ N, (4.3) implies that there exists γn ∈ �̂c such that

max
t∈[0,1] �(γn(t)) ≤ M̂(c) + 1

n
. (4.12)

Set γ̃n(t) := (γn(t), 0). Then applying Lemma 2.5 to �̃, there exists a sequence
{(vn, tn)} ⊂ (Sc ∩ H1

rad(R
3)) × R satisfying
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(i) M̂(c) − 2
n ≤ �̃(vn, tn) ≤ M̂(c) + 2

n ;
(ii) mint∈[0,1] ‖(vn, tn) − (γn(t), 0)‖E×R ≤ 2√

n
;

(iii)
∥∥∥�̃|′Sc×R

(vn, tn)
∥∥∥ ≤ 8√

n
.

Let un = β(vn, tn). It follows from (3.56), (3.57) and (i)–(iii) that (4.8) holds. ��
Next, we give a precise estimation for the energy level M̂(c) given by (4.3) when

10
3 ≤ q < 14

3 . To this end, for any fixed c > 0, we choose max{(14 − 3q)/8, 0} <

α < 1 and Rn > nα to be such that

c = 4
√
3π

{
n1+α − arctan

(
n1+α

)
n2

+ R5
nn − [10R2

n − 15Rnnα + 6n2α]n1+3α

30(Rn − nα)2(1 + n2(1+α))

}
.

(4.13)

From (4.13), one can deduce that

lim
n→∞

Rn

n(1+2α)/3
= 3

√
15c

2
√
3π

. (4.14)

Now, we define function Ũn(x) := �̃n(|x |), where

�̃n(r) = 4
√
3

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
n

1+n2r2
, 0 ≤ r < nα;√

n
1+n2(1+α)

Rn−r
Rn−nα , nα ≤ r < Rn;

0, r ≥ Rn .

(4.15)

Computing directly, we have

‖Ũn‖22 =
∫
R3

|Ũn |2dx = 4π
∫ +∞
0

r2|�̃n(r)|2dr

= 4
√
3π

[∫ nα

0

nr2

1 + n2r2
dr + n

1 + n2(1+α)

∫ Rn

nα

r2(Rn − r)2

(Rn − nα)2
dr

]

= 4
√
3π

{
1

n2

∫ n1+α

0

s2

1 + s2
ds + n

1 + n2(1+α)

R5
n − [10R2

n − 15Rnnα + 6n2α]n3α
30(Rn − nα)2

}

= 4
√
3π

⎧⎨
⎩
n1+α − arctan

(
n1+α

)
n2

+ R5
nn − [10R2

n − 15Rnnα + 6n2α]n1+3α

30(Rn − nα)2(1 + n2(1+α))

⎫⎬
⎭

= c, (4.16)

‖∇Ũn‖22 =
∫
R3

|∇Ũn |2dx = 4π
∫ +∞
0

r2|�̃′
n(r)|2dr

= 4
√
3π

[∫ nα

0

n5r4(
1 + n2r2

)3 dr + n

1 + n2(1+α)

∫ Rn

nα

r2

(Rn − nα)2
dr

]

= 4
√
3π

[∫ n1+α

0

s4(
1 + s2

)3 ds + R3
n − n3α

3(Rn − nα)2
n

1 + n2(1+α)

]
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= S 3
2 + 4

√
3π

[
−
∫ +∞
n1+α

s4(
1 + s2

)3 ds + n(R3
n − n3α)

3(Rn − nα)2(1 + n2(1+α))

]

= S 3
2 + O

(
1

n2(1+2α)/3

)
, n → ∞, (4.17)

‖Ũn‖66 =
∫
R3

|Ũn |6dx = 4π
∫ +∞
0

r2|�̃n(r)|6dr

= 12
√
3π

[∫ nα

0

n3r2(
1 + n2r2

)3 dr +
(

n

1 + n2(1+α)

)3 ∫ Rn

nα

r2(Rn − r)6

(Rn − nα)6
dr

]

= 12
√
3π

[∫ n1+α

0

s2(
1 + s2

)3 ds +
(

n

1 + n2(1+α)

)3 ∫ Rn−nα

0

s6(Rn − s)2

(Rn − nα)6
ds

]

= S 3
2 + 12

√
3π

[
−
∫ +∞
n1+α

s2(
1 + s2

)3 ds

+R3
n

(
n

1 + n2(1+α)

)3 ∫ 1−nα/Rn

0

s6(1 − s)2

(1 − nα/Rn)6
ds

]

= S 3
2 + O

(
1

n2(1+2α)

)
, n → ∞ (4.18)

and

‖Ũn‖qq =
∫
R3

|Ũn|qdx = 4π
∫ +∞

0
r2|�̃n(r)|qdr

≥ 4 · 3q/4π

∫ nα

0

nq/2r2(
1 + n2r2

)q/2 dr

≥ 4 · 3q/4π

n(6−q)/2

∫ 1

0

s2(
1 + s2

)q/2 ds := K0

n3−q/2 . (4.19)

Both (4.16) and (4.18) imply that Ũn ∈ Sc.

Lemma 4.3 Let 10
3 ≤ q < 6, μ > 0 and c > 0. Then there exists n̄ ∈ N such that

sup
t>0

�
(
t3/2(Ũn̄)t

)
< �∗. (4.20)

Proof Set

t2∗∗ = 1

2

[
bS 3

2 +
√
b2S3 + 4a

]
. (4.21)

By (1.9) and (4.21), we can deduce

S 3
2

2

(
at2 + bS 3

2

2
t4 − 1

3
t6
)

<
S 3

2

2

(
at2∗∗ + bS 3

2

2
t4∗∗ − 1

3
t6∗∗

)

= �∗, ∀ t ∈ (0, t∗∗) ∪ (t∗∗,+∞). (4.22)
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From (1.2), (4.17), (4.18) and (4.19), we have

�
(
t3/2(Ũn)t

)
= at2

2
‖∇Ũn‖22 + bt4

4
‖∇Ũn‖42 − μt3(q−2)/2

q
‖Ũn‖qq − t6

6
‖Ũn‖66

≤ at2

2

[
S 3

2 + O

(
1

n2(1+2α)/3

)]
+ bt4

4

[
S 3

2 + O

(
1

n2(1+2α)/3

)]2

− t6

6

[
S 3

2 + O

(
1

n2(1+2α)

)]
− K0μt3(q−2)/2

qn3−q/2

= S 3
2

2

(
at2 + bS 3

2

2
t4 − 1

3
t6
)

+ 2at2 + bt4

4

[
O

(
1

n2(1+2α)/3

)]

− t6

6

[
O

(
1

n2(1+2α)

)]
− K0μt3(q−2)/2

qn3−q/2 , ∀ t > 0. (4.23)

Hence, it follows from (4.22), (4.23) and the fact max{(14 − 3q)/8, 0} < α < 1 that
there exists n̄ ∈ N such that (4.20) holds. ��
Lemma 4.4 Let 10

3 ≤ q < 14
3 , μ > 0 and c ∈ (0, c2]. Then there holds

M̂(c) < �∗. (4.24)

Proof Let n̄ ∈ N be given by (4.20). Then it follows from (1.2) that

�
(
t3/2(Ũn̄)t

)
= at2

2
‖∇Ũn̄‖22 + bt4

4
‖∇Ũn̄‖42

− μt3(q−2)/2

q
‖Ũn̄‖qq − t6

6
‖Ũn̄‖66, ∀ t > 0. (4.25)

By (4.25), we can deduce that there exist t1 > 0 small enough and t2 > 0 large enough
such that

∥∥∥∇ (
t3/21 (Ũn̄)t1

)∥∥∥2
2

= t21‖∇Ũn̄‖22 < ϑc, and �
(
t3/22 (Ũn̄)t2

)
< 0. (4.26)

Let γ0(t) := [t1 + (t2 − t1)t]3/2(Ũn̄)t1+(t2−t1)t . Then γ0 ∈ �̂c which is defined by
Lemma 4.1. Therefore, we have by Lemma 4.3

M̂(c) ≤ sup
t>0

�
(
t3/2(Ũn̄)t

)
< �∗.

This shows (4.24) holds. ��
Proof of Theorems 1.3 In view of Lemmas 4.2 and 4.4, there exists {un} ⊂ Sc ∩
H1
rad(R

3) such that

‖un‖22 = c, �(un) → M̂(c) ∈ (0,�∗), �(un)|′Sc
→ 0, P(un) → 0. (4.27)
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It follows from (1.2), (1.16), (1.17) and (4.27) that

M̂(c) + o(1) = �(un) − 1

6
P(un)

= a

3
‖∇un‖22 + b

12
‖∇un‖42 − μ(6 − q)

4q
‖un‖qq

≥ a

3
‖∇un‖22 + b

12
‖∇un‖42 − μ(6 − q)

4q
Cqq c(6−q)/4‖∇un‖3(q−2)/2

2 .

(4.28)

Since 10
3 ≤ q < 14

3 , it follows that {‖un‖} is bounded. Similar to the proof of Theorem

1.2, one has (3.96)–(3.114) instead of M(c) by M̂(c). From (1.14), (3.107), (3.110),
(3.113) and (3.114), we have

M̂(c) + o(1)

= a

3
‖∇vn‖22 + b

12
‖∇vn‖42 + b

3
‖∇ū‖22‖∇vn‖22 + �(ū) + o(1)

= a

3
‖∇vn‖22 + b

12
‖∇vn‖42 + b

6
‖∇ū‖22‖∇vn‖22

+ a

3
‖∇ū‖22 + b

12
‖∇ū‖42 − μ

4q
(6 − q)‖ū‖qq + o(1)

= 2a + b‖∇ū‖22
6

l1 + b

12
l22 + a

3
‖∇ū‖22 + b

12
‖∇ū‖42 − μ(6 − q)

4q
‖ū‖qq + o(1)

≥ (2a + b‖∇ū‖22)S
12

[
bS2 +

√
b2S4 + 4

(
a + b‖∇ū‖22

)S
]

+bS2

48

[
bS2 +

√
b2S4 + 4

(
a + b‖∇ū‖22

)S
]2

+ a

3
‖∇ū‖22 + b

12
‖∇ū‖42

−μ(6 − q)

4q
‖ū‖qq + o(1)

=abS3

4
+ b3S6

24
+ b2S4 + 4aS

24

√
b2S4 + 4

(
a + b‖∇ū‖22

)S + b2S3

6
‖∇ū‖22

+ bS
12

√
b2S4 + 4

(
a + b‖∇ū‖22

)S ‖∇ū‖22 + a

3
‖∇ū‖22 + b

12
‖∇ū‖42

− μ(6 − q)

4q
Cqq c(6−q)/4‖∇ū‖3(q−2)/2

2 + o(1)

≥abS3

4
+ b3S6

24
+

(
b2S4 + 4aS)3/2

24
+
(
a

3
+ b2S3

6
+ bS

12

√
b2S4 + 4aS

)
‖∇ū‖22

+ b

12
‖∇ū‖42 − μ(6 − q)

4q
Cqq c(6−q)/4‖∇ū‖3(q−2)/2

2 +o(1)
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≥ �∗ +
⎧⎨
⎩
[

4

14 − 3q

(
a

3
+ b2S3

6
+ bS

12

√
b2S4 + 4aS

)] 14−3q
4

[
b

3(3q − 10)

] 3q−10
4

−μ(6 − q)

4q
Cqq c(6−q)/4

}
‖∇ū‖3(q−2)/2

2 + o(1)

≥ �∗ + o(1), (4.29)

which contradicts with (4.27). This shows that l1 = 0, i.e. ‖∇vn‖ → 0, and so

‖∇un‖22 → ‖∇ū‖22, ‖un‖66 → ‖ū‖66. (4.30)

Now from (1.2), (3.97), (3.98), (3.99), (3.105), (3.108), (4.27) and (4.30), it is easy to
deduce that

λc > 0, ‖ū‖22 = c, �′(ū) + λcū = 0, �(ū) = M̂(c).

��

5 The case when 14
3 ≤ q < 6

In this section, we study the case 14
3 ≤ q < 6, and finish the proofs of Theorems 1.4

and 1.5.

Let us define the following function

h(t) := 1 − t4

4
− 1 − t6

6
, ∀ t ≥ 0. (5.1)

It is easy to see that h(t) > h(1) = 0 for all t ∈ [0, 1)∪ (1,+∞). With it, we establish
the following crucial inequality,

Lemma 5.1 Let 14
3 ≤ q < 6, μ > 0 and c > 0. Then there holds

�(u) ≥ �
(
t3/2ut

)
+ 1 − t4

4
P(u) + a(1 − t2)2

4
‖∇u‖22

+h(t)‖u‖66, ∀ u ∈ Sc, t > 0. (5.2)

Proof Since 14
3 ≤ q < 6, it is easy to see that

3(q − 2)(1 − t4)

8q
− 1 − t3(q−2)/2

q
≥ 0, ∀ t ≥ 0. (5.3)

From (1.2), (1.17), (5.1) and (5.3), one has
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�(u) − �
(
t3/2ut

)
= a(1 − t2)

2
‖∇u‖22 + b(1 − t4)

4
‖∇u‖42

− μ(1 − t3(q−2)/2)

q
‖u‖qq − 1 − t6

6
‖u‖66

= 1 − t4

4

[
a‖∇u‖22 + b‖∇u‖42 − 3μ(q − 2)

2q
‖u‖qq − ‖u‖66

]

+ a(1 − t2)2

4
‖∇u‖22 + μ

(
3(q − 2)(1 − t4)

8q
− 1 − t3(q−2)/2

q

)
‖u‖qq

+
(
1 − t4

4
− 1 − t6

6

)
‖u‖66

≥ 1 − t4

4
P(u) + a(1 − t2)2

4
‖∇u‖22 + h(t)‖u‖66.

��
From Lemma 5.1, we have the following corollary.

Corollary 5.2 Let 14
3 ≤ q < 6, μ > 0 and c > 0. Then for u ∈ M(c), there holds

�(u) = max
t>0

�
(
t3/2ut

)
. (5.4)

Lemma 5.3 Let 14
3 ≤ q < 6, μ > 0 and c > 0. Then for any u ∈ Sc, there exists a

unique tu > 0 such that t3/2u utu ∈ M(c).

The proof of Lemma 5.3 is standard, so we omit it.

From Corollary 5.2 and Lemma 5.3, we have the following lemma.

Lemma 5.4 Let 14
3 ≤ q < 6, μ > 0 and c > 0. Then

inf
u∈M(c)

�(u) := m̃(c) = inf
u∈Sc

max
t>0

�
(
t3/2ut

)
. (5.5)

By the Brezis–Lieb lemma, we have the following lemma.

Lemma 5.5 Let 14
3 ≤ q < 6, μ > 0 and c > 0. If un⇀ū in H1(R3), then

�(un) = �(ū) + �(un − ū) + b

2
‖∇ū‖22‖∇(un − ū)‖22 + o(1) (5.6)

and

P(un) = P(ū) + P(un − ū) + 2b‖∇ū‖22‖∇(un − ū)‖22 + o(1). (5.7)

Lemma 5.6 Let 14
3 ≤ q < 6, μ > 0 and c > 0. Then
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(i) there exists ϑ0 > 0 such that ‖∇u‖2 ≥ ϑ0, ∀ u ∈ M(c);
(ii) m̃(c) > 0.

Proof (i) Since P(u) = 0, ∀ u ∈ M(c), by (1.8), (1.16) and (1.17), one has

a‖∇u‖22 + b‖∇u‖42 = ‖u‖66 + 3μ(q − 2)

2q
‖u‖qq

≤ 1

S3 ‖∇u‖62
+3μ(q − 2)

2q
Cqq c(6−q)/4‖∇u‖3(q−2)/2

2 , ∀ u ∈ M(c),

(5.8)

which implies

a ≤ 1

S3 ‖∇u‖42 + 3μ(q − 2)

2q
Cqq c(6−q)/4‖∇u‖(3q−10)/2

2 , ∀ u ∈ M(c).

Since 14
3 ≤ q < 6, then the above inequality shows there exists ϑ0 > 0 such that

‖∇u‖2 ≥ ϑ0, ∀ u ∈ M(c). (5.9)

(ii) From (1.2), (1.17) and (5.9), we have

�(u) = �(u) − 2

3(q − 2)
P(u)

= a(3q − 10)

6(q − 2)
‖∇u‖22 + b(3q − 14)

12(q − 2)
‖∇u‖42 + 6 − q

6(q − 2)
‖u‖66

≥ a(3q − 10)

6(q − 2)
ϑ2
0 , ∀ u ∈ M(c). (5.10)

This shows that m̃(c) = infu∈M(c) �(u) > 0. ��
Lemma 5.7 Let 14

3 ≤ q < 6, μ > 0 and c > 0. Then the function c �→ m̃(c) is
nonincreasing on (0,+∞). In particular, if m̃(c′

0) is achieved, then m̃(c′
0) > m̃(c′

2)

for any c′
2 > c′

0.

Proof For any c′
2 > c′

0 > 0, it follows from the definition of m̃(c′
0) that there exists{un} ⊂ M(c′

0) such that

�(un) < m̃(c′
0) + 1

n
, ∀ n ∈ N. (5.11)

Let θ :=
√
c′
2/c

′
0 and vn(x) := θ−1/2un (x/θ). Then ‖∇vn‖22 = ‖∇un‖22, ‖vn‖66 =

‖un‖66, ‖vn‖qq = θ3−q/2‖un‖qq and ‖vn‖22 = c′
2. By Lemma 5.3, there exists tn > 0
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such that t3/2n (vn)tn ∈ M(c′
2). Then it follows from (1.2), (5.11) and Corollary 5.2

that

m̃(c′
2) ≤ �

(
t3/2n (vn)tn

)

= at2n
2

‖∇vn‖22 + bt4n
4

‖∇vn‖42 − t6n
6

‖vn‖66 − μt3(q−2)/2
n

q
‖vn‖qq

= at2n
2

‖∇un‖22 + bt4n
4

‖∇un‖42 − t6n
6

‖un‖66 − μθ3−q/2t3(q−2)/2
n

q
‖un‖qq

< �
(
t3/2n (un)tn

)
≤ �(un) < m̃(c′

0) + 1

n
, (5.12)

which shows that m̃(c′
2) ≤ m̃(c′

0) by letting n → ∞.
If m̃(c′

0) is achieved, i.e., there exists ũ ∈ M(c′
0) such that �(ũ) = m̃(c′

0). By the
same argument as in (5.12), we can obtain that m̃(c′

2) < m̃(c′
0). ��

By Lemma 4.3, we have the following lemma.

Lemma 5.8 Let 14
3 ≤ q < 6, μ > 0 and c > 0. Then there holds

m̃(c) < �∗. (5.13)

Lemma 5.9 Let 14
3 ≤ q < 6, μ > 0 and c > 0. Then m̃(c) is achieved.

Proof In view of Lemmas 5.3 and 5.6, we have M(c) �= ∅ and m̃(c) > 0. Let
{un} ⊂ M(c) be such that �(un) → m̃(c). It follows from (1.2) and (1.17) that

m̃(c) + o(1) = a

2
‖∇un‖22 + b

4
‖∇un‖42 − 1

6
‖un‖66 − μ

q
‖un‖qq (5.14)

and

0 = a‖∇un‖22 + b‖∇un‖42 − ‖un‖66 − 3μ(q − 2)

2q
‖un‖qq . (5.15)

From (5.14) and (5.15), one has

m̃(c) + o(1) ≥ a

4
‖∇un‖22. (5.16)

This shows that {‖∇un‖2} is bounded, and so {un} is bounded in H1(R3).
Let δ := lim supn→∞ supy∈R3

∫
B1(y)

|un|2dx . We show that δ > 0. Otherwise, in
light of Lions’ concentration compactness principle [17, Lemma 1.21], ‖un‖q → 0.
Hence, it follows from (5.15) that

a‖∇un‖22 + b‖∇un‖42 = ‖un‖66 + 3μ(q − 2)

2q
‖un‖qq = ‖un‖66 + o(1). (5.17)
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Up to a subsequence, we assume that

‖∇un‖22 → l, ‖un‖66 → al + bl2. (5.18)

If l = 0, then it follows from (5.14) and (5.18) that m̃(c) = 0, a contradiction. If l > 0,
by Sobolev inequality (1.8) and (5.18), we have

l ≥ S
2

[
bS2 +

√
b2S4 + 4aS

]
. (5.19)

Hence, it follows from (5.14), (5.15), (5.18), (5.19), the definition of {un} and ‖un‖q →
0 that

m̃(c) + o(1) = �(un) − 1

6
P(un)

= a

3
‖∇un‖22 + b

12
‖∇un‖42 − μ(6 − q)

4q
‖un‖qq + o(1)

= a

3
‖∇un‖22 + b

12
‖∇un‖42 + o(1)

≥ �∗ + o(1), (5.20)

which contradicts (5.13). Thus δ > 0. Without loss of generality, we may assume the
existence of yn ∈ R

3 such that
∫
B1(yn)

|un|2dx > δ
2 . Let ûn(x) = un(x + yn). Then

we have

‖ûn‖22 = c, P(ûn) = 0, �(ûn) → m̃(c),
∫
B1(0)

|ûn|2dx >
δ

2
. (5.21)

Therefore, there exists û ∈ H1(R3) \ {0} such that, passing to a subsequence,

⎧⎨
⎩
ûn⇀û, in H1(R3);
ûn → û, in Ls

loc(R
3), ∀ s ∈ [1, 6);

ûn → û, a.e. on R3.

(5.22)

Let wn = ûn − û. Then (5.22) and Lemma 5.5 yield

�(ûn) = �(û) + �(wn) + b

2
‖∇û‖22‖∇wn‖22 + o(1) (5.23)

and

P(ûn) = P(û) + P(wn) + 2b‖∇û‖22‖∇wn‖22 + o(1). (5.24)

Set

Q(u) := a

4
‖∇u‖22 + 1

12
‖u‖66 + μ(3q − 14)

8q
‖u‖qq . (5.25)
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Then it follows from (1.2), (1.17), (5.21), (5.23), (5.24) and (5.25) that

m̃(c) − Q(û) + o(1) = Q(wn) (5.26)

and

P(wn) = −P(û) − 2b‖∇û‖22‖∇wn‖22 + o(1). (5.27)

If there exists a subsequence {wni } of {wn} such that wni = 0, then going to this
subsequence, we have

‖û‖22 = c, �(û) = m̃(c), P(û) = 0, (5.28)

which implies the conclusion of Lemma 5.9 holds. Next, we assume that wn �= 0. By
(5.21) and (5.22), one has

c = ‖ûn‖22 = ‖û‖22 + ‖wn‖22 + o(1). (5.29)

This implies that ‖û‖22 := ĉ ≤ c and ‖wn‖22 := c̃n ≤ c for large n ∈ N. We claim
that P(û) ≤ 0. Otherwise, if P(û) > 0, then (5.27) implies P(wn) < 0 for large n.
In view of Lemma 5.3, there exists tn > 0 such that t3/2n (wn)tn ∈ M(c̃n). From (1.2),
(1.17), (5.2), (5.26), (5.27), Lemma 5.1 and Lemma 5.7, we obtain

m̃(c) − Q(û) + o(1) = Q(wn) = �(wn) − 1

4
P(wn)

≥ �
(
t3/2n (wn)tn

)
− t4n

4
P(wn) ≥ m̃(c),

which implies P(û) ≤ 0 due to Q(û) > 0. Since û �= 0 and P(û) ≤ 0, in view of
Lemma 5.3, there exists t̂ > 0 such that t̂3/2ût̂ ∈ M(ĉ). From (1.2), (1.17), (5.2),
(5.26), (5.27), Lemmas 5.1, 5.7, Fatou’s lemma and the weak semicontinuity of norm,
one has

m̃(c) = lim
n→∞ Q(ûn) ≥ Q(û) = �(û) − 1

4
P(û) ≥ �

(
t̂3/2ût̂

)
− t̂4

4
P(û) ≥ m̃(c),

(5.30)

which implies

‖û‖22 = ĉ, �(û) = m̃(ĉ) = m̃(c), P(û) = 0. (5.31)

This shows m̃(ĉ) is achieved. In view of Lemma 5.7, ĉ = c. Thus, (5.28) holds also,
i.e. the conclusion of Lemma 5.9 holds. ��
Lemma 5.10 Let 14

3 ≤ q < 6, μ > 0 and c > 0. If ū ∈ M(c) and �(ū) = m̃(c), then
ū is a critical point of � on Sc, i.e. �|′Sc

(ū) = 0.
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Proof Assume that �|′Sc
(ū) �= 0. Then there exist δ > 0 and � > 0 such that

‖u − ū‖ ≤ 3δ ⇒ ‖�|′Sc
(u)‖ ≥ �. (5.32)

It is easy to see that

∥∥∥∇ (
t
3
2 ūt

)
− ∇ū

∥∥∥2
2

=
∫
R3

∣∣∣∇ (
t
3
2 ūt

)
− ∇ū

∣∣∣2 dx
= (t2 + 1)

∫
R3

|∇ū|2dx − 2t
3
2

∫
R3

∇ūt · ∇ūdx → 0, t → 1.

(5.33)

Thus, there exists δ1 ∈ (0, 1/4) such that

|t − 1| < δ1 ⇒
∥∥∥t 32 ūt − ū

∥∥∥ < δ. (5.34)

In view of Lemma 5.1, one has

�
(
t
3
2 ūt

)
≤ �(ū) − h(t)‖ū‖66 = m̃(c) − h(t)‖ū‖66, ∀ t > 0. (5.35)

It follows from (1.17) that there exist T1 ∈ (0, 1/2) and T2 ∈ (3/2,+∞) such that

P
(
T

3
2
1 ūT1

)
> 0, P

(
T

3
2
2 ūT2

)
< 0. (5.36)

Let

ε := min

{
1

4
h(T1)‖ū‖66,

1

4
h(T2)‖ū‖66, 1,

�δ

8

}
, S := {v ∈ Sc : ‖v − ū‖ < δ}.

Then Lemma 2.1 yields a deformation η ∈ C([0, 1] × Sc,Sc) such that

(i) η(1, u) = u if �(u) < m̃(c) − 2ε or �(u) > m̃(c) + 2ε;
(ii) η

(
1,�m̃(c)+ε ∩ S

) ⊂ �m̃(c)−ε;
(iii) �(η(1, u)) ≤ �(u), ∀ u ∈ Sc;
(iv) η(1, u) is a homeomorphism of Sc.

By Corollary 5.2, �
(
t
3
2 ūt

)
≤ �(ū) = m̃(c) for t > 0, then it follows from (5.34)

and ii) that

�
(
η
(
1, t

3
2 ūt

))
≤ m̃(c) − ε, ∀ t > 0, |t − 1| < δ1. (5.37)

On the other hand, by iii) and (5.35), one has
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�
(
η
(
1, t

3
2 ūt

))
≤ �

(
t
3
2 ūt

)
≤ m̃(c) − h(t)‖ū‖66

≤ m̃(c) − δ2‖ū‖66, ∀ t > 0, |t − 1| ≥ δ1, (5.38)

where

δ2 := min{h(1 − δ1), h(1 + δ1)} > 0.

Combining (5.37) with (5.38), we have

max
t∈[T1,T2]

�
(
η
(
1, t

3
2 ūt

))
< m̃(c). (5.39)

Define �0(t) := P
(
η
(
1, t

3
2 ūt

))
for t > 0. It follows from (5.35) and (i) that

η
(
1, t

3
2 ūt

)
= t

3
2 ūt for t = T1 and t = T2, which, together with (5.36), implies

�0(T1) = P
(
T

3
2
1 ūT1

)
> 0, �0(T2) = P

(
T

3
2
2 ūT2

)
< 0.

Since �0(t) is continuous on (0,∞), then we have that η
(
1, t

3
2 ūt

)
∩ M(c) �= ∅ for

some t0 ∈ [T1, T2], contradicting the definition of m̃(c). ��
Proof of Theorem 1.4 It follows directly combining Lemmas 5.9 and 5.10. ��

6 The case when � ≤ 0

In this section, we shall prove Theorem 1.5.

Proof of Theorem 1.5 Assume that (u, λ) ∈ H1(R3) × (0,+∞) is a solution of Eq.
(1.1). Then it follows from (1.1) and the Pohozaev type identity that

(
a + b‖∇u‖22

)
‖∇u‖22 + λ‖u‖22 − μ‖u‖qq − ‖u‖66 = 0 (6.1)

and

(
a + b‖∇u‖22

)
‖∇u‖22 + 3λ‖u‖22 − 6μ

q
‖u‖qq − ‖u‖66 = 0. (6.2)

Combining (6.1) with (6.2), we have

0 < λc = λ‖u‖22 = (6 − q)μ

2q
‖u‖qq ≤ 0,

which is a contradiction. ��
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