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Abstract
With the aimof quantifying turbulent behaviors of vortex filaments,we study themulti-
fractality and intermittency of the family of generalized Riemann’s non-differentiable
functions

Rx0(t) =
∑

n �=0

e2π i(n
2t+nx0)

n2
, x0 ∈ [0, 1].

These functions represent, in a certain limit, the trajectory of regular polygonal vortex
filaments that evolve according to the binormal flow. When x0 is rational, we show
that Rx0 is multifractal and intermittent by completely determining the spectrum of
singularities of Rx0 and computing the L p norms of its Fourier high-pass filters, which
are analogues of structure functions. We prove that Rx0 has a multifractal behavior
also when x0 is irrational. The proofs rely on a careful design of Diophantine sets that
depend on x0, which we study by using the Duffin–Schaeffer theorem and the Mass
Transference Principle.
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1 Introduction

Multifractality and intermittency are among the main properties expected in turbulent
flows but, as usual in the theory of turbulence, it is challenging to analyze them
rigorously. Themotivation of this article is to quantify themultifractal and intermittent
behavior of regular polygonal vortex filaments that evolve with the binormal flow. This
evolution is represented, in a certain limit, by the function Rx0 : R → C defined by

Rx0(t) =
∑

n �=0

e2π i(n
2t+nx0)

n2
, (1)

for x0 ∈ [0, 1] fixed. This function is one of the possible generalizations of the classic
Riemann’s non-differentiable function, which is recovered when x0 = 0, and it can
also be seen as the solution to a periodic Cauchy problem for the free Schrödinger
equation. In this article we study the multifractality and intermittency of Rx0 , which
until now was unknown for x0 �= 0:

• When x0 ∈ Q, we completely describe the multifractality of Rx0 by computing
its spectrum of singularities (Theorem 1.1). We also compute the L p norms of its
Fourier high-pass filters to deduce its intermittency exponents (Theorem 1.6) and
show that Rx0 is intermittent.

• When x0 /∈ Q, we give a result that proves multifractality (Theorem 1.3) and
strongly suggests that the spectrum of singularities depends on the irrationality of
x0, and hence that it is different from when x0 ∈ Q.

The main novelty in this article is a careful design of Diophantine sets and the use of
the Duffin–Schaeffer theorem and the Mass Transference Principle to compute their
measure and dimension. When x0 ∈ Q, we use the partial Duffin–Schaeffer theorem
as proved byDuffin and Schaeffer in [21], while when x0 /∈ Qwe need the full strength
of the theorem as proved by Koukoulopoulos and Maynard [37]. We give an overview
of these arguments in Sect. 2. Before that, we introduce the concepts of multifractality
and intermittency in Sect. 1.1, we discuss the connection of Rx0 and vortex filaments
in Sect. 1.2 and we state our results in Sects. 1.3 and 1.4.

1.1 Multifractality and intermittency

The concepts ofmultifractality and intermittency arise in the studyof three dimensional
turbulence of fluids and waves, both characterized by low regularity and a chaotic
behavior. These are caused by an energy cascade by which the energy injected in large
scales is transferred to small scales. In this setting, large eddies constantly split in
smaller eddies, generating sharp changes in the velocity magnitude. Moreover, this
cascade is not expected to be uniform in space, and the rate at which these eddies
decrease depends on their location.
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Multifractality and intermittency in the limit evolution...

Mathematically speaking, an option to measure the irregularity of the velocity v

is to compute the local Hölder regularity, that is, the largest α = α(x) such that
|v(x+h)−v(x)| � |h|α when |h| → 0. The lack of uniformity in space suggests that
the Hölder level sets Dα = { x : α(x) = α } should be non-empty, and of different
size, for many values of α. In this context, the spectrum of singularities is defined as
d(α) = dimH Dα , where dimH is the Hausdorff dimension, and the velocity v is said
to be multifractal if d(α) takes values in multiple Hölder regularities α.

On the other hand, intermittency is a measure of the likelihood of localized bursts or
outlier events. One way to quantify it is by analyzing the structure functions Sp(h) =
〈|v(x + h) − v(x)|p〉 of the velocity when the scale h tends to zero. More precisely,
defining the flatness as

F4(h) = S4(h)

S2(h)2
, for very small h, (2)

we have small-scale intermittency1 if limh→0 F4(h) = +∞. Assuming the typical
power law

Sp(h) � |h|ζp , (3)

it is usual to rephrase the definition of intermittency as ζ4 − 2ζ2 < 0 for the intermit-
tency exponent2 ζp. This definition, and in particular (2), is inspired by the probabilistic
concept of kurtosis,3 which quantifies how large the tails of the underlying probability
distribution are. A large kurtosis implies fat tails, which suggests that outlier events
are more likely than for a normal distribution, agreeing with the widespread idea of
non-Gaussianity. More generally, moments Fp(h) = Sp(h)/S2(h)p/2 of order p ≥ 4
can be used to measure the tails of a probability distribution (see [27, p. 124]) and
therefore intermittency, so it is common in recent physics literature to measure ζp
for different p (see [42] and references therein, also [2] for a numeric intermittent
model). The intermittency condition is then rewritten as ζp − pζ2/2 < 0, a behavior
that corresponds to a sublinear ζp.

1.2 Rx0 as the trajectory of polygonal vortex filaments

The binormal flow is amodel introduced byDaRios4 in 1906 [19] as an approximation
to the evolution of a vortex filament according to Euler equation and whose validity
has been precisely and rigorously described theoretically by Fontelos and Vega in [26]
in the setting of the Navier–Stokes equations. This model describes the motion of the
filament X : R × R → R

3, X = X(x, t) by the equation X t = X x × X xx . Inspired

1 Proposed by Frisch [27, p. 122, (8.2)] and Anselmet et al. [1].
2 In this setting, intermittency is regarded as a nonlinear correction toKolmogorov’s theory (see [12, Section
2.4]) which predicted the exponents ζp to be a linear function of p and hence ζ4 − 2ζ2 = 0 and, in general,
ζp − pζ2/2 = 0.
3 The fourth standardized moment, sometimes also referred to as tailedness.
4 Explored also by Levi-Civita in [38].
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Fig. 1 Image of φx0 , t ∈ [0, 1], defined in (5), for some values of x0

by Jerrard and Smets [33], De la Hoz and Vega [20] observed numerically that if the
initial filament XM (x, 0) is a regular polygon with M corners at the integers x ∈ Z,
then the trajectory of the corners XM (0, t) is a plane curve which, identifying the
plane with C and when M is large, looks like

φ(t) =
∑

n∈Z

e2π in
2t − 1

n2
= 2π i t − π2

3
+ R0(t). (4)

Moreover, let χM (x, 0) be an infinite polygonal line that loops the polygon of M sides
a finite but large number of times and ends in two half-lines, symmetrized at x = 0.
Banica and Vega rigorously proved in [4] that, under certain hypotheses, its binormal
flow evolution χM (x, t) obtained in [3] satisfies

lim
M→∞ M χM (x0, t) = φx0(t) :=

∑

n∈Z

e2π in
2t − 1

n2
e2π inx0 , ∀x0 ∈ [0, 1]. (5)

We show in Figs. 1 and 2 the image of φx0 for some values of x0. Like in (4), noticing

that the Fourier series
∑

n �=0
e2π inx

n2
is 2π2

(
x2 − x + 1

6

)
, we can write

φx0(t) = 2π i t − 2π2
(
x20 − x0 + 1

6

)
+ Rx0(t),

which shows thatφx0 and Rx0 have the same regularity as functions of t . In otherwords,
Rx0 captures the regularity of the limit trajectory of polygonal vortex filaments that
evolvewith the binormal flow. This connectionmotivates us to study themultifractality
and intermittency of Rx0 .

1.3 Definitions and notation

We now rigorously define the concepts discussed above.

1.3.1 Holder regularity

A function f : R → C is α-Hölder at t ∈ R, which we denote by f ∈ Cα(t), if there
exists a polynomial Pt of degree at most α such that | f (t + h) − Pt (h)| ≤ C |h|α
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Fig. 2 The images of φx0 , t ∈ [0, 1], for the values x0 = 0, 0.1, 0.2, 0.3, 0.4, 0.5, from the rightmost to
the leftmost

for some constant C > 0 and for h small enough. In particular, if 0 < α < 1, the
definition above becomes

f ∈ Cα(t) ⇐⇒ | f (t + h) − f (t)| ≤ C |h|α, for h small enough.

The local Hölder exponent of f at t is α f (t) = sup{α : f ∈ Cα(t) }. We say f is
globally α-Hölder if f ∈ Cα(t) for all t ∈ R.

1.3.2 Spectrum of singularities

The spectrum of singularities of f is

d f (α) = dimH{ t : α f (t) = α },
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where dimH is the Hausdorff dimension,5 and convene that d(α) = −∞ if { t :
α f (t) = α } = ∅.

1.3.3 Intermittency exponents

As discussed in (3), the exponents ζp of the structure functions Sp(h) describe the
behavior of the increments of functions in small scales. Here we take the analogous
approach of studying the high-frequency behavior of functions. Let � ∈ C∞(R) be a
cutoff function such that �(x) = 0 in a neighborhood of the origin and �(x) = 1 for
|x | ≥ 2. For a periodic function f with Fourier series f (t) =∑n∈Z ane2π int , define
the high-pass filter by

P≥N f (t) =
∑

n∈Z
�
( n
N

)
an e

2π int , N ∈ N.

We treat the L p norms ‖P≥N f ‖pp as the analytic and Fourier space analogues of the
structure functions.6 Our analogous to the power law (3) is7

η f (p) = lim inf
N→∞

log(‖P≥N f ‖pp)
log(1/N )

, (6)

which means that for any ε > 0 we have ‖P≥N f ‖pp ≤ N−η f (p)+ε for N �ε 1,
and that this is optimal in the sense that there is a subsequence Nk → ∞ such that

‖P≥Nk f ‖pp ≥ N
−η f (p)−ε

k for k �ε 1. We define the p-flatness to be

Fp(N ) = ‖P≥N f ‖pp
‖P≥N f ‖p2

, N � 1.

The corresponding intermittency exponent8 is η f (p) − p η f (2)/2.

1.4 Results

To simplify notation, let us denote αRx0
(t) = αx0(t), dRx0

(α) = dx0(α) and ηRx0
(p) =

ηx0(p) for our function Rx0 defined in (1).

5 See [25, Sections 3.1–3.2] for definitions and basic properties of Hausdorff measures and the Hausdorff
dimension.
6 We may think of the small scale h to be represented by 1/N , where N is the frequency parameter.
7 The heuristic exponent ζp in (3) and η(p) defined in (6) are a priori different. However, the definition of
ζp can be made rigorous using L p norms so that it is equal to η(p), as shown by Jaffard in [32, Prop. 3.1]
The exponent η(p) is actually related to the Besov regularity of f . Assuming ‖P≥N f ‖p � ‖P�N f ‖p
(which is the case for Rx0 ), where P�N f denotes the band-pass filter defined with the cutoff � with the

additional assumption of compact support, then η(p) = sup{ s : f ∈ Bs/p
p,∞}, where f ∈ Bs

p,q if and only

if (2ks‖P�2k f ‖)k ∈ 	q .
8 If the liminf in (6) is a limit, then ‖P≥N f ‖pp � N−ηp and hence Fp(N ) � N−(η f (p)−pη f (2)/2).
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Multifractality and intermittency in the limit evolution...

Since Weierstrass [47] announced9 Riemann’s non-differentiable function as the
first candidate of a continuous and non-differentiable function in 1872, the regularity
of R0 has been studied by several authors. After Hardy [30] and Gerver [28, 29]
proved that it is only almost nowhere differentiable (see also the simplified proof
of Smith [45]), Duistermaat [22] launched the study of its Hölder regularity. Jaffard
completed the picture in his remarkable work [31, Theorem 1] (see also [11] for a
recent alternative proof) by computing

α0(t) = 1

2
+ 1

2μ̃(t)
, for t /∈ Q, (7)

where μ̃(t) is the exponent of irrationality of t restricted to denominators q �≡
2 (mod 4).10 He combined this with an adaptation of the Jarník–Besicovitch theo-
rem to prove

d0(α) =
⎧
⎨

⎩

4α − 2, 1/2 ≤ α ≤ 3/4,
0, α = 3/2,
−∞, otherwise.

Our first results concern the spectrum of singularities of Rx0 for x0 �= 0.

Theorem 1.1 Let x0 ∈ Q. Then,

dx0(α) =
⎧
⎨

⎩

4α − 2, 1/2 ≤ α ≤ 3/4,
0, α = 3/2,
−∞, otherwise.

Remark 1.2 (a) To prove Theorem 1.1, we adapt the classical approach due to Duis-
termaat [22] and Jaffard [31] by carefully choosing subsets of the irrationals with
novel Diophantine restrictions to disprove Hölder regularities. However, the argu-
ments in [31] to compute their Hausdorff dimension do not suffice11 when x0 �= 0.
We solve this by using the Duffin–Schaeffer theorem and the Mass Transference
Principle; see Sect. 2 for the outline of the argument.

(b) Even if dx0 = d0 for all x0 ∈ Q, we think that αx0(t) �= α0(t). However, Theo-
rem 1.1 does not require computing αx0(t) for all t ∈ R. A full description of the
sets { t : αx0(t) = α } is an interesting and challenging problem because when
x0 �= 0 it is not clear how to characterize the Hölder regularity αx0(t) in terms of
some irrationality exponent like in (7). We do not pursue this problem here, which
we leave for a future work.

9 Weierstrass announced R(t) =∑∞
n=1 sin(n

2t)/n2; R0(t) =∑∞
n �=0 e

2π in2t/n2 can be seen as its imag-
inary part.
10 Precisely, μ̃(t) = sup{μ > 0 : ∣∣t − p

q

∣∣ ≤ q−μ for infinitely many coprime pairs (p, q) ∈
N
2 with qn �≡ 2 (mod 4)}.

11 The restriction for denominators in the case x0 = 0 is essentially a parity condition, which is solved in
[31] by dividing the set by the factor 2. This does not generalize to the case x0 = P/Q where the condition
for the denominator will be to be a multiple of 4Q.
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Let now x0 /∈ Q. Let pn/qn be its approximations by continued fractions, and
define the exponents μn by |x0 − pn/qn| = 1/qμn

n . Define the alternative12 exponent
of irrationality

σ(x0) = lim sup
n→∞

{μn : qn /∈ 4N }. (8)

This exponent always exists and σ(x0) ≥ 2 (see Proposition 5.2). Our result is the
following.

Theorem 1.3 Let x0 /∈ Q. Let 2 ≤ μ < 2σ(x0), with σ(x0) as in (8). Then, for all
δ > 0,

1

μ
≤ dimH

{
t : 1

2
+ 1

4μ
− δ ≤ αx0(t) ≤ 1

2
+ 1

2μ

}
≤ 2

μ
. (9)

Remark 1.4 (a) We show in Fig. 3 a graphic representation of Theorem 1.3.
(b) Theorem 1.3 shows that Rx0 is multifractal when σ(x0) > 2.
(c) Theorem 1.3 would be strengthened to 1/μ ≤ dx0(1/2 + 1/2μ) ≤ 2/μ for μ <

2σ(x0) if we could compute the dimension of some well-identified Diophantine
sets, see Remark 5.4. This would give a nontrivial spectrum of singularities in an
open interval for all x0 /∈ Q. We leave this for a future work.

(d) The reasons to have an interval (1/μ, 2/μ) for the dimension in (9) seem to us
deeper in nature. Unlike the upper bound 2/μ, which follows from approximating
t with rationals p/q with unrestricted q ∈ N and with error q−μ (see the Jarník–
Besicovitch theorem 2.2), the lower bound depends on the nature of x0 which
imposes restrictions to q. When x0 = P/Q ∈ Q, we require q ∈ 4QN, which
still results in a set of dimension 2/μ. However, when x0 /∈ Q we require q be
restricted to an exponentially growing sequence (given by the denominators of the
continued fraction approximations of x0). This restriction is much stronger and
gives a set of t of dimension 1/μ. These results follow from the Duffin–Schaeffer
theorem and the Mass Transference Principle.

(e) The theorem and its proof (see the heuristic discussion in Sect. 5.2.1) suggest that
the spectrum of singularities may be dx0(α) = 4α − 2 in the range 1

2 + 1
4σ(x0)

≤
α ≤ 3

4 , and possibly something different outside of this range. In particular, we
expect the segment of the spectrum in 5/8 ≤ α ≤ 3/4 to be present for all x0.

Remark 1.5 Our results suggest that the trajectories of the binormal flow do not have a
generic behavior in terms of regularity. Indeed, if Xn is a sequence of independent and
identically distributed complex Gaussian random variables, then the random function

S(t) =
∞∑

n=1

Xn
e2π in

2t

n2
(10)

12 The usual exponent of irrationality is μ(x0) = lim supn→∞ μn .
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Fig. 3 A graphic representation of Theorem 1.3.We have a continuum ofWhitney-type boxes parametrized
by μ along the dashed diagonal line d(α) = 4α − 2. The graph of dx0 (α) has at least a point in each of
those boxes

has13 almost surely αS(t) = 3/4 for all t ∈ R [34]. Hence the generic behavior of (10)
is monofractal. In contrast, the fine structure of the linear phase nx0 of Rx0 causes a
multifractal behavior.

Regarding intermittency, we compute the L p norms of the Fourier high-pass filters
of Rx0 and the intermittency exponents ηx0(p) when x0 ∈ Q, from which we deduce
that Rx0 is intermittent.

Theorem 1.6 Let x0 ∈ Q. Let 1 < p < ∞. Then,

∥∥P≥N Rx0

∥∥p
p �

⎧
⎨

⎩

N− p
2 −1, p > 4,

N−3 log N , p = 4,
N−3p/4, p < 4,

(11)

and therefore

ηx0(p) = lim
N→∞

log(‖P≥N f ‖pp)
log(1/N )

=
{
p/2+ 1, p > 4,
3p/4, p ≤ 4.

Consequently, limN→∞ Fp(N ) = +∞ for p ≥ 4. In particular, Rx0 is intermittent.

Remark 1.7 (a) The p = 4 intermittency exponent in (11) is η(4) − 2η(2) = 0, but
the fact that ‖P≥N Rx0‖44 does not follow a pure power law makes F4(N ) � log N .
For p > 4, we have η(p) − pη(2)/2 = 1 − p/4 < 0, so Rx0 is intermittent in
small scales when x0 ∈ Q.

13 [34, p.86, Theorem 2] shows that almost surely αS(t) ≥ 3/4 for all t , and and [34, p. 104, Theorem 5]
shows that almost surely αS(t) ≤ 3/4 for all t .
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(b) The upper bound in (11) in Theorem 1.6 holds for all x0 ∈ [0, 1]. The theorem
shows that this is optimal when x0 ∈ Q, but we do not expect it to be optimal
when x0 /∈ Q. We suspect that the exact behavior, and hence ηx0(p), depends on
the irrationality of x0. We aim to study this question in a future work.

1.5 Related literature on the analytic study of Riemann’s non-differentiable
function

Beyond the literature for the original Riemann’s function R0, the closest work to the
study of Rx0 is by Oskolkov and Chakhkiev [40]. They studied the regularity of Rx0(t)
almost everywhere as a function of two variables (x0, t), which is not fine enough to
capture multifractal properties.

Alternatively, there are many works studying Rx0(t) as a function of x0 with t
fixed, motivated by the fact that Rx0 is the solution to an initial value problem for the
periodic free Schrödinger equation. From this perspective, Kapitanski and Rodnianski
[35] studied the Besov regularity of the fundamental solution14 as a function of x
with t fixed. This approach is also intimately related to the Talbot effect in optics
which, as proposed by Berry and Klein [7], is approximated by the fundamental
solution to the periodic free Schrödinger equation. Pursuing the related phenomenon
of quantization,15 the geometry of the profiles of Schrödinger solutions have been
studied for fixed t by Berry [6] and Rodnianski [43]. Following the numeric works of
Chen andOlver [16, 17], this perspective has also been extended to the nonlinear setting
and other dispersive relations by Chousonis et al. [18, 24] and Boulton, Farmakis and
Pelloni [8, 9].

There is a literature for other natural generalizations of Riemann’s function, like

F(t) =
∞∑

n=1

e2π i P(n)t

nα
, P a polynomial, α > 1,

For P(n) = n2, Jaffard [31] gave his results for all α > 1. Chamizo and Córdoba
[13] studied the Minkowski dimension of their graphs. Seuret and Ubis [44] studied
the non-convergent case α < 1, using a local L2 exponent. Chamizo and Ubis [14,
15] studied the spectrum of singularities for general polynomials P . Further gener-
alizations concerning fractional integrals of modular forms were studied by Pastor
[41].

1.6 Structure of the article

In Sect. 2we discuss the general strategywe follow to prove our theorems, stressing the
new ideas related to Diophantine sets with restrictions, the Duffin–Schaeffer theorem
and the Mass Transference Principle. In Sect. 3 we prove preliminary results for the
local Hölder regularity of Rx0 , in particular the behavior around rational points t .

14 Which, up to constants, is either ∂t Rx0 (t) or ∂2x0 Rx0 (t).
15 See the article by Olver [39] for an instructive account of quantization.
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In Sect. 4 we compute the spectrum of singularities of Rx0 when x0 ∈ Q and prove
Theorem 1.1. In Sect. 5 we prove Theorem 1.3. In Sect. 6 we prove Theorem 1.6 by
computing the L p norms of the high-pass filters of Rx0 . The proofs of some auxiliary
results are postponed to Appendices A and B to avoid breaking the continuity of the
main arguments.

2 An overview on the general arguments and on Diophantine
approximation

2.1 General argument

An important part of the arguments in this article relies onDiophantine approximation.
We will work with both the exponent of irrationality

μ(x) = sup
{

μ > 0 :
∣∣∣x − p

q

∣∣∣ ≤ 1

qμ
for infinitely many coprime pairs (p, q) ∈ N × N

}
,

(12)

and the Lebesgue and Hausdorff measure properties of the related sets

Aμ =
{
x ∈ [0, 1] |

∣∣∣x − p

q

∣∣∣ ≤ 1

qμ
for infinitely many coprime pairs (p, q) ∈ N × N

}
,

(13)

where the caseμ = ∞ is understood as A∞ =⋂μ≥2 Aμ. In a somewhat hand-waving
way, μ(x) = μ means that |x − p/q| � 1/qμ infinitely often, which ceases to be true
for any larger μ.

With these concepts in hand, the classic way to study the regularity of Rx0 (used
by Duistermaat, Jaffard and subsequent authors) is to first compute the asymptotic
behavior of Rx0 around rationals. Using the Poisson summation formula we will get
a leading order expression of the form

Rx0

( p
q

+ h
)
− Rx0

( p
q

)
∼

√
h

q
Gq ∼

√
h√
q

, (14)

where Gq includes a quadratic Gauss sum of period q, hence |Gq | ∼ √
q whenever it

does not cancel. This shows that in most rationals the regularity of Rx0 is 1/2. Let now
t /∈ Q with irrationality exponent μ(t) = μ. Then, essentially |t − p/q| � 1/qμ, so
choosing h = t − p/q we get

Rx0

(
t
)
− Rx0

(
t − h

)
∼

√
h√
q

∼ h
1
2+ 1

2μ .
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This suggests that αx0(t) = 1
2 + 1

2μ . Combining this with the Jarnik–Besicovitch
theorem, which says that dimH Aμ = 2/μ, we get the desired d(α) = 4α − 2 in the
range 1/2 ≤ α ≤ 3/4.

This argument is essentially valid up to assuming Gq �= 0 in (14). This, however,
does not always hold. Apart from a parity condition on q coming from the Gauss sums
(present already in previous works), an additional condition arises that depends on x0.
For example, if x0 = P/Q ∈ Q, this condition has the form of Q | q. In terms of the
sets Aμ, this means that we need to restrict the denominators of the approximations
to a subset of the natural numbers. So let Q ⊂ N, and define

Aμ,Q =
{
x ∈ [0, 1] :

∣∣∣x − p

q

∣∣∣ ≤ 1

qμ
for infinitely many coprime pairs (p, q) ∈ N ×Q

}
.

(15)

Clearly Aμ,Q ⊂ Aμ, but a priori it could be much smaller. Does Aμ,Q preserve the
measure of Aμ? Previous works need to work with situations analogue to Q = 2, but
here we need to argue for all Q ∈ N. For that, at the level of the Lebesgue measure we
will use the Duffin–Schaeffer theorem, while we will compute Hausdorff measures
and dimensions via the Mass Transference Principle.

2.2 Lebesguemeasure: Dirichlet approximation and the Duffin–Schaeffer
theorem

Both the Dirichlet approximation theorem and the theory of continued fractions imply
A2 = [0, 1]\Q. However, neither of them give enough information about the sequence
of denominators they produce, so they cannot be used to determine the size of the set
A2,Q ⊂ A2. The recently proved Duffin–Schaeffer conjecture gives an answer to this
kind of questions.

Theorem 2.1 (Duffin–Schaeffer theorem [37]) Let ψ : N → [0,∞) be a function.
Define

Aψ =
{
x ∈ [0, 1] :

∣∣∣x− p

q

∣∣∣≤ψ(q) for infinitely many coprime pairs (p, q)∈N×N

}
.

Let ϕ denote the Euler totient function.16 Then, we have the following dichotomy:

(a) If
∑∞

q=1 ϕ(q)ψ(q) = ∞, then |Aψ | = 1.
(b) If

∑∞
q=1 ϕ(q)ψ(q) < ∞, then |Aψ | = 0.

The relevant part of this theorem is (a), since (b) follows from the canonical limsup
covering

Aψ ⊂
∞⋃

q=Q

⋃

1≤p≤q
(p,q)=1

( p
q

− ψ(q),
p

q
+ ψ(q)

)
, ∀ Q ∈ N

16 The Euler totient function: for q ∈ N, ϕ(q) is the number of natural numbers i ≤ q such that gcd(q, i) =
1.
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�⇒ |Aψ | ≤
∞∑

q=Q

ϕ(q)ψ(q), ∀ Q ∈ N. (16)

On the other hand, as opposed to the classic theorem by Khinchin17 [36, Theorem 32],
the arbitrariness ofψ allows to restrict the denominators to a setQ ⊂ N just by setting
ψ(q) = 0 when q /∈ Q. In particular, Aμ,Q = Aψ if we define ψ(q) = 1Q(q)/qμ,
where 1Q is the indicator function of the set Q. Hence, the relevant sum for the sets
Aμ,Q is

∞∑

q=1

ϕ(q)ψ(q) =
∑

q∈Q

ϕ(q)

qμ
.

In particular, it is fundamental to understand the behavior of the Euler totient function
ϕ on Q.

The complete proof of the Duffin–Schaeffer theorem was given recently by Kouk-
oulopoulos and Maynard [37, Theorem 1], but Duffin and Schaeffer [21] proved back
in 1941 that the result holds under the additional assumption that there exists c > 0
such that

N∑

q=1

ϕ(q) ψ(q) ≥ c
N∑

q=1

q ψ(q), for infinitely many N ∈ N. (17)

In the setting of Aμ,Q, this condition is immediately satisfied by sets Q for which
there is a c > 0 such that ϕ(q) > c q for all q ∈ Q. Examples of this are:

• Q = P the set of prime numbers, and
• Q = {Mn : n ∈ N } where M ∈ N, that is, the set of power of a given number M .

It follows from our computations in Appendix A that the condition (17) is also satisfied
by

• Q = {Mn : n ∈ N } where M ∈ N, that is, the set of multiples of a given number
M .

To prove Theorem 1.1 for x0 = P/Q, we restrict the denominators to the latter set with
M = 4Q; in particular, the 1941 result byDuffin and Schaeffer [21] suffices. However,
in the case of x0 /∈ Qwe need to restrict the denominators to an exponentially growing
sequence qn for which we do not know if (17) holds. Hence, in this case we need the
full power of the result by Koukoulopoulos and Maynard [37]. This might give an
indication of the difficulty to settle the case x0 /∈ Q.

17 Khinchin’s theorem states that if ψ : N → [0,∞) is a function such that q2ψ(q) is decreasing and∑∞
q=1 q ψ(q) = ∞, then the set { x ∈ [0, 1] : |x− p/q| ≤ ψ(q) for infinitely many pairs (p, q) ∈ N×N }

has Lebesgue measure 1.
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2.3 Hausdorff dimension: the Jarník–Besicovitch theorem and theMass
Transference Principle

We mentioned that A2 = [0, 1]\Q, and it follows from the argument in (16) that
|Aμ| = 0 forμ > 2. But how small is Aμ is whenμ > 2? Ameasure theoretic answer
to that is the Jarník and Besicovitch theorem from the 1930s (see [25, Section 10.3]
for a modern version).

Theorem 2.2 (Jarník–Besicovitch theorem) Let μ > 2 and let Aμ be defined as in
(13). Then, dimH Aμ = 2/μ and H2/μ(Aμ) = ∞.

In this article we need to adapt this result to Aμ,Q. First, using the Duffin–Schaeffer
Theorem 2.1 we will be able to find the largest μ0 ≥ 1 such that |Aμ0,Q| = 1, so
that |Aμ,Q| = 0 for all μ > μ0. To compute the Hausdorff dimension of those
zero-measure sets, we will use a theorem by Beresnevich and Velani, called the Mass
Transference Principle [5, Theorem 2]. We state here its application to the unit cube
and to Hausdorff measures.

Theorem 2.3 (Mass Transference Principle [5]) Let Bn = Bn(xn, rn) be a sequence of
balls in [0, 1]d such that limn→∞ rn = 0. Let α < d and let Bα

n = Bn(xn, r
α/d
n ) be the

dilation of Bn centered at xn by the exponent α. Suppose that Xα := lim supn→∞ Bα
n

is of full Lebesgue measure, that is, |Xα| = 1. Then, calling X := lim supn→∞ Bn,
we have dimH X ≥ α and Hα(X) = ∞.

To illustrate the power of the Mass Transference Principle, let us explain how
the Jarnik–Besicovitch Theorem 2.2 follows as a simple corollary of the Dirichlet
approximation theorem. From the definition of Aμ we can write18

Aμ = lim sup
q→∞

⋃

1≤p≤q,(p,q)=1

B
( p
q

,
1

qμ

)
. (18)

Choose α = 2/μ so that (Aμ)α = Aμα = A2, which by the Dirichlet approximation
theorem has full measure. Then, the Mass Transference Principle implies dimH Aμ ≥
2/μ and H2/μ(Aμ) = ∞. The upper bound follows from the canonical cover of Aμ

in (18), proceeding like in (16).
For Aμ,Q, once we find the largest μ0 for which |Aμ0,Q| = 1 using the Duffin–

Schaeffer theorem, we will choose α = μ0/μ so that the property (Aμ,Q)α =
Aμα,Q = Aμ0,Q has full measure, and the Mass Transference Principle will then
imply dimH Aμ,Q ≥ μ0/μ.

3 Preliminary results on the local regularity of Rx0

In this section we carry over to Rx0 regularity results that are by now classical for R0.
In Sect. 3.1 we prove that Rx0 is globallyC

1/2. In Sect. 3.2 we compute the asymptotic

18 The expression in (18) is not in the form of a limsup of balls. It follows, however, that the limsup of any
enumeration whatsoever of the balls considered in the construction gives the same set.
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behavior of Rx0 around rationals. In Sect. 3.3 we give a lower bound for αx0(t) that is
independent of x0.

3.1 A global Hölder regularity result

Duistermaat [22, Lemma 4.1.] proved that R0 is globally C1/2(t). The same holds for
all x0 ∈ R. We include the proof for completeness.

Proposition 3.1 Let x0 ∈ R. Then, αx0(t) ≥ 1/2 for all t ∈ R. That is, Rx0 is globally
C1/2.

Proof For h �= 0, let N ∈ N such that 1
(N+1)2

≤ |h| < 1
N2 , and write

Rx0(t + h) − Rx0(t) =
∑

|n|≤N

e2π in
2t e2π inx0

n2

(
e2π in

2h − 1
)

+
∑

|n|>N

e2π in
2t e2π inx0

n2

(
e2π in

2h − 1
)
.

Since |eix − 1| ≤ |x | for all x ∈ R, we bound

∣∣∣∣
∑

|n|≤N

e2π in
2t e2π inx0

n2

(
e2π in

2h − 1
)∣∣∣∣ ≤

∑

|n|≤N

∣∣e2π in2h − 1
∣∣

n2

≤ 2|h|N < 2|h| 1√|h| = 2
√|h|.

For the other sum, we trivially bound
∣∣e2π in2h − 1

∣∣ ≤ 2 to get

∣∣∣∣
∑

|n|>N

e2π in
2t e2π inx0

n2

(
e2π in

2h − 1
)∣∣∣∣ ≤ 2

∞∑

n=N+1

2

n2
≤ 4

N
≤ 8

N + 1
≤ 8
√|h|.

Hence
∣∣Rx0(t + h)− Rx0(t)

∣∣ ≤ 10|h|1/2. This holds for all t , so Rx0 ∈ C1/2(t) for all
t ∈ R. ��

3.2 Asymptotic behavior of Rx0 around rational t

The building block for all results in this article is the behavior of Rx0 around rationals,
which we compute explicitly.

Proposition 3.2 Let x0 ∈ R. Let p, q ∈ N be such that (p, q) = 1. Then,

Rx0

(
p

q
+h

)
−Rx0

(
p

q

)
= −2π ih
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+
√|h|
q

∑

m∈Z
G(p,m, q) F±

(
x0 − m/q√

h

)
, for h �=0,

where F± = F+ if h > 0 and F± = F− if h < 0, and

G(p,m, q) =
q−1∑

r=0

e2π i
pr2+mr

q , F±(ξ) =
∫

R

e±2π i x2 − 1

x2
e2π i xξ dx .

The function F± is bounded and continuous, F±(0) = 2π(−1± i), and

F±(ξ) = (1± i)
e∓π iξ2/2

ξ2
+ O

(
1

ξ4

)
= O

(
1

ξ2

)
, as ξ → ∞.

Proof We follow the classical approach, which can be traced back to Smith [45], of
using the Poisson summation formula. From the definition of Rx0 , complete first the
sum to n ∈ Z to write

Rx0

(
p

q
+ h

)
− Rx0

(
p

q

)
= −2π ih +

∑

n∈Z

e2π in
2h − 1

n2
e2π i

pn2

q e2π inx0 ,

where we must interpret the term n = 0 as the value of e2π in
2h−1
n2

� 2π ih as n → 0.
Split the sum modulo q by writing n = mq + r and

∑

n∈Z

e2π in
2h − 1

n2
e2π i

pn2

q e2π inx0 =
q−1∑

r=0

e2π i
pr2

q
∑

m∈Z

e2π i(mq+r)2h − 1

(mq + r)2
e2π i(mq+r)x0 .

(19)

Use the Poisson summation formula for the function

f (y) = e2π i(yq+r)2h − 1

(yq + r)2
e2π i(yq+r)x0 ,

for which, changing variables (yq + r)
√|h| = z, we have

f̂ (ξ) =
√|h|
q

e2π irξ/q
∫

e2π i sgn(h)z2 − 1

z2
e
2π i z√|h| (x0−ξ/q)

dz

=
√|h|
q

e2π irξ/q F±
(
x0 − ξ/q√|h|

)
.

Therefore,

(19) =
q−1∑

r=0

e2π i
pr2

q
∑

m∈Z

√|h|
q

e2π irm/q F±
(
x0 − m/q√|h|

)
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=
√|h|
q

∑

m∈Z
G(p,m, q) F±

(
x0 − m/q√|h|

)
.

The properties for F± follow by integration by parts and the value of the Fresnel
integral. ��

The main term in Proposition 3.2 corresponds to m ∈ Z such that x0 − m/q is
closest to 0. Define

{
mq = argminm∈Z

∣∣x0 − m
q

∣∣,
xq = x0 − mq

q ,
so that |xq | =

∣∣∣x0 − mq

q

∣∣∣ = dist

(
x0,

Z

q

)
≤ 1

2q
.

(20)

Then, shifting the sum,

Rx0

( p
q

+ h
)
− Rx0

( p
q

)
= −2π ih +

√|h|
q

G(p,mq , q)F±
( xq√|h|

)

+
√|h|
q

∑

m �=0

G(p,mq + m, q) F±
(
xq − m/q√|h|

)
.

Let us now bound the sum as an error term. As long as (p, q) = 1, it is a well-known
property of Gauss sums that |G(p,m, q)| ≤ √

2q for all m ∈ N, so

√|h|
q

∣∣∣∣
∑

m �=0

G(p,mq + m, q) F±
(
xq − m/q√|h|

)∣∣∣∣ ≤ 2

√|h|√
q

∑

m �=0

∣∣∣∣F±
(
xq − m/q√|h|

)∣∣∣∣.

Since |xq | ≤ 1/(2q) and m �= 0, we have |xq − m/q| � |m|/q. This suggests
separating two cases:

• If q
√|h| < 1, we use the property F±(x) = O(x−2) to bound

∑

m �=0

∣∣∣∣F±
(
xq − m/q√|h|

)∣∣∣∣ �
∑

m �=0

|h|
|xq − m/q|2 � q2 |h|

∑

m �=0

1

m2 � q2|h|.
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• If q
√|h| ≥ 1, we split the sum as

∑

m �=0

∣∣∣∣F±
(
xq − m/q√|h|

)∣∣∣∣ =
∑

|m|≤q
√|h|

∣∣∣∣F±
(
xq − m/q√|h|

)∣∣∣∣

+
∑

|m|≥q
√|h|

∣∣∣∣F±
(
xq − m/q√|h|

)∣∣∣∣

≤
∑

|m|≤q
√|h|

C +
∑

|m|≥q
√|h|

|h|
|xq − m/q|2

� q
√|h| + q2|h|

∑

|m|≥q
√|h|

1

m2 � q
√|h|.

These two bounds can be written simultaneously as

∑

m �=0

∣∣∣∣F±
(
xq − m/q√|h|

)∣∣∣∣ � min
(
q
√|h|, q2|h|),

where the underlying constant is universal. Multiply by
√|h|/√q to get the following

corollary.

Corollary 3.3 Let x0 ∈ R. Let p, q ∈ N be such that (p, q) = 1. Then,

Rx0

(
p

q
+ h

)
− Rx0

(
p

q

)
= −2π ih +

√|h|
q

G(p,mq , q)F±
(

xq√|h|
)

+O
(
min

(√
q h, q3/2 h3/2

))
,

where the underlying constant of the O is independent of p, q and x0.

Remark 3.4 The difference between x0 = 0 and x0 �= 0 is clear from Corollary 3.3.

• If x0 = 0, we have xq = 0 = mq for all q. The main term is |h|1/2q−1 G(p, 0, q)

F±(0), so there is a clear dichotomy: R0 is differentiable at p/q if and only
if G(p, 0, q) = 0, which happens if and only if q ≡ 2 (mod 4); in all other
rationals, Rx0 is C

1/2.
• If x0 �= 0, it is in general false that xq = 0, so to determine the differentiability of

Rx0 we need to control the magnitude of F±(xq/
√|h|).

3.3 Lower bounds for the local Hölder regularity

We now give lower bounds for αx0(t) that do not depend on x0. In Sect. 3.3.1 we work
with t ∈ Q, and in Sect. 3.3.2 with t /∈ Q.
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3.3.1 At rational points

There is a dichotomy in the Hölder regularity of Rx0 at rational points.

Proposition 3.5 Let x0 ∈ R and t ∈ Q. Then, either αx0(t) = 1/2 or αx0(t) = 3/2.

Proof Let t = p/q with (p, q) = 1. If q is fixed, we get min
(√

q |h|, q3/2 |h|3/2) =
q3/2|h|3/2 for small enough |h|, so from Corollary 3.3 we get

Rx0

(
p

q
+ h

)
− Rx0

(
p

q

)
= −2π ih +

√|h|
q

G(p,mq , q)F±
(

xq√|h|
)

+O
(
q3/2h3/2

)
. (21)

Then, differentiability completely depends on the Gauss sum G(p,mq , q) and on xq .

Case 1 If G(p,mq , q) = 0, then
∣∣Rx0

( p
q + h

) − Rx0

( p
q

) + 2π ih
∣∣ �q h3/2, so

αx0(p/q) ≥ 3/2.
Case 2 If G(p,mq , q) �= 0 and xq �= 0. Then, |G(p,mq , q)| � √

q and
limh→0 xq/

√|h| = ∞, so
∣∣F±

(
xq/

√|h|)∣∣ � h/x2q . Hence, αx0(p/q) ≥ 3/2
because

Rx0

(
p

q
+ h

)
− Rx0

(
p

q

)
= −2π ih + O

(√
h√
q

h

x2q
+ q3/2h3/2

)

= −2π ih + Oq
(
h3/2

)
.

Case 3 If G(p,mq , q) �= 0 and xq = 0, we have |G(p,mq , q)| � √
q , so from (21)

we get

∣∣∣∣Rx0

(
p

q
+ h

)
− Rx0

(
p

q

)∣∣∣∣ ≥
√|h|
q

|G(p,mq , q)||F±(0)|

+Oq(h) �
√
h√
q

+ Oq(h) �q h1/2

for h �q 1. Together with Proposition 3.1, this implies αx0(p/q) = 1/2.

That Cases 1 and 2 actually imply αx0(t) = 3/2 is a bit more technical; we postpone
the proof to Proposition B.6 in Appendix B. ��

3.3.2 At irrational points

We give a lower bound αx0(t) that depends on the exponent of irrationality of t , but
not on x0.

Proposition 3.6 Let x0 ∈ R and t ∈ R\Q. Let μ(t) be the exponent of irrationality of
t . Then, αx0(t) ≥ 1

2 + 1
2μ(t) .
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The proof of this result, which we include for completeness, closely follows the
procedure by Chamizo and Ubis [15, Proof of Theorem 2.3].

Remark 3.7 Similar to what happens for x0 = 0, where α0(t) = 1/2 + 1/2μ̃(t) ≥
1/2+ 1/2μ(t) (see (7)), we do not expect the bound in Proposition 3.6 to be optimal
for all t /∈ Q. However, it will be enough to compute the spectrum of singularities.

Proof In view of Proposition 3.1, there is nothing to prove if μ(t) = ∞, so assume
μ(t) < ∞. Let pn/qn be the n-th approximation by continued fractions of t . Center
the asymptotic behavior in Corollary 3.3 at pn/qn , and bound it from above by

∣∣∣∣Rx0

(
pn
qn

+ h

)
− Rx0

(
pn
qn

)∣∣∣∣ �
√|h|√
qn

+ |h| +min
(√

qn h, q3/2n h3/2
)
, (22)

where we used that |G(pn,mqn , qn)| ≤
√
2qn for all n ∈ N and |F(x)| � 1 for all

x ∈ R.
Let h �= 0 be small enough. The sequence |t − pn/qn| is strictly decreasing, so

choose n such that
∣∣∣∣t −

pn
qn

∣∣∣∣ ≤ |h| <

∣∣∣∣t −
pn−1

qn−1

∣∣∣∣ . (23)

Then, from (22), (23) and |t − pn/qn + h| ≤ 2|h|, we get
∣∣Rx0 (t + h) − Rx0 (t)

∣∣

≤
∣∣∣∣Rx0

(
pn
qn

+ t − pn
qn

+ h

)
− Rx0

(
pn
qn

)∣∣∣∣

+
∣∣∣∣Rx0

(
pn
qn

+ t − pn
qn

)
− Rx0

(
pn
qn

)∣∣∣∣

�
√|h|√
qn

+ |h| +min
(√

qn |h|, q3/2n |h|3/2
)

.

(24)

Next we compute the dependence between qn and h. By the property of continued
fractions

1

qμn
n

=
∣∣∣t − pn

qn

∣∣∣ ≤ 1

qn+1qn
,

we get 1/qn ≤ 1/q1/(μn−1)
n+1 for all n ∈ N. Then, from (23) we get

1

qμn
n

≤ |h| <
1

qμn−1
n−1

≤ 1

qμn−1/(μn−1−1)
n

. (25)

We now bound each term in (24) using (25).

• For the first term, by (25),
√|h|/√qn ≤ |h| 12+ 1

2μn .
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• The fact that μn ≥ 2 implies 1
2 + 1

2μn
≤ 3

4 , so |h| ≤ |h|3/4 ≤ |h| 12+ 1
2μn and the

second term is absorbed by the first one.
• For the third term, we write the minimum as

min
(√

qn |h|, q3/2n |h|3/2
)
=
{√

qn |h|, when |h| ≥ 1/q2n ,

q3/2n |h|3/2 when |h| ≤ 1/q2n .

So we have two regions:

– When |h| ≥ 1/q2n , use (25) to bound

√
qn |h| ≤ |h|

|h|(μn−1−1)/2μn−1
= |h| 12+ 1

2μn−1 .

– When |h| ≤ 1/q2n , we directly have qn ≤ |h|−1/2, so

q3/2n |h|3/2 = |h|3/2−3/4 = |h|3/4 ≤ |h| 12+ 1
2μn−1 ,

where in the last inequality we used 1
2 + 1

2μn−1
≤ 3

4 as before.

Gathering all cases, we get

|Rx0(t + h) − Rx0(t)| ≤ |h| 12+ 1
2μn + |h| 12+ 1

2μn−1 .

From the definition of the exponent of irrationality μ(t) = lim supn→∞ μn , for any
δ > 0 there exists Nδ ∈ N such thatμn ≤ μ(t)+δ for all n ≥ Nδ . Then, since |h| < 1,

we have |h| 12+ 1
2μn ≤ |h| 12+ 1

2μ(t)+2δ for all n ≥ Nδ . Renaming δ, we get Nδ ∈ N such
that

|Rx0(t + h) − Rx0(t)| ≤ |h| 12+ 1
2μ(t)−δ

, for all |h| ≤
∣∣∣∣t −

pNδ

qNδ

∣∣∣∣,

so αx0(t) ≥ 1
2 + 1

2μ(t) − δ. Since this holds for all δ > 0, we conclude that αx0(t) ≥
1
2 + 1

2μ(t) . ��

4 Proof of Theorem 1.1: spectrum of singularities when x0 ∈ Q

In this section we prove Theorem 1.1. Let us fix x0 = P/Q such that (P, Q) = 1.
To compute the spectrum of singularities dx0 , we first characterize the rational points
t where Rx0 is not differentiable, and then we give an upper bound for the regularity
αx0(t) at irrational t .
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4.1 At rational points t

In the proof of Proposition 3.5 we established that Rx0 is not differentiable at t = p/q
if and only if G(p,mq , q) �= 0 and xq = dist(x0, Z/q) = 0. We characterize this in
the following proposition.

Proposition 4.1 Let x0 = P/Q with gcd(P, Q) = 1, and let p, q ∈ N such that
gcd(p, q) = 1. Then, Rx0 is non-differentiable at t = p/q if and only if

• q = kQ with k ≡ 0, 1, 3 (mod 4), in the case Q ≡ 1 (mod 2).
• q = kQ with k ≡ 0 (mod 2), in the case Q ≡ 0 (mod 4).
• q = kQ with k ∈ Z, in the case Q ≡ 2 (mod 4).

In all such cases, the asymptotic behavior is

Rx0

(
p

q
+ h

)
− Rx0

(
p

q

)
= c e2π iφp,q,x0 F±(0)

√|h|√
q

− 2π ih

+O
(
min

(√
q h, q3/2 h3/2

))
. (26)

where c = 1 or c = √
2 depending on parity conditions of Q and q. In particular,

αx0(t) = 1/2.

Proof In view of the proof of Proposition 3.5, we must identify the conditions for
G(p,mq , q) �= 0 and xq = 0. Since xq = dist(P/Q, Z/q), we have xq = 0 when
there exists mq ∈ Z such that

P

Q
= mq

q
⇐⇒ Pq = mqQ.

Since gcd(P, Q) = 1, then necessarily Q|q. Reversely, if q = kQ, then picking
mq = kP we have mq/q = P/Q. In short,

xq = 0 ⇐⇒ q is a multiple of Q.

So let q = kQ for some k ∈ N. Then, mq = kP . Let us characterize the second
condition G(p,mq , q) = G(p, kP, kQ) �= 0. It is well-known that

G(a, b, c) �= 0 ⇐⇒ either

{
c is odd, or
c is even and c

2 ≡ b (mod 2).
(27)

We separate cases:

• Suppose Q is odd. Then, according to (27), we need either

– kQ odd, which holds if and only if k is odd, or
– kQ even, which holds if and only if k is even, and kQ/2 ≡ kP (mod 2). Since

Q is odd and k is even, this is equivalent to k/2 ≡ 0 (mod 2), which means
k ≡ 0 (mod 4).
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Therefore, if q = kQ, the Gauss sum G(p,mq , q) �= 0 if and only if k ≡ 0, 1, 3
(mod 4).

• Suppose Q ≡ 0 (mod 4). Since q = kQ is even, by (27) we need kQ/2 ≡ kP
(mod 2). Since Q is a multiple of 4, this is equivalent to kP ≡ 0 (mod 2). But
since Q is even, then P must be odd. Therefore, kmust be even. In short, if q = kQ,
we have G(p,mq , q) �= 0 if and only if k is even.

• Suppose Q ≡ 2 (mod 4). Since q = kQ is even, by (27) we need kQ/2 ≡ kP
(mod 2). Now both Q/2 and P are odd, so this is equivalent to k ≡ k (mod 2),
which is of course true. Therefore, if q = kQ, we have G(p,mq , q) �= 0 for all
k ∈ Z.

Once all cases have been identified, (26) follows from Corollary 3.3 and from the
fact that if G(p,mq , q) �= 0 we have |G(p,mq , q)| = c

√
q with c = 1 or c = √

2.
��

4.2 A general upper bound for irrational t

We begin the study of t /∈ Q by giving a general upper bound for αx0(t) for t /∈ Q. The
proof uses an alternative asymptotic expression around rationals that we postpone to
Appendix B.

Proposition 4.2 Let x0 ∈ Q and t /∈ Q. Then, αx0(t) ≤ 3/4.

Proof See Appendix B, Proposition B.3. ��

4.3 Upper bounds depending on the irrationality of t

We now aim at an upper bound for αx0(t) that depends on the irrationality of t at the
level of Proposition 3.6. The idea is to approximate t by rationals p/q where Rx0
is non-differentiable, which we characterized in Proposition 4.1. To avoid treating
different cases depending on the parity of Q, let us restrict19 q ∈ 4QN, such that the
three conditions in Proposition 4.1 are simultaneously satisfied and (26) holds.

Let μ ∈ [2,∞). Define the classic Diophantine set

Aμ =
{
t ∈ (0, 1)\Q : ∣∣t − p

q

∣∣ ≤ 1

qμ
for i. m. coprime pairs (p, q) ∈ N × N

}

and for 0 < a < 1 small enough define the restricted Diophantine set

Aμ,Q =
{
t ∈ (0, 1)\Q : ∣∣t − p

q

∣∣ ≤ a

qμ
for i. m. coprime pairs (p, q) ∈ N × 4QN

}
.

For μ = ∞ we define A∞ = ⋂μ≥2 Aμ and A∞,Q = ⋂μ≥2 Aμ,Q . Clearly, Aμ,Q ⊂
Aμ. Our first step is to give an upper bound for αx0(t) for t ∈ Aμ,Q .

19 We lose nothing with this reduction when computing the spectrum of singularities, but it may be prob-
lematic if we aim to compute the Hölder regularity αx0 (t) for all t .
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Proposition 4.3 Let μ ≥ 2 and t ∈ Aμ,Q. Then, αx0(t) ≤ 1
2 + 1

2μ .

Proof We begin with the case μ < ∞. If t ∈ Aμ,Q , there is a sequence of irreducible
fractions pn/qn with qn ∈ 4QN, for which we can use (26) and write

Rx0 (t) − Rx0

( pn
qn

)
= c e2π iφn,x0

√|hn |√
qn

− 2π ihn + O
(
min

(√
qn hn, q

3/2
n h3/2n

))
,

(28)

where we absorbed F(0) into c and we defined hn and μn as

hn = t − pn
qn

, |hn| = 1

qμn
n

≤ a

qμ
n

<
1

qμ
n

. (29)

We now absorb the second and third terms in (28) in the first term. First,μ ≥ 2 implies
q2n |hn| ≤ 1, so min(

√
qn |hn|, q3/2n |hn|3/2) = q3/2n |hn|3/2. Letting C be the universal

constant in the O in (28),

C q3/2n |hn|3/2 ≤ c

4

√|hn|√
qn

⇐⇒ q2n |hn| ≤
c

4C
,

and since q2n |hn| ≤ aq2−μ
n ≤ a, it suffices to ask a ≤ c/(4C). Regarding the second

term, we have

2π |hn| ≤ c

4

√|hn|√
qn

⇐⇒ qn |hn| ≤
( c

8π

)2

This holds for large n because q2n |hn| ≤ 1 implies qn |hn| ≤ 1/qn , and because
lim supn→∞ qn = ∞ (otherwise qn would be bounded and hence the sequence pn/qn
would be finite). All together, using the reverse triangle inequality in (28) and the
bound for hn in (29)

∣∣∣∣Rx0 (t) − Rx0

(
pn
qn

)∣∣∣∣ ≥
c

2

√|hn|√
qn

≥ c

2
|hn|

1
2+ 1

2μ , ∀n � 1.

This means that Rx0 cannot be better than C 1
2+ 1

2μ at t , thus concluding the proof for
μ < ∞.

If t ∈ A∞,Q , by definition t ∈ Aμ,Q for all μ ≥ 2, hence we just proved that
αx0(t) ≤ 1/2+ 1/(2μ) for all μ ≥ 2. Taking the limit μ → ∞ we get αx0(t) ≤ 1/2.

��
To prove Theorem 1.1, we need to compute dimH{ t : αx0(t) = α }with prescribed

α. For that, we need to complement Proposition 4.3 by proving that for t ∈ Aμ,Q we
also have αx0(t) ≥ 1

2 + 1
2μ . By Proposition 3.6, it would suffice to prove that t ∈ Aμ,Q
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has irrationality μ(t) = μ. Unfortunately, when μ < ∞ this need not be true. To fix
this, for 2 ≤ μ < ∞ define the companion sets

Bμ = Aμ\
⋃

ε>0

Aμ+ε

=
{
t ∈ Aμ | ∀ε > 0,

∣∣t − p

q

∣∣ ≤ 1

qμ+ε
only for finitely many

p

q

}
,

and

Bμ,Q = Aμ,Q\
⋃

ε>0

Aμ+ε

=
{
t ∈ Aμ,Q | ∀ε > 0,

∣∣t − p

q

∣∣ ≤ 1

qμ+ε
only for finitely many

p

q

}
,

(30)

which have the properties we need.

Proposition 4.4 Let 2 ≤ μ < ∞. Then,

(i) Bμ,Q ⊂ Bμ ⊂ { t ∈ R\Q : μ(t) = μ }.
(ii) If t ∈ Bμ,Q, then αx0(t) = 1

2 + 1
2μ .

(iii) If t ∈ A∞,Q, then αx0(t) = 1/2.

Proof (i) First, Bμ,Q ⊂ Bμ because Aμ,Q ⊂ Aμ. The second inclusion is a conse-
quence of the definition of the irrationality exponent in (12). Indeed, t ∈ Bμ ⊂ Aμ

directly implies that μ(t) ≥ μ. On the other hand, for all ε > 0, t ∈ Bμ implies
t /∈ Aμ+ε , so t can be approximated with the exponent μ + ε only with finitely many
fractions, and thus μ(t) ≤ μ + ε. Consequently, μ(t) ≤ μ.

(ii) By (i), t ∈ Bμ,Q implies μ(t) = μ, so by Proposition 3.6 we get αx0(t) ≥ 1
2 +

1
2μ . At the same time, t ∈ Bμ,Q ⊂ Aμ,Q , so Proposition 4.3 implies αx0(t) ≤ 1

2 + 1
2μ .

(iii) It follows directly from Propositions 3.1 and 4.3. ��
Corollary 4.5 Let 2 < μ < ∞. Then, for all ε > 0,

Bμ,Q ⊂
{
t ∈ (0, 1) : αx0(t) = 1

2
+ 1

2μ

}
⊂ Aμ−ε .

For μ = 2 we have the slightly more precise

B2,Q ⊂ { t ∈ (0, 1) : αx0(t) = 3/4 } ⊂ A2.

For μ = ∞,

A∞,Q ⊂ { t ∈ (0, 1) : αx0(t) = 1/2 } ⊂ A∞ ∪ Q.
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Proof Left inclusions follow from Proposition 4.4 for all μ ≥ 2, so we only need to
prove the right inclusions. When μ = 2, it follows from the Dirichlet approximation
theorem, which states that R\Q ⊂ A2, and Proposition 3.5, in which we proved that
if t is rational, then either αx0(t) = 1/2 or αx0(t) ≥ 3/2. Thus, { t ∈ (0, 1) : αx0(t) =
3/4 } ⊂ (0, 1)\Q ⊂ A2. Suppose now that 2 < μ < ∞ and that αx0(t) = 1

2 + 1
2μ .

By Proposition 3.6, αx0(t) ≥ 1
2 + 1

2μ(t) , so we get μ ≤ μ(t). In particular, given any

ε > 0, we have μ− ε < μ(t), so
∣∣t − p

q

∣∣ ≤ 1/qμ−ε for infinitely many coprime pairs
(p, q) ∈ N×N, which means that t ∈ Aμ−ε . Finally, for μ = ∞, if t /∈ Q is such that
αx0(t) = 1/2, then by Proposition 3.6 we get μ(t) = ∞, which implies that t ∈ Aμ

for all μ ≥ 2, hence t ∈ A∞. ��
Now, to prove Theorem 1.1 it suffices to compute dimH Aμ and dimH Bμ,Q .

Proposition 4.6 For 2 ≤ μ < ∞, dimH Aμ = dimH Bμ,Q = 2/μ. Also,
dimH A∞ = 0.

Form this result, whose proofwe postpone,we can proveTheorem1.1 as a corollary.

Theorem 4.7 Let x0 ∈ Q. Then, the spectrum of singularities of Rx0 is

dx0(α) =
⎧
⎨

⎩

4α − 2, 1/2 ≤ α ≤ 3/4,
0, α = 3/2,
−∞, otherwise.

Proof Proposition 3.1 implies d(α) = −∞ when α < 1/2, while Propositions 3.5
and 4.2 imply that dx0(3/2) = 0 and dx0(α) = −∞ if α > 3/4 and α �= 3/2. When
1/2 ≤ α ≤ 3/4, it follows from Corollary 4.5, Proposition 4.6 and the periodicity of
Rx0 . First, dx0(1/2) ≤ dimH(A∞ ∪ Q) = 0 because dimH Q = dimH A∞ = 0. On
the other hand, for 2 ≤ μ < ∞ we get

2

μ
≤ dx0

(
1

2
+ 1

2μ

)
≤ 2

μ − ε
, ∀ε > 0 �⇒ dx0

(
1

2
+ 1

2μ

)
= 2

μ
.

which gives the result for 1/2 < α ≤ 3/4 by renaming α = 1/2+ 1/(2μ). ��
Let us now prove Proposition 4.6.

Proof of Proposition4.6 We have A2 = (0, 1)\Q by Dirichlet approximation, so
dimH A2 = 1. For μ > 2 we have dimH Aμ = 2/μ by the Jarnik–Besicovitch The-
orem 2.2. Also, A∞ ⊂ Aμ for all μ ≥ 2, so dimH A∞ ≤ 2/μ for all μ ≥ 2, hence
dimH A∞ = 0. So we only need to prove that dimH Bμ,Q = 2/μ for 2 ≤ μ < ∞.
Moreover,

Bμ,Q = Aμ,Q\
⋃

ε>0

Aμ+ε ⊂ Aμ,Q ⊂ Aμ,

which implies dimH Bμ,Q ≤ dimH Aμ = 2/μ. Hence it suffices to prove that
dimH Bμ,Q ≥ 2/μ. This claim follows from H2/μ(Aμ,Q) > 0. Indeed, we first
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remark that the sets Aμ are nested, in the sense that Aσ ⊂ Aμ when σ > μ. We can
therefore write

⋃

ε>0

Aμ+ε =
⋃

n∈N
Aμ+ 1

n
.

By the Jarnik–Besicovitch Theorem 2.2, dimH Aμ+1/n = 2/(μ + 1/n) < 2/μ, so
H2/μ(Aμ+1/n) = 0 for all n ∈ N, hence

H2/μ
(⋃

ε>0

Aμ+ε

)
= H2/μ

(⋃

n∈N
Aμ+ 1

n

)
= lim

n→∞H2/μ
(
Aμ+ 1

n

)
= 0.

Therefore,

H2/μ(Bμ,Q
) = H2/μ

(
Aμ,Q\

⋃

ε>0

Aμ+ε

)
= H2/μ(Aμ,Q) −H2/μ

(⋃

ε>0

Aμ+ε

)

= H2/μ (Aμ,Q
)
,

soH2/μ(Aμ,Q) > 0 implies H2/μ(Bμ,Q) > 0, hence dimH Bμ,Q ≥ 2/μ.
Let us thus proveH2/μ(Aμ,Q) > 0, for which we follow the procedure outlined in

Sect. 2 with the set of denominatorsQ = 4QN. We first detect the largest μ such that
Aμ,Q has full Lebesgue measure using the Duffin–Schaeffer Theorem 2.1. Define

ψμ,Q(q) = a
14QN(q)

qμ
,

where a > 0 comes from the definition of Aμ,Q and 14QN(q) is the indicator function
of 4QN,

14QN(q) =
{
1, if 4Q | q,

0, otherwise.

Then, we have Aμ,Q = Aψμ,Q , where

Aψμ,Q =
{
t ∈ [0, 1] :

∣∣∣t − p

q

∣∣∣ ≤ ψμ,Q(q) for i. m. coprime pairs (p, q) ∈ N × N

}

has the form needed for the Duffin–Schaeffer Theorem 2.1. Indeed, the inclusion ⊂
follows directly from the definition of ψμ,Q . For the inclusion ⊃, observe first that
if t ∈ Aψμ,Q with μ > 1, then t /∈ Q. Now, if a coprime pair (p, q) ∈ N

2 satisfies
|t − p/q| ≤ ψμ,Q(q), then q ∈ 4QN because otherwise we get the contradiction

0 <

∣∣∣t − p

q

∣∣∣ ≤ ψμ,Q(q) = a
14QN(q)

qμ
= 0.
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In this setting, the Duffin–Schaeffer theorem says that Aμ,Q has Lebesgue measure 1
if and only if

∞∑

q=1

ϕ(q) ψμ,Q(q) = a

(4Q)μ

∞∑

n=1

ϕ(4Qn)

nμ
= ∞,

and has zero measure otherwise. Using this characterization, we prove now

|Aμ,Q | =
{
1, μ ≤ 2,
0, μ > 2,

(31)

independently of a. To detect the critical μ = 2, trivially bound ϕ(n) < n so that

∞∑

n=1

ϕ(4Qn)

nμ
<

∞∑

n=1

4Qn

nμ
= 4Q

∞∑

n=1

1

nμ−1 < ∞, if μ > 2.

However, this argument fails whenμ = 2.What is more, denote by P the set of primes
so that

∞∑

n=1

ϕ(4Qn)

n2
>

∑

p∈P, p>4Q

ϕ(4Qp)

p2

If p ∈ P and p > 4Q, then gcd(p, 4Q) = 1 because p � 4Q (for if p | 4Q then
p ≤ 4Q). Therefore, ϕ(4Qp) = ϕ(4Q) ϕ(p) = ϕ(4Q) (p − 1) > ϕ(4Q) p/2, so

∞∑

n=1

ϕ(4Qn)

n2
>

ϕ(4Q)

2

∑

p∈P, p>4Q

1

p
= ∞,

because the sum of the reciprocals of the prime numbers diverges.20 The Duffin–
SchaefferTheorem2.1 thus implies that |A2,Q | = 1 and, in particular, dimH A2,Q = 1.
From this we immediately get |Aμ,Q | = 1 when μ < 2 because A2,Q ⊂ Aμ,Q .

Once we know (31), we use the Mass Transference Principle Theorem 2.3 to com-
pute the dimension of Aμ,Q for μ > 2. Write first

Aμ,Q = lim sup
q→∞

⋃

p≤q, (p,q)=1

B

(
p

q
, ψμ,Q(q)

)
.

Let β = 2/μ so that

ψμ,Q(q)β =
(
a
14QN(q)

qμ

)β

= aβ 14QN(q)

qμβ
= a2/μ

14QN(q)

q2
= ψ2,Q(q),

20 This argument shows that the strategy used here to compute the dimension of Aμ,Q also works if we
restrict the denominators to the primes Q = P in the first place. This situation arises when computing the
spectrum of singularities of trajectories of polygonal lines with non-zero rational torsion, studied in [4].
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with a new underlying constant a2/μ. Therefore,

(Aμ,Q)β := lim sup
q→∞

⋃

p≤q, (p,q)=1

B

(
p

q
, ψμ,Q(q)β

)

= lim sup
q→∞

⋃

p≤q, (p,q)=1

B

(
p

q
, ψ2,Q(q)

)
= A2,Q .

Observe that β is chosen to be the largest possible exponent that gives |(Aμ,Q)β | =
|(Aμβ,Q)| = 1. Since (31) is independent of a, we get |(Aμ,Q)2/μ| = |A2,Q | = 1, and
the Mass Transference Principle Theorem 2.3 implies that H2/μ

(
Aμ,Q

) = ∞. The
proof is complete. ��

5 Proof of Theorem 1.3: spectrum of singularities when x0 /∈ Q

In this sectionweworkwith x0 /∈ Q and prove Theorem 1.3. Following the strategy for
x0 ∈ Q, we first study the Hölder regularity at rational t in Sect. 5.1, and at irrational
t in Sect. 5.2

5.1 Regularity at rational t

Let t = p/q an irreducible fraction. With Corollary 3.3 in mind, we now have xq =
dist(x0, Z/q) �= 0. Since q is fixed, limh→0 xq/|h|1/2 = ∞, so F±(x) = O(x−2)

implies F±(xq/
√|h|) � |h|/x2q when h → 0. Also |G(p,mq , q)| ≤ √

2q for all mq .
Hence,

∣∣∣∣ Rx0

(
p

q
+ h

)
− Rx0

(
p

q

)
+ 2π ih

∣∣∣∣ �
(

1√
q x2q

+ q3/2
)

h3/2.

This regularity is actually the best we can get.

Proposition 5.1 Let x0 ∈ R\Q and let t ∈ Q. Then, αx0(t) = 3/2.

We postpone the proof of αx0(t) ≤ 3/2 to Proposition B.6. In any case, this means
that when x0 /∈ Q, Rx0 is more regular at rational points than when x0 ∈ Q.

5.2 Regularity at irrational t

Let now t /∈ Q. Again, we aim at an upper bound for αx0(t) that complements the
lower bound in Proposition 3.6. by approximating t /∈ Q by rationals pn/qn and using
the asymptotic behavior in Corollary 3.3. However, now x0 /∈ Q implies xqn �= 0, so
we cannot directly assume F±(xqn/

√|hqn |) � F±(0) � 1 anymore. Therefore, it is
fundamental to understand the behavior of the quotient xqn/

√|hqn |.
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5.2.1 Heuristics

Let q ∈ N and define the exponents μq and σq as usual,

xq =dist

(
x0,

Z

q

)
= 1

qσq
, |hq |=dist

(
t,

Z

q

)
= 1

qμq
, �⇒ xq√|hq |

= 1

qσq−μq/2 .

If σq − μq/2 > c > 0 holds for a sequence qn , we should recover the behavior when
x0 ∈ Q because

lim
n→∞

(
σqn − μqn

2

)
≥ c > 0 �⇒ lim

n→∞
xqn√|hqn |

= 0

�⇒ F±
(

xqn√|hqn |
)

� F±(0), n � 1. (32)

The main term in the asymptotic behavior for Rx0(t) − Rx0(pn/qn) in Corollary 3.3
would then be

Main Term =
√|hqn |
qn

G(pn,mqn , qn)F±(0) �
√|hqn |√

qn
� h

1
2+ 1

2μqn
qn

if we assume the necessary parity conditions so that |G(pn,mqn , qn)| � √
qn .

Recalling the definition of the exponent of irrationality μ(·) in (12), we may think
of σqn → μ(x0) and μqn → μ(t), so these heuristic computations suggest that
αx0(t) ≤ 1

2 + 1
2μ(t) for t such that μ(t) ≤ 2μ(x0). Since Proposition 3.6 gives

αx0(t) ≥ 1
2 + 1

2μ(t) , we may expect that

αx0(t) = 1

2
+ 1

2μ(t)
, if 2 ≤ μ(t) ≤ 2μ(x0), (33)

or at least for a big subset of such t . It is less clear what to expect whenμ(t) > 2μ(x0),
since (32) need not hold. Actually, if σqn − μqn/2 < c < 0 for all sequences, then
since F±(x) = x−2 + O(x−4),

lim
n→∞

xqn√|hqn |
= lim

n→∞ q
μqn /2−σqn
n = ∞ �⇒ F±

(
xqn√|hqn |

)
� 1

q
μqn−2σqn
n

= |hqn |1−
2σqn
μqn ,

which in turn would make the main term in Rx0(t) − Rx0(pn/qn) be

Main Term =
√
hqn
qn

G(pn,mqn , qn)F±
(

xqn√|hqn |
)

� h
1
2+ 1

2μqn
qn h

1− 2σqn
μqn

qn � h
3
2−

4σqn−1
2μqn

qn ,
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which corresponds to an exponent 3
2 − 4μ(x0)−1

2μ(t) . Together with lower bound in Propo-

sition 3.6, we would get 1
2 + 1

2μ(t) ≤ αx0(t) ≤ 3
2 − 4μ(x0)−1

2μ(t) , which leaves an open
interval for αx0(t).

The main difficulty to materialize the ideas leading to (33) is that we need the
sequence qn to generate good approximations of both x0 and t simultaneously, which
a priori may be not possible. In the following lines we show how we can partially
dodge this problem to prove Theorem 1.3.

5.2.2 Proof of Theorem 1.3

Let σ ≥ 2. Recalling the definition of the sets Aμ,Q in (15), define

Aσ,N\4N =
{
x ∈ [0, 1] :

∣∣∣∣x − b

q

∣∣∣∣ <
1

qσ

for infinitely many coprime pairs (b, q) ∈ N × (N\4N) } .

We first prove that the restriction in the denominators21 does not affect the Hausdorff
dimension.

Proposition 5.2 Let σ ≥ 2. Then, dimH Aσ,N\4N = 2/σ . Moreover, A2,N\4N =
(0, 1)\Q, hence |A2,N\4N| = 1. If σ > 2, then H2/σ (Aσ,N\4N) = ∞.

Proof The proof for the upper bound for the Hausdorff dimension is standard.Writing

Aσ,N\4N = lim sup
q→∞ (q /∈4N)

⋃

1≤b<q, (b.q)=1

B

(
b

q
,
1

qσ

)

=
∞⋂

Q=1

⋃

q≥Q, q /∈4N

( ⋃

1≤b<q, (b.q)=1

B
(b
q

,
1

qσ

))
,

we get an upper bound for the Hausdorff measures using the canonical cover

Aσ,N\4N ⊂
⋃

q≥Q, q /∈4N

( ⋃

1≤b<q

B
(b
q

,
1

qσ

))
, ∀Q ∈ N

�⇒ Hβ(Aσ,N\4N) ≤ lim
Q→∞

∑

q≥Q

1

qσβ−1 . (34)

Thus,Hβ(Aσ,N\4N) = 0 when σβ −1 > 1, and consequently dimH Aσ,N\4N ≤ 2/σ .
For the lower bound we follow the procedure discussed in Sect. 2, though unlike in

the proof of Proposition 4.6 we do not need the Duffin–Schaeffer theorem here. We
first study the Lebesgue measure of Aσ,N\4N. From (34) with β = 1, we directly get

21 This condition, which will be apparent later, comes from parity the conditions for the Gauss sums not
to vanish.
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|Aσ,N\4N| = 0 when σ > 2. When σ = 2, we get A2,N\4N = A2 = (0, 1)\Q. Indeed,
if bn/qn is the sequence of approximations by continued fractions of x ∈ (0, 1)\Q,
two consecutive denominators qn and qn+1 are never both even.22 This means that
there is a subsequence bnk/qnk such that |x − bnk/qnk | < 1/q2nk and qnk is odd for all
k ∈ N. In particular, qnk /∈ 4N, so (0, 1)\Q ⊂ A2,N\4N. Hence,

|Aσ,N\4N| =
{
1, σ ≤ 2,
0, σ > 2,

(35)

With this in hand, we use the Mass Transference Principle Theorem 2.3. For β > 0,

(Aσ,N\4N)β = lim sup
q→∞
q /∈4N

⋃

1≤b<q, (b,q)=1

B

(
b

q
,

(
1

qσ

)β)

= lim sup
q→∞
q /∈4N

⋃

1≤b<q, (b,q)=1

B

(
b

q
,

1

qσβ

)
= Aσβ,N\4N.

Thus, choosing β = 2/σ we get (Aσ,N\4N)2/σ = A2,N\4N, hence by (35) we get
|(Aσ,N\4N)2/σ | = 1. The Mass Transference Principle implies dimH Aσ,N\4N ≥ 2/σ
and H2/σ (Aσ,N\4N) = ∞. ��

Let x0 ∈ Aσ,N\4N. Then there exists a sequence of pairs (bn, qn) ∈ N×(N\4N) such
that |x0 − bn/qn| < 1/qσ

n and moreover bn/qn are all approximations by continued
fractions. Define

Qx0 = { qn : n ∈ N }

to be the set of such denominators. This sequence exists because:

• if σ = 2, there is a subsequence of continued fraction approximations with odd
denominator, in particular with qn /∈ 4N.

• if σ > 2, by definition there exist a sequence of pairs (bn, qn) ∈ N× (N\4N) such
that

∣∣∣∣x0 − bn
qn

∣∣∣∣ <
1

qμ
n

≤ 1

2q2n
, for large enough n ∈ N.

By a theorem of Khinchin [36, Theorem 19], all such bn/qn are continued fraction
approximations of x0.

22 If x = [a0; a1, a2, . . .] is a continued fraction, then q0 = 1, q1 = a1 and qn = anqn−1 + qn−2 for
n ≥ 2. If qN and qN+1 were both even for some N , then qN−1 would also be, and by induction q0 = 1
would be even.
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Since all such qn are the denominators of continued fraction approximations, the
sequence qn grows exponentially.23 Following again the notation in (15) in Sect. 2, for
μ ≥ 1 and 0 < c < 1/2, let24

Aμ,Qx0
=
{
t ∈ [0, 1] :

∣∣∣∣t −
p

q

∣∣∣∣ <
c

qμ
for infinitely many coprime pairs (p, q) ∈ N ×Qx0

}
.

Proposition 5.3 For μ ≥ 1, dimH(Aμ,Qx0
) = 1/μ.

Proof As in the proof of Proposition 5.2, the upper bound follows from the limsup
expression Aμ,Qx0

= lim supn→∞
⋃

1≤p≤qn , (p,qn)=1 B(p/qn, c/q
μ
n ) and its canoni-

cal covering

Aμ,Qx0
⊂
⋃

n≥N

⋃

1≤p≤qn

B

(
p

qn
,

c

qμ
n

)
, ∀N ∈ N �⇒ Hβ

(
Aμ,Qx0

) ≤ cβ lim
N→∞

∞∑

n=N

1

qμβ−1
n

. (36)

Sinceqn ≥ 2n/2, the series converges if and only ifμβ−1 > 0.Thus,Hβ(Aμ,Qx0
) = 0

for all β > 1/μ, hence dimH(Aμ,Qx0
) ≤ 1/μ.

For the lower bound we follow again the procedure in Sect. 2. First we compute the
Lebesgue measure of Aμ,Qx0

. From (36) with β = 1 we get |Aμ,Qx0
| = 0 if μ > 1.

When μ ≤ 1, we need the full strength of the Duffin–Schaeffer theorem proved by
Koukoulopoulos and Maynard [37] (see Theorem 2.1 in this paper). Indeed, we have
|Aμ,Qx0

| = 1 if and only if
∑∞

n=1 ϕ(qn)/q
μ
n = ∞, and otherwise |Aμ,Qx0

| = 0. If
μ < 1, we use one of the classic properties of Euler’s totient function, namely that
for ε = (1 − μ)/2 > 0 there exists N ∈ N such that ϕ(n) ≥ n1−ε for all n ≥ N . In
particular, there exists K ∈ N such that

∞∑

n=1

ϕ(qn)

qμ
n

≥
∞∑

n=K

ϕ(qn)

qμ
n

≥
∞∑

n=K

q1−μ−ε
n ≥

∞∑

n=K

1 = ∞,

so |Aμ,Qx0
| = 1 if μ < 1. For μ = 1, none of these arguments work, and we need

to know the behavior of ϕ(qn) for qn ∈ Qx0 , of which we have little control. So
independently of c > 0,

|Aμ,Qx0
| =

⎧
⎨

⎩

1, μ < 1,
?, μ = 1,
0, μ > 1.

(37)

23 We actually have qn ≥ 2n/2. To see this, rename this sequence as a subsequence (bnk /qnk )k of the

continued fraction convergents of x0. By the properties of the continued fractions, qnk ≥ 2nk/2. Since

nk ≥ k, we get qnk ≥ 2k/2.
24 When μ = ∞ the definition is adapted as usual as A∞,Qx0

= ∩μAμ,Qx0
. Proofs for forthcoming

results are written for μ < ∞, but the simpler μ = ∞ case is proved the same way we did in Sect. 4.3.
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Even not knowing |A1,Qx0
|, the Mass Transference Principle Theorem 2.3 allows us

to compute the Hausdorff dimension of Aμ,Qx0
from (37). As usual, dilate the set with

an exponent β > 0:

(Aμ,Qx0
)β = lim sup

n→∞

⋃

1≤p≤qn

B

(
p

qn
,

(
c

qμ
n

)β)

= lim sup
n→∞

⋃

1≤p≤qn

B

(
p

qn
,
cβ

qμβ
n

)
= Aμβ,Qx0

,

with a new constant cβ . Since (37) is independent of c, we have |(Aμ,Qx0
)β | =

|Aμβ,Qx0
| = 1 if μβ < 1, and the Mass Transference Principle implies

dimH Aμ,Qx0
≥ β. Taking β → 1/μ, we deduce dimH Aμ,Qx0

≥ 1/μ. ��
As in Proposition 4.4 and in the definition of Bμ,Q in (30), to get information about

αx0(t) for t ∈ Aμ,Qx0
we need to restrict their exponent of irrationality. We do this by

removing sets Aμ+ε defined in (13). However, compared to Proposition 4.4 we have
two fundamental difficulties:

(a) The dimensions dimH Aμ = 2/μ > 1/μ = dimH Aμ,Qx0
do not match anymore.

(b) Because do not know the Lebesgue measure of A1,Qx0
in (37), we cannot conclude

that H1/μ(Aμ,Qx0
) = ∞ if μ > 1.

To overcome these difficulties, let δ1, δ2 > 0 and define the set

Bδ1,δ2
μ,Qx0

=
(
Aμ,Qx0

\Aμ+δ1,Qx0

)
\
(⋃

ε>0

A2μ+δ2+ε

)
.

Remark 5.4 (Explanation of the definition of Bδ1,δ2
μ,Qx0

) The role of δ2 is to avoid the

problem (b) above, while δ1 has a technical role when controlling the behavior of
F±(xqn/

√
hqn ) in (40). Last, we remove A2μ+ε instead of Aμ+ε to avoid problem (a)

and to ensure that Bδ1,δ2
μ,Qx0

is not too small. The downside of this is that we can only

get μ(t) ∈ [μ, 2μ + δ2] for the exponent of irrationality of t ∈ Bδ1,δ2
μ,Qx0

. If instead we

worked with the set

B̃δ1
μ,Qx0

=
(
Aμ,Qx0

\Aμ+δ1,Qx0

)
\
(⋃

ε>0

Aμ+ε

)

we would deduce μ(t) = μ and therefore αx0(t) = 1/2 + 1/(2μ). However, we do
not know how to compute the dimension of B̃δ1

μ,Qx0
.
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Proposition 5.5 Let μ ≥ 1. Then,

(a) dimH Bδ1,δ2
μ,Qx0

= 1/μ.

(b) If t ∈ Bδ1,δ2
μ,Qx0

, then αx0(t) ≥ 1
2 + 1

4μ+2δ2
.

(c) If 2 ≤ μ < 2σ − δ1 and t ∈ Bδ1,δ2
μ,Qx0

, then αx0(t) ≤ 1
2 + 1

2μ .

Proof of Proposition 5.5 (a) The inclusion Bδ1,δ2
μ,Qx0

⊂ Aμ,Qx0
directly implies dimH

Bδ1,δ2
μ,Qx0

≤ 1/μ. We prove the lower bound following the proof of Proposition 4.6 in a

few steps:

(a.1) Since dimH Aμ+δ1,Qx0
= 1/(μ + δ1) < 1/μ, we have dimH(Aμ,Qx0

\
Aμ+δ1,Qx0

) = 1/μ.
(a.2) The sets Aμ are nested, so by the Jarnik–Besicovitch Theorem 2.2

dimH
(⋃

ε>0

A2μ+δ2+ε

)
= sup

n∈N

{
dimH

(
A2μ+δ2+ 1

n

)}

= sup
n∈N

2

2μ + δ2 + 1
n

= 1

μ + δ2/2
.

Moreover,Hγ
(⋃

ε>0 A2μ+δ2+ε

) = limn→∞ Hγ
(
A2μ+δ2+1/n

) = 0 for all γ ≥
1/(μ + δ2/2).

Take γ such that 1/(μ+δ2/2) < γ < 1/μ. From (a.1)we getHγ (Aμ,Qx0
\Aμ+δ1,Qx0

)

= ∞, and from (a.2) we hav e Hγ
(⋃

ε>0 A2μ+δ2+ε

) = 0, so

Hγ (Bδ1,δ2
μ,Qx0

) = Hγ (Aμ,Qx0
\Aμ+δ1,Qx0

) −Hγ

(⋃

ε>0

A2μ+δ+ε

)
> 0.

Consequently dimH Bδ1,δ2
μ,Qx0

≥ γ , and taking γ → 1/μ we conclude dimH Bδ1,δ2
μ,Qx0

≥
1/μ.

(b) Let t ∈ Bδ1,δ2
μ,Qx0

. Then, t /∈ ⋃ε>0 A2μ+δ2+ε implies μ(t) ≤ 2μ + δ2, where

μ(t) is the exponent of irrationality of t . Combining this with Proposition 3.6 we get
αx0(t) ≥ 1

2 + 1
2μ(t) ≥ 1

2 + 1
4μ+2δ2

.

(c) Let t ∈ Bδ1,δ2
μ,Qx0

. Since t ∈ Aμ,Qx0
\Aμ+δ1,Qx0

, there is a subsequence of

denominators (qnk )k ⊂ Qx0 such that c/qμ+δ1
nk ≤ ∣∣t − pnk/qnk

∣∣ < c/qμ
nk for k ∈ N.

Define the errors hnk and xnk , and the exponent μnk as

hnk = t − pnk
qnk

, |hnk | =
1

q
μnk
nk

and xnk =
∣∣∣x0 − bnk

qnk

∣∣∣ <
1

qσ
nk

. (38)

From the condition above, since c < 1, we immediately get that for any ε > 0,

μ < μnk ≤ μ + δ1 + ε, ∀k �ε 1. (39)
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By the asymptotic expansion in Corollary 3.3, we have

Rx0(t) − Rx0

(
pnk
qnk

)
= |hnk |1/2

qnk
G(pnk , bnk , qnk ) F±

(
xnk√
hnk

)
− 2π ihnk + Error,

where Error = O
(
min

(
q3/2nk h3/2nk , q1/2nk hnk

))
. Let us treat the elements in this expres-

sion separately.

• Since qnk /∈ 4N, we have |G(pnk , bnk , qnk )| ≥ √
qnk for k ∈ N. Indeed, if qnk

is odd, then |G(pnk , bnk , qnk )| = √
qnk . If qnk ≡ 2 (mod 4), then bnk is odd, so

qnk/2 ≡ bnk (mod 2) and hence |G(pnk , bnk , qnk )| =
√
2qnk . Also, by (38) and

(39),

xnk√|hnk |
= xnk q

μnk /2
nk <

q
μnk /2
nk

qσ
nk

≤ q
μ
2 + δ1

2 + ε
2

nk

qσ
nk

= 1

q
σ−μ

2 − δ1
2 − ε

2
nk

. (40)

Hence, if 2σ > μ + δ1, we can choose ε = σ − μ/2− δ1/2 > 0 and we get

lim
k→∞

xnk√|hnk |
≤ lim

k→∞
1

qσ−μ/2−δ1/2−ε/2
nk

= lim
k→∞

1

q(σ−μ/2−δ1/2)/2
nk

= 0.

Since F± is continuous, we get |F±(xnk/|hnk |1/2)| ≥ |F±(0)|/2 � 1 for all k � 1.
Therefore,

Main term =
∣∣∣∣

√|hnk |
qnk

G(pnk , bnk , qnk ) F

(
xnk

|hnk |1/2
)∣∣∣∣ �

√|hnk |√
qnk

, ∀k � 1.

• The term 2π ihnk is absorbed by the Main Term if |hnk | �
√|hnk |/√qnk , which is

equivalent to |hnk | � 1/qnk . If μ > 1, we get precisely |hnk | < c/qμ
nk � 1/qnk .

• Regarding the error term, we can write

q1/2nk |hnk | =
√|hnk |√

qnk
(q2nk |hnk |)1/2, q3/2nk |hnk |3/2 =

√|hnk |√
qnk

q2nk |hnk |.

Since Error ≤ C min
(
q3/2nk |hnk |3/2, q1/2nk |hnk |

)
for some C > 0, the error is

absorbed by the Main Term if q2nk |hnk | ≤ c for a small enough, but universal
constant c. Choosing c > 0 in the definition of Aμ,Qx0

, the condition |hnk | ≤
c/qμ

nk ≤ c/q2nk is satisfied if μ ≥ 2.

Hence, if 2 ≤ μ < 2σ − δ1 and t ∈ Bδ1,δ2
μ,Qx0

, then |Rx0(t) − Rx0(pnk/qnk )| �
√|hnk |/√qnk for all k � 1. From (39) we have 1/

√
qnk = |hnk |1/(2μnk ) > |hnk |1/(2μ),

so |Rx0(t)−Rx0(pnk/qnk )| � |hnk |
1
2+ 1

2μ for all k � 1,which impliesαx0(t) ≤ 1
2+ 1

2μ .��
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From Proposition 5.5 we can deduce the main part of Theorem 1.3.

Theorem 5.6 Let σ ≥ 2 and let x0 ∈ Aσ,N\4N. Let 2 ≤ μ < 2σ . Then, for all δ > 0,

1

μ
≤ dimH

{
t : 1

2
+ 1

4μ
− δ ≤ αx0(t) ≤ 1

2
+ 1

2μ

}
≤ 2

μ
.

Proof Choose δ2 > 0 and any δ1 < 2σ − μ. Hence, 2 ≤ μ < 2σ − δ1 and Proposi-
tion 5.5 implies

Bδ1,δ2
μ,Qx0

⊂
{
t : 1

2
+ 1

4μ + 2δ2
≤ αx0(t) ≤ 1

2
+ 1

2μ

}
.

Since dimH Bδ1,δ2
μ,Qx0

= 1/μ and δ2 is arbitrary, we get the lower bound. Let us now

prove the upper bound. If αx0(t) ≤ 1
2 + 1

2μ , by Proposition 3.6 we get 1
2 + 1

2μ(t) ≤
αx0(t) ≤ 1

2 + 1
2μ , hence μ(t) ≥ μ. This implies t ∈ Aμ−ε for all ε > 0, so by the

Jarnik–Besicovitch Theorem 2.2 we get

dimH
{
t : 1

2
+ 1

4μ
− δ ≤ αx0(t) ≤ 1

2
+ 1

2μ

}
≤ dimH Aμ−ε = 2

μ − ε

for all δ ≥ 0. We conclude by taking the limit ε → 0. ��
To get the precise statement of Theorem 1.3, we only need to relate the sets Aσ,N\4N

with the exponent σ(x0) = lim supn→∞{μn : qn /∈ 4N } defined in (8). We proceed
as follows. Since {Aσ,N\4N}σ≥2 is a nested family and A2,N\4N = (0, 1)\Q, for every
x0 ∈ (0, 1)\Q there exists σ̃ (x0) = sup{ σ : x0 ∈ Aσ,N\4N }. Let us check that
σ(x0) = σ̃ (x0). Indeed, call σ̃ (x0) = σ̃ .

• If σ̃ > 2. Then for ε > 0 small enough there exists a sequence bk/qk such
that qk /∈ 4N and |x0 − bk/qk | < 1/q σ̃−ε

k < 1/(2q2k ). By Khinchin’s theorem
[36, Theorem 19], bk/qk is an approximation by continued fraction, for which
|x0 − bk/qk | = 1/qμk

k < 1/q σ̃−ε
k , and therefore μk ≥ σ̃ − ε. This implies

σ(x0) ≥ σ̃ − ε for all ε > 0, hence σ(x0) ≥ σ̃ . On the other hand, for all
approximations by continued fractions with qn /∈ 4N with large enough n we have
|x0 − bn/qn| = 1/qμn

n > 1/q σ̃+ε
n , hence μn ≤ σ̃ + ε. This holds for all ε > 0, so

σ(x0) ≤ σ̃ .
• If σ̃ = 2, then |x0 − bn/qn| = 1/qμn

n > 1/q2+ε
n , hence μn ≤ 2 + ε, for all

approximations by continued fractions with qn /∈ 4N. Therefore, σ(x0) ≤ 2.
Since σ(x0) ≥ 2 always holds, we conclude.
Therefore, let x0 ∈ (0, 1)\Q. Then, x0 ∈ Aσ,N\4N for all σ < σ(x0), so the
conclusion of Theorem 5.6 holds for 2 ≤ μ < 2σ , for all σ < σ(x0). That implies
that for every δ > 0,

1

μ
≤ dimH

{
t : 1

2
+ 1

4μ
− δ ≤ αx0 (t) ≤ 1

2
+ 1

2μ

}
≤ 2

μ
, for all 2 ≤ μ < 2σ(x0).
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6 Proof of Theorem 1.6—the high-pass filters when x0 ∈ Q

In this section we prove Theorem 1.6. For that, we compute the L p norms of the
high-pass filters of Rx0 when x0 ∈ Q. In Sect. 6.1 we define Fourier high-pass filters
using smooth cutoffs, reduce the computation of their L p norms to the study of Fourier
localized L p estimates, state such localized estimates and deduce Theorem 1.6 from
them. We prove such localized estimates in Sect. 6.2.

6.1 High-pass filters and frequency localization

We begin with the definition of high-pass filters we use in the proofs. Let φ ∈ C∞
a positive and even cutoff with support on [−1, 1] and such that φ(x) = 1 on x ∈
[−1/2, 1/2]. Let ψ(x) = φ(x/2) − φ(x), and

ψ−1(x) = φ(x)

φ(x) +∑i∈N ψ(x/2i )
, ψk(x) = ψ(x/2k)

φ(x) +∑i∈N ψ(x/2i )
, for k ≥ 0,

so that we have the partition of unity
∑∞

k=−1 ψk(x) = 1. For k ≥ 0, ψk is supported
on [−2k+1,−2k−1] ∪ [2k−1, 2k+1]. Let f be a periodic function with Fourier series
f (t) =∑n∈Z ane2π int . With the partition of unity above, we perform a Littlewood–
Paley decomposition

f (t) =
∞∑

k=−1

Pk f (t), where Pk f (t) =
∑

n∈Z
ψk(n)ane

2π int .

The Fourier high-pass filter at frequency N ∈ N is roughly P≥N f (t) =∑
k≥log N Pk f (t). Let us be more precise working directly with Rx0 , whose frequen-

cies in t are squared. Let N ∈ N be large, and define kN to be the unique kN ∈ N such
that 2kN ≤ √

N < 2kN+1. We define the high-pass filter of Rx0 at frequency N as

P≥N Rx0(t) =
∑

k≥kN

Pk Rx0(t), where Pk Rx0(t) =
∑

n∈N
ψk(n)

e2π i(n
2t+nx0)

n2
.

(41)

We first estimate ‖Pk Rx0‖p and then extend the result to estimate ‖P≥N Rx0‖p.

Remark 6.1 At a first glance, using pure Littlewood–Paley blocks in the definition
for high-pass filters in (41) may seem restrictive, since it is analogue to estimating
high-frequency cutoffs only for a sequence Nk � 2k → ∞. However, the estimates
we give depend only on the L1 norm of the cutoff ψ , so slightly varying the definition
and support of ψ does not affect the estimates. This is analogous to having a cutoff
�(x/N ) for a fixed � as we state in the introduction.
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We now state the estimates for the frequency localized L p estimates. For the sake
of generality, let � ∈ C∞ be compactly supported outside the origin and bounded
below in an interval of its support (for instance, ψ defined above).

Theorem 6.2 Let x0 ∈ R. Then, for N � 1,

∥∥∥∥
∑

n∈Z
�
( n
N

)
e2π i(n

2 t+n x0)
∥∥∥∥
p

L p(0,1)

�

⎧
⎨

⎩

N p−2, when p > 4,
N 2 log N , when p = 4,
N p/2, when p < 4.

(42)

When p = 2, the upper bound is sharp, that is,
∥∥∑

n∈Z �(n/N ) e2π i(n
2 t+n x0)

∥∥2
L2(0,1) �

N.
If x0 ∈ Q, then the upper bound is sharp. That is, if x0 = P/Q with (P, Q) = 1,

then

∥∥∥∥
∑

n∈Z
�
( n
N

)
e2π i(n

2 t+n x0)
∥∥∥∥
p

L p(0,1)

�Q

⎧
⎨

⎩

N p−2, when p > 4,
N 2 log N , when p = 4,
N p/2, when p < 4.

(43)

Remark 6.3 All estimates in Theorem 6.2 depend on ‖�‖1 due to Lemma 6.4.

We postpone the proof of Theorem 6.2 to Sect. 6.2. and use it now to compute the
L p norms of the high-pass filters ‖P≥N Rx0‖p and therefore to prove Theorem 1.6.

Proof of Theorem 1.6 Denote the estimate for x0 ∈ Q on (43) in Theorem 6.2 by

∥∥∥∥
∑

n∈Z
�(n/N ) e2π i(n

2 t+n x0)
∥∥∥∥
p

L p(0,1)

� Gp(N ). (44)

First, use the triangle inequality in (41) to bound

‖P≥N Rx0‖p ≤
∑

k≥kN

‖Pk Rx0‖p =
∑

k≥kN

∥∥∥∥
∑

n∈Z
ψk(n)

e2π i(n
2t+nx0)

n2

∥∥∥∥
p

.

Since ψk is supported on [2k−1, 2k+1], we can take the denominator n2 out of the L p

norm to get

‖P≥N Rx0‖p �
∑

k≥kN

1

22k

∥∥∥∥
∑

n∈Z
ψk(n) e2π i(n

2t+nx0)
∥∥∥∥
p

,
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for example using [23, Lemma 3.1, Corollary 3.2]. We can now use (44) to get25

‖P≥N Rx0‖p �
∑

k≥kN

G p(2k)1/p

22k
� Gp(2kN )1/p

22kN
, (45)

where the last equality follows by direct calculation because the defintion ofGp makes
the series be geometric. For the lower bound, as long as 1 < p < ∞, the Mihklin
multiplier theorem.26 combined again with [23, Lemma 3.1, Corollary 3.2] and (44)
gives

‖P≥N Rx0‖p � ‖PkN Rx0‖p � 1

22kN

∥∥∥∥
∑

n

ψkN (n) e2π i(n
2t+nx0)

∥∥∥∥
p

� Gp(2kN )1/p

22kN
.

(46)

Joining (45) and (46) and recalling that 2kN � √
N , we conclude that

‖P≥N Rx0‖p � Gp(2kN )1/p

22kN
�
⎧
⎨

⎩

N−1/2−1/p, p > 4,
N−3/4 (log N )1/4, p = 4,
N−3/4, p < 4,

from which we immediately get

η(p) = lim
N→∞

log(‖P≥N Rx0‖pp)
log(1/N )

=
{
p/2+ 1, p > 4,
3p/4, p ≤ 4.

��

6.2 Frequency localized Lp norms

In this section we prove Theorem 6.2. The L2 estimate, which holds for all x0, follows
from Plancherel’s theorem. For p �= 2, we use the following well-known lemma,
whose proof can be found in [10, Lemma 3.18] (see also [4, Lemma 4.4]).

Lemma 6.4 Let � ∈ C∞
0 (R). Let N ∈ N and q ∈ N such that q ≤ N. Let also a ∈ Z

such that (a, q) = 1. Then,

∣∣∣∣t −
a

q

∣∣∣∣ ≤
1

qN
�⇒

∣∣∣∣
∑

n∈Z
�
( n
N

)
e2π i(n

2t+nx)
∣∣∣∣

25 The estimates in Theorem 6.2 depend on ‖�‖1, so strictly speaking we need to check that for large
enough k � 1, the norm ‖ψk (2

k ·)‖1 does not depend on k. This is the case, since
∫

ψk (2
k x) dx =

∫ 2

1/2

ψ(x)

φ(2k x) +∑∞
i=0 ψ(2k x/2i )

dx =
∫ 2

1/2

ψ(x)

ψ(x/2) + ψ(x) + ψ(2x)
dx = Cψ .

26 Apply Mihklin’s theorem in R to the operator PkN in (41) to get ‖PkN f ‖p � ‖PkN P≥N f ‖p �
‖P≥N f ‖p , and then periodize the result using a theorem by Stein and Weiss [46, Chapter 7, Theorem 3.8]
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� ‖�‖1
N√

q
(
1+ N

√|t − a/q|) . (47)

Moreover, there exist δ, ε ≤ 1 only depending on � such that if

q ≤ εN ,

∣∣∣t − a

q

∣∣∣ ≤ δ

N 2 ,

∣∣∣x − b

q

∣∣∣ ≤ δ

N

for some b ∈ Z, then

∣∣∣∣
∑

n∈Z
�
( n
N

)
e2π i(n

2t+nx)
∣∣∣∣ �‖�‖1

N√
q

.

We are now ready to prove Theorem 6.2.

Proof of Theorem 6.2 Let x0 ∈ R. For simplicity, we prove the L2 estimate for a
symmetric �. Considering f as a Fourier series in t , by Plancherel’s theorem we
write

∥∥∥∥
∑

n∈Z
�
( n
N

)
e2π i(n

2 t+n x0)
∥∥∥∥
2

L2(0,1)

=
∞∑

n=1

∣∣∣�
( n
N

)
e2π in x0 + �

(− n

N

)
e−2π in x0

∣∣∣
2

=
∞∑

n=1

�
( n
N

)2 ∣∣∣e2π inx0 + e−2π inx0
∣∣∣
2 �

∞∑

n=1

�
( n
N

)2 cos2(2πnx0)

This sum is upper bounded by N by the triangle inequality. If x0 is rational, say
x0 = P/Q, the bound from below follows27 by summing only over multiples of Q in
[N , 2N ], so that

∥∥∥∥
∑

n∈Z
�
( n
N

)
e2π i(n

2 t+n x0)
∥∥∥∥
2

L2(0,1)

�
2N/Q∑

k=N/Q

cos2(2πkQx0) = N

Q
�Q N .

If x0 is irrational, it is known that the sequence (nx0)n is equidistributed in the torus,
which means that for any continuous p-periodic function

lim
N→∞

1

N

N∑

n=1

f (nx0) =
∫ p

0
f .

27 Without loss of generality assume that �(x) � 1 for x ∈ (1, 2).

123



V. Banica et al.

In particular, since for f (y) = cos(4π y) we have
∫ 1/2
0 f (y) dy = 0, we get28 for

large N that

∥∥∥∥
∑

n∈Z
�
( n
N

)
e2π i(n

2 t+n x0)
∥∥∥∥
2

L2(0,1)

�
2N∑

n=N

cos2(2πnx0) � N+
2N∑

n=N

cos(4πnx0) � N .

We now prove the upper bound (42) for any x0 ∈ R. The Dirichlet approximation
theorem implies that any t ∈ R\Q can be approximated as follows:

∀N ∈ N, ∃q ≤ N , 1 ≤ a ≤ q such that
∣∣∣t − a

q

∣∣∣ ≤ 1

qN
,

which can be rewritten as R\Q ⊂ ⋃N
q=1

⋃q
a=1 B

( a
q , 1

qN

)
for all N ∈ N. Therefore,

for any N ∈ N,

∥∥∥∥
∑

n∈Z
�(n/N ) e2π i(n

2 t+n x0)
∥∥∥∥
p

L p(0,1)

≤
N∑

q=1

q∑

a=1

∫

B( aq , 1
qN )

∣∣∣∣
∑

n∈Z
�(n/N ) e2π i(n

2 t+n x0)
∣∣∣∣
p

dt . (48)

We split each integral according to the two situations in (47) in Lemma 6.4:

∫

|t− a
q |< 1

N2

∣∣∣∣
∑

n∈Z
�(n/N ) e2π i(n

2 t+n x0)
∣∣∣∣
p

dt

+
∫

1
N2 <|t− a

q |< 1
qN

∣∣∣∣
∑

n∈Z
�(n/N ) e2π i(n

2 t+n x0)
∣∣∣∣
p

dt

≤
∫

|t− a
q |< 1

N2

(
N√
q

)p

dt +
∫

1
N2 <|t− a

q |< 1
qN

(
1√

q |t − a
q |1/2

)p

dt

� N p−2

q p/2 + 1

q p/2

∫ 1
qN

1
N2

1

h p/2 dh.

(49)

The behavior of that last integral changes depending on p being greater or smaller
than 2.

• If p < 2,

(49) � N p−2

q p/2 + 1

q p/2

((
1

qN

)1−p/2

−
(

1

N 2

)1−p/2
)

≤ N p−2

q p/2 + 1

q N 1−p/2 ,

28 Using the trigonometric identity cos2(x) = (1+ cos(2x))/2.
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so

(48) ≤ N p−2
N∑

q=1

q∑

a=1

1

q p/2 + 1

N 1−p/2

N∑

q=1

q∑

a=1

1

q
� N p/2.

• If p = 2,

(49) � 1

q

(
1+

∫ 1
qN

1
N2

dh

h

)
� 1

q

(
1+ log(N 2) − log(qN )

)
= 1+ log(N/q)

q
,

hence

(48) �
N∑

q=1

(
1− log(q/N )

)
� N −

∫ N

1
log(x/N ) dx � N

(
1−

∫ 1

1
N

log(y) dy
)

� N .

• If p > 2,

(49) � N p−2

q p/2 +
(
N 2
)p/2−1 − (qN )p/2−1

q p/2 � N p−2

q p/2

�⇒ (48) � N p−2
N∑

q=1

1

q p/2−1 .

This series converges if and only if p > 4, and more precisely,

(48) �

⎧
⎨

⎩

N p−2, p > 4,
N 2 log N , p = 4,
N p−2 N 2−p/2 = N p/2, p < 4.

This concludes the proof of (42).

We now prove the lower bound in (43) for x0 ∈ Q. Let x0 = P/Q with (P, Q) = 1.
Let δ, ε > 0 as given in Lemma 6.4, and let N ∈ N be such that Q ≤ εN . Bound the
L p norm from below by

∥∥∥∥
∑

n∈Z
�(n/N ) e2π i(n

2 t+n x0)
∥∥∥∥
p

L p(0,1)

≥
∫

B
(

a
Q , δ

N2

)
∣∣∣∣
∑

n∈Z
�(n/N ) e2π i(n

2 t+n x0)
∣∣∣∣
p

dt,

(50)
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where a is any 1 ≤ a ≤ Q such that (a, Q) = 1. Use Lemma 6.4 with q = Q and
b = P , for which the condition 0 = |x0 − P/Q| < δ/N is satisfied trivially, and
|t − a/Q| < δ/N 2, which is valid on the domain of integration. Then, for N ≥ Q/ε,

∥∥∥∥
∑

n∈Z
�(n/N ) e2π i(n

2 t+n x0)
∥∥∥∥
p

L p(0,1)

�
∫

B
(

a
Q , δ

N2

)
(

N√
Q

)p

dt � N p

Qp/2

δ

N 2 �Q N p−2.

In view of the upper bound in (42), this is optimal when p > 4. When p ≤ 4, we
refine the bound in (50) as follows. Define the set

QN = { q ∈ N : Q | q and q ≤ εN },

whose cardinality � εN/Q is as large as needed if N � 1. Observe that

B

(
a

q
,

δ

N 2

)
∩ B

(
a′

q ′ ,
δ

N 2

)
= ∅, ∀q, q ′ ∈ QN , (a, q) = 1 = (a′, q ′),

as long as a/q �= a′/q ′. Indeed, the distance from the centers is |aq ′−a′q|
q q ′ ≥ 1

q q ′ ≥
1

ε2N2 , while the radius is
δ
N2 < 1

ε2N2 (choosing a smaller δ > 0 if needed). Hence the

balls in the family {B(a/q, δ/N 2) : q ∈ QN , (a, q) = 1 } are pairwise disjoint, and
we can bound

∥∥∥∥
∑

n∈Z
�(n/N ) e2π i(n

2 t+n x0)
∥∥∥∥
p

L p(0,1)

�
∑

q∈QN

∑

a:(a,q)=1

∫

B
(
a
q , δ

N2

)

∣∣∣∣
∑

n∈Z
�(n/N ) e2π i(n

2 t+n x0)
∣∣∣∣
p

dt . (51)

For each of those integrals we have q = Qn for some n ∈ N. To use Lemma 6.4 we
chose b = Pn so that 0 = |x0 − b/q| < δ/N , hence

(51) �
∑

q∈QN

∑

a:(a,q)=1

∫

B
(
a
q , δ

N2

)
( N√

q

)p
dt

� δ N p−2
∑

q∈QN

ϕ(q)

q p/2 � N p−2

Qp/2

εN/Q∑

n=1

ϕ(Qn)

n p/2 . (52)

We estimate this sum in the following lemma, which we prove in Appendix A, Corol-
lary A.5.

Lemma 6.5 Let Q ∈ N. Then, for N � 1,

N∑

n=1

ϕ(Qn)

n2
� log N , and

N∑

n=1

ϕ(Qn)

nα
� N 2−α, for α < 2,
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where the implicit constants depend on Q and α.

Using this lemma in (52), when p < 4 we get

∥∥∥∥
∑

n∈Z
�(n/N ) e2π i(n

2 t+n x0)
∥∥∥∥
p

L p(0,1)

�p,Q
N p−2

Qp/2

(εN

Q

)2− p
2 �p,Q N p/2.

Similarly, when p = 4 we get

∥∥∥∥
∑

n∈Z
�(n/N ) e2π i(n

2 t+n x0)
∥∥∥∥
4

L4(0,1)

�Q
N 2

Q2 log
(εN

Q

)
�Q N 2 log N .

Together with the upper bounds in (42), this completes the proof. ��

Appendix A. Sums of Euler’s totient function

Sums of the Euler totient function play a relevant role in this article, especially in
Lemma 6.5. In Sect.A.1 we state the classical results and briefly prove them for
completeness. In Sect.A.2 we adapt these classical proofs to sums modulo Q that we
need in this article. Throughout this appendix, ϕ denotes the Euler totient function and
μ denotes the Möbius function.29

A.1 Sums of Euler’s totient function

Define the sum function

�(N ) =
N∑

n=1

ϕ(n), N ∈ N.

Proposition A.1 For N � 1,

�(N ) = CN 2 + O
(
N log N

)
, where C = 1

2

∞∑

n=1

μ(n)

n2
= 3

π2

Proof By the Möbius inversion formula,

�(N ) =
N∑

n=1

ϕ(n) =
N∑

n=1

n

(∑

d|n

μ(d)

d

)
=

N∑

n=1

∑

d|n

n

d
μ(d).

29 For n ∈ N, μ(n) = 1 if n is has no squared prime factor and if it has an even number of prime factors;
μ(n) = −1 if n is has no squared prime factor and if it has an odd number of prime factors; and μ(n) = 0
if it has a squared prime factor.
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Calling n/d = d ′, the sum is in all natural numbers d and d ′ such that dd ′ ≤ N .
Therefore,

�(N ) =
∑

d,d ′ : dd ′≤N

d ′μ(d) =
N∑

d=1

μ(d)

�N/d ∑

d ′=1

d ′ =
N∑

d=1

μ(d)
�N/d (�N/d + 1)

2
.

For x ∈ R, write x = �x + {x}, where 0 ≤ {x} < 1 is the fractional part of x . Then,
direct computation shows that �x (�x + 1) = x2 + O(x) when x ≥ 1, so

�(N ) = 1

2

N∑

d=1

μ(d)

((N
d

)2 + O
(N
d

))
= N 2

2

N∑

d=1

μ(d)

d2
+ O

(
N

N∑

d=1

1

d

)
.

The series
∑∞

d=1 μ(d)/d2 is absolutely convergent, and its value is known to be
2C = 6/π2, so write

N∑

d=1

μ(d)

d2
= 2C −

∞∑

d=N+1

μ(d)

d2
= 2C + O

( ∞∑

d=N+1

1

d2

)
= 2C + O

( 1

N

)
.

Since
∑N

d=1 1/d � log N , we get �(N ) = C N 2 + O(N ) + O(N log N ) = CN 2 +
O(N log N ). ��

As a Corollary of Lemma A.1 we obtain the analogue result for the sums weighted
by n−α . Observe that when α > 2 the sum is convergent.

Corollary A.2 Let α ≤ 2. For N � 1,

N∑

n=1

ϕ(n)

n2
� log N , and

N∑

n=1

ϕ(n)

nα
� N 2−α, if α < 2.

Proof Upper bounds immediately follow from ϕ(n) ≤ n. For lower bounds, assume
first that α ≥ 0. From Proposition A.1 we directly get

N∑

n=1

ϕ(n)

nα
≥ 1

Nα

N∑

n=1

ϕ(n) = 1

Nα
�(N ) � N 2−α,

which is optimal when α < 2. For the case α = 2 we use the summation by parts
formula30 to get

N∑

n=1

ϕ(n)

n2
= �(N )

N 2 −
N−1∑

n=1

�(n)

(
1

(n + 1)2
− 1

n2

)

30 Let an and bn be two sequences, and let BN = ∑N
n=1 bn . Then,

∑N
n=1 anbn = aN BN −

∑N−1
n=1 Bn(an+1 − an).
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= �(N )

N 2 +
N−1∑

n=1

�(n)
2n + 1

n2 (n + 1)2
. (53)

Restrict the sum to log N ≤ n ≤ N − 1, and combine it with �(n) � n2 for n � 1
from Proposition A.1 to get

N∑

n=1

ϕ(n)

n2
� 1+

N−1∑

n≥log N

1

n
� log N − log log N � log N , for N � 1.

When α < 0, restrict the sum to n ∈ [N/2, N ] and use �(N ) = CN 2 + O(N log N )

in Proposition A.1 to get

N∑

n=1

ϕ(n)

nα
=

N∑

n=1

ϕ(n) n|α| ≥
(N
2

)|α| N∑

n≥N/2

ϕ(n) �|α|
�(N ) − �(N/2)

Nα
� N 2−α.

��

A.2 Sums of Euler’s totient functionmodulo Q

For Q ∈ N, let

�Q(N ) =
N∑

n=1

ϕ(Qn) when N � 1,

To estimate the behavior when N → ∞ we adapt the proofs of Proposition A.1 and
Corollary A.2.

Proposition A.3 Let Q ∈ N. Then, �Q(N ) ≤ QN 2, and there exists a constant
cQ > 0 such that

�Q(N ) ≥ cQN
2 + OQ(N log N ).

Consequently, �Q(N ) �Q N 2 when N � 1.

Proof The upper bound follows directly from ϕ(n) < n for all n ∈ N, so it suffices to
prove the lower bound. For that, first restrict the sum to n ≤ N such that (Q, n) = 1.
By the multiplicative property of the Euler function, we get

�Q(N ) ≥
N∑

n=1
(Q,n)=1

ϕ(Qn) = ϕ(Q)

N∑

n=1
(Q,n)=1

ϕ(n). (54)
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The proof now follows the same strategy as in Proposition A.1. Use Möbius inversion
to write

N∑

n=1
(Q,n)=1

ϕ(n) =
N∑

n=1
(Q,n)=1

(
n
∑

d|n

μ(d)

d

)
=

N∑

n=1
(Q,n)=1

∑

d|n

n

d
μ(d).

Observe that if (Q, n) = 1 and if we decompose n = d d ′, then both d and d ′ are
coprime with Q. Conversely, if d and d ′ are coprime with Q, then so is n = d d ′.
Thus,

N∑

n=1
(Q,n)=1

ϕ(n) =
∑

d,d ′ : d d ′≤N
(Q,d)=1=(Q,d ′)

d ′ μ(d) =
N∑

d=1
(Q,d)=1

μ(d)

⎛

⎜⎜⎝
�N/d ∑

d ′=1
(Q,d ′)=1

d ′

⎞

⎟⎟⎠ . (55)

In the following lemma we give a closed formula for the inner sum. We postpone its
proof.

Lemma A.4 Let Q ∈ N, Q ≥ 2. Then,

SQ =
Q−1∑

n=1
(Q,n)=1

n = Q ϕ(Q)

2
, and SQ,k =

kQ−1∑

n=1
(Q,n)=1

n = Q ϕ(Q)

2
k2, ∀k ∈ N.

Now, for every d ≤ N , find kd ∈ N ∪ {0} such that kd Q ≤ �N/d < (kd + 1)Q,
and write

�N/d ∑

d ′=1
(Q,d ′)=1

d ′ =
kd Q−1∑

d ′=1
(Q,d ′)=1

d ′ +
�N/d ∑

d ′=kd Q+1
(Q,d ′)=1

d ′ = SQ,kd + O
(
(kd + 1)Q2

)

= Q ϕ(Q)

2
k2d + O

(
(kd + 1)Q2

)
. (56)

Since the definition of kd is equivalent to 1
Q �N/d −1 < kd ≤ 1

Q �N/d , we deduce
that kd = � 1

Q �N/d  . Consequently, since �x = x + O(1) and �x 2 = x2 + O(x),
we get
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kd = N

Qd
+ O(1) and k2d = N 2

Q2d2
+ 1

Q
O
(N
d

)
. (57)

Hence, from (56) and (57) we get

�N/d ∑

d ′=1
(Q,d ′)=1

d ′ = ϕ(Q)

2Q

N 2

d2
+ O

(
ϕ(Q)

N

d
+ Q

N

d
+ Q2

)
= ϕ(Q)

2Q

N 2

d2
+ Q2 O

(
N

d

)
.

We plug this in (55) to get

N∑

n=1
(Q,n)=1

ϕ(n) = ϕ(Q)

2Q
N 2

N∑

d=1
(Q,d)=1

μ(d)

d2
+ O

(
Q2N

N∑

d=1
(Q,d)=1

μ(d)

d

)
.

The sum
∑∞

n=1 μ(d)/d2 is absolutely convergent, and cQ :=∑∞
d=1, (Q,d)=1 μ(d)/d2 >

0 because

cQ = 1+
∞∑

d=2
(Q,d)=1

μ(d)

d2
and

∣∣∣∣
∞∑

d=2
(Q,d)=1

μ(d)

d2

∣∣∣∣ ≤
π2

6
− 1 < 1.

Hence,

N∑

d=1
(Q,d)=1

μ(d)

d2
= cQ −

∞∑

d=N+1
(Q,d)=1

μ(d)

d2
= cQ + O

( ∞∑

d=N+1

1

d2

)
= cQ + O(1/N ).

Together with |∑N
d=1, (Q,d)=1 μ(d)/d| � log N , this implies

N∑

n=1
(Q,n)=1

ϕ(n) = cQ
ϕ(Q)

2Q
N 2 + O

(ϕ(Q)

Q
N
)
+ O(Q2N log N )

= cQ
ϕ(Q)

2Q
N 2 + OQ(N log N ).

Together with (54) we conclude �Q(N ) ≥ cQ
ϕ(Q)2

2Q N 2 + OQ(N log N ). ��
Proof of LemmaA.4 We begin with k = 1. When Q = 2, we have S2,1 = 1 =
2 ϕ(2)/2, so we may assume Q ≥ 3. We first observe that ϕ(Q) is even, because if
Q has an odd prime factor p, then ϕ(p) = p − 1, which is even, is a factor of ϕ(Q).
Otherwise, Q = 2r with r ≥ 2, so ϕ(Q) = 2r−1 is even. Now, the observation that
(Q, n) = 1 ⇐⇒ (Q, Q − n) = 1 implies
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SQ,1 =
�Q/2 ∑

n=1
(Q,n)=1

n +
Q−1∑

n=�Q/2 +1
(Q,n)=1

n =
�Q/2 ∑

n=1
(Q,n)=1

(
n + (Q − n)

) = Q
ϕ(Q)

2
.

Let now k ≥ 2, so that

kQ−1∑

n=(k−1)Q+1
(Q,n)=1

n =
Q−1∑

n=1
(Q,n)=1

(
n + (k − 1)Q

)

= SQ,1 + (k − 1)Qϕ(Q) = Qϕ(Q)
(
k − 1

2

)
.

Consequently,

SQ,k =
k∑

	=1

⎛

⎜⎜⎝
	Q∑

n=(	−1)Q+1
(Q,n)=1

n

⎞

⎟⎟⎠ =
k∑

	=1

Qϕ(Q)

(
	 − 1

2

)
= Qϕ(Q)

2
k2.

��
To conclude, we prove the estimates for the weighted sums that we needed in

Lemma 6.5 as a corollary of Proposition A.3. As before, when α > 2 the sums are
absolutely convergent.

Corollary A.5 (Lemma 6.5) Let Q ∈ N and α ≤ 2. For N � 1,

N∑

n=1

ϕ(Qn)

n2
� log N , and

N∑

n=1

ϕ(Qn)

nα
� N 2−α for α < 2.

The implicit constants depend on Q, and also on α when α < 0.

Proof Upper bounds followdirectly fromϕ(n) ≤ n. Lower bounds follow fromPropo-
sition A.3 with the same strategy as in the proof of Corollary A.2. If α ≥ 0, by
Proposition A.3 we get

N∑

n=1

ϕ(Qn)

nα
≥ 1

Nα
�Q(N ) �Q N 2−α, when N � 1.

When α = 2, combine Proposition A.3 with summing by parts as in (53) to get

N∑

n=1

ϕ(Qn)

n2
= �Q(N )

N 2 +
N−1∑

n=1

�Q(n)
2n + 1

n2 (n + 1)2
� 1+

N−1∑

n=log N

1

n
� log N .
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When α < 0, choosing δ > 0 small enough depending on Q, Proposition A.3 implies

N∑

n=1

ϕ(Qn)

nα
≥α N |α|

N∑

n=δN

ϕ(Qn) = N |α|(�Q(N ) − �Q(δN )
)
�Q,α N |α|N 2 = N 2−α.

��

Appendix B. Alternative asymptotic behavior of Rx0 around rational t

Following Duistermaat [22], we give an alternative asymptotic behavior of Rx0 around
rationals that complements Corollary 3.3 and allows us to prove Propositions 3.5
and 4.2.

Proposition B.1 Let x0 ∈ R. Let p, q ∈ N be such that (p, q) = 1. Let xq =
dist(x0, Z/q). Let h �= 0 and denote sign(h) = ± so that h = ±|h|. If xq = 0,

Rx0

( p
q

+ h
)
− Rx0

( p
q

)
+ 2π ih

= 2π(−1± i)

√|h|√
q

G(p,mq , q)√
q

+ 2(1± i) q3/2|h|3/2
∑

m �=0

G(p,mq + m, q)√
q

e
−2π i m2

4q2h

m2 + O
(
q7/2h5/2

)
,

(58)

If xq �= 0,

Rx0

( p
q

+ h
)
− Rx0

( p
q

)
+ 2π ih

= 2(1± i) q3/2|h|3/2
∑

m∈Z

G(p,mq + m, q)√
q

e
−2π i

(m−qxq )2

4q2h

(m − qxq)2

+ O

(
q7/2h5/2

∑

m∈Z

1

(m − qxq)4

)
.

(59)

Proof From the definition Rx0(t) =∑n �=0 e
2π i(n2t+nx0)/n2, we first write

Rx0

( p
q

+ h
)
− Rx0

( p
q

)
+ 2π ih = 2π ih +

∑

n �=0

e2π in
2h − 1

n2
e2π i

pn2

q e2π inx0

= 2π ih
∑

n∈Z

( ∫ 1

0
e2π in

2hτ dτ
)
e2π i

pn2

q e2π inx0 .
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Split the summodulo q bywriting n = mq+r and use the Poisson summation formula
to obtain

Rx0

( p
q

+ h
)
− Rx0

( p
q

)
+ 2π ih

= 2π ih
q−1∑

r=0

e2π ir
2 p/q

∑

m∈Z

( ∫ 1

0
e2π i(mq+r)2hτ dτ

)
e2π i(mq+r)x0

= 2π ih
q−1∑

r=0

e2π ir
2 p/q

∑

m∈Z

∫ ( ∫ 1

0
e±2π i(zq+r)2|h|τ dτ

)
e2π i(zq+r)x0 e−2π imz dz

= ±2π i

√|h|
q

∑

m∈Z

q−1∑

r=0

e2π i
pr2+mr

q

∫ 1

0

∫
e±2π iy2τ e

2π i y√|h| (x0−m
q )

dy dτ.

where we changed variables (zq + r)2|h| = y2. Now complete the square to get

Rx0

( p
q

+ h
)
− Rx0

( p
q

)
+ 2π ih

= ±2π i

√|h|
q

∑

m∈Z
G(p,m, q)

∫ 1

0

( ∫
e
±2π iτ

(
y± x0−m/q

2τ
√|h|

)2
dy
)
e∓2π i (x0−m/q)2

4τ |h| dτ

= ±2π i
1± i

2

√|h|
q

∑

m∈Z
G(p,m, q)

∫ 1

0

1√
τ
e∓2π i (x0−m/q)2

4τ |h| dτ. (60)

By changing variables, and defining xq = minm∈Z |x0 − m/q| = |x0 − mq/q| as in
(20), we write

Rx0

( p
q

+ h
)
− Rx0

( p
q

)
+ 2π ih

= π(−1± i)

√|h|√
q

∑

m∈Z

G(p,mq + m, q)√
q

∫ ∞

1

1

ξ3/2
e−2π i

(xq−m/q)2

4h ξdξ. (61)

We now separate cases. If xq = 0, the integral of the term m = 0 is
∫∞
1 ξ−3/2dξ = 2.

In all other cases, that is, if either xq �= 0 or m �= 0, integration by parts implies

∫ ∞

1

1

ξ3/2
e−2π i

(xq−m/q)2

4h ξdξ

= 2

π i

q2h

(m − qxq)2

(
e
−2π i

(m−qxq )2

4q2h + 3

2

∫ ∞

1

1

ξ5/2
e−2π i

(xq−m/q)2

4h ξdξ

)

= O

(
q2h

(m − qxq)2

)
.
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What is more, integrating by parts again we obtain

∫ ∞

1

1

ξ3/2
e−2π i

(xq−m/q)2

4h ξdξ = 2

π i

q2h

(m − qxq)2

(
e
−2π i

(m−qxq )2

4q2h + O
( q2h

(m − qxq)2

))
.

Combining these with (61) give the desired expressions. ��
Remark B.2 Computations for (60) are made rigorous to avoid convergence problems
by writing

∑

n∈Z

e2π in
2h − 1

n2
e2π in

2 p/q e2π inx0 = lim
ε→0

∑

n∈Z

e2π in
2h(1+iε) − 1

n2
e2π in

2 p/q e2π inx0 .

Proposition B.1 will allow us to give upper bounds of αx0(t) for general t .

Proposition B.3 Let x0 ∈ Q and t /∈ Q. Then, αx0(t) ≤ 3/4.

Proof Set x0 = P/Q with P, Q ∈ N and (P, Q) = 1. Let t /∈ Q and let pn/qn be its
approximations by continued fractions. It is well-known31 that there is a subsequence
of odd denominators qnk . Renaming that subsequence back to qn , we may assume that
all qn are odd. Consequently, |G(pn,m, qn)| = √

q for all m, n ∈ N. As usual, let

hn = t − pn
qn

, |hn| <
1

q2n
, xqn = min

m∈Z

∣∣∣
P

Q
− m

qn

∣∣∣ =
∣∣∣
P

Q
− mqn

qn

∣∣∣,

and we immediately deduce that either xqn = 0 or 1/Q ≤ qnxqn ≤ 1/2. We separate
cases:

Case 1 We have xqn = 0 for infinitely many n ∈ N. Rename that subsequence and
rewrite (58) as

∣∣∣Rx0

( pn
qn

+ hn
)
− Rx0

( pn
qn

)
+ 2π ihn

∣∣∣

= 2π
√
2

√|hn|√
qn

+ O
(
q3/2n h3/2n

)
�

√|hn|√
qn

(
1+ O

(
q2nhn

))
. (62)

Let δ > 0 which we determine later. Separate cases again:

Case 1.1. Suppose that
∣∣1+ O

(
q2nhn

)∣∣ ≥ δ for infinitely many n ∈ N. Then,

∣∣Rx0(t) − Rx0(t − hn) + 2π ihn
∣∣ ≥ δ

√|hn|√
qn

≥ δ |hn|3/4,

because q2n |hn| ≤ 1. Hence |Rx0(t) − Rx0(t − hn)| ≥ (δ/2) |hn|3/4 for
infinitely many n ∈ N, and consequently αx0(t) ≤ 3/4.

31 Because two consecutive denominators qn and qn+1 are never both even.
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Case 1.2. We have
∣∣1+ O

(
q2nhn

)∣∣ < δ for all large enough n. In that case, we
evaluate (62) at a point closer to pn/qn . Let ε > 0 and write (58) for εhn ,
so that instead of (62) we get

∣∣∣∣Rx0

(
pn
qn

+ εhn

)
− Rx0

(
pn
qn

)
+ 2π iεhn

∣∣∣∣ �
√

ε

√|hn|√
qn

(
1+ εO

(
q2nhn

))
.

Since q2n |hn| < 1 and the constant underlying the big-O is universal, say
C , choose ε ≤ 1/(2C), in such a way that

∣∣∣∣Rx0

(
pn
qn

+ εhn

)
− Rx0

(
pn
qn

)
+ 2π iεhn

∣∣∣∣ �
√

ε

2

√|hn|√
qn

.

From this and (62), we write

√
ε

2

√|hn |√
qn

�
∣∣∣∣Rx0

(
pn
qn

+ εhn

)
− Rx0

(
pn
qn

)∣∣∣∣+ 2πε|hn |

≤
∣∣∣∣Rx0

(
pn
qn

+ εhn

)
− Rx0 (t)

∣∣∣∣+
∣∣∣∣Rx0 (t) − Rx0

(
pn
qn

)∣∣∣∣+ 2πε|hn |

�
∣∣∣∣Rx0

(
pn
qn

+ εhn

)
− Rx0 (t)

∣∣∣∣

+
√|hn |√

qn

(
1+ O

(
q2n hn

))+ 2π(1+ ε)|hn |

≤
∣∣∣∣Rx0

(
pn
qn

+ εhn

)
− Rx0 (t)

∣∣∣∣+ 2δ

√|hn |√
qn

.

In the last line we used the hypothesis of Case 1.2 and |hn| ≤
√|hn |√

qn
1√
qn
.

Hence,

∣∣∣∣Rx0

(
pn
qn

+ εhn

)
− Rx0(t)

∣∣∣∣ �
(√

ε

2
− Cδ

) √|hn|√
qn

,

for some C > 0. Fix
√

ε = 4Cδ small enough. Writing pn/qn + εhn =
t − (1− ε)hn and observing that (1− ε)|hn| � |hn|, we conclude that
∣∣∣Rx0

(
t − (1− ε)hn

)− Rx0(t)
∣∣∣

� δ

√|hn|√
qn

≥ δ |hn|3/4 � |(1− ε)hn|3/4, for large enough n.

Hence αx0(t) ≤ 3/4.
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Case 2 We have xqn �= 0 for all large enough n ∈ N, hence 1/Q ≤ qnxqn ≤ 1/2.
We now use (59) which has no leading h1/2 term. Rewrite it,32 assuming
1/Q ≤ qxq ≤ 1/2, as

Rx0

(
p

q
+ h

)
− Rx0

(
p

q

)
+ 2π ih

= 2(1± i)
G(p, 0, q)√

q

√|h|√
q

q2|h|

⎡

⎢⎢⎣
∑

m∈Z
e
2π i(4p)−1 (mq+m)2

q
e
−2π i

(m−qxq )2

4q2h

(m − qxq )2
+ OQ

(
q2h

)
⎤

⎥⎥⎦ .

Define the auxiliary function

fq(y) =
∑

m∈Z
e2π i(4p)

−1 m2+2mqm
q

e−2π i(m2−2qxqm)y

(m − qxq)2
. (63)

Take absolute values and write

∣∣∣∣Rx0

( p
q

+ h
)
− Rx0

(
p

q

)
+ 2π ih

∣∣∣∣

= 2
√
2

√|h|√
q

q2|h|
∣∣∣∣ fq
(

1

4q2h

)
+ OQ

(
q2h
)∣∣∣∣ . (64)

We now state the properties of this function, whose proof we postpone.

Lemma B.4 Let q ∈ N, let p ∈ N be coprime with q and fq defined in (63). Then,

(a) fq is periodic of period Q.
(b) there exists yq0 ∈ [0, Q] depending on q (and on p) such that | fq(yq0 )| ≥ 5.
(c) The sequence defined by yqk = yq0 + kQ satisfies

lim
k→∞ yqk = ∞, and | fq(yqk )| ≥ 5, ∀k ∈ N.

Remark B.5 The dependence on p of the point yq0 is irrelevant for our purposes. Indeed,
oncewe fix t /∈ Q, we get the sequence of approximations pn/qn , hence each qn comes
with one and only one pn . Hence, we can assume that the sequence fqn only depends
on qn .

We now evaluate (64) at pn/qn and hn = t − pn/qn and we separate two cases:

32 When q is odd and coprime with p, the inverses of 2 and p modulo q exist. Therefore,

G(p,m, q) =
q∑

r=1

e
2π i pr

2+mr
q = e

2π i(4p)−1 m2
q

q∑

r=1

e
2π i p (r+(2p)−1m)2

q = e
2π i(4p)−1 m2

q G(p, 0, q).
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Case 2.1. Suppose lim supn→∞ q2n |hn| > 0, so that there exists c > 0 and a subse-
quence for which c < q2n |hn| ≤ 1. Then, from (64) we get

∣∣∣∣Rx0(t) − Rx0

(
pn
qn

)
+ 2π ihn

∣∣∣∣ ≥ c

√|hn|√
qn

∣∣∣∣ fqn
(

1

4q2nhn

)
+ OQ

(
q2nhn

)∣∣∣∣ .

Fix δ > 0 which we later determine. Proceeding like in Case 1, we separate
two cases:

Case 2.1.1. Suppose
∣∣∣ fqn

(
1

4q2n hn

)
+ OQ

(
q2nhn

)∣∣∣ ≥ δ for infinitely many n. Then,

∣∣∣∣Rx0(t) − Rx0

(
pn
qn

)
+ 2π ihn

∣∣∣∣ ≥ cδ

√|hn|√
qn

≥ cδ|hn|3/4

for infinitely many n, which implies αx0(t) ≤ 3/4.

Case 2.1.2. Suppose
∣∣∣ fqn

(
1

4q2n hn

)
+ OQ

(
q2nhn

)∣∣∣ < δ for all large enough n. Then,

let εn be a sequence which we determine later, and define ηn = εn/q2n .
Observe that ηn = εn|hn|/(q2n |hn|) � εn|hn|. Evaluate (64) at ηn to get

∣∣∣∣Rx0

(
pn
qn

+ ηn

)
− Rx0

(
pn
qn

)
+ 2π iηn

∣∣∣∣

= 2
√
2
√

ηn√
qn

q2nηn

∣∣∣∣ fq
(

1

4q2nηn

)
+ OQ

(
q2nηn

)∣∣∣∣

= 2
√
2 εn

√
ηn√
qn

∣∣∣∣ fqn
(

1

4εn

)
+ OQ (εn)

∣∣∣∣ .

Fix k ∈ N large enough and set εn = 1/(4yqnk ). Then, by Lemma B.4
(c),

∣∣∣∣ fqn
(

1

4εn

)∣∣∣∣ =
∣∣ fqn (y

qn
K )
∣∣ ≥ 5, ∀n large enough.

Since εn � 1/(kQ), if k ∈ N is large enough we get OQ (εn) ≤ CQεn ≤
1. In particular, |hn| �Q kηn . Therefore,

∣∣∣∣Rx0

(
pn
qn

+ ηn

)
− Rx0

(
pn
qn

)
+ 2π iηn

∣∣∣∣ ≥ εn

√
ηn√
qn

� ε
3/2
n

√|hn|√
qn

.
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With this, and using the assumption of this case in (64), we write

ε
3/2
n

√|hn|√
qn

�
∣∣∣∣Rx0

(
pn
qn

+ ηn

)
− Rx0

(
pn
qn

)∣∣∣∣+ 2πηn

≤
∣∣∣∣Rx0

(
pn
qn

+ ηn

)
− Rx0(t)

∣∣∣∣+
∣∣∣∣Rx0(t) − Rx0

(
pn
qn

)∣∣∣∣+ 2πηn

�
∣∣∣∣Rx0

(
pn
qn

+ ηn

)
− Rx0(t)

∣∣∣∣+ δ

√|hn|√
qn

+ 2π(|hn| + ηn)

�
∣∣∣∣Rx0

(
pn
qn

+ ηn

)
− Rx0(t)

∣∣∣∣+ δ

√|hn|√
qn

,

for large enough n, where in the last line we used ηn � |hn|/k ≤ |hn|
and |hn| ≤

√|hn |√
qn

1√
qn

�
√|hn |√

qn
. Since εn �Q 1/k, set δ = 1/(cQk3/2)

with some small enough cQ > 0 so that

∣∣∣∣Rx0

(
pn
qn

+ ηn

)
− Rx0(t)

∣∣∣∣ �
(
ε
3/2
n − Cδ

)√|hn|√
qn

� δ

√|hn|√
qn

≥ δ|hn|3/4.

Write pn/qn + ηn = t − (hn − ηn). Since |hn − ηn| ≤ 2|hn|, we get
∣∣∣∣Rx0

(
t − (hn − ηn)

)
− Rx0 (t)

∣∣∣∣ ≥ δ|hn |3/4 � δ|hn − ηn |3/4, for large enough n,

which implies αx0(t) ≤ 3/4.

Case 2.2. Suppose limn→∞ q2n |hn| = 0. In this case, the term q2n |hn| in (64) tends to
zero, which kills the desired |hn|3/4 that came from

√
hn/

√
qn . To counter

that, define ηn = εn/q2n as in Case 2.1.2. By (64),

∣∣∣∣Rx0

(
pn
qn

+ ηn

)
− Rx0

(
pn
qn

)
+ 2π iηn

∣∣∣∣ = 2
√
2εn

√
ηn√
qn

∣∣∣∣ fqn
(

1

4εn

)
+ OQ (εn)

∣∣∣∣ .

Fix k ∈ N large enough and set εn = 1/(4yqnk ). Then,

∣∣∣∣ fqn
(

1

4εn

)∣∣∣∣ =
∣∣∣ fqn

(
yqnk

)∣∣∣ ≥ 5, and OQ(εn) ≤ CQεn = CQ

4yqnk
� CQ

kQ
≤ 1,

so

∣∣∣∣Rx0

(
pn
qn

+ ηn

)
− Rx0

(
pn
qn

)
+ 2π iηn

∣∣∣∣ ≥ εn

√
ηn√
qn

.
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With this and (64), we can write

εn

√
ηn√
qn

≤
∣∣∣∣Rx0

(
pn
qn

+ ηn

)
− Rx0

(
pn
qn

)∣∣∣∣+ 2πηn

≤
∣∣∣∣Rx0

(
pn
qn

+ ηn

)
− Rx0(t)

∣∣∣∣+
∣∣∣∣Rx0(t) − Rx0

(
pn
qn

)∣∣∣∣+ 2πηn

�
∣∣∣∣Rx0

(
pn
qn

+ ηn

)
− Rx0(t)

∣∣∣∣+
√|hn|√

qn
q2n |hn| + 2π(ηn + |hn|).

Since limn→∞ q2n |hn| = 0 implies hn = o(ηn), and ηn =
√

ηn√
qn

√
εn√
qn
, we get

∣∣∣∣Rx0

(
pn
qn

+ ηn

)
− Rx0 (t)

∣∣∣∣ �
(

εn − q2n hn −
√

εn√
qn

)√
ηn√
qn

≥ εn

2

√
ηn√
qn

= ε
3/4
n

2
η
3/4
n .

Write pn/qn + ηn = t + (ηn − hn). Recalling εn � 1/(kQ) for all n, and
since hn = o(ηn) implies |ηn − hn| � ηn , we conclude

∣∣∣∣Rx0

(
t + (ηn − hn)

)
− Rx0(t)

∣∣∣∣ ≥
ε
3/4
n

2
η
3/4
n �Q |ηn − hn|3/4,

and therefore αx0(t) ≤ 3/4. ��
We now prove Lemma B.4.

Proof of Lemma B.4 (a) Write first

0 �= qxq = q min
m∈Z

∣∣∣x0 − m

q

∣∣∣ = q
∣∣∣x0 − mq

q

∣∣∣ = 1

Q
|Pq − Qmq | =

m′
q

Q
,

where m′
q = |Pq − Qmq | ∈ N\{0}. Hence, the variable y in (63) only appears in

e2π i(m
2−2qxqm) y = e2π i(Qm2−2m′

qm)
y
Q ,

which is Q-periodic. Hence fq has period Q.
(b) Split the sum in f p in the terms m = 0, 1 and the rest,

fq(y) = 1

(qxq)2
+ e2π i(4p)

−1 1+2mq
q

e−2π i(1−2qxq )y

(1− qxq)2
+ Error
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where 1/Q ≤ qxq ≤ 1/2 implies

|Error| =
∣∣∣∣
∑

m �=0,1

e2π i(4p)
−1 m2+2mqm

q
e−2π i(m2−2qxqm)y

(m − qxq)2

∣∣∣∣

≤
∞∑

m=2

1

(m − qxq)2
+

∞∑

m=1

1

(m + qxq)2
≤

∞∑

m=2

1

(m − 1/2)2
+

∞∑

m=1

1

m2

= π2

2
− 4+ π2

6
≤ 3.

On the other hand, the phase in

e2π i(4p)
−1 1+2mq

q e−2π i(1−2qxq )y .

is continuous, decreasing, and Q-periodic. That implies that there exists yq0 ∈ [0, Q]
such that e2π i(4p)

−1 1+2mq
q e−2π i(1−2qxq )yq0 = 1, and consequently,

| fq(yq0 )| ≥ 1

(qxq)2
+ 1

(1− qxq)2
− 3 ≥ 1

(1/2)2
+ 1

(1− 1/2)2
− 3 = 5

because in (0, 1) the function 1/x2 + 1/(1− x)2 has a minimum in x = 1/2.
(c) The fact that fq is Q-periodic implies that | fq(yqn )| = | fq(yq0 + nQ)| =

| fq(yq0 )| ≥ 5. ��
We now complete the proof of Proposition 3.5.

Proposition B.6 Let x0 ∈ R and t ∈ Q. If αx0(t) �= 1/2, then αx0(t) = 3/2.

Proof ByPropositionB.1,αx0(t) = 1/2 happens only if xq = 0 andG(p,mq , q) �= 0.

• If xq = 0 and G(p,mq , q) = 0, then x0 ∈ Q and q ∈ 2N. From (58) and the fact
that

G(p,m, q)

=

⎧
⎪⎨

⎪⎩

e2π i(4p)
−1m2/q G(p, 0, q), q odd,

e2π i p
−1(m/2)2/q G(p, 0, q), q ≡ 0 (mod 4) and m even,

e2π i p
−1((m−1)/2)2/qe2π i p

−1((m−1)/2)/q G(p, 1, q), q ≡ 2 (mod 4) and m odd,

(65)

and G(p,m, q) = 0 otherwise, we have

Rx0

( p
q

+ h
)
− Rx0

( p
q

)
+ 2π ih

= 2(1± i) q3/2|h|3/2
∑

m odd

G(p,mq + m, q)√
q

e
−2π i m2

4q2h

m2 + O
(
q7/2h5/2

)
.
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It suffices to find a sequence yk → ∞ such that |g(yk)| ≥ c > 0 for some c > 0,
where

g(y) =
∑

m odd

G(p,mq + m, q)√
q

e−2π im2 y

m2 ,

because that way, defining hk = 1/(4q2yk), we get

∣∣∣Rx0

( p
q

+ hk
)
− Rx0

( p
q

)
+ 2π ihk

∣∣∣ �q h3/2k |g(yk)| − O(h5/2k ) �q h3/2k

for all k large enough, hence αx0(t) ≤ 3/2. So let us find that sequence yk .
According to (65), if q ≡ 0 (mod 4), by symmetry we can write

g(y) = G(p, 0, q)√
q

∑

m≥0 odd

e−2π im2 y

m2

(
e
2π i p−1

(
mq+m

2

)2
1
q + e

2π i p−1
(
mq−m

2

)2
1
q
)

= 2
G(p, 0, q)√

q
e2π i p

−1 m2
q

4q
∑

m≥0 odd

e−2π im2(y− p−1

4q )

m2 cos

(
2π

p−1mq

2q
m

)
.

On the other hand, if q ≡ 2 (mod 4), then

g(y) = G(p, 1, q)√
q

∑

m≥0 odd

e−2π im2 y

m2

×
(
e
2π i p−1

[(mq+m−1
2

)2+mq+m−1
2

]
1
q + e

2π i p−1
[(mq−m−1

2

)2+mq−m−1
2

]
1
q
)

= 2
G(p, 1, q)√

q
e
2π i p−1 (mq−1)2+2(mq−1)

4q
∑

m≥0 odd

e
−2π im2(y− p−1

4q )

m2 cos

(
2π

p−1mq

2q
m

)
.

Choose the sequence yk = p−1/(4q) + k for k ∈ N. Then, since xq = |x0 −
mq/q| = 0 implies x0 = mq/q, but also x0 = P/Q in its reduced form, we get

|g(yk)| �
∣∣∣∣∣∣

∞∑

m=0

cos
(
π

p−1P
Q (2m + 1)

)

(2m + 1)2

∣∣∣∣∣∣
, ∀k ∈ N. (66)

Define the Fourier series

G(z) =
∞∑

m=0

cos ((2m + 1)π z)

(2m + 1)2
= π2

8
(1− |2z|) z ∈ (−1, 1),

so that, after extending periodically to R, in view of (66), we have |g(yn)| =
|G(p−1P/Q)| for all n ∈ N. Observe that the only zeros of G are (2m + 1)/2
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for m ∈ Z. We separate two cases again. If q ≡ 0 (mod 4), by (65) mq must be
odd. Then Qmq = Pq implies 4 | Q, hence both p−1 and P are odd. We deduce
p−1P/Q �= (2m+1)/2 for anym ∈ Z, because otherwise p−1P = (2m+1)Q/2
for some m, so p−1P would be even. If q ≡ 2 (mod 4), then mq is even and
Q(mq/2) = P(q/2) implies that Q is odd. Hence p−1P/Q �= (2m + 1)/2 for
any m ∈ Z. In both cases, this implies that |g(yk)| = |G(p−1P/Q)| �= 0 for all
k, which is what we wanted to prove.

• If xq �= 0, according to (59) we get

∣∣∣Rx0

( p
q

+ h
)
− Rx0

( p
q

)
+ 2π ih

∣∣∣

�
∣∣∣(qh)3/2

∑

m∈Z

G(p,mq + m, q)√
q

e
−2π i

(m−qxq )2

4q2h

(m − qxq)2
+ O

(
q7/2h5/2

) ∣∣∣
(67)

because 0 < qxq ≤ 1/2. If q is odd, we use (65) and the definition of fq in (63)
to write

∣∣∣Rx0

( p
q

+ h
)
− Rx0

( p
q

)
+ 2π ih

∣∣∣ � q3/2h3/2
∣∣∣ fq
( 1

4q2h

)
+ O

(
q2h
)∣∣∣.

(68)

With the definition of yqk in Lemma B.4, choose the sequence hk = 1/(4q2yqk )

that tends to zero and for which | fq(1/(4q2hqk ))| = | fq(yqk )| ≥ 5. This and (68)
show that αx0(t) = 3/2. When q is even, by (65), the sum in (67) only has either
even or odd terms. The main term is m = 0 if even terms survive, and m = 1 if
odd terms survive, and crude estimates in the error suffice to conclude. ��
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