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Abstract
Motivated by a question of Baldi-Klingler-Ullmo, we provide a general sufficient
criterion for the existence and analytic density of typical Hodge loci associated to
a polarizable Z-variation of Hodge structures V. Our criterion reproves the existing
results in the literature on density of Noether-Lefschetz loci. It also applies to under-
stand Hodge loci of subvarieties of Ag . For instance, we prove that for g � 4, if a
subvariety S of Ag has dimension at least g then it has an analytically dense typical
Hodge locus. This applies for example to the Torelli locus of Ag .
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1 Introduction

1.1 Context

The observation that Hodge loci of polarizable Z-variations of Hodge structures (Z-
VHS) can be realized as intersection loci has recently been fruitfully applied to obtain
refinements of the celebrated algebraicity result of Cattani-Deligne-Kaplan [1, 2]. For
instance, if V is a Z-VHS on a smooth, irreducible and quasi-projective variety S over
C, one would like to understand criteria for density, in both the Zariski and analytic
topology, for families of components of the Hodge locus HL(S, V

⊗). With this goal
in mind Klingler [3] introduced a dichotomy, later refined by Baldi-Klingler-Ullmo,
between the part of the Hodge locus corresponding to typical intersections and the
part corresponding to atypical ones ([4, Def. 2.2, 2.4]):

HL(S, V
⊗) = HL(S, V

⊗)typ ∪ HL(S, V
⊗)atyp.

These two parts are expected to behave very differently. On the one hand, the atypical
part is conjectured to be algebraic:

Conjecture 1.1 ([4, Conj. 2.5]) LetV be a polarizableZ-VHS on a smooth, irreducible
and quasi-projective variety S over C. The atypical Hodge locus HL(S, V

⊗)atyp of S
for V is an algebraic suvariety of S.

Indeed, Conjecture 1.1 can be seen as an extension of the classical Zilber-Pink
conjecture (see [5, Conj. 2.3], [6, Conj. 1.1] and [7]). The case of positive period
dimensional special subvarieties has been settled for variations with Q-simple derived
Mumford-Tate group in [4, Thm. 3.1]. The case of atypical points appears for now to be
entirely out of reach in full generality.Understanding the typicalHodge locus, however,
appears more accessible, and towards this end Baldi-Klingler-Ullmo conjecture the
following:

Conjecture 1.2 ([4, Conj. 2.7]) LetV be a polarizableZ-VHS on a smooth, irreducible
and quasi-projective variety S over C. If HL(S, V

⊗)typ is non-empty, HL(S, V
⊗)typ

is analytically (hence Zariski) dense in S.

Towards this conjecture they prove:

Theorem 1.3 ([4, Thm. 3.9]) Let V be a polarizable Z-VHS on a smooth, irreducible
and quasi-projective variety S over C. If the typical Hodge locus HL(S, V

⊗)typ is
non-empty, then HL(S, V

⊗) is analytically (hence Zariski) dense in S.
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Existence and density…

Conjecture 1.2 and Theorem 1.3 naturally raise the following question asked by
Baldi-Klingler-Ullmo:

Question 1.4 ([4, Quest. 2.9]) Is there a simple criterion on the generic Hodge datum
of a polarizable Z-VHS to decide if its typical Hodge locus is non-empty?

Regarding this question, they introduce the following notion (see [4, Sect. 4.6] for
details):

Definition 1.5 ([4, Def. 4.15]) Let V be a polarizable Z-VHS on a smooth, irreducible
and quasi-projective variety S overCwith generic Hodge datum (G, D) andQ-simple
algebraicmonodromy groupH. Denote by h its Lie algebra, fix x ∈ D aHodge generic
point and denote by

h ⊗Q C =
⊕

k∈Z
h−k,k
x

the induced Hodge decomposition. The level of V is the largest integer k such that
h−k,k
x �= {0}. It doesn’t depend on the choice of x .

They almost completely answer Question 1.4 when the level of the Z-VHS is at
least 3, by proving:

Theorem 1.6 ([4, Thm. 3.3]) Let V be a polarizable Z-VHS on a smooth, irreducible
and quasi-projective variety S over C, with generic Hodge datum (G, D) and alge-
braic monodromy group H. Suppose that H = Gder. If V is of level at least 3 then
HL(S, V

⊗)typ = ∅ (and thus HL(S, V
⊗) = HL(S, V

⊗)atyp).

1.2 Our results

The main contribution of this work will be to provide a sufficient criterion for the
density of (typical) Hodge loci, valid in any level. As we will explain, this almost
gives a complete answer to Question 1.4.

1.2.1 Density of typical Hodge loci

Let V be a polarizable Z-VHS on a smooth, irreducible and quasi-projective variety S
over C and let (G, D) be its generic Hodge datum. Note that after passing to a finite
étale cover of the base (which doesn’t affect our results, see Remark 2.1), we can
and will assume that the image of the monodromy representation of V is torsion-free.
We therefore fix a torsion-free arithmetic lattice � of G(R) containing the latter and
denote by � : San → �\D the period map associated to V. Given a strict Hodge
sub-datum (M, DM ) � (G, D) we define the Hodge locus of type M as

HL(S, V
⊗,M) := {s ∈ San : ∃g ∈ G(Q)+,MT(Vs) ⊆ gMg−1},

where for s ∈ San, theMumford-Tate group of theHodge structure onVs is denoted by
MT(Vs). The typical Hodge locus of typeM is defined as the union HL(S, V

⊗,M)typ
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of those components of HL(S, V
⊗,M) which are typical with respect to their generic

Hodge datum; see Definition 2.7.

Definition 1.7 Let X ,Y be locally closed irreducible analytic subvarieties of some
irreducible complex analytic variety Z . Let U be an analytic irreducible component
of the intersection X ∩ Y . We say that X and Y intersect in Z with bigger dimension
than expected along U if

dimU > dim X + dim Y − dim Z .

Otherwise, we say that they intersect in Z with expected dimension along U .

In this terminology, a special subvariety Z of S with generic Hodge datum
(GZ , DGZ ) is typical if it corresponds to a component of the intersection between
�GZ \DGZ and�(San) alongwhich these two intersect with expected dimension inside
�\D. Here �GZ denotes the arithmetic torsion-free lattice � ∩ GZ (Q)+ of GZ (R)+.
Then, a first trivial remark is that for HL(S, V

⊗,M)typ to be non-empty, the Hodge
datum (M, DM ) has to be of the following type:

Definition 1.8 A strict Hodge sub-datum (M, DM ) � (G, D) is said V-admissible if
it satisfies the inequality of dimensions

dim�(San) + dim DM − dim D ≥ 0.

We say that (M, DM ) is strongly V-admissible if the above inequality is strict.

Our general result (see Theorem 3.5) is somewhat technical, but simplifies in the
case where the algebraic monodromy group H of V is Q-simple and equal to Gder,
saying that (strong) V-admissibility of a sub-datum is enough to get density of the
associated (typical) Hodge locus:

Theorem 1.9 Let V be a polarizable Z-VHS on a smooth, irreducible and quasi-
projective variety S over C with generic Hodge datum (G, D). Assume that its
algebraic monodromy group is H = Gder and is Q-simple. Let (M, DM ) � (G, D)

be a strict Hodge sub-datum.

(i) If (M, DM ) is V-admissible, then HL(S, V
⊗,M) is analytically dense in San.

(ii) If (M, DM ) is strongly V-admissible, then HL(S, V
⊗,M)typ is analytically dense

in San.

Remark 1.10 As pointed out in ref. [4, Rmk. 10.2], Baldi-Klingler-Ullmo’s geometric
Zilber-Pink theorem gives (because we are in the Q-simple monodromy case) that (i)
implies (ii). We give an independent argument for (ii) that still works in the factor
case.

In terms of the full Hodge locus we thus have immediately:

Corollary 1.11 Let V be as in Theorem 1.9. If (G, D) admits a (resp. strongly) V-
admissible strict Hodge sub-datum, the Hodge locus HL(S, V

⊗) (resp. the typical
Hodge locus HL(S, V

⊗)typ) of S for V is analytically dense in San.
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Remark 1.12 The condition thatH = Gder will be verified in most geometric applica-
tions (e.g. hypersurfaces variations, Hodge-generic subvarieties of Ag). It is however
needed to exclude the eventuality that the datum (M, DM ) is V-admissible but not
big enough on the factor of D on which � is constant to generically intersect the
period image. The most general condition that one can hope for (see Theorem 3.5) is
that, writing Gder = H · L as an almost direct product, M contains L. Otherwise, the
statement would contradict the Zilber-Pink conjecture for an auxiliary Z-VHS (see
Example 1.13).

Working with not necessarilyQ-simple algebraic monodromy groups leads to com-
plications. The following example illustrates the fact that in this general setting we
cannot hope for Theorem 1.9 to remain true and that we need to impose similar numer-
ical conditions on each factor.

Example 1.13 In this example, we fix a level structure n � 3 and for any g � 1 we
denote by Ag the quasi-projective Shimura variety of dimension g(g+1)

2 parametris-
ing principally polarized abelian varieties of dimension g with level-n-structure. Let
C ⊂ A3 be a Hodge generic curve. Let V be the Z-VHS corresponding to the first
cohomology groups of the members of the universal family of abelian six-folds above
S := A3 ×C (recall that we fixed level structures so that we have fine moduli spaces).
Its period map is the inclusion A3 × C ↪→ A3 × A3. Let (M, DM ) be a strict
Hodge sub-datum with �M\DM = A3 × (A1 × A2). It is strongly V-admissible.
If HL(S, V

⊗,M)typ was dense, one would find that C ⊂ A3 intersects Hecke trans-
lates ofA1 ×A2 in a dense subset. This contradicts the Zilber-Pink conjecture 1.1 for
the variation on C corresponding to the first cohomology groups of the members of
the universal family of abelian threefolds above C , which has period map C ↪→ A3:
C is of dimension 1 while A1 × A2 has codimension 2 in A3, so the intersections of
C with Hecke translates of A1 × A2 are atypical. So Theorem 1.9 should fail in the
non-Q-simple monodromy case.

Our criterion is nearly a complete answer to 1.4 in the sense that the only missing
ingredient for ourmethods to give a full characterization of the density of typicalHodge
loci is a better understanding of the distribution of typical special points in S. More
precisely, using the methods of this work, we would need the following statement,
which is a consequence of the Zilber-Pink conjecture 1.1, to get a full answer to 1.4:

Conjecture 1.14 Let V be as in Theorem 1.9, and (M, DM ) � (G, D) be a strict
Hodge sub-datum which satisfies

dim�(San) + dim DM = dim D.

Then for any non-empty analytic open subset B ⊂ San, one has a strict containment

HL(S, V
⊗,M)atyp ∩ B � HL(S, V

⊗,M) ∩ B.

Indeed, the reason for distinguishing between admissibility and strong admissibility
in Theorem 1.9(ii) ultimately arises from the inability to handle typicality questions
in the situation where one expects HL(S, V

⊗,M) to consist of typical special points.
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Remark 1.15 Combining recent work of Tayou-Tholozan and the density of
HL(S, V

⊗)typ in S that we prove here, one should be able to obtain that this locus
is even equidistributed in S for a natural measure. We refer the interested reader to
their paper [8].

1.2.2 Classical Noether-Lefschetz loci

Wenow explain how to apply our results to reprove classical theorems on the density of
Noether-Lefschetz loci. In particular, wewill show how our results generalize the clas-
sical results ofCiliberto-Harris-Miranda [9] andGreen [10, Prop. 17.20] by proving the
analytic density of the components of maximal codimension of the Noether-Lefschetz
locus of degree d hypersurfaces in P

3 as soon as d ≥ 5. (The case d = 4 requires
extra analysis, which we omit.)

In this case one considers the variation V = (R2 f∗Z)prim on primitive cohomology
associated to the universal family f of such hypersurfaces, and the polarization Q :
V ⊗ V → Z induced by cup-product. Fix some s ∈ San. The result of Beauville [11]
guarantees that the algebraic monodromy group H of V is the full orthogonal group
Aut(Vs, Qs) stabilizing the polarizing form. As Qs is a Hodge class in (Vs ⊗ Vs)

∨
and the algebraic monodromy group lies inside the generic Mumford-Tate group,
this means that the generic Hodge datum for V takes the form (G, D), with G =
GAut(Vs, Qs) and with D the space of all polarized Hodge structures with the same
Hodge numbers (h2,0, h1,1, h0,2) as V. Given any subdatum (M, DM ) ⊂ (G, D)

corresponding to a single fixed Hodge vector, one computes that dim D − dim DM =
h2,0. On the other hand it is classical that h2,0 = (d−1

3

)
, hence one has for d ≥ 5 that

dim D − dim DM =
(
d − 1

3

)
<

(
d + 3

3

)
− 16 = dim�(San).

Here we have computed the period dimension by observing that the projective space
of degree d homogeneous polynomials in 4 variables is

(d+3
3

) − 1 dimensional, and
the period map becomes generically injective modulo the natural action of SL4 on the
moduli space as a consequence of Donagi’s generic Torelli theorem [12], which holds
assuming d ≥ 5. Thus the datum (M, DM ) is strongly V-admissible, and Theorem
1.9 lets us conclude.

We expect that the above argument, which requires essentially only a verification
of Zariski dense monodromy and a generic Torelli theorem, can be repeated to reprove
numerous other analytic density results in the literature.

1.2.3 Special subvarieties of the Torelli locus

Let g � 4 be an integer, and fix a level structure n � 3. Let Ag be the Shimura
variety parametrising principally polarized abelian varieties of dimension g (with the
given level structure) whose associated Shimura datum is (GSp2g, Hg), where Hg is
the Siegel upper half-plane. Recall that Ag is a quasi-projective complex variety of

dimension g(g+1)
2 and that the largest dimension obtained by any of its strict special
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subvarieties is g(g−1)
2 + 1, realised for example by Ag−1 × A1. As suggested in [4,

Rmk 3.15], one expects in this setting that:

Conjecture 1.16 Let S ⊂ Ag be a closed Hodge generic subvariety of dimension q,
and V the induced polarizable Z-VHS on S. The typical Hodge locus of S for V is
analytically dense if and only if q � g − 1. In that case, the Hecke translates of
Ag−1 × A1 in Ag intersect S in an analytically dense subset.

Unconditionally, Theorem 1.9 gives the following:

Corollary 1.17 Let S ⊂ Ag be a closed Hodge generic subvariety of dimension q, and
V the induced polarizable Z-VHS on S. If q � g, then the typical Hodge locus of S
for V is analytically dense. In that case, the Hecke translates of Ag−1 × A1 in Ag

intersect S in an analytically (positive dimensional) dense subset.

Proof V has generic Mumford-Tate group G = GSp2g whose derived subgroup
Gder = Sp2g is Q-simple. In particular, since V is non-constant and the algebraic
monodromy group H is a Q-normal subgroup of the derived Mumford-Tate group,
one hasH = Gder = Sp2g . To conclude, one simply remarks that the inequality q � g
is equivalent to the strong V-admissiblity of the Hodge sub-datum corresponding to
Ag−1 × A1. ��

Let Mg be the moduli space of smooth projective curves of genus g with level-n-
structure, let j : Mg ↪→ Ag the Torelli morphism, and T 0

g = j(Mg) ⊂ Ag the open
Torelli locus. In this setting, Corollary 1.17 gives:

Corollary 1.18 The typical Hodge locus ofMg for the polarizable Z-VHS induced by
j is analytically dense inMg.

Proof T 0
g is known to be of dimension 3g − 3 which is bigger than g in our setting

(g � 4). Therefore, applying Corollary 1.17 to the closure of T 0
g in Ag gives the

density of the Hodge locus in Mg for the analytic topology. ��

Remark 1.19 Similar questions had already been studied in refs. [13, 14] for Ag and
[15] in themore general setting of Shimura varieties. Chai had developed a numerology
to give a sufficient condition on the codimension of a subvariety of a Shimura variety
to have analytically dense Hodge locus of given type M. These conditions weren’t
however optimal, and Theorem 1.9 (and its generalisation Theorem 3.5) can be seen
as a refinement of these works in three directions. First, we give numerical conditions
in a general Hodge theoretic settingwhile previous authors onlyworked in the Shimura
setting. Furthermore, our numerical conditions are sharper than previous ones, even
in the Shimura setting. For example, they only knew that subvarieties of Ag had
analytically dense Hodge locus if they had codimension less than g. We prove the
same thing for subvarieties of dimension greater than g. Finally, the notion of typicality
doesn’t appear in the aforementionned works, so proving density of the typical part
of the Hodge locus is an additional improvement.
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1.3 Recent related work

Recently, S. Eterović and T. Scanlon have obtained similar results in a general frame-
work of so-called definable arithmetic quotients. In particular, they also give [16,
Theorem 3.4] a criterion for Hodge loci to be dense. Our work can be seen as refining
these results in the Hodge-theoretic setting, taking into account the Hodge-theoretic
(a)typicality of the resulting loci. More precisely, we prove in Theorem 1.9(ii) and
Theorem 3.5(ii) that the components of HL(S, V

⊗,M) that we construct have the
expected Mumford-Tate groups, whereas a conclusion of this type does not appear in
the main theorem of [16].

2 Recollections

We now review notions from variational Hodge theory; we refer to [3, 17, 18], and
[10] for a detailed account of the theory. The first two subsections recall the basic
notions, and the subsequent two subsections will review more recent results which we
will need for our proofs. Before starting, let us emphasize on the following:

Remark 2.1 In this work, we are only interested in proving analytic density results for
Hodge loci in the base S of some Z-VHS. In particular, to prove them, we are free to
replace the base S by:

(i) some non-empty Zariski open subset, as S being irreducible, such a subset will be
analytically dense in S;

(ii) some finite étale covering, as the image of an analytically dense subset of the cover
will remain such in S.

We will do such substitutions freely in the sequel.

Notation 2.2 For an algebraic groupG over Q, we denote byGad its adjoint group, by
Gder its derived subgroup, and by G(R)+ the identity component for the real analytic
topology. Finally, we define G(Q)+ to be G(R)+ ∩ G(Q).

2.1 Hodge data and special subvarieties

Recall that the Mumford-Tate group of a Q-Hodge structure x : S → GL(VR) on a
finite dimensional Q-vector space V (where S = ResC/RGm is the Deligne torus) is
the smallest Q-subgroup MT(x) of GL(V ) such that the morphism of R-algebraic
groups x factors throughMT(x)R. Equivalently, it is the fixator inGL(V ) of all Hodge
tensors for x . It is a connected Q-algebraic group, which is reductive as soon as x is
polarized, which will always be assumed in the sequel. The associated Mumford-Tate
domain is the orbit of x under the identity connected component MT(x)(R)+ of the
real Lie group MT(x)(R) in Hom(S,MT(x)R). Both notions can be summarized in
the following, now usual, definition:

Definition 2.3 ([3, Def. 3.4, Def. 3.5])
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(i) A Hodge datum is a pair (G, D) where G is the Mumford-Tate group of some
Hodge structure, and D is the associated Mumford-Tate domain.

(ii) A morphism of Hodge data (G, D) → (G′, D′) is a morphism of Q-groups
G → G′ sending D inside D′.

(iii) A Hodge sub-datum of (G, D) is a Hodge datum (G′, D′) such that G′ is a Q-
subgroup of G and the inclusion G′ ↪→ G induces a morphism of Hodge data
(G′, D′) → (G, D).

(iv) A Hodge variety is a quotient variety of the form �\D for some Hodge datum
(G, D) and some torsion-free arithmetic lattice � ⊂ G(Q)+.

Remark 2.4 Note that what we call here aHodge datum is usually referred to as a con-
nected Hodge datum in the literature. Since we will always be considering connected
Hodge data, we ommit the ”connected” in the sequel.

Let V be a polarizable Z-VHS on a smooth, irreducible and quasi-projective alge-
braic variety S over C. There exists a reductive Q-algebraic group G and a countable
union HL(S, V

⊗) of irreducible algebraic subvarieties of S such that for each point
s ∈ San, the polarized Hodge structure carried by Vs has Mumford-Tate group iso-
morphic (by parallel transport) to a subgroup of G which is strictly contained in G if
and only if s ∈ HL(S, V

⊗) ([1, 2]). The group G is called the generic Mumford-Tate
group of V, the locus HL(S, V

⊗) is called the Hodge locus of S for V, and points
s ∈ San − HL(S, V

⊗) are said to be Hodge generic. The orbit in Hom(S,GR) of the
Hodge structure carried by Vs under G(R)+ doesn’t depend on the choice of s ∈ San

and is denoted by D. We will refer to the Hodge datum (G, D) as the generic Hodge
datum of V. Then, up to replacing San by a finite étale cover, one can associate to V

a holomorphic, locally liftable to D and horizontal map

� : San → �\D

where � ⊂ G(Q)+ is a torsion free arithmetic lattice containing the image of the
monodromy representation associated to V as a finite index subgroup. We will always
refer to this map as the period map associated to V in the sequel.

If Y is an irreducible algebraic subvariety of S, we can apply the previous paragraph
toV|Y sm (whereY sm denotes the smooth locus ofY ) to define the genericHodge datum
(GY , DGY ) of Y for V. We see it as a Hodge sub-datum of the generic Hodge datum
(G, D) of V.

Definition 2.5 ([19, Def. 1.2]) An irreducible algebraic subvariety Y ⊂ S is called
a special subvariety of S for V if it is maximal for the inclusion among irreducible
algebraic subvarieties of S whose generic Mumford-Tate group is GY .

Special subvarieties of S for V can be characterized in more geometric terms. A
special subvariety of the Hodge variety �\D is defined (see [3, Def. 3.12]) as the
image of a map

[ f ] : �′\D′ → �\D
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between Hodge varieties induced by a morphism of Hodge data f : (G′, D′) →
(G, D), where �′ ⊂ G′(Q)+ is a torsion-free arithmetic lattice such that f (�′) ⊂ �

(such a map will be called, following [3, Lem. 3.9.], a morphism of Hodge varieties).
Then we have the:

Proposition 2.6 ([3, Prop 3.20]) An irreducible algebraic subvariety Y ⊂ S is special
for V if and only if Y is an irreducible component of the preimage by � of a special
subvariety of the Hodge variety �\D.

This characterisation, which realises special subvarieties as preimages by the period
map � of intersections between �(San) and some analytic subvarieties of �\D, natu-
rally suggests the dichotomy presented in the introduction between typical and atypical
special subvarieties. More precisely, one defines:

Definition 2.7 Let Y be a special subvariety of S for V with generic Hodge datum
(GY , DGY ). It is said to be atypical if �(San) and �GY \DGY intersect with bigger
dimension than expected along �(Y an) inside of �\D, i.e.

codim�\D�(Y an) < codim�\D�(San) + codim�\D�GY \DGY

Otherwise, it is said to be typical.

Remark 2.8 Note the difference with [4, Def. 2.2]: here we allow typical special sub-
varieties to be singular for V (i.e. to have image by � fully contained in the singular
locus of �(San), see op. cit.). Indeed, because our results are insensitive to replacing
the base by some non-empty Zariski open subset of it, we are free to remove the singu-
lar locus of �(San) (see [4, Rmk. 2.3.] or Step 1 of Sect. 4.3). Thus, we choose to use
this simpler definition. Note that this definition also differs from Klingler’s original
one ([3, Def. 4.3]), which allows typical subvarieties to lie in the singular locus of V

but uses codimensions inside of the horizontal distribution of �\D.

Then, the Hodge locus splits in two parts

HL(S, V
⊗) = HL(S, V

⊗)typ ∪ HL(S, V
⊗)atyp

where HL(S, V
⊗)typ (resp. HL(S, V

⊗)atyp) is defined as the union of the strict typical
(resp. atypical) special subvarieties of S for V, and is referred to as the typical (resp.
atypical) Hodge locus.

2.2 Monodromy andweakly special subvarieties

Let V be a Z-VHS on a smooth, irreducible and quasi-projective algebraic variety S
over C, let (G, D) be its generic Hodge datum, and fix s0 ∈ San a Hodge generic
point such that the Mumford-Tate group of the Hodge structure carried by Vs0 is equal
(and not only isomorphic) to G. The local system VQ := V ⊗Z Q corresponds to a
representation of the topological fundamental group of San with base-point s0:

ρ : π1(S
an, s0) → GL(VQ,s0)
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Wedefine thealgebraicmonodromygroupH of V as the identity connected component
of the Q-Zariski closure of ρ(π1(San, s0)) in GL(VQ,s0). More generally, if Y ⊂ S
is an irreducible algebraic subvariety, we define the algebraic monodromy group HY

of Y for V as the algebraic monodromy group of the restricted Z-VHS V|Y sm on the
smooth locus Y sm of Y . Then, recall the following celebrated result of André which
follows from the theorem of the fixed part and the semi-simplicity theorem of Deligne
[20] (in the geometric setting) and Schmid [21] (for general Z-VHS).

Theorem 2.9 ([22, Thm. 1]) Let Y ⊂ S be an irreducible algebraic subvariety. Then
the monodromy group HY of Y for V is a normal subgroup of the derived subgroup
Gder

Y of the generic Mumford-Tate group of Y for V.

In analogy with Proposition 2.5 one defines:

Definition 2.10 An irreducible algebraic subvariety Y ⊂ S is said weakly special for
V if it is maximal for the inclusion among irreducible algebraic subvarieties of S which
have algebraic monodromy group HY .

As in the case of special subvarieties, there is a nice group theoretic description of
weakly special subvarieties. A weakly special subvariety of the Hodge variety �\D
is defined (see. [19, Def. 4.1]) to be the image of a subvariety of the form

�M\DM × {t} ⊂ �M\DM × �N\DN

by a morphism of Hodge varieties �M\DM × �N\DN → �\D, with t ∈ �N\DN .
Now we have the following:

Proposition 2.11 ([19, Cor. 4.14]) Let Y ⊂ S be an irreducible algebraic subvariety.
Y is a weakly special subvariety of S for V if and only if it is the preimage by � of a
weakly special subvariety of �\D.

Remark 2.12 Note that by André’s Theorem 2.9, the derived subgroup ofG factors as
Gder = H ·L, and one shows [19, Lem. 4.12] that the period map � is constant equal
to some Hodge generic tL ∈ �L\DL when projected to the factor corresponding to L.
In the sequel, we will omit this constant factor and simply write � : San → �H\DH

for the period map to signify that up to passing to a finite étale cover we have � :
San → �H\DH × {tL} ⊂ �\D.

2.3 Algebraicity of periodmaps

We will make use of the following result on algebraicity of period maps, recently
proven by Bakker-Brunebarbe-Tsimerman.

Theorem 2.13 ([23, Thm. 1.1]) LetV be a polarizableZ-VHS on a smooth and quasi-
projective algebraic variety S over C, and denote by � : San → �\D the associated
period map. The map � factors uniquely as � = ι ◦ f an where f : S → T is a
dominant regular map to an algebraic variety T , and ι : T an ↪→ �\D is a closed
analytic immersion.
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2.4 Functional transcendance

Our arguments heavily rely on a functional transcendence result, Bakker and Tsimer-
man’s Ax-Schanuel theorem, which will allow us to force some intersections to have
expected dimension. Recall that theMumford-Tate domain DH embeds in its compact
dual ĎH which is a projective algebraic variety over C. This embedding allows one
to define an irreducible algebraic subvariety of S × DH as an analytic irreducible
component of the intersection (S × DH ) ∩ V of S × DH with an algebraic subvariety
V of S × ĎH . Bakker-Tsimerman prove:

Theorem 2.14 ([24, Thm. 1.1]) Let W ⊂ S × DH be an algebraic subvariety. Let U
be an irreducible complex analytic component of W ∩ (S ×�H\DH DH ) such that

codimS×DHU < codimS×DHW + codimS×DH

(
S ×�H\DH DH

)
.

Then the projection of U to S is contained in a strict weakly special subvariety of S
for V.

Remark 2.15 The proof of Bakker-Tsimerman’s Ax-Schanuel crucially relies on the
definability of period maps in the o-minimal structure Ran,exp. It has been recently
reproven in a more general setting using an o-minimal free approach ([25]).

3 Density of typical special subvarieties

Let V be a polarizable Z-VHS on a smooth, irreducible and quasi-projective variety S
overC. Denote by (G, D) the generic Hodge datum, by� ⊂ G(Q)+ some torsion-free
arithmetic lattice containing the image of the monodromy representation of V, by H
the algebraic monodromy group and by � : San → �H\DH ⊂ �\D the associated
period map (see Remark 2.12).

In the sequel, definability will always be meant in the o-minimal structure Ran,exp.
We use the notion of definable manifold appearing in [23, Def. 2.1, Def. 2.2]. The
natural Borel embedding D ↪→ Ď as an open subset of the compact dual defines a
canonical structure ofRan,exp-definable (and evenRalg-definable)manifold on D. Sim-
ilarly, the algebraic structure on S induces a canonical structure of Ran,exp-definable
(and again evenRalg-definable) manifold on San. Definability in D and San will always
be meant with respect to these structures.

3.1 Definable fundamental sets

In the proofs and statements of intermediate lemmas, we will need to work with defin-
able fundamental sets for the uniformization maps that appear, which are compatible
with period maps. However, we won’t need the delicate definable factorization in [2]
of period maps through fundamental sets for the �-action on D, but only, following
[24, Sect. 3] and [4, Sect. 6.1.1], definable fundamental sets for the covering action
of the fundamental group of S on a suitable cover of S, to which the restriction of the
lifted period map is definable. We recall quickly the construction for completeness.
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Let (S̄, E)be a log-smooth compactificationof S. By theBorelmonodromy theorem
[21, (4.5)], and because our results are unaffected by passing to a finite étale cover of
S (see Remark 2.1), we can and do assume that V has unipotent monodromy along
irreducible branches of E . The datum of this compactification allows us to choose a
definable atlas of S for the definable structure induced by its algebraic structure, given
by finitely many (by compactness of S̄) polydisks Pi = �ki × (�∗)li (because the
divisor E has simple normal crossings). Let pi = exp : P̃i := �ki × H

li → Pi be
the universal cover and pick some b, c > 0 such that, denoting by 	 = (−b, b) ×
(c,+∞[⊆ H the associated vertical strip, the set Fi := �ki × (	)li is a fundamental
set for the covering action of π1(Pi ) ∼= Z

li . We endow Fi with the natural product
definable structure, with on H the structure coming from the natural embedding H ↪→
P
1. With these structures, the covering maps pi are definable when restricted to Fi .
For each i , choose a local lifting �̃i of �|Pi , and letting F be the disjoint union of

these local fundamental sets over the charts, view the collection of all such lifts as amap
on F . Then, because we assumed unipotent monodromy at infinity, a straightforward
application of the Nilpotent Orbit Theorem [21, (4.12)] (see [24, Lem. 3.1]) shows
that, after possibly shrinking the initial charts, we get the following diagram in the
category of definable complex analytic manifolds:

F �̃F

exp

D

San

(1)

Notation 3.1 In the sequel, we fix once and for all the data needed to construct this
diagram, and will denote I = �̃F (F). It is not a priori connected but, although it
won’t be useful in the sequel, it is possible to choose the local lifts in the construction
so that it is so. In particular, if two local lifts �̃i1 and �̃i2 have intersecting images
in �\D, then their images in D also intersect after replacing �̃i1 by γ · �̃i1 for some
γ ∈ �. Since the image of I in �\D is just the (necessarily connected) image of S,
we can therefore ensure I is connected after finitely many such adjustments.

3.2 Statement of the result in the general setting

In order to tackle product phenomena we work, as in [4, Sect. 1.2], in the setting
of [18, Chap. III] which we recall now for completeness. The monodromy group H
decomposes as an almost direct product of its Q-simple factors:

H = G1 · · ·Gn .

After replacing S by a finite étale cover (see Remark 2.1), the above decomposition
induces a factorization of the period map through

� : San → �1\D1 × · · · × �n\Dn,

123



N. Khelifa, D. Urbanik

where for each i , Di is some Mumford-Tate subdomain of D associated to Gi and
�i = � ∩ Gi (Q)+. For each I ⊂ {1, · · · , n}, we write DI := ∏

i∈I Di which is a
Mumford-Tate domain for the group GI := ∏

i∈I Gi endowed with a projection map
pI : D → DI . We also write

qI : �\D → �I \DI :=
∏

i∈I
�i\Di

for the natural projection and �I := qI ◦ � for the projected period map.

Remark 3.2 The action of H(R)+ on D1 × · · · × Dn is compatible with the product
decomposition. Namely, for h ∈ H(R)+, we can write h = g1 · · · gn with gi ∈ Gi (R)

and then, for x = (x1, · · · , xn), one has:

h · x = (g1 · x1, · · · , gn · xn).

This applies for any choice of decomposition h = g1 · · · gn . The same applies more
generally for the decomposition D = DH × DL associated to the almost-direct fac-
torization Gder = H · L.

When trying to give a sufficient condition generalizing that of Theorem 1.9 to the
not necessarily Q-simple monodromy case, Example 1.13 suggests that one should
at least impose conditions like V-admissibility on each factor, including on the factor
where the period map is constant.

Definition 3.3 Let (M, DM ) � (G, D) be a strict Hodge sub-datum. It is called

(i) factorwise V-admissible if for every non-empty set of indexes I ⊆ {1, · · · , n} the
inequality

dim pI (DM ) + dim�I (S
an) − dim DI ≥ 0

holds.
(ii) factorwise strongly V-admissible if for every non-empty set of indexes I ⊆

{1, · · · , n}, the strict inequality

dim pI (DM ) + dim�I (S
an) − dim DI > 0

holds.

As explained in Remark 1.12, one should also add some condition on the constant
factor:

Definition 3.4 A strict Hodge sub-datum (M, DM ) � (G, D) is said to be full on the
L-factor if, writing Gder = H · L as an almost-direct product, the normal subgoup L
of Gder is contained inM.

We can now state the main result of this paper:
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Theorem 3.5 Let V be a polarizable Z-VHS on a smooth, irreducible and quasi-
projective variety S over C, with generic Hodge datum (G, D). Let (M, DM ) �

(G, D) be a strict Hodge sub-datum.

(i) If (M, DM ) is full on the L-factor and factorwise V-admissible, HL(S, V
⊗,M) is

analytically dense in San.
(ii) IfH = Gder and (M, DM ) is factorwise strongly V-admissible, HL(S, V

⊗,M)typ
is analytically dense in San.

3.3 Reformulation of factorwiseV-admissibility

To prove this result, we will need to reformulate the factorwise V-admissibility condi-
tion in a way which is better suited to our proof, although more complicated to define.
First define:

Definition 3.6 Let (M, DM ) � (G, D) be a strict Hodge sub-datum, and I ⊆
{1, · · · , n} be a non-empty set of indexes whose complementary set we denote by
I c. A pair (g, t) ∈ G(R)+ × (DIc × DL) is called a (I, DM , DI )-intersecting pair if

I ∩ (g · DM ) ∩ (DI × {t}) �= ∅.

We will need:

Lemma 3.7 Let (M, DM ) � (G, D) be a strict Hodge sub-datum, let I ⊆ {1, · · · , n}
be a non-empty set of indexes and (g, t) ∈ G(R)+×(DIc×DL) be some (I, DM , DI )-
intersecting pair. Up to replacing S by some non-empty Zariski open subset, the
quantity

dI (M, DM ) := dim
(
(g · DM ) ∩ (DI × {t})) + dim

(
I ∩ (DI × {t})) − dim DI

only depends on the set of indexes I and not on the choice of the (I, DM , DI )-
intersecting pair (g, t).

Remark 3.8 In Lemma 3.7, we emphasize that by “replacing S by some non-empty
Zariski open subset”wemean that in the diagram (1), we replace S by some non-empty
Zariski open subset, the fundamental domain F by the preimage of this open and �̃F
by its restriction to this preimage. In particular, the image I is replaced by the image
of the above restriction of �̃F .

Convention 3.9 Let (M, DM ) � (G, D) be a strict Hodge sub-datum. By convention,
we set d∅(M, DM ) = 0.

We then have the following reformulation, where we write dH(M, DM ) for
d{1,··· ,n}(M, DM ):

Lemma 3.10 Let (M, DM ) be a strict Hodge sub-datum. It is:
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(i) factorwiseV-admissible if and only if for every strict set of indexes I � {1, · · · , n},
the inequality

dH(M, DM ) ≥ dI (M, DM )

holds.
(ii) factorwise strongly V-admissible if and only if for every strict set of indexes I �

{1, · · · , n}, the strict inequality

dH(M, DM ) > dI (M, DM )

holds.

4 Proofs

4.1 Proof of lemmas 3.7 and 3.10

Proof of Lemma 3.7 Let us first prove that for any other choice of (I, DM , DI )-
intersecting pair (g′, t ′), we have:

dim
(
(g · DM ) ∩ (DI × {t})) = dim

(
(g′ · DM ) ∩ (DI × {t ′})).

Take x ∈ (g · DM ) ∩ (DI × {t}) and x ′ ∈ (g′ · DM ) ∩ (DI × {t ′}). Since g′Mg′−1

acts transitively on g′ · DM (where we set M = M(R)+), there is some m ∈ g′Mg′−1

sending (g′g−1)x to x ′. We then have

x ′ ∈ (mg′g−1)((g · DM ) ∩ (DI × {t})) = (g′ · DM ) ∩ (mg′g−1)(DI × {t})

and necessarily, (mg′g−1)(DI ×{t}) = DI ×{t ′}. Indeed, the element h := mg′g−1 ∈
G(R)+ writes h′ ·h′′ according to the decomposition ofGder as an almost direct product
GI · (GI c · L), and acts by h · (DI × {t}) = DI × {h′′t} (see Remark 3.2) which has
to be equal to DI × {t ′} as both contain a point x ′. This proves the above claimed
equality of dimensions.

We are left to prove that up to replacing S by some non-empty Zariski open subset,
we have

dim
(
I ∩ (DI × {t})) = dim

(
I ∩ (DI × {t ′}))

for any t and t ′ in the set T ⊂ DIc × DL of second projections of (I, DM , DI )-
intersecting pairs.

Let ψ denote the composition of the lifted period map �̃F : F → D with the
projection p : D → DIc × DL , so that T = ψ(F). For t ∈ T , we denote the
corresponding fibers by Ft := ψ−1(t) and It := I ∩ p−1(t) = �̃F (Ft ). The map ψ
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is complex analytic and definable. Therefore, if C denotes the minimal dimension of
a fiber Fψ(z) for z varying in F , the set

F ′ := {z ∈ F | dimz Fψ(z) > C}

is a strict definable closed analytic subset of F .
By definability of exp, it follows that the set

S′ := exp(F ′)

is a strict definable subset of S.

Lemma 4.1 The subset S′ is a strict Zariski-closed subset of S.

Proof As S is a quasi-projective complex variety and S′ is a strict definable subset
of S, the o-minimal Chow theorem of [26] ensures that it suffices to show that S′ is
actually a closed-analytic subset of S.

To see this, first note that exp |F is a local analytic isomorphism as it is a local prop-
erty which is satisfied by definition on the Fi ’s (the maps are obtained as restrictions
of a universal covering map to an open set). Futhermore, by definition the diagram

F

ψ

S̃
�̃

D
pIc DI c

S
�

�I c

�\D qIc
�I c\DIc

commutes. Combining these two facts one sees that for any s ∈ S and any lift z ∈ F ,
one has dims �−1

I c (�I c (s)) = dimz Fψ(z) so that set theoretically S′ has the following
description:

S′ = {s ∈ S : dims �−1
I c (�I c(s)) > C}.

The map �I c being complex analytic, this shows that S′ is a closed complex analytic
subset of S, and the argument given at the beginning of the proof shows that it is in
fact Zariski closed as required. ��

Now note that if z ∈ F −F ′, the intersection I∩ (DI ×{ψ(z)}) = Iψ(z) must have
minimal dimension at �̃F (z) among the family (It )t∈T : otherwise, Fψ(z) wouldn’t
have dimension C at z (i.e. minimal dimension among the family (Ft )t∈T ), contra-
dicting z /∈ F ′. So, the quantity dim Iψ(z) doesn’t depend on the choice of z ∈ F −F ′
and up to replacing S by its non-empty Zariski open subset S− S′, the initially wanted
equality of dimensions holds for any couple (t, t ′) ∈ T 2. This finishes the proof. ��
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Remark 4.2 It follows from the proof of Lemma 3.7 that after replacing S by its non-
empty Zariski open subset S − S′ (and subsequent modifications, see Remark 3.8),
all the components of (g · DM ) ∩ (DI × {t}) (resp. I ∩ {DI × {t})) have the same
dimension, where (g, t) is any (I, DM , DI )-intersecting pair. Indeed, the first part of
the proof in fact shows that dimx (g ·DM )∩(DI ×{t}) = dimx ′(g′ ·DM )∩(DI ×{t ′}),
where x and x ′ were arbitrary. For the second claim, this follows from the definition
of S′ and the discussion at the end of the proof.

Proof of Lemma 3.10 Let I � {1, · · · n} be a strict set of indexes and (g, t) be a
(I, DM , DI )-intersecting pair. Then both (i) and (ii) follow from the equality

dH(M, DM ) − dI (M, DM ) = dim(g · DM ) ∩ DH − dim(g · DM ) ∩ (DI × {t})
+ dim I − dim I ∩ (DI × {t}) − dim DH + dim DI

= dim pI c (g · DM ) + dim pI c (I) − dim DIc

= dim pI c (g · DM ) + dim�I c (S
an) − dim DIc .

Here we are implicitly using that dim I − dim I ∩ (DI × {t}) = dim pI c (I) (resp.
dim(g · DM )∩ DH −dim(g · DM )∩ (DI ×{t}) = dim pI c (g · DM )). These equalities
use the equidimensionality remarked above. ��

We can now turn to the proof of ourmain results. First note that our general criterion
implies the one announced in the introduction for the Q-simple case as explained in
the following subsection.

4.2 Proof of Theorem 1.9 assuming Theorem 3.5

Let (M, DM ) be a strict Hodge sub-datum of (G, D). It is immediate from the defi-
nitions and Convention 3.9 that under the Q-simplicity assumption on H along with
the assumption that H = Gder, factorwise (resp. strong) V-admissibility is equiva-
lent to (resp. strong) V-admissibility. Moreover, under the assumption H = Gder, the
datum (M, DM ) is automatically full on the L-factor. Hence, Theorem 1.9 is simply
a reformulation of Theorem 3.5 in the Q-simple monodromy case.

4.3 Proof of Theorem 3.5 (i)

Step 1 (Reduction to�(San) smooth and complex analytic). First note that by Theorem
2.13, the period map � factors through the analytification of some regular dominant
map f : S → T between quasi-projective complex algebraic varieties. As a conse-
quence, f (S) contains a Zariski-dense Zariski-open subset U of T . Denote by U sm

its smooth locus which is a non-empty Zariski open subset of U .
Then, up to replacing S by the non-empty Zariski open subset f −1(U sm) of S

(which doesn’t change the result, see Remark 2.1), we can assume that �(San) is
smooth and locally closed complex analytic, which we do in the sequel. Let us at this
point emphasize two consequences of these reductions that will be useful to us. First,
with these changes, the image I of the fundamental set F by �̃F is a locally closed
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smooth complex analytic subset of D, and we can freely talk about complex analytic
irreducible components of intersections with other complex analytic subvarieties of
D. Furthermore, if (M, DM ) is a strict Hodge sub-datum of (G, D), then DM and I
intersectwith expecteddimension along somecomplex analytic irreducible component
U inside of D if and only if the equality of dimension

dimU = dim I + dim DM − dim D

holds (without the above argued smoothness, one might in principle only get an
inequality in view of Definition 1.7). We will insist on this in the sequel by saying that
DM and I intersect inside D with the expected dimension along U .

Step 2 (Localisation of the problem). Let (M, DM ) be a factorwise V-admissible
strict Hodge sub-datum of (G, D). Let s ∈ San − HL(S, V

⊗) be a Hodge generic
point. Fix some z ∈ I such that π(z) = �(s) =: x . As G := G(R)+ acts transitively
on D, there exists an element g ∈ G such that z ∈ g · DM . Let U be an irreducible
complex analytic component of the intersection of g ·DM and I containing z. Wewant
to recall here how, following an idea of Chai [15, Prop. 1] (see also [4, Sect. 10.1]),
one can reduce the proof of the density of the Hodge locus to producing a component
U ⊂ (g · DM )∩I which has the expected dimension d = dim DM + dim I − dim D.

Suppose we have done this. Then in some neighbourhood N of a smooth point
u ∈ U the intersection between g · DM and I is a transverse intersection of smooth
manifolds inside D. Such intersections are stable under small smooth perturbation
(see for instance [27, Ch. 1, §6, Ex. 11]), so one obtains an open neighbourhood
V ⊂ G := G(R)+ such that, for each g ∈ V , the intersection (g · DM ) ∩ I ∩ N is
non-empty. By [28, Theorem 18.2], G is unirational as an algebraic variety over Q

so G(Q)+ is dense in G. We may therefore choose g0 ∈ G(Q)+ ∩ V such that the
translate g0 · DM and I intersect in D with the expected dimension d along some
complex analytic irreducible component intersecting N .

Now, pulling-back these components by the diagram (1) gives analytic germs of the
Hodge locus of HL(S, V

⊗,M)meeting any sufficiently small analytic neighbourhood
of the Hodge generic point s in San. By density of Hodge generic points for V in San,
this gives the desired property of density of the Hodge locus HL(S, V

⊗,M) of type
M. Let us emphasize at this point that concluding the density of the typical Hodge
locus of typeM as in (ii) requires more work, as the components we constructed above
could in principle all be atypical with respect to their generic Mumford-Tate group.

Step 3 (Using Ax-Schanuel to constrain the monodromy of atypical intersections).
Let us now prove that under our assumptions, g · DM and I intersect inside D with
the expected dimension along U , that is

codimDU = codimDI + codimDg · DM . (2)

Assume the opposite for the sake of contradiction.We claim that dim D−dim g·DM =
dim DH − dim(g · DM ) ∩ DH as a consequence of the fact that (M, DM ) is full on
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the L-factor.1 Indeed, because L is a normal Q-subgroup of Gder, and L ⊂ M, one
finds that L := L(R)+ ⊂ gMg−1 where M = M(R)+. As L acts transitively on
DL , it follows from the above containment that prDL

(g · DM ) = DL and the claimed
equality of dimension follows from

dim g · DM = dim prDL
(g · DM ) + dim(g · DM ) ∩ DH ,

which follows from the equidimensionality argued in Remark 4.2. Therefore, as we
have assumed (2) does not hold, the intersection of (g · DM ) ∩ DH and I inside the
monodromy orbit DH has bigger dimension than expected along U , i.e.

codimDHU < codimDH I + codimDH (g · DM ) ∩ DH . (3)

Consider the algebraic subvariety2 W = S × ((g · DM ) ∩ DH ) of S × DH , let Ũ be a
complex analytic component of W ∩ (S ×�H\DH DH ) containing (s, z) such that the
germs of prDH

(Ũ ) and U at z coincide. Then, the condition (3) gives the inequality

required in Theorem 2.14, which then ensures that the projection prS(Ũ ) of Ũ to S is
contained in a strict weakly special subvariety Y of S for V. We take Y to be minimal
for the inclusion among those weakly special subvarieties of S containing prS(Ũ ).
Since Y contains s which is Hodge generic, it has generic Mumford-Tate groupG, so
that, by André’s Theorem 2.9, the algebraic monodromy group HY of V|Y is a strict
normal subgroup of H. Let us write HY = ∏

i∈I Hi . Applying Remark 2.12 to the
restriction of � to the smooth locus of Y , one has that Y an is contained in an analytic
irreducible component of the preimage by � of some analytic subvariety of �\D of
the form π(DI × {t}). Furthermore, any irreducible subvariety of S contained in the
preimage by � of π(DI × {t}) must have algebraic monodromy group contained in
HY . As a weakly special subvariety is by definition maximal for the inclusion among
irreducible subvarieties with the same algebraic monodromy group, this shows that
Y an is an analytic irreducible component of the preimage by � of π(DI × {t}).

We may regardU as a component of the intersection of (g · DM ) ∩ (DI × {t}) and
I ∩ (DI ×{t}) for some choice of t . We claim that these two intersect in DI ×{t}with
the expected dimension along U . Indeed, assuming that they don’t, we can apply as
above the Ax-Schanuel theorem for V|Y to the intersection Ũ to conclude that prS(Ũ )

must be contained in some strict weakly special subvariety Y ′ of Y for V|Y . Note
that Y ′ is also a weakly special subvariety of S for V as, via the same reasoning just
exhibited for Y ⊂ S, it is the pullback via � of some translate of �HY ′ \DHY ′ × {t ′},
and all such varieties are weakly special by the characterization given in Proposition
2.11. To sum up, Y ′ is a weakly special subvariety of S for V, that contains prS(Ũ ),
and that is strictly contained in Y . This contradicts the minimality of Y , proving the
intersection of (g · DM )∩ (DI ×{t}) and I ∩ (DI ×{t}) in DI ×{t} has the expected
dimension.

1 Note that in the above equality DH is both the monodromy factor, and an orbit in D under H . We are
implicitly using Remark 1.12 and denoting some monodromy orbit DH × {zL } by DH where zL ∈ DL is
a lift of the tL ∈ �L\DL in loc. cit. such that z ∈ DH × {zL }.
2 Here we recall that an algebraic subvariety of S× DH is understood to be a component of an intersection
(S × DH ) ∩ V , where V is an algebraic subvariety of S × ĎH , where ĎH is the compact dual.
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We then get the following chain of (in)equalities:

0 = dimU − dim
(
U ∩ (DI × {t}))

> dH (M, DM ) − dI (M, DM )

� 0,

where the first line follows from the fact that U lies in DI × {t}, the second follows
from the assumption thatU has bigger dimension than expected and the fact thatU ∩
(DI ×{t}) has the expected dimension, and the third one is factorwiseV-admissibility.
This is a contradiction, so the inequality (3) must fail and the reasoning presented at
the beginning of the proof gives the desired density of HL(S, V

⊗,M).

4.4 Proof of Theorem 3.5 (ii)

We keep the notations of the proof of Theorem 3.5(i) and assume now that (M, DM ) is
factorwise strongly V-admissible. The proof of (i) gives an open neighbourhood V of
g in G such that for each g0 ∈ G(Q)+ ∩V , we have that g0 · DM and I intersect along
some complex analytic irreducible component with the expected dimension d. As
explained above, this gives a set of components of HL(S, V

⊗,M), intersecting some
neighbourhood of the fixed point s ∈ S in some dense set, all with the expected dimen-
sion. However these components might, in principle, not belong to HL(S, V

⊗,M)typ
on account of their Mumford-Tate groups being properly contained in some conjugate
of M.

To rule this out we show that after removing a proper closed subset of V of smaller
definable dimension the above constructed components of the Hodge locus of typeM
will have the desired property. To construct this closed subset we recall that Mumford-
Tate domains in D lie among the fibres of finitely many real-algebraic definable
families fk : Dk → G for 1 ≤ k ≤ �. Indeed, by ref. [18, VI.B.12.(i)], for any
Mumford-Tate subgroup N of G, the domain D contains finitely many N(R)+-orbits
of points with Mumford-Tate group equal to N and by ref. [29, Lemma 7.3], the
groupG contains finitely manyG(R)-conjugacy classes of Mumford-Tate subgroups.
More precisely, for each such k, there is a Mumford-Tate domain D(k) such that
Dk,g := f −1

k (g) = g · D(k), and all Mumford-Tate subdomains of D arise asDk,g for
some choice of k and g. We consider only those families for which some fibre of fk is
a Mumford-Tate domain properly contained in DM . After redefining the families, we
can assume that D(k) is this fiber. In particular, the fibres of fk have strictly smaller
dimension than DM . For each such k, denote by (M(k), D(k)) the associated Hodge
datum, and construct the locus

Pk = {(g′, x) : x ∈ g′ · D(k) ∩ I, dimx (g
′ · D(k) ∩ I) = d} ⊂ G × D.

We claim that the projection Gk of Pk to G intersects V in a set whose closure has
smaller definable dimension. Using definable cell decomposition [30, Ch. 3, §2.11],
it suffices to show that Gk ∩ V does not contain any non-empty open subset B of G.
We suppose that it does, and we use this to pick g′ ∈ B such that some irreducible
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component U ′ ⊆ (g′ · D(k)) ∩ I of the intersection contains the image z′ by �̃F of
some lift to F of a Hodge generic point in S.

Because g′ ∈ Gk , we have by definition that U ′ has dimension d, and using the
assumption that D(k) has strictly smaller dimension than DM it follows that g′ · D(k)

and I intersect in D with bigger dimension than expected along U ′. As we assumed
H = Gder, this implies that they intersect in DH with bigger dimension than expected
alongU ′. Choose a component Ũ ′ of the intersection of S×g′ ·D(k) with S×�H\DH DH

in S×DH such that the germs of prDH
(Ũ ′) andU ′ at z′ coincide. Then theAx-Schanuel

Theorem 2.14 gives a strict weakly special subvariety Y ′ ⊂ S which contains the
projection to S of Ũ ′. Choose Y ′ to be minimal for the inclusion among the weakly
special subvarieties of S for V containing prS(Ũ

′). By André’s theorem 2.9, since Y ′
contains a Hodge generic point, HY ′ is a normal subgroup of Gder, hence of H. Write
HY ′ = ∏

i∈I Hi . As in Step 3 of the proof of (i), the variety Y ′ is a component of the
inverse image under� of π(DI ×{t}) for some choice of t . Applying the Ax-Schanuel
theorem for V|Y ′ to the intersection of (g′ · D(k))∩ (DI ×{t}) and I in DI ×{t} along
U ′ = U ′ ∩ (DI × {t}), one proves as in Step 3 of the proof of (i) that this intersection
has expected dimension.

Now, because g′ ∈ V , U ′ is also a component along which (g′ · DM ) ∩ DH and
I ∩ DH intersect with expected dimension d inside of DH . Wrapping things up, we
get the following chain of (in)equalities:

0 = dimU ′ − dim
(
U ′ ∩ (DI × {t}))

= dH(M, DM ) − dI (M(k), D(k))

� dH(M, DM ) − dI (M, DM )

> 0.

Here, the first line follows from the fact that U ′ lies in DI × {t}, the second from the
fact that g′ · DM and I (resp. g′ · D(k) ∩ (DI × {t}) and I ∩ (DI × {t})) intersect with
expected dimension inside of DH (resp. DI ×{t}) alongU ′ (resp.U ′ ∩ (DI ×{t}), the
third is immediate from definitions and the fourth is factorwise strongV-admissibility.
This is a contradiction, and we have proven that Gk intersects V in a set whose closure
has strictly smaller definable dimension.

Now, by density of G(Q)+ in G, we can pick some g1 ∈ G(Q)+ ∩ (V − G) where
G = ⋃

k Gk . By construction, pulling back the intersection between g1 · DM and I
to S by the diagram (1) gives rise to components of the typical Hodge locus of type
M. Since we can take g1 arbitrarily close to the g we fixed at the beginning of the
proof, we therefore can construct components of HL(S, V

⊗,M)typ intersecting any
neighbourhood of the fixed Hodge generic point s ∈ S. Using the density of the Hodge
generic points in S finishes the proof.
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