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Abstract
We give Martin representation of nonnegative functions caloric with respect to the
fractional Laplacian in Lipschitz open sets. The caloric functions are defined in terms
of themeanvalue property for the space-time isotropicα-stableLévyprocess. Toderive
the representation, we first establish the existence of the parabolic Martin kernel. This
involves proving new boundary regularity results for both the fractional heat equation
and the fractional Poisson equation with Dirichlet exterior conditions. Specifically, we
demonstrate that the ratio of the solution and the Green function is Hölder continuous
up to the boundary.

Mathematics Subject Classification Primary 35S16 · 60J50 · 35C15

1 Introduction

Let 0 < α < 2 and d ≥ 2. For u ∈ C2
b (R

d), define

(−�)α/2u(x):= lim
ε→0+

∫
|x−y|>ε

(u(x) − u(y))ν(x, y) dy, x ∈ R
d ,
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where ν(x, y) = cd,α|x − y|−d−α , and denote �α/2:= − (−�)α/2. Let D ⊂ R
d

be a nonempty bounded open Lipschitz set with localization radius r0 ∈ (0,∞) and
Lipschitz constant λ ∈ (0,∞). One of our goals is to investigate the structure of
nonnegative solutions to the initial-boundary value problem for the fractional heat
equation:

⎧⎪⎨
⎪⎩

∂t u(t, x) = �α/2u(t, x), t ∈ (0, T ), x ∈ D,

u(t, x) = g(t, x), t ∈ (0, T ), x ∈ Dc,

u(0, x) = u0(x), x ∈ D.

(1.1)

Solutions to (1.1) are called caloric functions. They are defined in terms of the mean
value property for the space-time α-stable Lévy process; we refer to Sect. 5 for details
and connections with the classical notion of solution to (1.1). As shown by Bogdan
[13] (see also Abatangelo [1] and Bogdan, Kulczycki, and Kwaśnicki [23]), nonneg-
ative harmonic functions for the fractional Laplacian on D can be decomposed into
a regular part, which can be recovered from the exterior values, and a singular part,
vanishing outside of D and represented as an integral with respect to a finite measure
on ∂D of the (elliptic) Martin kernel for D and the fractional Laplacian. Our ultimate
goal, which we complete in Sect. 6, is to give a counterpart of this decomposition
for nonnegative caloric functions. In particular, in Theorems 6.3 and 6.4, we show
that every nonnegative singular caloric function, i.e., such that u0 = g = 0, can be
expressed as integral with respect to the parabolic Martin kernel ηt,Q(x):

u(t, x) =
∫
[0,t)

∫
∂D

ηt−s,Q(x)μ(dQ ds), x ∈ D, t ∈ (0, T ), (1.2)

with a unique finite Borel measure μ on ∂D × [0, T ).
Singular caloric functions were recently represented by Chan, Gómez-Castro, and

Vázquez [28] for domains more regular than Lipschitz, such as C1,1 domains. While
the authors of [28] address more general operators than our Dirichlet, or restricted,
fractional Laplacian, they do so by assuming that the (elliptic) Green function exhibits
uniform power-type decay at the boundary. Since for Lipschitz open sets, the behav-
ior of the Dirichlet Green function of the fractional Laplacian is more nuanced (see
Jakubowski [48]), the results of [28] are not applicable in our setting. Another differ-
ence between [28] and our work is that we do not require any specific regularity or
integrability conditions for caloric functions, except for assuming nonnegativity and
finiteness of integrals in the mean value property. Note that in our paper, the boundary
datamay be a measure; for example μ = δQ0 ⊗ δ0 represents a fixed parabolic Martin
kernel ηt,Q0(x). Furthermore, in Theorem 6.5, we demonstrate that even without a
prescribed initial condition, u(ε, ·) converges to a measure μ0 on D as ε → 0+. This
measure finitely integrates the function x �→ P

x (τD > 1) on D (see below), simi-
lar to the condition used in [28]. As a consequence, for general nonnegative caloric
functions, we get the following representation:
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u(t, x) = PD
t μ0(x) +

∫
[0,t)

∫
∂D

ηt−s,Q(x) μ(dQ ds)

+
∫ t

0

∫
Dc

g(s, z)J D(t, x, s, z) dz ds, (1.3)

which is our first main result. Here, PD
t is the Dirichlet heat semigroup of D for�α/2,

and J D is the so-called lateral Poisson kernel, see below for details. To obtain the
representation (1.3),we prove several newboundary regularity results for the fractional
Laplacian in Lipschitz sets, namely Theorems 1.2 and 1.4 and Corollaries 1.3 and 1.5.
They are of independent interest and may be considered the second main contribution
of the paper.

To prove the results, we utilize some basic probabilistic potential theory. Let X =
(Xt )t≥0 be the isotropic α-stable Lévy process inRd , see, e.g., Sato [60]. For x ∈ R

d ,
we denote by P

x and E
x the probability and the expectation of the process starting

from x , and P:=P
0, E:=E

0. We then consider

τD := inf{s > 0 Xs /∈ D}, (1.4)

the first exit time of the process X from D, and the survival probability:

P
x (τD > t) =

∫
D
pDt (x, y) dy,

where pDt is the Dirichlet heat kernel of �α/2 in D (for details see Sect. 2). Further-
more, letGD be the (elliptic) Green function of�α/2 in D.We fix arbitrary t0 ∈ (0,∞)

and x0 ∈ D, reference time and point.
There are several reasonable ways to define the parabolicMartin kernel in Lipschitz

open sets. The general idea is to normalize pDt by constructing a ratio that converges
to a nontrivial limit at the boundary of D. Each of the following expressions will be
called a parabolic Martin kernel:

ηt,Q(x):= lim
D	y→Q

pDt (x, y)

Py(τD > 1)
, (1.5)

η
x0
t,Q(x):= lim

D	y→Q

pDt (x, y)

GD(x0, y)
, (1.6)

η̃t,Q(x):= lim
D	y→Q

pDt (x, y)

pDt0 (x0, y)
. (1.7)

Here, t > 0, x ∈ D, and Q ∈ ∂D. We recall that the heat kernel plays the role of the
Green function for the heat equation, see, e.g., Doob [36], Watson [63], or Bogdan
and Hansen [21, Subsection 9.4]. This might indicate that η̃ is the canonical parabolic
Martin kernel, however η and ηx0 offer a more explicit description of the boundary
behavior of pDt and are more convenient to handle via the existing elliptic theory. If
D is C1,1, then one can also normalize pDt by using δD(y)α/2 with
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δD(y):= inf{|x − y| : x ∈ ∂D},
see Chen, Kim, and Song [30]; see also [28]. The next result may be considered as a
consequence and a follow-up of the approximate factorization (2.6) of pDt by Bogdan,
Grzywny, and Ryznar [19].

Theorem 1.1 Recall that D ⊂ R
d is open, bounded, and Lipschitz with localization

radius r0, Lipschitz constant λ, and reference point x0 and time t0. Then, the limits in
(1.5), (1.6), and (1.7) exist for all t > 0, x ∈ D, and Q ∈ ∂D. Furthermore, they are
finite, strictly positive, continuous in t and x, and

η1,Q(x) ≈ P
x (τD > 1), x ∈ D, (1.8)

ηt+s,Q(x) =
∫
D

ηt,Q(z)pDs (z, x) dz, 0 < s, t < ∞, x ∈ D. (1.9)

The formula (1.8) is a sample of the more general estimates for η which we give in
Corollary 3.6 below. The proofs of Theorem 1.1 and other results of this section are
given later on. Here we note that the mere existence of a Martin-type kernel is a deep
boundary regularity1 result. In the elliptic setting, for GD , it is usually proved using
the boundary Harnack principle. For solutions of parabolic equations like (1.1), we
may utilize the elliptic results after expressing the numerators and denominators in
(1.5), (1.6), and (1.7) as Green potentials. This is precisely our approach—it was used
before by Bogdan, Palmowski, and Wang [24] for Lipschitz cones at the vertex. We
further remark that an early version of proof of Theorem 1.1 for (1.5) has appeared in
the PhD thesis of the first-named author [4].

To obtain the representation of nonnegative caloric functions,we refineTheorem1.1
to ensure a uniform rate of convergence in (1.5). To this end, we extend the spatial
domain of the functions in (1.5), (1.6), (1.7), by additionally defining, for t > 0,
x ∈ D, and y ∈ D,

η
x0
t,y(x):=

pDt (x, y)

GD(x0, y)
, ηt,y(x):= pDt (x, y)

Py(τD > 1)
, η̃t,y(x):= pDt (x, y)

pDt0 (x0, y)
.

Theorem 1.2 Recall that D ⊂ R
d is open, bounded, and Lipschitz with localization

radius r0, Lipschitz constant λ, and reference point x0 and time t0. Fix r1 ∈ (0,∞)

and 0 < T1 < T2 < ∞. For x ∈ D and t ∈ [T1, T2], η, ηx0 , and η̃ are Hölder
continuous in y on D, D, and D\B(x0, r1), respectively. The Hölder exponents and
constants depend only on d, α, D, T1, T2 (for ηx0 also on x0, r1; for η̃ also on t0, x0).

Here and below, we say constants depend on D if they depend only on r0, λ, and an
upper bound for diam(D). Theorem 1.2 yields the following boundary regularity for
the Dirichlet heat semigroup

PD
t f (y):=

∫
D
pDt (x, y) f (x) dx .

1 Here and below, the term signals relative regularity, i.e., continuity or even Hölder continuity of ratios at
the boundary.
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Corollary 1.3 Fix r1 ∈ (0,∞). Let u0 ∈ L1(D), 0 < T1 < T2 < ∞, and t ∈ [T1, T2].
Then, the functions

PD
t u0(y)

GD(x0, y)
,

PD
t u0(y)

Py(τD > 1)
,

PD
t u0(y)

pDt0 (x0, y)

are Hölder continuous in y on D\B(x0, r1), D, and D respectively. The Hölder expo-
nents and constants depend only on d, α, D, T1, T2 (and t0, x0, r1, where relevant).

Theorem 1.2 and Corollary 1.3 can be viewed as analogues of the boundary reg-
ularity result for C1,1 open sets by Fernández-Real and Ros-Oton [39, Theorem 1.1
(b)], see also [40]. However, such regularity results for nonlocal equations are quite
scarce for Lipschitz and less regular domains. That is, much is known about harmonic
functions [12, 23, 48], but the first result for the Poisson equation (�α/2u = − f )
appeared only recently but in the PDE literature the first results for the Dirichlet prob-
lem for the Poisson equation (�α/2u = − f ) appeared only recently in the paper of
Lian, Zhang, Li, and Hong [64, Theorem 3.11]; similar results were implicit in the
probability literature, at least for bounded f , see [48, Theorem 2, Lemma 17] and
[12, Lemma 3]. Other related works are by Ding and Zhang [65] and Borthagaray
and Nochetto [27], but we note that [27, 64, 65] do not treat the relative boundary
regularity, which is a stronger property. For regularity results in C1,γ domains with
γ ∈ (0, 1), see, e.g., Abels and Grubb [2] or Dong and Ryu [35] and the references
therein.

Incidentally, our proof of Theorem 1.2 unveils the following integral estimate for
the Green function.

Theorem 1.4 Recall that D ⊂ R
d is open, bounded, and Lipschitz with localization

radius r0, Lipschitz constant λ, and reference point x0. Let r > 0. There exists p0 =
p0(d, α, D, r) > 1 and constants C ∈ (0,∞) and σ ∈ (0, 1] depending only on
d, α, D, p, r , such that for all p ∈ [1, p0),

∥∥∥∥ GD(y, ·)
GD(x0, y)

− GD(y′, ·)
GD(x0, y′)

∥∥∥∥
L p(D)

≤ C |y − y′|σ , y, y′ ∈ D\B(x0, r).

Recall that Green potentials v(x) = GD f (x):= ∫
D GD(x, y) f (y)dy solve the

Dirichlet problem for the Poisson equation:

{
(−�)α/2v(x) = f (x), x ∈ D,

v(x) = 0, x ∈ Dc,

see [15]. Theorem 1.4 yields a boundary, or relative, Hölder estimate, as follows.

Corollary 1.5 Let p > p0/(p0 − 1) and let f ∈ L p(D). Then, GD f (y)/GD(x0, y)
is Hölder continuous in ∈ D\B(x0, r) with Hölder constant and exponent depending
only on d, α, D, p, r and ‖ f ‖L p(D).
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A similar result for C1,1 domains was obtained by Ros-Oton and Serra [57] with
explicit and sharp Hölder exponents. Our regularity results are far from being sharp
in terms of p0 and σ , but this is to be expected for Lipschitz sets—some insight
about precise boundary behavior can be gained from the results on cones [6, 33,
55] or numerical considerations [38], but we do not pursue this point here. Note that
Corollary 1.5 implies that theGreen potentials have the samedecay rate at the boundary
as harmonic functions, without restrictions on the Lipschitz constant of D. This stands
in sharp contrast to the case of local operators, where such comparability is known to
be false if the Lipschitz constant of D is too large, see, e.g., [3, 59].

Let us add a few general comments. The mean-value property for fractional caloric
functions is important for our development. It was considered before, e.g., by Chen
and Kumagai [31]. Here we focus on the mean-value property in cylinders, which
seems adequate for the initial-exterior problem (1.1). The advantage of the approach
is that from the Ikeda–Watanabe formula we obtain a semi-explicit formula for the
Poisson kernel. We also have the following stochastic interpretation: if u satisfies the
mean-value property (0, T ) × D, then u(t, x) can be recovered from the space-time
isotropic α-stable process s �→ (t − s, Xs + x), which starts from (t, x) at time
s = 0, by computing the expectation of u(t − s, Xs + x) at the place of the first exit
of the process from (0, T ) × D. The exit can occur when x + Xs leaves D before
time t—inwhich case the exterior conditions affect the expectation—or when the time
coordinate t−s reaches 0—then the initial condition comes into play. Singular caloric
functions start to appear once we assume that the mean-value property is satisfied only
on (0, T ) × U for all open (relatively compact sets) U ⊂⊂ D. We refer to the book
of Freidlin [41, Theorem 2.3] for a counterpart of this theory for local operators.

With a view toward applications in probability, we note that the existence of the limit
(1.5) indicates how the isotropic α-stable process in D, conditioned on surviving at
least time 1, behaves near the boundary of D.More precisely, it implies the existence of
a “Yaglom limit”, see Theorem 3.7 below. Thanks to (1.9), ηt,Q(y)may be understood
as the entrance law for the killed process from Q into D, see Blumenthal [9]. This
was used in [45, 53] to describe the behavior of the process started from a point on
the boundary, e.g., the apex of a cone. Furthermore, the boundary behavior of the heat
kernel yields a measure which represents the probability distribution of a rescaled
process conditioned on non-extinction.

Let us now present an outline of the proofs and methods in this paper. In order to
prove Theorem 1.1 we obtain an explicit representation of the survival probability as
a Green potential and we show that it behaves like GD(x0, ·) at the boundary. Then
we approximate pDt by Green potentials and obtain the limit in (1.5) with the help of
Prokhorov theorem. To this end, we utilize the uniform integrability of ratios of Green
functions. The proof of Theorem 1.4 consists in splitting the integral into one region
where the boundaryHarnack principle can be applied, and another regionwherewe use
a technical interior regularity argument adapted to possible singularities of the Green
function. In order to prove Theorem 1.2, we represent pDt as a Green potential and we
apply Theorem 1.4. We make use of the spectral theory to show that pDt has regularity
necessary for the proof; some ideas here were inspired by [28]. The boundary measure
in the representation of singular caloric functions is obtained from an approximating
sequence constructed via the lateral Poisson kernel. Our construction is quite different
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than the one in [28], in particular it does not use the inhomogeneous fractional heat
equation. Needless to say, our results point out directions of development for other
nonlocal operators and various classes of open sets.

The structure of the rest of the paper is as follows. Section 2 contains basic defi-
nitions and facts. In Sect. 3, we prove Theorem 1.1 and its consequences. In Sect. 4,
we prove Theorems 1.4 and 1.2. In Sect. 5, we introduce the caloric functions and the
parabolic Poisson kernel and study their properties. Then in Sect. 6, we discuss the
representation of nonnegative parabolic functions in Lipschitz cylinders.

2 Preliminaries

We assume throughout that the considered sets, measures, and functions are Borel.
For nonnegative functions f and g, we write f (x) � g(x), x ∈ A, if there is a number
C ∈ (0,∞), referred to as constant, such that f (x) ≤ Cg(x), x ∈ A. We write
C = C(d, α, . . .) if C is a constant depending only on d, α, . . ., that is, C may be
considered as a function of the parameters d, α, . . ., but not of x ∈ A. We say that f
and g are comparable and write f ≈ g if f � g and g � f (this notation was used
in Sect. 1). We often use := and occasionally employ cursive for definitions.

2.1 Geometry

Let B(x, r):={y ∈ R
d : |y − x | < r}. Recall that D is a Lipschitz open set with

constant λ ∈ (0,∞) and localization radius r0 ∈ (0,∞). This means that for every
Q ∈ ∂D there is a rigid motion RQ and a Lipschitz function fQ : Rd−1 → R with
Lipschitz constantλ, such that RQ(Q) = 0 and D∩B(Q, r0) = R−1

Q (B(0, r0)∩{yd >

fQ(y1, . . . , yd−1)}). For r > 0, we let

Dr :={x ∈ D : δD(x) > 1/r}. (2.1)

Let κ = 1/(4
√
1+ λ2). Of course, κ < 1. For y ∈ D and r > 0, we define

Ar (y):=
{
{A ∈ D : B(A, κr) ⊆ D ∩ B(y, r)}, r ≤ r0/2,

{x0}, r > r0/2.

Lemma 2.1 If D is Lipschitz, then Ar (y) is nonempty for every r > 0 and y ∈ D.

Proof Obviously, it suffices to consider r ≤ r0/2. For y ∈ ∂D the statement is true
even with κ replaced by 2κ = 1/(2

√
1+ λ2). Indeed, if we consider the interior

right-circular cone with angle arccot(λ) and vertex at y, then the point A ∈ D on the
axis of the cone such that |A− y| = r satisfies B(A, r/(2

√
1+ λ2)) ⊆ D ∩ B(y, r).

If y ∈ D and y /∈ Ar (y), then there is Q ∈ ∂D with |y − Q| = δD(y) < κr and
A ∈ D with

B(A, r/(4
√
1+ λ2)) ⊆ D ∩ B(Q, r/2) ⊆ D ∩ B(y, r).
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��

Thus, by definition (see, e.g., [19]), D is κ-fat at each scale r ∈ (0, r0/2). We will
denote by Ar (y) an arbitrary point in Ar (y). The actual choice is unimportant in the
sense that if A1, A2 ∈ Ar (y) and u ≥ 0 is harmonic in B(A1, κr) and B(A2, κr)—
see Definition 2.4 below—then we have the comparability C−1u(A1) ≤ u(A2) ≤
Cu(A1), where C = C(d, α); see the Harnack inequality in [14, Lemma 1], see also
[15, Lemma 4.4].

For x, y ∈ D, let rx,y :=|x − y| ∨ δD(x) ∨ δD(y). LetAx,y :={x0} if rx,y > r0/32,
and otherwise let

Ax,y :={A ∈ D : B(A, κrx,y) ⊂ D ∩ B(x, 3rx,y) ∩ B(y, 3rx,y)}.

Then, Ax,y is nonempty, see [48]. We denote by Ax,y any point in Ax,y . The actual
choice is unimportant in the sense that under suitable assumptions on functions u ≥ 0,
there exists C = C(d, α, D) such that for all A1, A2 ∈ Ax,y , C−1u(A1) ≤ u(A2) ≤
Cu(A1). See Remark 2.2, following (2.10).

2.2 Potential theory

As stated in the introduction, we denote by (Xt ,P
x ) the standard rotation invariant

α-stable Lévy process in R
d . The process is determined by the jump measure with

density function

ν(y) = 2α�((d + α)/2)

πd/2|�(−α/2)| |y|
−d−α =: cd,α|y|−d−α, y ∈ R

d .

It is a process with independent and stationary increments and characteristic function
E
xei〈ξ,Xt−x〉 = e−t |ξ |α , t > 0, x, ξ ∈ R

d . It is strong Markov with the following
time-homogeneous transition probability

Pt (x, A):=
∫
A
pt (x, y) dy, t > 0, x ∈ R

d , A ⊆ R
d .

Here pt (x, y):=pt (x − y) and pt is the smooth real-valued function on R
d with the

Fourier transform:

∫
Rd

pt (x)e
i〈x,ξ〉 dx = e−t |ξ |α , ξ ∈ R

d . (2.2)

The associated semigroup of operators acts on, e.g., u ∈ C0(R
d) as follows:

Ptu(x):=
∫
Rd

u(y)pt (x, y) dy, x ∈ R
d , t ≥ 0.
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We have the following scaling property as a consequence of (2.2):

pt (x) = t−d/α p1(t
−1/αx), x ∈ R

d , t > 0. (2.3)

Furthermore, there exists a constant c such that

c−1
(
t−d/α ∧ t

|x |d+α

)
≤ pt (x) ≤ c

(
t−d/α ∧ t

|x |d+α

)
, x ∈ R

d , t > 0,

see, e.g., [11, 26]. Thus, in short,

pt (x) ≈ t−d/α ∧ t

|x |d+α
, x ∈ R

d , t > 0. (2.4)

Recall that τD is the first exit time from D defined in (1.4). Since D is bounded,
then τD < ∞ almost surely, see, e.g., Pruitt [56]. The Dirichlet heat kernel pDt (x, y)
of D is defined by Hunt’s formula:

pDt (x, y) = pt (x, y) − E
x[pt−τD (XτD , y) ; τD < t

]
, (2.5)

where x, y ∈ R
d and t > 0. Here, as usual,

E
x[pt−τD (XτD , y) ; τD < t

]:=
∫
{τD<t}

pt−τD (XτD , y) dPx .

It is well known that pDt (x, y) is jointly continuous, see Appendix A for more regular-
ity properties. Since D is Lipschitz, it satisfies the exterior cone condition. Therefore,
P
x (τD = 0) = 1 for all x ∈ Dc by Blumenthal’s zero–one law. In particular

pDt (x, y) = 0 when x or y are outside of D. For bounded or nonnegative functions f
we have

PD
t f (x) =

∫
Rd

f (y)pDt (x, y) dy = E
x[ f (Xt ) ; τD > t

]
,

see [32, Section 2]. We also note that

0 ≤ pDt (x, y) = pDt (y, x) ≤ pt (y − x)

and pDt satisfies the Chapman–Kolmogorov equations:

∫
pDs (x, y)pDt (y, z) dy = pDt+s(x, z), s, t > 0, x, z ∈ R

d ,

see [17, 30]. The following scaling property follows from (2.3),

pDt (x, y) = t−d/α pt
−1/αD
1 (t−1/αx, t−1/α y), x, y ∈ R

d , t > 0.
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By [19, Theorem 1], for every T > 0 we have the approximate factorization:

pDt (x, y) ≈ P
x (τD > t)pt (x, y)P

y(τD > t), x, y ∈ D, t ∈ (0, T ). (2.6)

If D is (open, bounded, and) C1,1, then the (2.6) takes on a more explicit form [30]:

pDt (x, y) ≈
(
1 ∧ δD(x)α/2

√
t

)
pt (x, y)

(
1 ∧ δD(y)α/2

√
t

)
, x, y ∈ D, t ∈ (0, T ).

(2.7)

We also recall the large time estimates. Let λ1 = λ1(D) > 0 be the first eigenvalue
and ϕ1 the first eigenfunction of the Dirichlet fractional Laplacian on D, see Sect. 2.3
below for more details. By the intrinsic ultracontractivity due to Kulczycki [49], for
every T > 0 we have

pDt (x, y) ≈ e−λ1tϕ1(x)ϕ1(y), x, y ∈ D, t ∈ (T ,∞). (2.8)

If D is (open, bounded, and) C1,1, then we even have

pDt (x, y) ≈ e−λ1tδD(x)α/2δD(y)α/2, x, y ∈ D, t ∈ (T ,∞), (2.9)

see [30, Theorem 1.1 (ii)]. We define the killing intensity of X on D as

κD(z):=
∫
Dc

ν(z − y) dy, z ∈ D.

By [60, Theorem 31.5], �α/2 coincides with the generator of Xt for the class C2
c (R

d)

of real-valued twice continuously differentiable functions compactly supported inRd .
The Green function of D is given by the formula:

GD(x, y):=
∫ ∞

0
pDt (x, y) dt, x, y ∈ R

d .

In particular, GD(x, y) = 0 if either x ∈ Dc or y ∈ Dc. We note that GD is finite for
all x �= y and by (2.5), GD(x, y) ≤ GRd (x, y) = c|x − y|α−d . For further reference,
we recall the Green function estimates of Jakubowski [48, Theorem 1]: If we let

�(x):=GD(x0, x) ∧ 1,

then there exists C(d, α, D) > 0 such that

C−1|x − y|α−d �(x)�(y)

�(Ax,y)2
≤ GD(x, y) ≤ C |x − y|α−d �(x)�(y)

�(Ax,y)2
, x, y ∈ D,

(2.10)

see Sect. 2.1 for notation and the following remark.
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Remark 2.2 We note that if A1, A2 ∈ Ax,y , then �(A1) ≈ �(A2); see [48,
Lemma 13]. We also note that [48] uses an extra reference point x1 to define Ax,y

for rx,y ≥ r0/32, but the resulting values of �(Ax,y) are trivially comparable in both
settings. In particular, (2.10) remains true in the present (simplified) setting.

Remark 2.3 It is implicit in (2.6) and (2.8) that ϕ1(y) ≈ P
y(τD > 1), y ∈ D. Further-

more, by [19, Theorem 2], Py(τD > 1) ≈ E
yτD , y ∈ D, and, by [48, Lemma 17],

E
yτD ≈ �(y), y ∈ D. Therefore,

ϕ1(y) ≈ P
y(τD > 1) ≈ E

yτD ≈ �(y), y ∈ D. (2.11)

In our proofs, we mostly use the survival probability and�, but we also refer to results
stated in terms of ϕ1 and the expected exit time.

We define the Green operator (or Green potential)

(GD f )(x):=
∫
D
GD(x, y) f (y) dy, x ∈ R

d ,

for integrable or nonnegative functions f . For f ∈ L1(D), the function u:=GD f is
a distributional solution of (−�)α/2u = f in D, see [15, Proposition 3.13].

Definition 2.4 Let u ≥ 0 be a Borel measurable function on R
d .

• We say that u is α-harmonic in an open set D ⊆ R
d if for every open (relatively

compact) B ⊂⊂ D,

u(x) = E
xu(XτB ) < ∞, x ∈ B.

• We say that u is regular α-harmonic in D ⊂ R
d if

u(x) = E
xu(XτD ) < ∞, x ∈ D.

• We say that u is singular α-harmonic in D ⊂ R
d , if u is α-harmonic in D and

u = 0 on Dc.

Wewill often write ‘harmonic’ instead of ‘α-harmonic’. Since τB ≤ τD for B ⊂ D,
by the strongMarkov property it follows that regular harmonic functions are harmonic.
Also by the strongMarkov property,GD(·, y) is harmonic in D\{y}, see [32, Theorem
2.5] or [50, (2.1)].

For x ∈ R
d , the Px -distribution of XτD is called the α-harmonic measure, denoted

by ωx
D . This measure is concentrated on Dc and for u regular harmonic in D, we have

u(x) =
∫
Dc

u(z) ωx
D(dz), x ∈ D.
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The α-harmonic measure of a Lipschitz open set is absolutely continuous with
respect to the Lebesgue measure. Its density function is given by the Poisson kernel:

PD(x, z):=
∫
D
GD(x, y)ν(y, z) dy, x ∈ D, z ∈ Dc, (2.12)

see [12, Lemma 6]. Therefore, for every regular harmonic uwehave the representation

u(x) =
∫
Dc

PD(x, z)u(z) dz, x ∈ D.

We also recall the Ikeda–Watanabe formula from [47]:

P
x[τD ∈ I , XτD− ∈ A, XτD ∈ B

] =
∫
I

∫
B

∫
A

ν(y, z)pDu (x, dy) dz du, (2.13)

where I ⊂ (0,∞), A ⊂ D, and B ⊂ (D)c. See also [7, Lemma 1], [12], [25, (4.13)],
or [62, Theorem 2.4].

Recall that x0 ∈ D is an arbitrary but fixed (reference) point. We define theMartin
kernel, Mx0

D (y, Q) as follows: for every Q ∈ ∂D and y ∈ D we let

Mx0
D (y, Q) = lim

D	x→Q

GD(x, y)

GD(x, x0)
. (2.14)

In [13, Lemma 6] it is shown that the Martin kernel exists, the mapping (y, Q) �→
Mx0

D (y, Q) is continuous on D × ∂D, and for every Q ∈ ∂D the function Mx0
D (·, Q)

is singular α-harmonic in D.

2.3 Auxiliary results on PDt and its spectral decomposition

We recall that the operators PD
t are compact on L2(D), see, e.g., [16, Chapter 4].

Therefore there exist a nondecreasing sequence of nonnegative numbers λn diverging
to infinity and an orthonormal sequence of functions ϕn ∈ C0(D) such that for every
φ ∈ L2(D), we have

PD
t φ(x) =

∞∑
n=1

e−λn t 〈φ, ϕn〉ϕn(x) (2.15)

and

pDt (x, y) =
∞∑
n=1

e−λn tϕn(x)ϕn(y), x, y ∈ D, t > 0. (2.16)

The fractional Weyl bounds [10, 42] read

λn ≈ nα/d . (2.17)
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Note that PD
t ϕn(x) = e−λn tϕn(x) for all x ∈ D. Therefore,

GDϕn(x) =
∫ ∞

0
PD
t ϕn(x) dt = λ−1

n ϕn(x), x ∈ D. (2.18)

By iterating (2.18) and using the regularity results for the fractional Laplacian [44,
58], we find that ϕn are smooth in D. Furthermore, by [39, Proposition 3.1], there
exist C > 0 and w ≥ 1, such that

‖ϕn‖∞ ≤ Cλw−1
n , n ∈ N. (2.19)

We say that φ belongs to D(LD), the domain of the L2-generator of PD
t , if the

following limit exists in L2:

LDφ:= lim
t→0+

PD
t φ − φ

t
.

Furthermore, if the pointwise limit exists for a function φ and some x ∈ D, we denote
it as LDφ(x).

Lemma 2.5 (1) We have ϕn ∈ D(LD) and LDϕn(x) = −λnϕn(x) for all x ∈ D.
(2) We have

F :={φ ∈ L2(D) :
∞∑
n=1

λ2n|〈φ, ϕn〉|2 < ∞} ⊆ D(LD),

and for each φ ∈ F,

LDφ =
∞∑
n=1

λn〈φ, ϕn〉ϕn .

(3) For every y ∈ D and t > 0, pDt (·, y) ∈ F .

(4) For every x, y ∈ D, we have LD
x pDt (x, y) = �

α/2
x pDt (x, y).

Proof Statements (1) and (2) follow quite easily from (2.15) and (2.17). In order to
prove (3), we first let m ∈ N. Then, by (2.16) and (2.19),

|〈pDt (·, y), ϕm〉| = |e−λmtϕm(x)| ≤ e−λmt‖ϕm‖∞ ≤ Ce−λmtλw−1
m .

Using (2.17), we get (3).
We now prove (4). Let x, y ∈ D and note that z �→ pDt (z, y) ∈ C2(D) ∩ Cc(R

d).
Let φ ∈ C2

c (B(x, δD(x)/2)) (extended by 0 to the whole of Rd ) and g ∈ Cc(R
d) be

such that φ(z) + g(z) = pDt (z, y) for z ∈ D and g(z) = 0 for z ∈ B(x, δD(x)/4).

123



G. Armstrong et al.

Note that by (2.4),

pDt (x, z)

t
≤ pt (x, z)

t
� ν(x, z), (2.20)

which for |x− z| > δD(x)/4 is uniformly bounded. Furthermore, since by [52, (2.10)]
we have pt (x, z)/t → ν(x, z) as t → 0+ for all x, z ∈ R

d , x �= z, by (2.5) we find
that for fixed x, z ∈ D, x �= z,

lim
t→0+

pDt (x, z)

t
= ν(x, y) + lim

t→0+
1

t
E
x [pt−τD (XτD , z) ; τD < t].

Since x and z are fixed we have pt−τD (XτD , z) � t , so the limit on the right hand side
is equal to 0, hence pDt (x, z)/t → ν(x, z) as t → 0+ for all x, z ∈ D, x �= z. By this,
(2.20), and the dominated convergence theorem, we get �α/2g(x) = LDg(x).

Let L be the C0(R
d)-generator of the semigroup induced by pt . By Sato [60,

Theorem 31.5], we have �α/2φ(x) = Lφ(x). Therefore,

LDφ(x) = �α/2φ(x) + lim
t→0+

PD
t φ(x) − Ptφ(x)

t
.

We will show that the last limit exists and is equal to 0. By (2.5), Fubini–Tonelli, and
the fact that XτD ∈ Dc almost surely,

|PD
t φ(x) − Ptφ(x)|

t
≤ ‖φ‖∞ 1

t
E
x
[ ∫

B(x,δD(x)/2)
pt−τD (XτD , z) dz ; τD < t

]

� P
x (τD < t)

t→0+−→ 0.

By collecting the above results we find that

�
α/2
x pDt (x, y) = �α/2φ(x) + �α/2g(x) = LDφ(x) + LDg(x) = LD

x pDt (x, y),

which ends the proof. ��
Corollary 2.6 For every t > 0, �α/2

x pDt is bounded in D × D.

Proof By Lemma 2.5 and (2.19), we have

|�α/2
x pDt (x, y)| = |LD

x pDt (x, y)| =
∣∣∣∣

∞∑
n=1

λne
−λn tϕn(x)ϕn(y)

∣∣∣∣

≤
∞∑
n=1

Cλne
−λn tλ2w−2

n ≤ C0 < ∞.

��
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Lemma 2.7 Let φ ∈ C∞
c (D). Then,

PD
t Lφ(y) =

∞∑
n=1

e−λn tλn〈φ, ϕn〉ϕn(y), y ∈ D.

Proof Note that Lφ ∈ L2(D), hence

PD
t Lφ(y) =

∞∑
n=1

e−λn t 〈ϕn, Lφ〉ϕn(y).

By (2.18) we have ϕn = GD[λnϕn]. Therefore, by [15, Proposition 3.13],

〈ϕn, Lφ〉 = 〈GD[λnϕn], Lφ〉 = 〈λnϕn, φ〉,

which ends the proof of the lemma. ��
The following result is a weighted Hausdorff–Young type inequality.

Lemma 2.8 There exist c = c(d, α, D) and w ∈ N such that for any p ∈ [2,∞] and
u ∈ L p(D),

‖u‖L p(D) ≤ c

( ∞∑
n=1

|〈u, ϕn〉|p′λw−1
n

)1/p′

,

where p′ = p/(p − 1) is the Hölder conjugate exponent of p.

Proof Let φ ∈ L2(D). By (2.19), we have ‖ϕn‖∞ ≤ Cλw−1
n for some C > 0 and

w ≥ 1 independent of n. Therefore for x ∈ D,

‖φ‖∞ ≤
∞∑
n=1

|〈φ, ϕn〉|‖ϕn‖∞ ≤ C
∞∑
n=1

|〈φ, ϕn〉|λw−1
n .

If we let φ̂ = (〈φ, ϕ1〉, 〈φ, ϕ2〉, . . .) and denote by l pλ the space of sequences with the
p-th powers summable with the weight (λw−1

1 , λw−1
2 , . . .), then the above means that

φ̂ �→ φ is bounded from l1λ to L
∞(D). By Parseval’s identity, this map is also bounded

from l2 to L2(D), hence also from l2λ to L2(D). The statement of the lemma follows
from the Riesz–Thorin theorem. ��

3 Yaglom limits in Lipschitz open sets

In this section we prove Theorem 1.1. We first establish the asymptotics of Green
potentials at the boundary points of D. This extends what is already known about
the asymptotics of Green potentials at the vertex of cone [24, Lemma 3.5]; we also
propose a different proof.
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Lemma 3.1 If f is a measurable function bounded on D and Q ∈ ∂D, then

lim
x→Q

∫
D

GD(x, y)

GD(x, x0)
f (y) dy =

∫
D

lim
x→Q

GD(x, y)

GD(x, x0)
f (y) dy < ∞, x ∈ D.

Proof Fix two points x1, x2 ∈ D and let

ρ = (δD(x1) ∧ δD(x2) ∧ |x1 − x2|)/3,

so that B(x1, ρ), B(x2, ρ) ⊂ D and B(x1, ρ)∩B(x2, ρ) = ∅.Weknow thatMx0
D (·, Q)

given by (2.14) is regular α-harmonic on B(x1, ρ) and B(x2, ρ), and for x sufficiently
close to ∂D so is GD(x, ·). Therefore, for i = 1, 2,

∫
B(xi ,ρ)c

lim
x→Q

GD(x, y)

GD(x, x0)
ω
xi
B(xi ,ρ)(dy) =

∫
B(zi ,ρ)c

Mx0
D (y, Q) ω

zi
B(zi ,ρ)(dy)

= Mx0
D (xi , Q)

= lim
x→Q

GD(x, xi )

GD(x, x0)

= lim
x→Q

∫
B(xi ,ρ)c

GD(x, y) ω
xi
B(xi ,ρ)(dy)

GD(x, x0)

= lim
x→Q

∫
B(xi ,ρ)c

GD(x, y)

GD(x, x0)
ω
xi
B(xi ,ρ)(dy).

The α-harmonic measures ω
xi
B(xi ,ρ)(dy) are absolutely continuous and have radi-

ally decreasing densities gi , see, e.g., [13]. Therefore there exists C > 0 such that
ω
xi
B(xi ,ρ)(dy) = gi (y) dy and gi (y) ≥ C for y ∈ D ∩ (B(xi , ρ)c). Let g = g1 + g2.

Vitali’s theorem [61, Theorem 16.6 (i) and (iii)] yields the following L1 convergence:

lim
x→Q

∫
D

∣∣∣∣ GD(x, y)

GD(x, x0)
g(y) − Mx0

D (y, Q)g(y)

∣∣∣∣ dy = 0.

Since | f | � C � g, the result follows. ��
We can also establish the following identity, an analogue of [24, (3.16)].

Lemma 3.2 For x ∈ R
d , we have

P
x (τD > 1) = (GDP

D
1 κD)(x). (3.1)

Proof Let x ∈ D. Since our set D is Lipschitz, from Lemma 6 and the proof of Lemma
17 in [12],

ωx
D(∂D) = P

x (XτD ∈ ∂D) = 0,

P
x (XτD− = XτD ) = 0,

P
x (XτD− ∈ D) = 1.
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By the Ikeda–Watanabe formula (2.13) and the Chapman–Kolmogorov equations we
have

P
x (τD > 1) = P

x[τD > 1, XτD− ∈ D, XτD ∈ Dc]

=
∫ ∞

1

∫
Dc

∫
D
pDs (x, z)ν(z − w) dz dw ds

=
∫
Rd

∫
Dc

∫ ∞

0
pDt+1(x, z)ν(z − w) dt dw dz

=
∫
Rd

∫
Dc

∫ ∞

0

∫
D
pDt (x, y)pD1 (y, z) dy ν(z − w) dt dw dz

=
∫
D

∫ ∞

0
pDt (x, y) dt

∫
Rd

pD1 (y, z)
∫
Dc

ν(z − w) dw dz dy

=
∫
D
GD(x, y)

∫
Rd

pD1 (y, z)κD(z) dz dy

=
∫
D
GD(x, y)(PD

1 κD)(y) dy

= (GDP
D
1 κD)(x).

For x ∈ Dc, both sides of (3.1) are equal to 0. This ends the proof. ��
We define

C1:=
∫
D

∫
D
Mx0

D (y, Q)pD1 (y, z)κD(z) dz dy.

Combining the two lemmas above, we obtain the following result.

Lemma 3.3 We have 0 < C1 < ∞ and limx→Q
P
x (τD>1)

GD(x,x0)
= C1.

Proof By Lemma 3.2, Px (τD > 1) = (GDPD
1 κD)(x). Note that (PD

1 κD)(y) is
bounded. Indeed, by (2.6),

(PD
1 κD)(y) =

∫
D
pD1 (y, z)κD(z) dz

≈ P
y(τD > 1)

∫
D
P
z(τD > 1)p1(y, z)κD(z) dz, y ∈ D. (3.2)

Since D is bounded, by (2.4),

p1(y, z) ≈ 1, y, z ∈ D. (3.3)

Hence (3.2) becomes

(PD
1 κD)(y) ≈ P

y(τD > 1)
∫
D
P
z(τD > 1)κD(z) dz, y ∈ D. (3.4)
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Using (3.1), we see that for x ∈ R
d ,

∫
D
GD(x, y)(PD

1 κD)(y) dy = (GDP
D
1 κD)(x) = P

x (τD > 1) ≤ 1.

By (2.10), GD(x, y) is strictly positive for all x, y ∈ D. Thus PD
1 κD has to be finite

almost everywhere. Hence the integral in (3.4) is finite and

(PD
1 κD)(y) ≈ P

y(τD > 1),

for y ∈ D. In particular, (PD
1 κD)(y) is bounded on D. By using Lemma 3.1 with

f (y) = (PD
1 κD)(y),

lim
x→Q

P
x (τD > 1)

GD(x, x0)
= lim

x→Q

(GDPD
1 κD)(x)

GD(x, x0)

= lim
x→Q

∫
D

GD(x, y)

GD(x, x0)
(PD

1 κD)(y) dy

=
∫
D
Mx0

D (y, Q)(PD
1 κD)(y) dy = C1 < ∞.

��
We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1 Let us define

mx (A):=
∫
A pD1 (x, y)dy

Px (τD > 1)
, x ∈ D, A ⊆ R

d . (3.5)

First we note that the family {mx : x ∈ D} is tight. Indeed, combining the factorization
of pD1 (x, y) in (2.6) with the Eq. (3.3), we get

pD1 (x, y)

Px (τD > 1)
≈ P

y(τD > 1), x, y ∈ D. (3.6)

Since the densities of the measures mx (A) are bounded by an integrable function, the
tightness follows.

Next we wish to prove that the measures mx converge weakly to a probability
measure mQ on D as x → Q. To this end, consider an arbitrary sequence {xn} such
that xn → Q. By tightness, there exists a subsequence {xnk } such thatmxnk

�⇒ mQ

for some probability measure mQ , as k → ∞. We will show that this limit is unique.
Let φ ∈ C∞

c (D) and uφ = (−�)α/2φ. For x ∈ R
d , we claim that

(PD
1 φ)(x) = (GDP

D
1 uφ)(x). (3.7)
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To show this, we first remark that uφ ∈ C0(R
d) and that (GDuφ)(x) = φ(x), see [37,

Lemma 5.7] and [23, (11)]. By (2.4) it follows that

(PD
1 |uφ |)(x) =

∫
D
pD1 (x, y)|uφ(y)| dy ≤ c < ∞.

Therefore, since for a fixed z ∈ Dc we have ν(y, z) � 1 for y ∈ D, by (2.12) we get

(GDP
D
1 |uφ |)(x) =

∫
D
GD(x, y)(PD

1 |uφ |)(y) dy

≤ c
∫
D
GD(x, y) dy < ∞.

As a result, we can apply Fubini–Tonelli theorem and establish (3.7) as follows:

(GDP
D
1 uφ)(x) =

∫
D

∫
D

∫ ∞

0
pDt (x, y)pD1 (y, z)uφ(z) dt dz dy

=
∫
D

∫ ∞

0
pDt+1(x, z)uφ(z) dt dz

=
∫
D

∫ ∞

0

∫
D
pD1 (x, y)pDt (y, z)uφ(z) dy dt dz

=
∫
D

∫
D

∫ ∞

0
pD1 (x, y)pDt (y, z)uφ(z) dt dz dy

= (PD
1 GDuφ)(x) = (PD

1 φ)(x).

Let us denotemx (φ):= ∫
D φ(y)mx (dy). Using (3.7), Lemmas 3.3, and 3.1, we get

lim
x→Q

mx (φ) = lim
x→Q

(PD
1 φ)(x)

Px (τD > 1)

= lim
x→Q

(PD
1 GDuφ)(x)

Px (τD > 1)

= lim
x→Q

(GDPD
1 uφ)(x)

GD(x, x0)

GD(x, x0)

Px (τD > 1)

= 1

C1

∫
D
Mx0

D (y, Q)(PD
1 uφ)(y) dy. (3.8)

In particular, mQ(φ):= limk→∞ mxnk
(φ) does not depend on the choice of the subse-

quence. Thus, by the Portmanteau Theorem, mx �⇒ mQ as x → Q.
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For t > 1, we consider φt,y(·):=pDt−1(·, y) ∈ C0(R
d), see [19] or [32, Proposition

1.19]. Using Chapman–Kolmogorov, we get

ηt,Q(y) = lim
x→Q

pDt (x, y)

Px (τD > 1)

= lim
x→Q

∫
D pDt−1(z, y)p

D
1 (x, z) dz

Px (τD > 1)

= lim
x→Q

(PD
1 pDt−1(·, y))(x)
Px (τD > 1)

= lim
x→Q

mx (p
D
t−1(·, y)).

By (3.8), the existence of ηt,Q(y) for t > 1 follows:

ηt,Q(y) = mQ(pDt−1(·, y)).

Note that the threshold t > 1 is arbitrary, that is, 1 can be replaced with any t0 > 0.
Indeed, the results of this section can be readily reformulated with t0 in place of 1, for
instance, Lemma 3.3 may be strengthened to assert that for every t0 > 0,

lim
x→Q

P
x (τD > t0)

GD(x, x0)
=

∫
D

∫
D
Mx0

D (y, Q)pDt0 (y, z)κD(z) dz dy.

Accordingly, we get the existence of the limit

lim
x→Q

P
x (τD > 1)

Px (τD > t0)
. (3.9)

We can also reuse the above arguments to get for all t > t0, the existence of

lim
x→Q

pDt (x, y)

Px (τD > t0)
. (3.10)

Of course, (3.9) and (3.10) give the existence of ηt,Q(y) for all t > 0.
The Eq. (1.8) follows from Eq. (3.6), and the Eq. (1.9) follows from the Chapman–

Kolmogorov equations and the dominated convergence theorem (see [19, (27)]):

ηt+s,Q(y) = lim
x→Q

∫
D

pDt (x, z)

Px (τD > 1)
pDs (z, y) dz =

∫
D

ηt,Q(z)pDs (z, y) dz.

The fact that η̃ and ηx0 exist follows from the existence of η and from Lemma 3.3. The
continuity of η follows from (1.8), (1.9), continuity of pDt (x, y), and the dominated
convergence theorem. ��
Corollary 3.4 The functions (t, y) �→ ηt,y(x), η̃t,y(x), η

x0
t,y(x) are continuous on

(0,∞) × D for all x ∈ D.
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Proof Fix x ∈ D. By Theorem 1.1 and the fact that pDt (x, y) and P
y(τD > 1)

are continuous for (t, y) ∈ (0,∞) × D, and separated from 0 in sufficiently small
neighborhood of any point (t, y), it suffices to verify that for any sequence ((tn, yn)) ⊂
(0,∞) × D such that (tn, yn) → (t, Q) ∈ (0,∞) × ∂D, we have

lim
n→∞

pDtn (x, yn)

Pyn (τD > 1)
= ηt,Q(x). (3.11)

Furthermore, by Theorem 1.1, in order to obtain (3.11) it suffices to prove that for any
t > 0 there exists a modulus of continuity ω independent of y such that

∣∣∣∣ p
D
t+ε(x, y) − pDt (x, y)

Py(τD > 1)

∣∣∣∣ ≤ ω(ε), ε > 0. (3.12)

By Chapman–Kolmogorov, we have

∣∣∣∣ p
D
t+ε(x, y) − pDt (x, y)

Py(τD > 1)

∣∣∣∣
∫
D\B(x,δD(x)/2)

|pDt (z, y) − pDt (x, y)|pDε (x, z)

Py(τD > 1)
dz

+
∫
B(x,δD(x)/2)

|pDt (z, y) − pDt (x, y)|pDε (x, z)

Py(τD > 1)
dz =: I1 + I2.

Then by (2.6),

I1 ≤
∫
D\B(x,δD(x)/2)

pDε (x, z) dz ≤
∫
D\B(x,δD(x)/2)

pε(x, z) dz ≤ ω(ε).

For I2, we use the gradient bounds of Kulczycki and Ryznar [51, Theorem 1.1] and
(2.6):

I2 ≤
∫
B(x,δD(x)/2)

|pDt (z, y) − pDt (x, y)|pDε (x, z)

Py(τD > 1)
dz

≤
∫
B(x,δD(x)/2)

|x − z| ‖∇x pDt (·, y)‖L∞(B(x,δD(x)/2))

Py(τD > 1)
pDε (x, z) dz

�
∫
B(x,δD(x)/2)

|x − z| ‖p
D
t (·, y)‖L∞(B(x,δD(x)/2))

Py(τD > 1)
pDε (x, z) dz

�
∫
B(x,δD(x)/2)

|x − z|pDε (x, z) dz ≤
∫
B(x,δD(x)/2)

|x − z|pε(x, z) dz ≤ ω(ε).

Thus, I1 + I2 ≤ ω(ε), which ends the proof for η. For η̃ and ηx0 , we use Lemma 3.2
and (1.8). ��

Here is a rough result on the behavior of ηs,Q(x) away from the singularity
at (0, Q).
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Lemma 3.5 If Q ∈ ∂D then (s, x) �→ ηs,Q(x) is locally bounded on ((0,∞) ×
R
d)\{(0, Q)}. Furthermore, if t = 0 or y ∈ ∂D, but (t, y) �= (0, Q), then ηs,Q(x) →

0 as (s, x) → (t, y).

Proof By (2.6) and (2.4), we have

ηs,Q(x) = lim
D	ξ→Q

pDs (x, ξ)

Pξ (τD > 1)
� lim sup

D	ξ→Q

P
ξ (τD > s)

Pξ (τD > 1)
ps(x, ξ)Px (τD > s)

� |x − Q|−d−α
P
x (τD > s) lim sup

D	ξ→Q

sPξ (τD > s)

Pξ (τD > 1)
.

If |x − Q| ≥ ε, then ηs,Q(x) is bounded—it even converges to 0 as s → 0—see
Lemma B.2. If s > ε, then we use the approximate factorization of pDt and the fact
that Px (τD > s) → 0 as x → y ∈ ∂D. ��

Let us summarize estimates of η that follow from the estimates of the Dirichlet heat
kernel.

Corollary 3.6 If D is C1,1, then

ηt,Q(x) ≈
⎧⎨
⎩

1√
t

(
1 ∧ δ

α/2
D (x)√

t

)
pt (x, Q), t ∈ (0, 1), x ∈ D, Q ∈ ∂D,

e−λ1tδD(x)α/2, t ∈ [1,∞), x ∈ D, Q ∈ ∂D.

(3.13)

If D is Lipschitz, then

ηt,Q(x) ≈ e−λ1tPx (τD > t), t ∈ [1,∞), x ∈ D, Q ∈ ∂D, (3.14)

and

ηt,Q(x) ≈ P
x (τD > t)pt (x, Q)

�(At1/α (Q))
, t ∈ (0, 1), x ∈ D, Q ∈ ∂D. (3.15)

Furthermore, there exist 0 < σ1 ≤ σ2 < 1 such that

t−σ1 � ηt,Q(x)

Px (τD > t)pt (x, Q)
� t−σ2 , t ∈ (0, 1), x ∈ D, Q ∈ ∂D. (3.16)

Proof The estimate (3.13) follows from (2.7) and (2.9). By [49, Theorem 1.1] and
(2.6), Py(τD > 1) ≈ ϕ1(y), so (3.14) is a consequence of (2.8). It remains to prove
(3.15) and (3.16). By (2.6),

ηt,Q(x) ≈ P
x (τD > t)pt (x, Q) lim

y→Q

P
y(τD > t)

Py(τD > 1)
. (3.17)

123



Caloric functions and boundary regularity...

By [19, Theorem 2] and (2.11),

P
y(τD > t)

Py(τD > 1)
≈ 1

�(At1/α (y))
.

By geometrical considerations, we can choose points At1/α (y) converging to a point
inAt1/α (Q). This proves (3.15). By (3.17) and Lemma B.2, we get the upper bound in
(3.16). The lower bound follows from (3.15) and [12, Lemma 3] with some σ1 > 0.
Of course, we must have σ1 ≤ σ2 in (3.16). ��

A consequence of Theorem 1.1 is the Yaglom-type limit, obtained in the thesis of
the first author [4].

Theorem 3.7 Suppose that D is a bounded Lipschitz open set such that 0 ∈ ∂D and
D ∪ {0} is star-shaped at 0. If x ∈ D then for every Borel A ⊆ R

d ,

lim
t→∞P

x
(

Xt

t1/α
∈ A

∣∣∣∣
(

Xs

t1/α

)
0≤s≤t

⊂ D

)
= m0(A),

where Px (A1|A2):=P
x (A1∩ A2)/P

x (A2) is the conditional probability and m0(A):=∫
A η1,0(y) dy.

Proof Let x ∈ D, t ≥ 1, and let A ⊂ R
d be Borel. Then we have

P
x
(

Xt

t1/α
∈ A

∣∣∣∣
(

Xs

t1/α

)
0≤s≤t

⊂ D

)
= P

x (Xt ∈ t1/αA, (Xs)0≤s≤t ⊂ t1/αD)

Px ((Xs)0≤s≤t ⊂ t1/αD)

=
∫
t1/α A pt

1/αD
t (x, y) dy∫

t1/αD pt
1/αD
t (x, y) dy

=
∫
t1/α A t

−d/α pD1 (t−1/αx, t−1/α y) dy∫
t1/αD t−d/α pD1 (t−1/αx, t−1/α y) dy

=
∫
A pD1 (t−1/αx, y) dy∫
D pD1 (t−1/αx, y) dy

= mt−1/αx (A),

wheremt−1/αx is themeasure defined in (3.5) above (note that t−1/αx ∈ D). Therefore,
by Theorem 1.1, this probability approaches m0(A) as t → ∞. ��

4 Hölder regularity

This section is devoted to proving Theorems 1.2 and 1.4. The proof of Theorem 1.4
uses a mix of the boundary Harnack principle and interior Hölder regularity. Then
Theorem 1.2 follows by using the formulas of Sect. 3, which enable us to relate the
heat kernel regularity to the elliptic regularity.

Fix n0 ≥ 2 such that the reference points x0 belongs to Dn0/2.
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Lemma 4.1 There exists p0 = p0(d, α, D) > 1 such that the family {(GD(y, ·)/GD

(x0, y))p : y ∈ D} is uniformly integrable in D for all p ∈ [1, p0).
Proof For y ∈ Dn0 we have a crude bound:

GD(y, z)/GD(x0, y) ≤ C(d, α, D)|y − z|α−d , z ∈ D.

Considering the functions on the right-hand side, we see that p0 = d/(d−α) will do.
From now on assume that y ∈ D\Dn0 . By (2.10), there exists C = C(d, α, D)

such that

GD(y, z)

GD(x0, y)
≤ C

|y − z|α−d

|x0 − y|α−d

�(z)�(Ax0,y)
2

�(x0)�(Ay,z)2
.

We immediately get that

GD(y, z)

GD(x0, y)
≤ C ′|y − z|α−d �(z)

�(Ay,z)2
.

By the Carleson estimate [48, Lemma 13], we further find that �(z)/�(Ay,z) ≤
C(d, α, D). If we let U = D32/r0 ∪ (D\B(y, r0/32)), then it follows that

GD(y, z)

GD(x0, y)
≤

{
C(d, α, D)|y − z|α−d , z ∈ U ,

C(d, α, D)|y − z|α−d�(Ay,z)
−1, z ∈ D\U .

The definition of Ay,z implies that for z ∈ D\U there exists Q = Q(z) ∈ ∂D such
that y, z ∈ B(Q, 3r) and B(Ay,z, κr) ⊂ D ∩ B(Q, 6r). Using [12, Lemma 5], we
find that there exist C = C(d, α, D) and γ = γ (d, α, D) ∈ (0, α) such that

�(Ay,z) ≥ C |Ay,z − Q(z)|γ ≥ Cκγ rγ ≥ Cκγ |y − z|γ .

Therefore,

GD(y, z)

GD(x0, y)
≤ C(|y − z|α−d ∨ |y − z|α−γ−d), y ∈ D\Dn0 , z ∈ D, (4.1)

so the statement of the lemma holds for all p ∈ [1, d/(d − α + γ )). We can take
p0 = d/(d − α + γ ). ��

The following lemma is a specific Carleson-type estimate.

Lemma 4.2 Let 0 < r < δD(y), |z − y| ≥ 2r , and |v − y| ≤ r . There exists
C = C(d, α, D) such that

GD(z, v) ≤ CGD(z, y).
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Fig. 1 Illustration for Lemma 4.3. The boundary Harnack principle cannot be used to estimate increments
between y and y′ because of the singularity at z. Instead we show regularity in the smaller ball using
harmonicity in the larger ball

Proof Note that 2|z − v| ≥ |z − y|. By (2.10), there is c = c(d, α, D) such that

GD(z, v) ≤ c
�(z)�(v)

�(Az,v)2
|z − v|α−d ≤ 2d−αc

�(z)�(v)

�(Az,v)2
|z − y|α−d .

By elementary calculations, we find that 2rz,v ≥ rz,y . By [48, Lemma 13] we therefore
get �(Az,v) ≥ c(d, α, D)�(Az,y). Furthermore, by [12, Lemma 4 and 5] we get
�(v) ≤ c(d, α, D)�(y). This ends the proof. ��

The next lemma can be viewed as a more concrete, quantified version of [23,
Lemma 8]. We give an interior-type Hölder regularity for ratios of Green functions,
taking into account the singularity at the diagonal. The structure of the proof follows
the boundary regularity approach of [12, Lemma 16], but here the singularity can
occur between the boundary and the arguments of the function, see Fig. 1.

Lemma 4.3 Let y ∈ D and Q ∈ ∂D satisfy |Q − y| = δD(y). Assume that z ∈
D ∩ B(Q, 3δD(y)) and let r = |z − y|/4, so that B(y, r) ⊂ D. Then there exist
constants C ≥ 1, k0 ≥ 4, σ ∈ (0, 1], and γ ∈ (0, α), depending only on d, α, D, such
that for every y′ ∈ B(y, 2−k0r) we have

∣∣∣∣ GD(y, z)

GD(x0, y)
− GD(y′, z)

GD(x0, y′)

∣∣∣∣ ≤ C

( |y − y′|
r

)σ

rα−d−γ .

Proof Let k0 ≥ 4 (further constraints on k0 stem from the proof) and let

Bk = B(y, (2k0)−kr), k = 0, 1, . . . ,

�k = Bk\Bk+1, k = 0, 1, . . . , �−1 = D \ B0,

u(y) = GD(y, z), v(y) = GD(x0, y).
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We will show that there exist c = c(d, α, D) and ζ = ζ(d, α, D) ∈ (0, 1], such that
for k = 0, 1, . . .,

sup
Bk

u

v
≤ (1+ cζ k) inf

Bk

u

v
. (4.2)

By virtue of (4.1), this implies the statement of the theorem.
In order to obtain (4.2), for −1 ≤ l < k we define

ulk(x) = E
x [u(XτBk

) ; XτBk
∈ �l ], vlk(x) = E

x [v(XτBk
) ; XτBk

∈ �l ], x ∈ R
d ,

and we will prove the following two claims.

Claim 1 There exist C = C(d, α, D) and q = q(d, α, D) ∈ (0, 1) such that for
−1 ≤ l ≤ k − 2 and x ∈ Bk,

ulk(x) ≤ C(qk0)k−l−1u(x),

vlk(x) ≤ C(qk0)k−l−1v(x).

We define the oscillation of function f as OscA f = supA f − inf A f .

Claim 2 Let g(x) = ukk+1(x)/v
k
k+1(x). Then there is δ = δ(d, α, D) such that

OscBk+2 g ≤ δOscBk g.

Using Claim 1 with k0 large enough (see [12, (5.23)–(5.25)] for details) and Claim
2 we may repeat the final part of the proof in [12, Lemma 16] to get (4.2)—we skip
those details.
We will now prove Claim 1 for u, the proof for v is identical. First let 0 ≤ l ≤ k − 2.
By Lemma 4.2,

ulk(x) =
∫

�l

GD(z, w)PBk (x, w) dw ≤ cGD(z, y)Px (XτBk
∈ �l).

Furthermore, since k ≥ 1, Lemma 4.2 yields GD(z, y) ≤ cGD(z, x). Therefore,

ulk(x) ≤ cGD(z, x)Px (XτBk
∈ �l). (4.3)

Recall the explicit formula for the Poisson kernel of the ball—see, e.g., Landkof [54]:

PB(0,r)(x, w) = cd,α

(r2 − |x |2)α/2

(|w|2 − r2)α/2 |x − w|−d , x ∈ B(0, r), w ∈ B(0, r)c.

(4.4)

Using the formula, we find that

P
x (XτBk

∈ �l ) =
∫

�l

PBk (x, w) dw≤cd,α(r(2k0 )−k)α ×
∫

�l

(|w−y|2−(r(2k0 )−k)2)−α/2|x−w|−d dw

≤ c̃d,α

(r(2k0 )−k)α

(r(2k0 )−l−1)α
= c̃d,α(2−k0α)k−l−1.
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Coming back to (4.3) we get Claim 1 for 0 ≤ l ≤ k − 2.
Now, let l = −1. Using (4.4), we get

u−1
k (x) ≤ C(d, α, D)

∫
D\B(y,r)

GD(z, w)
((r(2k0 )−k)2 − |x − y|2)α/2

(|w − y|2 − (r(2k0 )−k)2)α/2 |x − w|−d dw

≤ C(d, α, D)((2k0 )−k)α
∫
D\B(y,r)

GD(z, w)
rα

(|w − y|2 − (r(2k0 )−k)2)α/2 |x − w|−d dw

≤ c(d, α)C(d, α, D)(2−αk0 )k
∫
D\B(y,r)

GD(z, w)
(r2 − |x − y|2)α/2

(|w − y|2 − r2)α/2 |x − w|−d dw

≤ c̃(d, α)C(d, α, D)(2−αk0 )k
∫
D\B(y,r)

GD(z, w)PB(y,r)(x, w) dw.

Since GD(z, ·) is harmonic in D\{z}, the last integral is equal to GD(z, x), which
yields Claim 1 for l = −1. Thus, Claim 1 is proved.

It remains to prove Claim 2, which we do now. Let a1 = infBk g and a2 = supBk g.
Without any loss of generality we may assume a1 �= a2. Then, we let

g′(x) = g(x) − a1
a2 − a1

, x ∈ Bk .

We have 0 ≤ g′ ≤ 1, OscBk g
′ = 1, and OscBk+2 g = OscBk+2 g

′ OscBk g. If
supBk+2

g′ ≤ 1
2 , then we are done, so assume otherwise. Note that

g′(x) =
ukk+1(x)−a1vkk+1(x)

a2−a1

vkk+1(x)
=: g1(x)

g2(x)
, x ∈ Bk+2.

By (4.4), we have

1 ≤ supBk+2
g2

infBk+2 g2
= supBk+2

vkk+1

infBk+2 vkk+1

≤ C(d, α). (4.5)

Furthermore, since vkk+1(x) ≤ supB0 v ≤ C(d, α, D) for all x ∈ R
d , we get

g1(x) = vkk+1(x)g
′(x) ≤ C(d, α, D), x ∈ Bk .

If we extend g1 to be equal to 0 on R
d\Bk , then g1 is regular harmonic on Bk+1,

nonnegative and bounded. Therefore, by the Harnack inequality in an explicit scale
invariant formulation [14, Lemma 1]; see also Bass and Levin [8, Theorem 3.6] or
Grzywny [43],

1 ≤ supBk+2
g1

infBk+2 g1
≤ C(d, α, D). (4.6)

123



G. Armstrong et al.

By (4.5) and (4.6), we get

inf
Bk+2

g′ ≥ C−2 sup
Bk+2

g′ ≥ 1
2C

−2.

Therefore,

OscBk+2 g
′ ≤ max( 12 , 1− 1

2C
−2) = 1− 1

2C
−2,

which ends the proof of Claim 2, and thus the lemma is proved. ��

Proof of Theorem 1.4 By Lemma 4.1, we can assume without loss of generality that
|y − y′| ≤ 1/16.

We first consider the case 2k0 |y′ − y|1/2 ≥ δD(y), with k0 from Lemma 4.3), and
let Q ∈ ∂D be such that |y − Q| = δD(y). Note that y, y′ ∈ B(Q, 2k0+1|y − y′|1/2),
because |y − y′| > 1 implies |y − y′| < |y − y′|1/2. We split the integral as follows:

∫
D

∣∣∣∣ GD(y, z)

GD(x0, y)
− GD(y′, z)

GD(x0, y′)

∣∣∣∣
p

dz =
∫
D∩B(Q,2k0+2|y−y′|1/2)

+
∫
D\B(Q,2k0+2|y−y′|1/2)

.

(4.7)

By (4.1), there exist c = c(d, α, D) and γ = γ (d, α, D) ∈ (0, α) such that

∫
D∩B(Q,2k0+2|y−y′|1/2)

∣∣∣∣ GD(y, z)

GD(x0, y)
− GD(y′, z)

GD(x0, y′)

∣∣∣∣
p

dz

≤ 2p
∫
D∩B(Q,2k0+2|y−y′|1/2)

(∣∣∣∣ GD(y, z)

GD(x0, y)

∣∣∣∣
p

+
∣∣∣∣ GD(y′, z)
GD(x0, y′)

∣∣∣∣
p)

dz

≤ c
∫
B(0,2k0+2|y−y′|1/2)

|z|p(α−γ−d) dz

= cC(d, α, p)|y − y′|(d+p(α−γ−d))/2.

In the second integral of (4.7) we use the boundary Harnack principle given in [13,
Lemma 3]: we let u(y) = GD(y, z), v(y) = GD(x0, y) and r = 2k0+1|y − y′|1/2
there. By the Green function estimates (2.10) and arguments similar to the proof of
Lemma 4.1 we find that for z ∈ D ∩ (B(Q, 2k+k0+3|y − y′|1/2)\B(Q, 2k+k0+2|y −
y′|1/2)) we have u(Ar (Q))/v(Ar (Q)) ≤ C(d, α, D)(2k |y − y′|1/2)α−γ−d , for all
k ∈ {0, 1, . . . , N0}, where N0 = �log2(diam(D)/2k0+2|y − y′|1/2) and we define
u/v to be 0 outside D. Therefore, by [13, Lemma 3], there exist c and σ > 0 depending
only on d, α, D such that

∣∣∣∣ GD(y, z)

GD(x0, y)
− GD(y′, z)

GD(x0, y′)

∣∣∣∣
p

≤ c(2k |y − y′|1/2)p(α−γ−d)|y − y′|σ p/2
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holds for all z ∈ D ∩ (B(Q, 2k+k0+3|y − y′|1/2)\B(Q, 2k+k0+2|y − y′|1/2)). Hence,
∫
D\B(Q,2k0+2|y−y′|1/2)

∣∣∣∣ GD(y, z)

GD(x0, y)
− GD(y′, z)

GD(x0, y′)

∣∣∣∣
p

dz

=
N0∑
k=0

∫
D∩(B(Q,2k+k0+3|y−y′|1/2)\B(Q,2k+k0+2|y−y′|1/2))

∣∣∣∣ GD(y, z)

GD(x0, y)
− GD(y′, z)

GD(x0, y′)

∣∣∣∣
p

dz

≤ c|y − y′|σ p/2
N0∑
k=0

(2k |y − y′|1/2)p(α−γ−d)(2k |y − y′|1/2)d

= c|y − y′|σ p/2
N0∑
k=0

(2k |y − y′|1/2)d+p(α−γ−d).

The last sum is comparable to diam(D)d+p(α−γ−d), so the proof is complete when
2k0 |y − y′|1/2 ≥ δD(y).

Now assume that 2k0 |y − y′|1/2 < δD(y). We split the integral as follows:

∫
D

∣∣∣∣ GD(y, z)

GD(x0, y)
− GD(y′, z)

GD(x0, y′)

∣∣∣∣
p

dz

=
∫
D∩B(y,2k0 |y−y′|1/2)

+
∫
D∩B(y,2k0 |y−y′|1/2)c∩B(Q,3δD(y))c

+
∫
D∩B(y,2k0 |y−y′|1/2)c∩B(Q,3δD(y))

.

(4.8)

The first two integrals are handled as the ones in (4.7). In particular, in the second one
we can use the boundary Harnack principle. In the last integral on the right-hand side
of (4.8) we will apply Lemma 4.3. To this end, we split once more:

∫
D∩B(y,2k0 |y−y′|1/2)c∩B(Q,3δD(y))

≤
M0∑
k=0

∫
D∩B(Q,3δD(y))∩(B(y,2k+k0+1|y−y′|1/2)\B(y,2k+k0 |y−y′|1/2))

=:
M0∑
k=0

Ik ,

where M0 = �log2(3δD(y)/(2k0 |y− y′|1/2)) . We then use Lemma 4.3 with r = rk =
2k0+k |y − y′|1/2/4:

Ik ≤ C(d, α, D)|y − y′|σ p/2
∫

B(y,2k+k0+1|y−y′|1/2)\B(y,2k+k0 |y−y′|1/2)
r p(α−d−γ )

k dz

≤ C̃(d, α, D)|y − y′|σ p/2(2k+k0 |y − y′|1/2)d−p(α−γ−d), k = 0, . . . , M0,
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since for |y − y′| ≤ 1/16, we have |y − y′| ≤ |y − y′|1/2/4, so y′ ∈ B(y, 2−k0r).
Therefore we get

M0∑
k=0

Ik ≤ C(d, α, D)|y − y′|σ p/2δD(y)d−p(α−γ−d),

which ends the proof. ��
Proof of Theorem 1.2 Fix x ∈ D and t ∈ [T1, T2]. First, we investigate ηx0 . By the
results of Sect. 2.3,

pDt (x, y) = GD�
α/2
y pDt (x, y).

Furthermore, by Corollary 2.6, the function f (y) = �
α/2
y pDt (x, y) is bounded and the

bounddoes not depend on x ∈ D. Therefore, byTheorem1.4, for y, y′ ∈ D\B(x0, r1),

∣∣∣∣ pDt (x, y)

GD(x0, y)
− pDt (x, y′)

GD(x0, y′)

∣∣∣∣ ≤
∫
D

∣∣∣∣ GD(y, z)

GD(x0, y)
− GD(y′, z)

GD(x0, y′)

∣∣∣∣| f (z)| dz

≤
∥∥∥∥ GD(y, ·)
GD(x0, y)

− GD(y′, ·)
GD(x0, y′)

∥∥∥∥
L1(D)

‖ f ‖∞ ≤ C |y − y′|σ ,

where the constants C, σ depend only on d, α, D, T1, T2, x0, and r1.
We now proceed to η̃. Note that there exist x1 ∈ D and r = r(D) such that

B(x1, 2r) ⊂ D. Without loss of generality, we can assume that |y− y′| < r/4. Then,
for any fixed y, y′, there exists x2 such that B(x2, r/4) ⊂ D and y, y′ /∈ B(x2, r/4).
This means that GD(x2, y),GD(x2, y′)≤C , where C≥1 depends only on d, α,

and D. We then split as follows:

∣∣∣∣ pDt (x, y)

pDt0 (x0, y)
− pDt (x, y′)

pDt0 (x0, y′)

∣∣∣∣ =
∣∣∣∣ pDt (x, y)

GD(x2, y)

GD(x2, y)

pDt0 (x0, y)
− pDt (x, y′)

GD(x2, y′)
GD(x2, y′)
pDt0 (x0, y′)

∣∣∣∣
≤ pDt (x, y)

GD(x2, y)

∣∣∣∣GD(x2, y)

pDt0 (x0, y)
− GD(x2, y′)

pDt0 (x0, y′)

∣∣∣∣
+ GD(x2, y′)

pDt0 (x0, y′)

∣∣∣∣ pDt (x, y′)
GD(x2, y′)

− pDt (x, y)

GD(x2, y)

∣∣∣∣. (4.9)

By using Lemma 3.2 and (2.6), we find that

pDt (x, y)

GD(x2, y)
� P

y(τD > t)

GD(x2, y)
= GDPD

t κD(y)

GD(x2, y)
≤ C(d, α, D, T1, T2) < ∞. (4.10)

By similar arguments,

pDt (x0, y)

GD(x2, y)
≥ c(d, α, D, T1, T2, x0) > 0. (4.11)
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From (4.9), (4.10), (4.11), and the Hölder regularity of ηx0 obtained above, we arrive
at

∣∣∣∣ pDt (x, y)

pDt0 (x0, y)
− pDt (x, y′)

pDt0 (x0, y′)

∣∣∣∣ ≤ C |y − y′|σ ,

with C and σ depending on d, α, D, T1, T2, x0.
The arguments for η are similar to the ones for η̃, with no dependence on x0. The

proof is complete. ��

5 Space-time stable processes and caloric functions

5.1 Preliminaries

Recall that (Xs)s≥0 is the isotropic α-stable Lévy process. Like for the space-time
Brownian motion [36], we define the space-time α-stable process as the following
Lévy process on R

d+1:

Ẋs :=(−s, Xs), s ≥ 0.

Since Ẋ is a Lévy process, it has the strong Markov property. Many properties of the
space-time process are inherited from the α-stable process. Thus, for a (Borel) set
A ⊆ R

d+1, we let

P
(t,x)(Ẋs ∈ A):=P((t − s, Xs + x) ∈ A),

and for a (Borel) function f : Rd+1 → R
d , we have

E
(t,x)[ f (Ẋs)] = E[ f (t − s, Xs + x)].

It can be easily verified that the transition probability of Ẋ takes on the following form

p̃s(t, x, du, dy) = ps(x, y) dy ⊗ δ{t−s}(du), s ≥ 0, (t, x), (u, y) ∈ R× R
d .

The corresponding semigroup will be denoted by P̃ . Let

C1,2
b ([0,∞) × R

d) = {u ∈ Cb([0,∞) × R
d) : ∂t u,∇xu, D2

xu ∈ Cb([0,∞) × R
d)},

with the norm ‖u‖C1,2 = ‖u‖∞ + ‖∂t u‖∞ + ‖∇xu‖∞ + ‖D2
xu‖∞.

Lemma 5.1 The pointwise generator of the semigroup of the space-time α-stable
process coincides with the fractional heat operator �α/2 − ∂t for functions u ∈
C1,2
b ([0,∞) × R

d).
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Proof Let u ∈ C1,2
b ([0,∞) × R

d). For all (t, x) ∈ [0,∞) × R
d and s ∈ (0, t), we

have

1

s
(P̃su(t, x) − u(t, x)) = 1

s

∫
Rd

∫
[0,∞)

(u(r , y) − u(t, x)) p̃s(t, x, dy, dr)

= 1

s

∫
Rd

(u(t − s, y) − u(t, x))ps(x, y) dy

= 1

s

∫
Rd

(u(t − s, y) − u(t − s, x))ps(x, y) dy (5.1)

+ 1

s
(u(t − s, x) − u(t, x)). (5.2)

Clearly, (5.2) converges to −∂t u(t, x) as s → 0+, so it suffices to show that (5.1)
converges to �

α/2
x u(t, x). To this end, we will prove that

1

s

∫
Rd

((u(t, y) − u(t, x)) − (u(t − s, y) − u(t − s, x)))ps(x, y) dy

converges to 0 as s → 0+. Let ε > 0 and let δ > 0 be so small that ps(x, B(x, δ)c) < ε.
Then we also have ps′(x, B(x, δ)c) < ε for s′ ∈ (0, s). By Lagrange’s mean value
theorem, we get

∣∣∣∣1s
∫
B(0,δ)c

((u(t, y) − u(t, x)) − (u(t − s, y) − u(t − s, x)))ps(x, y) dy

∣∣∣∣ < 2ε‖u‖C1,2 .

By Taylor’s expansion, u(t − s, x) = u(t, x) − s∂t u(t, x) + o(s) as s → 0, and
similarly for y, so

∣∣∣∣1s
∫
B(0,δ)

((u(t, y) − u(t, x)) − (u(t − s, y) − u(t − s, x)))ps(x, y) dy

∣∣∣∣
=

∣∣∣∣
∫
B(0,δ)

(∂t u(t, x) − ∂t u(t, y) + o(s)

s
)ps(x, y) dy

∣∣∣∣
≤ δ‖u‖C1,2 + o(1).

This ends the proof. ��

In the next result we exhibit a space-time Poisson kernel for cylindrical domains.
As usual, for arbitrary (open) G ⊆ R× R

d , we let

τG := inf{t > 0 : Ẋt /∈ G}.

Lemma 5.2 Recall that D ⊆ R
d is a Lipschitz open set and let Ḋ = (r , t) × D for

some (arbitrary)−∞ ≤ r < t . Then the distribution of ẊτḊ
—the first exit place of Ẋ
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from Ḋ—is given by the formula

P
(t,x)(ẊτḊ

∈ (ds, dy))

=
{
1[r ,t)(s) ds ⊗ J D(t, x, s, y) dy + δt−r (ds) ⊗ pDt−s(x, y) dy, r > −∞,

1(−∞,t)(s) ds ⊗ J D(t, x, s, y) dy, r = −∞,

where

J D(t, x, s, y):=
∫
D
pDt−s(x, ξ)ν(ξ, y) dξ, s < t, x ∈ D, y ∈ Dc.

We call J D the lateral Poisson kernel.

Remark 5.3 For the cylinder Ḋ = (r , t)×D, if the process Ẋ starts at (t, x)with some
x ∈ D, then it immediately enters Ḋ, so τḊ > 0 almost surely, although (t, x) /∈ Ḋ.
In the language of potential theory, the points on the top of the cylinder are irregular.

Proof of Lemma 5.2 Let r > −∞. We have

P
(t,x)(ẊτḊ

∈ (ds, dy)) = P
(t,x)(ẊτḊ

∈ (ds, dy), τḊ > τD) (5.3)

+ P
(t,x)(ẊτḊ

∈ (ds, dy), τḊ = τD) (5.4)

+ P
(t,x)(ẊτḊ

∈ (ds, dy), τḊ < τD). (5.5)

Note that (5.3) vanishes, because P(t,x)(τḊ > τD) = 0.
By the Ikeda–Watanabe formula (2.13), the term (5.4) is equal to

P
(t,x)(XτD ∈ A, τD ≤ t − r , τD ∈ ds) = 1[r ,t)(s) ds ⊗ J D(t, x, s, y) dy.

In (5.5) we have τD > τḊ = t − r , so by the definition of the Dirichlet heat kernel,
this term is equal to

δt−r (ds) ⊗ pDt−r (x, y),

see [32, Chapter 2]. The case of r = −∞ is left to the reader. ��
We see that J D(t, x, s, y) represents the scenario of Ẋ starting at (t, x) and leaving

to (s, y), where, recall, x ∈ D, y ∈ Dc, and s < t . Another way to express the result
in Lemma 5.2, is as follows:

E
(t,x)u(ẊτḊ

) =
∫ t

r

∫
Dc

J D(t, x, s, z)u(s, z) dz ds +
∫
D
pDt−r (x, y)u(r , y) dy,

(5.6)

whenever this integral makes sense, e.g., for nonnegative u. By analogy to the elliptic
equations, we call the right-hand side of (5.6) the Poisson integral, and the first term
on the right-hand side of (5.6)—the lateral Poisson integral.
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Remark 5.4 Another motivation for calling J D(t, x, s, z) the lateral Poisson kernel
comes from the fact that it is the nonlocal normal derivative of pDt−s , whereas pDt−s
serves as the Green function for the fractional heat equation. Indeed, using the defini-
tion of the nonlocal normal derivative from [34]:

[∂"nu](x):=
∫
D
(u(y) − u(x))ν(x, y) dy, x ∈ Dc,

we see that for every z ∈ Dc,

∂"n pDt−s(x, ·)(z) =
∫
D
pDt−s(x, y)ν(y, z) dy = J D(t, x, s, z), x ∈ D.

5.2 Caloric functions

We define the caloric functions in terms of the mean value property. We stress that we
only consider finite nonnegative functions.

Definition 5.5 Let −∞ < T1 < T2 < ∞. We say that u : (T1, T2) × R
d → [0,∞) is

caloric in (T1, T2) × D, if the mean value property:

u(t, x) = E
(t,x)u(ẊτG ), (t, x) ∈ (T1, T2) × D, (5.7)

holds for every open set G ⊂⊂ (T1, T2) × D.
We say that u : [T1, T2)×R

d → [0,∞) is caloric in [T1, T2)×D if (5.7) holds for
every open G ⊂⊂ [T1, T2) × D. If u is caloric in [T1, T2) × D and satisfies (5.7) for
G = (T1, T2)× D, then we say that u is regular caloric. If u is caloric in [T1, T2)× D
and u ≡ 0 on the parabolic boundary

Dp:=({T1} × D) ∪ ((T1, T2) × Dc),

then we say that u is singular caloric.

Remark 5.6 (a) Our caloric functions are just harmonic functions of the space-time
isotropic stable Lévy process.

(b) We may also consider T1 = −∞ or T2 = ∞, where appropriate, in particular
when defining functions caloric on (T1, T2) × D.

(c) The condition G ⊂⊂ [T1, T2) × D allows G to touch {T1} × D. Caloricity in
[T1, T2)×Dmaybe considered as a (new) relaxation of regular caloricity, localized
near the part {T1}× D of the boundary of (T1, T2)× D, see also Lemma 5.7. Both
notions are meant to facilitate discussion of boundary conditions (they generalize
to harmonic functions of other strong Markov processes).

(d) The caloricity in [T1, T2)×D helps to handle initial conditionswhich are functions,
but also rules out some interesting cases, e.g., (t, y) �→ pDt (x, y). See also [23].
Remarkably, every (nonnegative) function caloric in (T1, T2) × D has a certain
initial condition which is a measure, see Sect. 6.
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(e) A caloric function need not satisfy the fractional heat equation pointwise, due to
lack of time regularity. This can be seen using the counterexample given byChang-
Lara and Dávila [29, Section 2.4.1] for viscosity solutions. See also Remark 5.12
below.

Lemma 5.7 Regular caloricity implies caloricity in [T1, T2)×D, which in turn implies
caloricity in (T1, T2) × D. Furthermore, (5.7) only needs to be verified for cylinders
G.

Proof Assume that (5.7) holds for G. By the strong Markov property of Ẋ , (5.7) then
holds for every open G ′ ⊂ G:

u(t, x) = E
(t,x)u(ẊτG ) = E

(t,x)
E
ẊτG′ u(ẊτG ) = E

(t,x)u(ẊτG′ ).

This first two assertions follow immediately. To clarify the third one, note that every
open G ′ ⊂⊂ [T1, T2) × D is contained in an open cylinder, relatively compact in
[T1, T2) × D. Similarly for (T1, T2) × D. ��

We continue with several examples of caloric functions.

Example 5.8 For every fixed x ∈ R
d , the function (t, y) �→ pDt (x, y) satisfies the

mean value property on every (ε, T ) × D for 0 < ε < T < ∞, hence it is caloric in
(0,∞) × D.

Example 5.9 If we let

ηt,Q(x):=0, (t, x) ∈ (−∞, 0] × R
d ∪ (0,∞) × Dc, Q ∈ ∂D, (5.8)

then for everyfixedQ ∈ ∂D, the function (t, x) �→ ηt,Q(x) is caloric in (−∞,∞)×D.
Indeed, the mean value property in (ε, T )×D, with 0 < ε < T < ∞ is a consequence
of (1.9). Then, by Lemma 3.5,

ηt,Q(x) =
∫ t

0

∫
Uc

J D(t, x, s, z)ηs,Q(z) dz ds

=
∫ t

−R

∫
Uc

J D(t, x, s, z)ηs,Q(z) dz ds,

for any R ≥ 0.

Example 5.10 If f : Rd → [0,∞) is a nonnegative measurable function and PD
1 f (x)

is finite for all x ∈ D, then (t, x) �→ PD
t f (x) is caloric in [0,∞)× D, with the usual

convention PD
0 f := f .

The following class of functions is of particular interest for us. We will show in the
next section that it coincides with the class of all singular caloric functions.
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Lemma 5.11 If μ(dQ ds) is a locally finite nonnegative Borel measure on ∂D ×
[0,∞), then

h(t, x):=
{∫

[0,t)
∫
∂D ηt−τ,Q(x)μ(dQ dτ), t > 0, x ∈ D,

0, elsewhere,

is singular caloric in [0,∞) × D.

Proof By Lemma 3.5, h is finite for all t > 0 and x ∈ D, and by (5.8), we have

∫
[0,t)

∫
∂D

ηt−τ,Q(x)μ(dQ dτ) =
∫
[0,∞)

∫
∂D

ηt−τ,Q(x)μ(dQ dτ), t ≥ 0, x ∈ D.

Therefore, the mean value property for h follows from Fubini–Tonelli and caloricity
of η. ��
Remark 5.12 We note that the viscosity solution considered in [29, Section 2.4.1],
although non-differentiable, is Lipschitz in time. The function nt,Q is not even Lips-
chitz in t because for t ∈ (0, 1) and fixed x ∈ D,

ηt,Q(x)

t
= 1

t
lim
y→Q

pDt (x, y)

Py(τD > t)

P
y(τD > t)

Py(τD > 1)
� pt (x, Q)

t
lim
y→Q

P
y(τD > t)

Py(τD > 1)

� |x − Q|−d−α lim
y→Q

P
y(τD > t)

Py(τD > 1)
.

We see, indeed, that the last limit is comparable to t−1/2 if D is C1,1 by (2.7). Further-
more, for Lipschitz D it also explodes as t → 0+ because of the proof of Lemma B.2
and [12, Lemma 3].

Lemma 5.13 If u is caloric in (T1, T2)×D for T1 < T2, then u ∈ L1
loc((T1, T2)×R

d).

Proof The proof is similar to the one of [18, Lemma 4.5]. First note that for any fixed
x ∈ D, r > 0, and B = B(x, r), by (2.6) we have

J B(t, x, s, z) =
∫
B
pBt−s(x, y)ν(y, z) dy ≈

∫
B
pt−s(x, y)P

y(τB > t − s)ν(y, z) dy

≥ c
∫
B(x,r/2)

pt−s(x, y) dy ≥ C > 0,

with C depending only on r and R, where δB(z), t − s ≤ R. Thus, J B(t, x, ·, ·) is
locally bounded from below. Now, take two disjoint balls B1, B2 ⊆ D, centered at
some points x1, x2 ∈ D respectively, and let T1 < t0 < t < T2 and R > 0. Since u is
nonnegative and caloric, for i = 1, 2 we get

∞ > u(t, x) ≥
∫ t

t0

∫
Bc
i

u(s, z)J Bi (t, x, s, z) dz ds ≥ C
∫ t

t0

∫
B(0,R)\Bi

u(s, z) dz ds.
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Therefore u ∈ L1((t0, t) × (B(0, R)\Bi )) for i = 1, 2. But B1 ∩ B2 = ∅, so u ∈
L1((t0, t) × B(0, R)). Since R can be chosen arbitrarily large, the proof is complete.

��

The following result shows that the so-called ancient solutions, i.e., functions caloric
in a time interval of the form (−∞, T ), can be conveniently studied by considering
only the lateral Poisson integrals.

Lemma 5.14 If u is caloric in (−∞, T )×D for some T ∈ R, then for all x ∈ U ⊂⊂ D
and t < T we have

u(t, x) = E
(t,x)[u(τ(−∞,t)×U , Xτ(−∞,t)×U )] =

∫ t

−∞

∫
Uc

JU (t, x, s, z)u(s, z) dz ds.

(5.9)

In particular, the integral on the right-hand side of (5.9) is finite.

Proof Let t, x,U be as in the statement. By the definition of caloricity, for v < t we
have

u(t, x) =
∫ t

v

∫
Uc

JU (t, x, s, z)u(s, z) dz ds +
∫
U
pUt−v(x, y)u(v, y) dy.

The first integral on the right-hand side increases to the right-hand side of (5.9) by the
monotone convergence theorem and the second integral decreases. It suffices to prove
that

a:= lim
v→−∞

∫
U
pUt−v(x, y)u(v, y) dy = 0.

To this end note that for every v < t ,

∫
U
pUt−v(x, y)u(v, y) dy ≥ a.

Let n > 0 be so large that U ⊂⊂ Dn (see (2.1)). Recall that λ1(V ) is the first
eigenvalue of the Dirichlet fractional Laplacian for an open set V . We claim that

λ1(Dn) < λ1(U ). (5.10)

A weak inequality is well known as the domain monotonicity. In order to prove the
strict inequality, assume without loss of generality that 0 ∈ U . Then there exists q > 1
such that qU ⊂⊂ Dn , so, by domain monotonicity, λ1(Dn) ≤ λ1(qU ) = q−αλ1(U ),
which yields (5.10).
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By (2.9), (2.8), and the fact that each eigenfunction is bounded from above and
bounded from below away from the boundary, for s < t , s → −∞, we get

∞ > u(t, x) ≥
∫
Dn

u(s, y)pDn
t−s(x, y) dy ≥

∫
U
u(s, y)pDn

t−s(x, y) dy

≈
∫
U
u(s, y)e−λ1(Dn)(t−s) dy

= e(−λ1(Dn)+λ1(U ))(t−s)
∫
U
u(s, y)e−λ1(U )(t−s) dy

� e(−λ1(Dn)+λ1(U ))(t−s)
∫
U
u(s, y)pUt−s(x, y) dy.

By (5.10), we must have a = 0. ��

5.3 Caloric functions are continuous

This subsection is devoted to proving that caloric functions are continuous, hence
locally bounded.

The proof is based on certain estimates for the kernel J D , which may be of inde-
pendent interest. Let us note in passing that bounded caloric functions are known to
be locally Hölder continuous [31, Theorem 4.14].

Proposition 5.15 Assume that u is a nonnegative caloric function in (T0, T1)× D for
some T0 < T1. Then, u is continuous and locally bounded therein.

We fix arbitrary (t0, x0) ∈ (T0, T1)× D, r ∈ (0, δD(x0)/2), and let Bρ = B(x0, ρ)

for ρ > 0. We first establish some basic facts about the lateral Poisson kernel. With a
slight conflict of notation, we introduce the Euclidean distance between A, B ⊆ R

d ,

d(A, B):= inf{|b − a| : a ∈ A, b ∈ B}.

Lemma 5.16 Let D be a Lipschitz open set, U ⊂⊂ D, and 0 < T < ∞. Then,

J D(t, x, s, z) ≈ J D(t, x0, s, z), x ∈ U , z ∈ Dc, 0 < t − s < T , (5.11)

and

J D(t, x, s, z) � J D(t ′, x, s, z), x ∈ U , z ∈ Dc, 0 < t − s ≤ t ′ − s < T ,

(5.12)

with the comparability constants depending only on d, α, D, d(U , Dc), and T .
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Proof Let U ′ be such that U ⊂⊂ U ′ ⊂⊂ D. We pick U ′ so that the constants below
depend only on D andU , e.g., by assuming d(U , Dc)/2 ≥ d(U ′, Dc) ≥ d(U , Dc)/3.
We first prove (5.11). By (2.6),

J D(t, x, s, z) =
∫
D
pDt−s(x, y)ν(y, z) dy

≈ P
x (τD > t − s)

∫
D
pt−s(x, y)P

y(τD > t − s)ν(y, z) dy

≈ P
x0 (τD > t − s)

(∫
D\U ′

+
∫
U ′

)
pt−s(x, y)P

y(τD > t − s)ν(y, z) dy,

(5.13)

with constants depending on d, α, D, d(U , Dc), and T . For y ∈ D \ U ′, we have
|x − y| ≈ |x0 − y|, so by (2.4),

∫
D\U ′

pt−s(x, y)P
y(τD > t − s)ν(y, z) dy

≈
∫
D\U ′

pt−s(x0, y)P
y(τD > t − s)ν(y, z) dy.

For y ∈ U ′, Py(τD > t − s) ≈ 1 and ν(y, z) ≈ ν(x0, z). Using this and the fact that
U ⊂⊂ U ′, we find that

∫
U ′

pt−s(x, y)P
y(τD > t − s)ν(y, z) dy ≈ ν(x0, z)

∫
U ′

pt−s(x, y) dy

≈ ν(x0, z)
∫
U ′

pt−s(x0, y) dy

≈
∫
U ′

pt−s(x0, y)P
y(τD > t − s)ν(y, z) dy.

Coming back to (5.13), we obtain (5.11). We now proceed to proving (5.12). We split
in a similar way:

J D(t, x, s, z) =
( ∫

U ′
+

∫
D\U ′

)
pDt−s(x, y)ν(y, z) dy.

By Lemma B.1,

∫
D\U ′

pDt−s(x, y)ν(y, z) dy �
∫
D\U ′

pDt ′−s(x, y)ν(y, z) dy.
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For the integral over U ′ we use (2.6):

∫
U ′

pDt−s(x, y)ν(y, z) dy

≈ ν(x0, z)
∫
U ′

pDt−s(x, y) dy

≈ ν(x0, z)
∫
U ′

pt−s(x, y)P
x (τD > t − s)Py(τD > t − s) dy.

For w ∈ U ′ and 0 < t − s < T , we have P
w(τD > t − s) ≈ 1 and by (2.4),∫

U ′ pt−s(x, y) dy ≈ 1, with comparability constants depending only on T ,U ′, and
D. It follows that

ν(x0, z)
∫
U ′

pt−s(x, y)P
x (τD > t − s)Py(τD > t − s) dy

≈ ν(x0, z)
∫
U ′

pt ′−s(x, y)P
x (τD > t ′ − s)Py(τD > t ′ − s) dy

≈
∫
U ′

pDt ′−s(x, y)ν(y, z) dy,

which ends the proof. ��

Proof of Proposition 5.15 We will show continuity at the fixed point (t0, x0). Let x ∈
Br/2, t1 ∈ (T0, t0) and t ∈ (t1, T1), so that T1 < t1 < t < T0. We have

u(t, x) =
∫
Br

u(t1, y)p
Br
t−t1(x, y) dy +

∫ t

t1

∫
Br

u(τ, z)J Br (t, x, τ, z) dz dτ,

u(t0, x0) =
∫
Br

u(t1, y)p
Br
t0−t1(x0, y) dy +

∫ t0

t1

∫
Br

u(τ, z)J Br (t0, x0, τ, z) dz dτ.

Since u is nonnegative and caloric, all integrals above are finite. For (t, x) sufficiently
close to (t0, x0), we have pBrt−t1(x, y) ≈ pBrt0−t1(x0, y) uniformly in y. Therefore, by
the dominated convergence theorem,

∫
Br

u(t1, y)p
Br
t−t1(x, y) dy −→

(t,x)→(t0,x0)

∫
Br

u(t1, y)p
Br
t0−t1(x0, y) dy.

Therefore it remains to show that

∫ t

t1

∫
Br

u(τ, z)J Br (t, x, τ, z) dz dτ −→
(t,x)→(t0,x0)

∫ t0

t1

∫
Br

u(τ, z)J Br (t0, x0, τ, z) dz dτ.

123



Caloric functions and boundary regularity...

Assume that t > t0 (we skip the other case, as it is similar). Then,

∣∣∣∣
∫ t

t1

∫
Br

u(τ, z)J Br (t, x, τ, z) dz dτ −
∫ t0

t1

∫
Br

u(τ, z)J Br (t0, x0, τ, z) dz dτ

∣∣∣∣
≤

∫ t0

t1

∫
Br

u(τ, z)|J Br (t, x, τ, z) − J Br (t0, x0, τ, z)| dz dτ

+
∫ t

t0

∫
Br

u(τ, z)J Br (t, x, τ, z) dz dτ =: I1 + I2.

ByLemma5.16,wehave J Br (t, x, τ, z) � J Br (t0+ε, x0, τ, z) for t1 ≤ τ ≤ t ≤ t0+ε,
x ∈ Br/2, and z ∈ Bc

r . Therefore by the dominated convergence theorem, I2 → 0.
Furthermore, by the properties of pBrt and the dominated convergence theorem, it is
easy to see that J Br (·, ·, τ, z) is continuous on (τ,∞)× Br for all τ ∈ R and z ∈ Dc.
Therefore, using the bounds of Lemma 5.16 and the dominated convergence theorem
once again, we find that I1 → 0 as well. This ends the proof. ��

6 Representation of caloric functions in Lipschitz open sets

We first discuss the representation for functions caloric on [0, T ) × D, where the
meaning of the initial condition is clearer. We then use this case to resolve the situation
of functions caloric in (0, T ) × D.

6.1 Functions caloric up to time 0

Lemma 6.1 Assume that u is a nonnegative caloric function in Ḋ: = [0, T )×D. Then
there exists a unique decomposition u = r + s, where r is regular caloric in Ḋ and s
in singular caloric in Ḋ.

Proof Let t < T . Since u has the mean value property in every Ḋn = (0, t)× Dn (see
(2.1)), we have

u(t, x) = E
(t,x)u(ẊτḊn

) =: in(t, x) + ln(t, x) + sn(t, x),

where

in(t, x) = E
(t,x)[u(ẊτḊn

) ; τDn > t],
ln(t, x) = E

(t,x)[u(ẊτḊn
) ; τDn < t, τDn = τD],

sn(t, x) = E
(t,x)[u(ẊτḊn

) ; τDn < t, τDn < τD].

We let n → ∞. By the monotone convergence, we get

in(t, x) = E
(t,x)(u(Ẋt ) ; τDn > t) ↗ E

(t,x)[u(Ẋt ) ; τD > t] =: i(t, x),
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and by [12, (5.40)],

ln(t, x) = E
(t,x)[u(ẊτḊ

) ; τD < t, τDn = τD] ↗ E
(t,x)[u(ẊτḊ

) ; τD < t] =: l(t, x),

the limits being finite because all in , ln , and sn are nonnegative. So, sn(t, x) converges
to some s(t, x). Since r(t, x):=i(t, x) + l(t, x) = E

(t,x)u(ẊτḊ
), r is regular caloric.

By inspecting the definition of sn , we find that s is singular caloric: indeed, if Xt starts
from x ∈ Dc, then the event τDn < τD has probability 0, so sn(t, x) = 0 for x ∈ Dc,
and if Ẋ starts from (0, x), x ∈ D, then sn(0, x) = 0 because τDn ≥ 0.

Assume that there is another decomposition u = r ′ + s′. Since s′ = s = 0 on Dp,
we have that r − r ′ = 0 on Dp as well and therefore r − r ′ = 0 in Ḋ, because r − r ′
is regular caloric on Ḋ. ��

We next give an integral representation for the singular caloric part, with the use of
the parabolic Martin kernel. We first prove the following technical result.

Lemma 6.2 Let x ∈ D and 0 < ε < T be fixed. Then there exists a modulus of
continuity ω, independent of y and t ∈ [ε, T ], such that for n large we have

∣∣∣∣ pDn
t (x, y)

Py(τDn > 1)
− pDt (x, y)

Py(τD > 1)

∣∣∣∣ ≤ ω

(
1

n

)
, y ∈ Dn, t ∈ [ε, T ]. (6.1)

Proof First note that the expression on the left-hand side of (6.1) converges to
0 as n → ∞ for every fixed y ∈ D (the expression is considered only when
1/n < δD(y)). In order to get (6.1) we will show that the convergence is uni-
form by using the Arzelà–Ascoli theorem. Indeed, by Theorem 1.2, we find that
Dn 	 y �→ pDn

t (x, y)/Py(τDn > 1) are uniformly Hölder continuous for n large and
t ∈ [ε, T ]. Furthermore, it is well-known that a Hölder continuous function in Dn can
be extended to a function on D with the same Hölder regularity, see, e.g., Banach [5,
IV (7.5)]. If we denote the corresponding extensions by fn , then by the Arzelà–Ascoli
theorem, we find that

∣∣∣∣ fn(t, y) − pDt (x, y)

Py(τD > 1)

∣∣∣∣ ≤ ω

(
1

n

)
, y ∈ D, t ∈ [ε, T ].

In particular, (6.1) follows. ��

Theorem 6.3 Assume that u is singular caloric in [0, T ) × D. Then there exists a
nonnegative Borel measure μ on ∂D × [0, T ) such that representation (1.2) holds.
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Proof Let Dn be as in Lemma 6.1 and let N be large enough, so that x, x0 ∈ DN .
Since u is singular caloric, for natural n > N we have

u(t, x) = E
(t,x)[u(ẊτḊn

) ; τDn < t, XτDn
∈ D \ Dn]

=
∫ t

0

∫
D\Dn

u(s, z)
∫
D
pDn
t−s(x, y)ν(y, z) dy dz ds

=
∫ t

0

∫
D

pDn
t−s(x, y)

Py(τDn > 1)

∫
D\Dn

P
y(τDn > 1)u(s, z)ν(y, z) dz dy ds.

We define

μn(dy ds) =
∫
D\Dn

P
y(τDn > 1)u(s, z)ν(y, z) dz dy ds.

Note that by (2.6), ifwefix θ > 0, thenwehavePy(τDn > 1) � pDn
s+θ (x0, y) uniformly

in s ∈ (0, t). Therefore, since u is caloric, for θ sufficiently small we have

∫ t

0

∫
Rd

μn(dy ds) �
∫ t

0

∫
Rd

∫
D\Dn

pDn
t+θ−s(x0, y)u(s, z)ν(y, z) dz dy ds ≤ u(x0, t + θ),

which means that the masses ofμn are uniformly bounded.With this notation we have

u(t, x) =
∫ t

0

∫
D

pDn
t−s(x, y)

Py(τDn > 1)
μn(dy ds).

The goal is then to show that the right-hand side converges to the right-hand side of
(1.2). To this end we will isolate small times and look separately at DN and D\DN .

Note that all μn are supported in D × [0, T ], so the sequence (μn) is tight and
we can extract a subsequence μnk converging weakly to μ. Furthermore, for every
U ⊂⊂ D and 0 < t < T , we have that μn(U × [0, t]) → 0 as n → ∞, so μ|D×[0,T )

must be concentrated on ∂D × [0, T ).
Since for y ∈ DN we have pDn

t−s(x, y) ≈ pDt−s(x, y) for n > N + 1, we find that

lim
n→∞

∫ t

0

∫
DN

pDn
t−s(x, y)

Py(τDn > 1)
μn(dy ds)

� lim
n→∞

∫ t

0

∫
D\Dn

u(s, z)
∫
DN

pDt−s(x, y)ν(y, z) dy dz ds = 0. (6.2)

We will now show that there exists a modulus of continuity ω independent of n such
that

∫ t

t−ε

∫
D

pDn
t−s(x, y)

Py(τDn > 1)
μn(dy ds) < ω(ε). (6.3)
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To this end we will show that the left-hand side converges to 0 as ε → 0+ for each
n > N , and that it is nonincreasing with respect to n for each (small) ε. By the
definition of μn and the fact that u is caloric,

∫ t

t−ε

∫
D

pDn
t−s(x, y)

Py(τDn > 1)
μn(dy ds) =

∫ t

t−ε

∫
D\Dn

J Dn (t, x, s, z)u(s, z) dz ds

= u(t, x) −
∫
Dn

pDn
ε (x, y)u(t − ε, y) dy.

The last expression converges to 0 for ε → 0+ for all fixed n, because u is continuous
in both variables, and it is nonincreasing with respect to n because of the domain
monotonicity. This proves (6.3).

Note also that the right-hand side of (1.2) is finite because μ is a finite measure and
ηs,Q(x) is bounded in s and Q for fixed x . Therefore,

lim
ε→0+

∫
[t−ε,t)

∫
∂D

ηt−s,Q(x)μ(dQ ds) = 0. (6.4)

By (6.2), (6.3), and (6.4), for any δ > 0 there exist ε (small) and N0 (large) such that
for n > N0,

∣∣∣∣
∫ t

0

∫
D

pDn
t−s(x, y)

Py(τDn > 1)
μn(dy ds) −

∫
[0,t)

∫
∂D

ηt−s,Q(x)μ(dQ ds)

∣∣∣∣

≤
∣∣∣∣
∫
[t−ε,t)

∫
∂D

ηt−s,Q(x)μ(dQ ds)

∣∣∣∣ +
∣∣∣∣
∫ t

t−ε

∫
D\DN

pDn
t−s(x, y)

Py(τDn > 1)
μn(dy ds)

∣∣∣∣

+
∣∣∣∣
∫ t

0

∫
DN

pDn
t−s(x, y)

Py(τDn > 1)
μn(dy ds)

∣∣∣∣

+
∣∣∣∣
∫ t−ε

0

∫
D\DN

pDn
t−s(x, y)

Py(τDn > 1)
μn(dy ds) −

∫
[0,t−ε)

∫
∂D

ηt−s,Q(x)μ(dQ ds)

∣∣∣∣

≤ 3δ +
∣∣∣∣
∫ t−ε

0

∫
D\DN

pDn
t−s(x, y)

Py(τDn > 1)
μn(dy ds) −

∫
[0,t−ε)

∫
∂D

ηt−s,Q(x)μ(dQ ds)

∣∣∣∣.

Furthermore, if N0 is large enough, then by Lemma 6.2,

∣∣∣∣
∫ t−ε

0

∫
D\DN

pDn
t−s(x, y)

Py(τDn > 1)
μn(dy ds) −

∫
[0,t−ε]

∫
∂D

ηt−s,Q(x)μ(dQ ds)

∣∣∣∣
≤ δ +

∣∣∣∣
∫ t−ε

0

∫
D\DN

pDt−s(x, y)

Py(τD > 1)
μn(dy ds) −

∫
[0,t−ε]

∫
∂D

ηt−s,Q(x)μ(dQ ds)

∣∣∣∣.

By Lemma C.1, μn · 1D×[0,t−ε] → μ1D×[0,t−ε] weakly. By Corollary 3.4, (s, y) �→
pDt−s (x,y)
Py(τDn>1) is in C([0, t − ε]× D). So, the last expression is smaller than 2δ for n large
enough, which ends the proof. ��
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Theorem 6.4 The measure μ obtained in Theorem 6.3 is unique.

Proof Following [12, 23], we start by showing that the measures μ
Q
n corresponding

to ηt,Q converge to δQ ⊗ δ0 for t > 0, Q ∈ ∂D. To this end, fix Q ∈ ∂D and let

μQ
n (y, s) = P

y(τDn > 1)
∫
D\Dn

ηs,Q(z)ν(y, z) dz, s > 0, y ∈ R
d .

By Lemma 3.5, μ
Q
n ((B(Q, ε) × [0, ε))c) → 0 as n → ∞, for any ε > 0. So, μn

converges weakly to δQ ⊗ δ0.
Now, let u be a singular caloric function and assume that

u(t, x) =
∫
[0,t)

∫
∂D

ηt−s,Q(x)μ(dQ ds).

Let μn(y, s) = ∫
D\Dn

P
y(τD > 1)u(s, z)ν(y, z) dz. By Fubini–Tonelli,

μn(y, s) =
∫
D\Dn

P
y(τD > 1)ν(y, z)

∫
[0,s)

∫
∂D

ηs−τ,Q(z)μ(dQ dτ) dz

=
∫
[0,s)

∫
∂D

μQ
n (y, s − τ)μ(dQ dτ).

Let f ∈ Cb(D × [0, T ]). Then,
∫ t

0

∫
D

f (y, s)μn(y, s) dy ds

=
∫ t

0

∫
D

f (y, s)
∫
[0,s)

∫
∂D

μQ
n (y, s − τ)μ(dQ dτ) dy ds

=
∫
[0,t)

∫
∂D

∫ t−τ

0

∫
D

f (y, s + τ)μQ
n (y, s) dy ds μ(dQ dτ).

Since μ
Q
n �⇒ δQ ⊗ δ0, the above integral with respect to dy ds converges to

f (Q, τ ). Therefore, by the dominated convergence theorem,

∫ t

0

∫
D

f (y, s)μn(y, s) dy ds −→
n→∞

∫
[0,t)

∫
∂D

f (Q, s)μ(dQ ds),

which means that μn �⇒ μ · 1D×[0,t). Thus, μ is uniquely determined by u. ��

6.2 Functions caloric on (0, T)× D

Theorem 6.5 Assume that u is caloric on (0, T ) × D and let g = u|Dc . Then there
exist unique bounded nonnegative measures μ on [0, T )× ∂D and μ0 on D such that
for all 0 < t < T and x ∈ D, (1.3) holds.
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Proof By the results of the previous subsection, there is a nonnegative measure μ on
∂D × (0, T ) such that for all 0 < ε < t < T and x ∈ D,

u(t, x) = PD
t−εu(ε, ·)(x) +

∫
[ε,t)

∫
∂D

ηt−s,Q(x) μ(dQ ds)

+
∫ t

ε

∫
Dc

g(s, z)J D(t, x, s, z) dz ds.

By nonnegativity and the monotone convergence theorem, the last two integrals
increase and converge as ε → 0+, so that

u(t, x) = lim
ε→0+

PD
t−εu(ε, ·)(x) +

∫
(0,t)

∫
∂D

ηt−s,Q(x) μ(dQ ds)

+
∫ t

0

∫
Dc

g(s, z)J D(t, x, s, z) dz ds,

where the remaining limit exists and the expression under it decreases. Since
pDt−ε(x, y) ≈ pDt (x, y) and pDt (x, ·) ≈ 1 for any U ⊂⊂ D we find that u(ε, ·) have
bounded integral onU . Therefore, by the Prokhorov theorem, there is a sequence (εn)

such that u(εn, ·) converge weakly on compact subsets of D to a measure μ0, locally
finite on D. Furthermore, we have

PD
t−εu(ε, ·)(x) =

∫
D
pDt−ε(x, y)u(ε, y) dy =

∫
D

pDt−ε(x, y)

Py(τD > 1)
P
y(τD > 1)u(ε, y) dy.

Since
pDt−ε(x,y)
Py(τD>1) ≈ pDt (x,y)

Py(τD>1) ≈ 1 we find that the functions y �→ P
y(τD > 1)u(ε, y)

have bounded mass. By Prokhorov theorem, we can infer without loss of generality
that Py(τD > 1)u(εn, y) converge weakly to a finite measure μ̃ on D. We have
μ̃(dy) = P

y(τD > 1)μ0(dy) on D. By (3.12),

lim
ε→0+

∫
D

pDt−ε(x, y)

Py(τD > 1)
P
y(τD > 1)u(ε, y) dy =

∫
D

pDt (x, y)

Py(τD > 1)
μ̃(dy)

=
∫
D
pDt (x, y) μ0(dy) +

∫
∂D

ηt,Q(x) μ̃(dQ).

We end the proof by defining μ on ∂D × [0, T ) as μ1∂D×(0,T ) + μ̃ ⊗ δ0(dt). ��

Appendix A: Weak and classical formulations for caloric functions

The following result seems to be well-known, but we were unable to locate a proof.
The arguments are very similar to the case of the Laplacian discussed by Hunt [46].

123



Caloric functions and boundary regularity...

Lemma A.1 For any x ∈ D the function (t, y) �→ pDt (x, y) is a classical solution to
the fractional heat equation with the Dirichlet condition:

{
(∂t − �

α/2
y )pDt (x, y) = 0 t > 0, y ∈ D,

pDt (x, y) = 0 t > 0, y ∈ Dc.
(A.1)

It is also a weak solution in the sense that for φ ∈ C∞
c ([0,∞) × R

d) and 0 < t1 <

t2 < ∞ we have

∫ t2

t1

∫
D
(∂t + �α/2)φ(t, y)pDt (x, y) dy dt =

∫
D

φ(t2, y)p
D
t2 (x, y) dy

−
∫
D

φ(t1, y)p
D
t1 (x, y) dy.

Proof By definition, the exterior condition is satisfied, so it suffices to verify that
(∂t − �α/2)pDt (x, y) = 0. To this end we will differentiate the Hunt formula. Using
the subordination and Fourier inversion formulas (see, e.g., Bogdan and Jakubowski
[22, Lemma 5]) it is easy to see that pt is smooth in x for t > 0 and ∂

β
y pt (x, y) is

bounded whenever |x − y| is separated from 0 for any β ∈ N0. Note that this is the
case for |XτD − y|. Therefore, for fixed (t, y), by the dominated convergence theorem
we find

∂β
y p

D
t (x, y) = ∂β

y pt (x, y) − ∂β
y E

x [pt−τD (XτD , y) ; τD < t]
= ∂β

y pt (x, y) − E
x [∂β

y pt−τD (XτD , y) ; τD < t].

Furthermore,

‖pDt (x, ·)‖C2(B(y,δD(y)/2)) < ∞, (6.2)

hence �
α/2
y pDt (x, y) is well defined for (t, y) ∈ D × (0,∞) and we have

�
α/2
y pDt (x, y) = �

α/2
y pt (x, y) − �

α/2
y E

x [pt−τD (XτD , y) ; τD < t].

We can also interchange �
α/2
y with the expectation. The easiest way to see that is by

using Fubini–Tonelli, (6.2) and the Taylor expansion in the following (symmetrized)
representation of the fractional Laplacian:

�
α/2
y u(x) =

∫
Rd

(u(x + y) − 2u(x) + u(x − y))ν(y) dy.

Thus, we obtain

�
α/2
y pDt (x, y) = �

α/2
y pt (x, y) − E

x [�α/2
y pt−τD (XτD , y) ; τD < t].
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We now compute the time derivative. Note that ∂t pt (x, y) exists and is equal to
�

α/2
y pt (x, y), so it is bounded for |x − y| separated from 0. We have

∂t p
D
t (x, y) = ∂t pt (x, y) − ∂tE

x [pt−τD (XτD , y) ; τD < t],

provided the last expression exists, which we now prove. Without loss of generality,
let h > 0. We have

1

h

[
E
x [pt+h−τD (XτD , y) ; τD < t + h] − E

x [pt−τD (XτD , y) ; τD < t]]

= 1

h
E
x [pt+h−τD (XτD , y) − pt−τD (XτD , y) ; τD < t]

+ 1

h
E
x [pt+h−τD (XτD , y) ; t ≤ τD < t + h].

By the dominated convergence theorem, we get that

lim
h→0+

1

h
E
x [pt+h−τD (XτD , y) − pt−τD (XτD , y) ; τD < t]

= E
x [∂t pt−τD (XτD , y) ; τD < t].

Furthermore, by (2.4),

1

h
E
x [pt+h−τD (XτD , y) ; t ≤ τD < t + h] ≤ CP

x (τD ∈ [t, t + h)),

and the last expression converges to 0 by the dominated convergence theorem. There-
fore we get

∂t p
D
t (x, y) = ∂t pt (x, y) − E

x [∂t pt−τD (XτD , y) ; τD < t]
= �

α/2
y pt (x, y) − E

x [�α/2
y pt−τD (XτD , y) ; τD < t] = �

α/2
y pDt (x, y),

so pDt is a classical solution to the fractional heat equation (A.1). It is also a weak
solution, as follows from integration by parts and the fact that the support of the test
function φ is separated from ∂D. ��

Appendix B: Almost-increasingness

The following result is used in the proof of Lemma 5.16.

Lemma B.1 For open U ⊂⊂ U ′ ⊂⊂ D and T > 0, there exists C = C(d, α, D,U , d
(U , (U ′)c), T ) such that

pDs (x, y) ≤ CpDt (x, y), x ∈ U , y ∈ D \U ′, 0 < s < t < T .
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The proof (given below) relies on approximate factorization of pDt and the next
lemma on the survival probability P

y(τD > s). Of course, the latter is nonincreasing
in s ∈ (0,∞). The following relative upper bound is a partial converse and may be
independent interest.

Lemma B.2 Let T > 0. There exists C = C(d, α, D, T ) and σ ∈ (0, 1) such that

P
y(τD > s)

Py(τD > t)
≤ C

(
s

t

)−σ

, y ∈ D, 0 < s < t < T . (B.1)

Proof By [19, Remark 3] and scaling, Py(τD > t1) ≈ P
y(τD > t2), uniformly in

y ∈ D and t1, t2 in each compact subset of (0,∞). Therefore we may assume that
s and t in (B.1) are small. Then we can also assume that y is close to the boundary,
otherwise the terms on the left-hand side of (B.1) are bounded from below by the
survival probability of a sufficiently small ball (and aboveby1). In this setting, recalling
the notation of Sect. 2.1, by [19, Theorem 2] and [48, Lemma 17] we get

P
y(τD > s)

Py(τD > t)
≈ E

At1/α (y)τD

E
As1/α (y)τD

≈ �(At1/α (y))

�(As1/α (y))
, (6.2)

uniformly for the considered point y and times s, t .
Let Q ∈ ∂D be closest to y. To estimate the rightmost ratio in (6.2), we consider

three geometric situations:
Case 1. If y ∈ At1/α (y) ∩ As1/α (y), then we can take At1/α (y) = As1/α (y) = y,
proving (B.1).
Case 2. If y ∈ As1/α (y), but y /∈ At1/α (y), then κs1/α ≤ δD(y) = |y − Q| < κt1/α ,
so

|At1/α (y) − At1/α (Q)| ≤ |At1/α (y) − y| + |y − Q| + |Q − At1/α (Q)| ≤ (2+ κ)t1/α.

By definition, δD(At1/α (y)) ∧ δD(At1/α (Q)) ≥ κt1/α . Therefore, by the Harnack
inequality [14, Lemma 1], we find that �(At1/α (y)) ≈ �(At1/α (Q)).

On the other hand, since κ ≤ 1/2, we have y ∈ AδD(y)/κ (Q). In particular, we can
take As1/α (y) = AδD(y)/κ (Q) = y. Then, by [12, Lemma 5], we get

�(At1/α (y))

�(As1/α (y))
≈ �(At1/α (Q))

�(AδD(y)/κ (Q))
�

(
t1/α

δD(y)/κ

)γ

≤
(
s

t

)−γ /α

,

where γ = γ (d, α, D) ∈ (0, α). This ends the proof in this case.
Case 3. If y /∈ As1/α (y) ∪ At1/α (y), then δD(y) < κs1/α < κt1/α . By the same
argument as in the previous case, �(At1/α (y)) ≈ �(At1/α (Q)), �(As1/α (y)) ≈
�(As1/α (Q)), and

�(At1/α (y))

�(As1/α (y))
≈ �(At1/α (Q))

�(As1/α (Q))
�

(
s

t

)−γ /α

.
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The proof is complete. ��

Let us explain why (B.1) is a partial converse to nonincreasingness of the survival
probability. We may interpret (B.1) as weak lower scaling (with exponent −σ ) near
s = 0 of the survival probability f (s):=P

x (τD > s), uniform in x ∈ D. Such scaling
is defined as almost-increasingness f (s)/s−σ ≤ C f (t)/t−σ for (bounded arguments)
0 < s ≤ t ; see, e.g., [20].

Proof of Lemma B.1 We use (2.6):

pDs (x, y) ≈ P
x (τD > s)ps(x, y)P

y(τD > s).

Since x ∈ U ⊂⊂ D, we have Px (τD > s) � P
x (τD > t) because the latter quantity is

bounded from below by a constant depending only onU , d, α, D, and T . Furthermore,
since y ∈ D\U ′, by (2.4) we have ps(x, y) ≈ s. Therefore the statement of the lemma
follows from Lemma B.2. ��

Appendix C: Nomass concentration forward in time

Let μn be the sequence of measures converging to μ constructed in the proof of
Theorem 6.3. We will show that μn · 1[0,t]×D do not accumulate mass at time t . Here
is the precise formulation.

Lemma C.1 Let 0 < t < T and let f ∈ C([0, t] × D). Then

lim
n→∞

∫ t

0

∫
D

f (s, y)μn(dy ds) =
∫
[0,t)

∫
∂D

f (s, Q)μ(dQ ds).

Proof It suffices to show that

lim
ε→0+

lim sup
n→∞

∫ t

t−ε

∫
D

μn(dy ds) = 0. (6.3)

Fix θ ∈ (0, T − t) and x ∈ D. By (2.6) we have

∫ t

t−ε

∫
D

μn(dy ds) =
∫ t

t−ε

∫
D\Dn

∫
Dn

u(z, s)Py(τDn > 1)ν(y, z) dy dz ds

≈
∫ t

t−ε

∫
D\Dn

u(z, s)
∫
Dn

pDn
t+θ−s(x, y)ν(y, z) dy dz ds

=
∫ t

t−ε

∫
D\Dn

u(z, s)J Dn (t + θ, x, s, z) dz ds.
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Note that

∫ t

t−ε

∫
D\Dn

u(z, s)J Dn (t + θ, x, s, z) dz ds

= u(t + θ, x) −
∫ t+θ

t

∫
D\Dn

u(z, s)J Dn (t + θ, x, s, z) dz ds − PDn
θ+εu(t − ε)(x)

= PDn
θ u(t)(x) − PDn

θ+εu(t − ε)(x)

= PDn
θ (u(t) − PDn

ε u(t − ε))(x).

We note that by the caloricity of u, the monotone convergence theorem, and the fact
that pDn

t ↗ pDt pointwise, we have PDn
τ u(t)(y) ↗ PD

τ u(t)(y) ≤ u(τ + t, y) < ∞,
for τ = θ, ε. Furthermore, we have 0 ≤ u(t, y) − PDn

ε u(t − ε)(y) ≤ u(t, y) for all
y ∈ D, so by the dominated convergence theorem,

lim
n→∞ PDn

θ (u(t) − PDn
ε u(t − ε))(x) = PD

θ (u(t) − PD
ε u(t − ε))(x).

Now, it suffices to show that u(t) − PD
ε u(t − ε) converges to 0 pointwise in D. To

this end, we let y ∈ D and take n such that y ∈ Dn . Then,

u(t, y) − PD
ε u(t − ε)(y) ≤ u(t, y) − PDn

ε u(t − ε)(y)

=
∫ t

t−ε

∫
D\Dn

u(s, z)J Dn (t, y, s, z) dz ds,

and the last expression converges to 0 as ε → 0+ by the dominated convergence
theorem. This proves (6.3). ��
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