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Abstract

Given an isometry invariant valuation on a complex space form we compute its value
on the tubes of sufficiently small radii around a set of positive reach. This generalizes
classical formulas of Weyl, Gray and others about the volume of tubes. We also develop
a general framework on tube formulas for valuations in Riemannian manifolds.
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1 Introduction

For a compact convex set A C R, the Steiner formula computes the volume of the
set A; consisting of points at distance smaller than ¢ from A as follows

vol(Ar) = ) @m—ipi (A" . M
i=0

Here the functionals w; are the so-called intrinsic volumes, and the normalizing con-
stant wy is the volume of the k-dimensional unit ball. By Hadwiger’s characterization
theorem, the intrinsic volumes span the space of valuations (finitely additive function-
als on convex bodies) that are continuous and invariant under rigid motions.

The famous fube formula of H. Weyl [28] is the assertion that (1) holds true for
A C R™ a smooth compact submanifold and r > 0 small enough, with the additional
insight that the coefficients u; (A) depend only on the induced Riemannian structure
of A. Even more generally, Federer extended the validity of (1) to the class of compact
sets of positive reach. Later on, the same formula has been proven to hold for bigger
classes of sets (see e.g. [14, 16]). As for the coefficients p;, the current perspective is
to view them as smooth valuations in the sense of Alesker’s theory of valuations on
manifolds (see [4]).

Already in Wey!’s original work, the tube formula was extended to the sphere and
to hyperbolic space. In that case, instead of a polynomial on the radius ¢ one has a
polynomial in certain functions sin) (¢), cos; (¢) whose definition we recall in (52).
Later, Gray and Vanhecke computed the volume of tubes around submanifolds of rank
one symmetric spaces (cf. [19, 20]).

All these classical tube formulas are most naturally expressed in the language of
valuations on manifolds. Furthermore, this theory has allowed for the determination of
kinematic formulas (a far-reaching generalization of tube formulas) in isotropic spaces.
These spaces are Riemannian manifolds under the action of a group of isometries that
is transitive on the sphere bundle. For instance, in [10] and [11] the kinematic formulas
of complex complex space forms (i.e. complex euclidean, projective and hyperbolic
spaces) were obtained, and Gray’s tube formulas on such spaces were recovered.

Tube formulas, however, exist also for other valuations than the volume, and these
do not follow from the kinematic formulas. For instance, differentiating the Steiner
formula one easily obtains

k .
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Tube formulas for valuations in complex space...

In real space forms (i.e. the sphere and hyperbolic space), Santalé obtained similar
tube formulas for all isometry invariant valuations (see [26]). For rank one symmetric
spaces, the tube formulas of a certain class of valuations (integrated mean curvatures)
were found in [19], still with a differential-geometric viewpoint. There are however
many invariant valuations on these spaces that were not considered.

In this paper we prove the existence of tube formulas for any smooth valuation in
a Riemannian manifold. Then we develop a method to determine these formulas for
the invariant valuations of an isotropic space. Using this method we compute all tube
formulas explicitly in the case of complex space forms. In fact, our approach also
reveals some interesting aspects in the case of real space forms.

Let us briefly describe our results. First, given a Riemannian manifold M we con-
struct a family T; of tubular operators on the space V(M) of smooth valuations of M
such that for any 1 € V(M) and every compact set of positive reach A C M one has

m(A) =T u(A),

for t+ > 0 small enough (see Definition 4.1 and Corollary 4.7). Differentiating T; at
t = O yields an operator d: V(M) — V(M).If G is a group of isometries of M acting
transitively on the sphere bundle SM, the subspace V(M)% of G-invariant valuations
is finite dimensional, and the determination of the tube operators T, reduces to the
computation of the flow generated by 9.

Once this general framework is established we concentrate on the complex space
forms CP;'. For A = 0 this refers to complex euclidean space C" under the group
of complex isometries, and for A # O this is the n-dimensional complex projective
or hyperbolic space of constant holomorphic curvature 4A, under the full group of
isometries G. We simply denote V)'f,c = V(CP}’f)G.

For A = 0, we will readily obtain the tube formulas T, of all translation-invariant
and U (n)-invariant continuous valuations u thanks to the existence of an sl;-module
structure on the space Val” ™ of such valuations. This structure, discovered by Bernig
and Fu in [10], is induced by two natural operators A, L, the first of which is a
normalization of 9.

Remarkably, it turns out that also for A # 0 the derivation operator d is closely
related to the operators A, L of the flat space. Indeed, in Theorem 4.11 we find an
isomorphism ®@; : ValV® — Vf,c such that

dlyn = ®; 0 (A —AL)od; (3)

Using the decomposition of ValV™ into sl,-irreducible components, the compu-
tation of the tubular operator boils down to the solution of a Cauchy problem in some
abstract model spaces, yielding our main result.

Theorem There exists a basis {U,()" .} of the space Vf,c of invariant valuations of CP;!

such that
2n—4r

Ao § : A A
Tfak,r - ¢2n—4r,k—2r,j(t)aj+2r,r’ (4)
Jj=0
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where

Shi = (=) ('Z - Z ) (;l ) sin} /7 () cos T ),

h>0

We describe the basis a,é , explicitly in terms of the previously known valuations
r,i » of [11]. The tube formulas for the t,i p can be easily obtained from the previous

ones, as we also provide the expression of these valuations in terms of the a,ft o

Curiously, the expressions (4) are extremely similar to those obtained by Santal6
in the real space form S}’ of constant curvature A. Indeed, for a certain basis {0;}
of the space V", of isometry invariant valuations of S}’ one has

m—1
Py X Py .
T;o/ = E ¢m71)i)j(t)a-, 0<i<m-—1.
Jj=0

The tube formula for o, = vol is however quite different. As an explanation for these
similarities, we show in Theorem 4.12 the existence of a phenomenon similar (but not
completely analogous) to (3).

The paper concludes with a detailed study of the spectrum and the eigenspaces of
the derivative operator 9 in V)'\”C and V)YLH,JR' In particular, we compute the kernel of 9 in
Vf,(c; i.e. we determine the invariant valuations of (CP{' for which the tube formulas
are constant. We also identify the images d(V; ) and 9(V}"), and we compute the
preimage by d of any element belonging to these subspaces.

2 Background
2.1 Valuations

Let V be a finite-dimensional real vector space, and let (V') be the space of convex
compact subsets of V, endowed with the Hausdorff metric. A valuation on V is a map
¢: K(V) — C such that

(AU B) = ¢(A) + ¢(B) — ¢(AN B),

for A, B, AUB € K(V). The space of translation-invariant, continuous valuations on
V is denoted by Val(V).

The notion of valuation was extended to smooth manifolds by Alesker (cf. [2—4,
6]). For simplicity we will focus on the case of a Riemannian manifold M". It is also
natural to consider here the class of compact sets of positive reach in M, which we
denote R(M). The definition and some basic properties of such sets are recalled in
Sect. 4.2.

Let SM be the sphere bundle of M consisting of unit tangent vectors, and let
m: SM — M be the canonical projection.
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Definition 2.1 (Smooth valuation) A smooth valuation on M is a functional ¢ : R(M)

— C of the form
@(A) :/ w+/ n,
N(A) A

where w € Q"~1(SM) and n € Q"(M), are complex-valued differential forms, and
N (A) is the normal cycle of A (cf. e.g. [14]). We will denote ¢ = [[w, n] in this case.
For any subgroup G < Diff (M), we will denote by V¢ (M) the space of G-invariant
valuations; i.e. u € V(M) such that u(gA) = u(A) forall A € R(M) and g € G.

The kernel of the map (w, ) — [[w, ]l was determined by Bernig and Brocker in
[8] as follows. Given w € Q"1 (SM), there exists & € Q"2(SM) such that

Dw :=dw+a né),

is amultiple of «, the canonical contact form on SM. The unique n-form Dw satisfying
this condition is called the Rumin differential of w (see [24]). Then [[w, n]] = 0 if and
only if

Dw+7*n =0, and / w=0, VxeM. 5)
S M

One of the most striking aspects of Alesker’s theory of valuations on manifolds is
the existence of a natural product on V(M), which turns this space into an algebra
with x as the unit element. The realization by Fu that this product is closely tied to
kinematic formulas opened the door to the recent development of integral geometry
in several spaces, including the complex space forms [1, 10, 11].

Another important algebraic structure is the convolution of valuations found by
Bernig and Fu in linear spaces (cf. [9], but also [5]). This is a product on the dense
subspace Val® (V) := Val(V)NV (V) characterized as follows. Given A € KC(V), with
smooth and positively curved boundary, we have w4 () := vol(- + A) € Val®(V).
The convolution is determined by

pax@:=¢(+A), ¢eVa®(V), (6)

where + refers to the Minkowski sum. In particular, vol is the unit element of this
operation.

2.2 Real space forms

The fundamental examples of valuations in Euclidean space R™ are the intrinsic
volumes 1. These are implicitly defined by the Steiner formula
m
volgn (A +1B") = Y 1" Ko (A), A € KR™), ©

k=0
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where B is the unit ball and w; is the volume of the i-dimensional unit ball. In
particular wo = x, Um—1 = %perimeter, and u, = vol,, are intrinsic volumes.

We will denote by S}' the m-dimensional complete and simply connected Rie-
mannian manifold of constant curvature A. That is, the sphere S’”(\/X) for A > 0,
Euclidean space R” for A = 0, and hyperbolic space H™ (v/—2) for » < 0. Let G; r
be the group of orientation preserving isometries of S}*;i.e. G, g = SO(m + 1) for
A>0,and G, g = SO(m) x R™ for A = 0, while G, g = PSO(m, 1) for A < 0.
We will denote by Vi”’R the space of G, g-invariant valuations of Si'.

Let &g, ..., km—1 € Q"71(SSI")OrE be the differential forms defined in [13,
§0.4.4]. In the same paper it was shown that the R-algebra of G, g-invariant dif-
ferential forms is generated by «o, .. ., k;u—1, @, da. It follows by [11, Prop. 2.6] that
the following valuations constitute a basis of V;”’R

cr,-)‘:zl[Ki,O]], O0<i<m-—1
X
0, = volgm .

In euclidean space R these valuations are proportional to the intrinsic volumes:
A : —
ol = (m—i)wm—ipki, r=0.
A . . )\. . .
For general A, the o;* are proportional to the valuations z;* appearing in [7, 17]

A Tm—Dop—i

i = o 5 0<i<m-—1, (8)
Lhad']
nm
2 A
o = . ©)]
" mlw, ™

As we will see, the normalization taken for the al?‘ makes the tube formulas in VK”R
specially simple. A stronger reason in favor of this normalization is Theorem 4.12.

2.3 Complex space forms

We denote by CP}' the complete, simply connected n-dimensional Kahler manifold
of constant holomorphic curvature 41; i.e. the complex projective space (with the
suitably normalized Fubini-Study metric) for A > 0, the complex euclidean space C”
for A = 0, and the complex hyperbolic space for A < 0. For A #= 0 we let G, ¢ be
the full isometry group of CP}'. For A = 0 we put G; ¢ = U(n) x C". We denote by
V! ¢ the space of G, c-invariant valuations on CP;'.

Let {Bk.q, Vk,q} C Qz”_l(S(CP/{')GMC be the differential forms introduced in [10]
for A = 0, and extended to the curved case A % 0 in [11]. Let also

1y g = [Brg. 01, k> 2q. (10)
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n—q—1 i . n—
AN (g +0)! A 4 p)
Wgg = 3 (—) S [[qu+zi,q+i,0]]+<;> 0. dvoll (1)

T
i=0

where dvol is the Riemannian volume element. It was shown in [10, 11] that these
valuations M% q with max{0,k —n} < g < % < n constitute a basis of V;’ c- It is

convenient to emphasize that the u,)c“ g do not coincide with the hermitian intrinsic
volumes u,i‘” q for M = CP}" introduced in [12].

For A = 0 we simply write 1 4 instead of M(k) 7 We will also use the so-called
Tasaki valuations

It will be useful to consider the following linear isomorphisms:
Frc: V'™ — VI F e(rg) = 1y,

More generally, whenever we have a valuation v in ValV ™ we will denote v* :=
Fi,c(v). For instance r,?q = F.,c(Thq)-

3 Tube formulas in linear spaces

Let V be an m-dimensional euclidean vector space. Given ¢ > 0, let T;: Val(V) —
Val(V) be given by

(Trw)(A) = (A +1B"™) = (wmn x 1)(A) A e K(V), 12)

where B™ is the unit ball. We will call T, the fubular operator. Let also 9: Val(V) —
Val(V) be the operator given by

= —| T 13
Iz il e (13)

This operator has sometimes been denoted by A in the literature, but following [10]
we reserve the symbol A for a certain normalization of 9 (see (18)).

The properties of the Minkowski sum ensure that T;1; = T, o Ty = Ty o T;.
Differentiating with respect to s at zero yields

d
77 i =Tiop =T, p. (14)
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It follows that

di

t=0

Biu

For each € Val(V), the map ¢ + T;u is a polynomial in ¢ of degree m by (12) and
the Steiner formula (7) (or by [23]). Hence

toid
T, n = —_ — T 16
th ;i'dﬂzotu (16)
m li )
:Z,—pm. (17)
i=0l'

Note also that, by (15) and (16), the derivative operator 9 is (m + 1)-nilpotent; i.e.
8m+1 —0.

Let us compute the tube formula for the intrinsic volume u; foreach 0 < i < m
using (17). For that purpose we first compute 9. Since T, s = T o T; we have

m

T, 45 vol = Zwm_jt'"—fTsuj.
j=0
On the other hand
m
T4 vol = Z Om—j(t+ )"y,

Jj=0

Differentiating at s = 0 and comparing coefficients yields

Wm—j+1

ouj = (m—j+Dpj-1.

m—j

Finally, using (17), we get

kg Om—k+i (m —k +1)!

o
.
Tzuk=zﬁalﬂk=

- Mk—i
] Y
=i i om—k (m — k)!
k m—j\ on—j
“ (1)
=0 J m—k

which is (2).

In order to compute the tube formulas for invariant valuations in C” (i.e. to determine
T, on ValV ™), it will be useful to recall the sl,-module structure of Val? ™ found in
[10]. Consider the linear maps A, L, H: Val®*(V) — Val®°(V), defined as follows
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_ 2
Av = M81), Ly := ﬂul D, Hv = 2k —m)v, v € Val®(V),
Wm—k+1 W1
(18)
where - refers to the Alesker product.
Proposition 3.1 On Val®"™ the operators A, L are given by
Ly = (k + Dk, 19)
Apge = (m —k + Dpg—1, (20)
while on ValV ™ one has
Lpk,p = (k= 2q + Ditk1,g +2(q + Ditk41,g+1 21
Apkp = (k=29 + Dpk—1,9-1 + 200 =k +q + D14, (22)
which implies
Ltg = (k=29 + Dit14 (23)
Atpg=( =2+ Dtr—14-1+2n—2qg —k+ D14 (24)

Proof The first two equalities are [7, egs. (2.3.12) and (2.3.13)]. The rest is [ 10, Lemma
5.2]. O

Proposition 3.2 ([7, Prop. 2.3.10 (3)]) The operators A, L, H define an sly-module
structure on both Val®™ and ValV™; ie. [L, Al = H, [H,L] = 2L,[H, A] =
—2A.

The decomposition into irreducible components is as follows

Valom =y valV0 =y y e (25)

0<2r<n

where V™ is the (m + 1)—dimensional irreducible sl,-representation. In particular,
for 0 < 2r < n, there exists a unique, up to a multiplicative constant, primitive
element (i.e. anihilated by A) in each irreducible component of ValV ™ By the so-
called Lefschetz decomposition, the L-orbits of these primitive elements consitute a
basis of ValV ™. This basis was explicitly computed in [10] as follows.

Proposition 3.3 ([10, eq.(76)]) The following valuations

- . @Qr=2i—1N
oy = (=1)"2n —4r + D! Z(—l)’ n 2 2t 1)”1:2,,,-, 0<2r<n,
i=0 06
are A-primitive; i.e. Ama, , = 0. The family
Ty =Ly, , (27
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(k 20 (2r —2i — D!
—20) (2n —2r —2i + D!

= (=1 <2n—4r+1>"Z< 1>l Thi.
2r <k <2n-2r (28)
forms a basis of ValV™,
In particular the irreducible components of ValV ™ are the following subspaces
Iy = {nk,r :2r§k§2n—2r}, 0<2r<n. (29)
We are now able to compute the tube formulas in the complex case using (17).

Theorem 3.4

“or .
(k—2n)! 21 K 2n—A4r — J\ g0 j@2n-2r—j
Ty = == 2_: o) e G0

Proof. By [10, Lemma 5.6],

Ami, = (k—=2r)2n —k —2r + Dmg—1,r, 3D
and then
. k—2r)!2n—k—2 !
A, = Lz 20 L, (32)
’ k—=2r—i)!2n —k —2r)!
Using (17), we obtain the tube formula
Lt w »
Ttnk,r = - 2kt Alnk,r
= il wy—k
(k= 2 " 4 Qn—k —2r +i)!
= — Wi i
omk ! ke e 2 Z @i — k — 2 K
k—2r .
(k —2r)! 2n —4r — j\ j_op_ i @2m—2r—j
=—= t =i, O
o 2\ k—2r— jroe

These tube formulas can also be given in terms of the valuations 7 4. To this end,
we next compute their Lefschetz decomposition.

Proposition 3.5 The Lefschetz decomposition of Ty is given by
1 " (n—2i\ 2n —2i —2r)!

- E A ——— T 33

r = k= 2r)! i_()(r—i) Qn —diy e 59
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Proof. Consider the linear map v : ValV ™ — ValV™ mapping 1, to the left hand
side of (33). We need to show that ¢ = id. Let us check that this endomorphism
commutes with both A and L. To check commutation with A, we only need to verify
the following

(k = 2r)!y (A (i)
B ’Z‘f (n —20)!2n — 2i —2r +2)!
i=0

—i—Dln—r —i+ D@ —di <l

(n —2)!(2n — 2i — 2r)!
=Dl —i—nl2n—4i) " *

.
+(k—2r)(2n—k—2r+1)z Y
i=0

(=220 —2i — 2r)!
N g r—Dn—i—r)Q2n—4i)!

= (k = 2r)! Ay (i ).

(k—=20)2n —k —2i + Dmg—1,;

Comparing term by term, the previous identities boil down to
2r — )2 —2i —2r+ D)+ (k—=2r)Q2n —k —2r + 1) = (k — 2i)2n —k — 2i + 1)

which is trivial.

Commutation with L is straightforward using Ly ; = mg41,;-

Given that y commutes with the operators A and L and Val” ™ is multiplicity-free,
Schur’s lemma implies that for each 0 < 2r < n, there exists a constant ¢, such that

Ylr = ¢ id.
L%:t azy, j and by, ; be the coefficients of 7, ; and 72, ; in (33) and (26) respectively,

so that Y (to,,1) = - azr, jor,j and 7o, » = 3 5o b2y iTor,i- Then

r

r i r
oy = Y (o) = E by i Zazr,jﬂzr,j = E szr,iazr,jﬂzr,j-

i=0 Jj=0 Jj=0i=j

Comparing the coefficient of 72, , on both sides we get ¢, = by, raz, , = 1 for each
0 < 2r < n. Hence ¢ = id, which proves (33). O

By plugging (28) and (33) in (30) one gets the tube formulas T, 7i , in terms of the
Ti,j-
4 Tube formulas in Riemannian manifolds
4.1 Tubular and derivative operators

Next we extend to any complete Riemannian manifold M the tubular operator T
introduced in the previous section on linear spaces. Let T be the Reeb vector field
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on SM, which is characterized by ire = 1 and Lra = 0, where L is the Lie
derivative. The Reeb flow ¢ : SM x R — SM, defined as the flow of T, is a family
of contactomorphisms and coincides with the geodesic flow on SM (see e.g. [18,
Theorem 1.5.2]).

Definition 4.1 (Tubular and derivative operators) Given t > 0, we define the rubular
operator T; by

T,: V(M) — VM), [, n]l — l[¢;w + (p)«(7 0 )"0, nll,

where p;: SM x [0, t] — SM is the projection on the first factor, and ¢, = ¢ (-, t).
We define the derivative operator 0 = 9y by

om: VM) — VM), pr— i

T .
di 7%

t=0

To show that these definitions are consistent, suppose i = [[w, n]] = 0, and let us
check that T,u = O forall t > 0, i.e.

¢>,*w+f (pt>*<no¢>*n+/ n=0, VAeTR(M).
N(A) N(4) A
By (5) we have 7*n = —Dw = —d(w + & A «). Hence

_/ (P)«(m o p)'n = —/ (P)+ 0 ¢*Dw = —/ p*d(w+& Aa)
N(A) N(A) N(A)x[0,1]

:—/ dqb*(w—i—s/\a):—/ P*w+¢*E N
N(A)x[0.1]

N(A)x{0,t}
=/ ¢3;w—/ ¢,*w=/ w—f oro,
N(A) N(A) N(A) N(A)

as o vanishes on N(A). Since [[w, n]] = 0, we have fN(A) w = — [, n. Therefore
T[,bL =0.
Let us next establish some basic properties of these operators.

Lemma 4.1
d . . .
E(pz)*cb p=ird p, peQ(SM)

Proof Given a compact smooth submanifold N C SM,
t
/(p,>*¢*p=/ ¢*p=f im*pAdr:f (/ ¢;"ia¢p> dt,
N Nx[0,1] Nx[0,r] 9 0 N a

Since i7 and ¢; commute, the result follows. O
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Proposition 4.2 For u = [[w, 11,

(i) op = llir (dw +7*n), 0]
(i) Trrspu = (T, 0 Ty)u

Proof Modulo exact forms we have

d

s ¢ 0 =Lrpfw=ire/do. (34)
S 1s=0

d
@ =
Together with Lemma 4.1, this yields

d
ET“M = llir (d;w + ¢/ n), O]. (35)

Evaluating at t+ = 0, this gives (i).
In order to prove (ii), it is enough to check that both sides have the same derivative
with respect to s, as they clearly agree for s = 0. By (35), we have

d d
aTt oTs(u) =T, 0 ZTS(,U«)
= T [lir (dp;w + ¢;7*n), 0]

= [¢/ir(dp;w + ¢ ™n), O].

Since ¢; and i7 commute, it follows from (35) that %T,H = %Tr o T;. O

Fix u € V(M). It follows from Proposition 4.2 (ii) that

d
ZT, 0= 9T, 1u. 36
77 Tt 70 (36)

If w € V(M)C for a group G acting on M by isometries, then also T; i € V(M)C.
Hence, in case V¢ (M) is finite-dimensional, computing T; x boils down to solving
the Cauchy problem (36) with initial condition Tou = u; i.e.

t
T = exp(td)p =y | —o'p. 37)
i=0
This is the approach we will follow to obtain the tube formulas for invariant valuations

in complex space forms. Note that (37) coincides with (16) except that @ does not need
to be nilpotent for general M.

4.2 Tubes in Riemannian manifolds

Let M be a complete Riemannian manifold and let d: M x M — [0, c0) be the
Riemannian distance on M. For t > 0, the tube of radius ¢ around a subset A C M is
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defined as
Ari={peM:ds(p) <t},
where

da(p) :=inf{d(p,q) : q € A}.

Next we review some basic facts about tubes around sets of positive reach (introduced
by Federer in euclidean spaces and by Kleinjohann in Riemannian manifolds). For
such sets A we will prove that T, (A) = u(A,) for any u € V(M) and sufficiently
small 7.

Definition 4.2 (Sets of positive reach) A set of positive reach in M is a closed subset
A C M for which there exists an open neighborhood U4 D A such that for every
p € Uy\A there exists a unique point f4(p) € A such that d(p, fa(p)) = da(p),
and a unique minimizing geodesic joining p with f4(p). We denote by R(M) the
class of compact sets of positive reach in M.

By the previous definition, there is a well-defined map
Fa:UN\A — SM,  Fa(p) = (r(0), 7' (0)) (38)

where y is the unique minimizing geodesic such that y (0) = fa(p) and y (da(p)) =

p.
It was shown by Kleinjohann [22, Satz 3.3] that N(A) := Fs(Us\A) is a natu-

rally oriented compact Lipschitz submanifold of SM. The corresponding current, also
denoted by N(A), is called the normal cycle of A. It follows from Proposition 4.6
below that N (A) is legendrian (i.e. it vanishes on multiples of «).

Proposition 4.3 ([22, Satz 3.3, Korollar 2.7]) Given a set of positive reach A in M
there exists r = ra > 0 such that A, C Up and

(i) forO <t < rthe restriction Falyy, gives a bilipschitz homeomorphism between
dA; and N(A), preserving the natural orientations,
(ii) the distance function d is of class C' in A\ A and

bas(p)(FA(P)) = (p. Vda(p)), 94, =d; ({1}

for0 < t < r. In particular, each level set dA; with 0 < t < r is a C'-regular
hypersurface with unit normal vector field Vd 4.

The following propositions are certainly well-known.

Proposition 4.4 For 0 < s < r = ra the set A has positive reach and on A,\ Ay we
have
da, =da—s, Fa, =¢s0Fs. (39

In particular (Ag); = Asys fort +s <.
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Proof Let p € A;\As, and put d = da(p). Let y: [0,d] — A, be the unique
minimizing geodesic with y(0) = fa(p) and y(d) = p. In particular |y’| = 1 and
thus y (s) € A;.

Assume that y |[s, 4] does not minimize the distance between p and Ay, i.e., there
exists a smooth curve « : [0, 1] — M with g := «(0) € Ay, (1) = p and length
L(a) < d — s. It follows that

da(p) = Ua) +da(q) = () +5 < da(p),

a contradiction. We conclude that y |[5 4] realizes the distance d4, (p). Hence d4, (p) =
ds(p) — s and

Fa (p) = (¥ (), ¥'(5) = ¢5(¥(0), ¥ (0)) = b5 (Fa(p)).

O

Proposition 4.5 For 0 < s < ra, the restriction ¢s|ya) is a bilipschitz homeomor-
phism between N (A) and N (Ay).

Proof Takerwiths <t < min(ra, s+ra,). By Proposition4.3,both Faly,s, : 0A; —
N(A) and Fy; : 0A; — N(Ay) are bilipschitz homeomorphisms. By (39) we

|aA,
have

$slviay = Faglya, © (Falaa) ™"

The statement follows. O

Proposition 4.6 For (0 <t < ry the composition 1w o ¢ gives a bijective Lipschitz map
between N(A) x (0, t] and A\ A.

Proof Since 7, ¢ are smooth, the restriction of 7 o ¢ to the Lipschitz manifold N (A) x
(0, 1] is clearly Lipschitz.

Given (&,s5) € N(A) x (0, t], we know by the previous proposition that ¢ (€, s) €
N(A;) and thus w o @ (x,5) € 0A; C Ar\A.

To check surjectivity, given p € A;\A take & = Fa(p),s = da(p) and note that
Top(§,s)=p.

As for injectivity, suppose 7w o ¢(&1,11) = 7w o ¢p(&,) =: p for some
&1,1), (5,1) € N(A) x (0,t]. By the previous proposition p belongs to both
0A;,0A, sot) = tr. For s € [0, #1], the geodesics y1(s) = m o ¢ (&1, 5), ya(s) =
7 o ¢ (&2, s) realize the distance between p and A. Since A; C A,, C Uy, we have
y1 = y2 and thus &; = &,. O

Corollary 4.7 For every A € R(M) and n € V(M) we have u(A;) = T, u(A) for
0<71<ry.

Proof. Let ;v = [[w, n]l. By Propositions 4.5 and 4.6 and the coarea formula,

n(Ar) =/ w+/ n/ w
N(A) A (N (A)
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+/ n+/n=T,u(A). O
(o) (N (A)x(0,t]) A

Remark In the subclass P(M) C R(M) of compact submanifolds with corners, the
normal cycle is more naturally defined as follows. For A € P(M) and p € A, let

T,A = |;/(0) eT,M:y e C (0. 1), A), y(0) = p}
N'(A) ={(p,v)eSM:pec A, {v,w) <0Vw € T,A}.

Let us check that indeed N’(A) equals N(A) = F4(Uga). Covering A by local charts
(locally modelled on R¥ x [0, 00)! ¢ R™), and considering the copy of N’(A) in the
cosphere bundle of M, one sees that N'(A) is a compact topological manifold.

It is also easy to show that N(A) C N’(A). It then follows by the invariance of
domain theorem that N (A) is an open subset of N'(A). Since N'(A) is a Hausdorff
space and N (A) is compact, we also have that N (A) is a closed subset of N’(A). Since
the number of connected components of both N(A), N'(A) clearly equals the number
of connected components of A, we necessarily have N(A) = N'(A).

4.3 Derivative operators in ST and CP}

Given A € Rlet 9, r: V' — Vi be the restriction of 3S'A” to Vi, and let 9; ¢ be
the restriction of d¢py to V)l .

Proposition 4.8
dro} = (m —i)oi | — A + Doty 0<i<m-—2, (40)
RO = 0o, (41)
BROE =0k, (42)

where it is understood that ofl =0.
Let us emphasize that (40) would make formal sense but does not hold fori = m—1.

Proof By [15, Lemma 3.1], putting «,, = 0, we have
dii =a AN((m—i)kji—1 —AG + Dkit1), 0<i<m—1.
Contracting with T yields
itdki = (m — i)kj—1 — A0 + Dkit1, mod («, do).
By Proposition 4.2 the result follows. O

Lemma 4.9 The following equalities hold modulo o, do
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(1) Fork > 2q

2n—k .
———irdBrg =2 —k+q+ D14
W2p—k+1

+ (k=2 + Dfr-1,4-1 (43)

s
— 5ok =2g +1)@n —k+ Dfir1g.

(i) Forn >k —q

@Wop—-2 .
#leVZq,q = ,32q—1,q—1
n—2q+
A (@+2)2n—2g+1)
o n—gq ,32q+1,q (44)
Am—g—D2n—-2g+1)
P n—gq Y2q+1,q-

Proof This is a straightforward computation using [1, Lemma 3.3, Lemma 3.6]. O

Proposition 4.10 For k > 2q

Wk
— i, = k=2 + Dpp_y, +200—k+q+ Dug_y,
Won—k+1
A
— oo @n—k+ 1) (=20 + Ditfy g + 20 + Ditkir g11)
(45)
and
W2n—2q A
—— 0 cuzqq Hag—1.9-1 — 2n —2q + 1)—uzq+1q (46)

Wn—2g+1

Proof Equality (45) follows from Proposition 4.2, using (43) and the following (see
[1, Proposition 2.7])

2n—-k)(g+1) ,

2r(n—k+q) | Erart 1T Kra=0. @D
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Let us now prove (46). Note first that from (44) and (47) we get

Won—2j+1
Wi T
o on2j41 Cn =27+ D +1) A W
wp—2j n—j 27{ 2y
Wmjp1 2n—2j+ D@ —2j -G +1) 2>,
+ o — 4 T2 M2j43,j+1
2n—2j n ] T
22
= a]l’l’zj 1,j—1t0bj Mz,+1,+cj zﬂzj+3 i+l

lirdy2j,;, 0] =

(48)
Then, by Proposition 4.2 and observing that a,, = 2

n—q—1

A _ (61+l)' )" " ! A
0r,Cl2g g = IZ(; (n) o ———lirdy2g+2i g+i- 01 + 2| — - aﬂzn_m—l

n—q i .
A +i)!
= Z (‘) _(q ) aq+i:“%q+2i—1 g+i—1
4 b4 q! ’
n—q—1 i+1 .
A (g +1)! 3
+ Z (—) qu+iﬂzq+zi+1,q+i
i+2
) L
; —q! Cq+iM2g42i43,q+i+1

A
=agi2g-1,4g-1+ ;((q + Dag41 + bq)l/z\qﬂ,q

n—q i . .
A\ g+ D! (g+j—1D!
B (£
j=2 '

q!
(g+Jj—-2)! x
+T6‘q+j—2 M2g+2j—1,q+j—1
A straightforward computation using kwy = 2w wi— shows
JG=Daj+ (G —=Dbj1+¢j2=0
and the result follows. O

Note that by (18) the linear map ®o: ValV® — Val’® given by ®ol,, ve =
k
wo, i 1d satisfies

a()’((qu)()OAOq)al.
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Remarkably, a similar identity holds for all A, which will be crucial for our determi-
nation of tube formulas in CP;’.

Theorem 4.11 The linear isomorphism
D, = Focodp: Vall®™ ny@, Mk g > wzn—kﬂi,q-
fulfills
9.c =5 0(A—AL)o @

Proof. By combining Proposition 4.10, Proposition 3.1 and the fact ;- = 27”, this
is straightforward to check:

Dy 0 (A —AL)(1uk.q)
= (k — 2q + Dwsnir1th_y g1 + 201 =k +q + Donp—is114f_y
— Mk =2 + Dorm—k-118 41, = 240 + Do2—k-115 11 441
= it (k= 2q + DGy gy +200 =k +q + Dif_y

A
— o= @n—k+ 1) (=20 + Dithy g +20 + Dithir g11)

ok 0. CIE 4 = 00.C © P (k). O

A similar phenomenon holds in real space forms, but restricted to a hyperplane of
Vg

Theorem 4.12 The linear monomorphism

Wy VIOt syl s o]

fulfills
HhroW, =W, 0(A—-2AL).
Proof By Proposition 4.8 and Theorem 3.4

dor oW () = drop = (m —k + Dol — Ak + Dojy
=W ((m —k + Dpg—1 — Ak + Dpagy1)
= W (Apg — ALpg).

O

Note the difference of dimensions between the source and the target of W,. We
will show that there is no isomorphism between Val? ™ and V’"R intertwining o and
A — AL. This is essentially due to the fact that (41) and (42) differ from (40).
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5 A model space for tube formulas

We next perform some abstract computations that will easily lead to the tube formulas
in both complex and real space forms via (62) and (64). The same approach will allow
us to determine the kernel, the image, and the spectrum of the derivative operator o
on these spaces.

5.1 A system of differential equations

It is well-known that the operators X = xai, Y = y% and H = [X, Y] induce an
slp-structure on C[x, y]. The decomposition into irreducible components is C[x, y] =
@mzo V) where V™ is the subspace of m-homogeneous polynomials:

ym .— span(c{xkym*k}k’"zo.

One has H (x¥y"=%) = (m — 2k)xFym—*.

Motivated by Theorem 4.11, we consider Y, = Y — A X, which is a derivation on
Clx, y]. It will be sometimes convenient to consider the monomials ('Z)xk y"™ K In
these terms

m kom—ky _ (o m k=1 m—k+1 _ m k+1 m—k—1
(k)YA(xy )= (m k+1)<k_1>x y A(k+1)(k+1>x y .
(49)

Our goal here is to solve the following Cauchy problem: find p;: R — V) such
that

_ (™Y k m—k
0 pr(t) = Yopr(t), pr(0) = (k)x YR, 0<k=<m, (50)
i.e. to compute
pe(t) = (’Z) exp(tY;)(x*y" "), 0 <k <m. (51)
We will use the standard notation
i A
sm(\/—t) >0,
Vi
siny () := t A=0, (52)
sinh(\/|A]7)
—_— <0,
VIA]

which is an analytic function in both A and ¢, and cos, (¢) := % siny (1).
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Proposition 5.1 Forany A,t € R, we have
exp(tY))x = xcos, (t) + ysin,(t)=: u, exp(tY,)y = ycos,(t) — Ax siny (t)=: v.
Proof Since clearly

rx = =nfx, e = by,

we have
*
exp(tY))x = Z EYAX
k=0
Z L Z £ 2k+1 L
= —(— yx+ ) ————(=A)"y
! !
k>0 (2k)! k=0 2k + 1)
= x cos; (t) + ysin, (7).
In the same way we can compute exp(tYy)y. i

The following standard and elementary fact will be useful.

Lemma5.2 Let A be a finite-dimensional algebra. A vector field on A is a derivation

iff its flow ¢, satisfies
¢ (pq) = ¢1(P)#1(q), Vp.q €AVt eR.

In other words, each ¢, is an A-morphism.

Theorem 5.3 The solution of the Cauchy problem (50) is

pit) = (’Z)ukvm—k (53)

= (7:) (x cos;. () + y sin; (1)) (y cosy (1) — Ax siny (1)) ¥ (54)
:Z mk’“( ) gd (55)

where

Sl =D (=) (’Z B }f ) <;l ) siny /7 (1) cos) ). (56

h=>0

Proof Since Y, is aderivation, exp(¢Y;) is a C[x, y]-morphism by the previous lemma.
Hence

exp(rY)xky"F = (exp(tY)x)F (exp(r¥3) y)"F = ukv™ =k,
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Comparing with (51) yields (54).
It remains to prove (55). Putting s = siny (), ¢ = cos, (t) we have

(Z)(xc + ys)k(ye — axs)™*

_(m k a k—a —k _ b m—k—b
QIR port(r5 Yo
m k) (m —k) ba+tb m—a—b _k—a+b _m—k+a—b
- Z (—A)’sTe x y
)ali](
_ (m) Z (k) (m - k) (—p)J~hgith=2h m—j—k+2h j =]
k I h)\j—nh

where we changeda =k — h,b = j — h. Using

BN 1 R T R

5.2 Eigenvalues and eigenvectors of Y

Given f: V — V an endomorphism of C-vector spaces, we denote by spec(f) the
set of eigenvalues of f and by E, (f) the eigenspace associated to each o € spec(f).

Lemma 5.4 The endomorphism Y, |y is diagonalizable with simple multiplicities
and

spec( ¥ lyon) = {@k =m)V=7:0 <k <m],
Eop—myy=(Vlyom) = span{efey 1,
where e1 := /= x + yand e := —v=Ax + y.
Proof The result is trivial to check form = 1 as

Y,(e1) =~v—Ly — Ax =/ —Xey, Y, (e2) = —vV—Ay —Ax = —+/—Len.

Since Y, is a derivation
Y;\e]f = ke]f_lYAel = k+/ —ke’f,
Y;Le’zn_k =(m— k)eg’_k_lY;Lez = —+/—A(m — k)e’zn_k.

Hence
Yi(efey ™) = 2k — m)v/—rekey ™,
as stated. O
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Remark 1t is interesting to notice that the spectra of ¥, and »/—AH, when restricted

to each V™ are identical. These two operators are thus intertwined e.g. by the linear

isomorphism x* y" =k 1 eKeli =k,

5.3 Image of Y,

Using Lemma 5.4, we can conclude that Yy |y, is bijective if and only if m is odd. If
m is even, then the kernel is one-dimensional. An explicit description is the following.

Proposition 5.5 If m is even, then
im(Yalyom) = ker Zp 3, (58)

where

Proof By the binomial formula

m/2

. 2 am
7 kym—ky _ am/2=i m/ ' L kym—kg .
m,)»(x y ) ; i 8x2’8y’"—2’x y k,2i
m— 2
=xz"(’z//2>k!(m—k)z (59)

if k is even, and Z,,, 5 (x*y"~*) = 0 if k is odd. Therefore

Zus 0 V2 ym =21y — 7. (@ + a2y m — 20 — Dx2H2ym=2-2)

=7 m/2 2 ' '
- /") @+ iem — 21

_ a2l

(m/z)(zz L)lm—20— 1) =0
I+1 ' o

Zm 0 Ya(x?ym =2l = 0.

This shows that im(Y,) is a subspace of ker Z,, . Given that Z,, ; is not zero, we
have dimker Z,, , = m, and by Lemma 5.4, we know that the image of Y} [y, has

the same dimension. This yields (58). O
Next we compute, for even m and given ¢ in the image of Y} |y, the preimage
v (oD
Consider

(k+2j — DUm —k —2j — D! . .
Pk 1=ZM( +2/ = Dim j=D < " >xk+2/ym_k_2/ev(’”).

= (k— DI'(m — k + D! k+2j

(60)
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A simple computation using (49) shows

m _ _

where ¢, x = 0 if m — k is even, and otherwise

m—k+1 m!!

(k— Dm —k+ DIV’

Cmk = A
With these ingredients at hand, for even m, we can now compute a preimage by Y,
of any element in im Y, as follows.

Proposition 5.6 Let T1: V™ — V™ pe given by (';:)xkym_k = Pyks1. If mis
even then
Y, oll(p) = ¢, Ve €im Y;lym (61)

Proof Let0 < k < m. Since (im — k + D)cyx — Ak + Dem k42 = 0, using (49) we
get

Y)L oIl OYA<k>Xkym -k

m m
—Y Il _ k 1 k—1_m—k+1 —A k 1 k+1_ m—k—1
20 ((m —i—)(k_l)x y (+)k+1x y
=m—k+ I)Y)me’k — Mk + DY) Py k42

m m

— —k 1 k—l m—k+l _)\ k 1 k+l m—k—l

(m ~|—)(k_l)x y (~|—)k+1x y

— ((m =k 4+ Demp — Ak + Depmpy2)x™

m
— Y k Vﬂfk'
A(k)x g
Fork =0and k = m,

Y 0Tl o ¥ (3™) = —AY3(Pn2) = —A(mxy™ ! — ¢y 2x™) = V3 (3™) + Acmox™,

Yy oMo Yi(x™) = Yy (Pum) = mx" "y — cppmx™ = Y3 (x™) + cppmx™.

Since ¢y, ;m = 0, and ¢, 2 = 0 if m is even, the result follows. ]

6 Tube formulas in ST and CP;'

Here we will obtain our main result: the tube formulas for invariant valuations of CP;’
(i.e. the tubular operator T; on V}! (C) We will also recover Santalé’s tube formulas for
V;"R (cf. [25]) in a way that explams the similarities between the real and the complex
space forms.
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6.1 Tube formulas in complex space forms

Recalling (25) and Proposition 3.3, we get an isomorphism 7: W, — ValV® of

slp-modules from
Wn = @ V(2n—4r)

0<2r<n

to ValV™ by putting 1(y>*~*) = m, , (i.e. mapping Y-primitive elements to A-
primitive elements) and

2n —4r k=2r 2n—k-2 1 k—=2r, 2n—4
I r n r — I X r n T
(k_ZV) (k=2ry )= Gy KT

1
— —Lk—ZrI 2n—4r - -
k — 27! O = "

By Theorem 4.11, the map J, ¢ :== ®pol: W, — V;’ ¢ fulfills

k,r-

dpcodic=JcoY. (62)
We define
2n — 4r - . Wan—k
Ao k—2r 2n—k—2r\ __ n A
T = ( k—2r )J*(x Y )= 2 63)

and arrive at our main theorem.

Theorem 6.1 The tubular operator T, in V]! - is given by
2n—4r
2 2 2
T:(oj,) = Z Pon—ark—2r,j D100 s

j=0

where

B (O = (=1~ h<l_}f>(]>s1n;+] Mty cos! I @y,

h>0
Proof By (37), using (62) and (63), and putting m = 2n — 4r, we get
Tiol, = exp(td;.c) (o} ,)
=(, " )exp(tdr.c) o Sy oGk ym k)
k—2r
m k—=2r m k+2r
= Ji,c oexp(tY;)(x )
k—2r
= Ji.c(pk—2r(1)).

Using (55) the result follows. ]
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The tube formulas in terms of the r,?’ ; can be obtained from Theorem 6.1 using (28)
and (33) which hold verbatim replacing nkA, e t,f‘r for mwx r, Th,r-

Remark The tube formula for the volume Gzln,o = volgpr is given by the following
simple expression

2n
R .
volgpr (A;) = Zsm[ (1) cos] (1)0 ] o (A),
j=0

which is Theorem 4.3 of [11], since (7]}}0 = a)g,,_jr}() = ®; (i ;). The tube formulas
T, 02,2, are equally simple.

Remark An interesting feature of the previous tube formulas is the following self-
similarity property, which is explained by (62). Let

n,j.ym n+2j njo AN _ A
G": V¢ — VA,(C , G"/(oy,) = Ok42j )

Then one has T, o G/ = G"J o T,.

Remark 1t is also worth noting that V} ~ = Py, <, 77" where

I = Do (V) = ol i 2r <k <2n—2r},

St

and that these subspaces are 9, c-invariant. In particular, given ¢ € Z;"" one has
Tl (go) € I)’Ll’r.

6.2 Tube formulas in real space forms

Let 7: V™ — Val? be the isomorphism of irreducible sl,-representations deter-
mined by I(y™) = x; i.e.

m im—i 1 iom 1 m
(l.)I(xy )=51(X (y ))=5L a™)

1
l.—,L (o) = wi
where we used (19). By Theorem 4.12, the map J, g = W, o [ satisfies
a)h]RoJ)hR =JyroY. (64)

The map J, R is explicitly given by

Jr: VO — ymtl ("7);8 Yy o (65)
: i
The image of Jj g is the hyperplane H}'*' := im J; g = span {0}, ..., 0} }.
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Theorem 6.2 The tubular operator on VZTE’Rgl is given as follows. Fori =0, ..., m,
m
Tio) =Y ¢h, (o). (66)
j=0
In particular
m
Tio) =Y sin} /(1) cos; (1)o7, (67)
j=0
and thus
m t . .
Tlan);+1 = Z (/0 Sin’)’f—] (s5) cosi(s)ds> J}‘ + Gri;-i-l' (68)
o

These formulas where first obtained by Santal6 [25].
Proof By (37), (64) and (65), we have for 0 <i < m,
T,0}" = exp(t9; c)(0})

_(m im—i
= <i>exp(l3x,<c) oJycx'y" )

m . s
= <l.)fx,(c oexp(t¥)(x'y"™")
= h.c(pi(0).

This proves (66) of which (67) is a particular case. Integrating with respect to ¢ yields
(68). O

Remark 1t is worth pointing out the similarity between tube formulas in real and
complex space forms. More precisely, note that the isomorphism

. /2n—4r+1 n,r A A
Fu,:H; — I, O = 0o i) (69)

between the subspaces H;" ! ¢ VU and I'" € V}' . commutes with the
tubular operator T;. This is explained by (62) and (64).

Remark Recently, Hofstitter and Wannerer [21] have found a map Vl%’"ﬂg L Vi c
which also commutes with T;. Next we describe their results and how they relate
to Fﬁ,o' For . > 0 let m, : Si”“ — CP;' be the Hopf fibration. For a proper
submersion p: M — N, Alesker proved the existence of a push-forward of valuations
ps«: V(M) — V(N) characterized by

ps9p(A) = (p~'(A)), A€ R(N).

Hofstitter and Wannerer have computed the push-forward of invariant valuations
through the Hopf fibration. More presicely they have shown that (7)), commutes
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with T; and deduced from this fact that
(w0 =27 (2n —k + Dol_ g — Ak + Doy ) - (70)

It follows from (40) that
()4 = 27F} ) 0 3. . (71)

6.3 Spectral analysis of the derivative map

Here we compute the eigenvalues and eigenvectors of 9, r and 9, c. Note that the
tube formulas for such valuations are extremely simple: if oy = ap with a € C, then
Tip = e .

Proposition 6.3 For 0 < 2r < n, the restriction of d,.c to I,"" has the following
(simple) eigenvalues and eigenspaces:

ar ) =10, £2/ =4, £4V—A, ..., £2(n — 2r)/ =7, |,
) =1 |

Etanpany=r = spang [ cefed 5] 0=k =2m -4

spec (81)@

Hence 9, ¢ diagonalizes on V;  with the following eigenspaces:

E,; /=(0.,c) = spanc {J;\,c(e{+"_2reg_2r_j) :0<2r <min{n — j,n+ j}] ,

for —n < j <n.
Proof Everything follows from Lemma 5.4 and (62). O

Proposition 6.4

1) In Si" the derivative operator is diagonalizable with

spec(dy ) = {0, V=, 43R, ..., (20 — 1)«/—A} .72
Eo (05, r) = spanc{x} (73)
E o —oni1yy=5(0r) = spanc{/y r(efey" D}, 0<k<2n—1 (74

(i) In Sin *1 the derivative operator is not diagonalizable since

spec(dy.r) = {0, 0, £2v/—%, +4v/ =2, . .., izm/—x} .5

Eo(9.r) = spanc{x} (76)
E o —omyy=5(.1) = spanc{/; g(efe;" )}, 0 <k <2n. (77)
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Proof.

®

(ii)

By Lemma 5.4 and (64) we have that (2k — 2n 4+ 1)a/—A,0 <k <2n — 1,is an
eigenvalue of 0, g with eigenspace given by (74). The Euler characteristic is clearly
an eigenvector with zero eigenvalue. We thus have at least 2n + 1 eigenvalues.

Since this is precisely the dimension of V)%”R, the statement follows.

In light of Lemma 5.4 and (64), we ascertain that (2k — 2n)y/—X, 0 < k < 2n, is
an eigenvalue of d, r and the corresponding eigenspace is described by (77).

Our next objective is to prove that while the algebraic multiplicity of the zero
eigenvalue is two, its geometric multiplicity is only one. This will entail finding a
valuation u that satisfies 3)%’R/,L = 0, while also ensuring that 9, gt # 0. Consider

O'Z)Ln = L r(x™) e Vf"gl . In the notation of Lemma 5.4,

2n
! 2 - (21N i oo
Y=o e e = "Z;(—U’( i )e’lez” g
Hence
2 - (2n ) .
0 ROG, 1 = 03 = (—40) " Z(—l)’( i )A,w’lei"").
i=0
Consider

2 on (=1)
pi= (—40) " — ] r(e2T,
(=44) ;(i)(Zi—Zn)J—_A R
i;_én
and note that, by Lemma 5.4,
2n 2n . . .
ry = (=407 Y ( . )(—D'A,R(eie%”"),
i=0 !
i#n

since e} e} € ker Y;,. Finally, we define 1 = az)‘n 4+1 — v Then
—n 2” n n_n
hru = (—42) i (=1)"Jy r(ejer) #0,
while
2 —n 2n n nn
05 g = (—42) i (=D"0 r /o r(e7e3)

. (2n
= (—42) "(n )(—1)"J,\,R(Yx(e'feg)) =0.
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It follows that dim ker 0, g < dim ker 8% - Noting that x € ker 9, r this implies
the statement. ]

Remark We conclude from Prosposition 6.4 and Lemma 5.4 that there is no isomor-
phism between Val®™ and V}"}, intertwining A — AL and 9, k. Indeed, these two
operators have different spectra no matter the parity of m.

6.4 Stable valuations in complex space forms

We say that a valuation ¢ € V(M) on a Riemannian manifold M is stable if du = 0,
or equivalently, if T;u = p for all . By Propositions 6.4 and 6.3, up to multiplicative
constants, the Euler characteristic is the unique isometry-invariant stable valuation in
Si'. The complex case is more interesting.

Proposition 6.5 The unique (up to multiplicative constants) stable valuation on I)’f’r
is given by

n—r

n—2r\{2n—4r
— )\l r
Vor Z(i—r)(Zi—Zr) 2”

I=r

Proof By Lemma 5.4 the kernel of ¥; on the space V ™ of homogeneous polynomials
of degree m = 2n — 4r is spanned by

67 2r n —2r (y_}_\/_x)n 2r(y Mx)iz—Zr
n—2r

n—2r\ . - .
— (yZ +Ax2);172r — Z < . >)L]x2]ym2]
=0~ 7
-1
i—r <2}’l - 4r>x2i2ry2n2i2r

_Z n—2r n —4r
— i—r 2i —2r 2i —2r

Therefore the kernel of 9, ¢ in Z, " is spanned by v, = J;.(¢] ), for each
0<2r<n. O

n2rn21

Next we express the Euler characteristic as a combination of the stable valuations
¥, Note in particular that x is not confined to any d-invariant subspace 7"

A\ /2 r!
= ¥ () (g

0<2r<n

Proposition 6.6

Proof Since y is stable, it can be expressed as y = Zj a;jy;.By[11, Theorem 3.11]

AP gk 1 N
— -z T .
* ,;0(71) ogkany JT—EyT—n| H20r
= 0,0)
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The coefficient of tz)‘r , in this expansion is

[A ]()_<£>r 8r;
2O = ) e =0

Y

0

By Proposition 3.3, we have

A AN P2n—k A Ay @2n—k
[t2r,r](ak,r) - (k —2r)! [t2r,r](7-[k,r) - (k — Zr)!(gk,Zr’
whence
(23,1 D_ajva) | = als,,103,,)
J
= arwp—2r-
Hence
AN\ 2 r!
a =\ —
T r ) & w2y
and the result follows. O

6.5 Imageof 9, c and 9, r

Next we describe the image of the operators 9, ¢ and 9, g, and we compute the
preimage of any element belonging to them.

Proposition 6.7 Given any ¢ = } ; , ak,rokkr € V] ¢, we have ¢ € im 9, ¢ if and
only if

n—2r

-2
Z asl r (nl B rr)kn_l_r =0, for 0<2r <n. (78)

I=r

Proof Note that ¢ = ) ¢, withg, =), ak,rok)" . is the decomposition of ¢ corre-
sponding to V}! . = @anZ/OZJ "

and only if for every r

. By (62) and Proposition 5.5 we have ¢ € im 0 ¢ if

ndr 2n — 4r
0= Z2n—4r,k(¢r) = Z ak,r(k _9 >22n—4r,k(xk2ry2nk2r) (79)
k=2r r
n—2r
2n — 4 -2
-y az,,,<27 2r> (”l r)x"“(zl 21120 — 21 — 2r)!
I=r B -r
(80)
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n—2r n—2r
= (2n — 4r)! Z ay,,< , )x"—’—’ (81)
I=r r
where we used (59). ]

Proposition 6.8 Given ¢ = Zk,r ak,,ak*’r € Vy ¢ satisfying (78) we have

O (o) =D arrJic(Pu—ari—2r+1) + span{yy: 0 < 2r < n}
k,r

where Py, 1 is given by (60).

Proof This follows at once from Proposition 5.6 after decomposing ¢ = ), ¢, as in
the previous proof. O

Proposition 6.9 The image of 0, r in Vi'y is the hyperplane H}' generated by

A A
O)s+esO

w_1- Moreover

klowg 3

% rot = o}, 1<k<m, (82)

7K@,k

where ¢* = ijo (%)] t,?‘Jrzj. In particular

k
—1 A T Om—k i
0, o) = Wfﬁ +C-x.
Recall from [7, eq. (118)] that ¢* = fG/\ SXCN gS;”_k)dg where dg is a prop-

erly normalized Haar measure on G c, and S}’ ~*is an (m — k)-dimensional totally
geodesic submanifold in Sf'.

Proof By (8) and (9)

Lm—k—lJ
2 . m—k
A\ (k +2)\wpi2; A\ 2 mlo
K +2j ro A m:wm
¢ = ]‘Z—O (4712) 7k(m — k — 2j)om—i—2; Tk+2j T 4) am om ]

where the term between brackets appears only if m — k is even. Using Proposition 4.8,
this yields (82). The rest of the statement follows. O

Remark Equation (82) also follows from Theorem 4 in [27].

Funding Open Access Funding provided by Universitat Autonoma de Barcelona.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

@ Springer


http://creativecommons.org/licenses/by/4.0/

Tube formulas for valuations in complex space...

References

AW N

=)

8.

9.
10.
11.
12.
13.
14.
15.
16.

17.
18.

19.
20.
21.
22.
23.
24.
25.
26.

27.

28.

. Abardia,]., Gallego, E., Solanes, G.: The Gauss—Bonnet theorem and Crofton-type formulas in complex

space forms. Isr. J. Math. 187, 287-315 (2012)

. Alesker, S.: Theory of valuations on manifolds. I. Linear spaces. Isr. J. Math. 156, 311-339 (2006)

. Alesker, S.: Theory of valuations on manifolds. II. Adv. Math. 207(1), 420-454 (2006)

. Alesker, S.: Theory of valuations on manifolds: a survey. Geom. Funct. Anal. 17(4), 1321-1341 (2007)
. Alesker, S., Bernig, A.: Convolution of valuations on manifolds. J. Differ. Geom. 107(2), 203-240

(2017)

. Alesker, S., Fu, J.H.G.: Theory of valuations on manifolds. III. Multiplicative structure in the general

case. Trans. Am. Math. Soc. 360(4), 1951-1981 (2008)

. Alesker, S., Fu, J.H.G.: Integral geometry and valuations. Advanced Courses in Mathematics. In:

Gallego, E., Solanes, G. (eds.) CRM Barcelona. Birkhiuser/Springer, Basel, 2014. Lectures from the
Advanced Course on Integral Geometry and Valuation Theory held at the Centre de Recerca Matematica
(CRM), Barcelona, September 6—10 (2010)

Bernig, A., Brocker, L.: Valuations on manifolds and Rumin cohomology. J. Differ. Geom. 75(3),
433-457 (2007)

Bernig, A., Fu, J.H.G.: Convolution of convex valuations. Geom. Dedicata 123, 153-169 (2006)
Bernig, A., Fu, J.H.G.: Hermitian integral geometry. Ann. Math. (2) 173(2), 907-945 (2011)

Bernig, A., Fu, J.H.G., Solanes, G.: Integral geometry of complex space forms. Geom. Funct. Anal.
24(2),403-492 (2014)

Bernig, A., Fu, J.H.G., Solanes, G., Wannerer, T.: The Weyl tube theorem for Kihler manifolds (2022)
Fu, J.H.G.: Kinematic formulas in integral geometry. Indiana Univ. Math. J. 39(4), 1115-1154 (1990)
Fu, J.H.G.: Curvature measures of subanalytic sets. Am. J. Math. 116(4), 819-880 (1994)

Fu, J.H.G.: Some remarks on Legendrian rectifiable currents. Manuscr. Math. 97(4), 175-187 (1998)
Fu, J.H.G., Pokorny, D., Rataj, J.: Kinematic formulas for sets defined by differences of convex
functions. Adv. Math. 311, 796-832 (2017)

Fu, J.H.G., Wannerer, T.: Riemannian curvature measures. Geom. Funct. Anal. 29(2), 343-381 (2019)
Geiges, H.: An introduction to contact topology. Cambridge Studies in Advanced Mathematics, vol.
109. Cambridge University Press, Cambridge (2008)

Gray, A., Vanhecke, L.: The volumes of tubes in a Riemannian manifold. Rend. Sem. Mat. Univ.
Politec. Torino 39(3), 1-50 (1983)

Gray, A.: Tubes. Addison-Wesley Publishing Company, Advanced Book Program, Redwood City
(1990)

Hofstitter, G., Wannerer, T.: Pushforwards of Intrinsic Volumes, in preparation

Kleinjohann, N.: Nichste Punkte in der Riemannschen Geometrie. Math. Z. 176(3), 327-344 (1981)
McMullen, P.: Valuations and Euler-type relations on certain classes of convex polytopes. Proc. Lond.
Math. Soc. (3) 35(1), 113-135 (1977)

Rumin, M.: Un complexe de formes différentielles sur les variétés de contact. C. R. Acad. Sci. Paris
Sér. I Math. 310(6), 401-404 (1990)

Santal6, L.A.: On parallel hypersurfaces in the elliptic and hyperbolic n-dimensional space. Proc. Am.
Math. Soc. 1, 325-330 (1950)

Santald, L.A.: Integral geometry and geometric probability. Cambridge Mathematical Library, 2nd
edn. Cambridge University Press, Cambridge (2004). With a foreword by Mark Kac

Solanes, G.: Integral geometry and the Gauss—Bonnet theorem in constant curvature spaces. Trans.
Am. Math. Soc. 358(3), 1105-1115 (2006)

Weyl, H.: On the volume of tubes. Am. J. Math. 61(2), 461-472 (1939)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer



	Tube formulas for valuations in complex space forms
	Abstract
	1 Introduction
	2 Background
	2.1 Valuations
	2.2 Real space forms
	2.3 Complex space forms

	3 Tube formulas in linear spaces
	4 Tube formulas in Riemannian manifolds
	4.1 Tubular and derivative operators
	4.2 Tubes in Riemannian manifolds
	4.3 Derivative operators in mathbbSmλ and mathbbCPnλ

	5 A model space for tube formulas
	5.1 A system of differential equations
	5.2 Eigenvalues and eigenvectors of Yλ
	5.3 Image of Yλ

	6 Tube formulas in mathbbSmλ and mathbbCPnλ
	6.1 Tube formulas in complex space forms
	6.2 Tube formulas in real space forms
	6.3 Spectral analysis of the derivative map
	6.4 Stable valuations in complex space forms
	6.5 Image of λ,mathbbC and λ,mathbbR

	References


