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Abstract
Given an isometry invariant valuation on a complex space form we compute its value
on the tubes of sufficiently small radii around a set of positive reach. This generalizes
classical formulas ofWeyl, Gray and others about the volume of tubes.We also develop
a general framework on tube formulas for valuations in Riemannian manifolds.
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1 Introduction

For a compact convex set A ⊂ R
m , the Steiner formula computes the volume of the

set At consisting of points at distance smaller than t from A as follows

vol(At ) =
m∑

i=0

ωm−iμi (A)tm−i . (1)

Here the functionals μi are the so-called intrinsic volumes, and the normalizing con-
stant ωk is the volume of the k-dimensional unit ball. By Hadwiger’s characterization
theorem, the intrinsic volumes span the space of valuations (finitely additive function-
als on convex bodies) that are continuous and invariant under rigid motions.

The famous tube formula of H. Weyl [28] is the assertion that (1) holds true for
A ⊂ R

m a smooth compact submanifold and t ≥ 0 small enough, with the additional
insight that the coefficients μi (A) depend only on the induced Riemannian structure
of A. Even more generally, Federer extended the validity of (1) to the class of compact
sets of positive reach. Later on, the same formula has been proven to hold for bigger
classes of sets (see e.g. [14, 16]). As for the coefficients μi , the current perspective is
to view them as smooth valuations in the sense of Alesker’s theory of valuations on
manifolds (see [4]).

Already in Weyl’s original work, the tube formula was extended to the sphere and
to hyperbolic space. In that case, instead of a polynomial on the radius t one has a
polynomial in certain functions sinλ(t), cosλ(t) whose definition we recall in (52).
Later, Gray and Vanhecke computed the volume of tubes around submanifolds of rank
one symmetric spaces (cf. [19, 20]).

All these classical tube formulas are most naturally expressed in the language of
valuations onmanifolds. Furthermore, this theory has allowed for the determination of
kinematic formulas (a far-reaching generalization of tube formulas) in isotropic spaces.
These spaces are Riemannian manifolds under the action of a group of isometries that
is transitive on the sphere bundle. For instance, in [10] and [11] the kinematic formulas
of complex complex space forms (i.e. complex euclidean, projective and hyperbolic
spaces) were obtained, and Gray’s tube formulas on such spaces were recovered.

Tube formulas, however, exist also for other valuations than the volume, and these
do not follow from the kinematic formulas. For instance, differentiating the Steiner
formula one easily obtains

μk(At ) =
k∑

j=0

(
m − j

m − k

)
ωm− j

ωm−k
μ j (A)tk− j , A ⊂ R

m . (2)
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In real space forms (i.e. the sphere and hyperbolic space), Santaló obtained similar
tube formulas for all isometry invariant valuations (see [26]). For rank one symmetric
spaces, the tube formulas of a certain class of valuations (integrated mean curvatures)
were found in [19], still with a differential-geometric viewpoint. There are however
many invariant valuations on these spaces that were not considered.

In this paper we prove the existence of tube formulas for any smooth valuation in
a Riemannian manifold. Then we develop a method to determine these formulas for
the invariant valuations of an isotropic space. Using this method we compute all tube
formulas explicitly in the case of complex space forms. In fact, our approach also
reveals some interesting aspects in the case of real space forms.

Let us briefly describe our results. First, given a Riemannian manifold M we con-
struct a family Tt of tubular operators on the space V(M) of smooth valuations of M
such that for any μ ∈ V(M) and every compact set of positive reach A ⊂ M one has

μ(At ) = Ttμ(A),

for t ≥ 0 small enough (see Definition 4.1 and Corollary 4.7). Differentiating Tt at
t = 0 yields an operator ∂ : V(M) → V(M). If G is a group of isometries of M acting
transitively on the sphere bundle SM , the subspace V(M)G of G-invariant valuations
is finite dimensional, and the determination of the tube operators Tt reduces to the
computation of the flow generated by ∂ .

Once this general framework is established we concentrate on the complex space
forms CPn

λ . For λ = 0 this refers to complex euclidean space C
n under the group

of complex isometries, and for λ �= 0 this is the n-dimensional complex projective
or hyperbolic space of constant holomorphic curvature 4λ, under the full group of
isometries G. We simply denote Vn

λ,C
:= V(CPn

λ )G .
For λ = 0, we will readily obtain the tube formulas Ttμ of all translation-invariant

and U (n)-invariant continuous valuations μ thanks to the existence of an sl2-module
structure on the space ValU (n) of such valuations. This structure, discovered by Bernig
and Fu in [10], is induced by two natural operators �, L , the first of which is a
normalization of ∂ .

Remarkably, it turns out that also for λ �= 0 the derivation operator ∂ is closely
related to the operators �, L of the flat space. Indeed, in Theorem 4.11 we find an
isomorphism �λ : ValU (n) → Vn

λ,C
such that

∂|Vn
λ,C

= �λ ◦ (� − λL) ◦ �−1
λ . (3)

Using the decomposition of ValU (n) into sl2-irreducible components, the compu-
tation of the tubular operator boils down to the solution of a Cauchy problem in some
abstract model spaces, yielding our main result.

Theorem There exists a basis {σλ
k,r } of the space Vn

λ,C
of invariant valuations of CPn

λ

such that

Ttσ
λ
k,r =

2n−4r∑

j=0

φλ
2n−4r ,k−2r , j (t)σ

λ
j+2r ,r , (4)
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where

φλ
m,k, j (t) =

∑

h≥0

(−λ) j−h
(
m − j

k − h

)(
j

h

)
sink+ j−2h

λ (t) cosm−k− j+2h
λ (t).

We describe the basis σλ
k,r explicitly in terms of the previously known valuations

τλ
k,p of [11]. The tube formulas for the τλ

k,p can be easily obtained from the previous

ones, as we also provide the expression of these valuations in terms of the σλ
k,r .

Curiously, the expressions (4) are extremely similar to those obtained by Santaló
in the real space form S

m
λ of constant curvature λ. Indeed, for a certain basis {σi }mi=0

of the space Vm
λ,R

of isometry invariant valuations of S
m
λ one has

Ttσ
λ
i =

m−1∑

j=0

φλ
m−1,i, j (t)σ

λ
j , 0 ≤ i ≤ m − 1.

The tube formula for σm = vol is however quite different. As an explanation for these
similarities, we show in Theorem 4.12 the existence of a phenomenon similar (but not
completely analogous) to (3).

The paper concludes with a detailed study of the spectrum and the eigenspaces of
the derivative operator ∂ in Vn

λ,C
and Vm

λ,R
. In particular, we compute the kernel of ∂ in

Vn
λ,C

; i.e. we determine the invariant valuations of CPn
λ for which the tube formulas

are constant. We also identify the images ∂(Vn
λ,C

) and ∂(Vm
λ,R

), and we compute the
preimage by ∂ of any element belonging to these subspaces.

2 Background

2.1 Valuations

Let V be a finite-dimensional real vector space, and let K(V ) be the space of convex
compact subsets of V , endowed with the Hausdorff metric. A valuation on V is a map
ϕ : K(V ) → C such that

ϕ(A ∪ B) = ϕ(A) + ϕ(B) − ϕ(A ∩ B),

for A, B, A∪ B ∈ K(V ). The space of translation-invariant, continuous valuations on
V is denoted by Val(V ).

The notion of valuation was extended to smooth manifolds by Alesker (cf. [2–4,
6]). For simplicity we will focus on the case of a Riemannian manifold Mn . It is also
natural to consider here the class of compact sets of positive reach in M , which we
denote R(M). The definition and some basic properties of such sets are recalled in
Sect. 4.2.

Let SM be the sphere bundle of M consisting of unit tangent vectors, and let
π : SM → M be the canonical projection.
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Definition 2.1 (Smooth valuation) A smooth valuation on M is a functional ϕ : R(M)

→ C of the form

ϕ(A) =
∫

N (A)

ω +
∫

A
η,

where ω ∈ n−1(SM) and η ∈ n(M), are complex-valued differential forms, and
N (A) is the normal cycle of A (cf. e.g. [14]). We will denote ϕ = [[ω, η]] in this case.
For any subgroup G ≤ Diff(M), we will denote by VG(M) the space of G-invariant
valuations; i.e. μ ∈ V(M) such that μ(gA) = μ(A) for all A ∈ R(M) and g ∈ G.

The kernel of the map (ω, η) �→ [[ω, η]] was determined by Bernig and Bröcker in
[8] as follows. Given ω ∈ n−1(SM), there exists ξ ∈ n−2(SM) such that

Dω := d(ω + α ∧ ξ),

is amultiple ofα, the canonical contact form on SM . The unique n-form Dω satisfying
this condition is called the Rumin differential of ω (see [24]). Then [[ω, η]] = 0 if and
only if

Dω + π∗η = 0, and
∫

Sx M
ω = 0, ∀x ∈ M . (5)

One of the most striking aspects of Alesker’s theory of valuations on manifolds is
the existence of a natural product on V(M), which turns this space into an algebra
with χ as the unit element. The realization by Fu that this product is closely tied to
kinematic formulas opened the door to the recent development of integral geometry
in several spaces, including the complex space forms [1, 10, 11].

Another important algebraic structure is the convolution of valuations found by
Bernig and Fu in linear spaces (cf. [9], but also [5]). This is a product on the dense
subspaceVal∞(V ) := Val(V )∩V(V ) characterized as follows.Given A ∈ K(V ), with
smooth and positively curved boundary, we have μA(·) := vol(· + A) ∈ Val∞(V ).
The convolution is determined by

μA ∗ ϕ := ϕ(· + A), ϕ ∈ Val∞(V ), (6)

where + refers to the Minkowski sum. In particular, vol is the unit element of this
operation.

2.2 Real space forms

The fundamental examples of valuations in Euclidean space R
m are the intrinsic

volumes μk . These are implicitly defined by the Steiner formula

volRm (A + tBm) =
m∑

k=0

tm−kωm−kμk(A), A ∈ K(Rm), (7)
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where B
m is the unit ball and ωi is the volume of the i-dimensional unit ball. In

particular μ0 = χ , μm−1 = 1
2 perimeter, and μn = volm are intrinsic volumes.

We will denote by S
m
λ the m-dimensional complete and simply connected Rie-

mannian manifold of constant curvature λ. That is, the sphere Sm(
√

λ) for λ > 0,
Euclidean space R

n for λ = 0, and hyperbolic space Hm(
√−λ) for λ < 0. Let Gλ,R

be the group of orientation preserving isometries of S
m
λ ; i.e. Gλ,R

∼= SO(m + 1) for
λ > 0, and Gλ,R

∼= SO(m) � R
m for λ = 0, while Gλ,R

∼= PSO(m, 1) for λ < 0.
We will denote by Vm

λ,R
the space of Gλ,R-invariant valuations of S

m
λ .

Let κ0, . . . , κm−1 ∈ m−1(SS
m
λ )Gλ,R be the differential forms defined in [13,

§0.4.4]. In the same paper it was shown that the R-algebra of Gλ,R-invariant dif-
ferential forms is generated by κ0, . . . , κm−1, α, dα. It follows by [11, Prop. 2.6] that
the following valuations constitute a basis of Vm

λ,R

σλ
i := [[κi , 0]], 0 ≤ i ≤ m − 1

σλ
m := volSmλ .

In euclidean space R
m these valuations are proportional to the intrinsic volumes:

σλ
i = (m − i)ωm−iμi , λ = 0.

For general λ, the σλ
i are proportional to the valuations τλ

i appearing in [7, 17]

σλ
i = π i (m − i)ωm−i

i !ωi
τλ
i , 0 ≤ i ≤ m − 1, (8)

σλ
m = πm

m!ωm
τλ
m . (9)

As we will see, the normalization taken for the σλ
i makes the tube formulas in Vm

λ,R

specially simple. A stronger reason in favor of this normalization is Theorem 4.12.

2.3 Complex space forms

We denote by CPn
λ the complete, simply connected n-dimensional Kähler manifold

of constant holomorphic curvature 4λ; i.e. the complex projective space (with the
suitably normalized Fubini-Study metric) for λ > 0, the complex euclidean space C

n

for λ = 0, and the complex hyperbolic space for λ < 0. For λ �= 0 we let Gλ,C be
the full isometry group of CPn

λ . For λ = 0 we put Gλ,C = U (n) � C
n . We denote by

Vn
λ,C

the space of Gλ,C-invariant valuations on CPn
λ .

Let {βk,q , γk,q} ⊂ 2n−1(SCPn
λ )Gλ,C be the differential forms introduced in [10]

for λ = 0, and extended to the curved case λ �= 0 in [11]. Let also

μλ
k,q := [[βk,q , 0]], k > 2q, (10)
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μλ
2q,q :=

n−q−1∑

i=0

(
λ

π

)i
(q + i)!

q! [[γ2q+2i,q+i , 0]] +
(

λ

π

)n−q n!
q! [[0, dvol]] (11)

where dvol is the Riemannian volume element. It was shown in [10, 11] that these
valuations μλ

k,q with max{0, k − n} ≤ q ≤ k
2 ≤ n constitute a basis of Vn

λ,C
. It is

convenient to emphasize that the μλ
k,q do not coincide with the hermitian intrinsic

volumes μM
k,q for M = CPn

λ introduced in [12].

For λ = 0 we simply write μk,q instead of μ0
k,q . We will also use the so-called

Tasaki valuations

τk,q :=
�k/2�∑

i=q

(
i

q

)
μk,i , 0, k − n ≤ q ≤ k

2
≤ n.

It will be useful to consider the following linear isomorphisms:

Fλ,C : ValU (n) −→ Vn
λ,C, Fλ,C(μk,q) = μλ

k,q .

More generally, whenever we have a valuation ν in ValU (n) we will denote νλ :=
Fλ,C(ν). For instance τλ

k,q = Fλ,C(τk,q).

3 Tube formulas in linear spaces

Let V be an m-dimensional euclidean vector space. Given t ≥ 0, let Tt : Val(V ) →
Val(V ) be given by

(Ttμ)(A) = μ(A + tBm) = (μtBm ∗ μ)(A) A ∈ K(V ), (12)

where B
m is the unit ball. We will call Tt the tubular operator. Let also ∂ : Val(V ) →

Val(V ) be the operator given by

∂μ = d

dt

∣∣∣∣
t=0

Ttμ. (13)

This operator has sometimes been denoted by � in the literature, but following [10]
we reserve the symbol � for a certain normalization of ∂ (see (18)).

The properties of the Minkowski sum ensure that Tt+s = Tt ◦ Ts = Ts ◦ Tt .
Differentiating with respect to s at zero yields

d

dt
Ttμ = Tt∂μ = ∂Ttμ. (14)
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It follows that

∂ iμ = di

dt i

∣∣∣∣
t=0

Ttμ. (15)

For each μ ∈ Val(V ), the map t �→ Ttμ is a polynomial in t of degree m by (12) and
the Steiner formula (7) (or by [23]). Hence

Ttμ =
m∑

i=0

t i

i !
di

dt i

∣∣∣∣
t=0

Ttμ (16)

=
m∑

i=0

t i

i ! ∂
iμ. (17)

Note also that, by (15) and (16), the derivative operator ∂ is (m + 1)-nilpotent; i.e.
∂m+1 = 0.

Let us compute the tube formula for the intrinsic volume μi for each 0 ≤ i ≤ m
using (17). For that purpose we first compute ∂ . Since Tt+s = Ts ◦ Tt we have

Tt+s vol =
m∑

j=0

ωm− j t
m− jTsμ j .

On the other hand

Tt+s vol =
m∑

j=0

ωm− j (t + s)m− jμ j ,

Differentiating at s = 0 and comparing coefficients yields

∂μ j = ωm− j+1

ωm− j
(m − j + 1)μ j−1.

Finally, using (17), we get

Ttμk =
m∑

i=0

t i

i ! ∂
iμk =

k∑

i=0

t i

i !
ωm−k+i

ωm−k

(m − k + i)!
(m − k)! μk−i

=
k∑

j=0

(
m − j

k − j

)
ωm− j

ωm−k
tk− jμ j ,

which is (2).
In order to compute the tube formulas for invariant valuations inC

n (i.e. to determine
Tt on ValU (n)), it will be useful to recall the sl2-module structure of ValU (n) found in
[10]. Consider the linear maps �, L, H : Val∞(V ) → Val∞(V ), defined as follows
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�ν := ωm−k

ωm−k+1
∂ν, Lν := 2ωk

ωk+1
μ1 · ν, Hν = (2k − m)ν, ν ∈ Val∞k (V ),

(18)
where · refers to the Alesker product.
Proposition 3.1 On ValO(m) the operators �, L are given by

Lμk = (k + 1)μk+1, (19)

�μk = (m − k + 1)μk−1, (20)

while on ValU (n) one has

Lμk,p = (k − 2q + 1)μk+1,q + 2(q + 1)μk+1,q+1 (21)

�μk,p = (k − 2q + 1)μk−1,q−1 + 2(n − k + q + 1)μk−1,q , (22)

which implies

Lτk,q = (k − 2q + 1)τk+1,q (23)

�τk,q = (k − 2q + 1)τk−1,q−1 + (2n − 2q − k + 1)τk−1,q (24)

Proof The first two equalities are [7, eqs. (2.3.12) and (2.3.13)]. The rest is [10, Lemma
5.2].

Proposition 3.2 ([7, Prop. 2.3.10 (3)]) The operators �, L, H define an sl2-module
structure on both ValO(m) and ValU (n); i.e. [L,�] = H, [H , L] = 2L, [H ,�] =
−2�.

The decomposition into irreducible components is as follows

ValO(m) ∼= V (m), ValU (n) ∼=
⊕

0≤2r≤n

V (2n−4r) (25)

where V (m) is the (m + 1)−dimensional irreducible sl2-representation. In particular,
for 0 ≤ 2r ≤ n, there exists a unique, up to a multiplicative constant, primitive
element (i.e. anihilated by �) in each irreducible component of ValU (n). By the so-
called Lefschetz decomposition, the L-orbits of these primitive elements consitute a
basis of ValU (n). This basis was explicitly computed in [10] as follows.

Proposition 3.3 ([10, eq. (76)]) The following valuations

π2r ,r := (−1)r (2n − 4r + 1)!!
r∑

i=0

(−1)i
(2r − 2i − 1)!!

(2n − 2r − 2i + 1)!!τ2r ,i , 0 ≤ 2r ≤ n,

(26)

are �-primitive; i.e. �π2r ,r = 0. The family

πk,r := Lk−2rπ2r ,r (27)
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= (−1)r (2n − 4r + 1)!!
r∑

i=0

(−1)i
(k − 2i)!
(2r − 2i)!

(2r − 2i − 1)!!
(2n − 2r − 2i + 1)!!τk,i ,

2r ≤ k ≤ 2n − 2r (28)

forms a basis of ValU (n).

In particular the irreducible components of ValU (n) are the following subspaces

In,r
0 := {

πk,r : 2r ≤ k ≤ 2n − 2r
}
, 0 ≤ 2r ≤ n. (29)

We are now able to compute the tube formulas in the complex case using (17).

Theorem 3.4

Ttπk,r = (k − 2r)!
ω2n−k

k−2r∑

j=0

(
2n − 4r − j

k − 2r − j

)
tk−2r− j ω2n−2r− j

j ! π j+2r ,r . (30)

Proof. By [10, Lemma 5.6],

�πk,r = (k − 2r)(2n − k − 2r + 1)πk−1,r , (31)

and then

�iπk,r = (k − 2r)!(2n − k − 2r + i)!
(k − 2r − i)!(2n − k − 2r)!πk−i,r . (32)

Using (17), we obtain the tube formula

Ttπk,r =
2n∑

i=0

t i

i !
ω2n−k+i

ω2n−k
�iπk,r

= (k − 2r)!
ω2n−k

k−2r∑

i=0

t i

i !ω2n−k+i
(2n − k − 2r + i)!

(k − 2r − i)!(2n − k − 2r)!πk−i,r

= (k − 2r)!
ω2n−k

k−2r∑

j=0

(
2n − 4r − j

k − 2r − j

)
tk−2r− j ω2n−2r− j

j ! π j+2r ,r .

These tube formulas can also be given in terms of the valuations τk,q . To this end,
we next compute their Lefschetz decomposition.

Proposition 3.5 The Lefschetz decomposition of τk,r is given by

τk,r = 1

(k − 2r)!
r∑

i=0

(
n − 2i

r − i

)
(2n − 2i − 2r)!

(2n − 4i)! πk,i . (33)
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Proof. Consider the linear map ψ : ValU (n) → ValU (n) mapping τk,r to the left hand
side of (33). We need to show that ψ = id. Let us check that this endomorphism
commutes with both � and L . To check commutation with �, we only need to verify
the following

(k − 2r)!ψ(�(τk,r ))

=
r−1∑

i=0

(n − 2i)!(2n − 2i − 2r + 2)!
(r − i − 1)!(n − r − i + 1)!(2n − 4i)!πk−1,i

+ (k − 2r)(2n − k − 2r + 1)
r∑

i=0

(n − 2i)!(2n − 2i − 2r)!
(r − i)!(n − i − r)!(2n − 4i)!πk−1,i

=
r∑

i=0

(n − 2i)!(2n − 2i − 2r)!
(r − i)!(n − i − r)!(2n − 4i)! (k − 2i)(2n − k − 2i + 1)πk−1,i

= (k − 2r)!�ψ(τk,r ).

Comparing term by term, the previous identities boil down to

2(r − i)(2n − 2i − 2r + 1) + (k − 2r)(2n − k − 2r + 1) = (k − 2i)(2n − k − 2i + 1)

which is trivial.
Commutation with L is straightforward using Lπk,i = πk+1,i .
Given thatψ commutes with the operators� and L andValU (n) is multiplicity-free,

Schur’s lemma implies that for each 0 ≤ 2r ≤ n, there exists a constant cr such that
ψ |In,r

0
= cr id.

Let a2r , j and b2r ,i be the coefficients of π2r , j and τ2r ,i in (33) and (26) respectively,
so that ψ(τ2r ,i ) = ∑i

j=0 a2r , jπ2r , j and π2r ,r = ∑r
i=0 b2r ,iτ2r ,i . Then

crπ2r ,r = ψ(π2r ,r ) =
r∑

i=0

b2r ,i

⎛

⎝
i∑

j=0

a2r , jπ2r , j

⎞

⎠ =
r∑

j=0

r∑

i= j

b2r ,i a2r , jπ2r , j .

Comparing the coefficient of π2r ,r on both sides we get cr = b2r ,r a2r ,r = 1 for each
0 ≤ 2r ≤ n. Hence ψ = id, which proves (33).

By plugging (28) and (33) in (30) one gets the tube formulas Ttτk,p in terms of the
τi, j .

4 Tube formulas in Riemannianmanifolds

4.1 Tubular and derivative operators

Next we extend to any complete Riemannian manifold M the tubular operator Tt

introduced in the previous section on linear spaces. Let T be the Reeb vector field
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on SM , which is characterized by iTα = 1 and LTα = 0, where L is the Lie
derivative. The Reeb flow φ : SM × R → SM , defined as the flow of T , is a family
of contactomorphisms and coincides with the geodesic flow on SM (see e.g. [18,
Theorem 1.5.2]).

Definition 4.1 (Tubular and derivative operators) Given t ≥ 0, we define the tubular
operator Tt by

Tt : V(M) −→ V(M), [[ω, η]] �−→ [[φ∗
t ω + (pt )∗(π ◦ φ)∗η, η]],

where pt : SM × [0, t] → SM is the projection on the first factor, and φt = φ(·, t).
We define the derivative operator ∂ = ∂M by

∂M : V(M) −→ V(M), μ �−→ d

dt

∣∣∣∣
t=0

Ttμ.

To show that these definitions are consistent, suppose μ = [[ω, η]] = 0, and let us
check that Ttμ = 0 for all t ≥ 0, i.e.

∫

N (A)

φ∗
t ω +

∫

N (A)

(pt )∗(π ◦ φ)∗η +
∫

A
η = 0, ∀A ∈ R(M).

By (5) we have π∗η = −Dω = −d(ω + ξ ∧ α). Hence
∫

N (A)

(pt )∗(π ◦ φ)∗η = −
∫

N (A)

(pt )∗ ◦ φ∗Dω = −
∫

N (A)×[0,t]
φ∗d(ω + ξ ∧ α)

= −
∫

N (A)×[0,t]
dφ∗(ω + ξ ∧ α) = −

∫

N (A)×{0,t}
φ∗ω + φ∗ξ ∧ α

=
∫

N (A)

φ∗
0ω −

∫

N (A)

φ∗
t ω =

∫

N (A)

ω −
∫

N (A)

φ∗
t ω,

as α vanishes on N (A). Since [[ω, η]] = 0, we have
∫
N (A)

ω = − ∫
A η. Therefore

Ttμ = 0.
Let us next establish some basic properties of these operators.

Lemma 4.1

d

dt
(pt )∗φ∗ρ = iTφ∗

t ρ, ρ ∈ ∗(SM)

Proof Given a compact smooth submanifold N ⊂ SM ,

∫

N
(pt )∗φ∗ρ =

∫

N×[0,t]
φ∗ρ =

∫

N×[0,t]
i ∂

∂t
φ∗ρ ∧ dt =

∫ t

0

(∫

N
φ∗
t i ∂φ

∂t
ρ

)
dt,

Since iT and φ∗
t commute, the result follows.
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Proposition 4.2 For μ = [[ω, η]],
(i) ∂μ = [[iT (dω + π∗η) , 0]]
(ii) Tt+sμ = (Tt ◦ Ts)μ

Proof Modulo exact forms we have

d

dt
φ∗
t ω = d

ds

∣∣∣∣
s=0

φ∗
t+sω = LTφ∗

t ω ≡ iTφ∗
t dω. (34)

Together with Lemma 4.1, this yields

d

dt
Ttμ = [[iT (dφ∗

t ω + φ∗
t π

∗η), 0]]. (35)

Evaluating at t = 0, this gives (i).
In order to prove (ii), it is enough to check that both sides have the same derivative

with respect to s, as they clearly agree for s = 0. By (35), we have

d

ds
Tt ◦ Ts(μ) = Tt ◦ d

ds
Ts(μ)

= Tt [[iT (dφ∗
s ω + φ∗

s π
∗η), 0]]

= [[φ∗
t iT (dφ∗

s ω + φ∗
s π

∗η), 0]].

Since φ∗
t and iT commute, it follows from (35) that d

dsTt+s = d
dsTt ◦ Ts .

Fix μ ∈ V(M). It follows from Proposition 4.2 (ii) that

d

dt
Ttμ = ∂Ttμ. (36)

If μ ∈ V(M)G for a group G acting on M by isometries, then also Ttμ ∈ V(M)G .
Hence, in case VG(M) is finite-dimensional, computing Ttμ boils down to solving
the Cauchy problem (36) with initial condition T0μ = μ; i.e.

Ttμ = exp(t∂)μ =
∑

i≥0

t i

i ! ∂
iμ. (37)

This is the approach we will follow to obtain the tube formulas for invariant valuations
in complex space forms. Note that (37) coincides with (16) except that ∂ does not need
to be nilpotent for general M .

4.2 Tubes in Riemannianmanifolds

Let M be a complete Riemannian manifold and let d : M × M → [0,∞) be the
Riemannian distance on M . For t ≥ 0, the tube of radius t around a subset A ⊂ M is
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defined as

At := {p ∈ M : dA(p) ≤ t} ,

where

dA(p) := inf {d(p, q) : q ∈ A} .

Next we review some basic facts about tubes around sets of positive reach (introduced
by Federer in euclidean spaces and by Kleinjohann in Riemannian manifolds). For
such sets A we will prove that Ttμ(A) = μ(At ) for any μ ∈ V(M) and sufficiently
small t .

Definition 4.2 (Sets of positive reach) A set of positive reach in M is a closed subset
A ⊂ M for which there exists an open neighborhood UA ⊃ A such that for every
p ∈ UA\A there exists a unique point f A(p) ∈ A such that d(p, f A(p)) = dA(p),
and a unique minimizing geodesic joining p with f A(p). We denote by R(M) the
class of compact sets of positive reach in M .

By the previous definition, there is a well-defined map

FA : UA\A −→ SM, FA(p) = (
γ (0), γ ′(0)

)
(38)

where γ is the unique minimizing geodesic such that γ (0) = f A(p) and γ (dA(p)) =
p.

It was shown by Kleinjohann [22, Satz 3.3] that N (A) := FA(UA\A) is a natu-
rally oriented compact Lipschitz submanifold of SM . The corresponding current, also
denoted by N (A), is called the normal cycle of A. It follows from Proposition 4.6
below that N (A) is legendrian (i.e. it vanishes on multiples of α).

Proposition 4.3 ([22, Satz 3.3, Korollar 2.7]) Given a set of positive reach A in M
there exists r = rA > 0 such that Ar ⊂ UA and

(i) for 0 < t < r the restriction FA|∂At
gives a bilipschitz homeomorphism between

∂At and N (A), preserving the natural orientations,
(ii) the distance function dA is of class C1 in Ar\A and

φdA(p)(FA(p)) = (p,∇dA(p)), ∂At = d−1
A ({t})

for 0 < t < r . In particular, each level set ∂At with 0 < t < r is a C1-regular
hypersurface with unit normal vector field ∇dA.

The following propositions are certainly well-known.

Proposition 4.4 For 0 < s < r = rA the set As has positive reach and on Ar\As we
have

dAs = dA − s, FAs = φs ◦ FA. (39)

In particular (As)t = At+s for t + s < r .
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Proof Let p ∈ Ar\As , and put d = dA(p). Let γ : [0, d] → Ar be the unique
minimizing geodesic with γ (0) = f A(p) and γ (d) = p. In particular |γ ′| = 1 and
thus γ (s) ∈ As .

Assume that γ |[s,d] does not minimize the distance between p and As , i.e., there
exists a smooth curve α : [0, 1] → M with q := α(0) ∈ As , α(1) = p and length
�(α) < d − s. It follows that

dA(p) ≤ �(α) + dA(q) ≤ �(α) + s < dA(p),

a contradiction.We conclude that γ |[s,d] realizes the distance dAs (p). Hence dAs (p) =
dA(p) − s and

FAs (p) = (γ (s), γ ′(s)) = φs(γ (0), γ ′(0)) = φs(FA(p)).

Proposition 4.5 For 0 < s < rA, the restriction φs |N (A) is a bilipschitz homeomor-
phism between N (A) and N (As).

Proof Take t with s < t < min(rA, s+rAs ). ByProposition 4.3, both FA|∂At : ∂At →
N (A) and FAs

∣∣
∂At

: ∂At → N (As) are bilipschitz homeomorphisms. By (39) we
have

φs |N (A) = FAs

∣∣
∂At

◦ ( FA|∂At )
−1.

The statement follows.

Proposition 4.6 For 0 < t < rA the composition π ◦φ gives a bijective Lipschitz map
between N (A) × (0, t] and At\A.
Proof Since π, φ are smooth, the restriction of π ◦φ to the Lipschitz manifold N (A)×
(0, t] is clearly Lipschitz.

Given (ξ, s) ∈ N (A) × (0, t], we know by the previous proposition that φ(ξ, s) ∈
N (As) and thus π ◦ φ(x, s) ∈ ∂As ⊂ At\A.

To check surjectivity, given p ∈ At\A take ξ = FA(p), s = dA(p) and note that
π ◦ φ(ξ, s) = p.

As for injectivity, suppose π ◦ φ(ξ1, t1) = π ◦ φ(ξ2, t2) =: p for some
(ξ1, t1), (ξ2, t2) ∈ N (A) × (0, t]. By the previous proposition p belongs to both
∂At1, ∂At2 , so t1 = t2. For s ∈ [0, t1], the geodesics γ1(s) = π ◦ φ(ξ1, s), γ2(s) =
π ◦ φ(ξ2, s) realize the distance between p and A. Since As ⊂ ArA ⊂ UA, we have
γ1 = γ2 and thus ξ1 = ξ2.

Corollary 4.7 For every A ∈ R(M) and μ ∈ V(M) we have μ(At ) = Ttμ(A) for
0 ≤ t ≤ rA.

Proof. Let μ = [[ω, η]]. By Propositions 4.5 and 4.6 and the coarea formula,

μ(At ) =
∫

N (At )

ω +
∫

At

η

∫

φt (N (A))

ω
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+
∫

(π◦φ)(N (A)×(0,t])
η +

∫

A
η = Ttμ(A).

Remark In the subclass P(M) ⊂ R(M) of compact submanifolds with corners, the
normal cycle is more naturally defined as follows. For A ∈ P(M) and p ∈ A, let

Tp A =
{
γ ′(0) ∈ TpM : γ ∈ C1([0, 1), A), γ (0) = p

}

N ′(A) = {(p, v) ∈ SM : p ∈ A, 〈v,w〉 ≤ 0 ∀w ∈ Tp A}.

Let us check that indeed N ′(A) equals N (A) = FA(UA). Covering A by local charts
(locally modelled on R

k × [0,∞)l ⊂ R
m), and considering the copy of N ′(A) in the

cosphere bundle of M , one sees that N ′(A) is a compact topological manifold.
It is also easy to show that N (A) ⊂ N ′(A). It then follows by the invariance of

domain theorem that N (A) is an open subset of N ′(A). Since N ′(A) is a Hausdorff
space and N (A) is compact, we also have that N (A) is a closed subset of N ′(A). Since
the number of connected components of both N (A), N ′(A) clearly equals the number
of connected components of A, we necessarily have N (A) = N ′(A).

4.3 Derivative operators in S
m
� andCPn�

Given λ ∈ R let ∂λ,R : Vm
λ,R

→ Vm
λ,R

be the restriction of ∂Smλ
to Vm

λ,R
, and let ∂λ,C be

the restriction of ∂CPm
λ
to Vn

λ,C
.

Proposition 4.8

∂λ,Rσλ
i = (m − i)σλ

i−1 − λ(i + 1)σλ
i+1, 0 ≤ i ≤ m − 2, (40)

∂λ,Rσλ
m−1 = σλ

m−2, (41)

∂λ,Rσλ
m = σλ

m−1, (42)

where it is understood that σλ−1 = 0.

Let us emphasize that (40)wouldmake formal sense but does not hold for i = m−1.

Proof By [15, Lemma 3.1], putting κm = 0, we have

dκi = α ∧ ((m − i)κi−1 − λ(i + 1)κi+1) , 0 ≤ i ≤ m − 1.

Contracting with T yields

iT dκi = (m − i)κi−1 − λ(i + 1)κi+1, mod (α, dα).

By Proposition 4.2 the result follows.

Lemma 4.9 The following equalities hold modulo α, dα
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(i) For k > 2q

ω2n−k

ω2n−k+1
iT dβk,q ≡ 2(n − k + q + 1)γk−1,q

+ (k − 2q + 1)βk−1,q−1

− λ

2π
(k − 2q + 1)(2n − k + 1)βk+1,q .

(43)

(ii) For n > k − q

ω2n−2q

ω2n−2q+1
iT dγ2q,q ≡ β2q−1,q−1

− λ

2π

(q + 2)(2n − 2q + 1)

n − q
β2q+1,q

− λ

2π

(n − q − 1)(2n − 2q + 1)

n − q
γ2q+1,q .

(44)

Proof This is a straightforward computation using [1, Lemma 3.3, Lemma 3.6].

Proposition 4.10 For k > 2q

ω2n−k

ω2n−k+1
∂λ,Cμλ

k,q = (k − 2q + 1)μλ
k−1,q−1 + 2(n − k + q + 1)μλ

k−1,q

− λ

2π
(2n − k + 1)

(
(k − 2q + 1)μλ

k+1,q + 2(q + 1)μλ
k+1,q+1

)

(45)

and
ω2n−2q

ω2n−2q+1
∂λ,Cμλ

2q,q = μ2q−1,q−1 − (2n − 2q + 1)
λ

2π
μ2q+1,q . (46)

Proof Equality (45) follows from Proposition 4.2, using (43) and the following (see
[1, Proposition 2.7])

[[γk,q , 0]] = μλ
k,q − λ

(2n − k)(q + 1)

2π(n − k + q)
μλ
k+2,q+1, n − k + q > 0. (47)
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Let us now prove (46). Note first that from (44) and (47) we get

[[iT dγ2 j, j , 0]] = ω2n−2 j+1

ω2n−2 j
μλ
2 j−1, j−1

− ω2n−2 j+1

ω2n−2 j

(2n − 2 j + 1)(n + 1)

n − j

λ

2π
μλ
2 j+1, j

+ ω2n−2 j+1

ω2n−2 j

(2n − 2 j + 1)(2n − 2 j − 1)( j + 1)

n − j

λ2

4π2μλ
2 j+3, j+1

=: a jμ
λ
2 j−1, j−1 + b j

λ

π
μλ
2 j+1, j + c j

λ2

π2μλ
2 j+3, j+1

(48)
Then, by Proposition 4.2 and observing that an = 2

∂λ,Cμλ
2q,q =

n−q−1∑

i=0

(
λ

π

)i
(q + i)!

q! [[iT dγ2q+2i,q+i , 0]] + 2

(
λ

π

)n−q n!
q!μ

λ
2n−1,n−1

=
n−q∑

i=0

(
λ

π

)i
(q + i)!

q! aq+iμ
λ
2q+2i−1,q+i−1

+
n−q−1∑

i=0

(
λ

π

)i+1
(q + i)!

q! bq+iμ
λ
2q+2i+1,q+i

+
n−q−2∑

i=0

(
λ

π

)i+2
(q + i)!

q! cq+iμ
λ
2q+2i+3,q+i+1

= aqμ2q−1,q−1 + λ

π
((q + 1)aq+1 + bq)μ

λ
2q+1,q

+
n−q∑

j=2

(
λ

π

) j (
(q + j)!

q! aq+ j + (q + j − 1)!
q! bq+ j−1

+ (q + j − 2)!
q! cq+ j−2

)
μλ
2q+2 j−1,q+ j−1

A straightforward computation using kωk = 2πωk−2 shows

j( j − 1)a j + ( j − 1)b j−1 + c j−2 = 0

and the result follows.

Note that by (18) the linear map �0 : ValU (n) → ValU (n) given by �0|ValU (n)
k

=
ω2n−k id satisfies

∂0,C = �0 ◦ � ◦ �−1
0 .
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Remarkably, a similar identity holds for all λ, which will be crucial for our determi-
nation of tube formulas in CPn

λ .

Theorem 4.11 The linear isomorphism

�λ = Fλ,C ◦ �0 : ValU (n) −→ Vn
λ,C, μk,q �−→ ω2n−kμ

λ
k,q .

fulfills

∂λ,C = �λ ◦ (� − λL) ◦ �−1
λ .

Proof. By combining Proposition 4.10, Proposition 3.1 and the fact ωn
ωn−2

= 2π
n , this

is straightforward to check:

�λ ◦ (� − λL)(μk,q)

= (k − 2q + 1)ω2n−k+1μ
λ
k−1,q−1 + 2(n − k + q + 1)ω2n−k+1μ

λ
k−1,q

− λ(k − 2q + 1)ω2n−k−1μ
λ
k+1,q − 2λ(q + 1)ω2n−k−1μ

λ
k+1,q+1

= ω2n−k+1

(
(k − 2q + 1)μλ

k−1,q−1 + 2(n − k + q + 1)μλ
k−1,q

− λ

2π
(2n − k + 1)

(
(k − 2q + 1)μλ

k+1,q + 2(q + 1)μλ
k+1,q+1

)

= ω2n−k∂λ,Cμλ
k,q = ∂λ,C ◦ �λ(μk,q).

A similar phenomenon holds in real space forms, but restricted to a hyperplane of
Vm

λ,R
.

Theorem 4.12 The linear monomorphism

�λ : ValO(m) −→ Vm+1
λ,R

, μk �−→ σλ
k

fulfills

∂λ,R ◦ �λ = �λ ◦ (� − λL) .

Proof By Proposition 4.8 and Theorem 3.4

∂λ,R ◦ �λ(μk) = ∂λ,Rσλ
k = (m − k + 1)σλ

k−1 − λ(k + 1)σλ
k+1

= �λ((m − k + 1)μk−1 − λ(k + 1)μk+1)

= �λ(�μk − λLμk).

Note the difference of dimensions between the source and the target of �λ. We
will show that there is no isomorphism between ValO(m) and Vm

λ,R
intertwining ∂ and

� − λL . This is essentially due to the fact that (41) and (42) differ from (40).
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5 Amodel space for tube formulas

We next perform some abstract computations that will easily lead to the tube formulas
in both complex and real space forms via (62) and (64). The same approach will allow
us to determine the kernel, the image, and the spectrum of the derivative operator ∂

on these spaces.

5.1 A system of differential equations

It is well-known that the operators X = x ∂
∂ y , Y = y ∂

∂x and H = [X ,Y ] induce an
sl2-structure onC[x, y]. The decomposition into irreducible components isC[x, y] =⊕

m≥0 V
(m) where V (m) is the subspace of m-homogeneous polynomials:

V (m) := spanC{xk ym−k}mk=0.

One has H(xk ym−k) = (m − 2k)xk ym−k .
Motivated by Theorem 4.11, we consider Yλ = Y − λX , which is a derivation on

C[x, y]. It will be sometimes convenient to consider the monomials
(m
k

)
xk ym−k . In

these terms

(
m

k

)
Yλ(x

k ym−k) = (m − k + 1)

(
m

k − 1

)
xk−1ym−k+1 − λ(k + 1)

(
m

k + 1

)
xk+1ym−k−1.

(49)

Our goal here is to solve the following Cauchy problem: find pk : R → V (m) such
that

∂t pk(t) = Yλ pk(t), pk(0) =
(
m

k

)
xk ym−k, 0 ≤ k ≤ m, (50)

i.e. to compute

pk(t) =
(
m

k

)
exp(tYλ)(x

k ym−k), 0 ≤ k ≤ m. (51)

We will use the standard notation

sinλ(t) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin(
√

λt)√
λ

λ > 0,

t λ = 0,

sinh(
√|λ|t)√|λ| λ < 0,

(52)

which is an analytic function in both λ and t , and cosλ(t) := d
dt sinλ(t).
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Proposition 5.1 For any λ, t ∈ R, we have

exp(tYλ)x = x cosλ(t) + y sinλ(t)=: u, exp(tYλ)y = y cosλ(t) − λx sinλ(t)=: v.

Proof Since clearly

Y 2k
λ x = (−λ)k x, Y 2k+1

λ x = (−λ)k y,

we have

exp(tYλ)x =
∑

k≥0

tk

k!Y
k
λ x

=
∑

k≥0

t2k

(2k)! (−λ)k x +
∑

k≥0

t2k+1

(2k + 1)! (−λ)k y

= x cosλ(t) + y sinλ(t).

In the same way we can compute exp(tYλ)y.

The following standard and elementary fact will be useful.

Lemma 5.2 Let A be a finite-dimensional algebra. A vector field on A is a derivation
iff its flow φt satisfies

φt (pq) = φt (p)φt (q), ∀p, q ∈ A,∀t ∈ R.

In other words, each φt is an A-morphism.

Theorem 5.3 The solution of the Cauchy problem (50) is

pk(t) =
(
m

k

)
ukvm−k (53)

=
(
m

k

)
(x cosλ(t) + y sinλ(t))

k(y cosλ(t) − λx sinλ(t))
m−k (54)

=
m∑

j=0

φλ
m,k, j (t)

(
m

j

)
x j ym− j , (55)

where

φλ
m,k, j (t) =

∑

h≥0

(−λ) j−h
(
m − j

k − h

)(
j

h

)
sink+ j−2h

λ (t) cosm−k− j+2h
λ (t). (56)

Proof SinceYλ is a derivation, exp(tYλ) is aC[x, y]-morphism by the previous lemma.
Hence

exp(tYλ)x
k ym−k = (exp(tYλ)x)

k(exp(tYλ)y)
m−k = ukvm−k .
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Comparing with (51) yields (54).
It remains to prove (55). Putting s = sinλ(t), c = cosλ(t) we have

(
m

k

)
(xc + ys)k(yc − λxs)m−k

=
(
m

k

) ∑

a,b

(
k

a

)
(ys)a(xc)k−a

(
m − k

b

)
(−λxs)b(yc)m−k−b

=
(
m

k

) ∑

a,b

(
k

a

)(
m − k

b

)
(−λ)bsa+bcm−a−bxk−a+b ym−k+a−b

=
(
m

k

) ∑

j,h

(
k

h

)(
m − k

j − h

)
(−λ) j−hs j+k−2hcm− j−k+2hx j ym− j

where we changed a = k − h, b = j − h. Using
(
m

k

)(
k

h

)(
m − k

j − h

)
=

(
m − j

k − h

)(
j

h

)(
m

j

)
(57)

yields (55).

5.2 Eigenvalues and eigenvectors of Y�

Given f : V → V an endomorphism of C-vector spaces, we denote by spec( f ) the
set of eigenvalues of f and by Eα( f ) the eigenspace associated to each α ∈ spec( f ).

Lemma 5.4 The endomorphism Yλ|V (m) is diagonalizable with simple multiplicities
and

spec(Yλ|V (m) ) =
{
(2k − m)

√−λ : 0 ≤ k ≤ m
}

,

E(2k−m)
√−λ(Yλ|V (m) ) = span{ek1em−k

2 },
where e1 := √−λx + y and e2 := −√−λx + y.

Proof The result is trivial to check for m = 1 as

Yλ(e1) = √−λy − λx = √−λe1, Yλ(e2) = −√−λy − λx = −√−λe2.

Since Yλ is a derivation

Yλe
k
1 = kek−1

1 Yλe1 = k
√−λek1,

Yλe
m−k
2 = (m − k)em−k−1

2 Yλe2 = −√−λ(m − k)em−k
2 .

Hence

Yλ(e
k
1e

m−k
2 ) = (2k − m)

√−λek1e
m−k
2 ,

as stated.
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Remark It is interesting to notice that the spectra of Yλ and
√−λH , when restricted

to each V (m), are identical. These two operators are thus intertwined e.g. by the linear
isomorphism xk ym−k �→ ek1e

m−k
2 .

5.3 Image of Y�

Using Lemma 5.4, we can conclude that Yλ|V (m) is bijective if and only if m is odd. If
m is even, then the kernel is one-dimensional. An explicit description is the following.

Proposition 5.5 If m is even, then

im(Yλ|V (m) ) = ker Zm,λ, (58)

where

Zm,λ :=
(

∂2

∂x2
+ λ

∂2

∂ y2

)m/2

.

Proof By the binomial formula

Zm,λ(x
k ym−k) =

m/2∑

i=0

λm/2−i
(
m/2

i

)
∂m

∂x2i∂ ym−2i x
k ym−kδk,2i

= λ
m−k
2

(
m/2

k/2

)
k!(m − k)! (59)

if k is even, and Zm,λ(xk ym−k) = 0 if k is odd. Therefore

Zm,λ ◦ Yλ(x
2l+1ym−2l−1) = Zm,λ((2l + 1)x2l ym−2l − λ(m − 2l − 1)x2l+2ym−2l−2)

= λ
m
2 −l

(
m/2

l

)
(2l + 1)!(m − 2l)!

− λ
m
2 −l

(
m/2

l + 1

)
(2l + 2)!(m − 2l − 1)! = 0

Zm,λ ◦ Yλ(x
2l ym−2l ) = 0.

This shows that im(Yλ) is a subspace of ker Zm,λ. Given that Zm,λ is not zero, we
have dim ker Zm,λ = m, and by Lemma 5.4, we know that the image of Yλ|V (m) has
the same dimension. This yields (58).

Next we compute, for even m and given ϕ in the image of Yλ|V (m) , the preimage
Y−1

λ ({ϕ}).
Consider

Pm,k :=
∑

j≥0

λ j (k + 2 j − 1)!!(m − k − 2 j − 1)!!
(k − 1)!!(m − k + 1)!!

(
m

k + 2 j

)
xk+2 j ym−k−2 j ∈ V (m).

(60)
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A simple computation using (49) shows

YλPm,k =
(

m

k − 1

)
xk−1ym−k+1 − cm,k x

m

where cm,k = 0 if m − k is even, and otherwise

cm,k = λ
m−k+1

2
m!!

(k − 1)!!(m − k + 1)!! .

With these ingredients at hand, for even m, we can now compute a preimage by Yλ

of any element in im Yλ as follows.

Proposition 5.6 Let � : V (m) → V (m) be given by
(m
k

)
xk ym−k �→ Pm,k+1. If m is

even then
Yλ ◦ �(ϕ) = ϕ, ∀ϕ ∈ im Yλ|V (m) (61)

Proof Let 0 < k < m. Since (m − k + 1)cm,k − λ(k + 1)cm,k+2 = 0, using (49) we
get

Yλ ◦ � ◦ Yλ

(
m

k

)
xk ym−k

= Yλ ◦ �

(
(m − k + 1)

(
m

k − 1

)
xk−1ym−k+1 − λ(k + 1)

(
m

k + 1

)
xk+1ym−k−1

)

= (m − k + 1)YλPm,k − λ(k + 1)YλPm,k+2

= (m − k + 1)

(
m

k − 1

)
xk−1ym−k+1 − λ(k + 1)

(
m

k + 1

)
xk+1ym−k−1

− ((m − k + 1)cm,k − λ(k + 1)cm,k+2)x
m

= Yλ

(
m

k

)
xk ym−k .

For k = 0 and k = m,

Yλ ◦ � ◦ Yλ(y
m) = −λYλ(Pm,2) = −λ(mxym−1 − cm,2x

m) = Yλ(y
m) + λcm,2x

m,

Yλ ◦ � ◦ Yλ(x
m) = Yλ(Pm,m) = mxm−1y − cm,mx

m = Yλ(x
m) + cm,mx

m .

Since cm,m = 0, and cm,2 = 0 if m is even, the result follows.

6 Tube formulas in S
m
� and CPn

�

Here we will obtain our main result: the tube formulas for invariant valuations of CPn
λ

(i.e. the tubular operator Tt on Vn
λ,C

). We will also recover Santaló’s tube formulas for
Vm

λ,R
(cf. [25]) in a way that explains the similarities between the real and the complex

space forms.
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6.1 Tube formulas in complex space forms

Recalling (25) and Proposition 3.3, we get an isomorphism I : Wn → ValU (n) of
sl2-modules from

Wn :=
⊕

0≤2r≤n

V (2n−4r)

to ValU (n) by putting I (y2n−4r ) = π2r ,r (i.e. mapping Y -primitive elements to �-
primitive elements) and

(
2n − 4r

k − 2r

)
I (xk−2r y2n−k−2r ) = 1

(k − 2r)! I (X
k−2r (y2n−4r ))

= 1

(k − 2r)! L
k−2r I (y2n−4r ) = 1

(k − 2r)!πk,r .

By Theorem 4.11, the map Jλ,C := �λ ◦ I : Wn → Vn
λ,C

fulfills

∂λ,C ◦ Jλ,C = Jλ,C ◦ Yλ. (62)

We define

σλ
k,r :=

(
2n − 4r

k − 2r

)
Jλ(x

k−2r y2n−k−2r ) = ω2n−k

(k − 2r)!π
λ
k,r (63)

and arrive at our main theorem.

Theorem 6.1 The tubular operator Tt in Vn
λ,C

is given by

Tt (σ
λ
k,r ) =

2n−4r∑

j=0

φλ
2n−4r ,k−2r , j (t)σ

λ
j+2r ,r ,

where

φλ
m,i, j (t) =

∑

h≥0

(−λ) j−h
(
m − j

i − h

)(
j

h

)
sini+ j−2h

λ (t) cosm−i− j+2h
λ (t).

Proof By (37), using (62) and (63), and putting m = 2n − 4r , we get

Ttσ
λ
k,q = exp(t∂λ,C)(σλ

k,q)

=
(

m

k − 2r

)
exp(t∂λ,C) ◦ Jλ,C(xk−2r ym−k+2r )

=
(

m

k − 2r

)
Jλ,C ◦ exp(tYλ)(x

k−2r ym−k+2r )

= Jλ,C(pk−2r (t)).

Using (55) the result follows.
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The tube formulas in terms of the τλ
k,i can be obtained from Theorem 6.1 using (28)

and (33) which hold verbatim replacing πλ
k,r , τ

λ
k,r for πk,r , τk,r .

Remark The tube formula for the volume σλ
2n,0 = volCPn

λ
is given by the following

simple expression

volCPn
λ
(At ) =

2n∑

j=0

sin2n− j
λ (t) cos jλ(t)σ

λ
j,0(A),

which is Theorem 4.3 of [11], since σλ
j,0 = ω2n− jτ

λ
j,0 = �λ(μ j ). The tube formulas

Ttσ2n−2r ,r are equally simple.

Remark An interesting feature of the previous tube formulas is the following self-
similarity property, which is explained by (62). Let

Gn, j : Vn
λ,C −→ Vn+2 j

λ,C , Gn, j (σλ
k,r ) = σλ

k+2 j,r+ j .

Then one has Tt ◦ Gn, j = Gn, j ◦ Tt .

Remark It is also worth noting that Vn
λ,C

= ⊕
0≤2r≤n In,r

λ where

In,r
λ := Jλ,C(V (2n−4r)) = {

σλ
k,r : 2r ≤ k ≤ 2n − 2r

}
,

and that these subspaces are ∂λ,C-invariant. In particular, given ϕ ∈ In,r
λ one has

Tt (ϕ) ∈ In,r
λ .

6.2 Tube formulas in real space forms

Let I : V (m) → ValO(m) be the isomorphism of irreducible sl2-representations deter-
mined by I (ym) = χ ; i.e.

(
m

i

)
I (xi ym−i ) = 1

i ! I (X
i (ym)) = 1

i ! L
i (I (ym))

= 1

i ! L
i (μ0) = μi

where we used (19). By Theorem 4.12, the map Jλ,R = �λ ◦ I satisfies

∂λ,R ◦ Jλ,R = Jλ,R ◦ Yλ. (64)

The map Jλ,R is explicitly given by

Jλ,R : V (m) −→ Vm+1
λ,R ,

(
m

i

)
xi ym−i �−→ σλ

i . (65)

The image of Jλ,R is the hyperplane Hm+1
λ := im Jλ,R = span

{
σλ
0 , . . . , σ λ

m

}
.

123



Tube formulas for valuations in complex space...

Theorem 6.2 The tubular operator on Vm+1
λ,R

is given as follows. For i = 0, . . . ,m,

Ttσ
λ
i =

m∑

j=0

φλ
m,i, j (t)σ

λ
j . (66)

In particular

Ttσ
λ
m =

m∑

j=0

sinm− j
λ (t) cos jλ(t)σ

λ
j , (67)

and thus

Ttσ
λ
m+1 =

m∑

j=0

(∫ t

0
sinm− j

λ (s) cos jλ(s)ds

)
σλ
j + σλ

m+1. (68)

These formulas where first obtained by Santaló [25].

Proof By (37), (64) and (65), we have for 0 ≤ i ≤ m,

Ttσ
λ
i = exp(t∂λ,C)(σλ

i )

=
(
m

i

)
exp(t∂λ,C) ◦ Jλ,C(xi ym−i )

=
(
m

i

)
Jλ,C ◦ exp(tYλ)(x

i ym−i )

= Jλ,C(pi (t)).

This proves (66) of which (67) is a particular case. Integrating with respect to t yields
(68).

Remark It is worth pointing out the similarity between tube formulas in real and
complex space forms. More precisely, note that the isomorphism

Fn,r : H2n−4r+1
λ −→ In,r

λ , σλ
j �−→ σλ

j+2r ,r+ j (69)

between the subspaces H2n−4r+1
λ ⊂ V2n−4r+1

λ,R
and In,r

λ ⊂ Vn
λ,C

commutes with the
tubular operator Tt . This is explained by (62) and (64).

Remark Recently, Hofstätter and Wannerer [21] have found a map V2n+1
λ,R

→ Vn
λ,C

which also commutes with Tt . Next we describe their results and how they relate
to Fλ

n,0. For λ > 0 let πλ : S
2n+1
λ → CPn

λ be the Hopf fibration. For a proper
submersion p : M → N , Alesker proved the existence of a push-forward of valuations
p∗ : V(M) → V(N ) characterized by

p∗ϕ(A) = ϕ(p−1(A)), A ∈ R(N ).

Hofstätter and Wannerer have computed the push-forward of invariant valuations
through the Hopf fibration. More presicely they have shown that (πλ)∗ commutes
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with Tt and deduced from this fact that

(πλ)∗σλ
k = 2π

(
(2n − k + 1)σλ

k−1,0 − λ(k + 1)σλ
k+1,0

)
. (70)

It follows from (40) that
(πλ)∗ = 2πFλ

n,0 ◦ ∂λ,R. (71)

6.3 Spectral analysis of the derivative map

Here we compute the eigenvalues and eigenvectors of ∂λ,R and ∂λ,C. Note that the
tube formulas for such valuations are extremely simple: if ∂μ = aμ with a ∈ C, then
Ttμ = eatμ.

Proposition 6.3 For 0 ≤ 2r ≤ n, the restriction of ∂λ,C to In,r
λ has the following

(simple) eigenvalues and eigenspaces:

spec
(
∂λ,C

∣∣In,r
λ

)
=

{
0,±2

√−λ,±4
√−λ, . . . ,±2(n − 2r)

√−λ,
}

,

E(2k−2n+4r)
√−λ = spanC

{
Jλ,C(ek1e

2n−4r−k
2 )

}
, 0 ≤ k ≤ 2n − 4r .

Hence ∂λ,C diagonalizes on Vn
λ,C

with the following eigenspaces:

E2 j
√−λ(∂λ,C) = spanC

{
Jλ,C(e j+n−2r

1 en−2r− j
2 ) : 0 ≤ 2r ≤ min{n − j, n + j}

}
,

for −n ≤ j ≤ n.

Proof Everything follows from Lemma 5.4 and (62).

Proposition 6.4

(i) In S
2n
λ the derivative operator is diagonalizable with

spec(∂λ,R) =
{
0,±√−λ,±3

√−λ, . . . ,±(2n − 1)
√−λ

}
, (72)

E0(∂λ,R) = spanC{χ} (73)

E(2k−2n+1)
√−λ(∂λ,R) = spanC{Jλ,R(ek1e

2n−k−1
2 )}, 0 ≤ k ≤ 2n − 1 (74)

(ii) In S
2n+1
λ the derivative operator is not diagonalizable since

spec(∂λ,R) =
{
0, 0,±2

√−λ,±4
√−λ, . . . ,±2n

√−λ
}

, (75)

E0(∂λ,R) = spanC{χ} (76)

E(2k−2n)
√−λ(∂λ,R) = spanC{Jλ,R(ek1e

2n−k
2 )}, 0 ≤ k ≤ 2n. (77)
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Proof.

(i) By Lemma 5.4 and (64) we have that (2k − 2n + 1)
√−λ, 0 ≤ k ≤ 2n − 1, is an

eigenvalue of ∂λ,Rwith eigenspace given by (74). TheEuler characteristic is clearly
an eigenvector with zero eigenvalue. We thus have at least 2n + 1 eigenvalues.
Since this is precisely the dimension of V2n

λ,R
, the statement follows.

(ii) In light of Lemma 5.4 and (64), we ascertain that (2k − 2n)
√−λ, 0 ≤ k ≤ 2n, is

an eigenvalue of ∂λ,R and the corresponding eigenspace is described by (77).
Our next objective is to prove that while the algebraic multiplicity of the zero
eigenvalue is two, its geometric multiplicity is only one. This will entail finding a
valuationμ that satisfies ∂2

λ,R
μ = 0, while also ensuring that ∂λ,Rμ �= 0. Consider

σλ
2n = Jλ,R(x2n) ∈ V2n+1

λ,R
. In the notation of Lemma 5.4,

x = 1

2
√−λ

(e1 − e2), x2n = (−4λ)−n
2n∑

i=0

(−1)i
(
2n

i

)
ei1e

2n−i
2 .

Hence

∂λ,Rσλ
2n+1 = σλ

2n = (−4λ)−n
2n∑

i=0

(−1)i
(
2n

i

)
Jλ,R(ei1e

2n−i
2 ).

Consider

ν := (−4λ)−n
2n∑

i=0
i �=n

(
2n

i

)
(−1)i

(2i − 2n)
√−λ

Jλ,R(ei1e
2n−i
2 ),

and note that, by Lemma 5.4,

∂λ,Rν := (−4λ)−n
2n∑

i=0
i �=n

(
2n

i

)
(−1)i Jλ,R(ei1e

2n−i
2 ),

since en1e
n
2 ∈ ker Yλ. Finally, we define μ = σλ

2n+1 − ν. Then

∂λ,Rμ = (−4λ)−n
(
2n

n

)
(−1)n Jλ,R(en1e

n
2) �= 0,

while

∂2λ,Rμ = (−4λ)−n
(
2n

n

)
(−1)n∂λ,R Jλ,R(en1e

n
2)

= (−4λ)−n
(
2n

n

)
(−1)n Jλ,R(Yλ(e

n
1e

n
2)) = 0.
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It follows that dim ker ∂λ,R < dim ker ∂2
λ,R

. Noting that χ ∈ ker ∂λ,R this implies
the statement.

Remark We conclude from Prosposition 6.4 and Lemma 5.4 that there is no isomor-
phism between ValO(m) and Vm

λ,R
intertwining � − λL and ∂λ,R. Indeed, these two

operators have different spectra no matter the parity of m.

6.4 Stable valuations in complex space forms

We say that a valuation ϕ ∈ V(M) on a Riemannian manifold M is stable if ∂μ = 0,
or equivalently, if Ttμ = μ for all t . By Propositions 6.4 and 6.3, up to multiplicative
constants, the Euler characteristic is the unique isometry-invariant stable valuation in
S
m
λ . The complex case is more interesting.

Proposition 6.5 The unique (up to multiplicative constants) stable valuation on In,r
λ

is given by

ψ2r =
n−r∑

i=r

(
n − 2r

i − r

)(
2n − 4r

2i − 2r

)−1

λi−rσλ
2i,r .

Proof By Lemma 5.4 the kernel of Yλ on the space V (m) of homogeneous polynomials
of degree m = 2n − 4r is spanned by

en−2r
1 en−2r

2 = (y + √−λx)n−2r (y − √−λx)n−2r

= (y2 + λx2)n−2r =
n−2r∑

j=0

(
n − 2r

j

)
λ j x2 j ym−2 j

=
n−r∑

i=r

(
n − 2r

i − r

)(
2n − 4r

2i − 2r

)−1

λi−r
(
2n − 4r

2i − 2r

)
x2i−2r y2n−2i−2r

Therefore the kernel of ∂λ,C in In,r
λ is spanned by ψ2r = Jλ(e

n−2r
1 en−2r

2 ), for each
0 ≤ 2r ≤ n.

Next we express the Euler characteristic as a combination of the stable valuations
ψ2r . Note in particular that χ is not confined to any ∂-invariant subspace In,r

λ .

Proposition 6.6

χ =
∑

0≤2r≤n

(
λ

4π

)r (
2r

r

)
r !

ω2n−2r
ψ2r .

Proof Since χ is stable, it can be expressed as χ = ∑
j a jψ2 j . By [11, Theorem 3.11]

χ =
∑

k,p≥0

(
λ

π

)k+p
∂k+p

∂ξ k∂ηp

1√
1 − ξ

√
1 − η

∣∣∣∣∣∣
(0,0)

τ λ
2k+2p,p.
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The coefficient of τλ
2r ,r in this expansion is

[τλ
2r ,r ](χ) =

(
λ

π

)r
∂r

∂ηr

1√
1 − η

∣∣∣∣
0

=
(

λ

π

)r(2r
r

)
r !4−r .

By Proposition 3.3, we have

[τλ
2r ,r ](σλ

k,r ) = ω2n−k

(k − 2r)! [τ
λ
2r ,r ](πλ

k,r ) = ω2n−k

(k − 2r)!δk,2r ,

whence

[τλ
2r ,r ]

⎛

⎝
∑

j

a jψ2 j

⎞

⎠ = ar [τλ
2r ,r ](σλ

2r ,r )

= arω2n−2r .

Hence

ar =
(

λ

π

)r(2r
r

)
r !

4rω2n−2r

and the result follows.

6.5 Image of@�,C and@�,R

Next we describe the image of the operators ∂λ,C and ∂λ,R, and we compute the
preimage of any element belonging to them.

Proposition 6.7 Given any ϕ = ∑
k,r ak,rσ

λ
k,r ∈ Vn

λ,C, we have ϕ ∈ im ∂λ,C if and
only if

n−2r∑

l=r

a2l,r

(
n − 2r

l − r

)
λn−l−r = 0, for 0 ≤ 2r ≤ n. (78)

Proof Note that ϕ = ∑
r ϕr with ϕr = ∑

k ak,rσ
λ
k,r is the decomposition of ϕ corre-

sponding to Vn
λ,C

= ⊕�n/2�
r=0 In,r

λ . By (62) and Proposition 5.5 we have ϕ ∈ im ∂λ,C if
and only if for every r

0 = Z2n−4r ,λ(ϕr ) =
2n−4r∑

k=2r

ak,r

(
2n − 4r

k − 2r

)
Z2n−4r ,λ(x

k−2r y2n−k−2r ) (79)

=
n−2r∑

l=r

a2l,r

(
2n − 4r

2l − 2r

)(
n − 2r

l − r

)
λn−l−r (2l − 2r)!(2n − 2l − 2r)!

(80)
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= (2n − 4r)!
n−2r∑

l=r

a2l,r

(
n − 2r

l − r

)
λn−l−r (81)

where we used (59).

Proposition 6.8 Given ϕ = ∑
k,r ak,rσ

λ
k,r ∈ Vn

λ,C
satisfying (78) we have

∂−1
λ,C

({ϕ}) =
∑

k,r

ak,r Jλ,C(P2n−4r ,k−2r+1) + span{ψ2r : 0 ≤ 2r ≤ n}

where Pm,l is given by (60).

Proof This follows at once from Proposition 5.6 after decomposing ϕ = ∑
r ϕr as in

the previous proof.

Proposition 6.9 The image of ∂λ,R in Vm
λ,R is the hyperplane Hm

λ generated by

σλ
0 , . . . , σ λ

m−1. Moreover

∂λ,Rφk = k!ωk

πkωm−k
σλ
k−1, 1 ≤ k ≤ m, (82)

where φk = ∑
j≥0

(
λ
4

) j
τλ
k+2 j . In particular

∂−1
λ,R

({σλ
k−1}) = πkωm−k

k!ωk
φk + C · χ.

Recall from [7, eq. (118)] that φk = ∫
Gλ,C

χ(· ∩ gS
m−k
λ )dg where dg is a prop-

erly normalized Haar measure on Gλ,C, and S
m−k
λ is an (m − k)-dimensional totally

geodesic submanifold in S
m
λ .

Proof By (8) and (9)

φk =

⌊
m−k−1

2

⌋

∑

j=0

(
λ

4π2

) j (k + 2 j)!ωk+2 j

πk(m − k − 2 j)ωm−k−2 j
σλ
k+2 j +

((
λ

4

)m−k
2 m!ωm

πm
σλ
m

)
,

where the term between brackets appears only ifm−k is even. Using Proposition 4.8,
this yields (82). The rest of the statement follows.

Remark Equation (82) also follows from Theorem 4 in [27].
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