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Abstract
In this paper, we study generalized Schauder theory for the degenerate/singular
parabolic equations of the form

Y Y ./ 2
ur=a'’ upj + 2x,7,// a Muin, + x)a" upy + b up —i—x,};/ bVluy+cu+ f (y <1).

When the equation above is singular, it can be derived from Monge—Ampere equations
by using the partial Legendre transform. Also, we study the fractional version of Taylor
expansion for the solution #, which is called s-polynomial. To prove Cf*“-regularity
and higher regularity of the solution u, we establish generalized Schauder theory which
approximates coefficients of the operator with s-polynomials rather than constants.
The generalized Schauder theory not only recovers the proof for uniformly parabolic
equations but is also applicable to other operators that are difficult to apply the bootstrap
argument to obtain higher regularity.
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1 Introduction

In this paper, we study generalized Schauder theory and fractional order expansion of
solutions for the following degenerate/singular parabolic equations

u;=Lu+ f in QF, (1.1)
where

L=a"(x,0)Dij +2x)%a™ (x, ) Dyryy + x} @ (x, 1) Dy
1+ G, 1) Dy 4 xL 0" (x, 1) Dy + c(x, 1)

with a constant y < 1 and
QT ={x eRi xil <1 <i<n)}x(—1,0].
The repeated index with prime i’ means the summation from 1 to (n — 1); that is,

n—1 n—1
A'By = ZAiBi and A"V By = Z AV B;;.
i=1 i,j=1

In classical regularity theory, to obtain C**-regularity of the solution u, it is shown
that the following statement holds (cf. [10]): Foreach Y € , there exists a polynomial
pY of degree k satisfying

lu — pY Nl oo, (ryngy < Cr¥t® forall r > 0. (1.2)

Furthermore, we can obtain the higher order partial derivative of u at Y from the coef-
ficients of the polynomial p¥ . However, the function that is not smooth enough cannot
be approximated by polynomials. Breaking away from the stereotype that polynomial
approximation should be used, we consider generalized polynomials represented by
monomials of fractional order, and we call them s-polynomials in this study. In simple
terms, s-polynomial approximation can be understood as a fractional version of Taylor
expansion. The coefficients of an s-polynomial p approximating the solution can be
regarded as suitable constant multiples of the weighted derivatives, and the degree of
p gives the order of regularity. While conventional regularity theory so far has focused
on differentiability for classical solutions, in this study, we are interested in how well
s-polynomial approximates the solution instead of differentiability. In other words, a
generalized concept of regularity theory can be developed through the s-polynomial.

The regularity of solutions for (1.1) can be expected to be C!*-regularity up to the
boundary, but higher regularity up to the boundary can be obtained by considering s-
polynomials and a new metric that preserves scaling. In classical Schauder theory, by
showing that the derivatives satisfy the equations of the same class, C>“-regularity of
the gradient Du is obtained, and iteratively, higher regularity can be obtained. However,
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this bootstrap argument is not applicable in (1.1) since the equation that the partial
derivative u, satisfies is not of the same class as (1.1), so the generalized Schauder
theory was developed to solve this issue. It is also applicable to other operators that
are difficult to apply the bootstrap argument to obtain higher regularity.

The study on the regularity of solutions for (1.1) was inspired by several previous

studies.

)]

2

Monge—Ampere equations: Daskalopoulos and Savin [5] converted the Monge—
Ampere equations

det D’u = |x|” in B,
into the singular equations with y < 0
X" vyx +vyy =0 in By

using the partial Legendre transform. In [5], they solved the problem for Monge—
Ampere equation by finding the fractional order expansion

v(x,y) =a1 +axx +azy+asxy

1, 1 2y 2 2-y 143
+a5(2y —(2—y)(1—y)|x| )+0((y + [T

for some universal constant § = §(y) > 0.

In the study of Schauder estimates up to the boundary for degenerate Monge—
Ampere equations, Le and Savin [7] show that a bounded solution w of the singular
equations with y < 0

Avw + X} wpy =0 inBl+
w=0 on{x, =0}

satisfies

3=y
2-y

2—
lw(x) — p(X)xn] < COT+ -+ xp_ +xy )

forallx € B 1+/2’ where C is a universal constant and p(x”) is a standard polynomial
of degree 1.

As they used a distance function that allows solutions and equations to be scaling
invariant, we also defined a distance function corresponding to (1.1) in our study.
It is noteworthy that such a fractional order expansion and estimates are developed
to higher orders by s-polynomial and the distance function.

Gauss curvature flow: Related studies can also be found in differential geometry,
for example, Daskalopoulos and Hamilton [4] showed that the regularity of the
interface for the Gauss curvature flow with flat sides can be transformed into the
regularity of solutions for the following degenerate equations
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Vp = XUxy + Uyy + VU + f in R%_ x (0, T1. (1.3)

They showed Schauder estimates for smooth solutions of (1.3) using a new metric
that preserves scaling.

(3) Non-local equations: In the research field of non-local equations, Caffarelli and
Silvestre [1] showed that the solution u of the degenerate/singular equations

Ayu _;_Z#uu =0 inR" x [0, c0) (1.4)
u=f onR" x {0} .

satisfies
(=A) f(x) = =C(n, s)uz(x,0)

for some constant C(n,s) > 0. The regularity of solutions for the extension
problem (1.4) can be applied to the regularity of solutions for the fractional Laplace
equations. In fact, in [1], Holder’s regularity of solutions for fractional Laplace
equations was shown by using the Harnack inequality for the extension problem
(1.4).

(4) Mathematical Finance: The Black—Scholes equations for the constant elasticity
of variance (CEV) model, introduced by Cox [2] and Cox and Ross [3], have a
similar structure to (1.1). The risky asset’s price X; of the CEV model evolves
according to the following stochastic differential equations

dX, = puX,dt + o X!"* dw,
Xo =x,

where W; is a one-dimensional Brownian motion for some positive constants u, o,
and y. Using the Feynman—Kac formula, we can derive the following degenerate
backward equations

1
u; + Eozxyuxx +rxu, —ru=0 inRy x [0, T).

As with the aforementioned equations, many applications arise for y < 1, so it is
necessary to research the regularity of solutions to (1.1) for y < 1.

Although there is a slight difference compared to (1.1), the methodology covered in
our study is expected to be applicable to equations that have similar degenerate/singular
structures of (1.1) like aforementioned equations. In addition, it is a new version of
Schauder theory that can directly demonstrate higher regularity of solutions without
relying on the bootstrap argument for uniformly parabolic equations.

In order to obtain the heuristic idea of s-polynomial, let us start with a simplified
version of (1.1). The following equation

w=x"uy+1 inQf O<y<l1 (1.5)
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admits a solution of the form

2 1 t
WD =rt s T a= Y T eopa—n”

+ ! X7, (1.6)
G=2)E-2y)B—y)2—-y)

2—y 3—y

Since u is not twice differentiable at x = 0 in the x-direction, the regularity of u for
a spatial variable is at most C, so the polynomial that satisfies (1.2) with k = 1 is
p(x,t) = x. However, considering the following estimate

) — 2 _ 1 2y ! )l <c =
B s A Ry e |
(1.7)

for all (x,7) € Q;f, it can be expected that fractional order expansion is possible.
Also, (1.7) contains more terms than p and provides a more accurate approximation.

Looking at the pattern of each monomial when it is substituted into (1.5), it is pos-
sible to find a solution with a fractional order expansion of more terms than (1.6). This
analysis can be extended for (1.1), which is the motivation to consider s-polynomials.
Although the forcing term f is a general function rather than a constant function,
the solution of (1.1) can be approximated by such a fractional order expansion. This
is why we established Schauder estimates using s-polynomials rather than standard
polynomials. In addition, the distance function for uniformly parabolic equations does
not have scaling invariance for (1.1) at the boundary {x,, = 0}, so it is not suitable for
describing the behavior of solutions for (1.1) in the neighborhood of {x,, = 0}. Inspired
by [4, 5, 7], we define a scaling-preserving distance function s : QT X QT — [0, 00)
and use it to show Schauder estimates.

Since the bootstrap argument is not applicable in (1.1), it is necessary to obtain
Cf’2+°‘—regularity of solutions for (1.1) directly from Cf’“—regularity of the coeffi-
cients of L. However, it is not enough to consider perturbative methods, by “freezing”
the coefficients around a certain point. In order to solve this difficulty, we will use
s-polynomial approximation of coefficients that fully reflects the regularity of coeffi-
cients and study equations with s-polynomial coefficients first.

The solution u of (1.1) satisfies the following estimates depending on the range of

Y.

e, ] < | Cxn ™ Csllx. ), 0, 0IT7 (<1 (1.8)
Tl e A Cslx, 1), (0,002 (1 <y <2) (1.9)

forall (x,1t) € QT/Z, where C > 0 is a universal constant. Assuming f = 0, the order
of (1.9) can be improved to a higher order, but not in the case of (1.8). In the case
ofl <y <2, Cf*"‘—regularity of solutions for (1.1) is directly obtained from the
improved estimates of (1.9), and then the generalized coefficient freezing method can
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be applied immediately thanks to Cf*“-regularity. However, for y < 1, the regularity
of solutions for (1.1) expected from (1.8) is C§ -regularity or C Sl ** _regularity depending
on the range on y. Thus, a process to show Cf*‘“-regularity of solutions for (1.1) is
necessary. In addition, since s-polynomials for y = 1 include logarithmic functions,
an appropriate method for dealing with them is also required.

The paper is organized as follows. In Sect. 2, we introduce notations used through-
out this paper and state the main theorem. Also, the maximal principle, comparison
principle, the existence of a unique solution for the degenerate/singular equations are
covered in Sect.2. It is similar to uniformly parabolic equations, so readers familiar
with it can skip it. In the last part of Sect.2, we derive global regularity from interior
regularity and boundary regularity of solutions for (1.1). In Sect. 3, we prove the bound-
ary Lipschitz estimates of solutions for (1.1) and use it to show global C¢ -regularity
of solutions for (1.1). In Sect.4, we prove C!“-regularity and Cf’H“-regularity of
solutions for equations with constant coefficients. In Sect. 5, we deal with generalized
Schauder theory, which is the essence of this study. Unlike equations with constant

coefficients, Cf’2+°‘—regularity cannot be obtained immediately, so sz’a—regularity for

solutions of (1.1) and Cf’”“ -regularity of solutions for equations with s-polynomial

coefficients are first shown, and then Cf’2+°‘-regularity of solutions for (1.1) can be

obtained by using generalized coefficient freezing method.

2 Preliminaries

2.1 Notations

We summarize some basic notations as follows.
(1) Points: For x = (x, ..., x,) € R", we denote

=1 xm) €RYL X =(,0) e R and 0 =(0,...,0) e RM,

respectively. For r > 0, we denote

2

rX = (rx', rT7 x,, r’t)

which allows solutions and equations to be scaling invariant.
(2) Sets: We denote the open upper half-space and the set of nonnegative integers as

R’i:{xeR”:xn>O} and No =NU {0},

respectively. We denote an intrinsic cube with side 2r and center ¥ = (y, 1) €
R+ ag

2—y 2-y
OF(¥)={xeRL i xi—yil <r(1<i<n),|x,® —y° | <r}x(z—r1]
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and standard cube with side 2 and center ¥ = (y, 7) € R"*! as
Q) ={xeR": |5, —yil <r (1 <i <m}x(x—r’ 7l

For convenience, we denote Q;" = Q;7(0). We denote the set of degrees for
s-polynomial as

) 2j ..
D={1+ :z,JeNo}-
2—y

(3) Universal constant means a constant that depends only on n, A, A, y, k, and « with
neNkeNy,O<a<l,0<A<A,andy <.

(4) Distance functions: The parabolic distance function d : QT X QT — [0, c0) from
X =(x,t)toY = (y, 7) is given by

d[X,Y] = max{lmax |xi — yil, /1t — ‘L'|}.
<i<n

In addition, the intrinsic distance function s : Q_TXQ_;F — [0, o0) from X = (x, t)
to Y = (y, t) is given by

2_

s[X,Y]:max{lmax lxi — yil, 1%, 2 | \/|t—r}

(5) Partial derivatives: We denote partial derivatives of u as subscriptions.

5 ou D ou d D 8%u

u; = ou = —, uj =Dju=——, and u;; = D;ju = .

T T e T T T oy VT dxiax;

(6) Multiindex notation: A vector of the form g = (B, ,32, B € N’é is called a

k-dimensional multiindex of order | 8| = ﬂl + B> + - - - + Bk. For k-dimensional
multiindices B, B € N, B < Bmeans i < B; (i = 1,2, ..., k). The factorial
and binomial coefficients of a mutiindex are defined as follows.

Bl= P!+ B! and (’?): __ A

B/ BUB-B)
Given 8 € NK m e N, and (X1, x2,...,X¢) € R*, define
5181,
(e xa,om)f = e D

B 8xf18x52~-~8xf"’

u={(D" w: Bl =m.

(X1,%250015

and D"

(X152, Xk )
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Remark 2.1 (Leibniz’s formula) Let © be a domain in R” and let u, v : 2 — R be
smooth functions. Then

DPuv)y =" (g) DPupP=hy.
B<B

(7) s-Polynomials: Let « be a positive real number. We say p is an s-polynomial of
degree m corresponding to x at ¥ = (y, 7) € R’} x R provided

Bijl .t _ \B Zny_Znyi _ Jr —

Do AP =Y T =3 ) G =) (= 1) (r <D
NN

pxy = Prst . .
D AP — Y (Y = ) (W logxn — nlogy) (1 — 1) (v =1)
Bij.l

for some AP/l € R, where B e Ng_l and i, j, [l € Ny satisfy
. 2j
Bl+i+-——+2l<k (y<1
2—-y
Bl+i+j+2 <k (y =1).

The degree m corresponding to k is given by

.
max[|ﬂ|+i+7]—|—216[0,1<):ﬁeNg_l, i,j,leNO} y<1
degp = 2=y
max{|ﬁ|+i+j+2le[o,/<):5eNg*1, i,j,leNQ] (v =1).

(8) Holder norms: Let 2 C R’} x IR be an open set and o € (0, 1). We define the
a™-Holder seminorm of u : Q@ — R to be

U] wron = sup Ju(X) —u(Y)|
A 0. A
X.YeQ

Also, we define the o™-Holder norm of u to be

||u||cor(§) = ||u||C0(§) + [M]Ca(ﬁ).

Moreover, we define for a nonnegative integer &,

lullcrogy = Y. I1DE3jullcog
|Bl+2i <k
ﬂeNg, ieNp
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(€))

and

lullckaig = lullcrog + Y. [DE3julcagg).-
|B|+2i=k
BeNG. ieNg

Next, we define the Holder norm with respect to the distance function s to be

||u||c§<a(§) ‘= sup sup 1r[1)f
yeQr>0

X) — p(X j of(Y)nQ
[HOZ 2L 5 o x < gFnal.

Bii.jl
where p is among s-polynomials of degree m corresponding to k = k + «. In

particular, we denote the o™-Holder norm with respect to distance function s to
be

||M HCf‘(ﬁ) = ”M ||C§),a(§).

Finally, we define the (2 +«)™M-Holder norm and the higher (2+o)"-Hélder norm
ofu:Q — Rtobe

lull c2ve i) = llull 2 g + 1 = Liullco )

and
”u”cfvz‘*'a(ﬁ) = ”u”cf‘*'zva(ﬁ) + ”(at - L)””cf”(ﬁ)

Function spaces: For any nonnegative integer k, 0 < o < 1, and domain  C
R x R, we define function space Ci"a(ﬁ) as the completion of {u € C*°(2) N

C(Q) : ”u”CSk’O((ﬁ) < OO} for || . ”Cf’a(ﬁ) and

COM @) = fu € CFP @)+ lull ghava gy < 00)
which is the space that allows the operator
o —L:CHQ) — CH Q)

to be well-defined.
All of the function spaces defined so far become Banach spaces.

Through this article, we assume that the symmetric matrix (a'/) has the following

property:

MEP < a (X)EE; < AE]? forany X € QF, £ € R @2.1)
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and b, ¢ have the boundedness as follows:

n
Db gty + el ooy < A

i=1
In addition, since the function v = e~ @+D!y satisfies
v =Lv—(A+Dv+e ATV r in o,
we may assume that the coefficient ¢ of L is negative.

2.2 Main result

In this subsection, we are going to state the main theorem.

Theorem2.2 Letk € No, 0 < < L withk + 2 + « ¢ D, and assume
al, b, e, feCh Q) (,j=1,2....n).

Suppose u € C2(Q'1") N C(Q_T) is a solution of (1.1) satisfying u = 0 on {X €
3,07 :x, =0). Thenu € Cf’2+a(QT/2) and

Il 2ve gy = € (e + 1 et )

where C is a positive constant depending only on n, A, A, y, k, «, ||aij | cha
5

i
16t

oy
and ] .

oy fy

2.3 Maximum principle

First, we will show the maximum principle for the following initial/boundary-value
problem

ug=Lu+f inQf

(2.2)
u=g ond, Q.

Lemma 2.3 Suppose u € CZ(QT) N C(Q_T) satisfies uy < Lu in QT. Ifu < 0on
BI,QT, then
u(X) <0 forall X € Q.
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Proof Suppose not. Then there exists T = inf{¢ : u(x, t) > 0 for some (x, t) € Q_T}.

Sinceu € C(Q7)andu < 0ond, Q7 weknow thatthereis ¥ = (y, 1) € 0\9,07
such that u(Y) = 0. Meanwhile 7 is the first time u becomes nonnegative, the function
U(x) := u(x, 7) attains its maximum at y and hence u,(¥Y) > 0, Du(Y) = 0, and
D2u(Y) < 0. Then we have

Infl 0 In,1 0
@ZY:( )DZY( )50

and this implies that
u(Y) — Lu(¥) = u,(¥Y) — tr(a"’ (Y) 2*u(¥)) > 0.
This yields a contradiction to #; < Lu in Qf'. O

Lemma 2.4 Suppose u € CZ(Q]") N C(Q_T) satisfies uy < Lu in QT. Ifu < 0on
a,,Qj, thenu <0in er.

Proof For any ¢ > 0, consider v(X) = u(X) — &(t + 2). Then we have v, < Lv in
O} andv < 0ond,Q;. Thus, by Lemma 2.3

u(X) < et +2) forall X € OF.
We finish the proof by letting ¢ — 0. O
Lemma 2.5 Suppose u € C2(Q'l") N C(Q_f') is a solution of (2.2). Then
llliopy = € (1 lmop) + 18lm(op))

where C > 0 is a universal constant.

Proof Letv = u — e“rl(llfllLOO(Q;r) + ”g”Loo(er)). Then we have v; < Lv in QT

andv < 0Oon a,,Qf. By Lemma 2.4, we have

+
w0 < e (If Imop) +118lm(gp)) forall X € OF.

Considering the function w = —u — e’+1(||f||LOO(Q1+) + gl gi)s We can obtain
the lower bound in a similar way. O

Lemma 2.6 Suppose u € CZ(QT) N C(Q_T) is a solution of (2.2) with y < 0 and
X, ' f € L®(QT). Then

-y
”M”LOO(QT) = C (”xn f”LOO(QT) + ||g||Loo(QT)> s

where C > 0 is a universal constant.
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Proof Let w = e*(+D ||x,,_yf||Loc(QT)(1 + X, — x2). Then, we have

w;, — Lw = e“(1+1)||xn_Vf||Leo(Q;r)</L(1 + Xy — x2)
Y nn v/21n 2
+ 2x,a" — x, """ (1 —2xn)—c(l+xn—xn))

_ 2
= V7 fll ot (”“ + 200 =3 A)

_ 1 _
= }\‘eﬂ(l+1) ||xn yf”L:’O(QT)xr)l/ + e/"(H- )”x” yf”LOO(QT)

3A \? 9A2
ol 28 _22 )
) <<fx" 2ﬁ> e 4X)

For sufficiently large u > %, we obtain

we = Lw = Ax " fll oo oty %n in OF.

As in the proof Lemma 2.5, we can see the desired result, by considering the function
vy = tu — (w/A+ ”g”LOC(QT))‘ O

2.4 Existence of solutions

In this subsection, we assume that a'/, b', ¢, and f are CZ (Q7) for the existence of
a classical solution.

Definition 2.7 A function v € C (Q_f') is called a subsolution (resp. supersolution) of
2.2)if

v < g (resp. > g) on EJ,,QTL
and if for any Q C Q7 the solution 7 € C(2) N C(RQ) of

vy =Lv+ f inQ
V=0 on 3,

is greater (resp. less) than or equal to v in 2.

Lemma 2.8 (Comparison principle) If w € C (Q_fr) is a supersolution of (2.2) and
v e C(QT) is a subsolution of (2.2), then

w>v inQT.
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Proof Suppose 'h = v — w has a positive maximum value M achieved at some point
Y = (y,7) € Of \ 3,07 . Then, we have h(Y) = M > 0 and h(X) < M for all
X € Q, where 2 = {X € er P Xy > yn/2,t < t}. The operator (d; — L) is a
uniformly parabolic in 2 since €2 is away from the boundary {x, = 0}. So, we can
take 7 € C2(Q) N C(Q) and w € C2(Q) N C(Q) satisfying

L+ f inQ d wy=Lw+ f inQ
an
v on 9, wW=uw on 0,%.

Ur

<
Il

Then, the function h=9—w-M satisfying i~zt < Lhin © and h < Oon 9,Q.
Furthermore, since v and w are subsolution and supersolution of (2.2), respectively,
we know that 0 > v in Q and W < w in 2. Hence, we have fz(Y) > 0. By the strong
maximum principle for uniformly parabolic equations, we have i = § — —M = 0O in
Q. It follows thatv —w = M on d $2. Since 9, QT M, £2 is nonempty, this contradicts
the assumption that v < g < w on BPQT. O

Lemma29 Letk € Ny, 0 < o < 1, and assume
al, b, e, feCQN) G, j=1,2,....n) and ge C(Q).

Then there exists a unique bounded solution u € Clkotz’a(QT) N C(Q_T) of (2.2) such
that

iy = € (1ot + 18l ) -

where C > 0 is a universal constant.

Proof Let Abe aset of bounded subsolutions of (2.2) andletu = sup,, 4 w. Consider
the function g4 = +e'*! (||f||Loc(QIr) + IIgIILOO(QT)). Note first that ¢ is a superso-
lution of (2.2) and ¢_ is a subsolution of (2.2), so u is bounded by ¢+ by Lemma 2.8.
For any cube Q,(Y) CC Q7 , the operator (9, — L) is a uniformly parabolic in Q, (Y)
since Q,(Y) is away from the boundary {x,, = 0}. Thus, we can apply Perron’s method
for the problem (2.2) as in [6, Lemma 3.3] and hence u € Ck+2’°‘(Q1+). Finally, for

loc
any Y = (y,7) € {X €9, QT : x, = 0}, take a local barrier w near Y given by

2xy, _ (@)Z*Vﬂ B ();_H)ny (v <0)

r r

27
w1 = =y P+ -1+ XT_(’“T) ! O<y<l
—)%logxn y=1

for some small » > 0. The continuity of u up to the boundary {x,, = 0} is automatically
guaranteed since Y is aregular boundary point. Inthe case Y € {X € 9, QT :xp # 0},
the continuity of  is guaranteed by using the barrier function of the uniformly parabolic
equations as in [8]. O
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2.5 Global regularity

The proof of Theorem 2.2 is sufficient if we show higher regularity of solutions at the
boundary. Main equation (1.1) is a uniformly parabolic equation in any Q cc Q7,
so if the coefficients and forcing term are in Cf’“(Qf), the solution of (1.1) is in
C lkotz *(Q) and global regularity can be obtained by combining interior regularity and
boundary regularity. More strictly speaking, it is described by the following lemma
and theorem.

Lemma2.10 Letk € Ny, 0 < o < 1, and assume
al, b, e, feckuQl) G, j=12..n).

Suppose u € CLt**(Q7F) be a solution of (1.1). Then, for each Y € {X € 0f), :

loc

X, > 0}, there is an s-polynomial p of degree (k + 2) at Y such that

s —— < ¢ M@ 17l ko )
p Pl () = Fi2ta e

and

lell oo o, vy IIfIICk,a(F )
u(X) — pX)| <C ( rk+2+£ + }k+a , s[X, Y]k+2+a

2

forall X € Q+2(Y) and fixed p € (1/2,1), wherer = y, > cde > 0 is a constant
which is mdependent of Y. Moreover

lullpgop, oy M lckeiromy
lp(X)| =C ( rk+2+§ + }k—i—a J s[X, Y]tte

forall X € QF with s[X,Y]> r/2.

Proof For each Y = (y,t) € {X € er/z : x, > 0}, we consider the function v
defined in a standard cube Q,(0', 1, 0) by

v(x,t) =u(y +rx/, (rx,,) ,T+7r t)

2y
where p € (1/2,1) and r = y,,> . Then, v satisfies the uniformly parabolic equation

B . G (X
v = al (Xyvij + B (X); —ﬁ“ S,

vy 4+ EX)v + f(X) inQ,(0,1,0),
(2.3)

Xn
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where

i 2

al(y' +rx', (rx,)T7 , T +r%1) ifi,j#n
ﬂ i / / % 2 P .

dij(X): 5 al”'(y +rx,(rxn)22y,-,;—|—r 1) ifi 2n,j=n

XAy 4 rx, (rx) T T r2) ifi=n,j #n

—y)? 2 cp . .
%a""(y/ +rxl, rx) 27 T4+ 7% ifi=j=n,

. 2
rb (Y +rx’, (rx) TV, T 4 %) ifi #n

b(X)=1,_ 2 2n e
SErb"(y +rx!, (rx) TV T4 r%1) ifi =n,

2
EX) =r2c(y +rx, (rx) 7, T +r’1),

FXO) = P2 £ +rx rx) 77 T+ 720).

Since Qj‘p(Y) is away from {X € 9, QT 1 x, = 0}, we can show that

5ij - ij _
||(l ”Ck""(Q,,(O/,l,O)) S C”(Z ”Cska(QT)

i i I
”b ”Ck""(Qp(()’,l,O)) < C”b ”Cica(QT)

”Enck.a(m) < C”C“Ci"“(Qif)

F P 2 o e
and ”f”Ckﬂ(Qp(O/,l,())) <r C”f”Cff’“(ijp(Y)) for some constant C which is indepen-

dent Y. Thus, by the interior Schauder estimate, there exists a polynomial p of degree
(k + 2) of the form

)= Y AP, — i
|Bl+i+2j<k+2
peNa~!, i, jeNy

and
||13||ck+2,oc(Qp(o/,1,o)) = C(”U”LOC(Q,,(O’,I,O)) + ”.]F”Ckﬂ(Qp(O”],())))’ (2.4)

where C depends on n, i, A, k, &, 187 ceegrroy 10k g e and

”C”Ck‘a(m) such that

[v(X) = p(X)| < C(””“mm> + ||f||ck,a(m))d[x, (O, 1,0+
(2.5)
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forall X € Q1,2(0/, 1, 0). Putting

2
pX) = p(r & =), r T - D)
ABi 2-y 2y
= Z m(x/—y/)ﬁ(xnz — ) =1,

|Bl+i+2j<k+2
BeNg ™', jeNy

we can rewrite (2.4) and (2.5) into

ol <M 1/ lete g,
Pleisagf, oy = pras e g

and

lu(X) — p(X)|
= C(lull gy + P 1F et g5,
2-y
xd[(r ' =), r T T2 — 1), (0, 1, 0)]F e

_ ||M||L00(Q;*'p(y)) “f” ka(Qrp(Y)) S[X Y]k+2+ot
- rkt2+a pkta '

forall X € Qr/z(Y) From (2.4), we know that

Bij
Yo 14 = c(lulegnan + I b gE )
|Bl+i+2j<k+2

BeNy~'i,jeNy

and hence, we have

Ul poo NI ke 7 ket 2+a
el o 07, ) ke @f, ) > SLX, p B2

< k R

lp(X)] =€ < rhk+2+a + rhta rlBIFi+2]
|Bl+i+2j <k+2

BeNg™',i, jeNy

el oo oty M ke oz iy
rp rp k+24a
= ¢ < rk+2+a rk+o¢ S[X’ Y]

forall X € QF with s[X, Y] > r/2. o

Theorem 2.11 (Global Regularity up to {x, = 0}) Lerk € No, 0 < a < 1, and
assume u € C (QT). Suppose the following statements hold:
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(1) IfforeachY € {X € Qii_/z : Xy > 0}, there is an s-polynomial p**2 of degree
(k +2) at Y such that

— L P
12 N et lur = Lull e 7 )
P Wek2agr vy = P Y

and

lull poocot pyy N = Lttll ke (57
u(X) = pF2x)] < A ( e R ) sl ye

forall X € Q;"/z(Y) and fixed p € (1/2,1), wherer = y,
constant that is independent of Y. Moreover

2—y
2 and A > lisa

e, — Lullcf.a

”u”Loo + (v

(07, () k42t
rk+2+a rhkta ) s[X, Y]

forall X € QF with s[X, Y] > r/2.
(2) If for each Ye{Xe 0p QT/Z : xp = 0}, there is an s-polynomial p™ of degree m

corresponding to k =k +2 + « at Y and a constant B > 1 such that

(3 — L)(u — p™)(X)| < Bs[X, Y]<+e
lu(X) — p™(X)| < Bs[X, Y]FT2+e

forall X € QT and
m
||P ||C£<+2,a(Q;r) S B

(3) For each s-polynomial p of degree m corresponding to k = k + 2 + o with
”p”ck-%—Z,a(F) < B, v = u — p satisfies (1) again.
s 1

Then u € C? z’a(Ql/z) and
u 2. < AB .
” ”Ci( > (Q]/z) ¢

where C = C(k,a) > 0 is a constant.

Proof For each Y = (y, 1) € QT/Z, we just need to find an s-polynomial p that
satisfies

”p”Cf“"“(QTﬂ < ABC
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and
lu(X) — p(X)| < ABCs[X, Y2 forall X € OF.

If y, = 0, then our goal p is just p™ in (2). Let us think about y, > 0 case. Let
Y =(,0,1). From (2), there is an s-polynomial p™ of degree m corresponding to
k =k 42+« atY and a constant B > 1 such that

(2.6)

(3 — L)(u — p™)(X)| < Bs[X, V]
lu(X) — p™(X)| < Bs[X, Y]t

for all X € Q_T and || p™|| CkH2a B. Now applying (1) on the function v =

— <
N ~
u — p™, we have an s-polynomial p**? of degree (k + 2) such that

— L o« T
=y [ Pl ot oy or = Lvll ke o7 ) o7
p P, ) = Fh2ta rhto :
and
||v||Lm(Q+ ) lvy — Lv”Ck’“(Q"' )
w(X) — pPF2(X) < A ( rk+2+‘z + e i s[X, yir2te
2.8)
2y
2

forall X e Q:F/Z(Y) and p € (1/2,1), wherer = y,
is independent of Y. Moreover

and A > 1 is a constant that

[ e (AT
|pk+2(X>|sA< et ORI ix, 1 29)

forall X € Q_T with s[X, Y] > r/2. From (2.6), we see

~ ~ k+2+a ﬂ k+2+0{
()| < Bs[X, Y1*"% < B(s[X, Y]+ s[Y, Y1) <B (rp + )

< BCrkt2te (2.10)
forall X € Q;Z(Y) and we also see

|(v; — Lv)(X)| < BCrkt® forall X € O, (Y). (2.11)
Thus, combining (2.7), (2.10), and (2.11) gives

k+2 w——— < ABC. 2.12
lp ”Cf“’ (Q:r/z(y)) = ( )
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Since pk is an s-polynomial, we can extend the domain Q 2(Y ) to Q in (2.12).
Furthermore, combining (2.8), (2.10), and (2.11) gives

lu(X) — p™(X) — p"*2(X)| < ABCs[X, YI*2*% forall X € Qr/z(Y)
Meanwhile, combining (2.6), (2.9), (2.10), and (2.11) gives
u(X) — p"(X) — PO < [u(X) — p"(X)| + [P(X)]

S BS[X, ?]k+2+a +ABCS[X, Y]k+2+0t
< ABCs[X, Y|t

forall X € Q} with s[X, Y] > r/2. o

Thanks to Theorem 2.11, we are only concerned with showing regularity at the bound-
ary.

3 ¢Z-Regularity

The goal of this section is to show global C{-regularity of solutions for (1.1). In
Sect. 4, we obtain boundary C!-%-regularity of solutions for equations with constant
coefficients using the result of this section, and in Sect.5, it is used to prove the
approximation lemma.

Lemma3.1 Letu € C2(QT)OC(Q_T) be a solution of (1.1) satisfying IIMIILOC(QT) <1

andu = 0O on {X € BPQT . xp = 0} and for some nonnegative constant § <
min{l —y /2,1 —y}and M > 0, if f satisfies

|f(X)| < Mx;® forall X € QF, 3.1
then
C s <1
ux) < | r+o<1)
—Cxplogx, (y+6=1)

forall X € Q'l"/z, where C > 0 is a constant depending only onn, A, A, y, and M.

Proof For ¢ < min{l,2/A,2/M}, we consider the function # defined in Q; by
a(X) = u2 'e2X), where

2
2

Qp ={(x,0): |xi| <2ps7 (1 <i<n),0<ux, <pZ7, 262p> <1 <0}.
Then, # is a solution of

iy =Li+ f inQ
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satisfying [|it]| L0,y < 1and &t =0on {X € 9,9y : x, = 0}, where

L =a"" (X) Dy +2x1"%a ™ (X) Dyrp + 5@ (X) Dyn + b (X) Dy
+x} 2B (X)D, + E(X)

with
alx)y=d7@27'e’x), b(X)=2"12b 27 X), ¢(X) =2 'e?) e e X),

and f(X) = 27 '¢2)2f (2 'e2X). Since ||bi||Lw(Q]+) <A@G=12,...,n and
(3.1), we have |b'| <27'e?A <& (i=1,2,...,n)in Q; and

~ 258
If0O1 < @ ') = Mx? <27 Mx? <ex? forallX € Q).

From these observations, we may assume without loss of generality thatu € C 2(Qpnn
C(Q)) is a solution of

uy=Lu+ f in Q
se_ltisfying lullLo(Q) < landu =0on {X € 0p Q1 : x, = 0}, where the coefficients
b', ¢, and the forcing term f satisfy |b'| < e (i = 1,2,...,n),c < 0in Qy, and
|f(X)| < ex;® forall X € Q. Now, we define Q, = {(x,1) : [x;| <71 (1 <i <
n,0<x, <1, —e2<t< 0}. Foreach Y = (y, t) € 912, consider the function
v defined in Q. C Qp by
_ / / 72 2
v(x, 1) =ux + Y, xp, t +7) + @x) — (Ix'|7 —1)e”,

where

X VT 7 3k, (v +6 < 0)

() = {x27770 oy, O<y+8<1)
xp logx, — x, y+6=1.

Then v < 0on 9,9, and fors < L (2 — L) (1 — %) A, we have
p 3 2 2

v —Lv<x® <—An(y, 5) + (5 4 ;Iyl)s F 4200 — 1)(A + 1)]52>

in ., where

L =" (X) Dy + 250" (X) Dy + X3 @™ (X) Dy + B (X) Dy
+x7 6" (X) Dy + 6(X)
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with

aTX)y=a" (X' + Y, xu t +1), D(X)=b' (X + Y, Xt 4 1),
EX)=c(x' +Y, xu,t +7),

and

Q-y=HU-y=98 r+s#D

78 =
.9 =1, (y+8=1).

For sufficiently small ¢ > 0, we obtain v; — Lv <0in Q.. By Lemma 2.4, we have
w4y, x 1+ 1) < (X = 0e* — p(x,) forall (x,1) € Q.
Thus, if we take (x', x,,, 1) = (0, y,, 0), then

3y y+é<1
yn(1—=logy,) (y+6=1)

uY) < —p(m) <
forall Y € Qj/>. Next, consider the following function to find the lower bound
wx, 1) = —ux’ + ¥, Xn, 0 +7) + @) — (&P — D)’

Similarly, we can obtain the lower bound. Hence, we conclude that

Cx, (y+8<1

lu(X)| =
—Cxplogx, (y+46=1)

forall X € QT/Z. O

Corollary3.2 Let 0 < o < min{%, 1}, and assume f € LOO(Q—II—). Suppose u €
CX(Q) N C(QY) is a solution of (1.1) satisfying u = 0 on {X € 3,07 : x, = 0}.
Then u € C_?‘(QT/Z) and

lulleeigr, =€ (el + 1 Nt

where C > 0 is a universal constant.
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Proof By Lemma 3.1, we have

C (Nl wqopy + 1 o)) ¥n (v <1)
oy + 1/ mgopy) Xnloga (v = 1)

o
= C (Il gty + 1f (o) ) SIX. O]

lu(X)| <

forall X € Q1 /20 since the function x,l /2 log x;, is bounded. Thus, we know that for

each Y = (y,7) € {X € 07, : x4 > 0},

where ¥ = (', 0, 1), since (1.1) is invariant for translation in the x’-direction. We
now consider the functlon v defined in a standard cube Q, (0, 1 0) by v(x,t) =

u(y' +rx’, (r)cn)2 7, T+r2t), where fixed p € (1/2, 1) and r = y,, as in the proof
of Lemma 2.10. Then v is a solution of the uniformly parabolic equation (2.3). By the
interior Holder regularity,

(0 = 0@, 1,0 = C (1wl 0100 + I Fl (0,010 )X, @', 1O
(3.3)

forall X € Q1,2(0/, 1, 0). From (3.2), we see

(X)) < C (||u||Lm(Ql+) + ||f||Lm(Ql+)) P forall X € 0, (Y).  (3.4)
Then, we can rewrite (3.3) into

u(X) — u(Y)|
= C(”””LO@(Q,-*,J(Y» + r2||f||Loo<Q,.+,J(Y>>)
2—y
xdlr ' =), r xR = 1), (0, 1,0)]%

leell Lo o7, vy
ra

2

—i—rz_a”f”LOO(ij(y))) [(x xn t) (y )’n T)]a

o
<C (”ullLoo(er) + ”f”Loo(Q;r)) s[X, Y]

forall X € Qj/z(Y ) which is extensible throughout Q_T by using (3.2) and (3.4). O
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Lemma3.3 Ler 0 < & < min{52. 1} and letu € C*(Q}) N C(Q7) be a solution

of

u; = Lu in QT 35
— 9 + CR)
u=g ondy0,
Py + .
satisfying ”””LOC(QT) <landg=0o0n{X € 9,07 : x, = 0}. U||g||C§(?T) <1,

then

Ha

u(X)| < Cx,2 © forall X € OF,

where C > 0 is a universal constant.

2
Proof Let K = [ (1= E) |7 € ©.1). Since llgll o, 57, = 1 and

2—ya

||“||L°°(Q+ < 1, there exists a constant C > 0 such that |g(X)| < Cx,?  for
all X € 9, QJr and |[u(X)| < CK Yo for all X = x',K,t) € QJr Consider now

2— V

the function v defined in 2 = {X € QT 10 <x, < K}byv(X) =u(X)—Cx,*
Then v < 0 on 9,2 and

o Lv— {(2 y)a ((Z—V)a_ )annxnzg(a—z)

2 — _ 2-y
( y) " Y (a 1>+an2a

2 2
- CQ2 - )/)Ot {( 2-ya ))»+Ax,12}xnzy(“2)

- CcR2 - y)otk <(2 y)ot

<
By Lemma 2.4, we have

7]/0(

2.
u(X) < Cx,> " forall X € Q.

2—y
20(

Considering v(x, t) = —u(x,t) + Cxy, similarly, we have lower bound of u. O

Corollary 3.4 Let 0 < o < min{%, 1}. Then for each ai bl c e C]”(‘)C(QT), and
8 € Cf‘(QT) satisfying g = Oon{X € 9, er : x, = 0}, there exists a unique solution
u € CHQY)NCHQOY) of (3.5) and

[ < _
el gy g7, < Clgl o
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where C > 0 is a universal constant.

4 Regularity of solutions for equations with constant coefficients

Before treating (1.1) with variable coefficients, we establish a necessary preliminary
result for equations with constant coefficients given by

u; = Lou + f, 4.1
where the operator L is given as
Lo=A""Dyjr +2x)? A" Dy + X} A" Dy + B Dy + x)*B" D, + C™,
with the constant symmetric matrix (AU satisfies the following condition
MEPP < AVgiE; < Alg|> forany § € R”

and the constants B, B2, ..., B", and C~ satisfy

n
DYIBI+ICTI <A and CT <.

i=1

Theorem4.1 Letk € Ny, 0 < o < 1l withk + 1+ o — % ¢ No, and assume
f € Cf’a(Q_T). Suppose u € CZ(QT) N C(Q_T) is a solution of (4.1) satisfying
u=00n{X €d,0f :x,=0}. Thenu € Cf’”a(er/z) and

Il s vaigrsy = C (Il op) + 1 ko g )

where C is a universal constant.

Lemma4.2 Let 0 < o < min{32-, 1} and let u € C}(Q) N C(Q7) be a solution
of (4.1) satisfying ”””LOO(QT) <landu=0o0n{X € BPQT cx, = 0L If

”f”LOO(QT) <1 and ”fi”LOO(QT) <1( #n),
then

i — <
il ) = C

where C > 0 is a universal constant.
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Proof 1t is sufficient to prove only the Holder continuity of u in QT/Z. Consider u(xy)
as a function whose variables are fixed except for the x|-coordinate in the function u.
By Corollary 3.2, for 4 € R with |h] < 1, we have

Il gy < € (Nl oy + 1 F o)) -

This implies that # € C*(I}) and the function

M()Cl + hy X2 ooy Xns t) - I’t(xs t)

vW(x, 1) = e

is a bounded solution of vy = Lov® + f¢, where

o, =

FGL 4R X2, X 1) — F(x. 1) {[—Ll—h] (h > 0)
and [ =
|h]* [—1—=h,1] (h<DO0).

We can apply Corollary 3.2 to v again,
o o o
10l ee o0 =€ (10N emop 0 + 17N imot )

<cC (nuan(Qm + ||f1||LOO(Q1+)>
< C (Wtll gty + W peiopy + 1 fill ot ) -

This implies that u € C2(I,). We can repeat this process, we have u € COY (L)
for some k € N. Finally, v! is also a bounded solution of vt1 = Lov] + f land v! is
the difference quotient of u for x{-direction, we conclude that ii € C1¢ ({k+1)n) and

1l g gy < € (Nl ey + 1 Nmeiopy + M llmiop ) -

O

Since v = u; (i # n) satisfies v; = Lov+ f;, we can apply Lemma 4.2 again to obtain

the Holder continuity of u;; on Qf'/z.

Corollary 4.3 Let0 < a < min{%, 1} and let u € C2(Q]L) N C(Q_i") be a solution
of (4.1) satisfying ”“”LM(QT) <landu =0on{X €9, er 2 xp = 0}. If for each
iLj=12,....,n—1,

”f”LOO(QT) <1, ||ﬁ||L°°(Q1+) <1, and ”fij”Loo(QT) <1,
then

Ui —_ < C’
luijlles gy =
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where C > 0 is a universal constant.

Lemmad4 Let0 < o < min{%, 1} and let u € C2(QT) N C(Q_T) be a solution
of (4.1) satisfying ”“”L"O(QT) <landu=0o0on{X € BPQ?L cx, =0 If

< <
”f”LOO(Qf') <1 and ”ft”LOO(Q‘l*') <1
then
||ut||csut(Q;r/2) <C,
where C > 0 is a universal constant.

Proof Considering the function

u(x,t+h) —u(x,r)

o —
w ('xat)_ |h|°‘/2 ’

we know that the proof is exactly the same as Lemma 4.2. O

Lemmad4.5 Letu € COO(QT)DC(Q_T) be a solution of (4.1) satisfying IIMIILOO(QT) <
landu =0on{X € Bpr':xn =0}. Ifforeachi, j,k=1,2,...,n—1,

<1,

”f”LOO(Q;r) = ”f"”LOQ(QT) <1,

”f"j”LOO(QT) <1,
Iijkllpooory = 1o M fellpeory = 1 kel ooy = 1,
and there exist constants 0 > y /2 and M > 0 such that
{ 1O < Mx forall X € OF
| fie(X)| < Mx? forall X € QF,

then u,, is well-defined on QT/Z and

Clxn —yal'""* (0<y <1

Uy (X', Xy, 1) — Uy (X', yu, )| <
[t ( ny 1) n(X', Yn )|_{C|xn—yn| (y <0)

forall (x', x,, 1), (X', yu, 1) € Q—li_/2’ where C > 0 is a constant depending only on n,
A Ay, 0, and M.

Proof Differentiate both sides of (4.1) with respect to xx (k # n), then

{ vy = Lov+ fr in Ql+ 42)

v=0 on{X € 3,07 : x, =0},
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where v = uy. By Lemma4.2, v is bounded solution of (4.2), we can apply Lemma 3.1
to v, we have

Cxy, y<1

lur (X)| = [v(X)] < {—Cx,, logx, (y=1)

for all X € Q1+/2~ We can obtain the same inequality not only for u; but also for u,
andu;; (i, j =1,2,...,n — 1). An integration by parts yields

z
‘/ xn_y/zui’n(xa 1) dxy
0

2 W=yt 2-1
[x; v/ ui/(x,t)i| +L f X0 " i (x, 1) dix,
0

x,=0 2

Z
< )z—”zui«x’,z,t)) + % / ben 72w (e, 1) dxy
0

4.3)
cz'7v/? 1
- z (y <1 @.4)
—CJzlogz (y =1
forall (x',z,t) € Qf'/z. Similarly, we also have
z czlmv/2 1
’/ 5Py, 1y | < 4 =1 “5)
0 —Cyzlogz (y=1)
forall (x',z,1) € Q1/2 Combining (4.1), (4.4), and (4.5) gives
Zz
f Upy dxy,
0
z A/urr—2xy/2A”‘u/ —B’u,/—x,),//zB”un—C’u—f
= /(; 7 A dx,
(4.6)

_ et (r <1
—Cyzlogz (y=1)

2

forall (x',z,1) € Q1/2 and hence fore < 27 2=

_ 2
-y

5 2 £
Iu,,(x’, e, )| = un(x/, 27ﬁ,t)_/ Mnn(xst)dxn+/ Upn (X, 1) dxy,
0 0

_ 2 e 46 <)
- |un(x,1/4,r>|+caog2—ﬁloge) (v =1D.
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By interior gradient estimates for uniformly parabolic equations, u, is bounded by
2

a universal constant on {x, = 2~ 2-7}. Therefore, we have |u,| < C in Q] 2 This
implies that even though y = 1, we have the following Lipschitz estimate

lu(x,t)| < Cx, forall (x,1) € QTL/z.

Furthermore v = uy (k # n) satisfies assumptions of Lemma 4.5 again, we have
lugn| < C in Ql+/2. Thus, (4.6) gives

|ul’l(x/v-xl’l1 t) - un(x/v Yn, t)' =

Xn
SC(/ 27Vdz| +
Vi

2
= C(|x, y_yn V|+|x

_ Clxp —yu|777? 0O<y <1
Clx, — yul y <0

Xn
/ unn(x', 2, 1) dz
Yy

n
Xn
—i—/ 277 dz
n

Xn
/ V2 dz
Yn

1-y/2 1 v/2

)

0— 1 0— 1
[+l 7T = T @

4.8)

2

for all x,,, y, € (0,2 Z77).
2

In order to extend (4.8) to Ql /2 We define the function u : [0,2" Z¥] — Rasin
[9]:

inf {2,y 1)+ Clag —yal 772 O <y < 1)

0<y,, <27 2-y

, {un(x', yn, 1) + Clxy, — ynl} (y <0).

O<y,<2 277

u; (xp) =

__2
Then, u; is uniformly continuous on [0, 2° 2-7 ] such that

Clx, — w72 O<y <1

|uyy (xn) — upy (yn)] < {C|Xn—)’n| (y <0)

2
for all x,,, y, € [0,2” 27 ] and u} (x,) = u, (x', x,, 1) forall x, € (0,2~ = 7). There-
fore, the value u, (x’, 0, 7) can be defined as u(0) and we conclude that

Clan —yal"™7* (0<y <1

u x/,x,t —Uu x/, D) <
1 ( ny 1) n(xX, yn, )] < C|xn_yn| (]/EO)

forall (x, x,,, 1), (X", yp, 1) € Q1+/2. O

Remark 4.6 In Lemma 4.5, we can verify that the proof can continue for uy (k # n),
u;, or higher order differentiation of u# except for x,,-direction. Therefore, on the same
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assumption of Lemma 4.5 for forcing term D( 0 f(X) for each B € N7, the partial

derivative D” u, (X) is well-defined on Ql P and

',1)

u(X)| < Cx, and |D?

(x/’t)un(X)l <C

D
forall X € QT/Z, where C > 0 is a constant depending only on n, A, A, y, 6, and M.

Lemma4.7 Let u € C®(Q7) N C(QF) be a solution of (4.1) with f = 0. If
”””L"C(QT) <landu = 0on{X € 8PQ1+ : x, = 0}, then for each N € Ny,

there exists an s-polynomial p of degree (N + %) at O such that

14+ 352 (N=1)

|(pr = Lop)(X)| < Cx, forall X € 0F,

and
, .
u(X) — p(X)| < Cs[X, 01N forall X € OF,

where C > 0 is a constant depending only on n, A, A, y, and N.

Proof By Lemma 4.5, the function U%(x’,1) := u,(x’,0,1) is well-defined.
Furthermore, by Remark 4.6, U 0 is infinitely differentiable and hence we have

Dé [)Uo(x’,t) = Dé,’t)un(x’,o, t) for all B € Njj. For each N € Ny, consider

a function v" of the form
al 1+
VX)) =Y U s 2

Then, the function (vtN — Lov™) is expressed as follows:
N+2 122 2)
1—
@) = Lov™)(X) = Z g X, T
where each g’ is an unknown smooth function. For arbitrary fixed positive integer

| < N, the function gl in (8, — Lo)v" is the sum of the coefficient functions of

2=y g
Tz 2 (4.9

in the functions obtained by expanding the following operator

) — LovM)(X) = Z(at Lo) <U (', t)x1+ 2 ‘). (4.10)

i=0
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If we choose U such that g! = 0, then

4
2 —=y)@d—yyam

Ul 1) = — AU 1)+ B"U (Y, 1)).

In the expansion of (4.10), the coefficient function for the monomial of the form (4.9)
can be obtained as follows:

1+352 y 14227 -
— x) A" D2 (len+ 2 )—x},’/z(2A’"Di/n + B"D,) (U’—‘xn+ 2 ¢ ”)

et - 2y 1-2
+ @ — A" Dy — B'Dy —C7) (Ul—zx,i+ z ¢ ))

_[@=yi 2=yl C-p-1
__[ 2 <1+ 2 * 2

14+57(1-2)
Xp .

Jamu'+ (1 A" Dy + BHU'!

— @ — A" Dyj — B Dy — c—)U’—Z]

Now, taking U’ such that g/ = 0, we can determine U’ inductively using the following
formula:

(1 n W) (2A"/"D,»r + B”) U= — (3 — AT Dy jy — B Dy — €U

Ul =—
el (1 n (2—2)/)1>Arm

@.11)

Since [ was arbitrary, we found all U i
Using the recurrence relation (4.11), for any N € Ny, we can construct the function
v" such that all monomials of the form

. 1+2Y (-2
g nx 27 <N

are deleted in (v¥ — Lov"). Thus, we have

+35(N=-1) 1+352N

1
WY — Lov™)(X) = ¢V, 1)y + gV Dy
This implies that

2V (N—
D, @Y = Lov™)(0] = €2 T 4.12)

/.t

forall X € Q3+/4 and 8 € N}, where C depends on n, A, A, y, B, and N.
We now claim, for any N € Ny, the following inequality holds:

2—y
DL, =)0l < Cx, 2 Y (4.13)
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forall X e QT/Z and 8 € Njj, where C > 0 is a constant depending only on #,
A, A, y, B, and N. The proof is by induction on N. Suppose first N = 0 and let

wd = Dg, t)(u —vY), then w? is a solution of

w? = Lowo + fO in Q;’M,

where f0 = (Lov - 9). From (4.12), f© satisfy assumptions of Lemma 4.5,
thus inequahty (4 7) yields

2-y -
[wp(X)| = [w)(X) —w)(x,0,1)] < Cx,” forall X € Qf ,

and hence

2—y

|D(x N W) (X0 = [w0(X) — wl(x,0,0)] < Cxpt 2 forall X € Ql/2

Next, assume (4.13) is valid for some nonnegative integer (N — 1). Let w" =
D, (u—vV), then

2—y N

1+
jwN(X)| < D, ju(X) — oV O+ 105, UM G T 2

2— y
<cx N (4.14)

(x f) (x/,1)

forall X € QT/Z and
w = Low" + ¥ in 07,

where fV = Dfx , t)(LoU —v, N Since B was arbitrary, the partial derivatives of w’

except in the x,,-direction satisfy (4.14) again. We know from (4.12) that fV satisfies
assumptions of Lemma 4.5. Combining (4.3) and (4.14) gives

Xn
/ VPl (7, 1) dz
0

- n LL(N+1
X V/zw{‘/(x,t)‘ + %/ 2 N (2, )l dz < Cxg® Y
0

=

forall X € Q /2 Similarly, we also have

21/ R
< Cxy, VD forallXle/z.

Xn
/ T PwN (2, 1) dz
0
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Combining (4.6), (4.12), and (4.14) gives

Xn
lw (X)| = V w (', z, 1) dz
0

Xn _
SC(/ zHZTyN*de—i-
0

+

Xn
f Pl (z, ) dz
0

Xn Xn
/ PN 2 ) de | + V VN z 1) dz
0 0

EL(N+1)
< anz

)

forall X e T/z and hence

1+ 52 (N+1) -
|Dé,’t)(u — X)) = 1wV X)) <Cx, ? forall X € QF .

Thus, by mathmetical indution, (4.13) holds for all N € Ny.
Since Ul (I =

0,1,2,..., N) is smooth, by Taylor theorem, for any 8 =
(B1, B2, .., Bu—1) € Ng_l and k € Ny with |8| + 2k = N + 1 — [, there exists
Taylor polynomial T/ (x’, r) of degree (N — [) such that

v'e'.n-1'' . ni<c

e B g [Pt
|Bl4+2k=N—I+1

forall |x;| <1/2(=1,2,...,n—1)and —1/4 < ¢ < 0. This implies that

N e P - B Buot ik 1+
V) = T g =cy Y PP e
1=0 1=0 |B|4+2k=N—I+1

< Csix, 0]Vt (4.15)

forall X e QT/z' Now put

Al 1+35%
p(X) =Y T t)x, 2 (4.16)
=0

which is an s-polynomial of degree (N + %). Then, from (4.12), we know that

1+5X (N=1) —
I(pr — Lop)(X)| < Cx,, 2 forall X € Q.
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Combining (4.13) and (4.15) gives

lu(X) — p(X)| < [u(X) — v (X)| + vV (X) — p(X)|

1+ 2552 (N+1)

2
< Cx, + Cs[x, oV T

2
< CS[X, 0]N+l+ﬁ
forall X € QT/Z which is extensible throughout QT. O

Lemma 4.8 Letk € Ny, 0 < a < 1 and assume that the function f € C?’a(Q_T) is of
the form

- iy 2=
Y Aot <
2i"y-i-j<k+ot
FOO =1 hito
3 R nogx)xl? (v = D).

i<j<k+o
i,j€No

where each fU is a smooth function for (x',t). Then there is a function h €
Cf+2’a(QT) of the form

) T A A )
7o+ <k+a
hX)=1{ iisNo (4.17)
Y AU Hogan) e PR = 1)

i<j<k+a
i,j€Ny

such that

5 (k+ar)

|(h = Loh = £YX)] < CILf | gt 57 X forall X € Of

L)
and
”h”C.f”"’(QT*) < C|If”C§*"‘(E)’

where each h'/ is a smooth Sunctions for (x’, t) and C is a universal constant.

In fact, Lemma 4.8 holds true even when the coefficients are s-polynomial, and the
general case will be proved in Lemma 5.4, so it is omitted here.
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Lemmad9 Letk € Nop, 0 < o < 1l withk+ 1+ a — % ¢ No, and assume

f e Cf’a(Q_T). Suppose u € C2(QT) N C(Q_T) is a solution of (4.1) satisfying
u=0on{X € BPQT 1 X, = 0}. Then there exists an s-polynomial p of degree m
corresponding to k := k + 2 4+ « at O such that

(0 = p(XO| = € (o + 1F et g, ) SIX OFF2 forall X € OF,

©hH
where C > 0 is a universal constant.

Proof By considering u/(||u||Loo(QJr +e7 1] ka(QJr ) for ¢ > 0, we may assume

that ||u||LOO(Q+) < land]|f] cha <e.Since f € C (Q_T),we also assume that

©oH =
|f(X) — F(X)| < es[X, O™ forall X € QF, (4.18)

where F is an s-polynomial with degree m corresponding to (k + «) at O. By
Lemma 4.8, there exists a function i € Cf”’a (QT) of the form (4.17) such that

|(F + Loh — h)(X)| < Cyes[X, O1F forall X € OF (4.19)

and ||i]| Y < C,¢, where C, is a universal constant.
5

©
Decompose (¢ — h) into the sum of v! and w! such that

{v}:Lov1 in 0f d {w,l:Lowl—i—fl in Of
an

vl=u—h ond,0f w!'=0 ond, 0,

where f e f+ Loh — hy. Then, combining (4.18) and (4.19) leads us to the estimate

1Y X1 < 1£(X) = F(X)| + |(F + Loh — h)(X)| < (1 + Cy)es[X, O
(4.20)

forall X € Q_T By Lemma 2.5, for fixed € (0, 1), (4.20) gives
W' (X < ClILf M por) < (14 Ce forall X € 0F
and hence, we have
|u(X) — vl(X) —h(X)| = lw'(X)] < (1 +Cye forall X € a
Choose now ¢ small enough such that (1 + Cy)e < r*+2+¢ Then,
lu(X) — o' (X) = h(X)| < rK2Fe forall X € OF .
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Let us now define

==X
rk+2+(x

£l
and fz(X) = frk(:f).

Then, ||u2||Loo(Ql+) < 1land
utz = L%u2 + f% in OF,
where
L= A" Dyj+2x) > A" Dy + x) A" Dy + B Dy + X} *rB"D,, + r*C™.
Furthermore, (4.20) leads us to the estimate

12X < r (1 frX) — FrX)| + |(F + Loh — he)(r X))
< (14 Cyes[X, 0]+

forall X € Q_fr That is, the same hypotheses as before are fulfilled. Repeating the
same procedure, we decompose u? into the sum of v2 and w? such that

v =L3v? inQf { w? = L3w?* + f2 inQf

v? = u? on 3,,Q+, w? =0 on E)pr',
and
2 (X) — v2(X)| < rFF2H forall X € Q.
By substituting back, we have
u(X) — h(X) — v (X) — <221 x)) < 20424 forall X € Q.

Continuing iteratively, for each integer [ > 3, let us define the sequence of functions
{ul} inductively as follows:

@~ —v"HeX)
rk+2+a

_lex

ul (X) = and f1(X):= e

I
Then, ||u ||LOO(Q1+) < 1and
ul = Lhu' + f1 in QF,
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where

Ly = A" Dy +2x) P A" Dy + x) A" Dy + ' BT Dy
+ 2y B D, 4 20 e

Furthermore,
|FL(X)| < (14 Coes[X, 0T forall X € OF,
and hence we decompose u' into the sum of v/ and w! such that

vl=Lh' inQf wh=Lhw' + f' inQf

— on BPQ+, w' =0 on apr',
and
! (X) — ' (X)| < P2 forall X e QF.

By substituting back, we have

1
w(X) = h(X) =y pimDERrayi it x| < 103240 forall X € QF.
i=1

4.21)

Since k + 1+ o — % ¢ Np, so we can choose N € Ny such that

2
o 3

2
<N<k+2+a— ——.
2—-y

By Lemma 4.7 and (4.16), for each / € N, there exists an s-polynomial

.. 22—y

l Bij g 1+571

pr(X) = Z A XBx, T
|BI+i+2j+ 525 <k+2+a

of degree (N + %) at O such that

) _
(X)) — plX)| < Cs[x, 01V =7 forall X € OF, (4.22)
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where C > 0 is a universal constant. Combining (4.21) and (4.22) leads us to the
estimate

l
u(X) — h(X) — Zr(ifl)(k+2+a)pi(r7i+]x)
i=1
! 2
< pl+240) 4 o Z r(i—l)(k+2+a)s[r—i+1X’ 0]N+1+ﬁ

i=1

I
< k240 4 Crl(N+l+%) Zr—(i—l)(N+%—k—l—a)
i=1

C(r(l+l)(N+%—k—1—a) _ rN+%—k—l—a

— pll+24a) + ) plk+24e)

2
N —k-lea

< Crltk+2te (4.23)

forall X e Q_:; Now put

l
Pl(X) — Z r(i—l)(k+2+a)pi(r—i+1X)'

i=1

Then, (4.23) gives

PIX) = P X0 < u(X) = h(X) = P (X)

u(X) — h(X) — PI(X)‘ +

< Cplk+2te) (4.24)
forall X e Q_j, Consider the rescaling s-polynomial

P(X):=P'(¢'x) - P X)
. . .. 2—y.
— pU=DkA+2+a) Z r|ﬁ|+z+2/+ﬁA;eux/,gxf%ltj.

|BI+i+2j+ 52 <k+2+a

From (4.24), we know that || P|| Lo = Crl*+2+®) Since the coefficients of s-

polynomial P on Qf' are controlled by the L°° norm, we have

k+24a

Bij Cr
A1 = i+
LB A2+ 52
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forall € Ni7"and i, j € No with [8] +i +2j + % < k +2 + a. It follows that

P! converges uniformly to an s-polynomial

PX(X) = BPi B l+27Tyij
) = Z x'Px, t
Bl 42+ 52

7 <k+2+a

of degree (N + %) at O such that

u(X) — h(X) — P¥(X)| < Cs[X, 012 forall X € QF.

Finally, as in Lemma 4.7, if & is approximated with an s-polynomial, the desired

s-polynomial p can be obtained.

5 Generalized Schauder theory

5.1 Cf"'a-ReguIarity

]

In this section, we establish C?“‘-regularity of solutions for (1.1). Since generalized
Schauder theory approximates coefficients using s-polynomials rather than constants,
boundary C!:%-regularity and higher regularity for equations with s-polynomials must
first be obtained. To prove these, we first need CE*“-regularity of solutions for (1.1).

For this section only, Lg is considered the operator with the following constant

coefficients

AV =4 (0), B =b'(0), C =c(0).

Theorem 5.1 Let 0 < o < 1 with2 4+ « ¢ D, and assume

al, b, e, feCQ) (j=12.....n.

Suppose u € CZ(QT) N C(Q_T) is a solution of (1.1) satisfying u = 0 on {X €

3,07 :x, =0}. Thenu € c§+“(Ql+/2) and

E— < JE—
”“”ng(Q;r/z) <C (”MHLOO(QT) + ||f||cg(Q;r)> >

where C is a positive constant depending only on n, A, A, y, «, ||aij||

15 o g and el

ceofy ce(f)
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Lemma 5.2 (Approximation lemma) Let 0 < a < min{%, 1}, and assume f €

L°°(QT). Suppose u € C2(QT) N C(Q_T) is a solution of (1.1) satisfying u = 0 on
{X €3,0] : x, = 0} with el oo gy < 1. If for any e > 0,

a7 — AVl ooty < & 1ID' = Blll ooty <& lle = CTllpsegt) <&,
then there exists a solution h € C°°(Q;'/4) N C?‘(Q;M) of

h; = Loh in Q3+/4
h=u on E)[,Qg'/4

such that
6
It = Bl gt < € (& + 1/ i)

where C > 0 and 6 € (0, 1) are universal constants.

Proof By Corollary 3.2 and Corollary 3.4, there exists a unique bounded solution
h € C*(Q3,,) N CY(Q3),) of

hy = Loh in Q3+/4
h=u  ond,07,

and
e gy < C (Il oz, + ||“||cg<@)) < C(2+ 1 lmig)) -

For X € 9, Q;_/4—5’ we can choose Y € 9, Q;/4 such that s[X, Y] = § and hence we
have

10 = AT = 1w = hll oy g S1X YT = €8 (24 1 fll o)

Ce(0)
By Lemma 2.5 and Theorem 4.1, we have for any 6 € (0, 1/4)

1Al ca cs*Z*“||h||Loo(Q3+/4) < C«S*Z*“nuan(Q;M) <cse,

— <

(034-5) —

Let v =u — h, then
_ Foi ot

vy =Lv+ f in Q3/475,
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where

F=@" — A"y 26 @™ — ATV hysy + x) @ — A"
+ " = B Yy +x)P®" — By + (¢ — C O+ f.

By Lemma 2.5 and Lemma 2.6 with scaling argument,

C (I =hlipmyot, ) + 1 lms, ) @<y <D

”u_h”LOC( + )5 o~
G = € (Il =l pmiay 03,y + Wn " Fllimigt, ) @ <O)

< C (3@ + 1 ) + 657 + o))

1
Take § = €22+ and § = ﬁ we conclude that

lu =kl soor < C (% + 1 fllsi0r) ) -
(03,4 5) hH

Lemmab5.3 Let0 <o < min{%, 1} with 2 + o ¢ D, and assume
al, bl e, feCHOT) (j=12....n).

Suppose u € CZ(Q'I") N C(Q_T) is a solution of (1.1) satisfying u = 0 on {X €
BPQT : xp = 0}. Then there exists an s-polynomial p of degree m corresponding to
Kk =2+ o at O such that

u(X) =PI = € (Illeqop) + 1F ey g7, ) STX. OPH forall X € OF,

where C is a positive constant depending only on n, kA, A, vy, a, |la"|

151l

ce(0fy
and ||c||

ceofy ceofy

Proof By considering u/(”u”LOO(Q'l*') +e N7l ) for sufficiently small ¢ > 0,

a0t
we may assume that ”””LOO(Q,*) < land ||f||cg%?2 ¢. By scaling we also assume
that [a'/] cu (E) < e, [b] ca (E) <eg,|c] ca (QT,) < ¢, and by the Holder continuity of
coefficients, we have
' (X) = AY] <[] G SIX, OF < ¢
') = B'| < (Bl v 51X, 01 < e G.1)
le(X) = €7l = el g o7 SIX. OF =&
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forall X e Q_T By considering

f(O) 2—y 1
_ 2= —pamoy ™ =D
A(X) = u(X) + (f(O)
a””—(O)xn log x,, (y =1,

we may assume f(0) = 0. By Lemma 5.2, there exists a bounded solutions 2!
C®(Q3,,) N C(Q3),) of

hi = Loh' inQF,
h' = u on BPQ;'/4

such that

1 6 6
e = ' Ngr ) < € (67 + 17 (gp)) < 2Ce.
By Theorem 4.1, h' € CS2+°‘(QT/2) and

M C, (5.2)

— <
ety —

where C is a universal constant. Let r € (0, 1/2) be a fixed number and choose now
¢ small enough such that 2C &% < r2+ Then,

lu = k'l oo gy < r7H°. (5.3)
Let us now define

—n! . 1_ 1
u*(X) = % and 2(x) = S LA aLoh )rX).
r r

Then, ||u2||Loc(Ql+) < 1land
uj = L%? + f* in O,
where

L = a7 rX)Dirj 4 2x}a’ (r X) Dy + x) @™ (r X) Dy
+ rbi/(rX)Di/ + rx,},//zb"(rX)Dn + r2c(rX).

From (5.1), (5.2), and (5.3), we can see that the same hypotheses as before are ful-
filled. Replacing the decomposition of solutions with Lemma 5.2, as in the proof of
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Lemma 4.9, we can show that there exists an s-polynomial p*> of degree m corre-
sponding to (2 + «) at O such that

u(X) — p¥(X)| < Cs[X, 01+ forall X € OF. -

Satisfying the assumptions of Lemma 5.3, we know that u € Cf‘(QT/Z) for any

0 < @ < 1. Applying the approximation lemma again to ¢&, we have u € C§+&(Q;r/2)
forany0) <a < 1 with2+a ¢ D.

5.2 Higher regularity of solutions for equations with s-polynomial coefficients

In the previous section, Cf*“—regularity can be obtained by freezing coefficients
method. However due to the degeneracy/singular order of (1.1), higher regularity
cannot be obtained inductively like the classical bootstrap argument. We solve this
problem by considering freezing coefficients by s-polynomial. In this section, we
consider equations of the form

M[=Lpu+fs (54)

where the operator L, is given as

Ly = P (X) Dy jr + 25" P (X) Diny + x] P"" (X) Dy
+ 0" (X)Dy + x> Q" (X)D, + R(X)

and the coefficients P'/ are s-polynomials at O satisfying the following condition

AE? < PY(X)EE; < AlE]* forany X € Qf, & e R”

and the coefficients Ql, ..., O", R are s-polynomials at O satisfying

n
Z 10 ||L°°(QT) + ”R”L&(QT) <A and R(X) <0 forany X € QT.

i=1

Lemma5.4 Let k € Nog, 0 < o < 1 and assume that the coefficients P, Qi, and
R are s-polynomials at O of degree | corresponding to (k + «) and the function

f e ¥ Q) is of the form

- e A
S FiwontT @y <
227iy+j<k+a
FoO =] B
> FI L nlogx)ix? (= 1),

i<j<k+a
i,jeNp
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where each f is a smooth function for (x',t). Then there is a function h €
C§+2’a(QT) of the form

Y Aot T o
23";,+j<k+a
h(X) = i.j€No 5.5
Y R noga) TPy = 1)

i<j<k+a
i,jeNg

such that

22 (k+ar)

(e = Lph = FYO = ClLF Lo gy forall X e OF

and
Il etz P, < CIFll ko gy

where each h' is a smooth function for (x',t) and C depends on n, v, k, a,

ij - i - _
1P ety 197 ety and IR o

Proof If f = 0, obviously the function we are looking for is 4~ = 0. Thus, it is
sufficient to consider only the case f # 0, and || f|| cheoF) = 1 can be assumed. The
s 1
desired function / can be obtained by comparing (A, — L ,h) and f by terms for x,, of
both sides. If the operator (3, — L) is applied to (5.5), then (h, — L ,h) is expressed

as follows:

Y diwon T <
o <ktatut2
(e — Lphy(X) =1 el N
S G nlogx)ixi? (v =1,

i<j<k+a+up+2
i,jeNoy

where each g’/ is an unknown smooth function
We will find A" inductively from the process of tracing g'/. Let us introduce some
symbols for computational convenience. We add an auxiliary spacial dimension like

X =(x1,...,x%0,2) € R and X* = (&%, ).
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Also, we define a modified version of the function u and the operator L, as follows:
The modified function u™ of u is given by the expression

S G, it (<)

i,jeNp

S AW ndx? =1
i,jeNg
> @aon T @<
i,jeNp
S @ nllogxn)ix (v =1)

i,jeNp

for u(X) =

and the modified operator L;‘, of L is given by the expression
.k Lok - — L%k —
L, =P Dyy+2P"" DyDy + P"™*DY + Q' Dy + Q"' D} + R,

where

2—y

x!*D, +zxn 29, (y<D
Y
iy _{xn D2+2zx Dnaz+z2x5 2 (<D

" D + 2Dy, +x 02 — x 0. (v = 1.

Then, we can revert the modified version to the original version as follows:

(uy — Lyu™)(X™) (y <D
(ur — Lpu)(X) = o
(uy — Lyu™)(X™) (y=>0,
z=log x,
u*(X*) (r <D
M(X) — I=Xn

u*(X™) (yr=10

z=log x,,

It is enough to find '/ in the modified version. For arbitrary fixed integers [, m € Ny,

the function g/ in (h} — L% h*) is the sum of the coefficient functions of

1 Em
X’ (5.6)
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in the functions obtained by expanding the following operators

2—y
> @ -Ly) (h”(xhr)zlxnz ! ) (y <1
22_iy+j<k+ot
(hf — Ly (x*) = 1 Hi<to |
> G-y (R 0 ) =,

i<j<k+a
i,j€Ng

(5.7)

We consider several cases according to the range of i, j. The first case is when j > m.
Then, in the expansion of (5.7), each monomial for (z, x,) has the order of x,, greater
than m. Thus, the expansion of (5.7) cannot have the monomial for (z, x,) of the form
(5.6) and hence the coefficient function of (5.6) in (5.7) is identically zero.

The second case is when j = m. For y < 1, the expansion of (5.7) cannot have
the monomial for (z, x,,) of the form (5.6) if i > . Also, A" will be obtained by
inductively finding functions ﬁOm’ ﬁl’", 52’", e ﬁ(l_l)m, it is sufficient to consider
only the case i = [ for now. In this case, in the expansion of (5.7), the coefficient
function for the monomial of the form (5.6) can be obtained as follows:

2 -
=X (m+2) =Em

_ - - 2
—P"*(x',0,0,1) D}, (hlm(x/,t)zlxn ) =S " D, 2
where
Ilm /1 2— 14 2— 14 nn,./
sy 1) = —(1+ T(m+2))(1+ “Ln+2 - 1)P ', 0,1).

For y = 1, we will show that the functions ﬁo’", ﬁl’", ﬁz’", e A" are solutions of
some system of equations. For/ =0, 1, ..., m and m # 0, in the expansion of (5.7),
the coefficient function for the monomial of the form (5.6) can be obtained as follows:

— P"*(x',0,0, 1) [(m + )i 4 2}2""] X2 (1 =0)

1 -
_Pnn*(x/’()7 0, l‘) Z;n(m_|_2)h(l—1)m

+d 4+ Dm + DA™ + (1 + 1) + 2)%““””] Zam/? (1<1<m)

1 ~ ~
= P"0,0,0) | Sm(m + 2RV 4 (m + 1)%’”’”} 2?1 =m).

(5.8)
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The last case is when j < m. Since we will find 2/ inductively, it may be assumed
that all of the functions

WM oy <1,i<1)
Wi (y <1, j <m) 5.9
R (y=1,j<m)

have been found.

Now, we consider a truncated function 4%

(Im) of h™* as follows:

h’(klm)(X*)
~ , . ﬂ(m+2) ~iiy . ﬂ(j+2)
Yo R 0’ + Y A nZx? (y <1
22jy +m<k+a 23’; +j<k+a
— i<l j<m
PRI Ea e =0
i<j<kta
j<m

As in finding Taylor polynomials, we can find the coefficient function of (5.6) in
(0 = Ly a5

1 _
Im g, 1 I ym k0 7% *
) =————09.D" (0, — L7)h X ,
re (LTy)ml!m! Pn O = Epdham )(z,x,l):(o,m

where D,, := x}/ /2 D,,. Since 1/flm is expressed by the functions of (5.9), we already

know it by the induction assumption.
For y < 1, we can represent the coefficient function g™ (', t) of (5.6) in (h} —
L}‘,h*) as

gm0 = S R (1) 4 T ).

Now, taking 4" such that g™ = ' we can determine 4" inductively using the
following formula:

fZM(x/’ t) _ llflm(x/, t)

fllm /,l‘ —
1) S (x' 1)

(5.10)

Since S is nonvanishing smooth function, A'™ is also smooth function. Furthermore,
we can compute

fOO(x/’t)
(2 - V)(l - V)Pnn*(x/7 01 07 t)

EOO()C/, t) —
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first and apply the recurrence relation (5.10) to index i, we have ﬁlo, ﬁzo, e ﬁlo,
.... Next, foreachi = 1,2, ...,1, applying the recurrence relation (5.10) to index j
again, we have all of the following functions sequentially:

/',;00 iil() };20 i,;l()
flOI ]; 11 ];21 ﬁll
ﬁ()m ﬁlm E2m ]fllm

Since I, m were arbitrary, we found all 7%/
On the other hand, by using (5.8) for y = 1, we can represent the coefficient
function g% (x', 1), g' ™ (X', 1), ..., " (x', 1) of (5.6) in (h — L}h) as

gOm il'Om IpOm
glm ﬁlm I/flm
g | = =P 0,00 | B 4 [0 ]
gn.tm /:lmm wl;lm

where the tridiagonal matrix 7" is given by

m+1 1-2
gmm+2) 2m+1) 2.3
imm+2)3m+1) 3.4

im(m+2) mm+1) m(m+ 1)
é—l‘m(m—i—Z) (m + 1)2

Since the tridiagonal matrix 7" is invertible, we can determine fzom, h! moo.., pmm
inductively using the following formula
ﬁOm ]FOm . .(pOm
]fllm flm _ 1/I]m
EZm _ —;(Tm)_l me _me , (5.11)
. P (x’,0,0,1) .
ﬁn‘lm fmm _ 1pmm
when we take g/ = fjm (i=0,1,2,...,m).Since P"*(x’, 0,0, t) is nonvanishing
standard polynomial, ROm plm - pmm are also smooth functions. Furthermore, we
can compute
£00 ../
- 1
RO 1) = SR

P (x',0,0,1)
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first and apply the recurrence relation (5.11), we have #°! and /'!. Next, if we repeat

this process, we can find the functions of each row of the following array from all the
functions obtained in the previous step.

Rz 2 g2
R3S R j23 p3,
LT AL I 2

ﬁ()m ﬁlm }',;Zm ﬁ3m ﬁ4m /',’lmm

Since I, m were arbitrary, we found all &%/

Finally, In (5.10) and (5.11), the function 4* is constructed so that all terms of f*
are deleted in (h} — L;h* — f™). Thus, we have

Yoo T <

(h = Lph = NGO =1 #7<t
> g ndogxinl? (=1,

i<j, j>k+a
i,jeNg

This implies that

(hy — Lpyh — f)(X)| < Cx, 7 ta) forall X € QT

and ||| s
s

< C, where C dependsonn, y, k,a, | P/ || ke (gFy Nl cha
and || Rl

©h 7
ckegFy =

Lemma5.5 Letu € CM(QT)OC(Q_T) be a solution of (5.4) satisfying ”””LOO(QT) <
landu =0on{X € apQT:xn =0}. Ifforeachi, j,k=1,2,...,n—1,

”f”Loc(Q;r <1, ||ﬁ||L00(Q+) L, ||ft/||L00(Q+) I,
”fijk”Loc(QJr) <1, ”ft”Loc(Q+) <1, ”fkt||Loo(Q1+) <1,

and

! | f(x, D) < ng forall (x,t) € Q_T
|feCe, )] < Mx? forall (x.1) € OF
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for some 0 > y /2 and M > O, then uy, is well-defined on QT/Q and

— oy |1mv/2
(5 . 1) — tn (5 3. 1)) < Clxn = yul O<y=D

Clxp — yal (y =0)

for all (x', xu, 1), (X', yp, 1) € QT/Q, where C is a positive constant depending only
onn, A, A\, y, k, a, ||Df,atkPij||Loc(Q?-), ”Df’atk Qi”Lw(Q'l")’ and ”Df’afkR”Lm(QT)
(B € Ny~ k € No, |8 + 2k < 3).

Proof Differentiate both sides of (5.4) with respect to x; (k # n), then

v =L+ F in Q3+/4

(5.12)
v=0 on{X €9,0( : x, =0},

where v = uj and

o 5 . )
F = P,i J uprjr + 2x,’,// P, —l—x,J,/Pk"”um, + Qp uy —l—x,’{/ Qpun + Riu + fi.

By Theorem 5.1, v is bounded solution of (5.12) with bounded forcing term F, we
can apply Lemma 3.1 to v, we have

1
lug(x, )] = |v(x, )] < Cxn y <1
—Cx,logx, (y=1)

forall (x,1) € T/z. We can obtain the same inequality not only for u; but also for
upand u;; (i, j =1,2,...,n —1). An integration by parts yields

S
f Xy VPP G, Dy (x, 1) dxy
0

v < — —
< | PP 2 2| +C/ a2 i (e, )] doxy
0

- cz!7v/? (y <1
| -Cyzlogz (y=1)

(5.13)
forall (x',z,1) € er/z. Similarly, we also have
- Colv2 !
‘/ x5 20" e, D (x, D dxy | < | ° =D (5.14)
0 —Cyzlogz (y=1)
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forall (x',z,1) € QT/Z. Combining (5.4), (5.13), and (5.14) gives

< 1
/0 Upp dxy| < X(

Z
/ ;y( P’Jul/r—Q u,/—Ru)dxn
0

z ) z ) z
+ / 2xn_y/ Py, dx, —1—‘/ xn_y/ O"uy, dx, | + / xn_yfdx,,)
0 0 0
cl? 1
<% =D (5.15)
—Cyzlogz (y=1)

2

forall (x',z,1) € Q1/2 and hence for e < 2™ 2-

.2
o
2

2 14 e
lun (X', e, )] = |u,(x', 272 ,t)—/ u,,,,(x,t)dx,,+/ Upn(x, 1) dx,
0 0

@ 27 e e (< D
B |un(x,1/4,z)|+C(1og2—ﬁloge) (y = 1).

Therefore, we have |u,| < C in QT/Z. This implies that even though y = 1, we have
the following Lipschitz estimate

lu(x,t)| < Cx, forall (x,1) € Q;L/z.

Furthermore v = uy (k # n) satisfies assumptions of Lemma 5.5 again, we have
lugn] < C in Ql+/2. Thus, (5.15) gives

|un(x/’ Xp, 1) — un(x/ Yn, )]

1-y/2 1 v/2 O—y+1 O—y+1
— Yn )]

2—
<Clxr =V + 1 | + |x,

Clxy — w72 O<y <1

(5.16)
Clxy — ynl (y =0
—2
for all x,,, y, € (0,27 7).
As in the proof of Lemma 4.5, we can extend (5.16) on Qf'/z. O

Lemma5.6 Letk € Ny, 0 < ¢ < 1,__and‘u € COO(QT) N C(Q_f') be a solution of
(5.4) with f = 0. If the coefficients PV, Q', and R are s-polynomials at O of degree
W corresponding to k = k+«, ”””LOO(QD <lLandu=0o0n{X €9, Q;r cx, =0},
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then for any M, N € N, there exists a function v of the form

a0 0%+ Y T w2 i (MUN) # (LD

v(X) = i<ty N
i,jeN
un(x', 0, 1)x, it(M,N)=(~1,1)
(5.17)
such that
2—y _ -
[(v; — Lpv)(X)| < Cx,iw+ z V=2 forall X € Q;r/z
and
M+

W(X) — vl < Cxy' 2" forall X € QF 5,

where each 9V is a smooth function for (x',t) and C depends on n, y, a, M, N,

ij o i _ _
1Pl ko gy 19"t oy and IR i
Proof For the modified function v* of v and the modified operator L;‘, of L, the
function (v; — L7,v*) is expressed as follows:

.. .2V (i_n
(Wf — LEv")(X¥) = 3 i N7 YT (5.18)
Ao+ j< L AN+u42

i,jeN

where each g/ is an unknown smooth function.
For arbitrary fixed integers [, m € N, the function glm in (0; — L’;)v* is the sum of
the coefficient functions of

5 (m=2)

Zx, (5.19)

in the functions obtained by expanding the following operators

(F = Ly (X = @ — L) (un+', 0,0)2)
+ Z B —L3) (ﬁ” (', 0)z'x, ") . (5.20)
PoAi<2L+N
i,jeN

Since we will find 9"/ in the same way as Lemma 5.4, it is sufficient to consider only
the case (i, j) = (I, m) for now. In this case, in the expansion of (5.20), the coefficient
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function for the monomial of the form (5.19) can be obtained as follows:

_ 2-y 2 (-2
—P"™*(x',0,0,)D}, (’7['"<x’,r>z’xn2 m) =S i Dzl Y,

where

ymuﬂt):~—Q—%%%%Zm>0—%%%l;n—l)PM*QQO,Qt)

Now, we consider a truncated function U?lm) of v* as follows:

. . 27y
Vi (X) = un (x', 0, 1)z + > i Hzix, "

2i 2M
7=, tm< ﬁ—i-N

1<i<l
FY wadn,
P <FLA+N
ieN, 1<j<m
2y
If j = 1, the order of x,, is negative in (5.18), so considering x,, > (9, — L*[;)vz“lm), we

2-y
can find the coefficient function of (5.19) in x,, > (9; — L;)v(*lm) as

1
(2_%>m—1 1om — 1))

- 22r.
Y ) = LDy <xn2 & — L;)v;;m)(x*))

(2.x,)=(0,0)

where D, := x//*D,,. Thus, we can represent the function g/ (x’, 1) in (3, — Li)v*

as
g ) = S DT )+ Y ).

Now, taking o such that ¢/ = 0, we can determine 7" inductively using the
following formula:

B 1‘[/lm(x/’ I)

~Ir / _
1) = ST

(5.21)

Since I, m were arbitrary, we found all o'/
Using the recurrence relation (5.21), for any M, N € N, we can construct the
function v* such that all monomials of the form

i, . 27¥(i_p 2i 2M
gl (' nzix, 2 VY (— +j< + N)
2—vy 2—vy
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are deleted in (v} — L;v*). Thus, we have

-2
G-t= Y g 0
Ptz L AN
i,jeN
This implies that
M+35E (N-2)

IDf (v = Lyn)(X)] < Cx, (5.22)

forall X € Q3/4 and B € N, where C depends on n, y, «, 8, M, N, | P!/ || cha

197l et g7, a0 1Rl e 7

We now claim that for any iy, i; € N withi; + —12 <M + y N, the following
inequalities hold:

7

i142 Stip i1—14+% tip

D (= 0)(X)] < Cxy and D]}, (n = va)(X)| < Cx,

(5.23)

for all X € QT/Z and B € Nj. The proof is by induction on M and N. Suppose
first (i1, i») = (1, 1). From Theorem 5.1 and Lemma 5.5, Remark 4.6 also holds for
equations with s-polynomial coefficients. Thus, by Remark 4.6 and (5.17), we know
that

Dl (= v)(X)| < Cxy and D, (n — v2)(X)| < C
forall X e Q1 2 and B € Njj. The operator x)) P Dy, can be represented as

X P"" Dy = 3 — PV Dy —2x)* P Dy,
—0"' Dy — xZ/ZQ"Dn —R— (8 —Ly)
and hence we know that

Xy Dun DYy, (= v) = DL, (57 Dyt — v))

1 P o R
=D}, , (-a, — —Dyjy— —— Dy — ) u—v)

pnn pnn pnn pnn
) Pi’n Qn
—x)/ DZ n (2—Pnn Dy + Do (Un — vp)
1
+0f. S = Lpv) ). (5.24)
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Since P™ is nonvanishing smooth function for x” and 7, by Remark 2.1, (5.22), and
(5.24), we have

I} Dun D?, (= v)(X)] < Cxp + x> +x1%) < Cx? (5.25)

w.n U

for all X € Q1/2 and B € Njj. Since # = v on {x, = 0} and u, = v, on {x, = 0},
if we divide (5.25) by both sides x;, and integrate on the x,-variable from 0 to x,,, we
have

2—y 2—y

1+=5 =
IDf, )= v)(X)| < Cx," 2 and D], (uy = v)(X)] < Cx,?

forall X € Q 2and,B e Nj.

Now, let us prove (5.23) for fixed i1 < M by using induction on i;. We assume
(5.23) is valid for some i, € Nwithip < N+ %(M —i1). From Remark 2.1, (5.22),
(5.24) and induction assumption, we have

5] Dan DL, (1= 0)(X)] < € <x21+22y”+ e LR +22y(N_2)>
(x',1) -

i1+ 52 (i—1)
< Cx,

forall X € Q1/2 and B € Njj. Then, we know that

i+5% L (i2+1) i1—1+ zy(tz—H)

DL, (= v)(X0)] < Cx, and |Df,,  (un — v)(X)| = Cx,

forall X € Q 12 and B € Nj in the same way as for (i1, i) = (1, 1).

Next, let us prove (5.23) completely again using induction on 1. We assume that
(5.23) is valid for some i1, i» € N with i; < M. Then, by the induction process on iy,
we can see that (5.23) holds for (i1, j»), where

2 2
pEN+—WM—ip>1+-—"01.
2—vy 2—y

It implies that

. 2-
i+35Y L 2 i+1+51

IDfyy ) = v)(X)| < Cx, < Cx,

and

Lo 2=
i+5"

i1— 1+35r Y jy
o < Cxy,

DLy n = va)(X)] < Cx,

Thus, we obtain (5.23) for (i1 + 1, 1). Therefore, we conclude that (5.23) holds for all
il,izerithil—i-z_TyizSM_,_%TyN. -

@ Springer



Generalized Schauder theory and its application...

Lemma5.7 Let k € No, 0 < « < 1, and u € C®(Q}) N C(Q}) be a solution
of (5.4) with f = 0. If the coefficients P, Q', and R are s-polynomials at O of
degree  corresponding to (k + o), ||u||Loo(er> <1, ||u||LOO(Q;r) <1l,andu =0on
{X e BPQT : xp = 0}, then for each M, N € N, there exists an s-polynomial p of
degree m corresponding to k := N + % at O such that

M+35E(N-2)

|(pr = Lpp)(X)| < Cxp forall X € Of

and

u(X) — p(X)| < Cs[X, 01N forall X € OF,
where C is a positive constant depending only on n, ., A, y, M, N, | P || ke (QFy
10"t gy and IR i 7

Proof By Lemma 5.6, for any M, N € N, there exists a function v of the form (5.17)
such that

2—y
u(X) —vX)| <Cxy " 2"

forall X e Qf/z and 8 € Ng. Since each 3%/ (x’, t) is a smooth function, by Taylor
theorem, there exists Taylor polynomial

T (1) = >

|Bl+2k<2M+N—1

ﬁ k~..
DLATI(0) g,
Blk!

of 9 (x’, 1) at O such that

=T ol =C Yl P
|B|4+2k=2M+N

forall |x;| <1/2(@ =1,2,...,n—1)and —1/4 < ¢t < 0. This implies that

l+2]

v(X) — Z T (x', t)xp
J/+N
z]eN or (z j)=(1,0)

L kl+ j
<C Z Sl P

2M N |BlH2k=2M+N
l]ENOT(l j) (1,0)

2
< Cs[X, 0]2M+N+ﬁ

(5.26)
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forall X e QT/Z. Now put

B ak=ij _
DPoksii(0) , ii2r
p(X) = 3 X}%Tx/ﬂx; 74k (5.27)

|Bl+2k+ 2

+j<N+74

which is an s-polynomial of degree m corresponding to x = N + 22_—";[/ Then, from

(5.22), we know that

M+ (N=-2) —
I(pr — Lpp)(X)| < Cxp = 2 forall X € Q.
Combining (5.23) and (5.26) gives
y L2
u(X) = p(X)| < Ju(X) — v(X)| + [v(X) — > TG x, 2
<L AN
i,jeNor (i,j)=(1,0)
+Y T =
i< AN
i,jeNor (i,j)=(1,0)
2y 2
< erll‘l+ 7 N +CS[X, 0]2M+N+m
B ak~ij -
|D.,9; 0" (0)] i+ 57 j
+ > B T TR T A
|BI+2k+ 52 4> N+ 2L o
2M
< cslx, oVt
forall X € Q1+/2 which is extensible throughout Q7 . O

5.3 Generalized coefficient freezing method

In this section, we prove the main theorem. By combining C S2+°‘ -regularity of solutions

for (1.1) and boundary CX*™% regularity of solutions for (5.4), boundary CX>7%-

regularity of solutions for (1.1) can be obtained, and finally we have Theorem 2.2 by
combining Lemma 2.10, Theorem 2.11 and Lemma 5.8.

Lemma5.8 Letk € Ny, 0 < o < 1 withk +2 + o ¢ D, and assume
al, b, ¢, feCh Q) (,j=1,2....n).

Suppose u € CZ(QT) N C(Q_T) is a solution of (1.1) satisfying u = 0 on {X €
BPQ]+ 1 xp = 0}. Then there exists an s-polynomial p of degree m corresponding to
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Kk :=k+ 2+ «aat O such that

() = pO] = € (o) + 1 Dt g, ) s1X. OFF2 forall X € OF,

where C is a positive constant depending only on n, , A, y, k, a, ||a" || ke (QFy

)

er -1 _
Proof By considering “/(”””LOO(QT) + e ”f”CO‘(Q"' ) for ¢ > 0, we may assume

without loss of generality that | u|| Lo(h) = < land || f I cha < ¢. By scaling and

©oh =
the CX*_Halder continuity for a'/, bi, ¢, and f, we also assume that

la' (X) — PU(X)| < es[X, O]+, (5.28)
Ib'(X) — 0'(X)| < es[X, 011, (5.29)
le(X) — R(X)| < es[X, O], (5.30)
|f(X) = F(X)| < es[X, O] (5.31)

forall X € E, where P/, Q', R, and F are s-polynomials with degree /7 corre-
sponding to (k + «) at O.
Let L, be the operator given by

L, = P (X)Dyjr + 25> P (X) Dy + x P (X) Dy
+ 0" (X)Dy + x)*0"(X)D, + R(X).

From (2.1) and (5.28), we know that
(.= end)|E? < PU(X)EE; < (A +en)|E> forall X € OF & € R”
and hence for sufficiently small ¢ > 0, we have

A N -
5|g|2 < PU(X)&E; < 2A|E)> forall X € QF, & e R".

By Lemma 5.4, there exists a function & € Cf+2’a (Q_"l") of the form (5.5) such that

\(F + Lyh — h)(X)| < Ces[X, O1F* forall X € 0F (5.32)
and |l 20 g, < Ce. where C depends onn, y. k.t la” Il o ) 10 i -
s | s 1
and ||CIIC§,Q(QT+).
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By Theorem 5.1, we know that u € CAY2+°‘(QT/2). Now, we decompose (# — k) into
the sum of v! and w! such that

v =Ly' inQf, w/ =Lyw'+ f' inQf,
v'=u—h on BI,QT/2 w'=0 on a,,QT/Z,

where fl = f+ Lyh —h; + Lu — Lyu. Then, combining (5.28)-(5.32) leads us to
the estimate

11O < 1f(X) = FXOL+ [(F + Lph — h)(X)| + [(Lu — Lyu) (X))

< es[X, O + Ces[X, OTF + Cellul| T, o51X. o1+

< Ces[X, O]
(5.33)

forall X € Q1+/2' By Lemma 2.5, for fixed r € (0, 1/2), (5.33) gives

(W' (O] < €Il Ml peor,) < Ce forall X € F
and hence, we have
lu(X) — v' (X) = h(X)| = |w' (X)| < Ce forall X € Q.
Choose now ¢ small enough such that Ce < r**2¢ Then,
lu(X) — v (X) = h(X)| < rFF2Fe forall X € OF .

Let us now define

(u—v —h)(rX) f rX)
2(X) - rh+2+a and f (X) = rk+a

Then, ||u2||Loo(Q]+) < 1and
=L2u*+ f* in OF,
where

L2 = P(‘2§ (X)Dirjr + 2x* PY(X) Djry + x7, P (X) D

+ Q0 (X) Dy +x2 0l (X) Dy + Ry (X)
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with
P3,(X) = PU(rX), Q) (X)=rQ'(rX). and Rp)(X)=r’R(rX).
Furthermore, (5.33) leads us to the estimate

|F200) = rm e

Fl0X0)| = CestX, 0 forall X € 0F),.

That is, the same hypotheses as before are fulfilled. Repeating the same procedure,
we decompose u? into the sum of v? and w? such that

vl = L%,v2 in QT/Z w? = L%w2 + /2 in er/z
‘U2 :u2 on 3PQ1|'/2, 2 =0 on 3[)QT/23

and
W2(X) — v2(X)| < A2t forall X € Q.
By substituting back, we have
u(X) — h(X) — o' (X) — P22l | < 2020 forall X € 0.

Continuing iteratively, for each integer [ > 3, let us define the sequence of functions
{u'} inductively as follows:

@~ — v HrX) f7hex)

Loxy -— 7l
w(X) = Pkr2ta and fH(X) = T ke

Then, ||ul||Loo(Ql+) < 1land
up=Lhu' + f1 in OF,
where

L = Py (X) Dy jr + 22 P (X) Dirg + x7 P (X) Dy

+ Qi (X) Dy + 22 Q) (X) Dy + Ry (X)
with
(1)(X) Py 1)(rX), Q)(X) =rQy_,(rX), and Rg)(X)=r*Rq_1)(rX).
Furthermore,

I/' 0| < CeslX, 01F forall X € Qf),
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and hence we decompose u' into the sum of v/ and w! such that

vl = L;vl in Q;r/z wh = Llpwl + /1 in Q'I"/2
— on 9, Q]L/z, w! =0 on BpQr/z,

and
Il (X) — o' (X)| < PFF2He forall X € OF.

By substituting back, we have

!
u(X) — h(X) — Zr(i—l)(k+2+a)vi(r—i+lx)

i=1

<1020 foral X € QF. (5.34)

We choose M, N € N such that
2j

oM
k+2+a<N+—=:min{i+2 e(k+2+a,oo):i,jeN}.

2—y

Py Lemma 5.7 and (5.27), for each [ € N, there exists an s-polynomial p'(X) of the
orm

Phx) = Z Af”kx’ﬁx,?+ 2124

IBI+ 5k +in+2j <N+ FL

such that
2M —_—
W'(X) — p'(X)| < Cs[X, 01" 57 forall X € O,
where C is a positive constant depending only on n, A, A, y, M, N, ||a"/||

i J—
151 et

ckeofy

X and ”C”C""”(E)' As in the proof of Lemma 4.9, we can see
s 1

!
u(X) —h(X) — Zr(i—l)(k+2+a)pi(r_i+1x) < o2t
i=1
forall X e Q_:; Now put
l
PL(X) = Zr(l—l)(k+2+a)pz ity
i=1
Then, (5.34) gives

|PL(X) — PN (X)| < P24 forall X € QF.
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Since k 4+ 2 4 « ¢ D, each p!(X) has degree m corresponding to k = k 4+ 2 4 «, so
we can consider the rescaling s-polynomial

P(X):=P'¢'x) - P10 X)
— fU=Dk+2+a) » LBl Hit2) Afilizjx/ﬂxfl”rz%iztj.

|BI+ 3L +in+2j <k+2+a

Finally, as in the proof of Lemma 5.7, if & is approximated with an s-polynomial, we
can show that there exists an s-polynomial p of degree m correspondingtox = k+2+«
at O such that

u(X) — p(X)| < Cs[X, 012+ forall X € Q. O
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