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Abstract
In this paper, we study generalized Schauder theory for the degenerate/singular
parabolic equations of the form

ut = ai
′ j ′ui ′ j ′ + 2xγ /2

n ai
′nui ′n + xγ

n a
nnunn + bi

′
ui ′ + xγ /2

n bnun + cu + f (γ ≤ 1).

When the equation above is singular, it can be derived fromMonge–Ampère equations
by using the partial Legendre transform.Also, we study the fractional version of Taylor
expansion for the solution u, which is called s-polynomial. To prove C2+α

s -regularity
and higher regularity of the solution u, we establish generalized Schauder theorywhich
approximates coefficients of the operator with s-polynomials rather than constants.
The generalized Schauder theory not only recovers the proof for uniformly parabolic
equations but is also applicable to other operators that are difficult to apply the bootstrap
argument to obtain higher regularity.

Mathematics Subject Classification 35B65 · 35K65 · 35K67
Ki-Ahm Lee was supported by the National Research Foundation of Korea (NRF), Ministry of Science
and ICT, South Korea, Grant: NRF-2020R1A2C1A01006256. Hyungsung Yun was supported by a KIAS
Individual Grant (no. MG097801) at Korea Institute for Advanced Study.

B Hyungsung Yun
hyungsung@kias.re.kr

Takwon Kim
takwonkim@kaist.ac.kr

Ki-Ahm Lee
kiahm@snu.ac.kr

1 Stochastic Analysis and Application Research Center, Korea Advanced Institute of Science and
Technology, Daejeon 34141, Republic of Korea

2 Research Institute of Mathematics, Seoul National University, Seoul 08826, Republic of Korea

3 Department of Mathematical Sciences, Seoul National University, Seoul 08826, Republic of
Korea

4 School of Mathematics, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00208-024-02898-6&domain=pdf
http://orcid.org/0009-0004-1444-6756


T. Kim

1 Introduction

In this paper, we study generalized Schauder theory and fractional order expansion of
solutions for the following degenerate/singular parabolic equations

ut = Lu + f in Q+
1 , (1.1)

where

L = ai
′ j ′(x, t)Di ′ j ′ + 2xγ /2

n ai
′n(x, t)Di ′n + xγ

n a
nn(x, t)Dnn

+ bi
′
(x, t)Di ′ + xγ /2

n bn(x, t)Dn + c(x, t)

with a constant γ ≤ 1 and

Q+
1 = {x ∈ R

n+ : |xi | < 1 (1 ≤ i ≤ n)} × (−1, 0].

The repeated index with prime i ′ means the summation from 1 to (n − 1); that is,

Ai ′ Bi ′ =
n−1∑

i=1

Ai Bi and Ai ′ j ′ Bi ′ j ′ =
n−1∑

i, j=1

Ai j Bi j .

In classical regularity theory, to obtainCk,α-regularity of the solution u, it is shown
that the following statement holds (cf. [10]): For each Y ∈ �, there exists a polynomial
pY of degree k satisfying

‖u − pY ‖L∞(Br (Y )∩�) ≤ Crk+α for all r > 0. (1.2)

Furthermore, we can obtain the higher order partial derivative of u at Y from the coef-
ficients of the polynomial pY . However, the function that is not smooth enough cannot
be approximated by polynomials. Breaking away from the stereotype that polynomial
approximation should be used, we consider generalized polynomials represented by
monomials of fractional order, and we call them s-polynomials in this study. In simple
terms, s-polynomial approximation can be understood as a fractional version of Taylor
expansion. The coefficients of an s-polynomial p approximating the solution can be
regarded as suitable constant multiples of the weighted derivatives, and the degree of
p gives the order of regularity. While conventional regularity theory so far has focused
on differentiability for classical solutions, in this study, we are interested in how well
s-polynomial approximates the solution instead of differentiability. In other words, a
generalized concept of regularity theory can be developed through the s-polynomial.

The regularity of solutions for (1.1) can be expected to be C1,α-regularity up to the
boundary, but higher regularity up to the boundary can be obtained by considering s-
polynomials and a new metric that preserves scaling. In classical Schauder theory, by
showing that the derivatives satisfy the equations of the same class, C2,α-regularity of
the gradient Du is obtained, and iteratively, higher regularity canbeobtained.However,
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Generalized Schauder theory and its application…

this bootstrap argument is not applicable in (1.1) since the equation that the partial
derivative un satisfies is not of the same class as (1.1), so the generalized Schauder
theory was developed to solve this issue. It is also applicable to other operators that
are difficult to apply the bootstrap argument to obtain higher regularity.

The study on the regularity of solutions for (1.1) was inspired by several previous
studies.

(1) Monge–Ampère equations: Daskalopoulos and Savin [5] converted the Monge–
Ampère equations

det D2u = |x |γ in B1

into the singular equations with γ < 0

|x |γ vxx + vyy = 0 in B1

using the partial Legendre transform. In [5], they solved the problem for Monge–
Ampère equation by finding the fractional order expansion

v(x, y) = a1 + a2x + a3y + a4xy

+ a5

(
1

2
y2 − 1

(2 − γ )(1 − γ )
|x |2−γ

)
+ O

(
(y2 + |x |2−γ )1+δ

)

for some universal constant δ = δ(γ ) > 0.
In the study of Schauder estimates up to the boundary for degenerate Monge–
Ampère equations, Le and Savin [7] show that a bounded solutionw of the singular
equations with γ < 0

{
�x ′w + xγ

n wnn = 0 in B+
1

w = 0 on {xn = 0}

satisfies

|w(x) − p(x ′)xn| ≤ C(x21 + · · · + x2n−1 + x2−γ
n )

3−γ
2−γ

for all x ∈ B+
1/2, whereC is a universal constant and p(x ′) is a standard polynomial

of degree 1.
As they used a distance function that allows solutions and equations to be scaling
invariant, we also defined a distance function corresponding to (1.1) in our study.
It is noteworthy that such a fractional order expansion and estimates are developed
to higher orders by s-polynomial and the distance function.

(2) Gauss curvature flow: Related studies can also be found in differential geometry,
for example, Daskalopoulos and Hamilton [4] showed that the regularity of the
interface for the Gauss curvature flow with flat sides can be transformed into the
regularity of solutions for the following degenerate equations
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vt = xvxx + vyy + νvx + f in R2+ × (0, T ]. (1.3)

They showed Schauder estimates for smooth solutions of (1.3) using a new metric
that preserves scaling.

(3) Non-local equations: In the research field of non-local equations, Caffarelli and
Silvestre [1] showed that the solution u of the degenerate/singular equations

{
�xu + z

2s−1
s uzz = 0 in Rn × [0,∞)

u = f on R
n × {0} (1.4)

satisfies

(−�)s f (x) = −C(n, s)uz(x, 0)

for some constant C(n, s) > 0. The regularity of solutions for the extension
problem (1.4) can be applied to the regularity of solutions for the fractional Laplace
equations. In fact, in [1], Hölder’s regularity of solutions for fractional Laplace
equations was shown by using the Harnack inequality for the extension problem
(1.4).

(4) Mathematical Finance: The Black–Scholes equations for the constant elasticity
of variance (CEV) model, introduced by Cox [2] and Cox and Ross [3], have a
similar structure to (1.1). The risky asset’s price Xt of the CEV model evolves
according to the following stochastic differential equations

{
dXt = μXt dt + σ Xγ /2

t dWt

X0 = x,

whereWt is a one-dimensional Brownian motion for some positive constantsμ, σ ,
and γ . Using the Feynman–Kac formula, we can derive the following degenerate
backward equations

ut + 1

2
σ 2xγ uxx + r xux − ru = 0 in R+ × [0, T ).

As with the aforementioned equations, many applications arise for γ ≤ 1, so it is
necessary to research the regularity of solutions to (1.1) for γ ≤ 1.

Although there is a slight difference compared to (1.1), the methodology covered in
our study is expected to be applicable to equations that have similar degenerate/singular
structures of (1.1) like aforementioned equations. In addition, it is a new version of
Schauder theory that can directly demonstrate higher regularity of solutions without
relying on the bootstrap argument for uniformly parabolic equations.

In order to obtain the heuristic idea of s-polynomial, let us start with a simplified
version of (1.1). The following equation

ut = xγ uxx + 1 in Q+
1 (0 < γ < 1) (1.5)
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admits a solution of the form

u(x, t) = x + t2

2
x − 1

(2 − γ )(1 − γ )
x2−γ + t

(3 − γ )(2 − γ )
x3−γ

+ 1

(5 − 2γ )(4 − 2γ )(3 − γ )(2 − γ )
x5−2γ . (1.6)

Since u is not twice differentiable at x = 0 in the x-direction, the regularity of u for
a spatial variable is at most C1,α , so the polynomial that satisfies (1.2) with k = 1 is
p(x, t) = x . However, considering the following estimate

∣∣∣∣∣u(x, t) −
(
x + t2

2
x − 1

(2 − γ )(1 − γ )
x2−γ + t

(3 − γ )(2 − γ )
x3−γ

)∣∣∣∣∣ ≤ Cr
2(5−2γ )
2−γ

(1.7)

for all (x, t) ∈ Q+
r , it can be expected that fractional order expansion is possible.

Also, (1.7) contains more terms than p and provides a more accurate approximation.
Looking at the pattern of each monomial when it is substituted into (1.5), it is pos-

sible to find a solution with a fractional order expansion of more terms than (1.6). This
analysis can be extended for (1.1), which is the motivation to consider s-polynomials.
Although the forcing term f is a general function rather than a constant function,
the solution of (1.1) can be approximated by such a fractional order expansion. This
is why we established Schauder estimates using s-polynomials rather than standard
polynomials. In addition, the distance function for uniformly parabolic equations does
not have scaling invariance for (1.1) at the boundary {xn = 0}, so it is not suitable for
describing the behavior of solutions for (1.1) in the neighborhood of {xn = 0}. Inspired
by [4, 5, 7], we define a scaling-preserving distance function s : Q+

1 × Q+
1 → [0,∞)

and use it to show Schauder estimates.
Since the bootstrap argument is not applicable in (1.1), it is necessary to obtain

Ck,2+α
s -regularity of solutions for (1.1) directly from Ck,α

s -regularity of the coeffi-
cients of L . However, it is not enough to consider perturbative methods, by “freezing”
the coefficients around a certain point. In order to solve this difficulty, we will use
s-polynomial approximation of coefficients that fully reflects the regularity of coeffi-
cients and study equations with s-polynomial coefficients first.

The solution u of (1.1) satisfies the following estimates depending on the range of
γ .

|u(x, t)| ≤
{

Cxn ≈ Cs[(x, t), (0, 0)] 2
2−γ (γ < 1) (1.8)

Cx2−γ
n ≈ Cs[(x, t), (0, 0)]2 (1 < γ < 2) (1.9)

for all (x, t) ∈ Q+
1/2, where C > 0 is a universal constant. Assuming f = 0, the order

of (1.9) can be improved to a higher order, but not in the case of (1.8). In the case
of 1 < γ < 2, C2+α

s -regularity of solutions for (1.1) is directly obtained from the
improved estimates of (1.9), and then the generalized coefficient freezing method can
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be applied immediately thanks to C2+α
s -regularity. However, for γ < 1, the regularity

of solutions for (1.1) expected from (1.8) isCα
s -regularity orC

1,α
s -regularity depending

on the range on γ . Thus, a process to show C2+α
s -regularity of solutions for (1.1) is

necessary. In addition, since s-polynomials for γ = 1 include logarithmic functions,
an appropriate method for dealing with them is also required.

The paper is organized as follows. In Sect. 2, we introduce notations used through-
out this paper and state the main theorem. Also, the maximal principle, comparison
principle, the existence of a unique solution for the degenerate/singular equations are
covered in Sect. 2. It is similar to uniformly parabolic equations, so readers familiar
with it can skip it. In the last part of Sect. 2, we derive global regularity from interior
regularity and boundary regularity of solutions for (1.1). In Sect. 3,we prove the bound-
ary Lipschitz estimates of solutions for (1.1) and use it to show global Cα

s -regularity
of solutions for (1.1). In Sect. 4, we prove C1,α-regularity and Ck,2+α

s -regularity of
solutions for equations with constant coefficients. In Sect. 5, we deal with generalized
Schauder theory, which is the essence of this study. Unlike equations with constant
coefficients,Ck,2+α

s -regularity cannot be obtained immediately, soC2,α
s -regularity for

solutions of (1.1) and Ck,2+α
s -regularity of solutions for equations with s-polynomial

coefficients are first shown, and then Ck,2+α
s -regularity of solutions for (1.1) can be

obtained by using generalized coefficient freezing method.

2 Preliminaries

2.1 Notations

We summarize some basic notations as follows.

(1) Points: For x = (x1, . . . , xn) ∈ R
n , we denote

x ′ = (x1, . . . , xn−1) ∈ R
n−1, X = (x, t) ∈ R

n+1, and O = (0, . . . , 0) ∈ R
n+1,

respectively. For r > 0, we denote

r X = (r x ′, r
2

2−γ xn, r
2t)

which allows solutions and equations to be scaling invariant.
(2) Sets: We denote the open upper half-space and the set of nonnegative integers as

R
n+ = {x ∈ R

n : xn > 0} and N0 = N ∪ {0},

respectively. We denote an intrinsic cube with side 2r and center Y = (y, τ ) ∈
R
n+1 as

Q+
r (Y ) = {x ∈ R

n+ : |xi − yi | < r (1 ≤ i < n), |x
2−γ
2

n − y
2−γ
2

n | < r} × (τ − r2, τ ]
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and standard cube with side 2r and center Y = (y, τ ) ∈ R
n+1 as

Qr (Y ) = {x ∈ R
n : |xi − yi | < r (1 ≤ i ≤ n)} × (τ − r2, τ ].

For convenience, we denote Q+
r = Q+

r (O). We denote the set of degrees for
s-polynomial as

D =
{
i + 2 j

2 − γ
: i, j ∈ N0

}
.

(3) Universal constant means a constant that depends only on n, λ,�, γ , k, and α with
n ∈ N, k ∈ N0, 0 < α < 1, 0 < λ ≤ �, and γ ≤ 1.

(4) Distance functions: The parabolic distance function d : Q+
1 ×Q+

1 → [0,∞) from
X = (x, t) to Y = (y, τ ) is given by

d[X ,Y ] = max

{
max
1≤i≤n

|xi − yi |,
√|t − τ |

}
.

In addition, the intrinsic distance function s : Q+
1 ×Q+

1 → [0,∞) from X = (x, t)
to Y = (y, τ ) is given by

s[X ,Y ] = max

{
max
1≤i<n

|xi − yi |, |x
2−γ
2

n − y
2−γ
2

n |,√|t − τ |
}

.

(5) Partial derivatives: We denote partial derivatives of u as subscriptions.

ut = ∂t u = ∂u

∂t
, ui = Diu = ∂u

∂xi
, and ui j = Di ju = ∂2u

∂xi∂x j
.

(6) Multiindex notation: A vector of the form β = (β1, β2, . . . , βk) ∈ N
k
0 is called a

k-dimensional multiindex of order |β| = β1 + β2 + · · · + βk . For k-dimensional
multiindices β, β̃ ∈ N

k
0, β̃ ≤ β means β̃i ≤ βi (i = 1, 2, . . . , k). The factorial

and binomial coefficients of a mutiindex are defined as follows:

β! = β1!β2! · · · βk ! and

(
β

β̃

)
= β!

β̃!(β − β̃)! .

Given β ∈ N
k
0, m ∈ N, and (x1, x2, . . . , xk) ∈ R

k , define

(x1, x2, . . . , xk)
β = xβ1

1 xβ2
2 · · · xβk

k , Dβ

(x1,x2,...,xk )
u = ∂ |β|u

∂xβ1
1 ∂xβ2

2 · · · ∂xβk
k

,

and Dm
(x1,x2,...,xk )

u = {Dβ

(x1,x2,...,xk )
u : |β| = m}.
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Remark 2.1 (Leibniz’s formula) Let � be a domain in R
n and let u, v : � → R be

smooth functions. Then

Dβ
x (uv) =

∑

β̃≤β

(
β

β̃

)
Dβ̃
x uD

β−β̃
x v.

(7) s-Polynomials: Let κ be a positive real number. We say p is an s-polynomial of
degree m corresponding to κ at Y = (y, τ ) ∈ R

n+ × R provided

p(X) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

β,i, j,l

Aβi jl (x ′ − y′)β(x
2−γ
2

n − y
2−γ
2

n )i (xn − yn)
j (t − τ)l (γ < 1)

∑

β,i, j,l

Aβi jl (x ′ − y′)β(
√
xn − √

yn)
i (

√
xn log xn − √

yn log yn)
j (t − τ)l (γ = 1)

for some Aβi jl ∈ R, where β ∈ N
n−1
0 and i, j, l ∈ N0 satisfy

⎧
⎨

⎩
|β| + i + 2 j

2 − γ
+ 2l < κ (γ < 1)

|β| + i + j + 2l < κ (γ = 1).

The degree m corresponding to κ is given by

deg p =

⎧
⎪⎨

⎪⎩

max
{
|β| + i + 2 j

2 − γ
+ 2l ∈ [0, κ) : β ∈ N

n−1
0 , i, j, l ∈ N0

}
(γ < 1)

max
{
|β| + i + j + 2l ∈ [0, κ) : β ∈ N

n−1
0 , i, j, l ∈ N0

}
(γ = 1).

(8) Hölder norms: Let � ⊂ R
n+ × R be an open set and α ∈ (0, 1). We define the

αth-Hölder seminorm of u : � → R to be

[u]Cα(�) := sup
X =Y
X ,Y∈�

|u(X) − u(Y )|
d[X ,Y ]α .

Also, we define the αth-Hölder norm of u to be

‖u‖Cα(�) := ‖u‖C0(�) + [u]Cα(�).

Moreover, we define for a nonnegative integer k,

‖u‖Ck,0(�) :=
∑

|β|+2i≤k
β∈Nn

0 , i∈N0

‖Dβ
x ∂ it u‖C0(�)
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and

‖u‖Ck,α(�) := ‖u‖Ck,0(�) +
∑

|β|+2i=k
β∈Nn

0 , i∈N0

[Dβ
x ∂ it u]Cα(�).

Next, we define the Hölder norm with respect to the distance function s to be

‖u‖Ck,α
s (�)

:= sup
Y∈�

sup
r>0

inf
p

{ |u(X) − p(X)|
rk+α

+
∑

β,i, j,l

|Aβi jl | : X ∈ Q+
r (Y ) ∩ �

}
,

where p is among s-polynomials of degree m corresponding to κ = k + α. In
particular, we denote the αth-Hölder norm with respect to distance function s to
be

‖u‖Cα
s (�) := ‖u‖C0,α

s (�)
.

Finally, we define the (2+α)th-Hölder norm and the higher (2+α)th-Hölder norm
of u : � → R to be

‖u‖C2+α
s (�)

:= ‖u‖C2,α
s (�)

+ ‖(∂t − L)u‖Cα
s (�)

and

‖u‖Ck,2+α
s (�)

:= ‖u‖Ck+2,α
s (�)

+ ‖(∂t − L)u‖Ck,α
s (�)

.

(9) Function spaces: For any nonnegative integer k, 0 < α < 1, and domain � ⊂
R
n+ × R, we define function space Ck,α

s (�) as the completion of {u ∈ C∞(�) ∩
C(�) : ‖u‖Ck,α

s (�)
< ∞} for ‖ · ‖Ck,α

s (�)
and

Ck,2+α
s (�) = {u ∈ Ck+2,α

s (�) : ‖u‖Ck,2+α
s (�)

< ∞}

which is the space that allows the operator

∂t − L : Ck,2+α
s (�) → Ck,α

s (�)

to be well-defined.
All of the function spaces defined so far become Banach spaces.

Through this article, we assume that the symmetric matrix (ai j ) has the following
property:

λ|ξ |2 ≤ ai j (X)ξiξ j ≤ �|ξ |2 for any X ∈ Q+
1 , ξ ∈ R

n (2.1)
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and bi , c have the boundedness as follows:

n∑

i=1

‖bi‖L∞(Q+
1 ) + ‖c‖L∞(Q+

1 ) ≤ �.

In addition, since the function v = e−(�+1)t u satisfies

vt = Lv − (� + 1)v + e−(�+1)t f in Q+
1 ,

we may assume that the coefficient c of L is negative.

2.2 Main result

In this subsection, we are going to state the main theorem.

Theorem 2.2 Let k ∈ N0, 0 < α < 1 with k + 2 + α /∈ D, and assume

ai j , bi , c, f ∈ Ck,α
s (Q+

1 ) (i, j = 1, 2, . . . , n).

Suppose u ∈ C2(Q+
1 ) ∩ C(Q+

1 ) is a solution of (1.1) satisfying u = 0 on {X ∈
∂pQ

+
1 : xn = 0}. Then u ∈ Ck,2+α

s (Q+
1/2) and

‖u‖
Ck,2+α
s (Q+

1/2)
≤ C

(
‖u‖L∞(Q+

1 ) + ‖ f ‖
Ck,α
s (Q+

1 )

)
,

where C is a positive constant depending only on n, λ, �, γ , k, α, ‖ai j‖
Ck,α
s (Q+

1 )
,

‖bi‖
Ck,α
s (Q+

1 )
, and ‖c‖

Ck,α
s (Q+

1 )
.

2.3 Maximum principle

First, we will show the maximum principle for the following initial/boundary-value
problem

{
ut = Lu + f in Q+

1

u = g on ∂pQ
+
1 .

(2.2)

Lemma 2.3 Suppose u ∈ C2(Q+
1 ) ∩ C(Q+

1 ) satisfies ut < Lu in Q+
1 . If u < 0 on

∂pQ
+
1 , then

u(X) < 0 for all X ∈ Q+
1 .
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Proof Suppose not. Then there exists τ = inf{t : u(x, t) ≥ 0 for some (x, t) ∈ Q+
1 }.

Since u ∈ C(Q+
1 ) and u < 0 on ∂pQ

+
1 , we know that there isY = (y, τ ) ∈ Q+

1 \∂pQ+
1

such that u(Y ) = 0. Meanwhile τ is the first time u becomes nonnegative, the function
U (x) := u(x, τ ) attains its maximum at y and hence ut (Y ) ≥ 0, Du(Y ) = 0, and
D2u(Y ) ≤ 0. Then we have

D2u(Y ) :=
(
In−1 0
0 yγ /2

n

)
D2u(Y )

(
In−1 0
0 yγ /2

n

)
≤ 0

and this implies that

ut (Y ) − Lu(Y ) = ut (Y ) − tr
(
ai j (Y )D2u(Y )

) ≥ 0.

This yields a contradiction to ut < Lu in Q+
1 . ��

Lemma 2.4 Suppose u ∈ C2(Q+
1 ) ∩ C(Q+

1 ) satisfies ut ≤ Lu in Q+
1 . If u ≤ 0 on

∂pQ
+
1 , then u ≤ 0 in Q+

1 .

Proof For any ε > 0, consider v(X) = u(X) − ε(t + 2). Then we have vt < Lv in
Q+

1 and v < 0 on ∂pQ
+
1 . Thus, by Lemma 2.3

u(X) < ε(t + 2) for all X ∈ Q+
1 .

We finish the proof by letting ε → 0. ��
Lemma 2.5 Suppose u ∈ C2(Q+

1 ) ∩ C(Q+
1 ) is a solution of (2.2). Then

‖u‖L∞(Q+
1 ) ≤ C

(
‖ f ‖L∞(Q+

1 ) + ‖g‖L∞(Q+
1 )

)
,

where C > 0 is a universal constant.

Proof Let v = u − et+1(‖ f ‖L∞(Q+
1 ) + ‖g‖L∞(Q+

1 )). Then we have vt ≤ Lv in Q+
1

and v ≤ 0 on ∂pQ
+
1 . By Lemma 2.4, we have

u(X) ≤ e
(
‖ f ‖L∞(Q+

1 ) + ‖g‖L∞(Q+
1 )

)
for all X ∈ Q+

1 .

Considering the function w = −u − et+1(‖ f ‖L∞(Q+
1 ) + ‖g‖L∞(Q+

1 )), we can obtain
the lower bound in a similar way. ��
Lemma 2.6 Suppose u ∈ C2(Q+

1 ) ∩ C(Q+
1 ) is a solution of (2.2) with γ < 0 and

x−γ
n f ∈ L∞(Q+

1 ). Then

‖u‖L∞(Q+
1 ) ≤ C

(
‖x−γ

n f ‖L∞(Q+
1 ) + ‖g‖L∞(Q+

1 )

)
,

where C > 0 is a universal constant.

123



T. Kim

Proof Let w = eμ(t+1)‖x−γ
n f ‖L∞(Q+

1 )(1 + xn − x2n ). Then, we have

wt − Lw = eμ(t+1)‖x−γ
n f ‖L∞(Q+

1 )

(
μ(1 + xn − x2n )

+ 2xγ
n a

nn − xγ /2
n bn(1 − 2xn) − c(1 + xn − x2n )

)

≥ eμ(t+1)‖x−γ
n f ‖L∞(Q+

1 )

(
μ + 2xγ

n λ − 3xγ /2
n �

)

= λeμ(t+1)‖x−γ
n f ‖L∞(Q+

1 )x
γ
n + eμ(t+1)‖x−γ

n f ‖L∞(Q+
1 )

×
((√

λxγ /2
n − 3�

2
√

λ

)2

+ μ − 9�2

4λ

)
.

For sufficiently large μ > 9�2

4λ , we obtain

wt − Lw ≥ λ‖x−γ
n f ‖L∞(Q+

1 )x
γ
n in Q+

1 .

As in the proof Lemma 2.5, we can see the desired result, by considering the function
v± = ±u − (w/λ + ‖g‖L∞(Q+

1 )). ��

2.4 Existence of solutions

In this subsection, we assume that ai j , bi , c, and f are Cα
loc(Q

+
1 ) for the existence of

a classical solution.

Definition 2.7 A function v ∈ C(Q+
1 ) is called a subsolution (resp. supersolution) of

(2.2) if

v ≤ g (resp. ≥ g) on ∂pQ
+
1

and if for any � ⊂ Q+
1 , the solution ṽ ∈ C2(�) ∩ C(�) of

{
ṽt = L ṽ + f in �

ṽ = v on ∂p�

is greater (resp. less) than or equal to v in �.

Lemma 2.8 (Comparison principle) If w ∈ C(Q+
1 ) is a supersolution of (2.2) and

v ∈ C(Q+
1 ) is a subsolution of (2.2), then

w ≥ v in Q+
1 .
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Proof Suppose h = v − w has a positive maximum value M achieved at some point

Y = (y, τ ) ∈ Q+
1 \ ∂pQ

+
1 . Then, we have h(Y ) = M > 0 and h(X) ≤ M for all

X ∈ �, where � = {X ∈ Q+
1 : xn > yn/2, t < τ }. The operator (∂t − L) is a

uniformly parabolic in � since � is away from the boundary {xn = 0}. So, we can
take ṽ ∈ C2(�) ∩ C(�) and w̃ ∈ C2(�) ∩ C(�) satisfying

{
ṽt = L ṽ + f in �

ṽ = v on ∂p�
and

{
w̃t = Lw̃ + f in �

w̃ = w on ∂p�.

Then, the function h̃ = ṽ − w̃ − M satisfying h̃t ≤ Lh̃ in � and h̃ ≤ 0 on ∂p�.
Furthermore, since v and w are subsolution and supersolution of (2.2), respectively,
we know that ṽ ≥ v in � and w̃ ≤ w in �. Hence, we have h̃(Y ) ≥ 0. By the strong
maximum principle for uniformly parabolic equations, we have h̃ = ṽ−w̃−M = 0 in
�. It follows that v−w = M on ∂p�. Since ∂pQ

+
1 ∩∂p� is nonempty, this contradicts

the assumption that v ≤ g ≤ w on ∂pQ
+
1 . ��

Lemma 2.9 Let k ∈ N0, 0 < α < 1, and assume

ai j , bi , c, f ∈ Ck,α
s (Q+

1 ) (i, j = 1, 2, . . . , n) and g ∈ C(Q+
1 ).

Then there exists a unique bounded solution u ∈ Ck+2,α
loc (Q+

1 )∩C(Q+
1 ) of (2.2) such

that

‖u‖L∞(Q+
1 ) ≤ C

(
‖ f ‖L∞(Q+

1 ) + ‖g‖L∞(Q+
1 )

)
,

where C > 0 is a universal constant.

Proof LetA be a set of bounded subsolutions of (2.2) and let u = supw∈A w. Consider
the function ϕ± = ±et+1(‖ f ‖L∞(Q+

1 ) + ‖g‖L∞(Q+
1 )). Note first that ϕ+ is a superso-

lution of (2.2) and ϕ− is a subsolution of (2.2), so u is bounded by ϕ± by Lemma 2.8.
For any cube Qr (Y ) ⊂⊂ Q+

1 , the operator (∂t − L) is a uniformly parabolic in Qr (Y )

since Qr (Y ) is away from the boundary {xn = 0}. Thus, we can apply Perron’smethod
for the problem (2.2) as in [6, Lemma 3.3] and hence u ∈ Ck+2,α

loc (Q+
1 ). Finally, for

any Y = (y, τ ) ∈ {X ∈ ∂pQ
+
1 : xn = 0}, take a local barrier w near Y given by

w(x, t) = |x ′ − y′|2 + (t − τ)2 +

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2xn
r

−
( xn
r

)2−γ /2 −
( xn
r

)2−γ

(γ < 0)

xn
r

−
( xn
r

)2−γ

(0 ≤ γ < 1)

− xn
r

log xn (γ = 1)

for some small r > 0. The continuity of u up to the boundary {xn = 0} is automatically
guaranteed since Y is a regular boundary point. In the case Y ∈ {X ∈ ∂pQ

+
1 : xn = 0},

the continuity ofu is guaranteedbyusing thebarrier functionof the uniformlyparabolic
equations as in [8]. ��
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2.5 Global regularity

The proof of Theorem 2.2 is sufficient if we show higher regularity of solutions at the
boundary. Main equation (1.1) is a uniformly parabolic equation in any � ⊂⊂ Q+

1 ,

so if the coefficients and forcing term are in Ck,α
s (Q+

1 ), the solution of (1.1) is in

Ck+2,α
loc (�) and global regularity can be obtained by combining interior regularity and

boundary regularity. More strictly speaking, it is described by the following lemma
and theorem.

Lemma 2.10 Let k ∈ N0, 0 < α < 1, and assume

ai j , bi , c, f ∈ Ck,α
s (Q+

1 ) (i, j = 1, 2, . . . , n).

Suppose u ∈ Ck+2,α
loc (Q+

1 ) be a solution of (1.1). Then, for each Y ∈ {X ∈ Q+
1/2 :

xn > 0}, there is an s-polynomial p of degree (k + 2) at Y such that

‖p‖
Ck+2,α
s (Q+

r/2(Y ))
≤ C

(‖u‖L∞(Q+
rρ(Y ))

rk+2+α
+

‖ f ‖
Ck,α
s (Q+

rρ(Y ))

rk+α

)

and

|u(X) − p(X)| ≤ C

(‖u‖L∞(Q+
rρ(Y ))

rk+2+α
+

‖ f ‖
Ck,α
s (Q+

rρ(Y ))

rk+α

)
s[X ,Y ]k+2+α

for all X ∈ Q+
r/2(Y ) and fixed ρ ∈ (1/2, 1), where r = y

2−γ
2

n and C > 0 is a constant
which is independent of Y . Moreover

|p(X)| ≤ C

(‖u‖L∞(Q+
rρ(Y ))

rk+2+α
+

‖ f ‖
Ck,α
s (Q+

rρ(Y ))

rk+α

)
s[X ,Y ]k+2+α

for all X ∈ Q+
1 with s[X ,Y ] ≥ r/2.

Proof For each Y = (y, τ ) ∈ {X ∈ Q+
1/2 : xn > 0}, we consider the function v

defined in a standard cube Qρ(0′, 1, 0) by

v(x, t) = u(y′ + r x ′, (r xn)
2

2−γ , τ + r2t),

where ρ ∈ (1/2, 1) and r = y
2−γ
2

n . Then, v satisfies the uniformly parabolic equation

vt = ãi j (X)vi j + b̃i (X)vi − γ

2 − γ

ãnn(X)

xn
vn + c̃(X)v + f̃ (X) in Qρ(0′, 1, 0),

(2.3)
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where

ãi j (X) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ai j (y′ + r x ′, (r xn)
2

2−γ , τ + r2t) if i, j = n
2−γ
2 ain(y′ + r x ′, (r xn)

2
2−γ , τ + r2t) if i = n, j = n

2−γ
2 anj (y′ + r x ′, (r xn)

2
2−γ , τ + r2t) if i = n, j = n

(2−γ )2

4 ann(y′ + r x ′, (r xn)
2

2−γ , τ + r2t) if i = j = n,

b̃i (X) =
{
rbi (y′ + r x ′, (r xn)

2
2−γ , τ + r2t) if i = n

2−γ
2 rbn(y′ + r x ′, (r xn)

2
2−γ , τ + r2t) if i = n,

c̃(X) = r2c(y′ + r x ′, (r xn)
2

2−γ , τ + r2t),

f̃ (X) = r2 f (y′ + r x ′, (r xn)
2

2−γ , τ + r2t).

Since Q+
rρ(Y ) is away from {X ∈ ∂pQ

+
1 : xn = 0}, we can show that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

‖ãi j‖Ck,α(Qρ(0′,1,0)) ≤ C‖ai j‖
Ck,α
s (Q+

1 )

‖b̃i‖Ck,α(Qρ(0′,1,0)) ≤ C‖bi‖
Ck,α
s (Q+

1 )

‖c̃‖Ck,α(Qρ(0′,1,0)) ≤ C‖c‖
Ck,α
s (Q+

1 )

and ‖ f̃ ‖Ck,α(Qρ(0′,1,0)) ≤ r2C‖ f ‖
Ck,α
s (Q+

rρ(Y ))
for some constant C which is indepen-

dent Y . Thus, by the interior Schauder estimate, there exists a polynomial p̃ of degree
(k + 2) of the form

p̃(X) =
∑

|β|+i+2 j≤k+2
β∈Nn−1

0 , i, j∈N0

Aβi j x ′β(xn − 1)i t j

and

‖ p̃‖Ck+2,α(Qρ(0′,1,0)) ≤ C
(
‖v‖L∞(Qρ(0′,1,0)) + ‖ f̃ ‖Ck,α(Qρ(0′,1,0))

)
, (2.4)

where C depends on n, λ, �, k, α, ‖ãi j‖Ck,α(Qρ(0′,1,0)), ‖b̃i‖Ck,α(Qρ(0′,1,0)), and

‖c̃‖Ck,α(Qρ(0′,1,0)) such that

|v(X) − p̃(X)| ≤ C
(
‖v‖L∞(Qρ(0′,1,0)) + ‖ f̃ ‖Ck,α(Qρ(0′,1,0))

)
d[X , (0′, 1, 0)]k+2+α

(2.5)
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for all X ∈ Q1/2(0′, 1, 0). Putting

p(X) = p̃
(
r−1(x ′ − y′), r−1x

2−γ
2

n , r−2(t − τ)
)

=
∑

|β|+i+2 j≤k+2
β∈Nn−1

0 , i, j∈N0

Aβi j

r |β|+i+2 j (x
′ − y′)β(x

2−γ
2

n − y
2−γ
2

n )i (t − τ) j ,

we can rewrite (2.4) and (2.5) into

‖p‖
Ck+2,α(Q+

r/2(Y ))
≤ C

(‖u‖L∞(Q+
rρ(Y ))

rk+2+α
+

‖ f ‖
Ck,α
s (Q+

rρ(Y ))

rk+α

)

and

|u(X) − p(X)|
≤ C

(
‖u‖L∞(Q+

rρ(Y )) + r2‖ f ‖
Ck,α
s (Q+

rρ(Y ))

)

× d[(r−1(x ′ − y′), r−1x
2−γ
2

n , r−2(t − τ)), (0′, 1, 0)]k+2+α

= C

(‖u‖L∞(Q+
rρ(Y ))

rk+2+α
+

‖ f ‖
Ck,α
s (Q+

rρ(Y ))

rk+α

)
s[X ,Y ]k+2+α

for all X ∈ Q+
r/2(Y ). From (2.4), we know that

∑

|β|+i+2 j≤k+2
β∈Nn−1

0 , i, j∈N0

|Aβi j | ≤ C
(
‖u‖L∞(Q+

rρ(Y )) + r2‖ f ‖
Ck,α
s (Q+

rρ(Y ))

)

and hence, we have

|p(X)| ≤ C

(‖u‖L∞(Q+
rρ(Y ))

rk+2+α
+

‖ f ‖
Ck,α
s (Q+

rρ(Y ))

rk+α

)
∑

|β|+i+2 j≤k+2
β∈Nn−1

0 , i, j∈N0

rk+2+α

r |β|+i+2 j s[X , Y ]|β|+i+2 j

≤ C

(‖u‖L∞(Q+
rρ(Y ))

rk+2+α
+

‖ f ‖
Ck,α
s (Q+

rρ(Y ))

rk+α

)
s[X , Y ]k+2+α

for all X ∈ Q+
1 with s[X ,Y ] ≥ r/2. ��

Theorem 2.11 (Global Regularity up to {xn = 0}) Let k ∈ N0, 0 < α < 1, and

assume u ∈ C(Q+
1 ). Suppose the following statements hold:
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(1) If for each Y ∈ {X ∈ Q+
1/2 : xn > 0}, there is an s-polynomial pk+2 of degree

(k + 2) at Y such that

‖pk+2‖
Ck+2,α
s (Q+

r/2(Y ))
≤ A

(‖u‖L∞(Q+
rρ(Y ))

rk+2+α
+

‖ut − Lu‖
Ck,α
s (Q+

rρ(Y ))

rk+α

)

and

|u(X) − pk+2(X)| ≤ A

(‖u‖L∞(Q+
rρ(Y ))

rk+2+α
+

‖ut − Lu‖
Ck,α
s (Q+

rρ(Y ))

rk+α

)
s[X , Y ]k+2+α

for all X ∈ Q+
r/2(Y ) and fixed ρ ∈ (1/2, 1), where r = y

2−γ
2

n and A > 1 is a
constant that is independent of Y . Moreover

|pk+2(X)| ≤ A

(‖u‖L∞(Q+
rρ(Y ))

rk+2+α
+

‖ut − Lu‖
Ck,α
s (Q+

rρ(Y ))

rk+α

)
s[X ,Y ]k+2+α

for all X ∈ Q+
1 with s[X ,Y ] ≥ r/2.

(2) If for each Ỹ ∈ {X ∈ ∂pQ
+
1/2 : xn = 0}, there is an s-polynomial pm of degree m

corresponding to κ = k + 2 + α at Ỹ and a constant B > 1 such that

{ |(∂t − L)(u − pm)(X)| ≤ Bs[X , Ỹ ]k+α

|u(X) − pm(X)| ≤ Bs[X , Ỹ ]k+2+α

for all X ∈ Q+
1 and

‖pm‖
Ck+2,α
s (Q+

1 )
≤ B.

(3) For each s-polynomial p of degree m corresponding to κ = k + 2 + α with
‖p‖

Ck+2,α
s (Q+

1 )
≤ B, v = u − p satisfies (1) again.

Then u ∈ Ck+2,α
s (Q+

1/2) and

‖u‖
Ck+2,α
s (Q+

1/2)
≤ ABC,

where C = C(k, α) > 0 is a constant.

Proof For each Y = (y, τ ) ∈ Q+
1/2, we just need to find an s-polynomial p that

satisfies

‖p‖
Ck+2,α
s (Q+

1 )
≤ ABC
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and

|u(X) − p(X)| ≤ ABCs[X ,Y ]k+2+α for all X ∈ Q+
1 .

If yn = 0, then our goal p is just pm in (2). Let us think about yn > 0 case. Let
Ỹ = (y′, 0, τ ). From (2), there is an s-polynomial pm of degree m corresponding to
κ = k + 2 + α at Ỹ and a constant B > 1 such that

{ |(∂t − L)(u − pm)(X)| ≤ Bs[X , Ỹ ]k+α

|u(X) − pm(X)| ≤ Bs[X , Ỹ ]k+2+α
(2.6)

for all X ∈ Q+
1 and ‖pm‖

Ck+2,α
s (Q+

1 )
≤ B. Now applying (1) on the function v =

u − pm , we have an s-polynomial pk+2 of degree (k + 2) such that

‖pk+2‖
Ck+2,α
s (Q+

r/2(Y ))
≤ A

(‖v‖L∞(Q+
rρ(Y ))

rk+2+α
+

‖vt − Lv‖
Ck,α
s (Q+

rρ(Y ))

rk+α

)
(2.7)

and

|v(X) − pk+2(X)| ≤ A

(‖v‖L∞(Q+
rρ(Y ))

rk+2+α
+

‖vt − Lv‖
Ck,α
s (Q+

rρ(Y ))

rk+α

)
s[X ,Y ]k+2+α

(2.8)

for all X ∈ Q+
r/2(Y ) and ρ ∈ (1/2, 1), where r = y

2−γ
2

n and A > 1 is a constant that
is independent of Y . Moreover

|pk+2(X)| ≤ A

(‖v‖L∞(Q+
rρ(Y ))

rk+2+α
+

‖vt − Lv‖
Ck,α
s (Q+

rρ(Y ))

rk+α

)
s[X ,Y ]k+2+α (2.9)

for all X ∈ Q+
1 with s[X ,Y ] ≥ r/2. From (2.6), we see

|v(X)| ≤ Bs[X , Ỹ ]k+2+α ≤ B
(
s[X ,Y ] + s[Y , Ỹ ])k+2+α ≤ B

(
rρ + y

2−γ
2

n

)k+2+α

≤ BCrk+2+α (2.10)

for all X ∈ Q+
rρ(Y ) and we also see

|(vt − Lv)(X)| ≤ BCrk+α for all X ∈ Q+
rρ(Y ). (2.11)

Thus, combining (2.7), (2.10), and (2.11) gives

‖pk+2‖
Ck+2,α
s (Q+

r/2(Y ))
≤ ABC . (2.12)
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Since pk+2 is an s-polynomial, we can extend the domain Q+
r/2(Y ) to Q+

1 in (2.12).
Furthermore, combining (2.8), (2.10), and (2.11) gives

|u(X) − pm(X) − pk+2(X)| ≤ ABCs[X ,Y ]k+2+α for all X ∈ Q+
r/2(Y ).

Meanwhile, combining (2.6), (2.9), (2.10), and (2.11) gives

|u(X) − pm(X) − pk+2(X)| ≤ |u(X) − pm(X)| + |pk+2(X)|
≤ Bs[X , Ỹ ]k+2+α + ABCs[X ,Y ]k+2+α

≤ ABCs[X ,Y ]k+2+α

for all X ∈ Q+
1 with s[X ,Y ] ≥ r/2. ��

Thanks to Theorem 2.11, we are only concerned with showing regularity at the bound-
ary.

3 C˛
s -Regularity

The goal of this section is to show global Cα
s -regularity of solutions for (1.1). In

Sect. 4, we obtain boundary C1,α-regularity of solutions for equations with constant
coefficients using the result of this section, and in Sect. 5, it is used to prove the
approximation lemma.

Lemma 3.1 Let u ∈ C2(Q+
1 )∩C(Q+

1 )bea solution of (1.1) satisfying‖u‖L∞(Q+
1 ) ≤ 1

and u = 0 on {X ∈ ∂pQ
+
1 : xn = 0} and for some nonnegative constant δ ≤

min{1 − γ /2, 1 − γ } and M > 0, if f satisfies

| f (X)| ≤ Mx−δ
n for all X ∈ Q+

1 , (3.1)

then

|u(X)| ≤
{
Cxn (γ + δ < 1)

−Cxn log xn (γ + δ = 1)

for all X ∈ Q+
1/2, where C > 0 is a constant depending only on n, λ, �, γ , and M.

Proof For ε < min{1, 2/�, 2/M}, we consider the function ũ defined in Q1 by
ũ(X) = u(2−1ε2X), where

Qρ = {(x, t) : |xi | < 2ρε−1 (1 ≤ i < n), 0 < xn < ρ
2

2−γ , −2ε−2ρ2 < t ≤ 0}.

Then, ũ is a solution of

ũt = L̃ũ + f̃ in Q1
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satisfying ‖ũ‖L∞(Q1) ≤ 1 and ũ = 0 on {X ∈ ∂pQ1 : xn = 0}, where

L̃ = ãi
′ j ′(X)Di ′ j ′ + 2xγ /2

n ãi
′n(X)Di ′n + xγ

n ã
nn(X)Dnn + b̃i

′
(X)Di ′

+xγ /2
n b̃n(X)Dn + c̃(X)

with

ãi j (X) = ai j (2−1ε2X), b̃i (X) = 2−1ε2bi (2−1ε2X), c̃(X) = (2−1ε2)2c(2−1ε2X),

and f̃ (X) = (2−1ε2)2 f (2−1ε2X). Since ‖bi‖L∞(Q+
1 ) ≤ � (i = 1, 2, . . . , n) and

(3.1), we have |b̃i | ≤ 2−1ε2� < ε (i = 1, 2, . . . , n) in Q1 and

| f̃ (X)| ≤ (2−1ε2)
2− 2δ

2−γ Mx−δ
n ≤ 2−1ε2Mx−δ

n ≤ εx−δ
n for all X ∈ Q1.

From these observations, wemay assumewithout loss of generality that u ∈ C2(Q1)∩
C(Q1) is a solution of

ut = Lu + f in Q1

satisfying ‖u‖L∞(Q1) ≤ 1 and u = 0 on {X ∈ ∂pQ1 : xn = 0}, where the coefficients
bi , c, and the forcing term f satisfy |bi | ≤ ε (i = 1, 2, . . . , n), c ≤ 0 in Q1, and
| f (X)| ≤ εx−δ

n for all X ∈ Q1. Now, we define �ε = {(x, t) : |xi | < ε−1 (1 ≤ i <

n), 0 < xn < 1, −ε−2 < t ≤ 0}. For each Y = (y, τ ) ∈ Q1/2, consider the function
v defined in �ε ⊂ Q1 by

v(x, t) = u(x ′ + y′, xn, t + τ) + ϕ(xn) − (|x ′|2 − t)ε2,

where

ϕ(xn) =

⎧
⎪⎨

⎪⎩

x2−γ−δ
n + x2−γ /2

n − 3xn (γ + δ < 0)

x2−γ−δ
n − 2xn (0 ≤ γ + δ < 1)

xn log xn − xn (γ + δ = 1).

Then v ≤ 0 on ∂p�ε and for ε < 1
3

(
2 − γ

2

) (
1 − γ

2

)
λ, we have

vt − L̂v ≤ x−δ
n

(
−λη(γ, δ) +

(
5 + 3

2
|γ |
)
ε + [1 + 2(n − 1)(� + 1)]ε2

)

in �ε, where

L̂ = âi
′ j ′(X)Di ′ j ′ + 2xγ /2

n âi
′n(X)Di ′n + xγ

n â
nn(X)Dnn + b̂i

′
(X)Di ′

+xγ /2
n b̂n(X)Dn + ĉ(X)
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with

âi j (X) = ai j (x ′ + y′, xn, t + τ), b̂i (X) = bi (x ′ + y′, xn, t + τ),

ĉ(X) = c(x ′ + y′, xn, t + τ),

and

η(γ, δ) =
{

(2 − γ − δ)(1 − γ − δ) (γ + δ = 1)

1 (γ + δ = 1).

For sufficiently small ε > 0, we obtain vt − L̂v < 0 in �ε. By Lemma 2.4, we have

u(x ′ + y′, xn, t + τ) ≤ (|x ′|2 − t)ε2 − ϕ(xn) for all (x, t) ∈ �ε.

Thus, if we take (x ′, xn, t) = (0′, yn, 0), then

u(Y ) ≤ −ϕ(yn) ≤
{
3yn (γ + δ < 1)

yn(1 − log yn) (γ + δ = 1)

for all Y ∈ Q1/2. Next, consider the following function to find the lower bound

w(x, t) = −u(x ′ + y′, xn, t + τ) + ϕ(xn) − (|x ′|2 − t)ε2.

Similarly, we can obtain the lower bound. Hence, we conclude that

|u(X)| ≤
{
Cxn (γ + δ < 1)

−Cxn log xn (γ + δ = 1)

for all X ∈ Q+
1/2. ��

Corollary 3.2 Let 0 < α < min{ 2
2−γ

, 1}, and assume f ∈ L∞(Q+
1 ). Suppose u ∈

C2(Q+
1 ) ∩ C(Q+

1 ) is a solution of (1.1) satisfying u = 0 on {X ∈ ∂pQ
+
1 : xn = 0}.

Then u ∈ Cα
s (Q+

1/2) and

‖u‖
Cα
s (Q+

1/2)
≤ C

(
‖u‖L∞(Q+

1 ) + ‖ f ‖L∞(Q+
1 )

)
,

where C > 0 is a universal constant.
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Proof By Lemma 3.1, we have

|u(X)| ≤
⎧
⎨

⎩
C
(
‖u‖L∞(Q+

1 ) + ‖ f ‖L∞(Q+
1 )

)
xn (γ < 1)

−C
(
‖u‖L∞(Q+

1 ) + ‖ f ‖L∞(Q+
1 )

)
xn log xn (γ = 1)

≤ C
(
‖u‖L∞(Q+

1 ) + ‖ f ‖L∞(Q+
1 )

)
s[X , O]α

for all X ∈ Q+
1/2, since the function x

1−α/2
n log xn is bounded. Thus, we know that for

each Y = (y, τ ) ∈ {X ∈ Q+
1/2 : xn > 0},

|u(X)| ≤ C
(
‖u‖L∞(Q+

1 ) + ‖ f ‖L∞(Q+
1 )

)
s[X , Ỹ ]α for all X ∈ Q+

1 , (3.2)

where Ỹ = (y′, 0, τ ), since (1.1) is invariant for translation in the x ′-direction. We
now consider the function v defined in a standard cube Qρ(0′, 1, 0) by v(x, t) =
u(y′ +r x ′, (r xn)

2
2−γ , τ +r2t),where fixed ρ ∈ (1/2, 1) and r = y

2−γ
2

n as in the proof
of Lemma 2.10. Then v is a solution of the uniformly parabolic equation (2.3). By the
interior Hölder regularity,

|v(X) − v(0′, 1, 0)| ≤ C
(
‖v‖L∞(Qρ(0′,1,0)) + ‖ f̃ ‖L∞(Qρ(0′,1,0))

)
d[X , (0′, 1, 0)]α

(3.3)

for all X ∈ Q1/2(0′, 1, 0). From (3.2), we see

|u(X)| ≤ C
(
‖u‖L∞(Q+

1 ) + ‖ f ‖L∞(Q+
1 )

)
rα for all X ∈ Q+

rρ(Y ). (3.4)

Then, we can rewrite (3.3) into

|u(X) − u(Y )|
≤ C

(
‖u‖L∞(Q+

rρ(Y )) + r2‖ f ‖L∞(Q+
rρ(Y ))

)

× d[(r−1(x ′ − y′), r−1x
2−γ
2

n , r−2(t − τ)), (0′, 1, 0)]α

= C

(‖u‖L∞(Q+
rρ(Y ))

rα
+ r2−α‖ f ‖L∞(Q+

rρ(Y ))

)
d[(x ′, x

2−γ
2

n , t), (y′, y
2−γ
2

n , τ )]α

≤ C
(
‖u‖L∞(Q+

1 ) + ‖ f ‖L∞(Q+
1 )

)
s[X ,Y ]α

for all X ∈ Q+
r/2(Y ) which is extensible throughout Q+

1 by using (3.2) and (3.4). ��
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Lemma 3.3 Let 0 < α < min{ 2
2−γ

, 1} and let u ∈ C2(Q+
1 ) ∩ C(Q+

1 ) be a solution
of

{
ut = Lu in Q+

1

u = g on ∂pQ
+
1

(3.5)

satisfying ‖u‖L∞(Q+
1 ) ≤ 1 and g = 0 on {X ∈ ∂pQ

+
1 : xn = 0}. If ‖g‖

Cα
s (Q+

1 )
≤ 1,

then

|u(X)| ≤ Cx
2−γ
2 α

n for all X ∈ Q+
1 ,

where C > 0 is a universal constant.

Proof Let K =
{

λ
2�

(
1 − (2−γ )α

2

)} 2
2−γ ∈ (0, 1). Since ‖g‖

Cα
s (Q+

1 )
≤ 1 and

‖u‖L∞(Q+
1 ) ≤ 1, there exists a constant C > 0 such that |g(X)| ≤ Cx

2−γ
2 α

n for

all X ∈ ∂pQ
+
1 and |u(X)| ≤ CK

2−γ
2 α for all X = (x ′, K , t) ∈ Q+

1 . Consider now

the function v defined in � = {X ∈ Q+
1 : 0 < xn < K } by v(X) = u(X) − Cx

2−γ
2 α

n .
Then v ≤ 0 on ∂p� and

vt − Lv = C

{
(2 − γ )α

2

(
(2 − γ )α

2
− 1

)
annx

2−γ
2 (α−2)

n

+ (2 − γ )α

2
bnx

2−γ
2 (α−1)

n + cx
2−γ
2 α

n

}

≤ C(2 − γ )α

2

{(
(2 − γ )α

2
− 1

)
λ + �x

2−γ
2

n

}
x

2−γ
2 (α−2)

n

≤ C(2 − γ )αλ

4

(
(2 − γ )α

2
− 1

)
x

2−γ
2 (α−2)

n

< 0.

By Lemma 2.4, we have

u(X) ≤ Cx
2−γ
2 α

n for all X ∈ �.

Considering v(x, t) = −u(x, t) + Cx
2−γ
2 α

n similarly, we have lower bound of u. ��
Corollary 3.4 Let 0 < α < min{ 2

2−γ
, 1}. Then for each ai j , bi , c ∈ Cα

loc(Q
+
1 ), and

g ∈ Cα
s (Q+

1 ) satisfying g = 0 on {X ∈ ∂pQ
+
1 : xn = 0}, there exists a unique solution

u ∈ C2(Q+
1 ) ∩ Cα

s (Q+
1 ) of (3.5) and

‖u‖
Cα
s (Q+

1 )
≤ C‖g‖

Cα
s (Q+

1 )
,
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where C > 0 is a universal constant.

4 Regularity of solutions for equations with constant coefficients

Before treating (1.1) with variable coefficients, we establish a necessary preliminary
result for equations with constant coefficients given by

ut = L0u + f , (4.1)

where the operator L0 is given as

L0 = Ai ′ j ′ Di ′ j ′ + 2xγ /2
n Ai ′nDi ′n + xγ

n A
nnDnn + Bi ′ Di ′ + xγ /2

n BnDn + C−,

with the constant symmetric matrix (Ai j ) satisfies the following condition

λ|ξ |2 ≤ Ai jξiξ j ≤ �|ξ |2 for any ξ ∈ R
n

and the constants B1, B2, . . . , Bn , and C− satisfy

n∑

i=1

|Bi | + |C−| ≤ � and C− < 0.

Theorem 4.1 Let k ∈ N0, 0 < α < 1 with k + 1 + α − 2
2−γ

/∈ N0, and assume

f ∈ Ck,α
s (Q+

1 ). Suppose u ∈ C2(Q+
1 ) ∩ C(Q+

1 ) is a solution of (4.1) satisfying

u = 0 on {X ∈ ∂pQ
+
1 : xn = 0}. Then u ∈ Ck,2+α

s (Q+
1/2) and

‖u‖
Ck,2+α
s (Q+

1/2)
≤ C

(
‖u‖L∞(Q+

1 ) + ‖ f ‖
Ck,α
s (Q+

1 )

)
,

where C is a universal constant.

Lemma 4.2 Let 0 < α < min{ 2
2−γ

, 1} and let u ∈ C2(Q+
1 ) ∩ C(Q+

1 ) be a solution

of (4.1) satisfying ‖u‖L∞(Q+
1 ) ≤ 1 and u = 0 on {X ∈ ∂pQ

+
1 : xn = 0}. If

‖ f ‖L∞(Q+
1 ) ≤ 1 and ‖ fi‖L∞(Q+

1 ) ≤ 1 (i = n),

then

‖ui‖Cα
s (Q+

1/2)
≤ C,

where C > 0 is a universal constant.
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Proof It is sufficient to prove only the Hölder continuity of u1 in Q+
1/2. Consider ũ(x1)

as a function whose variables are fixed except for the x1-coordinate in the function u.
By Corollary 3.2, for h ∈ R with |h| � 1, we have

‖u‖
Cα
s (Q+

1−|h|)
≤ C

(
‖u‖L∞(Q+

1 ) + ‖ f ‖L∞(Q+
1 )

)
.

This implies that ũ ∈ Cα(Ih) and the function

vα(x, t) = u(x1 + h, x2, . . . , xn, t) − u(x, t)

|h|α

is a bounded solution of vα
t = L0v

α + f α , where

f α(x, t) = f (x1 + h, x2, . . . , xn, t) − f (x, t)

|h|α and Ih =
{

[−1, 1 − h] (h > 0)

[−1 − h, 1] (h < 0).

We can apply Corollary 3.2 to vα again,

‖vα‖
Cα
s (Q+

1−2|h|)
≤ C

(
‖vα‖L∞(Q+

1−|h|)
+ ‖ f α‖L∞(Q+

1−|h|)

)

≤ C

(
‖u‖

Cα
s (Q+

1−|h|)
+ ‖ f1‖L∞(Q+

1 )

)

≤ C
(
‖u‖L∞(Q+

1 ) + ‖ f ‖L∞(Q+
1 ) + ‖ f1‖L∞(Q+

1 )

)
.

This implies that ũ ∈ C2α(I2h). We can repeat this process, we have ũ ∈ C0,1(Ikh)
for some k ∈ N. Finally, v1 is also a bounded solution of v1t = L0v

1 + f 1 and v1 is
the difference quotient of u for x1-direction, we conclude that ũ ∈ C1,α(I(k+1)h) and

‖u1‖Cα
s (Q+

1/2)
≤ C

(
‖u‖L∞(Q+

1 ) + ‖ f ‖L∞(Q+
1 ) + ‖ f1‖L∞(Q+

1 )

)
.

��
Since v = ui (i = n) satisfies vt = L0v+ fi , we can apply Lemma 4.2 again to obtain

the Hölder continuity of ui j on Q+
1/2.

Corollary 4.3 Let 0 < α < min{ 2
2−γ

, 1} and let u ∈ C2(Q+
1 ) ∩ C(Q+

1 ) be a solution

of (4.1) satisfying ‖u‖L∞(Q+
1 ) ≤ 1 and u = 0 on {X ∈ ∂pQ

+
1 : xn = 0}. If for each

i, j = 1, 2, . . . , n − 1,

‖ f ‖L∞(Q+
1 ) ≤ 1, ‖ fi‖L∞(Q+

1 ) ≤ 1, and ‖ fi j‖L∞(Q+
1 ) ≤ 1,

then

‖ui j‖Cα
s (Q+

1/2)
≤ C,
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where C > 0 is a universal constant.

Lemma 4.4 Let 0 < α < min{ 2
2−γ

, 1} and let u ∈ C2(Q+
1 ) ∩ C(Q+

1 ) be a solution

of (4.1) satisfying ‖u‖L∞(Q+
1 ) ≤ 1 and u = 0 on {X ∈ ∂pQ

+
1 : xn = 0}. If

‖ f ‖L∞(Q+
1 ) ≤ 1 and ‖ ft‖L∞(Q+

1 ) ≤ 1,

then

‖ut‖Cα
s (Q+

1/2)
≤ C,

where C > 0 is a universal constant.

Proof Considering the function

wα(x, t) = u(x, t + h) − u(x, t)

|h|α/2 ,

we know that the proof is exactly the same as Lemma 4.2. ��
Lemma 4.5 Let u ∈ C∞(Q+

1 )∩C(Q+
1 ) be a solution of (4.1) satisfying ‖u‖L∞(Q+

1 ) ≤
1 and u = 0 on {X ∈ ∂pQ

+
1 : xn = 0}. If for each i, j, k = 1, 2, . . . , n − 1,

‖ f ‖L∞(Q+
1 ) ≤ 1,

‖ fi jk‖L∞(Q+
1 ) ≤ 1,

‖ fi‖L∞(Q+
1 ) ≤ 1,

‖ ft‖L∞(Q+
1 ) ≤ 1,

‖ fi j‖L∞(Q+
1 ) ≤ 1,

‖ fkt‖L∞(Q+
1 ) ≤ 1,

and there exist constants θ ≥ γ /2 and M > 0 such that

{ | f (X)| ≤ Mxθ
n for all X ∈ Q+

1

| fk(X)| ≤ Mxθ
n for all X ∈ Q+

1 ,

then un is well-defined on Q+
1/2 and

|un(x ′, xn, t) − un(x
′, yn, t)| ≤

{
C |xn − yn|1−γ /2 (0 < γ ≤ 1)

C |xn − yn| (γ ≤ 0)

for all (x ′, xn, t), (x ′, yn, t) ∈ Q+
1/2, where C > 0 is a constant depending only on n,

λ, �, γ , θ , and M.

Proof Differentiate both sides of (4.1) with respect to xk (k = n), then

{
vt = L0v + fk in Q+

1

v = 0 on {X ∈ ∂pQ
+
1 : xn = 0}, (4.2)
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where v = uk . By Lemma 4.2, v is bounded solution of (4.2), we can apply Lemma 3.1
to v, we have

|uk(X)| = |v(X)| ≤
{
Cxn (γ < 1)

−Cxn log xn (γ = 1)

for all X ∈ Q+
1/2. We can obtain the same inequality not only for uk but also for ut

and ui j (i, j = 1, 2, . . . , n − 1). An integration by parts yields

∣∣∣∣
∫ z

0
x−γ /2
n ui ′n(x, t) dxn

∣∣∣∣ =
∣∣∣∣∣

[
x−γ /2
n ui ′(x, t)

]xn=z

xn=0
+ γ

2

∫ z

0
x−γ /2−1
n ui ′(x, t) dxn

∣∣∣∣∣

≤
∣∣∣z−γ /2ui ′(x

′, z, t)
∣∣∣+ |γ |

2

∫ z

0
|x−γ /2−1

n ui ′(x, t)| dxn
(4.3)

≤
{
Cz1−γ /2 (γ < 1)

− C
√
z log z (γ = 1)

(4.4)

for all (x ′, z, t) ∈ Q+
1/2. Similarly, we also have

∣∣∣∣
∫ z

0
x−γ /2
n un(x, t) dxn

∣∣∣∣ ≤
{
Cz1−γ /2 (γ < 1)

− C
√
z log z (γ = 1)

(4.5)

for all (x ′, z, t) ∈ Q+
1/2. Combining (4.1), (4.4), and (4.5) gives

∣∣∣∣
∫ z

0
unn dxn

∣∣∣∣

=
∣∣∣∣∣

∫ z

0

ut − Ai ′ j ′ui ′ j ′ − 2xγ /2
n Ai ′nui ′n − Bi ′ui ′ − xγ /2

n Bnun − C−u − f

xγ
n Ann

dxn

∣∣∣∣∣
(4.6)

≤
{
Cz1−γ /2 (γ < 1)

− C
√
z log z (γ = 1)

for all (x ′, z, t) ∈ Q+
1/2 and hence for ε < 2− 2

2−γ ,

|un(x ′, ε, t)| =
∣∣∣∣∣∣
un(x

′, 2− 2
2−γ , t) −

∫ 2
− 2
2−γ

0
unn(x, t) dxn +

∫ ε

0
unn(x, t) dxn

∣∣∣∣∣∣

≤
{

|un(x ′, 2− 2
2−γ , t)| + C(2−1 + ε1−γ /2) (γ < 1)

|un(x ′, 1/4, t)| + C(log 2 − √
ε log ε) (γ = 1).
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By interior gradient estimates for uniformly parabolic equations, un is bounded by

a universal constant on {xn = 2− 2
2−γ }. Therefore, we have |un| ≤ C in Q+

1/2. This
implies that even though γ = 1, we have the following Lipschitz estimate

|u(x, t)| ≤ Cxn for all (x, t) ∈ Q+
1/2.

Furthermore v = uk (k = n) satisfies assumptions of Lemma 4.5 again, we have
|ukn| ≤ C in Q+

1/2. Thus, (4.6) gives

|un(x ′, xn, t) − un(x
′, yn, t)| =

∣∣∣∣
∫ xn

yn
unn(x

′, z, t) dz
∣∣∣∣

≤ C

(∣∣∣∣
∫ xn

yn
z1−γ dz

∣∣∣∣+
∣∣∣∣
∫ xn

yn
z−γ /2 dz

∣∣∣∣+
∣∣∣∣
∫ xn

yn
zθ−γ dz

∣∣∣∣

)

= C(|x2−γ
n − y2−γ

n | + |x1−γ /2
n − y1−γ /2

n | + |xθ−γ+1
n − yθ−γ+1

n |) (4.7)

≤
{
C |xn − yn|1−γ /2 (0 < γ ≤ 1)

C |xn − yn| (γ ≤ 0)
(4.8)

for all xn, yn ∈ (0, 2− 2
2−γ ).

In order to extend (4.8) to Q+
1/2, we define the function u

∗
n : [0, 2− 2

2−γ ] → R as in
[9]:

u∗
n(xn) =

⎧
⎪⎪⎨

⎪⎪⎩

inf
0<yn<2

− 2
2−γ

{un(x ′, yn, t) + C |xn − yn|1−γ /2} (0 < γ ≤ 1)

inf
0<yn<2

− 2
2−γ

{un(x ′, yn, t) + C |xn − yn|} (γ ≤ 0).

Then, u∗
n is uniformly continuous on [0, 2− 2

2−γ ] such that

|u∗
n(xn) − u∗

n(yn)| ≤
{
C |xn − yn|1−γ /2 (0 < γ ≤ 1)

C |xn − yn| (γ ≤ 0)

for all xn, yn ∈ [0, 2− 2
2−γ ] and u∗

n(xn) = un(x ′, xn, t) for all xn ∈ (0, 2− 2
2−γ ). There-

fore, the value un(x ′, 0, t) can be defined as u∗
n(0) and we conclude that

|un(x ′, xn, t) − un(x
′, yn, t)| ≤

{
C |xn − yn|1−γ /2 (0 < γ ≤ 1)

C |xn − yn| (γ ≤ 0)

for all (x ′, xn, t), (x ′, yn, t) ∈ Q+
1/2. ��

Remark 4.6 In Lemma 4.5, we can verify that the proof can continue for uk (k = n),
ut , or higher order differentiation of u except for xn-direction. Therefore, on the same
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assumption of Lemma 4.5 for forcing term Dβ

(x ′,t) f (X) for each β ∈ N
n
0, the partial

derivative Dβ

(x ′,t)un(X) is well-defined on Q+
1/2 and

|Dβ

(x ′,t)u(X)| ≤ Cxn and |Dβ

(x ′,t)un(X)| ≤ C

for all X ∈ Q+
1/2, where C > 0 is a constant depending only on n, λ, �, γ , θ , and M .

Lemma 4.7 Let u ∈ C∞(Q+
1 ) ∩ C(Q+

1 ) be a solution of (4.1) with f = 0. If
‖u‖L∞(Q+

1 ) ≤ 1 and u = 0 on {X ∈ ∂pQ
+
1 : xn = 0}, then for each N ∈ N0,

there exists an s-polynomial p of degree
(
N + 2

2−γ

)
at O such that

|(pt − L0 p)(X)| ≤ Cx
1+ 2−γ

2 (N−1)
n for all X ∈ Q+

1/2

and

|u(X) − p(X)| ≤ Cs[X , O]N+1+ 2
2−γ for all X ∈ Q+

1 ,

where C > 0 is a constant depending only on n, λ, �, γ , and N.

Proof By Lemma 4.5, the function U 0(x ′, t) := un(x ′, 0, t) is well-defined.
Furthermore, by Remark 4.6, U 0 is infinitely differentiable and hence we have
Dβ

(x ′,t)U
0(x ′, t) = Dβ

(x ′,t)un(x
′, 0, t) for all β ∈ N

n
0 . For each N ∈ N0, consider

a function vN of the form

vN (X) =
N∑

i=0

Ui (x ′, t)x1+
2−γ
2 i

n .

Then, the function (vN
t − L0v

N ) is expressed as follows:

(vN
t − L0v

N )(X) =
N+2∑

i=1

gi (x ′, t)x1+
2−γ
2 (i−2)

n ,

where each gi is an unknown smooth function. For arbitrary fixed positive integer
l ≤ N , the function gl in (∂t − L0)v

N is the sum of the coefficient functions of

x
1+ 2−γ

2 (l−2)
n (4.9)

in the functions obtained by expanding the following operator

(vN
t − L0v

N )(X) =
N∑

i=0

(∂t − L0)

(
Ui (x ′, t)x1+

2−γ
2 i

n

)
. (4.10)
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If we choose U 1 such that g1 ≡ 0, then

U 1(x ′, t) = − 4

(2 − γ )(4 − γ )Ann

(
2Ai ′nU 0

i ′(x
′, t) + BnU 0(x ′, t)

)
.

In the expansion of (4.10), the coefficient function for the monomial of the form (4.9)
can be obtained as follows:

− xγ
n A

nnD2
n

(
Ulx

1+ 2−γ
2 l

n

)
− xγ /2

n (2Ai ′nDi ′n + BnDn)

(
Ul−1x

1+ 2−γ
2 (l−1)

n

)

+ (∂t − Ai ′ j ′ Di ′ j ′ − Bi ′ Di ′ − C−)

(
Ul−2x

1+ 2−γ
2 (l−2)

n

)

= −
[

(2 − γ )l

2

(
1 + (2 − γ )l

2

)
AnnUl +

(
1 + (2 − γ )(l − 1)

2

)
(2Ai ′n Di ′ + Bn)Ul−1

− (∂t − Ai ′ j ′ Di ′ j ′ − Bi ′ Di ′ − C−)Ul−2
]
x
1+ 2−γ

2 (l−2)
n .

Now, takingUl such that gl ≡ 0, we can determineUl inductively using the following
formula:

Ul = −
(
1 + (2−γ )(l−1)

2

) (
2Ai ′n Di ′ + Bn

)
Ul−1 − (∂t − Ai ′ j ′ Di ′ j ′ − Bi ′ Di ′ − C−)Ul−2

(2−γ )l
2

(
1 + (2−γ )l

2

)
Ann

.

(4.11)

Since l was arbitrary, we found all Ui .
Using the recurrence relation (4.11), for any N ∈ N0, we can construct the function

vN such that all monomials of the form

gi (x ′, t)x1+
2−γ
2 (i−2)

n (i ≤ N )

are deleted in (vN
t − L0v

N ). Thus, we have

(vN
t − L0v

N )(X) = gN+1(x ′, t)x1+
2−γ
2 (N−1)

n + gN+2(x ′, t)x1+
2−γ
2 N

n .

This implies that

|Dβ

(x ′,t)(v
N
t − L0v

N )(X)| ≤ Cx
1+ 2−γ

2 (N−1)
n (4.12)

for all X ∈ Q+
3/4 and β ∈ N

n
0, where C depends on n, λ, �, γ , β, and N .

We now claim, for any N ∈ N0, the following inequality holds:

|Dβ

(x ′,t)(u − vN )(X)| ≤ Cx
1+ 2−γ

2 (N+1)
n (4.13)
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for all X ∈ Q+
1/2 and β ∈ N

n
0, where C > 0 is a constant depending only on n,

λ, �, γ , β, and N . The proof is by induction on N . Suppose first N = 0 and let
w0 = Dβ

(x ′,t)(u − v0), then w0 is a solution of

w0
t = L0w

0 + f 0 in Q+
3/4,

where f 0 = Dβ

(x ′,t)(L0v
0 − v0t ). From (4.12), f 0 satisfy assumptions of Lemma 4.5,

thus inequality (4.7) yields

|w0
n(X)| = |w0

n(X) − w0
n(x

′, 0, t)| ≤ Cx
2−γ
2

n for all X ∈ Q+
1/2

and hence

|Dβ

(x ′,t)(u − v0)(X)| = |w0(X) − w0(x ′, 0, t)| ≤ Cx
1+ 2−γ

2
n for all X ∈ Q+

1/2.

Next, assume (4.13) is valid for some nonnegative integer (N − 1). Let wN =
Dβ

(x ′,t)(u − vN ), then

|wN (X)| ≤ |Dβ

(x ′,t)u(X) − Dβ

(x ′,t)v
N−1(X)| + |Dβ

(x ′,t)U
N (x ′, t)x1+

2−γ
2 N

n |
≤ Cx

1+ 2−γ
2 N

n (4.14)

for all X ∈ Q+
1/2 and

wN
t = L0w

N + f N in Q+
3/4,

where f N = Dβ

(x ′,t)(L0v
N −vN

t ). Since β was arbitrary, the partial derivatives of wN

except in the xn-direction satisfy (4.14) again. We know from (4.12) that f N satisfies
assumptions of Lemma 4.5. Combining (4.3) and (4.14) gives

∣∣∣∣
∫ xn

0
z−γ /2wN

i ′n(x
′, z, t) dz

∣∣∣∣

≤
∣∣∣x−γ /2

n wN
i ′ (x, t)

∣∣∣+ |γ |
2

∫ xn

0
|z−γ /2−1wN

i ′ (x
′, z, t)| dz ≤ Cx

2−γ
2 (N+1)

n

for all X ∈ Q+
1/2. Similarly, we also have

∣∣∣∣
∫ xn

0
z−γ /2wN

n (x ′, z, t) dz
∣∣∣∣ ≤ Cx

2−γ
2 (N+1)

n for all X ∈ Q+
1/2.
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Combining (4.6), (4.12), and (4.14) gives

|wN
n (X)| =

∣∣∣∣
∫ xn

0
wN
nn(x

′, z, t) dz
∣∣∣∣

≤ C

(∫ xn

0
z1+

2−γ
2 N−γ dz +

∣∣∣∣
∫ xn

0
z−γ /2wN

i ′n(x
′, z, t) dz

∣∣∣∣

+
∣∣∣∣
∫ xn

0
z−γ /2wN

n (x ′, z, t) dz
∣∣∣∣+
∣∣∣∣
∫ xn

0
z−γ f N (x ′, z, t) dz

∣∣∣∣

)

≤ Cx
2−γ
2 (N+1)

n

for all X ∈ Q+
1/2 and hence

|Dβ

(x ′,t)(u − vN )(X)| = |wN (X)| ≤ Cx
1+ 2−γ

2 (N+1)
n for all X ∈ Q+

1/2.

Thus, by mathmetical indution, (4.13) holds for all N ∈ N0.
Since Ul (l = 0, 1, 2, . . . , N ) is smooth, by Taylor theorem, for any β =

(β1, β2, . . . , βn−1) ∈ N
n−1
0 and k ∈ N0 with |β| + 2k = N + 1 − l, there exists

Taylor polynomial T l(x ′, t) of degree (N − l) such that

|Ul(x ′, t) − T l(x ′, t)| ≤ C
∑

|β|+2k=N−l+1

|x1|β1 · · · |xn−1|βn−1 |t |k

for all |xi | < 1/2 (i = 1, 2, . . . , n − 1) and −1/4 < t ≤ 0. This implies that

∣∣∣∣∣v
N (X) −

N∑

l=0

T l(x ′, t)x1+
2−γ
2 l

n

∣∣∣∣∣ ≤ C
N∑

l=0

∑

|β|+2k=N−l+1

|x1|β1 · · · |xn−1|βn−1 |t |k x1+
2−γ
2 l

n

≤ Cs[X , O]N+1+ 2
2−γ (4.15)

for all X ∈ Q+
1/2. Now put

p(X) =
N∑

l=0

T l(x ′, t)x1+
2−γ
2 l

n (4.16)

which is an s-polynomial of degree (N + 2
2−γ

). Then, from (4.12), we know that

|(pt − L0 p)(X)| ≤ Cx
1+ 2−γ

2 (N−1)
n for all X ∈ Q+

1/2.
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Combining (4.13) and (4.15) gives

|u(X) − p(X)| ≤ |u(X) − vN (X)| + |vN (X) − p(X)|
≤ Cx

1+ 2−γ
2 (N+1)

n + Cs[X , O]N+1+ 2
2−γ

≤ Cs[X , O]N+1+ 2
2−γ

for all X ∈ Q+
1/2 which is extensible throughout Q+

1 . ��

Lemma 4.8 Let k ∈ N0, 0 < α < 1 and assume that the function f ∈ Ck,α
s (Q+

1 ) is of
the form

f (X) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑

2i
2−γ

+ j<k+α

i, j∈N0

f̃ i j (x ′, t)xi+
2−γ
2 j

n (γ < 1)

∑

i≤ j<k+α
i, j∈N0

f̃ i j (x ′, t)(log xn)i x j/2
n (γ = 1),

where each f̃ i j is a smooth function for (x ′, t). Then there is a function h ∈
Ck+2,α
s (Q+

1 ) of the form

h(X) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑

2i
2−γ

+ j<k+α

i, j∈N0

h̃i j (x ′, t)xi+
2−γ
2 ( j+2)

n (γ < 1)

∑

i≤ j<k+α
i, j∈N0

h̃i j (x ′, t)(log xn)i+1x ( j+2)/2
n (γ = 1)

(4.17)

such that

|(ht − L0h − f )(X)| ≤ C‖ f ‖
Ck,α
s (Q+

1 )
x

2−γ
2 (k+α)

n for all X ∈ Q+
1

and

‖h‖
Ck+2,α
s (Q+

1 )
≤ C‖ f ‖

Ck,α
s (Q+

1 )
,

where each h̃i j is a smooth functions for (x ′, t) and C is a universal constant.

In fact, Lemma 4.8 holds true even when the coefficients are s-polynomial, and the
general case will be proved in Lemma 5.4, so it is omitted here.
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Lemma 4.9 Let k ∈ N0, 0 < α < 1 with k + 1 + α − 2
2−γ

/∈ N0, and assume

f ∈ Ck,α
s (Q+

1 ). Suppose u ∈ C2(Q+
1 ) ∩ C(Q+

1 ) is a solution of (4.1) satisfying
u = 0 on {X ∈ ∂pQ

+
1 : xn = 0}. Then there exists an s-polynomial p of degree m

corresponding to κ := k + 2 + α at O such that

|u(X) − p(X)| ≤ C
(
‖u‖L∞(Q+

1 ) + ‖ f ‖
Ck,α
s (Q+

1 )

)
s[X , O]k+2+α for all X ∈ Q+

1 ,

where C > 0 is a universal constant.

Proof By considering u/(‖u‖L∞(Q+
1 ) + ε−1‖ f ‖

Ck,α
s (Q+

1 )
) for ε > 0, we may assume

that ‖u‖L∞(Q+
1 ) ≤ 1 and ‖ f ‖

Ck,α
s (Q+

1 )
≤ ε. Since f ∈ Ck,α

s (Q+
1 ), we also assume that

| f (X) − F(X)| ≤ εs[X , O]k+α for all X ∈ Q+
1 , (4.18)

where F is an s-polynomial with degree m̃ corresponding to (k + α) at O . By

Lemma 4.8, there exists a function h ∈ Ck+2,α
s (Q+

1 ) of the form (4.17) such that

|(F + L0h − ht )(X)| ≤ C∗εs[X , O]k+α for all X ∈ Q+
1 (4.19)

and ‖h‖
Ck+2,α
s (Q+

1 )
≤ C∗ε, where C∗ is a universal constant.

Decompose (u − h) into the sum of v1 and w1 such that

{
v1t = L0v

1 in Q+
1

v1 = u − h on ∂pQ
+
1

and

{
w1
t = L0w

1 + f̃ 1 in Q+
1

w1 = 0 on ∂pQ
+
1 ,

where f̃ 1 = f +L0h−ht . Then, combining (4.18) and (4.19) leads us to the estimate

| f̃ 1(X)| ≤ | f (X) − F(X)| + |(F + L0h − ht )(X)| ≤ (1 + C∗)εs[X , O]k+α

(4.20)

for all X ∈ Q+
1 . By Lemma 2.5, for fixed r ∈ (0, 1), (4.20) gives

|w1(X)| ≤ C‖ f̃ 1‖L∞(Q+
1 ) ≤ (1 + C∗)ε for all X ∈ Q+

r

and hence, we have

|u(X) − v1(X) − h(X)| = |w1(X)| ≤ (1 + C∗)ε for all X ∈ Q+
r .

Choose now ε small enough such that (1 + C∗)ε < rk+2+α . Then,

|u(X) − v1(X) − h(X)| ≤ rk+2+α for all X ∈ Q+
r .
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Let us now define

u2(X) := (u − v1 − h)(r X)

rk+2+α
and f̃ 2(X) := f̃ 1(r X)

rk+α
.

Then, ‖u2‖L∞(Q+
1 ) ≤ 1 and

u2t = L2
0u

2 + f̃ 2 in Q+
1 ,

where

L2
0 = Ai ′ j ′ Di ′ j ′ + 2xγ /2

n Ai ′nDi ′n + xγ
n A

nnDnn + r Bi ′ Di ′ + xγ /2
n r BnDn + r2C−.

Furthermore, (4.20) leads us to the estimate

| f̃ 2(X)| ≤ r−(k+α) (| f (r X) − F(r X)| + |(F + L0h − ht )(r X)|)
≤ (1 + C∗)εs[X , O]k+α

for all X ∈ Q+
1 . That is, the same hypotheses as before are fulfilled. Repeating the

same procedure, we decompose u2 into the sum of v2 and w2 such that

{
v2t = L2

0v
2 in Q+

1

v2 = u2 on ∂pQ
+
1 ,

{
w2
t = L2

0w
2 + f̃ 2 in Q+

1

w2 = 0 on ∂pQ
+
1 ,

and

|u2(X) − v2(X)| ≤ rk+2+α for all X ∈ Q+
r .

By substituting back, we have

|u(X) − h(X) − v1(X) − rk+2+αv2(r−1X)| ≤ r2(k+2+α) for all X ∈ Q+
r2

.

Continuing iteratively, for each integer l ≥ 3, let us define the sequence of functions
{ul} inductively as follows:

ul(X) := (ul−1 − vl−1)(r X)

rk+2+α
and f̃ l(X) := f̃ l−1(r X)

rk+α
.

Then, ‖ul‖L∞(Q+
1 ) ≤ 1 and

ult = Ll
0u

l + f̃ l in Q+
1 ,
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where

Ll
0 = Ai ′ j ′ Di ′ j ′ + 2xγ /2

n Ai ′nDi ′n + xγ
n A

nnDnn + rl−1Bi ′ Di ′

+ xγ /2
n rl−1BnDn + r2(l−1)C−.

Furthermore,

| f̃ l(X)| ≤ (1 + C∗)εs[X , O]k+α for all X ∈ Q+
1 ,

and hence we decompose ul into the sum of vl and wl such that

{
vlt = Ll

0v
l in Q+

1

vl = ul on ∂pQ
+
1 ,

{
wl
t = Ll

0w
l + f̃ l in Q+

1

wl = 0 on ∂pQ
+
1 ,

and

|ul(X) − vl(X)| ≤ rk+2+α for all X ∈ Q+
r .

By substituting back, we have

∣∣∣∣∣u(X) − h(X) −
l∑

i=1

r (i−1)(k+2+α)vi (r−i+1X)

∣∣∣∣∣ ≤ rl(k+2+α) for all X ∈ Q+
rl

.

(4.21)

Since k + 1 + α − 2
2−γ

/∈ N0, so we can choose N ∈ N0 such that

k + 1 + α − 2

2 − γ
< N < k + 2 + α − 2

2 − γ
.

By Lemma 4.7 and (4.16), for each l ∈ N, there exists an s-polynomial

pl(X) =
∑

|β|+i+2 j+ 2
2−γ

<k+2+α

Aβi j
l x ′βx1+

2−γ
2 i

n t j

of degree (N + 2
2−γ

) at O such that

|vl(X) − pl(X)| ≤ Cs[X , O]N+1+ 2
2−γ for all X ∈ Q+

1 , (4.22)
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where C > 0 is a universal constant. Combining (4.21) and (4.22) leads us to the
estimate

∣∣∣∣∣u(X) − h(X) −
l∑

i=1

r (i−1)(k+2+α) pi (r−i+1X)

∣∣∣∣∣

≤ rl(k+2+α) + C
l∑

i=1

r (i−1)(k+2+α)s[r−i+1X , O]N+1+ 2
2−γ

≤ rl(k+2+α) + Crl(N+1+ 2
2−γ

)
l∑

i=1

r−(i−1)(N+ 2
2−γ

−k−1−α)

= rl(k+2+α) + C(r (l+1)(N+ 2
2−γ

−k−1−α) − r N+ 2
2−γ

−k−1−α
)

r N+ 2
2−γ

−k−1−α − 1
rl(k+2+α)

≤ Crl(k+2+α) (4.23)

for all X ∈ Q+
rl
. Now put

Pl(X) =
l∑

i=1

r (i−1)(k+2+α) pi (r−i+1X).

Then, (4.23) gives

|Pl(X) − Pl−1(X)| ≤
∣∣∣u(X) − h(X) − Pl(X)

∣∣∣+
∣∣∣u(X) − h(X) − Pl−1(X)

∣∣∣

≤ Crl(k+2+α) (4.24)

for all X ∈ Q+
rl
. Consider the rescaling s-polynomial

P̃(X) := Pl(rl X) − Pl−1(rl X)

= r (l−1)(k+2+α)
∑

|β|+i+2 j+ 2
2−γ

<k+2+α

r |β|+i+2 j+ 2
2−γ Aβi j

l x ′βx1+
2−γ
2 i

n t j .

From (4.24), we know that ‖P̃‖L∞(Q+
1 ) ≤ Crl(k+2+α). Since the coefficients of s-

polynomial P̃ on Q+
1 are controlled by the L∞ norm, we have

|Aβi j
l | ≤ Crk+2+α

r |β|+i+2 j+ 2
2−γ
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for all β ∈ N
n−1
0 and i, j ∈ N0 with |β| + i + 2 j + 2

2−γ
< k + 2 + α. It follows that

Pl converges uniformly to an s-polynomial

P∞(X) =
∑

|β|+i+2 j+ 2
2−γ

<k+2+α

Bβi j x ′βx1+
2−γ
2 i

n t j

of degree (N + 2
2−γ

) at O such that

|u(X) − h(X) − P∞(X)| ≤ Cs[X , O]k+2+α for all X ∈ Q+
1 .

Finally, as in Lemma 4.7, if h is approximated with an s-polynomial, the desired
s-polynomial p can be obtained. ��

5 Generalized Schauder theory

5.1 C2+˛
s -Regularity

In this section, we establish C2+α
s -regularity of solutions for (1.1). Since generalized

Schauder theory approximates coefficients using s-polynomials rather than constants,
boundaryC1,α-regularity and higher regularity for equations with s-polynomials must
first be obtained. To prove these, we first need C2+α

s -regularity of solutions for (1.1).
For this section only, L0 is considered the operator with the following constant

coefficients

Ai j = ai j (O), Bi = bi (O), C− = c(O).

Theorem 5.1 Let 0 < α < 1 with 2 + α /∈ D, and assume

ai j , bi , c, f ∈ Cα
s (Q+

1 ) (i, j = 1, 2, . . . , n).

Suppose u ∈ C2(Q+
1 ) ∩ C(Q+

1 ) is a solution of (1.1) satisfying u = 0 on {X ∈
∂pQ

+
1 : xn = 0}. Then u ∈ C2+α

s (Q+
1/2) and

‖u‖
C2+α
s (Q+

1/2)
≤ C

(
‖u‖L∞(Q+

1 ) + ‖ f ‖
Cα
s (Q+

1 )

)
,

where C is a positive constant depending only on n, λ, �, γ , α, ‖ai j‖
Cα
s (Q+

1 )
,

‖bi‖
Cα
s (Q+

1 )
, and ‖c‖

Cα
s (Q+

1 )
.
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Lemma 5.2 (Approximation lemma) Let 0 < α < min{ 2
2−γ

, 1}, and assume f ∈
L∞(Q+

1 ). Suppose u ∈ C2(Q+
1 ) ∩ C(Q+

1 ) is a solution of (1.1) satisfying u = 0 on
{X ∈ ∂pQ

+
1 : xn = 0} with ‖u‖L∞(Q+

1 ) ≤ 1. If for any ε > 0,

‖ai j − Ai j‖L∞(Q+
1 ) ≤ ε, ‖bi − Bi‖L∞(Q+

1 ) ≤ ε, ‖c − C−‖L∞(Q+
1 ) ≤ ε,

then there exists a solution h ∈ C∞(Q+
3/4) ∩ Cα

s (Q+
3/4) of

{
ht = L0h in Q+

3/4

h = u on ∂pQ
+
3/4

such that

‖u − h‖L∞(Q+
1/2)

≤ C
(
εθ + ‖ f ‖L∞(Q+

1 )

)
,

where C > 0 and θ ∈ (0, 1) are universal constants.

Proof By Corollary 3.2 and Corollary 3.4, there exists a unique bounded solution

h ∈ C2(Q+
3/4) ∩ Cα

s (Q+
3/4) of

{
ht = L0h in Q+

3/4

h = u on ∂pQ
+
3/4,

and

‖h‖
Cα
s (Q+

3/4)
≤ C

(
‖h‖L∞(Q+

3/4)
+ ‖u‖

Cα
s (Q+

3/4)

)
≤ C

(
2 + ‖ f ‖L∞(Q+

1 )

)
.

For X ∈ ∂pQ
+
3/4−δ , we can choose Y ∈ ∂pQ

+
3/4 such that s[X ,Y ] = δ and hence we

have

|u(X) − h(X)| ≤ ‖u − h‖
Cα
s (Q+

3/4)
s[X ,Y ]α ≤ Cδα

(
2 + ‖ f ‖L∞(Q+

1 )

)
.

By Lemma 2.5 and Theorem 4.1, we have for any δ ∈ (0, 1/4)

‖h‖
C2,α
s (Q+

3/4−δ)
≤ Cδ−2−α‖h‖L∞(Q+

3/4)
≤ Cδ−2−α‖u‖L∞(Q+

3/4)
≤ Cδ−2−α.

Let v = u − h, then

vt = Lv + f̃ in Q+
3/4−δ,

123



T. Kim

where

f̃ = (ai
′ j ′ − Ai ′ j ′)hi ′ j ′ + 2xγ /2

n (ai
′n − Ai ′n)hi ′n + xγ

n (ann − Ann)hnn

+ (bi
′ − Bi ′)hi ′ + xγ /2

n (bn − Bn)hn + (c − C−)h + f .

By Lemma 2.5 and Lemma 2.6 with scaling argument,

‖u − h‖L∞(Q+
3/4−δ)

≤
⎧
⎨

⎩
C
(
‖u − h‖L∞(∂pQ

+
3/4−δ)

+ ‖ f̃ ‖L∞(Q+
3/4−δ)

)
(0 < γ < 1)

C
(
‖u − h‖L∞(∂pQ

+
3/4−δ)

+ ‖x−γ
n f̃ ‖L∞(Q+

3/4−δ)

)
(γ < 0)

≤ C
(
δα(2 + ‖ f ‖L∞(Q+

1 )) + εδ−2−α + ‖ f ‖L∞(Q+
1 )

)
.

Take δ = ε
1

2(2+α) and θ = α
2(2+α)

, we conclude that

‖u − h‖L∞(Q+
3/4−δ)

≤ C
(
εθ + ‖ f ‖L∞(Q+

1 )

)
.

��
Lemma 5.3 Let 0 < α < min{ 2

2−γ
, 1} with 2 + α /∈ D, and assume

ai j , bi , c, f ∈ Cα
s (Q+

1 ) (i, j = 1, 2, . . . , n).

Suppose u ∈ C2(Q+
1 ) ∩ C(Q+

1 ) is a solution of (1.1) satisfying u = 0 on {X ∈
∂pQ

+
1 : xn = 0}. Then there exists an s-polynomial p of degree m corresponding to

κ := 2 + α at O such that

|u(X) − p(X)| ≤ C
(
‖u‖L∞(Q+

1 ) + ‖ f ‖
Cα
s (Q+

1 )

)
s[X , O]2+α for all X ∈ Q+

1 ,

where C is a positive constant depending only on n, λ, �, γ , α, ‖ai j‖
Cα
s (Q+

1 )
,

‖bi‖
Cα
s (Q+

1 )
, and ‖c‖

Cα
s (Q+

1 )
.

Proof By considering u/(‖u‖L∞(Q+
1 ) + ε−1‖ f ‖

Cα
s (Q+

1 )
) for sufficiently small ε > 0,

we may assume that ‖u‖L∞(Q+
1 ) ≤ 1 and ‖ f ‖

Cα
s (Q+

1 )
≤ ε. By scaling we also assume

that [ai j ]
Cα
s (Q+

1 )
≤ ε, [bi ]

Cα
s (Q+

1 )
≤ ε, [c]

Cα
s (Q+

1 )
≤ ε, and by the Hölder continuity of

coefficients, we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|ai j (X) − Ai j | ≤ [ai j ]
Cα
s (Q+

1 )
s[X , O]α ≤ ε

|bi (X) − Bi | ≤ [bi ]
Cα
s (Q+

1 )
s[X , O]α ≤ ε

|c(X) − C−| ≤ [c]
Cα
s (Q+

1 )
s[X , O]α ≤ ε

(5.1)
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for all X ∈ Q+
1 . By considering

ũ(X) = u(X) +

⎧
⎪⎪⎨

⎪⎪⎩

f (O)

(2 − γ )(1 − γ )ann(O)
x2−γ
n (γ < 1)

f (O)

ann(O)
xn log xn (γ = 1),

we may assume f (O) = 0. By Lemma 5.2, there exists a bounded solutions h1 ∈
C∞(Q+

3/4) ∩ Cα
s (Q+

3/4) of

{
h1t = L0h

1 in Q+
3/4

h1 = u on ∂pQ
+
3/4

such that

‖u − h1‖L∞(Q+
1/2)

≤ C
(
εθ + ‖ f ‖L∞(Q+

1 )

)
≤ 2Cεθ .

By Theorem 4.1, h1 ∈ C2+α
s (Q+

1/2) and

‖h1‖
C2+α
s (Q+

1/2)
≤ C, (5.2)

where C is a universal constant. Let r ∈ (0, 1/2) be a fixed number and choose now
ε small enough such that 2Cεθ < r2+α . Then,

‖u − h1‖L∞(Q+
r ) ≤ r2+α. (5.3)

Let us now define

u2(X) := (u − h1)(r X)

r2+α
and f̃ 2(X) := ( f + Lh1 − L0h1)(r X)

rα
.

Then, ‖u2‖L∞(Q+
1 ) ≤ 1 and

u2t = L2u2 + f̃ 2 in Q+
1 ,

where

L2 = ai
′ j ′(r X)Di ′ j ′ + 2xγ /2

n ai
′n(r X)Di ′n + xγ

n a
nn(r X)Dnn

+ rbi
′
(r X)Di ′ + r xγ /2

n bn(r X)Dn + r2c(r X).

From (5.1), (5.2), and (5.3), we can see that the same hypotheses as before are ful-
filled. Replacing the decomposition of solutions with Lemma 5.2, as in the proof of
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Lemma 4.9, we can show that there exists an s-polynomial p∞ of degree m corre-
sponding to (2 + α) at O such that

|u(X) − p∞(X)| ≤ Cs[X , O]2+α for all X ∈ Q+
1 . ��

Satisfying the assumptions of Lemma 5.3, we know that u ∈ C α̃
s (Q+

1/2) for any

0 < α̃ < 1. Applying the approximation lemma again to α̃, we have u ∈ C2+α̃
s (Q+

1/2)

for any 0 < α̃ < 1 with 2 + α̃ /∈ D.

5.2 Higher regularity of solutions for equations with s-polynomial coefficients

In the previous section, C2+α
s -regularity can be obtained by freezing coefficients

method. However due to the degeneracy/singular order of (1.1), higher regularity
cannot be obtained inductively like the classical bootstrap argument. We solve this
problem by considering freezing coefficients by s-polynomial. In this section, we
consider equations of the form

ut = L pu + f , (5.4)

where the operator L p is given as

L p = Pi ′ j ′(X)Di ′ j ′ + 2xγ /2
n Pi ′n(X)Di ′n + xγ

n P
nn(X)Dnn

+ Qi ′(X)Di ′ + xγ /2
n Qn(X)Dn + R(X)

and the coefficients Pi j are s-polynomials at O satisfying the following condition

λ|ξ |2 ≤ Pi j (X)ξiξ j ≤ �|ξ |2 for any X ∈ Q+
1 , ξ ∈ R

n

and the coefficients Q1, . . . , Qn, R are s-polynomials at O satisfying

n∑

i=1

‖Qi‖L∞(Q+
1 ) + ‖R‖L∞(Q+

1 ) ≤ � and R(X) < 0 for any X ∈ Q+
1 .

Lemma 5.4 Let k ∈ N0, 0 < α < 1 and assume that the coefficients Pi j , Qi , and
R are s-polynomials at O of degree μ corresponding to (k + α) and the function

f ∈ Ck,α
s (Q+

1 ) is of the form

f (X) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑

2i
2−γ

+ j<k+α

i, j∈N0

f̃ i j (x ′, t)xi+
2−γ
2 j

n (γ < 1)

∑

i≤ j<k+α
i, j∈N0

f̃ i j (x ′, t)(log xn)i x j/2
n (γ = 1),
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where each f̃ i j is a smooth function for (x ′, t). Then there is a function h ∈
Ck+2,α
s (Q+

1 ) of the form

h(X) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑

2i
2−γ

+ j<k+α

i, j∈N0

h̃i j (x ′, t)xi+
2−γ
2 ( j+2)

n (γ < 1)

∑

i≤ j<k+α
i, j∈N0

h̃i j (x ′, t)(log xn)i+1x ( j+2)/2
n (γ = 1)

(5.5)

such that

|(ht − L ph − f )(X)| ≤ C‖ f ‖
Ck,α
s (Q+

1 )
x

2−γ
2 (k+α)

n for all X ∈ Q+
1

and

‖h‖
Ck+2,α
s (Q+

1 )
≤ C‖ f ‖

Ck,α
s (Q+

1 )
,

where each h̃i j is a smooth function for (x ′, t) and C depends on n, γ , k, α,
‖Pi j‖

Ck,α
s (Q+

1 )
, ‖Qi‖

Ck,α
s (Q+

1 )
, and ‖R‖

Ck,α
s (Q+

1 )
.

Proof If f ≡ 0, obviously the function we are looking for is h ≡ 0. Thus, it is
sufficient to consider only the case f ≡ 0, and ‖ f ‖

Ck,α
s (Q+

1 )
= 1 can be assumed. The

desired function h can be obtained by comparing (ht − L ph) and f by terms for xn of
both sides. If the operator (∂t − L p) is applied to (5.5), then (ht − L ph) is expressed
as follows:

(ht − L ph)(X) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑

2i
2−γ

+ j<k+α+μ+2
i, j∈N0

gi j (x ′, t)xi+
2−γ
2 j

n (γ < 1)

∑

i≤ j<k+α+μ+2
i, j∈N0

gi j (x ′, t)(log xn)i x j/2
n (γ = 1),

where each gi j is an unknown smooth function
We will find h̃i j inductively from the process of tracing gi j . Let us introduce some

symbols for computational convenience. We add an auxiliary spacial dimension like

x∗ = (x1, . . . , xn, z) ∈ R
n+1 and X∗ = (x∗, t).
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Also, we define a modified version of the function u and the operator L p as follows:
The modified function u∗ of u is given by the expression

u∗(X∗) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

i, j∈N0

ũi j (x ′, t)zi x
2−γ
2 j

n (γ < 1)

∑

i, j∈N0

ũi j (x ′, t)zi x j/2
n (γ = 1)

for u(X) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

i, j∈N0

ũi j (x ′, t)xi+
2−γ
2 j

n (γ < 1)

∑

i, j∈N0

ũi j (x ′, t)(log xn)i x j/2
n (γ = 1)

and the modified operator L∗
p of L p is given by the expression

L∗
p = Pi ′ j ′ ∗Di ′ j ′ + 2Pi ′n∗

Di ′ D̄
∗
n + Pnn∗ D̄∗

nn + Qi ′ ∗Di ′ + Qn∗ D̄∗
n + R∗,

where

D̄∗
n =

⎧
⎨

⎩
xγ /2
n Dn + zx

− 2−γ
2

n ∂z (γ < 1)

x1/2n Dn + x−1/2
n ∂z (γ = 1),

D̄∗
nn =

{
xγ
n D

2
n + 2zxγ−1

n Dn∂z + z2xγ−2
n ∂2z (γ < 1)

xnD
2
n + 2Dn∂z + x−1

n ∂2z − x−1
n ∂z (γ = 1).

Then, we can revert the modified version to the original version as follows:

(ut − L pu)(X) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(u∗
t − L∗

pu
∗)(X∗)

∣∣∣∣
z=xn

(γ < 1)

(u∗
t − L∗

pu
∗)(X∗)

∣∣∣∣
z=log xn

(γ = 1),

u(X) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u∗(X∗)
∣∣∣∣
z=xn

(γ < 1)

u∗(X∗)
∣∣∣∣
z=log xn

(γ = 1).

It is enough to find h̃i j in the modified version. For arbitrary fixed integers l,m ∈ N0,
the function glm in (h∗

t − L∗
ph

∗) is the sum of the coefficient functions of

zl x
2−γ
2 m

n (5.6)
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in the functions obtained by expanding the following operators

(h∗
t − L∗

ph
∗)(X∗) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑

2i
2−γ

+ j<k+α

i, j∈N0

(∂t − L∗
p)

(
h̃i j (x ′, t)zi x

2−γ
2 ( j+2)

n

)
(γ < 1)

∑

i≤ j<k+α
i, j∈N0

(∂t − L∗
p)
(
h̃i j (x ′, t)zi+1x ( j+2)/2

n

)
(γ = 1).

(5.7)

We consider several cases according to the range of i, j . The first case is when j > m.
Then, in the expansion of (5.7), each monomial for (z, xn) has the order of xn greater
thanm. Thus, the expansion of (5.7) cannot have the monomial for (z, xn) of the form
(5.6) and hence the coefficient function of (5.6) in (5.7) is identically zero.

The second case is when j = m. For γ < 1, the expansion of (5.7) cannot have
the monomial for (z, xn) of the form (5.6) if i > l. Also, h̃lm will be obtained by
inductively finding functions h̃0m , h̃1m , h̃2m , . . ., h̃(l−1)m , it is sufficient to consider
only the case i = l for now. In this case, in the expansion of (5.7), the coefficient
function for the monomial of the form (5.6) can be obtained as follows:

−Pnn∗
(x ′, 0, 0, t)D̄∗

nn

(
h̃lm(x ′, t)zl x

2−γ
2 (m+2)

n

)
= Slm(x ′, t)h̃lm(x ′, t)zl x

2−γ
2 m

n ,

where

Slm(x ′, t) = −
(
l + 2 − γ

2
(m + 2)

)(
l + 2 − γ

2
(m + 2) − 1

)
Pnn(x ′, 0, t).

For γ = 1, we will show that the functions h̃0m , h̃1m , h̃2m , . . ., h̃mm are solutions of
some system of equations. For l = 0, 1, . . . ,m and m = 0, in the expansion of (5.7),
the coefficient function for the monomial of the form (5.6) can be obtained as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− Pnn∗
(x ′, 0, 0, t)

[
(m + 1)h̃0m + 2h̃1m

]
xm/2
n (l = 0)

− Pnn∗
(x ′, 0, 0, t)

[
1

4
m(m + 2)h̃(l−1)m

+(l + 1)(m + 1)h̃lm + (l + 1)(l + 2)h̃(l+1)m
]
zl xm/2

n (1 ≤ l < m)

− Pnn∗
(x ′, 0, 0, t)

[
1

4
m(m + 2)h̃(m−1)m + (m + 1)2h̃mm

]
zmxm/2

n (l = m).

(5.8)
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The last case is when j < m. Since we will find h̃lm inductively, it may be assumed
that all of the functions

⎧
⎪⎨

⎪⎩

h̃im (γ < 1, i < l)

h̃i j (γ < 1, j < m)

h̃i j (γ = 1, j < m)

(5.9)

have been found.
Now, we consider a truncated function h∗

(lm) of h
∗ as follows:

h∗
(lm)(X

∗)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑

2i
2−γ

+m<k+α

i<l

h̃im(x ′, t)zi x
2−γ
2 (m+2)

n +
∑

2i
2−γ

+ j<k+α

j<m

h̃i j (x ′, t)zi x
2−γ
2 ( j+2)

n (γ < 1)

∑

i≤ j<k+α
j<m

h̃i j (x ′, t)zi+1x ( j+2)/2
n (γ = 1).

As in finding Taylor polynomials, we can find the coefficient function of (5.6) in
(∂t − L∗

p)h
∗
(lm) as

ψ lm(x ′, t) := 1
(
2−γ
2

)m
l!m!

∂ lz D̄
m
n (∂t − L∗

p)h
∗
(lm)(X

∗)
∣∣∣
(z,xn)=(0,0)

,

where D̄n := xγ /2
n Dn . Since ψ lm is expressed by the functions of (5.9), we already

know it by the induction assumption.
For γ < 1, we can represent the coefficient function glm(x ′, t) of (5.6) in (h∗

t −
L∗
ph

∗) as

glm(x ′, t) = Slm(x ′, t)h̃lm(x ′, t) + ψ lm(x ′, t).

Now, taking h̃lm such that glm ≡ f̃ lm , we can determine h̃lm inductively using the
following formula:

h̃lm(x ′, t) = f̃ lm(x ′, t) − ψ lm(x ′, t)
Slm(x ′, t)

. (5.10)

Since Slm is nonvanishing smooth function, h̃lm is also smooth function. Furthermore,
we can compute

h̃00(x ′, t) = f̃ 00(x ′, t)
(2 − γ )(1 − γ )Pnn∗(x ′, 0, 0, t)
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first and apply the recurrence relation (5.10) to index i , we have h̃10, h̃20, . . ., h̃l0,
. . .. Next, for each i = 1, 2, . . . , l, applying the recurrence relation (5.10) to index j
again, we have all of the following functions sequentially:

h̃00, h̃10, h̃20, . . . h̃l0, . . .

h̃01, h̃11, h̃21, . . . h̃l1, . . .
...

...
...

. . .
...

h̃0m, h̃1m, h̃2m, . . . h̃lm .

Since l,m were arbitrary, we found all h̃i j .
On the other hand, by using (5.8) for γ = 1, we can represent the coefficient

function g0m(x ′, t), g1m(x ′, t), . . ., gmm(x ′, t) of (5.6) in (h∗
t − L∗

ph
∗) as

⎛

⎜⎜⎜⎜⎜⎝

g0m

g1m

g2m

...

gmm

⎞

⎟⎟⎟⎟⎟⎠
= −Pnn∗

(x ′, 0, 0, t)Tm

⎛

⎜⎜⎜⎜⎜⎝

h̃0m

h̃1m

h̃2m

...

h̃mm

⎞

⎟⎟⎟⎟⎟⎠
+

⎛

⎜⎜⎜⎜⎜⎝

ψ0m

ψ1m

ψ2m

...

ψmm

⎞

⎟⎟⎟⎟⎟⎠
,

where the tridiagonal matrix Tm is given by

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

m + 1 1 · 2
1
4m(m + 2) 2(m + 1) 2 · 3

1
4m(m + 2) 3(m + 1) 3 · 4

. . .
. . .

. . .
1
4m(m + 2) m(m + 1) m(m + 1)

1
4m(m + 2) (m + 1)2

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

Since the tridiagonal matrix Tm is invertible, we can determine h̃0m , h̃1m , . . ., h̃mm

inductively using the following formula

⎛

⎜⎜⎜⎜⎜⎝

h̃0m

h̃1m

h̃2m

...

h̃mm

⎞

⎟⎟⎟⎟⎟⎠
= − 1

Pnn∗(x ′, 0, 0, t)
(Tm)−1

⎛

⎜⎜⎜⎜⎜⎝

f̃ 0m − ψ0m

f̃ 1m − ψ1m

f̃ 2m − ψ2m

...

f̃ mm − ψmm

⎞

⎟⎟⎟⎟⎟⎠
, (5.11)

whenwe take gim ≡ f̃ im (i = 0, 1, 2, . . . ,m). Since Pnn∗(x ′, 0, 0, t) is nonvanishing
standard polynomial, h̃0m , h̃1m , . . ., h̃mm are also smooth functions. Furthermore, we
can compute

h̃00(x ′, t) = f̃ 00(x ′, t)
Pnn∗(x ′, 0, 0, t)
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first and apply the recurrence relation (5.11), we have h̃01 and h̃11. Next, if we repeat
this process, we can find the functions of each row of the following array from all the
functions obtained in the previous step.

h̃02, h̃12, h̃22,

h̃03, h̃13, h̃23, h̃33,

h̃04, h̃14, h̃24, h̃34, h̃44,

...

h̃0m, h̃1m, h̃2m, h̃3m, h̃4m, . . . , h̃mm .

Since l,m were arbitrary, we found all h̃i j .
Finally, In (5.10) and (5.11), the function h∗ is constructed so that all terms of f ∗

are deleted in (h∗
t − L∗

ph
∗ − f ∗). Thus, we have

(ht − L ph − f )(X) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑

2i
2−γ

+ j≥k+α

i, j∈N0

gi j (x ′, t)xi+
2−γ
2 j

n (γ < 1)

∑

i≤ j, j>k+α
i, j∈N0

gi j (x ′, t)(log xn)i x j/2
n (γ = 1).

This implies that

|(ht − L ph − f )(X)| ≤ Cx
2−γ
2 (k+α)

n for all X ∈ Q+
1

and ‖h‖
Ck+2,α
s (Q+

1 )
≤ C , whereC depends on n, γ , k, α, ‖Pi j‖

Ck,α
s (Q+

1 )
, ‖Qi‖

Ck,α
s (Q+

1 )
,

and ‖R‖
Ck,α
s (Q+

1 )
. ��

Lemma 5.5 Let u ∈ C∞(Q+
1 )∩C(Q+

1 ) be a solution of (5.4) satisfying ‖u‖L∞(Q+
1 ) ≤

1 and u = 0 on {X ∈ ∂pQ
+
1 : xn = 0}. If for each i, j, k = 1, 2, . . . , n − 1,

‖ f ‖L∞(Q+
1 ) ≤ 1,

‖ fi jk‖L∞(Q+
1 ) ≤ 1,

‖ fi‖L∞(Q+
1 ) ≤ 1,

‖ ft‖L∞(Q+
1 ) ≤ 1,

‖ fi j‖L∞(Q+
1 ) ≤ 1,

‖ fkt‖L∞(Q+
1 ) ≤ 1,

and

{ | f (x, t)| ≤ Mxθ
n for all (x, t) ∈ Q+

1

| fk(x, t)| ≤ Mxθ
n for all (x, t) ∈ Q+

1
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for some θ ≥ γ /2 and M > 0, then un is well-defined on Q+
1/2 and

|un(x ′, xn, t) − un(x
′, yn, t)| ≤

{
C |xn − yn|1−γ /2 (0 < γ ≤ 1)

C |xn − yn| (γ ≤ 0)

for all (x ′, xn, t), (x ′, yn, t) ∈ Q+
1/2, where C is a positive constant depending only

on n, λ, �, γ , k, α, ‖Dβ

x ′∂kt P
i j‖L∞(Q+

1 ), ‖Dβ

x ′∂kt Q
i‖L∞(Q+

1 ), and ‖Dβ

x ′∂kt R‖L∞(Q+
1 )

(β ∈ N
n−1
0 , k ∈ N0, |β| + 2k ≤ 3).

Proof Differentiate both sides of (5.4) with respect to xk (k = n), then

{
vt = L pv + F in Q+

3/4

v = 0 on {X ∈ ∂pQ
+
1 : xn = 0}, (5.12)

where v = uk and

F = Pi ′ j ′
k ui ′ j ′ + 2xγ /2

n Pi ′n
k ui ′n + xγ

n P
nn
k unn + Qi ′

k ui ′ + xγ /2
n Qn

kun + Rku + fk .

By Theorem 5.1, v is bounded solution of (5.12) with bounded forcing term F , we
can apply Lemma 3.1 to v, we have

|uk(x, t)| = |v(x, t)| ≤
{
Cxn (γ < 1)

−Cxn log xn (γ = 1)

for all (x, t) ∈ Q+
1/2. We can obtain the same inequality not only for uk but also for

ut and ui j (i, j = 1, 2, . . . , n − 1). An integration by parts yields

∣∣∣∣
∫ z

0
x−γ /2
n Pi ′n(x, t)ui ′n(x, t) dxn

∣∣∣∣

≤
∣∣∣z−γ /2Pi ′n(x ′, z, t)ui ′(x ′, z, t)

∣∣∣+ C
∫ z

0
x−γ /2−1
n |ui ′(x, t)| dxn

≤
{
Cz1−γ /2 (γ < 1)

− C
√
z log z (γ = 1)

(5.13)

for all (x ′, z, t) ∈ Q+
1/2. Similarly, we also have

∣∣∣∣
∫ z

0
x−γ /2
n Qn(x, t)un(x, t) dxn

∣∣∣∣ ≤
{
Cz1−γ /2 (γ < 1)

− C
√
z log z (γ = 1)

(5.14)
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for all (x ′, z, t) ∈ Q+
1/2. Combining (5.4), (5.13), and (5.14) gives

∣∣∣∣
∫ z

0
unn dxn

∣∣∣∣ ≤
1

λ

(∣∣∣∣
∫ z

0
x−γ
n
(
ut − Pi ′ j ′ui ′ j ′ − Qi ′ui ′ − Ru

)
dxn

∣∣∣∣

+
∣∣∣∣
∫ z

0
2x−γ /2

n Pi ′nui ′n dxn

∣∣∣∣+
∣∣∣∣
∫ z

0
x−γ /2
n Qnun dxn

∣∣∣∣+
∣∣∣∣
∫ z

0
x−γ
n f dxn

∣∣∣∣

)

≤
{
Cz1−γ /2 (γ < 1)

− C
√
z log z (γ = 1)

(5.15)

for all (x ′, z, t) ∈ Q+
1/2 and hence for ε < 2− 2

2−γ ,

|un(x ′, ε, t)| =
∣∣∣∣∣∣
un(x

′, 2− 2
2−γ , t) −

∫ 2
− 2
2−γ

0
unn(x, t) dxn +

∫ ε

0
unn(x, t) dxn

∣∣∣∣∣∣

≤
{

|un(x ′, 2− 2
2−γ , t)| + C(2−1 + ε1−γ /2) (γ < 1)

|un(x ′, 1/4, t)| + C(log 2 − √
ε log ε) (γ = 1).

Therefore, we have |un| ≤ C in Q+
1/2. This implies that even though γ = 1, we have

the following Lipschitz estimate

|u(x, t)| ≤ Cxn for all (x, t) ∈ Q+
1/2.

Furthermore v = uk (k = n) satisfies assumptions of Lemma 5.5 again, we have
|ukn| ≤ C in Q+

1/2. Thus, (5.15) gives

|un(x ′, xn, t) − un(x
′, yn, t)|

≤ C(|x2−γ
n − y2−γ

n | + |x1−γ /2
n − y1−γ /2

n | + |xθ−γ+1
n − yθ−γ+1

n |)

≤
{
C |xn − yn|1−γ /2 (0 < γ ≤ 1)

C |xn − yn| (γ ≤ 0)
(5.16)

for all xn, yn ∈ (0, 2− 2
2−γ ).

As in the proof of Lemma 4.5, we can extend (5.16) on Q+
1/2. ��

Lemma 5.6 Let k ∈ N0, 0 < α < 1, and u ∈ C∞(Q+
1 ) ∩ C(Q+

1 ) be a solution of
(5.4) with f ≡ 0. If the coefficients Pi j , Qi , and R are s-polynomials at O of degree
μ corresponding to κ = k+α, ‖u‖L∞(Q+

1 ) ≤ 1, and u = 0 on {X ∈ ∂pQ
+
1 : xn = 0},
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then for any M, N ∈ N, there exists a function v of the form

v(X) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

un(x
′, 0, t)xn +

∑

2i
2−γ

+ j< 2M
2−γ

+N
i, j∈N

ṽi j (x ′, t)xi+
2−γ
2 j

n if (M, N ) = (1, 1)

un(x
′, 0, t)xn if (M, N ) = (1, 1)

(5.17)

such that

|(vt − L pv)(X)| ≤ Cx
M+ 2−γ

2 (N−2)
n for all X ∈ Q+

1/2

and

|u(X) − v(X)| ≤ Cx
M+ 2−γ

2 N
n for all X ∈ Q+

1/2,

where each ṽi j is a smooth function for (x ′, t) and C depends on n, γ , α, M, N,
‖Pi j‖

Ck,α
s (Q+

1 )
, ‖Qi‖

Ck,α
s (Q+

1 )
, and ‖R‖

Ck,α
s (Q+

1 )
.

Proof For the modified function v∗ of v and the modified operator L∗
p of L p, the

function (v∗
t − L∗

pv
∗) is expressed as follows:

(v∗
t − L∗

pv
∗)(X∗) =

∑

2i
2−γ

+ j< 2M
2−γ

+N+μ+2
i, j∈N

gi j (x ′, t)zi x
2−γ
2 ( j−2)

n , (5.18)

where each gi j is an unknown smooth function.
For arbitrary fixed integers l,m ∈ N, the function glm in (∂t − L∗

p)v
∗ is the sum of

the coefficient functions of

zl x
2−γ
2 (m−2)

n (5.19)

in the functions obtained by expanding the following operators

(v∗
t − L∗

pv
∗)(X∗) = (∂t − L∗

p)
(
un(x

′, 0, t)z
)

+
∑

2i
2−γ

+ j< 2M
2−γ

+N
i, j∈N

(∂t − L∗
p)

(
ṽi j (x ′, t)zi x

2−γ
2 j

n

)
. (5.20)

Since we will find ṽi j in the same way as Lemma 5.4, it is sufficient to consider only
the case (i, j) = (l,m) for now. In this case, in the expansion of (5.20), the coefficient
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function for the monomial of the form (5.19) can be obtained as follows:

−Pnn∗
(x ′, 0, 0, t)D̄∗

nn

(
ṽlm(x ′, t)zl x

2−γ
2 m

n

)
= Slm(x ′, t)ṽlm(x ′, t)zl x

2−γ
2 (m−2)

n ,

where

Slm(x ′, t) = −
(
l + 2 − γ

2
m
)(

l + 2 − γ

2
m − 1

)
Pnn∗

(x ′, 0, 0, t).

Now, we consider a truncated function v∗
(lm) of v∗ as follows:

v∗
(lm)(X

∗) = un(x
′, 0, t)z +

∑

2i
2−γ

+m< 2M
2−γ

+N
1≤i<l

ṽim(x ′, t)zi x
2−γ
2 m

n

+
∑

2i
2−γ

+ j< 2M
2−γ

+N
i∈N, 1≤ j<m

ṽi j (x ′, t)zi x
2−γ
2 j

n .

If j = 1, the order of xn is negative in (5.18), so considering x
2−γ
2

n (∂t − L∗
p)v

∗
(lm), we

can find the coefficient function of (5.19) in x
2−γ
2

n (∂t − L∗
p)v

∗
(lm) as

ψ lm(x ′, t) := 1
(
2−γ
2

)m−1
l!(m − 1)!

∂ lz D̄
m−1
n

(
x

2−γ
2

n (∂t − L∗
p)v

∗
(lm)(X

∗)
) ∣∣∣∣

(z,xn)=(0,0)
,

where D̄n := xγ /2
n Dn . Thus, we can represent the function glm(x ′, t) in (∂t − L∗

p)v
∗

as

glm(x ′, t) = Slm(x ′, t)ṽlm(x ′, t) + ψ lm(x ′, t).

Now, taking ṽlm such that glm ≡ 0, we can determine ṽlm inductively using the
following formula:

ṽlm(x ′, t) = −ψ lm(x ′, t)
Slm(x ′, t)

. (5.21)

Since l,m were arbitrary, we found all ṽi j .
Using the recurrence relation (5.21), for any M, N ∈ N, we can construct the

function v∗ such that all monomials of the form

gi j (x ′, t)zi x
2−γ
2 ( j−2)

n

(
2i

2 − γ
+ j <

2M

2 − γ
+ N

)
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are deleted in (v∗
t − L∗

pv
∗). Thus, we have

(vt − L pv)(X) =
∑

2i
2−γ

+ j≥ 2M
2−γ

+N
i, j∈N

gi j (x ′, t)xi+
2−γ
2 ( j−2)

n .

This implies that

|Dβ

(x ′,t)(vt − L pv)(X)| ≤ Cx
M+ 2−γ

2 (N−2)
n (5.22)

for all X ∈ Q+
3/4 and β ∈ N

n
0, where C depends on n, γ , α, β, M , N , ‖Pi j‖

Ck,α
s (Q+

1 )
,

‖Qi‖
Ck,α
s (Q+

1 )
, and ‖R‖

Ck,α
s (Q+

1 )
.

We now claim that for any i1, i2 ∈ Nwith i1 + 2−γ
2 i2 ≤ M + 2−γ

2 N , the following
inequalities hold:

|Dβ

(x ′,t)(u − v)(X)| ≤ Cx
i1+ 2−γ

2 i2
n and |Dβ

(x ′,t)(un − vn)(X)| ≤ Cx
i1−1+ 2−γ

2 i2
n

(5.23)

for all X ∈ Q+
1/2 and β ∈ N

n
0. The proof is by induction on M and N . Suppose

first (i1, i2) = (1, 1). From Theorem 5.1 and Lemma 5.5, Remark 4.6 also holds for
equations with s-polynomial coefficients. Thus, by Remark 4.6 and (5.17), we know
that

|Dβ

(x ′,t)(u − v)(X)| ≤ Cxn and |Dβ

(x ′,t)(un − vn)(X)| ≤ C

for all X ∈ Q+
1/2 and β ∈ N

n
0. The operator x

γ
n PnnDnn can be represented as

xγ
n P

nnDnn = ∂t − Pi ′ j ′ Di ′ j ′ − 2xγ /2
n Pi ′nDi ′n

−Qi ′ Di ′ − xγ /2
n QnDn − R − (∂t − L p)

and hence we know that

xγ
n DnnD

β

(x ′,t)(u − v) = Dβ

(x ′,t)
(
xγ
n Dnn(u − v)

)

= Dβ

(x ′,t)

(
1

Pnn
∂t − Pi ′ j ′

Pnn
Di ′ j ′ − Qi ′

Pnn
Di ′ − R

Pnn

)
(u − v)

− xγ /2
n Dβ

(x ′,t)

(
2
Pi ′n

Pnn
Di ′ + Qn

Pnn

)
(un − vn)

+ Dβ

(x ′,t)

(
1

Pnn
(vt − L pv)

)
. (5.24)
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Since Pnn is nonvanishing smooth function for x ′ and t , by Remark 2.1, (5.22), and
(5.24), we have

|xγ
n DnnD

β

(x ′,t)(u − v)(X)| ≤ C(xn + xγ /2
n + xγ /2

n ) ≤ Cxγ /2
n (5.25)

for all X ∈ Q+
1/2 and β ∈ N

n
0. Since u = v on {xn = 0} and un = vn on {xn = 0},

if we divide (5.25) by both sides xγ
n and integrate on the xn-variable from 0 to xn , we

have

|Dβ

(x ′,t)(u − v)(X)| ≤ Cx
1+ 2−γ

2
n and |Dβ

(x ′,t)(un − vn)(X)| ≤ Cx
2−γ
2

n

for all X ∈ Q+
1/2 and β ∈ N

n
0.

Now, let us prove (5.23) for fixed i1 ≤ M by using induction on i2. We assume
(5.23) is valid for some i2 ∈ Nwith i2 < N + 2

2−γ
(M− i1). From Remark 2.1, (5.22),

(5.24) and induction assumption, we have

|xγ
n DnnD

β

(x ′,t)(u − v)(X)| ≤ C

(
x
i1+ 2−γ

2 i2
n + x

i1+ 2−γ
2 (i2−1)

n + x
M+ 2−γ

2 (N−2)
n

)

≤ Cx
i1+ 2−γ

2 (i2−1)
n

for all X ∈ Q+
1/2 and β ∈ N

n
0. Then, we know that

|Dβ

(x ′,t)(u − v)(X)| ≤ Cx
i1+ 2−γ

2 (i2+1)
n and |Dβ

(x ′,t)(un − vn)(X)| ≤ Cx
i1−1+ 2−γ

2 (i2+1)
n

for all X ∈ Q+
1/2 and β ∈ N

n
0 in the same way as for (i1, i2) = (1, 1).

Next, let us prove (5.23) completely again using induction on i1. We assume that
(5.23) is valid for some i1, i2 ∈ N with i1 < M . Then, by the induction process on i2,
we can see that (5.23) holds for (i1, j2), where

j2 ≥ N + 2

2 − γ
(M − i1) ≥ 1 + 2

2 − γ
.

It implies that

|Dβ

(x ′,t)(u − v)(X)| ≤ Cx
i1+ 2−γ

2 j2
n ≤ Cx

i1+1+ 2−γ
2

n

and

|Dβ

(x ′,t)(un − vn)(X)| ≤ Cx
i1−1+ 2−γ

2 j2
n ≤ Cx

i1+ 2−γ
2

n .

Thus, we obtain (5.23) for (i1 +1, 1). Therefore, we conclude that (5.23) holds for all
i1, i2 ∈ N with i1 + 2−γ

2 i2 ≤ M + 2−γ
2 N . ��

123



Generalized Schauder theory and its application…

Lemma 5.7 Let k ∈ N0, 0 < α < 1, and u ∈ C∞(Q+
1 ) ∩ C(Q+

1 ) be a solution
of (5.4) with f = 0. If the coefficients Pi j , Qi , and R are s-polynomials at O of
degree μ corresponding to (k + α), ‖u‖L∞(Q+

1 ) ≤ 1, ‖u‖L∞(Q+
1 ) ≤ 1, and u = 0 on

{X ∈ ∂pQ
+
1 : xn = 0}, then for each M, N ∈ N, there exists an s-polynomial p of

degree m corresponding to κ := N + 2M
2−γ

at O such that

|(pt − L p p)(X)| ≤ Cx
M+ 2−γ

2 (N−2)
n for all X ∈ Q+

1/2

and

|u(X) − p(X)| ≤ Cs[X , O]N+ 2M
2−γ for all X ∈ Q+

1 ,

where C is a positive constant depending only on n, λ, �, γ , M, N, ‖Pi j‖
Ck,α
s (Q+

1 )
,

‖Qi‖
Ck,α
s (Q+

1 )
, and ‖R‖

Ck,α
s (Q+

1 )
.

Proof By Lemma 5.6, for any M, N ∈ N, there exists a function v of the form (5.17)
such that

|u(X) − v(X)| ≤ Cx
M+ 2−γ

2 N
n

for all X ∈ Q+
1/2 and β ∈ N

n
0. Since each ṽi j (x ′, t) is a smooth function, by Taylor

theorem, there exists Taylor polynomial

T i j (x ′, t) =
∑

|β|+2k≤2M+N−1

Dβ

x ′∂kt ṽi j (O)

β!k! x ′β tk

of ṽi j (x ′, t) at O such that

|ṽi j (x ′, t) − T i j (x ′, t)| ≤ C
∑

|β|+2k=2M+N

|x1|β1 · · · |xn−1|βn−1 |t |k

for all |xi | < 1/2 (i = 1, 2, . . . , n − 1) and −1/4 < t ≤ 0. This implies that

∣∣∣∣∣∣∣∣∣∣

v(X) −
∑

2i
2−γ

+ j< 2M
2−γ

+N
i, j∈N or (i, j)=(1,0)

T i j (x ′, t)xi+
2−γ
2 j

n

∣∣∣∣∣∣∣∣∣∣

≤ C
∑

2i
2−γ

+ j< 2M
2−γ

+N
i, j∈N or (i, j)=(1,0)

∑

|β|+2k=2M+N

|x1|β1 · · · |xn−1|βn−1 |t |k xi+
2−γ
2 j

n

≤ Cs[X , O]2M+N+ 2
2−γ (5.26)
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for all X ∈ Q+
1/2. Now put

p(X) =
∑

|β|+2k+ 2i
2−γ

+ j<N+ 2M
2−γ

Dβ

x ′∂kt ṽi j (O)

β!k! x ′βxi+
2−γ
2 j

n tk (5.27)

which is an s-polynomial of degree m corresponding to κ = N + 2M
2−γ

. Then, from
(5.22), we know that

|(pt − L p p)(X)| ≤ Cx
M+ 2−γ

2 (N−2)
n for all X ∈ Q+

1/2.

Combining (5.23) and (5.26) gives

|u(X) − p(X)| ≤ |u(X) − v(X)| +

∣∣∣∣∣∣∣∣∣

v(X) −
∑

2i
2−γ

+ j< 2M
2−γ

+N
i, j∈N or (i, j)=(1,0)

T i j (x ′, t)xi+
2−γ
2 j

n

∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣

∑

2i
2−γ

+ j< 2M
2−γ

+N
i, j∈N or (i, j)=(1,0)

T i j (x ′, t)xi+
2−γ
2 j

n − p(x, t)

∣∣∣∣∣∣∣∣∣

≤ Cx
M+ 2−γ

2 N
n + Cs[X , O]2M+N+ 2

2−γ

+
∑

|β|+2k+ 2i
2−γ

+ j≥N+ 2M
2−γ

|Dβ

x ′∂kt ṽi j (O)|
β!k! |x1|β1 · · · |xn−1|βn−1 x

i+ 2−γ
2 j

n |t |k

≤ Cs[X , O]N+ 2M
2−γ

for all X ∈ Q+
1/2 which is extensible throughout Q+

1 . ��

5.3 Generalized coefficient freezingmethod

In this section, we prove themain theorem. By combiningC2+α
s -regularity of solutions

for (1.1) and boundary Ck,2+α
s -regularity of solutions for (5.4), boundary Ck,2+α

s -
regularity of solutions for (1.1) can be obtained, and finally we have Theorem 2.2 by
combining Lemma 2.10, Theorem 2.11 and Lemma 5.8.

Lemma 5.8 Let k ∈ N0, 0 < α < 1 with k + 2 + α /∈ D, and assume

ai j , bi , c, f ∈ Ck,α
s (Q+

1 ) (i, j = 1, 2, . . . , n).

Suppose u ∈ C2(Q+
1 ) ∩ C(Q+

1 ) is a solution of (1.1) satisfying u = 0 on {X ∈
∂pQ

+
1 : xn = 0}. Then there exists an s-polynomial p of degree m corresponding to
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κ := k + 2 + α at O such that

|u(X) − p(X)| ≤ C
(
‖u‖L∞(Q+

1 ) + ‖ f ‖
Ck,α
s (Q+

1 )

)
s[X , O]k+2+α for all X ∈ Q+

1 ,

where C is a positive constant depending only on n, λ, �, γ , k, α, ‖ai j‖
Ck,α
s (Q+

1 )
,

‖bi‖
Ck,α
s (Q+

1 )
, and ‖c‖

Ck,α
s (Q+

1 )
.

Proof By considering u/(‖u‖L∞(Q+
1 ) + ε−1‖ f ‖

Cα
s (Q+

1 )
) for ε > 0, we may assume

without loss of generality that ‖u‖L∞(Q+
1 ) ≤ 1 and ‖ f ‖

Ck,α
s (Q+

1 )
≤ ε. By scaling and

the Ck,α
s -Hölder continuity for ai j , bi , c, and f , we also assume that

|ai j (X) − Pi j (X)| ≤ εs[X , O]k+α, (5.28)

|bi (X) − Qi (X)| ≤ εs[X , O]k+α, (5.29)

|c(X) − R(X)| ≤ εs[X , O]k+α, (5.30)

| f (X) − F(X)| ≤ εs[X , O]k+α (5.31)

for all X ∈ Q+
1 , where Pi j , Qi , R, and F are s-polynomials with degree m̃ corre-

sponding to (k + α) at O .
Let L p be the operator given by

L p = Pi ′ j ′(X)Di ′ j ′ + 2xγ /2
n Pi ′n(X)Di ′n + xγ

n P
nn(X)Dnn

+ Qi ′(X)Di ′ + xγ /2
n Qn(X)Dn + R(X).

From (2.1) and (5.28), we know that

(λ − εn2)|ξ |2 ≤ Pi j (X)ξiξ j ≤ (� + εn2)|ξ |2 for all X ∈ Q+
1 , ξ ∈ R

n

and hence for sufficiently small ε > 0, we have

λ

2
|ξ |2 ≤ Pi j (X)ξiξ j ≤ 2�|ξ |2 for all X ∈ Q+

1 , ξ ∈ R
n .

By Lemma 5.4, there exists a function h ∈ Ck+2,α
s (Q+

1 ) of the form (5.5) such that

|(F + L ph − ht )(X)| ≤ Cεs[X , O]k+α for all X ∈ Q+
1 (5.32)

and ‖h‖
Ck+2,α
s (Q+

1 )
≤ Cε,whereC depends on n, γ , k, α, ‖ai j‖

Ck,α
s (Q+

1 )
, ‖bi‖

Ck,α
s (Q+

1 )
,

and ‖c‖
Ck,α
s (Q+

1 )
.
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By Theorem 5.1, we know that u ∈ C2+α
s (Q+

1/2). Now, we decompose (u−h) into

the sum of v1 and w1 such that

{
v1t = L pv

1 in Q+
1/2

v1 = u − h on ∂pQ
+
1/2

and

{
w1
t = L pw

1 + f̃ 1 in Q+
1/2

w1 = 0 on ∂pQ
+
1/2,

where f̃ 1 = f + L ph − ht + Lu − L pu. Then, combining (5.28)-(5.32) leads us to
the estimate

| f̃ 1(X)| ≤ | f (X) − F(X)| + |(F + L ph − ht )(X)| + |(Lu − L pu)(X)|
≤ εs[X , O]k+α + Cεs[X , O]k+α + Cε‖u‖

C2,α
s (Q+

1/2)
s[X , O]k+α

≤ Cεs[X , O]k+α

(5.33)

for all X ∈ Q+
1/2. By Lemma 2.5, for fixed r ∈ (0, 1/2), (5.33) gives

|w1(X)| ≤ C‖ f̃ 1‖L∞(Q+
1/2)

≤ Cε for all X ∈ Q+
r

and hence, we have

|u(X) − v1(X) − h(X)| = |w1(X)| ≤ Cε for all X ∈ Q+
r .

Choose now ε small enough such that Cε < rk+2+α . Then,

|u(X) − v1(X) − h(X)| ≤ rk+2+α for all X ∈ Q+
r .

Let us now define

u2(X) := (u − v1 − h)(r X)

rk+2+α
and f̃ 2(X) := f̃ 1(r X)

rk+α
.

Then, ‖u2‖L∞(Q+
1 ) ≤ 1 and

u2t = L2
pu

2 + f̃ 2 in Q+
1 ,

where

L2
p = Pi ′ j ′

(2) (X)Di ′ j ′ + 2xγ /2
n Pi ′n

(2) (X)Di ′n + xγ
n P

nn
(2)(X)Dnn

+ Qi ′
(2)(X)Di ′ + xγ /2

n Qn
(2)(X)Dn + R(2)(X)
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with

Pi j
(2)(X) = Pi j (r X), Qi

(2)(X) = r Qi (r X), and R(2)(X) = r2R(r X).

Furthermore, (5.33) leads us to the estimate

| f̃ 2(X)| = r−(k+α)
∣∣∣ f̃ 1(r X)

∣∣∣ ≤ Cεs[X , O]k+α for all X ∈ Q+
1/2.

That is, the same hypotheses as before are fulfilled. Repeating the same procedure,
we decompose u2 into the sum of v2 and w2 such that

{
v2t = L2

pv
2 in Q+

1/2

v2 = u2 on ∂pQ
+
1/2,

{
w2
t = L2

pw
2 + f̃ 2 in Q+

1/2

w2 = 0 on ∂pQ
+
1/2,

and

|u2(X) − v2(X)| ≤ rk+2+α for all X ∈ Q+
r .

By substituting back, we have

|u(X) − h(X) − v1(X) − rk+2+αv2(r−1X)| ≤ r2(k+2+α) for all X ∈ Q+
r2

.

Continuing iteratively, for each integer l ≥ 3, let us define the sequence of functions
{ul} inductively as follows:

ul(X) := (ul−1 − vl−1)(r X)

rk+2+α
and f̃ l(X) := f̃ l−1(r X)

rk+α
.

Then, ‖ul‖L∞(Q+
1 ) ≤ 1 and

ult = Ll
pu

l + f̃ l in Q+
1 ,

where

Ll
p = Pi ′ j ′

(l) (X)Di ′ j ′ + 2xγ /2
n Pi ′n

(l) (X)Di ′n + xγ
n P

nn
(l) (X)Dnn

+ Qi ′
(l)(X)Di ′ + xγ /2

n Qn
(l)(X)Dn + R(l)(X)

with

Pi j
(l)(X) = Pi j

(l−1)(r X), Qi
(l)(X) = r Qi

(l−1)(r X), and R(l)(X) = r2R(l−1)(r X).

Furthermore,

| f̃ l(X)| ≤ Cεs[X , O]k+α for all X ∈ Q+
1/2
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and hence we decompose ul into the sum of vl and wl such that

{
vlt = Ll

pv
l in Q+

1/2

vl = ul on ∂pQ
+
1/2,

{
wl
t = Ll

pw
l + f̃ l in Q+

1/2

wl = 0 on ∂pQ
+
1/2,

and

|ul(X) − vl(X)| ≤ rk+2+α for all X ∈ Q+
r .

By substituting back, we have
∣∣∣∣∣u(X) − h(X) −

l∑

i=1

r (i−1)(k+2+α)vi (r−i+1X)

∣∣∣∣∣ ≤ rl(k+2+α) for all X ∈ Q+
rl

. (5.34)

We choose M, N ∈ N such that

k + 2 + α < N + 2M

2 − γ
=: min

{
i + 2 j

2 − γ
∈ (k + 2 + α,∞) : i, j ∈ N

}
.

By Lemma 5.7 and (5.27), for each l ∈ N, there exists an s-polynomial pl(X) of the
form

pl(X) =
∑

|β|+ 2i1
2−γ

+i2+2 j<N+ 2M
2−γ

Aβi jk
l x ′βxi1+

2−γ
2 i2

n t j

such that

|vl(X) − pl(X)| ≤ Cs[X , O]N+ 2M
2−γ for all X ∈ Q+

1 ,

where C is a positive constant depending only on n, λ, �, γ , M , N , ‖ai j‖
Ck,α
s (Q+

1 )
,

‖bi‖
Ck,α
s (Q+

1 )
, and ‖c‖

Ck,α
s (Q+

1 )
. As in the proof of Lemma 4.9, we can see

∣∣∣∣∣u(X) − h(X) −
l∑

i=1

r (i−1)(k+2+α) pi (r−i+1X)

∣∣∣∣∣ ≤ Crl(k+2+α)

for all X ∈ Q+
rl
. Now put

Pl(X) =
l∑

i=1

r (i−1)(k+2+α) pi (r−i+1X).

Then, (5.34) gives

|Pl(X) − Pl−1(X)| ≤ Crl(k+2+α) for all X ∈ Q+
rl

.
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Since k + 2 + α /∈ D, each pl(X) has degree m corresponding to κ = k + 2 + α, so
we can consider the rescaling s-polynomial

P̃(X) := Pl(rl X) − Pl−1(rl X)

= r (l−1)(k+2+α)
∑

|β|+ 2i1
2−γ

+i2+2 j<k+2+α

r |β|+ 2i1
2−γ

+i2+2 j Aβi1i2 j
l x ′βxi1+

2−γ
2 i2

n t j .

Finally, as in the proof of Lemma 5.7, if h is approximated with an s-polynomial, we
can show that there exists an s-polynomial p of degreem corresponding toκ = k+2+α

at O such that

|u(X) − p(X)| ≤ Cs[X , O]k+2+α for all X ∈ Q+
1 . ��
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