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Abstract
We consider the Dirichlet problem for the energy-critical heat equation

u,=Au+u in QxR
u=0 on 99 x RT,
u(x,0) =up(x) in £,

where € is a bounded smooth domain in R3. Let H,(x,y) be the regular part of
the Green function of —A — y in 2, where y € (0, A1) and A is the first Dirichlet
eigenvalue of —A. Then, given a point ¢ € Q such that 3y(q) < A, where

v(q) :==sup{y >0: Hy(q,q) > 0},

we prove the existence of a non-radial global positive and smooth solution u(x, )
which blows up in infinite time with spike in ¢. The solution has the asymptotic
profile
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1 Introduction and statement of the main result

We investigate the asymptotic structure of global in time solutions u(x, t) of the
energy-critical semilinear heat equation

u[:Au—i—uS in xR,
u=~0 on 99 x RT, (L.1)
u(x,0) =ug(x) in Q,

where © c R3 is a smooth bounded domain and uq is a smooth initial datum. The
energy associated to the solution u(x, 7) is

E( >'—1f VP d 1/| 04
u —2 o u X 6 u X.

Since classical solutions of (1.1) satisfy

dE( (1) f| Pdx <0
—_— ui- = — u X
dt ) o t =Y

the energy is a Lyapunov functional for (1.1). The stationary equation on the whole
space is the Yamabe problem

AU +U>=0 inR>.

All positive solutions to this equation are given by the Aubin-Talenti bubbles (see [4])

Ups (1) = p~2U (x;g), (1.2)

where 1 > 0, & € R and

1
U(x) =a3———, where 013::3%.
(14 |x[?)?

Consider the Sobolev embedding H{ () <> LP*!(Q), which is compact for p €

(1, ps), where pg = %, and the associated constant

2
HL Q)

ln 2—.
0#ueHy (@) Ul 1 (g

flael

S,(Q):=

The Aubin-Talenti bubbles achieve the constant S, (R"). Thus, the energy E(U,, ¢) =
Sps(R") is invariant with respect to u, £. When i — 0 the Aubin-Talenti bubble
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Infinite time blow-up for the three dimensional energy...

becomes singular. This is the reason for the loss of compactness in the Sobolev embed-
ding for p = pg. Indeed, Struwe proved in [52] that every Palais-Smale sequence
associated to the energy functional E looks like

k
Un(x) = thoo (X) + Y Uyi g (x) +o(1) when n— oo, (1.3)

i=1

up to subsequences, for some k € N, where u € Hol(Q) is a critical point of E and
ny, — 0, &) € Q. Thus, we say that the compactness is lost by "bubbling’. When the
domain is star-shaped, the Pohozaev identity constrains u, to vanish.

For classical finite-energy solutions u(x, t) the problem (1.1) is well-posed in short
time intervals. We refer to the monograph [48] by Quittner and Souplet for an extended
review on this problem and more general semilinear parabolic equations. The aim of
this paper is exhibiting classical positive finite-energy solutions u(x, t) of (1.1) which
are globally defined in time and satisfy

lim [u(-, )|z (@) = oo. (1.4)
11— 00

Given any smooth function ¢(x) > 0, ¢ # 0, consider &« > 0 and uy (x, 0):=a@(x)
as initial datum. On one hand, if « is sufficiently small, then u (x, ) tends uniformly
to zero as t — oo. On the other hand, using the eigenfunction method of Kaplan [39],
for o sufficiently large u (x, t) blows-up in finite time. Thus, the threshold number

o= sup {a >0 lim Jug(,0)]eo = 0},
11— 00

is positive. In 1984, the first rigorous proof of the existence in L'-weak sense of
uy*(x, t) was found by Ni, Sacks and Tavantzis [47]. Du [25] and Suzuki [54] proved,
that, for any unbounded sequence of times f,, uy*(x, t,) can be decomposed as in
(1.3). Thus, when constructing unbounded global solutions for the critical case, it
is natural to look for an asymptotic profile as (1.2). Galaktionov and Vazquez [30]
proved that, in the radial case 2 = B1(0) with ¢ radial non-increasing, uy=(x, t) is
smooth, global and u = ugy~ satisfies (1.4). Thus, we naturally wonder what is the
asymptotic behavior of global unbounded solutions. Most of the results about the
dynamics of threshold solutions in literature concern the radial case. This particular
setting allows the construction of specific solutions by means of matched expansions.
In [29] Galaktionov and King proved that the threshold behavior of u,+ in the radial
case is

7.[2
Tt(l—i—o(l)) if n=3,

2Vi(1+o(1)) if n=4,

Influgs(-, oo = (1.5)

and

n=2 .
luas (- Dlloo = (vat) 2=, if n =5,
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for some explicit constants y,,. Our main theorem is a non-radial extension in dimension
3. The existence of positive non-radial unbounded solutions for the Dirichlet problem
in dimension n = 4 remains an open problem, which we will consider in a future work.
The case of higher dimension n > 5 has been already extended to the non-radial case
by Cortazar et al. [11]. They found positive multi-spike global solutions which blow-
up by bubbling in infinite time. Here, the term multi-spike refers to the fact that the
constructed solution is unbounded in a finite number of points in 2. Sign-changing
solutions which blow-up in infinite time have been discovered by del Pino et al. [19]
for n > 5, proving stability in case n = 5, 6.
Our solutions involve the Green function G, associated to the elliptic operator

L,=—-A—-y in Q,

where y € [0, 1) and A7 is the principal Dirichlet eigenvalue. Namely, for all y € €2,
G, satisfies

—AxGy(x,y) —yGy(x,y) =c38(x —y) in Q,Gy(x,y) =0 on 9,

where 6 (x) is the Dirac delta, ¢3 := a3w3 and the constant w3 = 4 indicates the area
of the unit sphere. The Green function can be decomposed as

Gylx,y)=T(x—y) = Hy(x,y),

where I'(x) = a3|x |_l and the regular part H, (x, y) is defined as the solution, for all
y € Q,to

AxHy(an)+VHy(an)=V in
lx =yl

H,(x,y)=T'(x—y) in 9Q.

The diagonal R, (x):=H, (x, x) is called Robin function associated to —A — y in .
It turns out (see Lemma 2.1) that for any fixed g € 2 there exists a unique number
y(q) € (0, A1) defined by

v(g):=sup{y >0: R, (q) > 0}.

Our main theorem shows that, for any ¢ € € such that 3y (q) < A, there exists
a global solution to the problem (1.1) which blows-up in infinite time with spike in
X =gq.

Theorem 1.1 Let Q@ C R? be a bounded smooth domain. Let q be a point in Q such
that

A
y(q) < ?1 (1.6)
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Infinite time blow-up for the three dimensional energy...

Then, there exist an initial condition uy(x) € CY(Q), smooth functions £(t), u(t) and
0(x, t) such that the solution u(x,t) to the problem (1.1) is a positive unbounded
global solution with the asymptotic profile

x —&@)

u(x, 1) = u()~2U < e

) — ()7 (Hy(x, E() +0(x, 1)) as t — oo,
(1.7)

where 6 is a bounded function, and decays uniformly away from the point q. Moreover,
the parameters |u(t), &(t) are smooth functions of time and satisfy

1
In <m> =2y(@t(1 +o(1)), &) —q=0(u@) as t— oo. (1.8)

Furthermore, thanks to the inner-outer gluing scheme, which is based only on elliptic
and parabolic estimates, as in [11, 15] we get a codimension-1 stability of the solution
stated by Theorem 1.1. In fact, since condition (1.6) is stable under small perturbation
of ¢ € Q, the stability result follows exactly as in [11, Proof of Corollary 1.1] (see
Remark 7.1 in Sect. 7).

Corollary 1.1 Let u be the solution stated in Theorem 1.1 which blows up at q. Then,
there exists a codimension-1 manifold M in C'(Q) with uy € M and such that if
iig € M and it is sufficiently close to u, then the solution ui to (1.1) with initial datum
g is global and blows-up in infinite time with spike in g near q and profile (1.7) with
Infu(, Do =y (@t +o(1)) ast — oo.

Condition (1.6) implies that the point ¢ cannot be very close to boundary, since y (¢) —
A asg — 0% (see Lemma A.2 in Appendix A). Along the proof we need to consider
Dirichlet problems of the type

ur=Au+yu+e? f(x) inQxRT,

u(x,t) =0 ondQ x RT,
u(x,0) =0 in <2,

for some f(x) € L? with p > 2. In order to successfully apply fixed point arguments,
we need

lu(-, )lloe < Ce 2"

for t > 1, which requires condition (1.6). Such assumption (1.6) is useful to get rid of
a resonance effect, lastly due to the fact that both the Dirichlet heat kernel th (x,y)
and the parameter . (¢) decay exponentially fast. Indeed, the long-term behavior of
the Dirichlet heat kernel is

Px, y) ~ pr1(x)p1 (e M as 1 — oo,
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where ¢ is the positive eigenfunction of —A in  with |¢1]> = 1. We recall the
properties of the Dirichlet heat kernel in Sect. 8. More specifically, we use assumption
(1.6) in the following steps of the proof:

e to get estimates for J, J> in Lemma 2.2 and Lemma 2.3 respectively;
e in Lemma 4.1 for solving the outer problem;
e in Proposition 6.1 for the invertibility theory of the nonlocal operator 7.

The number y (g) is related to the Brezis-Nirenberg problem. Define

Vul*dx — 2d
S.(Q):= inf Jo|Vul”dx af‘?l'”' a
ueHg ()\{0} (Jq lul dx)3

In the celebrated work [2], Brezis and Nirenberg proved the existence of a constant
uBN € (0, A1) such that

upN:=inf{a > 0: S,(2) < Sp}.
Then, Druet [24] proved

min y (q) = upN(R).
qe

Thus, when 3upy (2) < A1(R2) is true, condition (1.6) is satisfied in some open set
O C Q, and Theorem 1.1 gives the desired solution with blow-up at any fixed point
q€O.

When we consider the radial case 2 = B1(0) and g = 0, an explicit computation
gives ¥ (0) = 7% /4, that is consistent with (1.5). In fact, this is the minimum value
for y (¢) since Brezis and Nirenberg computed ppy (B1) = 72 /4. By symmetry, we
deduce that condition (1.6) is satisfied in the ball B+, where d* = |¢*| and ¢* is a
point such that y (¢*) = A1/3.

Also, we can consider smooth perturbation of the ball. Let f : Bl — R3 a smooth
map and for ¢ > 0 define

Qi={x+1tf(x) : x € Bi}.

For small # the domain €2; is diffeomorphic to the ball. Writing A1 as Rayleigh quotient
and using the definition upy we can easily see that ©(2;) = w(B1) + €(t) and
A(2;) = A1(By) + &(t) where e(t), () — 0 ast — 0. Thus, for ¢ sufficiently
small, the relation 3upN(€2;) < A1(£2) holds, and Theorem 1.1 applies to the domain
€2;. This shows that Galaktionov-King’s radial result is stable under small perturbation
of the domain.

For the unit cube C; it is known (see [58, Remark 4.3]) that 3ugn(C1) < A1(Cy).
Indeed, from Bj,, C C; and the strict monotonicity of u gy (€2) with respect to 2 we
deduce upn (C1) < uBN (B1 /2) =72 By separation of variables we easily compute
11(C1) = 372, thus

3upN (C1) < 3upn (Bi2) =372 = 11 (C).
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Infinite time blow-up for the three dimensional energy...

Hence, a slight modification of Theorem 1.1 applies: since C; is a Lipschitz domain,
by the parabolic regularity theory we get a smooth solution u(x, ) in  x R* which
is Lipschitz continuous in Q x [tg, 00).

Let Q* be the ball with the same volume as 2. The following estimate holds true:

MED @ < 1D

min Ro(x)>.
xeQ

The lower bound was proved in [2] by means of a symmetrization argument. Using
harmonic transplantation Bandle and Flucher [1] proved the upper bound. Thus, if it
happens that we know min,cq Ro(x)*> < 4/3 we can apply Theorem 1.1 to Q. Wang
[58] conjectured that upn/A1 € [1/4,4/9). In particular, condition 3upy(2) <
X1(€2) could be false for "very thin rectangles" (see [58]). The range [1/4,4/9) is
supported by numerical computations made by Budd and Humphries [3].

The main differences with respect to the analogue result [11] in dimension n > 5
are the following:

e the main asymptotic behavior in Theorem 1.1 of the blow-up is dependent on
the position of the point ¢ € €2. As far as we know, this is a completely new
phenomenon;

e since condition (1.6) is not satisfied close to the boundary, we cannot straightfor-
ward construct multi-spike solutions in the spirit of [11]. Indeed, roughly speaking,
such construction requires spikes relatively far from each other and close to the
boundary to suitably bound the interaction between the bubbles.

e anonlocal operator controls the dynamic of the parameter (£(¢). A similar operator
has been treated in [15], where the domain = R3 allows an explicit inversion
of the Laplace transform.

The approach developed in this work is inspired by [11, 13, 15]. It is constructive
and allows an accurate analysis of the asymptotic dynamics and stability. Let describe
the general strategy. The first step consists in choosing a good approximated solution
u3. Here the word "good’ means that the associated error function

S[ul(x, 1):= — du + Au + u’

is sufficiently small in €2. Part of the problem consists in understanding what smallness
on S[u] is sufficient to find a perturbation ¢ such that

u=u3z+¢
is an exact solution to (1.1). In Sect. 2 we start with the scaled Aubin-Talenti bubble
as building block and we modify it to match the boundary at the first order. Then we
realize that we need two improvements. The first one is a global correction useful

to get solvability conditions for the elliptic linearized operator around the standard
bubble

Llpl:=A¢ + 5U*(y)¢.
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Such improvement produces a nonlocal operator which governs the second order term
in the expansion of the scaling parameter w(z). This is a low-dimensional effect, lastly
due to the fact that

Z,H_l(r)::%U(r) +U'(r)r ¢ LZ(R”) when n € {3, 4},

where Z,1 is the unique (up to multiples) bounded radial function belonging to the
kernel of L[¢]. Actually, the dimensional restriction in [11] was specially designed
to avoid this effect and the presence of the corresponding nonlocal term. Then, by
choosing y (¢g) as in (1.6) we reduce the error close to x = g; this gives the asymptotic
behavior (1.8) of w(¢) at the first order. A second correction, local in nature, removes
non-radial slow-decay terms and gives the asymptotic for £ written in (1.8). At this
point we have a sufficiently good ansatz, called u3, to start the so called inner-outer
gluing procedure in Sect. 3: we decompose the problem in a system of nonlinear
problems, namely an inner and an outer problem which are weakly coupled thanks
to the smallness of S[u3]. We solve the outer problem in §4, that is a perturbation
of the standard heat equation, for suitable parameters u, £ and decaying solution
¢ of the inner problem. Then, we look at the inner regime. We can find the inner
solution, by fixed point argument, using the adaptation to n = 3 of the linear theory
for the inner problem developed in [11]. This requires the solvability of orthogonality
conditions which, in Sect. 5, we prove to be equivalent to a nonlocal system in the
parameters (1, £. We solve it in Sect. 6 using the invertibility of a nonlocal equation,
which we achieve in Sect. 8 by means of a Laplace transform argument combined
with asymptotic properties of the heat kernel th (x, y). At this point we are ready to
find the inner solution ¢ in Sect. 7, which concludes the proof of Theorem 1.1.

Of course, the full problem consists in finding the exact initial datum that evolves
in an infinite time blow-up solution. We find the positive initial condition

u(x, to) = u(to)~"?U (x;(—i()“))) — () 2 Hy (x, 10) + 1o (t0) 1 (x, 1)

_1p x —£(to) > (x—é(to))
+ u(to)” 3 <—M(to) 10 ) MiGry) |—M(to) |

12 x —&(t) ) —12 (x—E(lo))
+ wo(to) "W (x, 10) + NR(o) <|—M(t0) |') (to) ™" *e0Zg )

for 1y fixed sufficiently large, where the existence of i, &, ¢, ¥ and the constant e is
a consequence of fixed point arguments, 7;, [, ng, R are defined in (2.5), (2.17) and
the functions ¢3, Ji solve the problems (2.21) and (2.14). We remark that we do not
know if the solution with this initial datum corresponds to a threshold solution in the
sense of [47].

We conclude this introduction giving a short bibliographic overview about related
problems and recent developments. The rigorous construction of blow-up solutions
by bubbling, that is a solution u(x, t) ~ Uy, q)£¢)(x) with © — 0 for some special
profile U, has been extensively studied in many important problems with criticality.
For instance, in the harmonic map flow [13, 49, 50], in the Patlak-Keller-Segel model
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Infinite time blow-up for the three dimensional energy...

for chemotaxis [8, 9, 12, 31], in the energy-critical wave equation [26, 36, 40, 41] and
energy critical Schrodinger map problem [45].
Concerning the Cauchy problem

nt2
u; = Au+ur2 inR" x RT,

u(x,0) =up(x) inR",

infinite blow-up positive solutions have been found in dimension n = 3 in del Pino et
al. [15], with different blow-up rates depending on the space decay of the initial datum.
Recently, Wei et al. [59] detected analogue solutions in dimension n = 4. These works
were inspired by conjectures presented in [27], where Fila and King used matched
asymptotic methods to formally analyze the behavior of infinite blow-up solutions in
the radial case, also conjecturing that for n > 5 such solutions do not exist. However,
adding drift terms to the equation, Wang et al. [56] have shown examples of positive
initial datum which evolves in multi-spike infinite blow-up by bubbling. For n > 7,
del Pino et al. [16] proved the existence of sign-changing solutions which blow-up in
infinite time in the form of tower of bubbles, that is a supersolution of Aubin-Talenti
bubbles at a single point. For the analogue backward problem where t € (—o0, 0),
ancient solutions which blow-up in infinite time have been detected by Sun et al. [53]
forn > 7.
As we have already mentioned, blow-up for the nonlinear heat equation

up = Au+ul” 'y inQx(©,7),

can also happen in finite time 7 < co. We call it Type I blow-up if the solution satisfies

1
lim sup(T — ¢) 7=Tu(-, t)| L) < 00,
t—T

otherwise, if

1
lim sup(T — ) 7~ u(-, t)] Lo (@) = 00,
t—T

we have Type II blow-up. Several works have focused on constructing finite time
blow-up solutions for the Cauchy problem. Positive Type II blow-up solutions do not
exist in dimension n > 7, see Wang and Wei [57], or under radial assumptions in
any dimension n > 3, see Matano-Merle [44] and the pioneering work by Filippas-
Herrero-Veldzquez [28]. In dimension n > 7, Collot et al. [10] classified the dynamics
near the Aubin-Talenti bubble U in the H! topology. In particular, they ruled out the
Type Il scenario for initial conditions u¢ such that |uo — U g1 ®?) is sufficiently small.
The existence of positive Type II blow-up in dimensions n € {3, 4, 5, 6} is an open
problem.

Type II blow-up it is still admissible for sign-changing solutions, and in fact exam-
ples have been found. Type II blow-up solutions have been constructed by Schweyer
[51]in dimension 4 under radial assumption and later by del Pino et al. in the non-radial
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setting [20] with admissible multi-spike behavior. Also, Type Il blow-up solutions have
been detected in dimension n € {3, 5, 6} in [18, 21, 33, 34] with different blow-up
rates. Type I blow-up for the critical heat equation can also happen on curves contained
in the boundary of special domains with axial symmetry, see [17].

There have been developments also in the nonlocal generalization of these problems.
Concerning the fractional heat equation with critical exponent

4s
Uy == (—AY u + ul5u,

Cai et al. [5] have recently constructed solutions for both the forward and backward
Cauchy problem which are sing-changing tower of bubbles at the origin forn > 6s,and
s € (0,1).Forn € (4s,6s) and s € (0, 1) blow-up in finite time has been proved in
[7], which is a fractional continuation of the local Type Il blow-up casesn =4, s = 1
in [51]and n = 5, s = 1 in [21]. Regarding the associated Dirichlet problem, Musso
et al. provided in [46] the existence of positive multi-spike infinite-time blow-up on
bounded smooth domains for n € (4s, 6s) and s € (0, 1).

2 Approximate solution and estimate of the associated error

In this section we construct an approximate solution to the problem

u; = Au+u’  inQ xRt 20

u=0 on 92 x RT, '
and we compute the associated error. Without loss of generality, we construct a solution
that blows-up at ¢ = 0 € 2. The first approximation u is chosen by selecting a time-
scaled version of the stationary solution to the Yamabe problem

AU+ U’ =0 inR3,

properly adjusted to be small at the boundary 9€2. This is constructed in Sect. 2.1. In
order to make the error small at the blow-up point, we need to select a precise first
order for the dilation parameter 1(¢), which matches the radial asymptotic found in
[29]. However, we observe in Sect. 2.2 that u is not close enough to an exact solution
to make our perturbative scheme rigorous. In Sect. 2.3 we make a global improvement
uz. Such correction involves a nonlocal operator in the lower order term of w(z),
similar to a half-fractional Caputo derivative. The last improvement u3 is only local,
and it removes slow-decaying terms in non-radial modes by selecting the first order
asymptotic of the translation parameter &(¢).
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2.1 First global approximation

Our building blocks are the scaled Aubin-Talenti bubbles (1.2) which satisfy
AUpe+ U, =0 inR’. (2.2)

We look for a solution of the form u;(x, 1) ~ Uyq).£¢)(x). We make an ansatz for

the parameters w(t), £(t). Assuming that u(t) - 0Oand & — 0 € Q ast — 0o, we

notice that U, ¢ (x) is concentrating around x = 0 and it is uniformly small away from

it. For this reason, we should have
ol — Aup = uq(x, 1)5
~ §o(x — g)/ (MI/ZU (x;g>>5 dx
R3 %
— o= [ U dy
= So(x — &)eap'’2. 2.3)
Let po(t) the first order of w(¢), that is
w() = po@)(1+o(l)) as t — oo.
From (2.3) we define the scaled function
v(x, t)::ufl/zul(x, 1),

which should satisfy

v~ Av + (—2&) v+ c38p(x — &) in Q2 x RT,
n
v=0 ondQ xRT. (2.4)
We choose the parameter (o (¢) such that

() _
2uo(t)

’

for some y € R that will be fixed later. This is equivalent to choose

po(t) = be ", (2.5)
for some b € Rt. We can fix b = 1. Indeed, the equation is translation-invariant
in time: we construct, for a sufficiently large initial time ¢y, a solution u(x,?) in

Q x [tg, 00) and we conclude that ug(x, t):=u(x,t — ) is a solution to (2.1) in
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Q2 x [0, 00). We observe that after shifting the initial time, the main dilation parameter
o becomes g (t — tg) = e2V0e=2v1,

With this choice (2.4) reads

v, A~ Av + yu 4 c3bp(x — &) inQ x RT,
v=0 ondQ x R,

Hence, for large time we should have

v(x, 1) ~ Gy (x, §),

(2.6)
where G, (x, y) is the Green function for the boundary value problem
—AxGy(x,y) —yGy(x,y) =c38(x —y) in€Q,
G(,y)=0 onof. 2.7
We write
Gylx,y) =T(x —y)— Hy(x,y), 2.8)
where

o3
—AT(x) =c360(x), T'(x)= =l
is (a multiple of) the fundamental solution of the Laplacian in R> and the regular part
H, (x,y), for fixed y € , satisfies

—AyHy(x,y) —yHy(x,y) = —yl'(x —y) in€Q,
H,(x,y) =T(x —y) ond. (2.9

The function H, (-, y) € C91(Q) when y € (0, A1). For later purpose, we also write

Hy(x,y) =0, (x —y) = hy(x,y),

(2.10)
where
6, (x) := agl_%w 2.11)
and i1, (-, y) € C*° (L) solves
Axhy(x,y) +yhy(x,y) =0 in€,
hy(x,y)z—ag%bcy'_w on 082. (2.12)
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We also define the Robin function
R, (x) := Hy(x,x) = h,(x, x).

In terms of the original function u; the Eq. (2.6) reads as

a3
up(x, 1) ~ Ml/zm — w2 Hy (x, £).

We notice that far away from the origin we have

2 03

lx — &I

Upe(x) ~ u!/

This formal analysis suggests the ansatz
— 172
up(x,t) :=Upe(x) —u’'"Hy(x,§).
2.1.1 Dilation parameter u(t)

We write the full dilation parameter in the form

1= po(t)e*®,

for some A(t) = o(1) as t — oo to be found, where
po(t) = e~ ",
In this notation we have

a0 et 2Apee*t
2u(t)  2poe*d T 2ppeh
=—y +AQ),

and
0 .
AQt) = _f A(s)ds,
t
where A(s) is an integrable function in any [fg, 00).

2.2 Error associated to uq

The next step consists in computing the error associated to the first ansatz u;. We
define the error operator

Slu] := —0:u + Au + w.
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Of course, solving S[u] = 0 is equivalent to solve the equation in (2.1). It is well-
known that all bounded solutions to the linearized operator

Ay +5U()* =0 inR",
are linear combinations of the functions {Z; }le defined as
Zi(y):=0,U(y), i=123,
and

1—|yP

! . SRLENE e
2400 = 3U0) 43 VUG =5

We define the scaled variable

x—&(@)
pn@)

y =y, 1) =

Now, we compute S[u1](x, 1) for x # &(t). We have

_ x—§
Auy = p~ AU (T) —u!PAH, (x,8)

= U + pl? (yHy<x, £) - Ixyf;')

yas

= —uTPUOY + !y By () - P

where we used equations (2.2) and (2.9) for U and H,, respectively. Using the definition
of Z4, the time-derivative can be written as

Li - 5 i
dur = — 5= PUG) + T VUG - | =2 = =y
2u nop

1i :
= g WP ) = !V Hy ()
[ _
- <ﬂ) (1712240 + 1 2 Hy (. 6) |

— eV U — ' PE VL H (x, ).
Hence, the error associated to u is

Sluy] =A (M_l/zzzzt()’) + ! Hy (2, 5)) —yu” (224())) " %)

+uRE VU ) + eV Hy (3, 6)
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— 25U () Hy (x, §)

+ P [(UO) = 1ty (3, 6)’ = UG +uSUM Hy (1. 8)]. 213)

2.3 Global improvement

The remaining part of this section concerns the improvement of the natural ansatz u.
Later in the argument we will divide the error in outer and inner part. We realize that
solving the inner-outer system requires a global and a local improvement. Reading
Proposition 3.1, which is the linear theory for the inner problem, we see that, to get
decay in ¢ (y, 7) at distance R we need a > 1 in the definition of |/, 244. This
smallness at distance R will make the inner and outer regime weakly decoupled. Our
particular 4 will satisfy || k]|, 244 < 0o with a = 2, hence we will use estimate (3.17).
Thus, we say that a term is slow-decay in space if it is not controlled by (1 + |y|)™*.
We can find an exact perturbation with our scheme if we remove such terms. Looking
at (2.13) we observe that all the terms in the first two lines are slow-decay. Using the
inequality 1(r) < (1 + |y)~! we can negotiate decay in time with decay in space if
needed in other terms. For the moment we can assume A, A, é, & bounded by some
power of w(t). Later we shall specify precise norms for these parameters. Firstly, we
decompose

w5U () Hy (x, &) = w50 ()40, (x — §)
— 15U () hy (x, ©).
We define
(e, 1) = ur(x, 1) + g JIAY (. 1),

The new error reads as

Stual = STl + (=3, + 20 (g TIAI, ) + 2 = uf

= STur]+ pg” (=0 + Ay + ) JIA] + 45 — .

Let
JIAL(x, 1) == T [Al(x, 1) + Jr(x, 1).
Plugging S[u] given by (2.13) into S[u2] we get
S[uz) = w=%6 - VU () + '€ - Voo Hy (x, &) + w50 (9) hy (x, £)

+ 1y {(—at + Ay )1+ (%) A (127404 Hy 5))}
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1

2 no\?
+uy {(—at+Ax+y)Jz—(%>

X [wfl (zz4<y> + %) +u 75U, (uy)]}

2 3
+u? (U(y)—tu(xvf)Jr/‘(%) J[A](x’t)>

—UO) +uSUGY Hy (x,6)).
We select J; [[\](x, t) such that
J1 = AcJ1 +yJi
1
nw\2? . 1 x—£ .
+|— ) Alu 2Z4|\—— |+ Hy(x,8) ) inQx[rn—1,00),
o w

Ji(x,t) =0 indR x [tp—1,00),
Ji(x,tp — 1) =0 on Q, (2.14)

and

1
2 X — o
ddr =Ayds +yJr — (ﬂ> [y (Mlzz4 ( E) + 2 )
o " |x —&]|

4
25U (x;é) 0, (x — s)} in Q x [fo, 00),
n

J(x,t) =0 on oL x [ty, 00),

Jo(x,10) =0 in Q. (2.15)
The choice of defining J; from the time #y — 1, as well as A(t), will become clear
in Sect. 8. For the variable £(¢) it is enough to define the extension £(¢) = &(#p) for

t € [ty — 1, tp). With these choices the error associated to u, reads as

Slual = u%& -V U (y) + n'%é - Vi, Hy (x, &) + 135U (3)*hy, (x, )

2 5
L5 (U(y) —uHy(x, &)+ (%) JIA](x, f))

—~U ()’ + 15U (»)*H, (x, s)] : (2.16)

2.3.1 Choice of y

We observe that with this choice of J, we remove the singular term |x — £|~! from
(2.13). At this point, the main error at x = &(¢) is given by the first order of the
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nonlinear term
15U 0) Ry (£)

which is, in general, of size ,u(t)’3/ 2. 'We realize that we can reduce this error by

selecting y such that R, (0) = 0. The existence and uniqueness of such number is
given by the following lemma.

Lemma 2.1 There exists a unique y = y*(0) € (0, A1) such that R,«(0) = 0.

Proof We consider the function R, (0) as a function of y. Lemma A.2 in [14] shows
that

Ry (0) : (0, A1) = (=00, Ro(0))

issmoothin (0, A1) and 9, R,, (0) < 0. Lemma A.1in Appendix A shows that R, (0) —
—00 as y — A . By the maximum principle Ho(x, y) > 0 for all x, y € €, hence
we have Ryp(0) > 0 and the intermediate value theorem gives the existence of

y*(0) :=sup{y > 0: R,(0) > 0}.

Finally the monotonicity of R, (0) implies the uniqueness of y*(0). O

Remark 2.1 (Regularity of y*(x)) Let R(y, x) := R, (x). Since R(y*(x), x) = 0 and
dyR(y,x) < 0 forall x € Q, the implicit function theorem implies that y*(x) €
CH(Q) with

ViR (y, x)

Viy (x) = _BVR(;/, X) .

Remark 2.2 (Radial case) We compute y (0) in case 2 = B;(0). We look for a radial
solution to

o
AH, +yH :ﬁ in By,
o
H,,(x,O):ﬁ on dB).
X

We define lp(|x|):=H,, (x, 0) for a function [y : [0, 1] — R. Then [y solves

2 o
elo+ ~3plo + ylo = y=* i [0, 1],
lo(1) = a3, [lp(r) bounded at r = 0.
We write lo(r) = a3l(r)/r, where [(r) solves

orl +yl=y in[0,1],
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I(1)=1, Ir)=0(@) forr — 0.
The solution to this problem is given by

I(r) =1 —cos(/yr) + cot(/y) sin(/yr),

and we conclude that

H(r,0) = a3 [1 — cos(/yT) N sin(/yr) :| .

r rtan(,/y)

In particular, for r = 0 we find

R, (0) = H,(0,0) = a3/¥ cot(\/7).

Asking for R, (0) =0
T 2
y:(E—l—kn) for ke N,

and, recalling that A1 (B1) = 72, the unique value in (0, A1) is

as predicted in the analysis of Galaktionov and King [29].

For the sake of simplicity we continue to use y = y(0) to denote the selected number
y*(0). Since R, (x) € C*°(Q2) we expand

1 2 *
Ry (&) = Ry(0) + & - ViR, (0) + EETDMR,, (£)¢&.
for some £* € [0, £]. Assuming & = O (u) we conclude
uP5U 0 R, ) = 0 (n7'1?).

2.4 Local improvement and computation of the final error

In this section we make a further improvement and we obtain the final ansatz. We still
need to remove from (2.13) the main order of the terms

pRE VLU 4 uTPSU () hy (x, 6).
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We define the final ansatz

_ I) —&(t
u3(x, 1) =z (x, ) + ()~ (x ,u(f)( ’t> o ('xu(f)( )|)'

The function n : [0, co) — [0, 1] denotes a smooth cut-off function such that n(s) = 1
for s < 1 and suppn C [0, 2], and we define

o (5D —n('y') 1) = ——, 2.17)
1) kon

where k7 is a constant such that B 2 (0) C Q, to ensure that suppn; € 2. Also we
2

define the variable

YD x—E@®
1(t) MOUGE

z3(x,t) =

We compute

_ Lo _ Lo &
0 (M l/2¢3771(t)) =5 H V2 0may + 1 |:8z¢>3+Vy¢3 : (——y - —ﬂ
% TR

+ M_1/2¢3 31771(1),

and
Ax( 1/245:771) =P Ay + 217V s - 5 |(%)
o G ),
We define

2 5
N3y, 1) := (U(y)S—MH (ny + 6, $)+M(l;o) J[A](My+$,t)+¢3(y»f)m>
-U@©)y

2
—5U<y>4< wH, (ny +&, s>+u(’l’f) J[A](uy+s,t>+¢3m)
Thus, using (2.16),

Stus) = =0 (1™ g3m) + A (1™ 23 + 4 — ud + Stz
= u e VU + p!PE - Vi Hy (x, ) + 250 () hy (x, 6)
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1/2
+ PN ) + SU () 32 (%) J(x, 1) 4+ w250 (n)*

A _ T
- (——2 )M l/2¢3771(z) — K 1/2771(:) [3z¢3 + Vyds - <——y - —ﬂ
" ® iz

_ _ _ y (" (Iz3])
— w23 + TP Ay + 213V s - — (

[yl ul
_ 2 n'(lzzD) | 7" (z3))
1/2 =
e ¢3(|z3| W eE )

By Taylor expanding £, (x, §) centered at x = & we have

1
hy(x,8) = Ry (&) + py - Vi hy (§,8) + EMZyTDxxhy(f, )y (2.18)

for some x € [&, x]. Now, we expand the first terms at (¢, &) = (0, 0). By the Chain
Rule we have Vy hy, (x, x) = 2V, R, (x). Hence, we have

1 1 1 »
Vxlhy(évg) = EVny(é) = vaRy(O) + ESTDxny (E )7

for some £** € [0, £]. Furthermore, since R, (0) = 0, we have

1
Ry, (&) =& - ViR, (0) + EETDxny(E*)%“
for some £* € [0, £]. Plugging these identities in (2.18) we obtain
1
h]/(-xa §)=¢&- Vny(O) + Eﬂy : Vny(O)
1 1
+ EgTDxny ()& + EﬂyTDxx Ry, (E**)é
1, T _
+ EM y Dxxhy(xa &)y. (2.19)
We write
§(1) = &0 (1) + &1().
Now, we assume the following decay for the parameters &1, E L, A, A:

1] + | % 1E1(r) < Cu(r)'™F,
| % |A(r) < Cu(n),
| % |A(r) < Cu(),
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for some positive constants &, [y, /1 to be chosen (in §3.1.3). We write the full error

Sluz] = ?V,U (y) - [é - M_luoéo] m
1
+ 5U<y)“[ T2y, (x, &) — g <§Moy : Vny<0>>] 0
+ [ PVUG) £+ SUGY 0y ()| (- )

1/2
: - _ u
+ w28V Hy(x, 8) + 1 PN3(p, 1) + 5U(»)* ™32 (;0) J(x,1)

L\ _ o &
— (—2—> w2y — 1 g [3z¢3 + Vyos - (——y - —ﬂ
i A

w23 + 1w g [Ay¢3 +5U () *¢3 + Mo, Eo]]

n' (Iz3)) 5 2 n'(lz3l) . 7" (z3D)
+2u72V, 3 - ( >+u Py + ,
Iyl 23| w?l? w22

ul
where
. 5 4
Mo, fol:==poéo - VyU(y) — EU(y) 1o (1oy - ViR, (0)) (2.20)
For any fixed ¢t > 1y, we select ¢3(x, t) as the bounded solution to the elliptic problem

Ayd3(y, 1) +SUM)*d3(y, 1) = — Mo, £0l(y, 1) in R?, (2.21)

with the following orthogonality conditions on the right-hand side:
/ Mpo, E0l(y,)Zi(y)dy =0 for t >1y, and i=1,2,3,4. (2.22)
R3

As we shall see in the proof of Lemma 2.4, the conditions (2.22) are essential to have
¢3 bounded in space and equivalent to choose &y(¢). The condition corresponding to
the index i = 4 is satisfied by symmetry. Wheni = 1, 2, 3 the orthogonality condition
(2.22) is equivalent to

. 1
Hofo.i ( /R U dy) - 1 ( /R SUG iy U () dy) 59 Ry (0) =0.
Hence, we select &y ; such that

i Ry (0) (fga SUM* iy, U(y) dy)

s0:(0) = 2 (s 10, U (02 dy)

po(r).
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With the condition lim;_, o, & (f) = 0 we get

% 0,.i Ry (0 5U(y)*yidy, U(y)d
f1(0) = i1, ¢ = — i 1PniRy( ) Js (y)z n UYL 5 53
4y (fR3|ayiU(y)| d)’)

Also, we define ¢:=(cq, ¢3, ¢3).

Remark 2.3 (No local improvement in the radial case) In case 2 = B (0), searching
hy (r, 0) solution to (2.12) in the radial form, we see that

ViR, (0) = 2V, hy (0,0) = 0,

hence conditions (2.22) imply &y = 0, as expected. Thus, the local improvement ¢3,
which in fact involves only non-zero modes, is null in the radial case.

With these choices for ¢3 and &y we conclude with the following expression of the
error associated to the final ansatz u3:

Stus) = =2V, U0 - [+ (1= 1 o) o |

2
n [u’3/2VyU(y) E 45U iy (x, S)] (I —mn)

1
+ 50 (y)* [u—”hy(x, £) —u" <—Moy : vay<0)>] m

12
: _ a1
+ u2E Vi Hy (x, 8) + 1PN (y, 1) 45U () 3 (f) J(x, 1)

i\ ~ T
- (——2 )M 1/2¢3m(z) —u 1/2771(1) [8;453 + Vyds - (——y - —>]
W wooop

_ _ y (0" (z3])
— 1 Phsdn + 2PV s - — (—
[yl wul

. 2 (s | 0 ()
12, ( 2 n(z
i ¢3(|Z3| w22 e )

2.5 Estimate of the inner and outer error
For later purpose, we split S[u3] in inner and outer error. At this stage, it is important

to treat the terms involving directly A as part of the outer error, since, as we shall see,
a priori those are the terms with less regularity. Let

S[”b‘] = Sin + Sout
= Sinr(r) (¥) + (1 = 1Ry () Sin + Souts
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where we define the inner error

po\'?
Sin 1= 32 (7> SUWMW* T (x, 1) + N5
+ Ty (él - (1 — u_luo) 50) VU ()
1
+u 25U () (hy<x, £) - (%) <§Moy - ViRy (0>))’ 2.24)

the outer error
Sou = 1V [GU () - &+ SU hy (v, 0] (1= )

+ ul2E -V, Hy(x, £)
—1/2 A —1g
— w72 [ = By (d3 + 29 - V) + o (83 — '€ - Vy03)

/
+¢3'7(|23|)~_Z_3]
ul |z3]
_ ! _ 2 n'(lz3D) . 0" (z3))
2032, gy . 2 (123D 124, (2 ’
L AT S R S NP A7 e er
(2.25)
and the radius
R(t) == pn(®)°, (2.26)

for some constant § > 0 which will be chosen in (2.31) to make both the errors Sinnr
and Sin (1 — ng) + Sou suitably small for a final contraction.

Size of Sinng. We proceed with the estimate of Sj,ng. More precisely, we need the
following conditions on 8, lg, I, k:

S+1 <1 2.27)
-0 1+

) , 2.28

€ ( 5 G ) (2.28)

Iy <y, (2.29)

k+1>28+1, (2.30)

The condition (2.27) is used to get the estimate in the linear outer problem, and it is due
to the fact that both the heat kernel p,Q and the parameter 11o(¢) have an exponential
decay for ¢ large. To make the quadratic term U3$? smaller than S, in the inner
problem we need the upper bound in (2.28). The lower bound is necessary to get a
positive Holder exponent in the regularity of A. The last two conditions (2.29)—(2.30)
insure that Sj; is controlled by the first term in (2.24). Thus, we fix the following values
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satisfying (2.27)—(2.28):

5=2 =2 2.31)
_91 1_3' M

Here and in what follows, we write a < b if there exists a constant C, independent of
fo, such that @ < Cb. If both the inequalities a < b and b < a hold we write a ~ b.
Using (2.34) and (2.35) we estimate

1/2 -3/2
o —3/2 714 Ik I [
su*t (= PJAYx, 0] < (1+ )

w32+

<2
oty

and, since we are in the region where nr # 0, using (2.38), we obtain

2
eI~ NG] S 02U (1Hy O+ 1 G0l + 1 gam )

2
u
R4ph+ ——— +
<“ SRR TR “)
w12

2
73< 1=5 4 1])
1+ |y|4M 1% 1%
—1/2—8+2min{1-8,1;}
< 1%

- 1+ [y[*

—1/2

L+ yP

A

N

Also,

—3,2

~ . T 1 :
i (14 (L= i o) VUL S o B (1 1+ i)
M—3/2—26+min{1+k,2}

- L+ [y[*

Now, we estimate the last term of Si;nr using expansion (2.19) and p/puog = 2N we

get

—3/2+min{1,lp}

-32 4 NAYE ) S —

Combining these estimates we obtain

MR Sinl S

. [M—1/2—6+2min{l—6.l1] 3/ 28 min{14+k,2) +M—3/2+min{1,lo,ll}]
1+ 1yl ’
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and using the values (2.31) we get

-3+ —-5/6

uw

Sinl <
|77R m| ~ l+|y|4 ~ 1+|y|4

Size of S,;. For the first term in Sy, we have

I(1 =) VyU - &) < (10— )
325U, (1 — )l S (0 =)
|M1/2é . V»q HJ/| 5 M3/2

and using the estimates given by Lemma 2.4 on ¢3, Vy,¢3 and 9,¢3 we get

‘M_l/z[(y — My (93 +2y - Vyg3)

e (ady — 76 V) gy LD 2 H <

ul |z3]
Finally,
/ / VA
_ (Iz31) _ 2 n'(Iz3D) |, n” (z3l) 3
2,32y _L(U__,_ 1/2 “ + < 32
| 1% y¢3 |y| Ml w ¢3 |Z3| lez /L212 |N:u’
We conclude that
3
|Sout|,§:uf§‘

Size of Sj,(1 — ng). It remains to estimate the size of Si, (1 — ng). We have

—341428
|(1 = nr)SU* 2 I[AlGx, )] < p‘l_iT(l —nR) (2.32)
Then,
(= np™ NG S (1= nryp™ 24 e (|Hy(x, )+ 17(x, 0]+ u‘1¢3n1)2
Sa- nR)%ZIfI;I (1 + w4 M2)
S =nr)7 n |y|2,u_1/2+‘3.

In particular we observe that this is smaller than (2.32), thanks to (2.28). Also,

$+min{0,k— 1}

L .
T+ P (I —ng)

w3 E 4 (= ue)éo) - VyU (L —ng) S
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and

_ Ho 1
L% (1 — nr)mSU(y)* =32 (hy<x, £) — (7> (ytoy : vay<0>))
R 2M71/2
<7 Tror (1 —ng)
_ Mzaf%
~l4 |y

(I —ng).

Combining these estimates we find

_3
|Sin(1 = nR)| < z”l“’slﬂ 7 (1= nx(yD).

We conclude that

3
2

3
1Sin(1 = 1R) + Souel S22 ——— (1 —ng) + p2.

1+ |y|2(

2.6 Estimates of J1, J; and @3

The following lemma gives an estimate of J; [A](x, t) in terms of A. Observe that

G )“2 12 (6) — |x — £ 1
1 H, (x, —_— H 0
5 (Mo(t) (k@2 + |x — £ 12)*? e ED) x " 0

thus, for #( large, we will approximate J; with 7, that is the solution to

T = AT +yT —A0G,(x,0) inQx[t—1,00),
Jx,t) =0 ondQ x [tg — 1, 00),
Jx, 10— 1) =0 inQ. (2.33)

We define the L°°-weighted space
Xe={f € L%ty = 1,00) : | floo,c < 00},
where

I flloo,c:=sup | f(®)po®)~l.

t>tp—1

Lemma 2.2 (Estimate of J1) Suppose 2yl; < Ay — y and

1A lloo.r; < o0
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Then we have

111G, Dl < o)A llso; s (2.34)

fort > t.
Since we have selected/; < 11in(2.31), condition (1.6) guarantees that2yl; < A;—y.

Proof By parabolic comparison, it is enough to prove the bound for 7 defined as the
solution to (2.33). Indeed, we have

12 2 2

m . no—lx —§&|
— A@) + H,(x,§)
‘(Mo) ((M2+|X—§|2)3/2 th‘E)

We decompose

<

~

: 1
*A(t)| — m + H,(x,0)]

J(x,t):Zbk(t)wk(x) in L2(Q), for t>1y—1,
k=1

where wy is the k-th eigenfunction of —A on 2. Plugging the decomposition into the
equation we find

t
b :ck/ e~ M=) A (5)ds,  where ckzz—/ G, (x, 0wy (x) dx.
to—1 Q
In particular, we have

t
1T C0l2@) < 16y ¢ 020 / e” MU 4 |A(s) ds.
1

10—

Using ”A”oo,ll < ooand 2yly < A1 — y we obtain

1701120y < 1Gy ¢ Ol 20| Aloo g™ ™A=Y= (070D,
< | Allso lle_z}’ll(t—(f()—l))

Finally, from standard parabolic estimates, using the L?-bound and Eq. (2.33), we get
fort > 1y

: 2yl
1T GOy S 1A oo e,

for any Q' € Q. By boundary regularity estimates this inequality can be extended to
2 thanks to the smoothness of 9€2. O
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Lemma 2.3 (Estimate of J) Let J(x, t) be the unique solution to the problem

1
2 X — o
orJy =Axh+yJr — (i) |:)/ (M_12Z4 ( E) + 3 )
Ho M |x — &

4
+u2s5U (”%) 0, (x — g)} in Q x [fg, 00),

DH(x,t) =0 ondQ2 x [ty, 00),
DH(x,t9) =0 inQ.

Suppose that 3y < A1. Then, there exists ty large such that

[2(ny +&, 0| S () (2.35)

1+ |y[t=¢
forany ¢ > 0 and for all (x,t) € Q X [ty, 00) where y = (x — &)/ L.

Proof Firstly, we observe that

1—|y? L] 1
L+ 1y Iyl Iyl (1 + [yPe)

Also, by Taylor expanding the function 6, in (2.11) near the origin, we see that

-1

_2 4 1
5U(y)"6 < —
I MOy (V'S 1Jr|y|4|y|
—1
- %

Yyl (1 1yPE)

where € > 0 can be taken arbitrarily small. Thus, by parabolic comparison, it is enough
to find a supersolution to the problem

1
1
Iy, D11+ |y(x, 1)[>7%)
u(x,t) =0 ondL x [ty, 00),
u(x, o) =0 in Q.

ou =Axu+yu—+u~

in 2 X [tg, 00),

Let v(x, £):=u(t) Yu(x, t), which satisfies
w2

v =Av+ By —2A)v+
' * Iy (e, 01 (1 + [y, 0)2~¢)

in 2 X [ty, 00),

v=0 onad x [fy, 00),
v(x,t9) =0 in Q.
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Infinite time blow-up for the three dimensional energy...

We look for a supersolution v of the form

v(x, 1) =g (x — é) n <x;§> +vi(x,1).
M Co

v — Aoy — By — Ayvy = n[ — o+ 12 Ayvo + By — Mo

We need

N M—‘z}
I+ 1P )

-2
w
+ (1 = )+ (A7 — 31) Vo
II(1+ y[2~#) e
+2u 'V - Vyuo, (2.36)

with v;1 > 0 on 92 X [fy, 00) and vo(y(x, fp)) > O for x € 2. Without loss of
generality let Q@ C Bj. Consider the positive radial solution vy(]y|, t) to

1
2— =0 onB.i,
(1 +1yP77) )

vpy=0 ondB |,
u(t)

A yUo +

given by the formula of variation of parameters

1
u(t)

| s
,I i pedsde

From this formula we obtain the following estimates in (x, ) € Q x [t, 00):

w(yl. 1) = 2w3/|

lvo(Iyl, O + [9vo Iyl DI S TH e

Thus, if |x — &] < Cp, for Cy sufficiently small, then

w2

— o+ pu 2Awo+ By — A)vog+ ———————
' Y IyI(1 4 [y[>=#)

w2 1
=— > +0 = ) =0
[VICL+ [y[77#) L+ 1yl

Then, let v; be the solution to

w2

Y11+ 1y~
+2u7 Ve - Vyug in Q x 19, 00),

dvr — Axvy — By — Avy = (1 — 1) + (Axn — vy
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with

vi(x,1) =0 on a2 x [ty, 00),
vi(x, %) =0 in .

In the right-hand side we have

-2
nw
(1=
IVI(L+ [y2=#)
(A — 3o S ' ~F,

207 Ve - Vyvol S '

&

<ulE,

Since 3y — A(t) < A1 provided that 1 is sufficiently large, the comparison principle
applies and we get |vg| < p!'~¢. Thus, we verified inequality (2.36). Also, we have
v =1v; > 0onadR x [fy, 00) and nvg(y(x, #p)) > 0. Thus, v is a supersolution, and
going back to the original function u = pv we get estimate (2.35) for J;. O

Lemma 2.4 (Estimate on ¢3) Let M[&g, o] be defined asin (2.20). If the orthogonality
conditions (2.22) on M{[&y, ol hold, then there exists a bounded solution to the
problem

Ayps +5U () 3 (y. 1) = —MIo. pol(y. 1) in R, (2.37)

We have the following estimates on ¢3 and its derivatives:

63(y. O] + (1 + [yDIVy@3 (3. O + 18,83 (y. O] S 1> O f (v, 1), (2.38)
where f is a smooth bounded function.

Proof From the explicit form of the function M given in (2.20) we estimate its size
by

1
M ) , 1 =< 2—9
[Mlwo, Sol(y, D = n N

and we observe that M has only modes i = 1, 2, 3. Thus, we decompose ¢3 in such
modes:

3
¢>3(y)=z¢3,i(r)l9i(y/r), ri=|yl, ¢>3,i(r):=/ $3(r6)v;(0) do.
S2

i=1

Similarly, we define
z,-(r)::/2 Z;(r0)0;(0)deo.
s
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The formula of variation of constants gives

r
1
i(r) = z; ——T:(p)dp,
$3.0(r) = 2 (r) /0 ol
where
r 2
Ti(p)= /0 Mi(s)2i ()52 ds,
and
M;(r).= /ZM(rG)ﬁi(G) do.
s
Since
< 1
IM;(r)| < 17,2
and
. < _
|Zl(r)|N (] +r3)7
we deduce

IZ: ()] S p* as p— 0.

Also, by the orthogonality conditions (2.22) we have

IZi (0)|

| / ” M;(5)zi(s)s> ds|
0

1
— as p— oo.

N

With these estimates we conclude

(14 2)3
63| S — /0( pf) Z(o)Idp

1473
3
r1+ 2)- 4
< /( P*)" b dp
L+r3Jo  p* 1497
<.

Similarly, taking the space and time derivatives of Eq. (2.37), we deduce the bounds
on Vy¢3 and 0,¢3. O
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We conclude this section with summarizing the estimates of the error S[u3].

Lemma2.5 Let 3y < Ay, o = poe’™ and € = & + &1, where 1o, & are given by
(2.5) and (2.23) respectively. Assume

A S o, TAM] S o™,
R(t) ==, (&0 < pyt™,

for positive constant §, ly, 11, k satisfying (2.27),(2.28), (2.29) and (2.30). Then, setting
x = uy+E&, for ty sufficiently large the following estimate on the error function S[us]
holds:

S{uz(y, 1) = Siu(y, Onrey UYD + Sin(y, YA = nr@y (YD) + Sour(y, 1),

where
1S (y. Dyl < 30—
mn ’ (t) ~ 1+|y|4’
3
|S0ut(yvt)| S /’Lz’
. “3qn42s 1
[Sin(y, (L = nre)| S 271 T+ D2

3 The inner-outer scheme

We recall that our final purpose is to find an unbounded global in time solution u to
(2.1) of the form

u=u3+ao, (3.1

for a small perturbation ¢. The latter is constructed by means of the inner-outer gluing
method. This consists in looking for a perturbation of the form

GGx, 1) = w2y (x, 1) + nrey (YD) )~ (v, 1), (3.2)

where

_ (M _ X =&
an(IyI)—(m), yi=y(x, t):= O

and 7 (s) is a cut-off function with supp nC [0,2]and n = 1in [0, 1]. We have already
chosen R = R(t) in (2.26). In terms of ¢ the equation reads as

0=S[ul = —du+ Ayu+u
= (<03 + Acz +u3) = 96+ Axd + (3 + ) — 13
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= S[us] — 0,¢ + Acd + 5u3d + N (us, §)
where
N (uz, §):=(uz + )° — u3 — 5uip. (3.3)
Hence the problem for ¢ is

dp = Ar + Sulp + Slusl + N (uz, §) in Q x [19, 00),

é = —u3z ondQ x [tg, 00).

Now, the main idea is to split the problem for ¢ in a system for (1, ¢), localizing the
inner regime. We divide the error in

S[uz] =Sinng + Sin(1 — nr) + Souts

where Sin, Sout are defined in (2.24) and (2.25) respectively. Considering (;3 asin (3.2)
we compute

~ o 12 172 _
Btd):%uo/ v+ g0 + 1 1/2¢8t77<

+ 12 (3 + Vyg - dy(x, 1)) nr

y(%ﬂ)_i ~1)2
R() o

_ 1/2 1/2 ~172 y Ry iy 3
=— 9 v.n(Z). (=22 22 _ >
Yig Vg Y +u ¢[ zn(R) ( RR AR R
A - oo
+ (—2—>u Pong + 1 g (at¢+vy¢ : (——y - —))
W nooon

and

A = )" At 4+ 172 AL (9O (x, 1), Dren (3 (x, 1))

/ 4
_ 12 -5/2 —-1/2 3 n'(z)) 0" (z])
=1 A+ TR Ay (v 1) + T <|Z| 2 TR

_ipl z n'(lz])
+2ou” =y, 1) =
2 lz| uR

where z:=y/R. We split

z 1/2 1/2 _
S5uld = Sutug > v + Subug v (1 — nr) + SuinTng.
Hence, the full equation becomes

1/2 1/2 _ _
— v+ P04+ o + e 20
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+ 1R {(V — MG+ 2V, y) —u PV G)}

12 _ _ 2 7'(lzh) . 0"z
_ z n'(z)
" 1/2
Ve 1R

1/2 _
+5ulpy” wnR +5udp >y (1 — nr) + Sup ™ g
+ SinnR + Sin (1 - nR) + Sout

+ N (uz, §)(1 — ng) + N (u3, d)ng.

We divide the full problem in a system. Firstly, we look for a solution v to

1/2 1/2 _
1g 200 =P At + g2y + Sudp P v (= nr) + n P pdmer

+ 1R {(y — MG +2V,9-y) — PV <E)}

_ 2 7'(z) 77//(|Z|)> _ 1 z n'(lz])
172 122y 4.
+ u ¢ _— + + 2“
(Izl u2R2 u2R2 " Vs |z| UR

+ Sin (1 = R) + Sout + N(u3, @)(1 —ng),  in Q x [to, 00)
Y(x, 1) = — g Pus(x, 1) on dQ x [19, 00).

Thus, after dividing by u(l)/ 2, ¥ solves the outer problem

1/2
Wy =AY + ¥y 4+ 5uiy (1 —ngr) + ! (%) dOmR
w\? : §
+u! <—) NR {(V —A)(@+2Vyp-y)—Vyo- (—)}
o w

1/2 ’ " ’
i 2 n(z))  n (IZI)) 2Vy¢ oz (|Z|)>
i <M0) (¢<IZI 2R TR ) TR T R

—1/2 —1/2 ~1/2 ~
+ g 2 Sin (1= nR) + 1y " Sout + 11y N (w3, (1 = ng),
in X [ty, 00)

Yx, 1) =—pg Pus(x, 1) on R x [1, 00), (3.4)

Then, ¢ has to solve the problem

w200 = A+ Sudp 2 4+ 5udny W+ Sin + N s, §)
in Bor(0) x [y, 00).
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5/2

Equivalently, multiplying by ©”/<, ¢ solves

1/2
p2dp =Ayp + 5U*¢ + 5U* <%) i (uy +§&,t)+ Byl + pnl(ny +§,1)

+ 1Sy + £.1)
+ N Pus, 11 ?@)(wy + £.1) in Bag(0) x [fg, 00), (3.5)

where By is the linear operator
A -1/2 4 4
Bolf1:=5 | (U = wHy + pJtAl+ n~ Pgs(yv.oms) = U*| £, (36)

3.1 General strategy for solving the inner-outer system

We now describe the method we use to solve system (3.4)—(3.5). Firstly, for fixed
parameters A, A, é,é and inner function ¢ in suitable weighted spaces, we solve
problem (3.4) in ¢ = Y [A, A, £, &, ¢]. This is done in Sect. 4. We insert such ¥ in
the inner problem. At this point we need to find A, A, &, £ and ¢. We make the change
of variable #(t) defined by the ODE

% =1 (1(0))

(o) = 1o,

which explicitly gives

ft s (3.7)
T—1)= ——ds )
to /’L(s)2

—/td—s<1+ (1) d (3.8)
= ), oz T '

1 -
= oA +o(1). 3.9)
14
Expressing Eq. (3.5) in the new variables (y, 7) we get the inner problem

0 = Ay¢+5U G+ Hip, ¥, A, A, £, E1(y, 7) in Bog x [1,00),  (3.10)

where

o 1/2
Hig, ¥, A, A& EN(y, 7) :=5U (31 (%) Yy +§,1(1))

+ Byl + uyr] (uy + &, 1(v) 4+ 1> Sin(uy + £, (1))
+ N Puz, 1 2@) (ny + &, 1(1)). (3.11)
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Let Zo be the positive radially symmetric bounded eigenfunction associated to the
only negative eigenvalue A( of the problem

—Ayp —SU( = rogp for ¢ € L¥(RY).
It is known that A¢ is simple and

o~ Tally|
Zo(y) ~ T as |y| — oo.

We solve (3.10) with a multiple of Zy(y) as initial datum, namely

¢ (10, y) = e0Zo(y) in Bag, (3.12)

for some constant eg = eg[ H] to be found. Formally, this initial datum (3.12) allows
¢ to remain small along its trajectory. Indeed, multiplying (3.5) by Z and integrating
we obtain

12, p(t) + rop(t) = q(1),
where

p(t) :=/ (v, Zo(y)dy, q() :=f h(y,t)Zody.
]R3 ]R3

The general solution p(#) is given by

t — ! —
p(t) = el*ol Jo s 2ds (p(to) +/ /L(s)_Zq(s)e_l)‘Ol"(s) 2 ds) )
0]

This shows that in order to get a decaying solution p(¢) (and hence ¢(y, 1)), the
following initial conditions should hold:

plto) = fR B0 10 Zo(y)dy = - f ns) g (s)e” IO ds.
: "

This argument formally suggests that, to avoid the instability caused by Z, the small
initial value ¢ (y, fo) needs to be constrained along Zj.

Another important observation is that, in order to solve the problem (3.10)—(3.12) we
need to constrain the right-hand side H to be orthogonal to {Z; }?:1. Namely we need

H(y,t)Zi(y)dy =0 for t € [t9,00) and i=1,2,3,4. (3.13)

Baor
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Indeed, the elliptic kernel generated by {Z; };‘:1 is a subset of the kernel of the parabolic
operator

1o = Ay +5U ().

Hence, we expect to have solvability of the inhomogeneous problem (3.10) with suit-
able space-time decay if the orthogonality conditions (3.13) are satisfied.

As we shall see in Sect. 5, condition (3.13) with index i = 4 is equivalent to a nonlocal
problem in A, for fixed ¢, £. Such operator is similar to an half-derivative in the sense
of Caputo [6], and we develop an invertibility theory in Sect. 8. In Sect. 5 we solve
(3.13) by fixed-point argument and hence we find A, £. A main ingredient of the
full proof is the linear theory for the inner problem developed in [11] and adapted in
dimension 3 in [15].

3.1.1 Statement of the linear estimate for the inner problem
We recall the result on the linear theory in dimension 3, proved in [15]. To state the
result, we decompose a general function i(-, 7) € L2(Bypg) for any T € [19, 00) in

spherical modes. Let {#},,}7"_, the orthonormal basis of L?(5?) made up of spherical
harmonics, namely the eigenfunctions of the problem

A0 + APy =0 in S,

where 0 =Xg < A1 =Xy = A3 =2 < Xg < ---. We decompose £ into the form

h(y,©) =Y hu(yl, )0 (|§_|) hj(lyl, ) = /Szh(rf?,r)z?m(@)d@-

m=1

Furthermore, we write & = h° + h' 4+ h' where

3 o0
W =ho(yl,T), h'= " hu(yl,7) 0 (ﬁ) W =" (131, 7) O (ﬁ)
m=4

m=1

We solve the inner problem (3.15) for functions % in the space X, 24, defined by

Xy 24a:={h € L* (Bag x [10,00)) : |y, 24a < 00}, (3.14)
where
Il orai= sup (L +[yPT)|h(y, ).
T>10,YEBR
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Proposition 3.1 Let v, a be positive constants. Then for all sufficiently large R > 0
and any h(y, ) with ||, 244 < 00 such that

/ h(y,©)Z;j(y)dy =0 in[t,00), for i =1,2,3,4,
Bar

there exist p[h] and eg[h] which solves

3d = Ayp + 55U+ h(y,7) in Bag x (19, 00)
¢ (y,10) = e0Zo(y) in Bag. (3.15)

They define linear operators of h that satisfy the estimates

(v, DI+ A+ [yDIVyd (v, Tl

R260(R, a) R36,(R, a)
< | 222 0 ST ht ’
S AT a1
(3.16)
and
leol2 ]l S 1 lv.24a>
where
1 ifa > 2, 1 ifa > 1,
Oo(R,a):=3logR ifa =2,, 61(R,a):=4logR ifa =1,
R* 4 ifq < 2, R=4 ifqg < 1.

As we said in Sect. 2.3, in order to make the system for (¢, ) weakly coupled, ¢
needs to be small at distance y ~ R. For this reason, we need to take @ > 1 in the
statement of Proposition 3.1. This makes clear why we need to improve ansatz u| to
u3 in Sect. 2. Since in our problem 2 = H as in (3.10) decays as

_ 1

1+ 1 —
L+ [y* L+ [y*

LAY

where 7 is given in (3.7), we apply estimate (3.16) with constants

1+

a=2, v= ,
2

in the simplified form

R?10g(R) R3
L+ yP T4 y*

o1+ (L + [yDIVy@(y, DI S Ihllvar™ [ } , (3.17)
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and observe that

N

[R2 log(R) R3 }

{R—llogkif|y| ~ R,
L+ [y T4yl

R®  if|y| ~O0.
We look for ¢ in the space of functions
Xy:={p(y, 1) € L7(Q x [t9, 00)) : |||« < o0},

where

[ R*log(R) RS 1!
||¢">k = sup T 3 4
T€[19,00),y€B2R 1+ |y|\ 1+ |y|

x [1¢(v, O+ (1 + 1yDIVyd (v, 7]

fv[Rzlogue) R’ }‘ (. 7)) = $ (. )|
T+ yP 14y

+ sup
T€[10,00),y€BoR
71, 2€[T, T+1]

1
11 — 027

—1

+ sup
T€[79,00),y€B2R
71, €T, T+1]

IVy¢(y. 1) = Vyo (v, 1)

1
1 — |27

v [RZ log(R) R3 }
L+ yP 14 y*

x (L+1yD (3.18)

for & > 0 fixed small (as in Sect. 3.1.3).
We notice that, by standard parabolic estimates, from (3.17) we also get the bound
on the Holder seminorms in (3.18), thus

Iol < Cllaly.a (3.19)

3.1.2 Spaces for the parameters

We introduce weighted Holder spaces for the parameters A, &. Let
Xt.a.b,0:={A € C(t9, 00) : [|Allg,a,6,0 < 00},

where

[Als.a.5.01= 3P {10 1Al r11) + 59p { O [AJo.orrsn |
t>1y

t>1y

and

[Allso,r,i+11 = sup |A(s)],
se(t,t+1]
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[AGs1) — A(s2)]

[Alo,o,[t,0+11:=  sup >
stsaelt i1l 11— 82
$1782
We look for A such that
1Ay 503 + 1A Len 00 < b1, (3.20)

for some positive constant €, &g, 81, lo, [1 to be chosen (see Sect. 3.1.3). We also define
Xt .o =Xt cc,0 and

17lz.c.0:= sup p(t) ™ [||h||oo,[t,t+1] + [h]o,a,[t,t+1]] .
>t

We consider &; such that
11 IIﬁ,Hk,%Jrg + 11 ls, 14k, < b2, (3.21)

for some k > 0 (see Sect. 3.1.3). The positive constants by, by will be selected as
small as needed.

3.1.3 Choice of constants
Here we select the constants

lo, 11, 80,61,€,68,k,a, B, 0, k,

which are sufficient to find the perturbation ¢ in (3.1) by the inner-outer gluing scheme.
Firstly, we indicate where the constants appear in the scheme:

lo, 11, 80, 81, € appear in the definition (3.20);

k is used in the norm (3.21) for &;

8 appears in R(r) = %, that is the radius of the inner regime;

o, B is used in the norms for the outer problem, see (4.6) and (4.14);
o > 0 appears in the choice of § = /1 + § + o in the outer problem;
k > 0 is the constant appearing in Proposition 4.1.

We fix the following values:

° 8:%;

ol =k=73

° lo=l1+%=%;

° a=2a=8=ﬁ;

e 1=l +8—0—U-=-8U+a/2)(1+2e);
e So=0L+5—0—1-=581+a/2)2s;

e f=1+L+8-0;

o Kk =y(0c —ad)
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These choices are dictated by the following constraints, based on the estimate of the
approximate solution, the linear theory for inner (Proposition 3.1) and outer prob-
lem (Lemma 4.1), the characterization of the orthogonality conditions (6.1) and the
estimates in Proposition 6.1:

e /1 + 6 < 1tomake 8 < 3/2 and apply the outer linear estimate (4.8);
e we need

1-4 .1+ . (A+a/2)A+2e)—1L1+0 1-1
S + £ , Wwhereé = .
14+ +a/2)(142e) 2

)

Up to choosing o > o > 0 and ¢ > 0 small enough, these range is equivalent to
(2.27), which, together with the previous restriction, impose a range for § and /;
leading (for instance) to the choice (2.31);

e lp > [ andk+1 > 28+ to get ;1>/2 Sy, controlled by the term 1 (1)SU (y)*J (x, 1);

eo > a8 > 0,e > 0and « € (0,2y(0c — «d)). This allows to estimate the
R%log R < e 1,7 when we need to control the term !¢ A ng in the outer
error;

e k = I1. From (5.6) we need |£1| + | % |& < !, thus the choice of k, which is
consistent with (2.30);

e in the outer problem we obtain |y (x, )| < %. The nonlocal equation (5.2)
and the estimate (2.29) asks for |A(¢)| < | (&(2), t)|. Thus, this leads to the a
choice of lp € [I1,]1 +8 — o];

e from estimate (6.3), Eq. (5.2) and the bound on the ¢-Holder seminorm of i we

get

I1+é6—0
M 8o

< B _
IS L pae A

(Ao 1 ye i S EC, o fro+1

which gives §;
e similarly, from (4.16) the Holder estimate on the outer solution gives

[I//(Ov .)]0,%4’8,[1‘,1‘«1»]] 5 Mll+5—g (MR)_(1+§)(1+28)’

and by Eq. (5.2) and estimate (6.5) we need
[A]O,s,[t,t-i-l] S, [¥ (O, -)]0,%4—8,[1,1—}-1]'

This leads to the choice of §;;

e after choosing 0 = 2« > 0 small so that § > o, the constant ¢ is chosen small
enough to make 61 positive (any choice of o € (0, 6/2) and ¢ such that §; =
81(a, ) > 0 is sufficient).
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4 Solving the outer problem
We devote this section to solve the outer problem (3.4)
W =AY +yY + VY + fIY, ¢, A AE Elx, 1), inQ x [19, 00),

Y(x, 1) = —pg Pus(e, 1) on dQ x [1g, 00),
Y(x, o) = Yo(x) inQ,

where o (x) is any suitable small initial condition,

172
Fot) =p™! (%) AT

Y . ;
+ ! (—) nR {(y —AN)(Pp+2Vyp-y)—Vyo- (—)}
Mo 2

172 2 'z 0" (lz) Vyd 2 n'(Iz])
o ) (B - ) 2 )
AP ¢ lz| u2R?  u’R? w Izl uR

+ 11y 2 Sin (1= nR) + g Sout + 119 PN (wz, )1 = qg) (4.1

and potential
V(x, 1) = 5u3(l = ng),

which, by the definition of u3, using again the bounds on H,,, J, ¢3 and the support
of (1 — ng), satisfies

Hy+J+u " gsm\ 4
I U |

VI < 2UmY (1 -

-2
[+ u(l+|yD1*

-2

L Sy 4.2)

Let

U1 (x, )=o) 2P (x, 1).
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Then, the problem for yr; becomes

qy = Ayt + Vi + FIY, ¢, A, AL E,E](x, 1) in Q x [1g, 00),
Y1 (x, 1) = g(x, 1) on L x [fg, 00),
Y1 (x, 10) = Y10(x) inQ (4.3)

where

F(x, 1)=po()2 f(x. 1)
glx,t):=—u3z(x,t)

Y1.0(0):=p0(t0) T Yo (x).

In particular, in the proof of Proposition 4.1 we prove that for any o > 0

L+é—0 ,,—2
IF(x. 0] < f“@ﬁ. (4.4)
Also, using the definition of u3, in (4.17) we prove
g, Dl < . 45)
Firstly, we consider the linear version of (4.3). Let
php?
[F(x,0)] < ”F”ﬂ72,a+2ry|a+2a (4.6)

for some B > 0,a > 0, where | F||g—2,4+2 is the best constant for such inequality.
Also, for § € (0, 1/2) and o € (0, 1) we define the Holder norms

| f(x1, 1) — f(x2,2)]

[flo,2s.8.@x[t,r+1] =  sup
) xi#£neQ X1 — x| 4+t —1y|?
t#neltt+1]
[fx, 1) = fx, 1)l
[fx, )ofri+11 1= sup =
ti#£nelni+1] [t — 1]

[f(,D]oo.0:= sup

X1 #0eQ lt1 — 12]°

Lemma 4.1 Let F such that |F|g—244+2 < 00O for some constants f < 3/2 and
a € (0, 1). Furthermore, assume that ||e** g(s)|| L 3Qx (1,00)) < 00 for some a > 0
and |h| = q) < oo. Let Y1 [F, g, h] be the unique solution to
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oY1 = Axy1 + Vi + F(x,t) inQ X [tg, 00),
Yi(x,t) = g(x,t) on a2 x [ty, 00),
Yi(x, o) = h(x) in Q. 4.7

Then, for b € (0, 1) and a € (0, min{a, A — €}] for ¢ > 0 arbitrary small, we have

[¥1 (x, O] SIFlp=2.042 + e P00 p oo

_H
L+ [yl
+ e 0 e g L @00 “o

forallx = py +& € Qandt > to. Furthermore, the following local estimate on the
gradient holds:

uh!
W fOV |y| < R,
V . < F ﬂ—l—ZER—l—ZE 4 9
(Va1 Gy D)]o,26,Br@) S IFlp—2,0421 4.9

Vi1 (x, O S 1Flp-2.a+2

where R < 8~ for sufficiently small § > 0. Also, one has

1
R 24a §+6
(LR) sup  [Y1(x, ')]0,%+s,[t,t+1]
XEBR[L(S)

&
+ (@R sup i oty S IFlp-2asan’. @10)

XEBRus)

Proof To prove the result is enough to find a supersolution to the problem

02 = Ay + F in Q x [tp, 00),
Y2 =g ond2 x [19, 00),
Ya=h inQ.

We use the notation yp = Y[ F, g, h]. Indeed, suppose that 1}2 is a supersolution to
this problem. By (4.2) we have

uh=2

-2
WR(IO) ,

ENAES

and hence ||V1/_/2 I B—2.2+4a < R(z‘o)’2 for 1y sufficiently large. Thus, we find that a
large multiple of v, is a supersolution of (4.7). Firstly, let F', ¢ = 0 and consider
Yn[0, 0, h]. Let vg(x) be the solution to

— Axvg — bvg =0 1in Q,
vo=1 ondQ,
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Infinite time blow-up for the three dimensional energy...

for b € (0, A1) and define
V2 = hlloce™" T up(x).
We claim that 1}2 is a supersolution for [0, 0, #]. Indeed, we have

W2 — Axra = |hfloce U7 (—bvg — Ayvg) =0 in Q x [fg, 00),
U2 (x, 1) = [h]loce ™2 >0 on dQ x [fy, 00),
Va(x, 10) = |hllecvo(x) > h(x) in €,

where the last inequality is a consequence of the maximum principle applied to vy.
Secondly, we look for a supersolution to ¥ [0, g, 0]. Let v (x) to be the solution to

— Ayvy —av; =0 in Q,
vi(x) =1 onodf2,
where a € (0, min{a, A; — €}] and consider

a(t—to)

Va(x, 1) = le” gllromax,00ne v (x).

We verify that
V2 — A = [e® gllooe T (—au; — Avy) =0 in Q2 x [f9, 00),

Ua(x, 1) = e glloce 117 > g(x,1) on IQ x [fo, 00),

Va(x, 10) = e gllL@ax .00y V1 (¥) > 0 in Q,

where we used a < a to get the second inequality and @ < A; to get the third one
by the maximum principle. It remains to find a supersolution for y»[F, 0, 0]. Let
Vsl F,0,0] = e €U~y where ¢ = 2y so that

w2

dJ =A _
V3 xY3+cys + 5 y[2re

We find a bounded 3 supersolution in case ¢ < A, thatis 3y < A;. Consider

V3 = 1o <x%$> n (%) +Pi(x, ).

We need
b1 — Ay —

)
- n
> |:—3t1|)0 +u " AyPo + o + W}
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-2
e -
ara + (Bxn = dmnbo + 207 Van - Vydo, - (41D)

+(1 -
( n)1+|y

with &3 (x,t) > 00ond2 x [ty, 00) and initial datum 1/_/3 (x, tp) > 0. Suppose without
loss of generality that 2 C Bj and take 1 as the solution to

Ayll)o = —W in BM—I
Po=0 ondB,-1.
From the variation of parameters formula
e g2
Po(|y]) = 2ws3 /Iyl ?/0 152 dsdp, (4.12)
we find
<
|1b0| ~ 1+|y|av
and
-1
1 yza 52 1 [yl S2
9 <9 — 2/ ————ds+0 Jt —/ ——d
|tll)0|N l(/L)M 0 1+S2+0‘ s+ t(|)’(x )|) |y|2 o 1+S2+0‘ s
2
_ 1 N
YAyl L4yt
- 1
Tl |y

Also, if |x — &| < d for d fixed sufficiently small, we obtain

2 n? i :
—9 g + u A + o + = +o =0
(o 1" Aytho o+ s = Ty e (1 + |y'“>

Now, we take 1 as the solution to
-2

H _
e+ (B = ) bo + 2 'Ven - Vyibo,

b1 — Ay —cpr = (1 — T))W

P =0 ona x [ty, 00),
Pi(x, ) =0 in Q.
We estimate the right-hand side by
-2

"
l—np)— < o,
( n)1+|y|2+aNM
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[ (Axn — d;m) ol S u”,
21 Ve - Vol S w.

Hence, by comparison principle using ¢ < A we obtain a solution | * |3 < u®.
Thus, inequality (4.11) is satisfied. Also, &3 = 0 on a2 X [ty, 00) and Y3(x, tg) =
mpo(x, o) > 0. We conclude that 1/73 is a supersolution and the bound (4.8) is proven.
Now, we prove the gradient estimate (4.9). Let

x —§@)

Vi(x, 1) = ¥ (z(x, 1), T(t)), where z:= ROR®

and 7(r) = (R(t)p(1)) 2, that gives T(t) ~ 2. We can take 7(79) = 2. The equation
for ¢ becomes

0 =AY +a(z, 1) - Vol + bz, O + F(z, 1),
where F(z, 7(1)) = (Ruw)*F(uRz + &, T(¢)), and the coefficients

a(z, 1) = (uoR) [20: (o) + €], b(z, 1) = (RW)*V (uRz + £, (1))
<
~ 14 R2|z)?’

are uniformly bounded. Since | F|g—2 4+2 < 00, we have

g IFlp—2,a+2

F o) = R F(uRz + &, 70) S W 7o

We have already proved the L°°-bound

IWilga S 1Flg-2.a+2-

We apply standard local parabolic estimates for the gradient: let o € (0, 1) and
71 > 7(t9) + 2, then

(V1 Gy t)]0,0,810) + 1V21 Gy T Lo 0y)
SV Lo By x (21— 1zr) F 1 F L (By(©)x (11 —1.71))
S @ — D IFlp-2,012
S n@)PIFlg—2.ut2-

In the original variables, for any ¢ > 79 + 2 we find

(R IVY1 (¢, D)0.0,Be) + RIIVV1Co D) Lo B 6)) S MPNFlp—2,042-
(4.13)
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By similar parabolic estimates using |V, ¥oleoc < 00 we can extend estimate (4.13)
up to ¢t = 1y, thus, the proof of (4.9) is complete. Now, we prove estimate (4.10). We

consider the Holder seminorms. We perform the change of variable
Vit =9 (2.0,

where 7 := (x — 5)/(Ru0)1+% and T satisfies

dt 1

dr — (uo(t)R(6)*e’

that is
o0 ds
T—17 = f T e ds
0 (Ro()R(®))
= C (woR) ™ (1 + o(1)).
The equation for 1& is
V= A +a(z,v) - Vol + bz, O + f(z, 1),

where

F = (moR* F((uoR)' "2 + §,1(7))
Then, applying local parabolic estimates on 1/, we get

[Vr1(x, t1) — Y1 (x, )]

[Wl (-x’ .)]O,Hii,[l‘,l‘-i-l] = sup 14+2¢
n#neltt+1] [t — ] 2
~ ~ 14+2¢

< ||z, 1) —¥(z1, @) [t — ] 2
~ Sup 1+2¢

11, 12€[T,T+1] Tt — 12| 2 [t — 12]

A 1
<[ (z, )], 142e —_—
~ ’ 0, 5= [11,12] P 1+2¢

: [(LR)*T*] 2

1

B -
[(uR)> ]

SIFlg=2,a4+21

where 7; = t(#;) and z = z(x, t;) for i = 1, 2. Similarly, using the Holder coefficient

(2e, €), we get

1

e Mo S 0 T
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Infinite time blow-up for the three dimensional energy...

We introduce the following weighted norms for v:

(g

‘= sup {gl(x,t)_lll/f(x,t)l}Jrsup{gz(t)_1 sup  [¥(x, )o,e,[r,04+1]

x€eQ,t>1 1>1o X€B,R(§)

+sup sup fgsCro )7 IVaw (01 4 50p g4 () T VW0 20,8 0 1141

1>l xeByr(§) 1>ty
+ sup {gs(l)l sup [ (x, -)]0,5+8,[,,t+1]} (4.14)
1>ty x€Bur(§)
where
gi(x,1) = % o0 = [WR ] gy = %
ga(0) = PRI, gs(r) = Mﬁ[(MR)2+a]_(%+S)
and define the space of functions
X = {¥ € L¥(Q x [t9, 00)) : [ [lss < 00}
Now, we are ready to solve the outer problem (3.4) for ¢ such that
Ioll < b, (4.15)

for parameters satisfying (3.20) and (3.21).

Proposition 4.1 Assume that A, &1, ¢ satisfy (3.20), (3.21) and (4.15) respectively.
Also, suppose Vo € C*(Q) such that

I¥ollze + Vol < e™,

for some k € (0,2y (0 — ouS)). Th.en, there exists ty large so that problem (3.4) has a
unique solution v = V[A, A, &, &, ¢] and given a > 0, there exists Cyy such that

1V e < €770 Cr, (4.16)

where Cyy = Cyux(b, b1, b2) andb, by, by are the constants in (4.15), (3.20) and (3.21)
respectively.

Proof Let T the linear operator, defined by Lemma4.1, such that, given 8 < 3/2, « >
O and functions f, g, h withbounded norms || f [ g—2,a+2, le** gllo, |12l oo Tespectively,
T[f, g, h]is the solution to (4.7).
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Let

1/2

my ¥ =va+vs,

where we define ¥ 5:=T (0, —u3, o (to)/*¥0). From the definition of u3(x, 1) we
expand for x € 9€2 and #( large, to get

a3lt1/2 —,LLI/2 0%
1/2
(> +1x —£P)" e = 8]

2 2\ —1/2
a2l — £ w) _
= a3 ?|x — £ [( g 1

= 12 fr(x, 1), (4.17)

uz(x,t) =

for a smooth bounded function fp(x,?) on 92 x [fg, 00). Hence, Lemma 4.1 gives
the bound

VBl S e "0 Yol + e T e us] 1 paxin.con
forany b < A and a < min{5y, A — ¢} forany ¢ > 0.

Now, we apply the fixed point theorem to find ¥4 such that i satisfies (4.16). We
obtain a solution v if yr4 satisfies

Vva=AWa), AWa) :=TIF(¥a),0,0]
where F(x, 1) = o(t)"/? f(x, ) and f is given by (4.1). We look for yr4 in
B={Ya: lug "Vale < Me ™},
where M is a fixed large constant, independent of ¢ and #y. We prove that A(¥4) € B

for any ¥4 € B. Firstly, we estimate the L norm of F(y4). From (4.14) we apply
Lemma 4.1 with 8 =1/2 + 11 +§ < 3/2. We recall that F = pc(l)/2f where

Fo 1) =y PN (s, $)(1 = ng)
" 12
+u‘1(—> DonR
o

i 1/2 ) £
+p! (—) nR {(V —A)(@+2Vyp-y)—Vyo- <—)}
O Jz

12 2 0’z " (lz) Vyd  z 7'(lz)
() ) )
a (uo ¢ lz| u?R? ~ u’R? n ozl nR

+ Mal/sz (1 —ng) + ual/zSom.
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Infinite time blow-up for the three dimensional energy...

We have n”(y/R) # 0 and n’(y/R) # O only if |y| ~ R, hence we estimate

w2
[ o dAn|

2 3 -2
S p gl | R8RS
~ L+ ]y L+ |y*] 1+ ]y? UR
[T po?
< 1+ 1 R
Su 0g(R)
1+ |yl?

1145 w?
< e Ktoyhitd—o 4.18
pS Iz T+ e (4.18)

Using the bound on the gradient given in the definition of | ¢, we obtain

= (i)”z <2m oz n/(|z|)>
Mo uo Izl pR

<M_1M1+11[R210g<k>+ R3 ](m’uzm)

~ L+ yl* 14 yP u2R
-2
S Ilen log(R) 5 TR
-2
SE_KZO/LIH_S_U I —
1+ |y~

Similarly, also using the bounds on A, § we have

@ 1/2
’M_l <—) @Onr
2]

< Nl log(R)

n/(m)i.(_i_zaz(ﬂR))'
|z UR uR

Ii+6 I’ (2D
! IOg(R)W

w2

1+ |y|2+a'

Sk

< oo oo
Also, since § < 1/3, we have
‘(/LMO)_WUR {(V —A)(p+2Vyp-y) — Vyo - (%)H

S M_lMH_ll |:

< ultlgl. R

R?log(R) R3 }
L+y* 1+ 1yP
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-2
<  h+sH
~ M R2
-2
<e—Kt() l1+6—0o w
~ [+ Iy

Furthermore, using Lemma 2.5 we estimate

12 Soul <

-2
< sk~

-2
< e—lcto l1+6—0 I
~Y

1+ |y|2+a'

and

w2

—1/2S_ 1 — < h+28_
I in(1—nr)l S 1 T+ Dl

-2
S e_Ktol,Lll+8_U H

1+ |y|2+a'

Finally, since |, 1/ ZWA |« is bounded we get

_ - B B 2
g PN (s, $) (1 — ng)l Sp " (M 1/2¢nR+M1/2w) (1—ng)

w2

TP
/L72 2
[w 1612620+ (R~ log(R) )

< -
~1+ |y|2+a
M2(1|+87<7)
R2a

- -1/2, 2
< (1 18P0 + ol g ) (1 = )

—1/2
g P palZ e

I+ w2
—K +o—0o
Se T T e (4.19)

Summing up these estimates we conclude that

w2

X, t <efl<l‘0 l1+6—0 )
O T

Hence, we have

w2

1
F X, t < e—Kt() 7-}—[1-‘,—8—0 ,
FGo 0l S e e
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and Lemma 4.1 gives

1

1
TIF ,0,0 < e—lcto 5 tHi+é—0o )
ITLF(¥4),0,01| S e u ThE

Since F € L*°(Q2 x [ty, 00)), classic parabolic estimates give ¥ € CH'&’#(Q X
[f0, 00)) for any 6 < 1 and from Lemma 4.1 we get

litg 2 Walls < M0 (4.20)
for sufficiently large M (independent of 7). This proves A(¥4) € B. Now, we claim

that the map .A(y) is a contraction, that is: there exists ¢ < 1 such that, for any

1 2
v,y e B,

—1/2 1 —1/2 2 —1/2 1 —1/2 2
lug P AW D) = g PAG P e < eling P = g Y P

Since y appears in F (1) only in the nonlinear term N, we get

AW = AW = T[N (w3, v +vm + =g

= N (3. 9? + v + 0”2 ) 0. 0}.
From definition (3.3) we write
N (Ma, v+ + M71/2¢77R) -N <u3, v + s+ M71/2¢77R)
= [ (s + 98 + s+ 1 20n) — s +y D 4w+ Pgn)’
_ 5u‘3‘(¢(1) _ W(z)):|
= [ <u3 +y) + v+ M_l/zqﬁn)s - (us +y ) + v+ M_l/qun)s

—5(usz + M_1/2¢77)4H(1)/2 (W(l) - 1//(2)>1|

+5 s+ ™ Py - uf| D - @)
=: N1 + N>.

We estimate

— —-1/2 1 2
NG O1 S 1 P0 ol P = w PP
— —-1/2 1 2
Su PP P - vir
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w12 20+s—0)

n
YAy T4y

—1/2

Iy P — v P)I2,

-2
_ 1 — 1% 1 2
5 e Kt0M2+ll+8 o o |y|2+a ” (w( ) w( ))”**

and

12 1 1 2
(N2 (e, D] S wdgeg P pmud g V! (W )l

—3/2 el 3T iy @)
< 'R N
FaRE Il pe g |aII Wi —Yu ) s
11+8 p? 1/2 (D )
< ,—klo 7+1+ -0
Se " u2 Ty |2+all Wi —Yu ) s

Finally, using 8 = 1/2+ 11 +6 — 0 < 3/2 we apply T[-, 0, 0] to F (i) we obtain

_ 1 —-1/2
ALY T — Ay DY) S e ot “1+| i Py -y @), @21

Arguing as in (4.20), from (4.21) and standard parabolic estimates we obtain

lg 2 ALY T = ALY P Dl < el 2@ = ) s

with ¢ < 1 if 1y is taken sufficiently large. Applying the Banach fixed point theorem

we get existence and uniqueness of /4 and hence of ¥ = 1, Y 2(¢A + ¥p) with
estimate (4.16) that is a consequence of estimates (4.8)—(4.10). O

Remark 4.1 (Continuity with respect to the initial condition v/y) Given an initial datum
Yo Proposition 4.1 defines a solution ¥ = W[yg] to (3.4), from a small neighborhood
of 0 in the L (2) space with the C'-norm || oo + | V0o into the Banach space
L°° with norm ||/ |4« defined in (4.14). In fact, from the proof of Proposition 4.1 and
the implicit function theorem, {9 - W[¥] is a diffeomorphism and hence

Y81 = WIWg T < ¢ (195 = Wi loo + V28 = Vadloc

for some positive constant c.
The function v = W[A, A, £, E ,¢] depends continuously on the parameters
1}, A, § , &, ¢. To see this we argue similarly to [15, Proposition 4.3]. For example, fix
A, &, &, ¢ and consider
Y=y —y @ where v =W[A; A £ £ 4], for i=12
for A1, A, satisfying (3.20). Then v solves
W =AY +y¥ + VIAW + (VIAL] = VIAD P + F[A] — F[As].
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One can easily check each term in F and obtain
IFIA1] = F[A2]lp-2,a+2 < €l A1 — A2lig,c0,
with ¢ < 1 if 1 is large enough. Also, using (4.2) we find that
IVIAL] = VIA2llp-2.a+2 = elA1 — Azlig,00-

Then, arguing as in the proof of (4.8), a multiple of | A — Az”}j,lo,&), %+61b, where 1 is
the supersolution constructed in Lemma 4.1, is a supersolution for V. Similarly, one
obtain analogue estimates fixing &, A, §. Let us consider all the parameters fixed. We
define ¥ := ¥ [A, A&, &, ¢1] — YA, A&, &, ¢o], which satisfies the equation

WY =AY + Vi + Fld1] - Flgn).

For instance, we estimate

1/2 )
—1( H I p—1 2p24a M
— - 0, < — 'R™" log(R R _
I (Mo) (¢1 — ¢2) anrl Sld1 — P2l g(R)u T+ e
-2
<c _ l1+6—0 Ik ,
Selgr = ool 7 oo

with ¢ < 1 when 1y is fixed large enough, and arguing as in (4.18)-(4.19), we obtain
similar estimate on the other terms of F[¢;] — F[¢2]. Having the L°°-bound, the
estimate for the gradient and the Holder norms of ¥ follow as in the proof of Lemma
4.1. We summarize the continuity of Y[A, A, &, é , ¢] with respect to the parameters
in the following Proposition.

Proposition 4.2 Under the same assumption of Proposition 4.1, the function =
VA, A, &, &, ¢liscontinuous with respect to the parameters A, A, €, &, ¢. Moreover
the following estimate holds:

IwA®, AD gD ED 0] —w[A® AD £ EC g,

1 2 A (1 A2
< c{nA( P APy g0 tae TIAD — APy

1 2 2 (1 2 (2
1517 = 57 1 e + 16 = E e + 190 - ¢>(2>||*}

where ¢ < 1 provided that ty is sufficiently large and the constants by, by in (3.20),
(3.21) are sufficiently small.

5 Characterization of the orthogonality conditions (3.10)

Given the function ¢ = W[A, [\, &, é, ¢] provided by Proposition 4.1, we plug it in
the inner problem for ¢. From the linear theory stated in Proposition 3.1, the inner
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problem (3.10) with initial datum (3.15) can be solved if the orthogonality conditions

HIA, A&, &, 1y, t(1))Zi(y)dy =0 for t>1y, and i=1,2,3,4,
Bog

5.1

are satisfied. The aim of this section is to characterize this set of conditions as an
nonlocal systemin A, & for fixed ¢ € X.. The nextlemma shows that the orthogonality
condition with index i = 4 is equivalent to a nonlocal equation in the variable A, for
fixed ¢, &.

Lemma5.1 Assume that A, &, ¢ satisfy (3.20), (3.21) and (3.18) respectively. Let
Y o= V[A, A&, &, @] be the solution to problem (3.4) given by Proposition 4.1.
Then, the condition (5.1) with index i = 4 is equivalent to

(1 +alA, E1)TIAL0, 1) = g(t) + GIA, A, &, &, ¢1(t) for t € [ty,0), (5.2)
where J is the solution to

T =AT +yT — A)G,(x,0) inQx[tg— 1,00),
Jx,H)=0 ondQ x [1p— 1, 00),
T, 1o—1) =0 inS.

The function a is smooth, decays ast — 0 and a[0, 0] = 0. Then, for k € (0,2y (o —
ad)), the following estimates on g and G hold:

—K
1815 151, e + 18lz0.50.0 < Coe™,

and

IGIA, AL EE. D, gy 5 140 T IGIAL AL EE Blls10.00.e
< e_KtO{”A”ﬁ,lo,So,s + ||A||II,11,51,8 + ”51 ||t,1+11,%+8 + ”51 ||t,1+11,£ + ”¢"*} (53)

Furthermore, we have

IGIAD, AW M ED D] — GIAP AP P D 6|, 5 1o
= c{IAY = AP g e HIAY = APl

1 2 2 (1 2 (2
1517 = 571 e +IE = 6Tz 160 — 0P 54)

with constant ¢ < 1 provided that t, is fixed sufficiently large and b; small fori =1, 2.

Proof We recall that
. 110\ 2
Hig, ¥, 1, 1, &, E1(y, ©):=5U (»)* 1 <7> Y(uy +§,1(7))
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+ Bo (¢ + nr] (uy + &, () + 1/ Sin(uy + £, (1))
+ N (' Puz, 2@y (uy + &, 1(1)).

Hence, (3.13) with index i = 4 becomes

1/2
0=p? f Z4(3)Sin(y, 1) dy + p (@> / ZaSUM* W (ny + &, 1) dy
Bog 12 Bog

+ fB Z4(»)Bo[¢ + ] (uy +&. 1) dy
2R

+ /B ZiON (M Pus, 12 @) (uy + &, 1(0)) dy
2R
4
=:> ;).
j=1

We follow the analogue [15, Lemma 5.1] to estimate the terms i ; (¢). Firstly, we analyze
i1. We have

i1(t) =M5/2/ Sin(y, ) Z4(y) dy
Bar

o\ '?
—u <_) / S5UWN T (wy + &, 1) Z4(y) dy
n Bar

+ N3(y, 1) Z4(y) dy

Bog
o /B ZaSU 0 hy (uy +&,8) dy
2R

::al([) —+ az(t) + a3(t)v

where we used that the integral of Z4(y)U (y)48y,. U (y) on Byg(0) is null by symmetry
fori =1, 2, 3. Also,

—1/2 )
p! (%) ai(t) = fB S5U()*Z4()J[AI(uy + €, 1) dy
2R

—JIAI0, D) / SUMY* Za(y) dy
Byr
+ [JIALE ) — TIALO. 1] / SUG* Za(y) dy

Bag

+ /B SUGY* ZeI ATy + £, 1) — JIAIE, D] dy
2R

=:an[Al(0) + anlA, £1(t) + ai3[A, £1(1).
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The main term in the left-hand side of (5.2) is given by

po\ :
p! (7) ' A4+ OR™) ayi (1) = TIANO, 1),

where ¢1(1 + O(R™2)) = fB2R 5U4Z, dy. To analyze the terms a3, we decompose

w[[\](x, 1) = J[A](x, 1) — j[A](x, t) as a sum of a solution in R3 and a smooth one
in Q with more decay. Then, using the Duhamel’s formula in R? as in [15, Proof of
(7.5)] we deduce

laialA, EMs19.50, L e + lar2lA, E1lz.i0.50.c S e {IAN gy, 80,146 + 1A 20,5,
18 140, e }- (5.5)

We analyze a3 by splitting J as a sum of a solution to the same equation in R3 and
smooth remainder in Q2 with more decay, and, proceeding as in [15, Proof of (5.10)],
again by Duhamel’s formula in R we obtain

|JIAN(y + &, 1) — JIAIE, 0] = lyul° TI[A, E10)O(|y)),

for some o € (0, 1) and bounded smooth f}mction 6, and l'[[[\, &] satisfying the esti-
mate above for ajp. After integration, aj3[A, £](¢) satisfies (5.5). Taking into account
the behavior of Ji, J> and ¢3 given in (2.34), (2.35) and (2.38) respectively, we have

a = / Zs)N3 (1) dy
Br
—1)2 3
= [ 2310 (U + sty + ]+ L)
Byr
2
x (—MHV +ud + u_”2¢3nz) } dy

=u2/B 10Z4()U (3)* QIA, A, E1(y, ) dy,
2R

for some constant s € (0, 1) and bounded smooth function Q[A, £](y, t) satisfying
(5.5).
Finally, Taylor expanding £, (x, §) at x = &, we get

a5 =1 /B Ze3)SUGY hy (uy + &, £) dy
2R
— uR, (&) fB Zs()SU(* dy

+ 1 /B ZaSUM* (3~ Dixhy (ny* () +6.6) - y) dy
2R
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= W Tl A, £1(0),

for some y* € [0, y] and a smooth bounded function I, (¢). The term p~ I/Z/Lgl/zil (1)
= Z?:l a; (t) gives the left-hand side in (5.2). Now, we look at i». We decompose

Wty tia)
:/BZR ZaSUGY WIAL £, A E, $l(uy + £, 1) dy
=¥10.0,0,0,0]0. 1) ~/32R Zy(SU()* dy
+ /BM Z4()5U (»)* {¥/[0,0,0,0,01(y + £, 1) — ¥[0,0,0,0,01(0, 1)} dy

+/B Za(SU* {WIA. & A€, ¢l(uy +&.1) — ¥[0,0,0,0,0](uy + & 1)} dy

=1 b1 (1) + ba[A, E1(t) + b3[A, &, AL €, 91(0),

The term

bi(t) = ¥[0,0,0,0,010,) | SU()*Za(y)dy,

Bor

is independent of parameters and, as a consequence of Proposition 4.1, satisfies the
estimate

—Kt
b1 ||n,10,50‘s + |1b “ﬁ»loﬁl,%-i-s < Ce ™",

Applying the mean value theorem to v and using the gradient estimate we deduce the
same bound for by. This gives the main term by () + b2(t) = g(¢) in the right-hand
side of (5.2). We analyze b3(¢). By Proposition 4.2 applied to

VIA, & A8, ¢] = ¥]0,0,0,0,0]
we obtain
”b3 ”]:I,l(),(sl,%-‘r&‘ + "b3 ”t,lo,&),s Se_Kt0{||A”ﬁ,lo’507é+g + ||A||u,ll,61,a
+ ”51 ”ﬁ,l—i-ll,s + 18 ”u,1+ll,%+g + ||¢||*}
Also, again as a consequence of the Lipschitz estimates in ¢ we have for example

Ib3lA1] — b3[1\2]||ﬁ,10,51’%+8 < c|Ar — Aalziy o.es
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forany A1, Ay € X1y, and fixed A, &, A, £ in the respective spaces. We analyze
i3. We recall that

A 1/2 4 4
Bolp +puyl1=5 [(U —uH, + pnJ[Al+p~ s (y, t)n3) -U ] (& + uyl,

which is linear in ¢, ¢ and satisfies

|Bolg + url(my + &, 1) S wle 4+ uyrl.

n
1+ |y

It follows that

. 1+ 2 11+6—
i3 ()] Spldlap TR 4+ |9 st 107
Se_moﬂlo-

Then, the Holder bounds on ¥ and ¢ in the respective norms give estimate (5.3) for
i3, and using Proposition 4.2 we also get the Lipschitz property (5.3) for i3. Finally,
we have

W (! Pus, 1 2@y (uy + &, 1(0))]

1
S —— @+ uy)’

14yl
2(1+8—0)
2 2(141) pb6 2 oM
(II¢II*M YR 4+ W st TR FREE >

S
1+ 1yP?
< e*KIOM[(J’

and (5.3)—(5.3) for i4 follows arguing as for i3. Summing up the estimates we obtain
G[A, A&, &, ¢l(t) = b3 + i3 + i4 as in (5.2) with the properties (5.3) and (5.4). O

Now, we characterize the conditions
f Zi(WH[A, A&, €, ¢1(y,1)dy =0, for t € (t9,00) and i=1,2,3.
Bar

This characterization is given in the following lemma, whose proof, similar to the one
of Lemma 5.1, is omitted.

Lemma 5.2 The relation (5.1) fori = 1, 2, 3 is equivalent to

Eri = o+ Oi[A, AL £, $1() (5.6)
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for smooth bounded function ® which satisfies

1018, A, &, @, 141, 1o + I1O1A, A, & Blls11c < €™ I AT 150,
IR L1016+ 181l 147, 1o + 101)- (5.7)

Furthermore, we have

101D, AV &M, ED, M) —0[A®@, AP @ £ p@, (1,

<e{IAW — AP s e FIAD = AP

1 2 (1 s (2
IRt 1 PRYVRSUUE | Sy Sl PRTVA

+ 1M — 9@}, (5.8)

with constant ¢ < 1 provided that ty is fixed sufficiently large and b; small fori = 1, 2.

6 Choice of parameters A, ¢

In the previous section we have proved that if ¢ € X, and A, & satisty (3.20) and
(3.21) then the system of orthogonality conditions

HIA, A&, €, 1y, t(1)Zi(y)dy =0 for t € [fg,00) and i=1,2,3, 4,

Bor

is equivalent to the nonlocal system in [#(, 00)

E1i = cipo()? (1 + O;[A, A&, ¢]) for i=1,2,3,
(6.1)

{(1 +alA, 1) TIALO, 1) = g(t) + GIA, A, £, &, ¢1(1),

with g, G,a as in Lemma 5.1 and ®; as in Lemma 5.2. Next, we verify that this
system is solvable for A, & satisfying (3.20),(3.21) respectively. This relies on the
following proposition, proved in Sect. 8, about the solvability of the nonlocal operator
JIA0, 1) = g(1) for g as in (5.2).

Proposition 6.1 Let h : [tg, 00) — R a function satisfying |hlls ¢, ,c,.e < 00 for some
constants & > 0 and ¢y, ¢y such that

M-y
O<cr<c < . (6.2)
2y
Then there exists a function A € C y+e (to — 1, 00) satisfying
JIAYO, 1) = h(t) in (19, 00), (6.3)
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where J [A] satisfies (2.33), and there exists a constant Cy such that
||A||ﬁ,cl’62,s+% < C1||h||t1‘cl,cz‘s- (6.4)

Moreover, if"h"ti s < oo then A € CY(tg— 1, 00) and there exists a constant

Cy such that

1
j+8

[Alserene < Callil gy oy 1 e (6.5)
Thus, the linear operators

Ti: Xyerere = Xﬁ,01,02,€+%

h(t) — A[h](2), (6.6)

and

N d
TIZZE oTi: Xt,Cl,CZ’%-FS = Xicree

h(t) = ALRI(), 6.7)
are well-defined and continuous.

We are ready to solve the system (6.1) in A, & for fixed ¢ € X..

Proposition 6.2 Suppose that ¢ satisfies (4.15). Then, there exist A = A[@](t) and
& = &£[¢](t) to the nonlinear nonlocal system (6.1) which satisfy (3.20) and (3.21)
respectively. Moreover, they satisfy

IAI1] = A2l 45 140 = bt — 2l

IALp1] — Aldallssy 5,0 < cldr — ol
1§1¢1] = 1621l 14, 14 < €l — D2l

1&1p11 — ELpallz 14010 < Cld1 — 2, (6.8)

with constant ¢ < 1 provided that t is fixed sufficiently large and b; small fori = 1, 2.

Proof Firstly, we observe that Eq. (5.2) can be rewritten as
JIANO0, 1) = g1(1) + GilA, A&, &, ¢](1),

where
1)+ GilA, A E &1 = (1 +alA, D)7 '[g(t) + GIA, A &, £, 611(),  (6.9)
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for new functions g1, G satisfying the same properties of g, G in Lemma 5.1. By
Proposition 6.1 we reduce the equation for A to a fixed point problem

A =AM, FIIAI@) =T [g10) + GiIA. A, £.£. ¢]].
where 7} is defined in (6.7). Let
Ao(t):=Ti[g11(t)
and define the operator £1[h] := T1[h — g1]. We use the notation
L1[h] = Alh1(0):=A[h](t) — Ao (1),

forany h € Xﬁ,11,51,%+8' Observe that

| |A[R] = | * |Ag + [A[A]

lo I
S "g"ﬁ,lo‘ﬁl,%ﬁ? + ||h”:1‘11,8|,%+6'

Given h; € Xﬁ,1+l|,%+e we consider the solution to the ODE

E1j =o' +hj(0), (6.10)

given explicitly by

o %0 o
&, j[h)(1) = Cj/t wo(s) 0 ds +/z h(s)ds:=Y;j +/t h(s)ds.
In particular, we have
17O S 0@+ 0@ RN 00r | 1EL @) S 0O T IR 0
We define the vector
B(t):=£&—" =h(),

where h = (hy, ha, h3) satisfies ||hi||ﬁ’ < oo fori =1,2,3. We define

1+, S +e
”h”ﬁ,l+l1,%+8:= ig}?ij 12 ||ﬁ’l+ll’%+8'

Let £ the linear operator defined as £,[h] = E by relation (6.10) fori = 1, 2, 3. We
observe that (A, &) is a solution to (6.1) if (A, E) satisfies

A, B) = A\, B),

@ Springer



G. Ageno, M. del Pino

where A is the operator
AR, Byi= (AN, Bl A\, 8):= (TiG1A B, 911, L2161, B, 1),

and

Gi(\, B, ¢):=G [Ao(t)Jr/ 7\(s)ds,1'\o—7\,T+/ E(s)ds, T — E¢}
t t

O, E, ¢):=0 [Ao(t)+/ A(s)ds, Ag — A, T(t)+/ E(s)ds, T — E¢:|
t t

with G and ® defined in (6.9) and (5.6). We show that there exists a unique fixed
point (A, E) = (Al¢], E[¢]) in

B={(\8) € L%, 00" : [Nlznor.e + 18l 14y, 14, < e OL)
for some L fixed large. Indeed, estimates (6.5) and (5.3) give

IALA, Elllziy.51.e < C2lG1IA, B, Ol 0y 503 1e

= Coe™ [N s sre + 18l 1 14e + 160
Also, from (5.7)

IA2[A, E]Ilj,1+l|,%+e < |O[A, g, ¢]“1:;1+11>%+€

= Ce™ [INssne + 18N 4, 34 + 191
We have to verify that A4 is a contraction. For instance, we have

[AiAL E] = A2, Bl be = ITIGIAL ©. 8] = GilM2, © @11,y 5,1,
< C2fGi[AL, ©, 8] = GilA2. ©, 811,y 5, 1,
< CaclAr = Aallg 1y 896
where C», ¢ is the constant appearing in (6.5) and (5.4) respectively. Since ¢ can be
as small as required provided that 7y is fixed sufficiently large, we obtain that A; is
a contraction map. By means of the Lipschitz property of © in (5.8) we can estimate

Az[A1, E1] — Az[A;, E] similarly. Finally, using the estimates on G, ® with respect
to &, we get

IAT AL ED — AitAr, ED g 80,6 <€ [||7\1 —Mlgiy8.e +181 = Ezllﬁ,ll,al,%%] -
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As a consequence of the Banach fixed point theorem, provided that L and ¢ are fixed
large, the map A has a unique fixed point (A, E) in the space 3. Observe that

Aln](t) = —/ T1[h1(s) ds = Ti[h],
t

where T is defined in (6.6), satisfies (3.20) thanks to (6.4). Also, the components of
vector £ = ftoo & (s) ds satisfy (3.21). This proves the existence of a solution (A, &)
to the system (6.1) satisfying (3.20)—(3.21). With similar estimates on A[¢1] — A[¢2]
and E[¢1] — E[¢2], using (5.4) and (5.8), relations (6.8) follow. O

We observe from the proof that 71, like an half-fractional derivative, loses 1 /2-Holder
exponent but we regain it through g, G| as a consequence of estimates on ¥ from
Proposition 4.1. This is the main reason to put all the terms of S[u3] involving directly
(v in the outer error (2.25). Indeed, to get A € C? it is crucial to allow H in (3.11)
(and hence Sj, in (2.24)) to depend on A only indirectly through w[[\] or Ji [A].

Remark 6.1 By remark 4.1 the outer solution {» = W[y] is smooth as a function of
the initial datum v, provided that ||19]co + | V¥0llco is sufficiently small. Thus, also
the parameters A[yo], €[] found in Proposition 6.2 depend smoothly on v, and
from the proof we also obtain

ALY = Al loo S W8 — Vi loos
16T — E11¥ 3 oo < 10 — ¥ loo-

7 Final argument: solving the inner problem

This section provides the final step in the proof of Theorem 1.1. At this point, given ¢
satisfying (4.15), we have a solution ¥ = W[A[¢], £[¢], ¢] to the outer problem (3.4)
and parameters A[¢], £[¢] such that the orthogonality conditions (5.1) are satisfied.
Thus, to get a solution

~ 1 1
u=uz+d=u3+pny Y +nrun 29,

we need to prove the existence of ¢ such that ¢, < co.

Proof of Theorem 1.1 We make a fixed point argument using the linear estimate (3.17).
Proposition 3.1 defines a linear operator 7 : h + (¢[h], e[h]) which is continuous
between the L°°-weighted space described in (3.17). Thus, the solution ¢ to the non-
linear inner problem satisfies

¢ = Ain(¢), where Ain(¢):=T (H[$]). (1.1)
We claim that .4;, has a unique fixed point in the space

B ={¢ € L>(B2p) : |$l« < b},
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for some fixed constant b large. Firstly, we prove

1+

HIAE A, E < )
|H[A, &, ,S](y,t)lwl+|y|4

We recall that
Ho

1/2
HIp, ¥, 1, 1, & E1(y, ):=5U (y)*1u (7) Yuy +§,1(1))

+ Bo ¢ + pr] (uy + &, () + 1/ Sin(uy + £, (1))
+ N Puz, 1! 2h)(y + £, (7).

Using the estimate on v given in Proposition 4.1, we have

12
I5U (y)* 1 (%) Ypny +§,1(0)] S el

and from (3.6) we get

|Bo ¢+ nr](ny + &, ()| S \WHy + wd + 1= Ph3nsl(p + uy)

L+ [y

1+ p3 l1+6—0

Py ) R "

< be Kto—+ —>

N1+|y|3< Ty TV T e
141

<e_Kt0 M+1 .

ST R

Recalling the estimates on ¢ at y ~ 0 and y ~ R given by the norm (3.18), using that

R = =% with § satisfying (2.28) we deduce
NPz, 1 P @)y + £, 1@ S T op @t wi)?
- 1 M2(1+11)R6 N MZ M2(1|+87¢7)
Sy 14|y 14 |y
< e_’”o—'ul—Hl )
~ 1+ [yl

By Lemma 2.5 we have the main error

1+
!t

28y + £, 1(1)] S ——.
I Sin(y + € ())|N1+|y|4
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Thanks to the previous section, H satisfies the orthogonality conditions required by
Proposition 3.1. Thus, provided that #; is large enough, we have

ITIH]l« < ClHlv4 <D,

for b chosen large, where C is the constant in (3.19). This proves A (¢) € B. Now,
we need to prove that for (1, $® € B we have

1+
"
| % |H[¢p""] = H[pP] S clpV — 9@ | ——.
L+ Iyl

for some ¢ < 1. This is a consequence of Proposition 4.2 and Proposition 6.2. Indeed,
for instance we get
SU ) ol # 19Ty D] — Ay (@)
= 5U () ol [ MM — A0y 0] 4 MO g 0] =y [9]]
1+

"
S clg =@l o

and similarly we get the same control on the other terms of H [qb(l)] —H[¢ @1. Finally,
since the operator 7 : X, 4 — X, is continuous, where X 4 is defined in (3.14) for
a = 2, by composition with H : X,, — X, 4 we obtain

1Ain[o ™M1 — Ainld@10x < clpD — ¢@|.,

provided that 7y is fixed sufficiently large. Thus, A;, : B — Bis a contraction map and
by Banach fixed point theorem we obtain the existence and uniqueness of ¢ € X, such
that (7.1) holds. Finally, we recall that the constant ey = eg[ H] in the initial condition
¢ (v, to) = epZo(y) is a linear operator of H. The existence of ¢ immediately defines
eo. This completes the proof of the existence of u = u3 + ¢ in Theorem 1.1, with the
bubbling profile centered in x = 0 € €2 and parameters satisfying (1.8). O

Remark 7.1 (Continuity of (¢, ep) with respect to o) We found the inner perturbation
¢ and its initial datum ¢ (y, 7o) = epZo(y) based on the existence of the outer solution
W[¢] given by Proposition 4.1, which in fact can be found for any initial condition vy €
c! (S_Z). Furthermore, as a consequence of the continuity of W[yrg] and A[vo], &[¥o]
found in Remarks 4.1 and 6.1 we obtain

| leolwg] = eolwd] S [ 1 = Wilimea = IV¥8 = Vi L= |-

Since we know that A, /\, &, é, Y depends smoothly on /g, by the implicit function
theorem, we deduced that map o — (@[vol, eolvo]) is C I with respect to Yo €
C!(Q). This allows to prove the 1-codimensional stability of Corollary 1.1, under
small perturbation. With these ingredients, we can proceed as in [ 11, Proof of Corollary
1.1].
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8 Invertibility theory for the nonlocal linear problem

In this section we prove Proposition 6.1. We deduce the result by Laplace transform
method combined with asymptotic estimates of the heat kernel ptQ associated to €.
It turns out that the operator J [A] is similar to a half-fractional integral of A. Thus,
roughly speaking, we expect the inverse operator to behave as a fractional derivative
of order 1/2. In fact, Proposition 6.1 can be seen as a precise statement of this idea.

For later purpose we recall some facts about the Dirichlet heat kernel. For the
definition and properties we follow [22, 32]. A function th (x, y) continuous on £ x
Q xRt C 2in x and C! in ¢ is called Dirichlet heat kernel for the problem

du(x,t) = Au(x,r) inQ xRT,

u(x,t) =0 on a2 x [0, 00),
u(x,0) = up(x) in €2,

if, for any y € 2, satisfies

dpl(x,y) = Aypl(x,y) inQxRT,
p2(x,y) =0 indQ,

and

lim [ p2ex, Yuo(y) dy = up(x),
=0t JQ

uniformly for every function ug € Co(€2). The existence of the Dirichlet heat kernel
is a classical result by Levi [43]. It has the following basic properties:

o pS(x,y) >0, p2(x,y) = p2(y, x) and p2(x, y) = 0if x € I
e for any y € Q2 the function p,Q(x, y) € CP[RT x Q);
e it satisfies 8,p,9(x, y) = Axp,Q(x, y) for (x,y,1) € 2 x Q x RT.

Also, from [32, Theorem 10.13] and its proof, the heat kernel th (x, y) admits the
expansion

P y) =Y e M (n)di(), (8.1)

k>1

where Ay is the k-th Dirichlet eigenvalue of —A on Q2 and ¢ the corresponding
eigenfunction and also for n > 1 (see [32, Remark 10.15])

> sup 1)y < 00 (8.2)
k:nx,yeQ

The series (8.1) converges absolutely and uniformly in [¢, 0o] x 2 x Q forany ¢ > 0,
as well as in the topology of C®(R* x Q x Q).
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Before starting the proof of Proposition 6.1, we recall an estimate on the short time
behavior of the heat kernel p? (x, y) due to Varadhan [55, Theorem 4.9]. We will use
it in the following form as in Hsu [37, Corollary 1.6].

Lemma 8.1 (Short time estimate of p?) Let ¢ > 0 fixed such that B;(0) C Q2. Then,
there exists 1o > O such that, for y € B:(0) and t € (0, t9) we have

3 _e2
pr (0. y)(1—e %) = pf (0, y), (8.3)
where § < & is independent of y and

80 :=d(0R2,0B,) = min la — b| > 0.
a€df,bed B. (0)

Proof Recall the identities in [55, p. 675]

. 3

lim sup 47 log(p¥ (x, y) — p(x, y)) < —dsa(x, y)?, (8.4)
7—0

: R? _ 2

}%41— log(p'[ (x7 Y)) - _d(x’ )’) ’ (85)

where
dyq(x, y):= inf {d(x,z) +d(z, y)}.
z€0Q2

From (8.4) for t € (0, 79) we have

a2, () —c(10)
R3 _%g Q
pr (x9y)_e 4t Spr (xsy)9

for all x,y € @, where 0 < c(t9) = o(1) as 79 — 0. In particular, fix x = 0 and
consider y € B;(0) C 2 for a small ¢ > 0. Then, choosing 7¢ smaller if needed, we
have

d25(0,y) — c(rp) > &2 4 82.
Thus for y € B¢ (0)

2 .
_ 4300 —c(r0) _e+ 2002 _%

e 4t <e d& <e H e I,

and (8.5) says

20y
PIF(O, y) = eid i (o(1) as T — 0.
Thus, we have for 7 < 79 small and y € B.(0)
R3 _s Q
Pt (O’y)(l_e 41)§p1— (Oyy)a (8.6)
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for any § < 8o independent of y. O
We mention that the uniform bound (8.6) holds for y ranging in any convex subset of

the domain, see [37, p.374-375]. Also, for any 7 > 0 and x, y € Q2 we have the upper
bound

3
P, y) < PR e, y), (8.7)
as a consequence of the maximum principle. Thus, Varadhan’s estimate (8.3) is a
precise statement about the idea that for small times the heat kernel “does not feel

the boundary”. We refer to Kac [38] and Dodziuk [22] for statements with the same
flavor. In the proof of Proposition 6.1 we need the following lemma.

Lemma 8.2 Define the function
1(r):=/ﬂp§2(o, Gy (y,0)dy,

where p? (x, y) denotes the Dirichlet heat kernel associated to Q and G (x,y) the
Green function of the operator —A — y on Q2. Then I (1) has the following asymptotic
behavior:

—AT
(o) = {0 (e 1 ) for T — o0, 88)

cl,*% + C2.4/T + 34T+ O (t3%) for T — 0OF,

for some constant c;  andi = 1,2, 3.

Proof Step 1 (Asymptotic for t — 00). We recall that the heat kernel p? (x, y) admits
the series expansion (8.1) which converges absolutely and uniformly in the domain
[e, 00) x  x  for any & > 0, as well as in the topology C*°(R™ x Q x ). By the
uniform convergence with respect to y € €2 we obtain for t > 0

I(0) = /Q > e Mg OB (1) Gy (3, 0) dy
k=1

= Y00 [ 500Gy (.0, (8.9)
k=1 @
Multiplying equation (2.7) by ¢y and integrating by parts we get
—Ak /Q Gy (x, 0)r(x) dx = /Q Gy (x,0) Ay (x)
= / or(X)AG (x,0)dx
Q
==y /Q Gy (x, 0)gy(x) dx — 3 /Q Pr(x)do(x) dx
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—Y /Q Gy (x, 0)i (x) dx — c3¢x(0)
that gives

2
/ G, (x, 0)y (x) dx = 3 ¢"(0)

(8.10)
-y
We plug (8.10) into (8.9). Finally, from (8.2) we obtain the asymptotic behavior (8.8)
for t — oo.

Step 2 (Asymptotic for T — 07). Firstly, we split

I(r)=/ 20, y)—dy+

o] / P20, y)Hy (v, 0) dy
=:1(t)+ L(7).

We analyze (7). For the region B,(0) we invoke Varadhan’s estimate (8.6) and we
obtain

2 -4
/ pf(o,y>dy>/ e ¥ 1
B¢ (0) B

[yl

2
——dy(l —
4T )y . -
€ —pz 2
:47[/0 e ]3/2,0d,0(1 )
v o _e
rdr(l—e 7)
\/_
82
1 l—e & ( 52>
= l—e =
drt 2
Y
N JT

for some ¢ > 0, and by (8.7) we have

Q R3
B0 |yl B.0) 1Yl

e~ 7
0] .
47T + ( JT )
From these bounds we conclude

4./t

Q <

0, 1 T
/ p:0,y) dy = Lol€ .
B.0) |Vl
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In the region 2 \ B.(0) by (8.7) we get

Q 1

0, 2
f Mdyff—m/e—%pdp
Q\B.(0) Y] ¢

We conclude that

Q Q
0, 07
[1(1)=a3/ py (0, y) dy+a3/ py 0, y) dy
QB0 Y B0 ¥l
Cl,x e T . a3
=40 as T — 07, with = .
JT ( ﬁ) L 477

Now, we estimate the term /(7). We treat it similarly to /7 (7) but we get a lower order
term in the expansion since H,, (y, 0) is not singular. We use decomposition (2.10) for
H, (v, 0) and we consider the integral over B¢ (0). Using the cosine expansion we get

0,(y.0) = a3§|y| +0(yP).

Thus, we compute the integral associated to the first term with Varadhan’s estimate
(8.3) and the upper bound (8.7):

Iy
1 —cos( /¥y y/ e 4 _e
Q
L) ———— T gy = a3 s —_yldy (1 ( :
/8( PO |yl Y93 B, (0) [47”]3/2|y| y( Fole >)
R o
—dra L [ T3 -4 )
_4na32[) [47”]3/2,0 dp (1+0(e )

Ale

= 47ra3\/?§ ./()Zfﬁ e 3 dr (1 +o (e_ ))
=cz,*ﬁ(1+o(e*?)), 8.11)

for an explicit constant ¢y . The same computation on the remainder O (| y? ) gives
a term of order O (‘173/ 2). Another Taylor expansion at y = 0 gives

1
hy (3,0) = Vyhy (0,0) -y + 5y Dyyhy 0,0) - y + o(lyP),

where Dy h,, (0, 0) denotes the Hessian of 4, (-, 0) evaluated in y = 0. Integrating the
first term on B, (0) against p,Q (0, y) and using (8.3)—(8.7) we see by symmetry of the

integrand pl]@ (0, y)Vyh,,(0,0) - y that the integral gives an exponentially decaying
term. The second term in (8.12) can be treated similarly to (8.11) and gives a term of
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order ¢3 47 (140(1)) for some explicit constant c3 . The integral of p? v, 0)H,(y,0)
on the complement can be treated as before and gives an exponentially decay term for
7 — 0. Thus, we obtain that

L(t) =T+ 34T+ O <r3/2> as t — 0T,

We conclude that I(t) = I1(t) + (1) has the asymptotic (8.8) for t — 0. m|

We start here the main proof of Proposition 6.1.

Proof of Proposition 6.1

Firstly, we observe that J(0, tp) = h(#y) is in general not compatible with a null
initial condition. For this reason it is natural to solve the problem for 7 starting from
t =to — 1. We look for A(¢) fort € (t9p — 1, 00). The function J is a solution to the
problem

T = AT +yT — AG,(x,0) inQx (tg—1,00),
Jx, ) =0 ondQ x (g — 1, 00),

such that
J(0,1) = h*(t) in (19, 00),
where
W (r) = h(t) t € [ty, 00), 8.12)
hext(t) 1t €10 — 1, 10),
and

hexi(t) = n()h(10),
where 1 is a smooth function such that n(zg — 1) = 0, n(tp) = 1 and
[n(to — v)h(to) — h(to + v)| < [hle.00+11V°,
for any v < 1. This choice gives an extension 2*(t) € C* with
1A Ig.c1,c2,(t0—1,00) S Mtllz.c162,(00,00)- (8.13)
Let s:=t — (to — 1) and for s € (0, o0) define

Jo(x,s) :=e T (x, s+ (1o — 1)),
B(s) == —A(s + (1o — 1)),
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hi(s) :== h*(s + (1o — 1)). (8.14)
The function 7 is a solution to

AsJo(x,s) = AxJo+ e " B(s)Gy(x,0) inQ x (0, 00)
Jo(x,s) =0 onad2 x (0, 00),

such that
JolB1(0, s) = hi(s)e™”* in (0, 00). (8.15)

Imposing the initial condition J (x, fy) = 0 in €2, that is Jp(x, 0) = 0, by Duhamel’s
formula we have

JolB1(0, 5) = / ' e VT B(s — 0)I(7) dr, (8.16)
0
where

I(e)= /Q p2(0. )Gy (v, 0) dy,

and p? (x, y) denotes the heat kernel associated to 2. The asymptotic behavior of
I(7) is given by Lemma 8.2. We denote the Laplace transform of a function f as

Fe)= /0 ¢ 55 £(s) ds.

We refer to the book [23] by Doetsch for classic properties of the Laplace transform.
Applying the Laplace transform to (8.16), using (8.15) and the basic property

&) =£7E) — £(0),

we obtain
hiE+y)=BE+1)®)
=[E+»BE+1 - pO] 1@,

and hence

- _BO) | -, i

B +y) = TR +1)5®). (8.17)
where

CE+piE)
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By definition we have

- o
1(¢) =f e 55 1(s)ds,
0
that is well defined and analytic in the right-half plane Re§ > —AX; thanks to
Lemma 8.2. By expansion (8.8) we have

€L for s — 01,

—&s < =1
[xle™ 1) S 8(s), g(s) {e(K1+Re€)x for s — 400,

and g is integrable in RT if Re£ > —A\1. Thus, using (8.9), in any half plane Re > ¢
where ¢ > —A1 the dominated convergence theorem applies to get

[(¢) = /OO e 5 1(s) ds
0

[} o 2
0
——/ e 5 E %O e M ds
0

— )»k—V
o 2
=y O [Tt
_i ¢ (07 1
i S A S o 3

At this point we can extend I~(§) analytically from {£ € C: & > —XA1}to C\{—Ax },fil .
Let £ = a + ib and rewrite the series as

Pi(0) 1

I
€)= Ak—ykk+a+tb

Mg

_i O’ hta i@(oﬂ 1
S =y O+ a)? + b =~y (et a)? + b2

Since the coefficients of the series are positive, I(£) = 0 implies b = 0. Plugging
b = 0 into the first series we obtain that a root & = a of I satisfies

N (021

M—Y A +a

k=1

Hence, we deduce that the set of zeros of [ is given by a sequence {—ar}72, where
ar € (Mg, Ag+1)- In particular,

1(§) #0 for Ref > —Aj. (8.18)
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Lo g
R
Cr
—a e (~hi, )
e I o
—ar =)\ -
L3 r Lir
—R
Lyr

Fig.1 Contour integral Cp

By standard argument [23, Theorem 33.7] on the Laplace transform, using (8.8), we
have

1) :cl,*ﬁs—‘/z+c2,*gs—3/z+c3,*s—2+0(5—5/% as |&] — oo,

in the half-plane Re& > —A\ 1. Thus, in the same half-plane we have

1

E+IE)
=di P 4 dr T 4 A3 TP OET?) as |E] > oo, (8.19)

o(§) =

As a consequence of (8.18), 6 (£) has a unique singularity at § = —y in the half-plane
of convergence. By [23, Theorem 28.3] the function (&) can be represented as a
Laplace transform of a function.! Finally, we compute the inverse Laplace transform
by means of the Residue theorem defining the rectangular contour integral Cg as in
Fig. 1, which is suggested by the proof of [23, Theorem 35.1].

For later purpose we observe that, looking at the contour integral Cg, the constant
a € (y, A1) can be taken arbitrarily close to A;. An application of the Riemann-
Lebesgue Lemma (as in [23, p.237]) implies

lim S5 (8)de =0,

R—o0 Ly g

1 We cannot have an estimate directly on B at this point. Indeed, (IN(E))_1 is not a Laplace transform of
a function since diverges as |§| — co. However, it still can be represented as the Laplace transform of a
distribution, see [23, Theorem 29.3].
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lim 15 (8)dE = 0.
R—o0 Ly
Since
. 1 1~
o(t) = lim — ecta(§)dE
R—o00 27i Jp, p
we obtain
1 —a+iR
o(t) = Res (eS’&(E), —y) e V' 4+ lim — e85 (&) dE. (8.20)

R—o0 27T —a—iR

We easily compute

1
Res (£°6(6). =) = lim (6 +7) s <t

Now, we analyze the integral (8.20). We decompose

—a+iR
lim S5 (8) de
R—00 ) _a—iR
R
. ive | ~ . dl* d2*
=ie af/ e’”|:0 —a-+iy)— : — :
,R ( N arn Catinh
d3* i| - iR dl *
- ldy+ie ST —5 _dy
(—Cl+ly)2 _iR J—a+1iy
iR iR
d d
+ie_aT/ —z’fk 3 2dy+ie_°"f —3’*. 3
_ir (—a+iy)¥ —ir (—a+iy)

It is easy to see (by means of another contour to avoid the standard branch) that, up
to constants, the last three integral are respectively the inverse Laplace transform of
g-1/2 £73/2 £=2 The integral

R
i ~ . dl * d2 * d3 * :|
R(7):= eVt G (—a+iy) — : - . - :
© /_R [ ( Y J=atiy  (atin?? (Catin?|?

is absolutely convergent thanks to the second order expansion of 6 (£). In fact, obtain-
ing the absolute convergence of R(t) (and R’(t)) is the main reason to use the sharp
Varadhan’s estimate on the heat kernel ptﬂ . Thus, from (8.20) we obtain

C
o(1) =cooe ’T + e % [ Lx o CoT+ C3eT + R(r)} ,

JT
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for some constants cs, C; « and i = 1,2, 3, where R(7) is bounded. This gives the
asymptotic behavior

Cool YT+ 0(e %) for T — 00,

o(t) =3 ¢

%4_%04_0(\/?) for v — 07,

for any a € (y, A1). For later purposes, we observe that o (1) is differentiable. Indeed,
differentiating R(t), we still obtain an absolutely convergent integral thanks to the
full expansion (8.19), and an application of the dominated convergence theorem gives
o € C! with

, —ycool YT+ 0(e™ ) for T — oo,
o(7) = —1.-3/2
—QC1) 't 321+ 0(1)) for T — 0F,

From (8.17), taking the inverse Laplace transform of both sides, we get
N
B(s)e VS = B(0)eV* +/ eV TOhE(s — T)o ()d T,
0

that is

N

ﬂ@)=ﬁmygﬁewoumas_odu
Proof of (6.4) We rewrite this formula as
B(s) = B(0) + coo /O h(v)dt + /0 hi(7) [eﬂs—f)a(s —— coo] dt
- [5(0) + oo /Ooo hg(z)dr] — oo /Oo hE(v) de

N
+/ h(T) [e”(“”o(s —7)— coo] dr.
0
We choose B(0) = —cxo fooo h’(;(t)dt. It remains to estimate

prisi=— o | iod
,Bﬂs)::/s hi(t) [e”(sfr)a(s —7) — coo] dt.
0

We recall that the extension A(j(s) has been selected so that (8.13) holds. Here and
in what follows, without losing in generality we assume the same value ¢ = ¢; for
i = 1,2. When we estimate the L* norm of g we will only use the L* norm of
h(“; and hence we get the same L°°-weight constant c¢;. Instead, when we estimate the
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C!/2+¢ we need both the L> and C¢ norms of h{;, thus we will get the same C*-weight
constant ¢ = min{cy, cz}. Thus, conditionally to ¢; < (A1 — ¥)/(2y), the weight
constant ¢; with i = 1, 2 for B and hyj are respectively the same. We proceed with the
L estimate of . We have

o
B S il [ 277 ar
N
S ”hsnﬁ,c,sMO(s)c:
Using hypothesis (6.2) and selecting a close enough to A1 so that

)\' _
c<a< ATV (8.21)
2y

we get

S

|,32(S)| ,S ”hénﬁ,c,s/ 672}’076*&(‘?71’) ds
0
< ||h(>’;||Ii . 8efmin{2yc,a}s
S g lz.c.etto(s)C.

Combining the bounds on 1 and 8, we obtain
1B S Ihglz,c.eto(s)C. (8.22)

Now we estimate the (1/2 4 ¢)-Holder seminorm. In the following it is enough to
assume 71 € (0, 1). We have

1B1(s) — Bi(s — ) < |/‘ hi(z) d|
s—n

= lhgllos,cros)Inl
1
< Ihglloo,cro(s) |2+ (8.23)

Let
I(1):=e""0(T) — Co.

Following the classical fractional integral estimate of Hardy and Littlewood [35, The-
orem 14], we decompose

§—

s n
Ba(s) — Bals — ) = /0 hi(s — Dl(v) d — fo hi(s —n — D) de
= hi(s) / Iy dr - / [hs) — ks — ]Iy d
0 0
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s—n s—n
—h;;(s)/o l(r)dt—/o [hi(s —n— 1) — hi()] () d
- hé(s)/s () dr — /" [hi(s) — (s — )] 1(x) dx
s—n 0

- f [15(5) — his(s = D] (@) — 1z — ) dx
n
=: A1(s,n) + A2(s, n) + A3z(s, n).

For s — n € (n, 1) we have

S|
AN S k) | —=de
R NV

S5 (s = s =n'72)
_1
,S [hS]O,s,[x,s+1]S€ n

1
SJ ||h(>§||ﬁ,c,el/«(s)c778+2 .

Fors —n > 1 we get

A1l = IhZS(S)I/ l(r)dt
s—n

N
< Ih(*j(s)l/ e Tdr
s—1

S ho(s)In

1
S gl c.em(s)n2te.

For s — n € (0, n) we obtain

S
—drt
s—n VT

1
[hs]o,é‘,[S777,S*77+1] s — 77|87]2

1
150z .0 ()02 TE

|A1] Slho(s)]

LA N

Now we estimate A,. We have
. n
[Az] < IIholln,c,eM(S)C/ ITl*|l(z)l dT
0

n 1
< htlzcept(s)” / L
ol c.e 0 VT

1
5 ||h3||ﬁ,c,sﬂ(s)cn2+s~
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Finally, we estimate A3. Using the L° norm of A for > 1 and C* seminorm for
T < 1 we obtain

N
A3l 5/ 5 (s) — (s — DII() — Iz — )] de
n
N
< ||h3||j,c,g/ 1) — Iz — )] dr
n
S
< ||hz;||j,c,g/ e = (r = ) dr
n

S
—3/2
Sllhéll:t,c,en/ lt|fr /2 de
n

1
S hglsc.en?™®

< |h* — ¢ %Jrs
S hglseer(s — 1Dy

1
5 ”h3||:1,c,eﬂ(s)c772+81
Combining the bounds on A1, Az, A3z and we obtain
1
1B2(s) = Ba(s — I S Mhgllg.c.ern(s) 27 (8.24)

Finally, from (8.22), (8.23) and (8.24) we obtain

1Blse1 e S WGlc.c
Going back to the original variable ¢ using (8.14), we obtain

(AN P s S hglz.c.es

and recalling (8.13) the proof of (6.4) is complete. O

We proceed to prove the second part of Proposition 6.1: in case i € X, then A

c,%+£’
is differentiable and A € Xy ¢ ¢.

Proof of (6.5) In the same notation of the previous lemma, we need to prove that
B1(s), Ba(s) are differentiable and estimate the derivatives. Since

Bi(s):=— f hi(t) dr,

we clearly have S (s) € C1(0, 00) and ,3{(5) = Cxoh(s) € Xﬁ,c,%-{—a by hypothesis.
To analyze B;, following [35, Theorem 19], we introduce for any € > 0 the function

Brc(s) = /0 RO — ),
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so that B2.0(s) = B2(s). Since o () € C I, we can differentiate B2.¢(s) to obtain

B3, (s) = hi(s — €)l(e) + f ) h(@)'(s — 1) dt
0
= —[h§(s) — hi(s — )ll(€) + I (s — €)hi(s)

~|—/ B [hg(t) — A5 (s — 7) dT.
0

Observe that we can choose the extension /g such that Aj(s) = o(sY/?) for s — 0.

Since hj € X g e when € — 0 the right-hand side tends uniformly to

1(s)hj(s) + g(s),

where
g(s)::/o [h§(T) — hé(s)]l’(s —1)ds.

By hypothesis and the choice of the extension we have I(s)hj(s) € X, . Lie Also,

. . . . 1
the function g(s) is continuous since h(s) € C ate,

Ba(s1) — Ba(s2) = eh_r)% (Br.e(s1) — Ba.e(s2))

52
= lim B () dt

€—> 51

_ / IR + (1) d,

1

hence
1($)hi(s) + g(s) = B5(s).

Itremains to prove that g(s) € X; . .. Using the asymptotic of o/ (¢) and the assumption
(6.2) with a as in (8.21) we have

s
1
1g(s)] S[h]o,%+s,[s—1,s]f I'(s —1)|s — 7|2t drt
s—1
s—1
Tl 1y / V(s — Dyu(r) dr
0

1 K
’S”h”ﬁ ¢ %+8 [M(S)C/ |w|—l+8 dw +/ e—ZVcre—a(s—T)] dt
,Cs 0 0

Sl ¢, 1ot (5)°. (8.25)
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We write
gls —mn) —g(s)

s=n

- fo [h(s) — h(D1'(s — 1) d —/0 [h(s — ) — A1 — 7 — D) d
- /0 [h(s) — h(s — w11/ () du — /s[h(s — ) = hls — W' — ) du
)
=- /;Ws — ) = hs =] [I = n) — I'@)] du
+ /S[h(S) —h(s — ' (w) du + /On[h(S) —h(s —w)l'(u) du
=: Bln(s, n) + Ba(s,n) + B3(s, n).
Using again assumption (6.2) we get

1
1 -3/2 -3/2
|Bl|5||h3||0,%+8,[s_1,s]/ lu — 2% — )7 —u™ | du
n

K e—a(u—n) _ pau
+ 1l 1 e f s — 0y —————— du
1

n
S L IO
Also

|Ba| < h(s) — h(s — m)n~"/?
S G e 1 (),

and
* 7 —1+
IBs] S Il g ot /0 w1 du
S ”hsllﬁ’c’%_f_glj’(s)cns'
This proves
lg(s) = g(s = S w© Mgl e 14l
Combining it with (8.25) we obtain
lgls.ce S ||h3||ﬁyc’%+s-
Summing up the estimates for | (s) and B (s) = I(s)h{(s) + g(s) we obtain

18/ lsce S Wil 1 e
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Finally, in the original variable ¢, using (8.14) and (8.13), we obtain the bound (6.5).
O

Remark 8.1 (The initial datum Ji (x, tp)) From the proof of Proposition 6.1 we have
J(tg, x) = fol h*(s)I(x,T — s)ds where h{j is an arbitrary smooth function with
hi(t) = o(tY/?) fort — 0 and hi(1) = h(tp), connecting to A(t) at t = tp to maintain
the C¢ regularity of 4. We observe by estimate (2.2) that

11, ) S ITTAIC, 1)) <1 1A ) < o).

Thus, our initial datum remains positive provided that #( is fixed sufficiently large.

Appendix A: Properties of the Robin function Hy (x, x)

In this appendix we prove some properties of the Robin function that we use in our
construction. We recall that the Green function associated to the operator —A — y
satisfies

—AxGy(x,y) —yGy(x,y) =4ma3d(x —y) ing,
G(,y)=0 onodf. (A.1)

As usual, we split

G,(x.y) =T(x —y) — Hy(x,y) where I'(x)= %
X

and the regular part H, (x, y) satisfies

—AxHy,(x,y) —yHy(x,y) = —yI'(x —y) inQ,
H,(,y)=T(—y) ond,

for any fixed y € Q2. We recall (from [14] and reference therein) the following prop-
erties of Ry, (x):=H,, (x, x):

(1) Ry(x) € C™()

(2) 9, Ry, (x) < 0 and belongs to C*°(£2).

(3) foreach y € (0, Ay) fixed, R, (x) — +ooasx — 92

Lemma A.1 (Behavior near the first eigenvalue) The function H, (x, y) satisfies

4
Hy (e, 3) ~ =5 2 100910, as v (A2)
Proof We decompose H,, as
Hy,(x,y) =a(y)p1(x) + Hy(x,y) +h1 ,(x,y) (A.3)
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where
a(y) == /Q (Hy (x,y) — Ho(x, y)) ¢1(x) dx,
and H) satisfies

on 9%2.

AcHo(x,y) =0 inQ, Holx,y) = —2
|x — yl

Thus, for any fixed y € €, h1 , (x, y) is the solution to

Ayhy y+vhy, =yGox,y) +a(y) (A1 —y)d1(x) inQ
hi,(x,y)=0 ondQ. (A4)

By definition of «(y) we have
fQ By (e )1 () dx = /Q (Hy (x. y) — Holx. )) 1 () dx — a(») |1 2
= 0. (A.S5)

Testing (A.1) against ¢; we get

47TO[3

/QGy<x,y>¢1<x)dx =

¢1(y).
Also, testing (A.4) against ¢; and using (A.5) we obtain
0= (=A1+ J/)/qu,y(x, V)g1(x)dx
=y /9 ¢1(xX)Go(x, y)dx +a(y) (A1 — y).

Thus, we have

a(y) = ——% /Go(x,ym(x)dx
—vYJa

Al
__vArwhi(y) (A6)
MoM—y '
and plugging (A.6) in (A.3) we obtain
Y 4nws
Hy(x,y) = T y¢1(y)¢1(X) + Ho(x, y) +hiy(x,y). (A7)

We notice that only the first and last term in the right-hand side depends on y. Hence,
to prove (A.2) we just need to prove that & ,, (x, y) is bounded as y — A . Thisis a
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consequence of the Poincaré inequality applied to functions in HO1 which are orthog-
onal to ¢;. Indeed, expanding /1 , in the L?-basis made of Laplacian eigenvalues we
get

IV, 3 = /Q hiy (~AhL ) dx

= /Q Zakd)k(x) Zakd)k(x))tk dx

k>2 k>2

= Z Ol/%)»k

k>2
> Mlhi 13
= Y2

Now, testing equation (A.4) against i, , using (A.5) and Cauchy—Schwarz inequality
we get

G2 =) iy lI5 < IVRL, I3 = yIhy, 13
o3
= y/ (Hou, y) — ) hi,(x,y)dx
Q

[x — ¥
o3
< yIlHo(,y) — = 2Ly l2.
We conclude that
Y o3
ALyl < IHo(-, y) — 2
y A —y [ =yl
<y — =2
= oL, y - 2
Ay — A [+ =yl

with the right-hand side independent of y. By standard elliptic estimates we get

Ihiy(, Mo < Ka(y),

with K independent of y. This concludes the proof. O

The following lemma gives the asymptotic behavior of y*(x) as x approaches the
boundary 9€2.

LemmaA.2 The unique number y*(x) € (0, A1) defined by the relation
Hy«(x,x) =0
satisfies
y*(x) ~ A — 87 [0u (x/)]zd(x, Q) as x > x' €9Q, (A.8)

where d(x, 0Q) = |x — x/|.
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Proof We divide the proof in two steps. Given x € Q let D, C 92 the set of points

x’ such that

x —x'| =d(x, 0Q).

If D, is not a singleton we choose the unique x’ = (x}, x5, x}) with the property
x/ <y for all components i = 1,2,3 and point y’ € D,. This defines x":=x"(x)

uniquely.

Step 1. Firstly we prove (A.8) for domains such that, for all x € €2, the reflection

point x”(x):=2x'(x) — x satisfies
x" ¢ Q.

We decompose

H]/(-xvy): +F(-x7y)v

a3
lx" — yl
where F satisfies

AyF 4+ yF =yaszgi(x,y) in L,
F(x,y)=0 ondf2,
and

1
x =yl x" =yl

g1(x,y) =
We write

F(x,y) = a(y)p1(x) +wi(x,y)

(P)

(A9)

(A.10)

and select a(y) so that fQ w1 (x, y)¢1(x) dx = 0. By decomposition (A.9) and (2.8)

we obtain

aly) = /Q (F(x,y) —wi(x,y) ¢1(x)dx

o3
=/ (Hy(x,y)——,,>¢1(X)dx
Q lx — "

=/le(x,y)cbl(x)dx—/QGV(x,y)m(X)dx

4mazdi(y)

- f 210, )b () dx +
Q Y — Al

The equation for w is

Aw; +ywy =a(y)(A1 — )1 + yasgi(x)
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Multiplying this equation by w and integrating by parts we get

VL) = yhws B = —yas [ gite sty dx,
Q
Using the improved Poincaré inequality

O = IwLl3 < IVwiC, VI3 = ylwe G »I3

and Cauchy—-Schwarz we obtain

aslgi(, )2 < azlgiC, M.

1
lweC, w2 =
A=y A2 — A
Now, we want to estimate uniformly in y the right-hand side of

o
I — Y —

Hy,(x,y) = 431 (y)¢1(x)

Without loss of generality, suppose 0 € 2. Let M:=2diam(£2) we have

1 1
O</ 2dx§/ 2d}chQ.
Q |-x - )’| BM(Q)(y) |x - )’|

Let Q" = {x” € R? : x” = x”(x) for some x € Q}. We have

1 1
T SR S g
o X" —y? Q'ue lx — y? Bu,

where M, = Zdiam(Q” U ) hence we get

sup g1(-, Y2 < Ca.
yeQ

We combine this bound with (A.11) to get
lwiCG, 2 < Ka,

with Kq independent of y and by standard elliptic estimates we get

sup [w(-, Yl = Ko,
yeQ

with a possibly larger constant Kg. We conclude that

Hy(x,y) = —23 4 TAWNCO) B3y 4w (2 ),
|x" — ¥ Y — Al
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where
B(y)1=/981(z,y)¢1(z)dz,

with w (x, y) bounded in 2 x 2. Also we notice that

1 1
0< / $1(2) dz < |1 ”oo/ dz < Cq,
Q |Z_)’| Bu(o) |Z_)’|

and

¢1(x) 1
< /7 dx = |$1llo dx < Cq.
2 |x (x)_yl By |x_)’|

This proves the boundedness of B(y). Now, the equation for y*(x) reads as

o @ 4razpi(x)?
S d(x, Q) yF(x) — A

+¢1(x)B(x) + wi(x, x).

Let c:=]0,¢1(x")|. We expand ¢ (x) at x’ € 92 to get

2 3
$rcrd(x, 92" _ [1 +2¢d(x, 02)2B(x) + 2d(x, BQ)w(x,x)]
AL —y*(x)

X (14 0 (d(x,0%)))
Since B(x) and w(x, x) are bounded, we conclude that

2 3

Bredx, 97 s o e o (A.13)
i — ()
Step 2. Now, we modify the method in Step 1 to obtain an expansion similar to (A.12)
and conclude that (A.8) is true for general smooth bounded domains. Let y € /4.
Now we prove (A.8) for all smooth domains 2. Fix € = €(€2) > 0 so small that the
set Qe:={x € Q : d(x,dRQ) < €} possesses the property (P) and let n. be a smooth
cut-off function with supp(n.) C Q¢ and ne(x) = 1 for x € Q¢/2. We write

Hy,(x,y) = ne(ne (Y Hy (x, y) + (1 = ne()ne(y)) Hy (x, y)

a3
= I — ] Ne(X)ne(y) + Fa(x, y)

where
F(x,y) = ne()ne (V) F(x, y) + (1 = ne(x)ne(y) Hy (x, y).
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We notice that 1. (x)n.(y) F(x, y), where F satisfies (A.10), is well-defined in Q
thanks to the cut-off functions. The problem for F3 is

AcFa(x,y) + yFa(x, y) = azga(x, y) in€2,
F>(x,y) =0 onoQ,

where
&2(x,y) = g21(x, ) + g22(x,y) + 82.3(x, ¥) + g2.4(x, y),
and
Y
g1(x,y) = ———,
[x =yl
. Ne (XN ()
g22(x, y) 1= —y T
lx” =yl
divne (x)
823(x,y) :=2n(y )ﬁ,
Axn(x)

§2.4(x, ) i==ne(y) ———-
[x” =yl

We decompose

F(x,y) = B(y)¢1(x) + wa(x, y),

where $ is chosen such that fQ wa(x, y)¢1(x) dx = 0, that gives

po) = [ s, y>¢(x>dx—/¢1<x)[ Gy(x.y nj(f)m(y) xa—3y|]dx

=47T¢1(y) 013451()6) B ()/ 063ﬂe(x)
- +y Jo Ix—yl e

Next we prove that wy(x, y) is uniformly bounded in € x €. Using the improved
Poincaré inequality and standard elliptic estimates as in Step 1, we reduce the problem
to estimate the L?-norm of g(-, y) uniformly in y € Q. /4. We have

1

lg2113 = / < yf dx < Cq,

27 o k=2 By X — Y2

1 1

lg22l5 <y //—dxfy ) dx <y 5 = Caq,

Q. X" =yl Q 1x =yl By, 1¥ = VI
| Ae (x)] B
lg2.413 < / 2L ce2ygs 512,
Q\Qep X7 =V

2 1 —4
lg2,3l5 < C 7 = Cqe 7||.
Q\Qp X7 =V
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Since € depends only on 2 we obtain

lga (- I3 < Cae.

Now, we prove the boundedness of

Be(y) = /| @(z)dz—/g”f(f}—f(y')w)dz.

=B =B ¢

Indeed, we have
(2)
IB1| 5/ D142 < 11 1seCan
o lz—yl

and

|BZ e| =< ne()’)f ¢1(2)
l
< ||¢1||oo/ ! a<ca
Bu, 12—

Finally, the equation for y*(x) is

0— H 1 47 (x)? 2
=Hpe0 =gt -t ()1 (x) + walx, x),

and by the boundedness of B.(x) and w(x, x) we obtain (A.13). O
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