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Abstract
We consider the Dirichlet problem for the energy-critical heat equation

⎧
⎪⎨

⎪⎩

ut = �u + u5 in �× R
+,

u = 0 on ∂�× R
+,

u(x, 0) = u0(x) in �,

where � is a bounded smooth domain in R
3. Let Hγ (x, y) be the regular part of

the Green function of −� − γ in �, where γ ∈ (0, λ1) and λ1 is the first Dirichlet
eigenvalue of −�. Then, given a point q ∈ � such that 3γ (q) < λ1, where

γ (q) := sup{γ > 0 : Hγ (q, q) > 0},

we prove the existence of a non-radial global positive and smooth solution u(x, t)
which blows up in infinite time with spike in q. The solution has the asymptotic
profile

u(x, t) ∼ 3
1
4

(
μ(t)

μ(t)2 + |x − ξ(t)|2
) 1

2

as t → ∞, (0.1)

where

− ln(μ(t)) = 2γ (q)t(1 + o(1)), ξ(t) = q + O(μ(t)) as t → ∞.
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G. Ageno, M. del Pino

1 Introduction and statement of themain result

We investigate the asymptotic structure of global in time solutions u(x, t) of the
energy-critical semilinear heat equation

⎧
⎪⎨

⎪⎩

ut = �u + u5 in �× R
+,

u = 0 on ∂�× R
+,

u(x, 0) = u0(x) in �,

(1.1)

where � ⊂ R
3 is a smooth bounded domain and u0 is a smooth initial datum. The

energy associated to the solution u(x, t) is

E(u):=1

2

∫

�

|∇u|2 dx − 1

6

∫

|u|6 dx .

Since classical solutions of (1.1) satisfy

d

dt
E(u(·, t)) = −

∫

�

|ut |2 dx ≤ 0,

the energy is a Lyapunov functional for (1.1). The stationary equation on the whole
space is the Yamabe problem

�U +U 5 = 0 in R3.

All positive solutions to this equation are given by the Aubin-Talenti bubbles (see [4])

Uμ,ξ (x) = μ− 1
2U

(
x − ξ
μ

)

, (1.2)

where μ > 0, ξ ∈ R
3 and

U (x) = α3 1
(
1 + |x |2) 1

2

, where α3:=3
1
4 .

Consider the Sobolev embedding H1
0 (�) ↪→ L p+1(�), which is compact for p ∈

(1, pS), where pS = n+2
n−2 , and the associated constant

Sp(�):= inf
0 	=u∈H1

0 (�)

||u||2
H1
0 (�)

||u||2
L p+1(�)

.

TheAubin-Talenti bubbles achieve the constant SpS (R
n). Thus, the energy E(Uμ,ξ ) =

SpS (R
n) is invariant with respect to μ, ξ . When μ → 0 the Aubin-Talenti bubble
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Infinite time blow-up for the three dimensional energy...

becomes singular. This is the reason for the loss of compactness in the Sobolev embed-
ding for p = pS . Indeed, Struwe proved in [52] that every Palais-Smale sequence
associated to the energy functional E looks like

un(x) = u∞(x)+
k∑

i=1

Uμin ,ξ in (x)+ o(1) when n → ∞, (1.3)

up to subsequences, for some k ∈ N, where u∞ ∈ H1
0 (�) is a critical point of E and

μi
n → 0, ξ in ∈ �. Thus, we say that the compactness is lost by ’bubbling’. When the

domain is star-shaped, the Pohozaev identity constrains u∞ to vanish.
For classical finite-energy solutions u(x, t) the problem (1.1) is well-posed in short

time intervals.We refer to themonograph [48] byQuittner and Souplet for an extended
review on this problem and more general semilinear parabolic equations. The aim of
this paper is exhibiting classical positive finite-energy solutions u(x, t) of (1.1) which
are globally defined in time and satisfy

lim
t→∞ ||u(·, t)||L∞(�) = ∞. (1.4)

Given any smooth function ϕ(x) ≥ 0, ϕ 	= 0, consider α > 0 and uα(x, 0):=αϕ(x)
as initial datum. On one hand, if α is sufficiently small, then uα(x, t) tends uniformly
to zero as t → ∞. On the other hand, using the eigenfunction method of Kaplan [39],
for α sufficiently large uα(x, t) blows-up in finite time. Thus, the threshold number

α∗:= sup
{
α > 0 : lim

t→∞ ||uα(·, t)||∞ = 0
}
,

is positive. In 1984, the first rigorous proof of the existence in L1-weak sense of
uα∗(x, t)was found by Ni, Sacks and Tavantzis [47]. Du [25] and Suzuki [54] proved,
that, for any unbounded sequence of times tn , uα∗(x, tn) can be decomposed as in
(1.3). Thus, when constructing unbounded global solutions for the critical case, it
is natural to look for an asymptotic profile as (1.2). Galaktionov and Vázquez [30]
proved that, in the radial case � = B1(0) with ϕ radial non-increasing, uα∗(x, t) is
smooth, global and u = uα∗ satisfies (1.4). Thus, we naturally wonder what is the
asymptotic behavior of global unbounded solutions. Most of the results about the
dynamics of threshold solutions in literature concern the radial case. This particular
setting allows the construction of specific solutions by means of matched expansions.
In [29] Galaktionov and King proved that the threshold behavior of uα∗ in the radial
case is

ln ||uα∗(·, t)||∞ =
⎧
⎨

⎩

π2

4
t(1 + o(1)) if n = 3,

2
√
t(1 + o(1)) if n = 4,

(1.5)

and

||uα∗(·, t)||∞ = (γnt)
n−2

2(n−4) , if n ≥ 5,
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for someexplicit constantsγn .Ourmain theorem is a non-radial extension in dimension
3. The existence of positive non-radial unbounded solutions for the Dirichlet problem
in dimension n = 4 remains an open problem, whichwewill consider in a future work.
The case of higher dimension n ≥ 5 has been already extended to the non-radial case
by Cortázar et al. [11]. They found positive multi-spike global solutions which blow-
up by bubbling in infinite time. Here, the term multi-spike refers to the fact that the
constructed solution is unbounded in a finite number of points in �. Sign-changing
solutions which blow-up in infinite time have been discovered by del Pino et al. [19]
for n ≥ 5, proving stability in case n = 5, 6.

Our solutions involve the Green function Gγ associated to the elliptic operator

Lγ = −�− γ in �,

where γ ∈ [0, λ1) and λ1 is the principal Dirichlet eigenvalue. Namely, for all y ∈ �,
Gγ satisfies

−�xGγ (x, y)− γGγ (x, y) = c3δ(x − y) in �,Gγ (x, y) = 0 on ∂�,

where δ(x) is the Dirac delta, c3 := α3ω3 and the constant ω3 = 4π indicates the area
of the unit sphere. The Green function can be decomposed as

Gγ (x, y) = �(x − y)− Hγ (x, y),

where �(x) = α3|x |−1 and the regular part Hγ (x, y) is defined as the solution, for all
y ∈ �, to

�x Hγ (x, y)+ γ Hγ (x, y) = γ α3

|x − y| in �,

Hγ (x, y) = �(x − y) in ∂�.

The diagonal Rγ (x):=Hγ (x, x) is called Robin function associated to −�− γ in �.
It turns out (see Lemma 2.1) that for any fixed q ∈ � there exists a unique number
γ (q) ∈ (0, λ1) defined by

γ (q):= sup{γ > 0 : Rγ (q) > 0}.

Our main theorem shows that, for any q ∈ � such that 3γ (q) < λ1, there exists
a global solution to the problem (1.1) which blows-up in infinite time with spike in
x = q.

Theorem 1.1 Let � ⊂ R
3 be a bounded smooth domain. Let q be a point in � such

that

γ (q) <
λ1

3
. (1.6)
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Infinite time blow-up for the three dimensional energy...

Then, there exist an initial condition u0(x) ∈ C1(�̄), smooth functions ξ(t), μ(t) and
θ(x, t) such that the solution u(x, t) to the problem (1.1) is a positive unbounded
global solution with the asymptotic profile

u(x, t) = μ(t)− 1
2U

(
x − ξ(t)
μ(t)

)

− μ(t) 12 (
Hγ (x, ξ(t))+ θ(x, t)

)
as t → ∞,

(1.7)

where θ is a bounded function, and decays uniformly away from the point q. Moreover,
the parameters μ(t), ξ(t) are smooth functions of time and satisfy

ln

(
1

μ(t)

)

= 2γ (q)t(1 + o(1)), ξ(t)− q = O(μ(t)) as t → ∞. (1.8)

Furthermore, thanks to the inner-outer gluing scheme, which is based only on elliptic
and parabolic estimates, as in [11, 15] we get a codimension-1 stability of the solution
stated by Theorem 1.1. In fact, since condition (1.6) is stable under small perturbation
of q ∈ �, the stability result follows exactly as in [11, Proof of Corollary 1.1] (see
Remark 7.1 in Sect. 7).

Corollary 1.1 Let u be the solution stated in Theorem 1.1 which blows up at q. Then,
there exists a codimension-1 manifold M in C1(�̄) with u0 ∈ M and such that if
ũ0 ∈ M and it is sufficiently close to u0, then the solution ũ to (1.1) with initial datum
ũ0 is global and blows-up in infinite time with spike in q̃ near q and profile (1.7) with
ln ||ũ(·, t)||∞ = γ (q̃)t(1 + o(1)) as t → ∞.

Condition (1.6) implies that the pointq cannot be very close to boundary, sinceγ (q) →
λ−
1 as q → ∂� (see Lemma A.2 in Appendix A). Along the proof we need to consider

Dirichlet problems of the type

ut = �u + γ u + e−2γ t f (x) in �× R
+,

u(x, t) = 0 on ∂�× R
+,

u(x, 0) = 0 in �,

for some f (x) ∈ L p with p > 2. In order to successfully apply fixed point arguments,
we need

||u(·, t)||∞ ≤ Ce−2γ t

for t > 1, which requires condition (1.6). Such assumption (1.6) is useful to get rid of
a resonance effect, lastly due to the fact that both the Dirichlet heat kernel p�t (x, y)
and the parameter μ(t) decay exponentially fast. Indeed, the long-term behavior of
the Dirichlet heat kernel is

p�t (x, y) ∼ φ1(x)φ1(y)e−λ1t as t → ∞,
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where φ1 is the positive eigenfunction of −� in � with ||φ1||2 = 1. We recall the
properties of the Dirichlet heat kernel in Sect. 8. More specifically, we use assumption
(1.6) in the following steps of the proof:

• to get estimates for J1, J2 in Lemma 2.2 and Lemma 2.3 respectively;
• in Lemma 4.1 for solving the outer problem;
• in Proposition 6.1 for the invertibility theory of the nonlocal operator J .

The number γ (q) is related to the Brezis-Nirenberg problem. Define

Sa(�):= inf
u∈H1

0 (�)\{0}

∫

�
|∇u|2 dx − a

∫

�
|u|2 dx

(∫

�
|u|6 dx) 1

3

.

In the celebrated work [2], Brezis and Nirenberg proved the existence of a constant
μBN ∈ (0, λ1) such that

μBN:= inf{a > 0 : Sa(�) < S0}.

Then, Druet [24] proved

min
q∈� γ (q) = μBN(�).

Thus, when 3μBN (�) < λ1(�) is true, condition (1.6) is satisfied in some open set
O ⊂ �, and Theorem 1.1 gives the desired solution with blow-up at any fixed point
q ∈ O.

When we consider the radial case � = B1(0) and q = 0, an explicit computation
gives γ (0) = π2/4, that is consistent with (1.5). In fact, this is the minimum value
for γ (q) since Brezis and Nirenberg computed μBN (B1) = π2/4. By symmetry, we
deduce that condition (1.6) is satisfied in the ball Bd∗ , where d∗ = |q∗| and q∗ is a
point such that γ (q∗) = λ1/3.

Also, we can consider smooth perturbation of the ball. Let f : B̄1 → R
3 a smooth

map and for t > 0 define

�t := {x + t f (x) : x ∈ B1}.

For small t the domain�t is diffeomorphic to the ball.Writing λ1 as Rayleigh quotient
and using the definition μBN we can easily see that μ(�t ) = μ(B1) + ε(t) and
λ1(�t ) = λ1(B1) + ε̃(t) where ε(t), ε̃(t) → 0 as t → 0. Thus, for t sufficiently
small, the relation 3μBN(�t ) < λ1(�t ) holds, and Theorem 1.1 applies to the domain
�t . This shows that Galaktionov-King’s radial result is stable under small perturbation
of the domain.

For the unit cube C1 it is known (see [58, Remark 4.3]) that 3μBN(C1) < λ1(C1).
Indeed, from B1/2 ⊂ C1 and the strict monotonicity of μBN (�) with respect to � we
deduce μBN (C1) < μBN

(
B1/2

) = π2. By separation of variables we easily compute
λ1(C1) = 3π2, thus

3μBN (C1) < 3μBN
(
B1/2

) = 3π2 = λ1(C1).
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Infinite time blow-up for the three dimensional energy...

Hence, a slight modification of Theorem 1.1 applies: since C1 is a Lipschitz domain,
by the parabolic regularity theory we get a smooth solution u(x, t) in �× R

+ which
is Lipschitz continuous in �̄× [t0,∞).

Let �∗ be the ball with the same volume as �. The following estimate holds true:

λ1(�
∗)

4
≤ μBN(�) ≤ λ1(�

∗)
4

min
x∈� R0(x)

2.

The lower bound was proved in [2] by means of a symmetrization argument. Using
harmonic transplantation Bandle and Flucher [1] proved the upper bound. Thus, if it
happens that we know minx∈� R0(x)2 < 4/3 we can apply Theorem 1.1 to �. Wang
[58] conjectured that μBN/λ1 ∈ [1/4, 4/9). In particular, condition 3μBN (�) <

λ1(�) could be false for "very thin rectangles" (see [58]). The range [1/4, 4/9) is
supported by numerical computations made by Budd and Humphries [3].

The main differences with respect to the analogue result [11] in dimension n ≥ 5
are the following:

• the main asymptotic behavior in Theorem 1.1 of the blow-up is dependent on
the position of the point q ∈ �. As far as we know, this is a completely new
phenomenon;

• since condition (1.6) is not satisfied close to the boundary, we cannot straightfor-
ward constructmulti-spike solutions in the spirit of [11]. Indeed, roughly speaking,
such construction requires spikes relatively far from each other and close to the
boundary to suitably bound the interaction between the bubbles.

• a nonlocal operator controls the dynamic of the parameterμ(t). A similar operator
has been treated in [15], where the domain � = R

3 allows an explicit inversion
of the Laplace transform.

The approach developed in this work is inspired by [11, 13, 15]. It is constructive
and allows an accurate analysis of the asymptotic dynamics and stability. Let describe
the general strategy. The first step consists in choosing a good approximated solution
u3. Here the word ’good’ means that the associated error function

S[u](x, t):= − ∂t u +�u + u5

is sufficiently small in�. Part of the problem consists in understanding what smallness
on S[u] is sufficient to find a perturbation φ̃ such that

u = u3 + φ̃

is an exact solution to (1.1). In Sect. 2 we start with the scaled Aubin-Talenti bubble
as building block and we modify it to match the boundary at the first order. Then we
realize that we need two improvements. The first one is a global correction useful
to get solvability conditions for the elliptic linearized operator around the standard
bubble

L[φ]:=�φ + 5U 4(y)φ.
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Such improvement produces a nonlocal operator which governs the second order term
in the expansion of the scaling parameter μ(t). This is a low-dimensional effect, lastly
due to the fact that

Zn+1(r):=n − 2

2
U (r)+U ′(r)r /∈ L2(Rn) when n ∈ {3, 4},

where Zn+1 is the unique (up to multiples) bounded radial function belonging to the
kernel of L[φ]. Actually, the dimensional restriction in [11] was specially designed
to avoid this effect and the presence of the corresponding nonlocal term. Then, by
choosing γ (q) as in (1.6) we reduce the error close to x = q; this gives the asymptotic
behavior (1.8) of μ(t) at the first order. A second correction, local in nature, removes
non-radial slow-decay terms and gives the asymptotic for ξ written in (1.8). At this
point we have a sufficiently good ansatz, called u3, to start the so called inner-outer
gluing procedure in Sect. 3: we decompose the problem in a system of nonlinear
problems, namely an inner and an outer problem which are weakly coupled thanks
to the smallness of S[u3]. We solve the outer problem in §4, that is a perturbation
of the standard heat equation, for suitable parameters μ, ξ and decaying solution
φ of the inner problem. Then, we look at the inner regime. We can find the inner
solution, by fixed point argument, using the adaptation to n = 3 of the linear theory
for the inner problem developed in [11]. This requires the solvability of orthogonality
conditions which, in Sect. 5, we prove to be equivalent to a nonlocal system in the
parameters μ, ξ . We solve it in Sect. 6 using the invertibility of a nonlocal equation,
which we achieve in Sect. 8 by means of a Laplace transform argument combined
with asymptotic properties of the heat kernel p�t (x, y). At this point we are ready to
find the inner solution φ in Sect. 7, which concludes the proof of Theorem 1.1.

Of course, the full problem consists in finding the exact initial datum that evolves
in an infinite time blow-up solution. We find the positive initial condition

u(x, t0) = μ(t0)−1/2U

(
x − ξ(t0)
μ(t0)

)

− μ(t0)1/2Hγ (x, t0)+ μ0(t0)
1/2 J1(x, t0)

+ μ(t0)−1/2φ3

(
x − ξ(t0)
μ(t0)

, t0

)

ηl(t0)

(

| x − ξ(t0)
μ(t0)

|
)

+ μ0(t0)
1/2ψ(x, t0)+ ηR(t0)

(

| x − ξ(t0)
μ(t0)

|
)

μ(t0)
−1/2e0Z0

(
x − ξ(t0)
μ(t0)

)

,

for t0 fixed sufficiently large, where the existence of μ, ξ, φ,ψ and the constant e0 is
a consequence of fixed point arguments, ηl , l, ηR, R are defined in (2.5), (2.17) and
the functions φ3, J1 solve the problems (2.21) and (2.14). We remark that we do not
know if the solution with this initial datum corresponds to a threshold solution in the
sense of [47].

We conclude this introduction giving a short bibliographic overview about related
problems and recent developments. The rigorous construction of blow-up solutions
by bubbling, that is a solution u(x, t) ≈ Uμ(t),ξ(t)(x) with μ → 0 for some special
profile U , has been extensively studied in many important problems with criticality.
For instance, in the harmonic map flow [13, 49, 50], in the Patlak-Keller-Segel model
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for chemotaxis [8, 9, 12, 31], in the energy-critical wave equation [26, 36, 40, 41] and
energy critical Schrödinger map problem [45].

Concerning the Cauchy problem

ut = �u + u
n+2
n−2 in Rn × R

+,
u(x, 0) = u0(x) in Rn,

infinite blow-up positive solutions have been found in dimension n = 3 in del Pino et
al. [15], with different blow-up rates depending on the space decay of the initial datum.
Recently,Wei et al. [59] detected analogue solutions in dimension n = 4. These works
were inspired by conjectures presented in [27], where Fila and King used matched
asymptotic methods to formally analyze the behavior of infinite blow-up solutions in
the radial case, also conjecturing that for n ≥ 5 such solutions do not exist. However,
adding drift terms to the equation, Wang et al. [56] have shown examples of positive
initial datum which evolves in multi-spike infinite blow-up by bubbling. For n ≥ 7,
del Pino et al. [16] proved the existence of sign-changing solutions which blow-up in
infinite time in the form of tower of bubbles, that is a supersolution of Aubin-Talenti
bubbles at a single point. For the analogue backward problem where t ∈ (−∞, 0),
ancient solutions which blow-up in infinite time have been detected by Sun et al. [53]
for n ≥ 7.

As we have already mentioned, blow-up for the nonlinear heat equation

ut = �u + |u|p−1u in �× (0, T ),

can also happen in finite time T <∞. We call it Type I blow-up if the solution satisfies

lim sup
t→T

(T − t)
1

p−1 ||u(·, t)||L∞(�) <∞,

otherwise, if

lim sup
t→T

(T − t)
1

p−1 ||u(·, t)||L∞(�) = ∞,

we have Type II blow-up. Several works have focused on constructing finite time
blow-up solutions for the Cauchy problem. Positive Type II blow-up solutions do not
exist in dimension n ≥ 7, see Wang and Wei [57], or under radial assumptions in
any dimension n ≥ 3, see Matano-Merle [44] and the pioneering work by Filippas-
Herrero-Velázquez [28]. In dimension n ≥ 7, Collot et al. [10] classified the dynamics
near the Aubin-Talenti bubble U in the Ḣ1 topology. In particular, they ruled out the
Type II scenario for initial conditions u0 such that ||u0−U ||Ḣ1(Rn) is sufficiently small.
The existence of positive Type II blow-up in dimensions n ∈ {3, 4, 5, 6} is an open
problem.

Type II blow-up it is still admissible for sign-changing solutions, and in fact exam-
ples have been found. Type II blow-up solutions have been constructed by Schweyer
[51] in dimension 4 under radial assumption and later by del Pino et al. in the non-radial
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setting [20]with admissiblemulti-spike behavior.Also, Type II blow-up solutions have
been detected in dimension n ∈ {3, 5, 6} in [18, 21, 33, 34] with different blow-up
rates. Type II blow-up for the critical heat equation can also happen on curves contained
in the boundary of special domains with axial symmetry, see [17].

There havebeendevelopments also in the nonlocal generalizationof these problems.
Concerning the fractional heat equation with critical exponent

ut = − (−�)s u + |u| 4s
n−2s u,

Cai et al. [5] have recently constructed solutions for both the forward and backward
Cauchy problemwhich are sing-changing tower of bubbles at the origin for n > 6s, and
s ∈ (0, 1). For n ∈ (4 s, 6 s) and s ∈ (0, 1) blow-up in finite time has been proved in
[7], which is a fractional continuation of the local Type II blow-up cases n = 4, s = 1
in [51] and n = 5, s = 1 in [21]. Regarding the associated Dirichlet problem, Musso
et al. provided in [46] the existence of positive multi-spike infinite-time blow-up on
bounded smooth domains for n ∈ (4s, 6s) and s ∈ (0, 1).

2 Approximate solution and estimate of the associated error

In this section we construct an approximate solution to the problem

{
ut = �u + u5 in �× R

+,
u = 0 on ∂�× R

+,
(2.1)

andwe compute the associated error.Without loss of generality,we construct a solution
that blows-up at q = 0 ∈ �. The first approximation u1 is chosen by selecting a time-
scaled version of the stationary solution to the Yamabe problem

�U +U 5 = 0 in R3,

properly adjusted to be small at the boundary ∂�. This is constructed in Sect. 2.1. In
order to make the error small at the blow-up point, we need to select a precise first
order for the dilation parameter μ(t), which matches the radial asymptotic found in
[29]. However, we observe in Sect. 2.2 that u1 is not close enough to an exact solution
to make our perturbative scheme rigorous. In Sect. 2.3 we make a global improvement
u2. Such correction involves a nonlocal operator in the lower order term of μ(t),
similar to a half-fractional Caputo derivative. The last improvement u3 is only local,
and it removes slow-decaying terms in non-radial modes by selecting the first order
asymptotic of the translation parameter ξ(t).
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2.1 First global approximation

Our building blocks are the scaled Aubin-Talenti bubbles (1.2) which satisfy

�Uμ,ξ +U 5
μ,ξ = 0 in R3. (2.2)

We look for a solution of the form u1(x, t) ≈ Uμ(t),ξ(t)(x). We make an ansatz for
the parameters μ(t), ξ(t). Assuming that μ(t) → 0 and ξ → 0 ∈ � as t → ∞, we
notice thatUμ,ξ (x) is concentrating around x = 0 and it is uniformly small away from
it. For this reason, we should have

∂t u1 −�u1 = u1(x, t)
5

≈ δ0(x − ξ)
∫

R3

(

μ−1/2U

(
x − ξ
μ

))5

dx

= δ0(x − ξ)μ1/2
∫

R3
U (y)5 dy

= δ0(x − ξ)c3μ1/2. (2.3)

Let μ0(t) the first order of μ(t), that is

μ(t) = μ0(t)(1 + o(1)) as t → ∞.

From (2.3) we define the scaled function

v(x, t):=μ−1/2u1(x, t),

which should satisfy

vt ≈ �v +
(

− μ̇

2μ

)

v + c3δ0(x − ξ) in �× R
+,

v = 0 on ∂�× R
+. (2.4)

We choose the parameter μ0(t) such that

− μ̇0(t)

2μ0(t)
= γ,

for some γ ∈ R
+ that will be fixed later. This is equivalent to choose

μ0(t) = be−2γ t , (2.5)

for some b ∈ R
+. We can fix b = 1. Indeed, the equation is translation-invariant

in time: we construct, for a sufficiently large initial time t0, a solution u(x, t) in
� × [t0,∞) and we conclude that u0(x, t):=u(x, t − t0) is a solution to (2.1) in
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�×[0,∞). We observe that after shifting the initial time, the main dilation parameter
μ0 becomes μ0(t − t0) = e2γ t0e−2γ t .

With this choice (2.4) reads

vt ≈ �v + γ v + c3δ0(x − ξ) in �× R
+,

v = 0 on ∂�× R
+.

Hence, for large time we should have

v(x, t) ≈ Gγ (x, ξ), (2.6)

where Gγ (x, y) is the Green function for the boundary value problem

−�xGγ (x, y)− γGγ (x, y) = c3δ(x − y) in �,

G(·, y) = 0 on ∂�. (2.7)

We write

Gγ (x, y) = �(x − y)− Hγ (x, y), (2.8)

where

−�x�(x) = c3δ0(x), �(x) = α3

|x |

is (a multiple of) the fundamental solution of the Laplacian in R3 and the regular part
Hγ (x, y), for fixed y ∈ �, satisfies

−�x Hγ (x, y)− γ Hγ (x, y) = −γ�(x − y) in �,

Hγ (x, y) = �(x − y) on ∂�. (2.9)

The function Hγ (·, y) ∈ C0,1(�) when γ ∈ (0, λ1). For later purpose, we also write

Hγ (x, y) = θγ (x − y)− hγ (x, y), (2.10)

where

θγ (x) := α3 1 − cos(
√
γ |x |)

|x | (2.11)

and hγ (·, y) ∈ C∞(�) solves

�xhγ (x, y)+ γ hγ (x, y) = 0 in �,

hγ (x, y) = −α3 cos(
√
γ |x − y|)

|x − y| on ∂�. (2.12)
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We also define the Robin function

Rγ (x) := Hγ (x, x) = hγ (x, x).

In terms of the original function u1 the Eq. (2.6) reads as

u1(x, t) ≈ μ1/2 α3

|x − ξ | − μ1/2Hγ (x, ξ).

We notice that far away from the origin we have

Uμ,ξ (x) ≈ μ1/2 α3

|x − ξ | .

This formal analysis suggests the ansatz

u1(x, t) := Uμ,ξ (x)− μ1/2Hγ (x, ξ).

2.1.1 Dilation parameter�(t)

We write the full dilation parameter in the form

μ = μ0(t)e
2�(t),

for some �(t) = o(1) as t → ∞ to be found, where

μ0(t) = e−2γ t .

In this notation we have

μ̇(t)

2μ(t)
= μ̇0e2�

2μ0e2�
+ 2�̇μ0e2�

2μ0e2�

= −γ + �̇(t),

and

�(t) = −
∫ ∞

t
�̇(s) ds,

where �̇(s) is an integrable function in any [t0,∞).

2.2 Error associated to u1

The next step consists in computing the error associated to the first ansatz u1. We
define the error operator

S[u] := −∂t u +�u + u5.
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Of course, solving S[u] = 0 is equivalent to solve the equation in (2.1). It is well-
known that all bounded solutions to the linearized operator

�yφ + 5U (y)4φ = 0 in Rn,

are linear combinations of the functions {Zi }4i=1 defined as

Zi (y) := ∂yiU (y), i = 1, 2, 3,

and

Z4(y) := 1

2
U (y)+ y · ∇U (y) = α3

2

1 − |y|2
(
1 + |y|2)3/2

.

We define the scaled variable

y := y(x, t) := x − ξ(t)
μ(t)

.

Now, we compute S[u1](x, t) for x 	= ξ(t). We have

�u1 = μ−1/2�xU

(
x − ξ
μ

)

− μ1/2�x Hγ (x, ξ)

= −μ−5/2U (y)5 + μ1/2
(

γ Hγ (x, ξ)− γα3

|x − ξ |
)

= −μ−5/2U (y)5 + μ1/2γ Hγ (x, ξ)− μ1/2 γα3

|x − ξ | ,

whereweused equations (2.2) and (2.9) forU and Hγ respectively.Using the definition
of Z4, the time-derivative can be written as

∂t u1 = − 1

2

μ̇

μ
μ−1/2U (y)+ μ−1/2∇yU (y) ·

[

− ξ̇
μ

− μ̇

μ
y

]

− 1

2

μ̇

μ
μ1/2Hγ (x, ξ)− μ1/2ξ̇ · ∇x2Hγ (x, ξ)

= −
(
μ̇

2μ

)[
μ−1/22Z4(y)+ μ1/2Hγ (x, ξ)

]

− μ−3/2ξ̇ · ∇yU − μ1/2ξ̇ · ∇x2Hγ (x, ξ).

Hence, the error associated to u1 is

S[u1] =�̇
(
μ−1/22Z4(y)+ μ1/2Hγ (x, ξ)

)
− γμ−1/2

(

2Z4(y)+ α3

|y|
)

+ μ−3/2ξ̇ · ∇yU (y)+ μ1/2ξ̇ · ∇x2Hγ (x, ξ)
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− μ−3/25U (y)4Hγ (x, ξ)

+ μ−5/2
[(
U (y)− μHγ (x, ξ)

)5 −U (y)5 + μ5U (y)4Hγ (x, ξ)
]
. (2.13)

2.3 Global improvement

The remaining part of this section concerns the improvement of the natural ansatz u1.
Later in the argument we will divide the error in outer and inner part. We realize that
solving the inner-outer system requires a global and a local improvement. Reading
Proposition 3.1, which is the linear theory for the inner problem, we see that, to get
decay in φ(y, τ ) at distance R we need a > 1 in the definition of ||h||ν,2+a . This
smallness at distance R will make the inner and outer regime weakly decoupled. Our
particular h will satisfy ||h||ν,2+a <∞ with a = 2, hence we will use estimate (3.17).
Thus, we say that a term is slow-decay in space if it is not controlled by (1 + |y|)−4.
We can find an exact perturbation with our scheme if we remove such terms. Looking
at (2.13) we observe that all the terms in the first two lines are slow-decay. Using the
inequality μ(t) � (1 + |y|)−1 we can negotiate decay in time with decay in space if
needed in other terms. For the moment we can assume �̇,�, ξ̇ , ξ bounded by some
power of μ(t). Later we shall specify precise norms for these parameters. Firstly, we
decompose

μ−3/25U (y)4Hγ (x, ξ) = μ−3/25U (y)4θγ (x − ξ)
− μ−3/25U (y)4hγ (x, ξ).

We define

u2(x, t) = u1(x, t)+ μ1/2
0 J [�̇](x, t).

The new error reads as

S[u2] = S[u1] + (−∂t +�x )
(
μ
1/2
0 J [�̇](x, t)

)
+ u52 − u51

= S[u1] + μ1/2
0 (−∂t +�x + γ ) J [�̇] + u52 − u51.

Let

J [�̇](x, t) := J1[�̇](x, t)+ J2(x, t).

Plugging S[u1] given by (2.13) into S[u2] we get

S[u2] = μ−3/2ξ̇ · ∇yU (y)+ μ1/2ξ̇ · ∇x2Hγ (x, ξ)+ μ−3/25U (y)4hγ (x, ξ)

+ μ1/2
0

{

(−∂t +�x + γ )J1 +
(
μ

μ0

) 1
2

�̇
(
μ−12Z4 (y)+ Hγ (x, ξ)

)
}
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+ μ1/2
0

{

(−∂t +�x + γ )J2 −
(
μ

μ0

) 1
2

×
[

γμ−1
(

2Z4(y)+ α3

|y|
)

+ μ−25U 4θγ (μy)

]}

+ μ−5/2

⎡

⎣

(

U (y)− μHγ (x, ξ)+ μ
(
μ0

μ

)1/2

J [�̇](x, t)
)5

−U (y)5 + μ5U (y)4Hγ (x, ξ)
]
.

We select J1[�̇](x, t) such that

∂t J1 = �x J1 + γ J1

+
(
μ

μ0

) 1
2

�̇

(

μ−12Z4

(
x − ξ
μ

)

+ Hγ (x, ξ)

)

in �× [t0 − 1,∞),
J1(x, t) = 0 in ∂�× [t0 − 1,∞),
J1(x, t0 − 1) = 0 on �, (2.14)

and

∂t J2 =�x J2 + γ J2 −
(
μ

μ0

) 1
2
[

γ

(

μ−12Z4

(
x − ξ
μ

)

+ α3

|x − ξ |
)

+ μ−25U

(
x − ξ
μ

)4

θγ (x − ξ)
]

in �× [t0,∞),
J2(x, t) = 0 on ∂�× [t0,∞),
J2(x, t0) = 0 in �. (2.15)

The choice of defining J1 from the time t0 − 1, as well as �̇(t), will become clear
in Sect. 8. For the variable ξ(t) it is enough to define the extension ξ(t) = ξ(t0) for
t ∈ [t0 − 1, t0). With these choices the error associated to u2 reads as

S[u2] = μ−3/2ξ̇ · ∇yU (y)+ μ1/2ξ̇ · ∇x2Hγ (x, ξ)+ μ−3/25U (y)4hγ (x, ξ)

+ μ−5/2

⎡

⎣

(

U (y)− μHγ (x, ξ)+ μ
(
μ0

μ

)1/2

J [�̇](x, t)
)5

−U (y)5 + μ5U (y)4Hγ (x, ξ)
]
. (2.16)

2.3.1 Choice of �

We observe that with this choice of J2 we remove the singular term |x − ξ |−1 from
(2.13). At this point, the main error at x = ξ(t) is given by the first order of the
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nonlinear term

μ−3/25U (0)4Rγ (ξ),

which is, in general, of size μ(t)−3/2. We realize that we can reduce this error by
selecting γ such that Rγ (0) = 0. The existence and uniqueness of such number is
given by the following lemma.

Lemma 2.1 There exists a unique γ = γ ∗(0) ∈ (0, λ1) such that Rγ ∗(0) = 0.

Proof We consider the function Rγ (0) as a function of γ . Lemma A.2 in [14] shows
that

Rγ (0) : (0, λ1)→ (−∞, R0(0))

is smooth in (0, λ1) and ∂γ Rγ (0) < 0.LemmaA.1 inAppendixAshows that Rγ (0)→
−∞ as γ → λ−

1 . By the maximum principle H0(x, y) > 0 for all x, y ∈ �, hence
we have R0(0) > 0 and the intermediate value theorem gives the existence of

γ ∗(0) := sup{γ > 0 : Rγ (0) > 0}.

Finally the monotonicity of Rγ (0) implies the uniqueness of γ ∗(0). ��
Remark 2.1 (Regularity of γ ∗(x)) Let R(γ, x) := Rγ (x). Since R(γ ∗(x), x) = 0 and
∂γ R(γ, x) < 0 for all x ∈ �, the implicit function theorem implies that γ ∗(x) ∈
C1(�) with

∇xγ
∗(x) = −∇x R(γ, x)

∂γ R(γ, x)
.

Remark 2.2 (Radial case) We compute γ (0) in case � = B1(0). We look for a radial
solution to

�Hγ + γ Hγ = α3

|x | in B1,

Hγ (x, 0) = α3

|x | on ∂B1.

We define l0(|x |):=Hγ (x, 0) for a function l0 : [0, 1] → R. Then l0 solves

∂rr l0 + 2

r
∂r l0 + γ l0 = γ α3

r
in [0, 1],

l0(1) = α3, l0(r) bounded at r = 0.

We write l0(r) = α3l(r)/r , where l(r) solves

∂rr l + γ l = γ in [0, 1],
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l(1) = 1, l(r) = O(r) for r → 0.

The solution to this problem is given by

l(r) = 1 − cos(
√
γ r)+ cot(

√
γ ) sin(

√
γ r),

and we conclude that

Hγ (r , 0) = α3
[
1 − cos(

√
γ r)

r
+ sin(

√
γ r)

r tan(
√
γ )

]

.

In particular, for r = 0 we find

Rγ (0) = Hγ (0, 0) = α3√γ cot(
√
γ ).

Asking for Rγ (0) = 0

γ =
(π

2
+ kπ

)2
for k ∈ N,

and, recalling that λ1(B1) = π2, the unique value in (0, λ1) is

γ ∗ = π2

4
,

as predicted in the analysis of Galaktionov and King [29].

For the sake of simplicity we continue to use γ = γ (0) to denote the selected number
γ ∗(0). Since Rγ (x) ∈ C∞(�) we expand

Rγ (ξ) = Rγ (0)+ ξ · ∇x Rγ (0)+ 1

2
ξᵀD2

xx Rγ
(
ξ∗) ξ,

for some ξ∗ ∈ [0, ξ ]. Assuming ξ = O(μ) we conclude

μ−3/25U (0)4Rγ (ξ) = O
(
μ−1/2

)
.

2.4 Local improvement and computation of the final error

In this section we make a further improvement and we obtain the final ansatz. We still
need to remove from (2.13) the main order of the terms

μ−3/2ξ̇ · ∇yU + μ−3/25U (y)4hγ (x, ξ).
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We define the final ansatz

u3(x, t) := u2(x, t)+ μ(t)−1/2φ3

(
x − ξ(t)
μ(t)

, t

)

ηl(t)

(

| x − ξ(t)
μ(t)

|
)

.

The function η : [0,∞)→ [0, 1] denotes a smooth cut-off function such that η(s) ≡ 1
for s < 1 and supp η ⊂ [0, 2], and we define

ηl(t) (|y|) := η
( |y|
l(t)

)

, l(t) := 1

k2μ
, (2.17)

where k2 is a constant such that B 2
k2
(0) ⊂ �, to ensure that supp ηl � �. Also we

define the variable

z3(x, t) := y(x, t)

l(t)
= x − ξ(t)
μ(t)l(t)

.

We compute

∂t

(
μ−1/2φ3ηl(t)

)
= − μ̇

2μ
μ−1/2φ3ηl(t)+μ−1/2ηl(t)

[

∂tφ3+∇yφ3 ·
(

− μ̇
μ
y − ξ̇

μ

)]

+ μ−1/2φ3∂tηl(t),

and

�x

(
μ−1/2φ3ηl

)
=μ−5/2ηl(t)�yφ3 + 2μ−3/2∇yφ3 · y

|y|
(
η′ (|z3|)
μl

)

+ μ−1/2φ3

(
2

|z3|
η′(|z3|)
μ2l2

+ η′′ (|z3|)
μ2l2

)

.

We define

N3(y, t) :=
(

U (y)5 − μHγ (μy + ξ, ξ)+ μ
(
μ0

μ

)1/2

J [�̇](μy + ξ, t)+ φ3(y, t)ηl
)5

−U (y)5

− 5U (y)4
(

−μHγ (μy + ξ, ξ)+ μ
(
μ0

μ

)1/2

J [�̇](μy + ξ, t)+ φ3ηl
)

Thus, using (2.16),

S[u3] = −∂t
(
μ−1/2φ3ηl

)
+�x

(
μ−1/2φ3ηl

)
+ u53 − u52 + S[u2]

= μ−3/2ξ̇ · ∇yU + μ1/2ξ̇ · ∇x2Hγ (x, ξ)+ μ−3/25U (y)4hγ (x, ξ)
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+ μ−5/2N3(y, t)+ 5U (y)4μ−3/2
(
μ0

μ

)1/2

J (x, t)+ μ−5/2φ3ηl5U (y)
4

−
(

− μ̇

2μ

)

μ−1/2φ3ηl(t) − μ−1/2ηl(t)

[

∂tφ3 + ∇yφ3 ·
(

− μ̇
μ
y − ξ̇

μ

)]

− μ−1/2φ3∂tη + μ−5/2ηl(t)�yφ3 + 2μ−3/2∇yφ3 · y

|y|
(
η′ (|z3|)
μl

)

+ μ−1/2φ3

(
2

|z3|
η′(|z3|)
μ2l2

+ η′′ (|z3|)
μ2l2

)

.

By Taylor expanding hγ (x, ξ) centered at x = ξ we have

hγ (x, ξ) = Rγ (ξ)+ μy · ∇x1hγ (ξ, ξ)+
1

2
μ2yᵀDxxhγ (x̄, ξ)y (2.18)

for some x̄ ∈ [ξ, x]. Now, we expand the first terms at (ξ, ξ) = (0, 0). By the Chain
Rule we have ∇x1hγ (x, x) = 2∇x Rγ (x). Hence, we have

∇x1hγ (ξ, ξ) = 1

2
∇x Rγ (ξ) = 1

2
∇x Rγ (0)+ 1

2
ξᵀDxx Rγ

(
ξ∗∗) ,

for some ξ∗∗ ∈ [0, ξ ]. Furthermore, since Rγ (0) = 0, we have

Rγ (ξ) = ξ · ∇x Rγ (0)+ 1

2
ξᵀDxx Rγ (ξ

∗)ξ

for some ξ∗ ∈ [0, ξ ]. Plugging these identities in (2.18) we obtain

hγ (x, ξ) = ξ · ∇x Rγ (0)+ 1

2
μy · ∇x Rγ (0)

+ 1

2
ξᵀDxx Rγ (ξ

∗)ξ + 1

2
μyᵀDxx Rγ

(
ξ∗∗) ξ

+ 1

2
μ2yᵀDxxhγ (x̄, ξ)y. (2.19)

We write

ξ(t) = ξ0(t)+ ξ1(t).

Now, we assume the following decay for the parameters ξ1, ξ̇1,�, �̇:

|ξ1(t)| + | ∗ |ξ̇1(t) ≤ Cμ(t)1+k,

| ∗ |�(t) ≤ Cμ(t)l0 ,

| ∗ |�̇(t) ≤ Cμ(t)l1 ,
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for some positive constants k, l0, l1 to be chosen (in §3.1.3). We write the full error

S[u3] =μ−3/2∇yU (y) ·
[
ξ̇ − μ−1μ0ξ̇0

]
ηl

+ 5U (y)4
[

μ−3/2hγ (x, ξ)− μ−5/2μ0

(
1

2
μ0y · ∇x Rγ (0)

)]

ηl

+
[
μ−3/2∇yU (y) · ξ̇ + 5U (y)4μ−3/2hγ (x, ξ)

]
(1 − ηl)

+ μ1/2ξ̇ · ∇x2Hγ (x, ξ)+ μ−5/2N3(y, t)+ 5U (y)4μ−3/2
(
μ0

μ

)1/2

J (x, t)

−
(

− μ̇

2μ

)

μ−1/2φ3ηl(t) − μ−1/2ηl(t)

[

∂tφ3 + ∇yφ3 ·
(

− μ̇
μ
y − ξ̇

μ

)]

− μ−1/2φ3∂tη + μ−5/2ηl(t)

[
�yφ3 + 5U (y)4φ3 + M[μ0, ξ0]

]

+ 2μ−3/2∇yφ3 · y

|y|
(
η′ (|z3|)
μl

)

+ μ−1/2φ3

(
2

|z3|
η′(|z3|)
μ2l2

+ η′′ (|z3|)
μ2l2

)

,

where

M[μ0, ξ0]:=μ0ξ̇0 · ∇yU (y)− 5

2
U (y)4μ0

(
μ0y · ∇x Rγ (0)

)
(2.20)

For any fixed t > t0, we select φ3(x, t) as the bounded solution to the elliptic problem

�yφ3(y, t)+ 5U (y)4φ3(y, t) = −M[μ0, ξ0](y, t) in R3, (2.21)

with the following orthogonality conditions on the right-hand side:

∫

R3
M[μ0, ξ0](y, t)Zi (y) dy = 0 for t > t0, and i = 1, 2, 3, 4. (2.22)

As we shall see in the proof of Lemma 2.4, the conditions (2.22) are essential to have
φ3 bounded in space and equivalent to choose ξ0(t). The condition corresponding to
the index i = 4 is satisfied by symmetry.When i = 1, 2, 3 the orthogonality condition
(2.22) is equivalent to

μ0ξ̇0,i

(∫

R3
|∂yiU (y)|2 dy

)

− μ2
0

(∫

R3
5U (y)4yi∂yiU (y) dy

)
1

2
∂x,i Rγ (0) = 0.

Hence, we select ξ0,i such that

ξ̇0,i (t) = ∂x,i Rγ (0)
(∫

R3 5U (y)4yi∂yiU (y) dy
)

2
(∫

R3 |∂yiU (y)|2 dy
) μ0(t).
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With the condition limt→∞ ξi (t) = 0 we get

ξ0,i (t) = ci e
−2γ t , ci = −| ∗ |∂x,i Rγ (0)|

∫

R3 5U (y)4yi∂yiU (y) dy|
4γ

(∫

R3 |∂yiU (y)|2 dy
) . (2.23)

Also, we define c:=(c1, c2, c3).

Remark 2.3 (No local improvement in the radial case) In case � = B1(0), searching
hγ (r , 0) solution to (2.12) in the radial form, we see that

∇x Rγ (0) = 2∇x1hγ (0, 0) = 0,

hence conditions (2.22) imply ξ0 = 0, as expected. Thus, the local improvement φ3,
which in fact involves only non-zero modes, is null in the radial case.

With these choices for φ3 and ξ0 we conclude with the following expression of the
error associated to the final ansatz u3:

S[u3] = μ−3/2∇yU (y) ·
[
ξ̇1 +

(
1 − μ−1μ0

)
ξ̇0

]
ηl

+ 5U (y)4
[

μ−3/2hγ (x, ξ)− μ−5/2μ0

(
1

2
μ0y · ∇x Rγ (0)

)]

ηl

+
[
μ−3/2∇yU (y) · ξ̇ + 5U (y)4μ−3/2hγ (x, ξ)

]
(1 − ηl)

+ μ1/2ξ̇ · ∇x2Hγ (x, ξ)+ μ−5/2N3(y, t)+ 5U (y)4μ−3/2
(
μ0

μ

)1/2

J (x, t)

−
(

− μ̇

2μ

)

μ−1/2φ3ηl(t) − μ−1/2ηl(t)

[

∂tφ3 + ∇yφ3 ·
(

− μ̇
μ
y − ξ̇

μ

)]

− μ−1/2φ3∂tη + 2μ−3/2∇yφ3 · y

|y|
(
η′ (|z3|)
μl

)

+ μ−1/2φ3

(
2

|z3|
η′(|z3|)
μ2l2

+ η′′ (|z3|)
μ2l2

)

.

2.5 Estimate of the inner and outer error

For later purpose, we split S[u3] in inner and outer error. At this stage, it is important
to treat the terms involving directly �̇ as part of the outer error, since, as we shall see,
a priori those are the terms with less regularity. Let

S[u3] = Sin + Sout
= SinηR(t)(y)+ (1 − ηR(t)(y))Sin + Sout,
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where we define the inner error

Sin := μ−3/2
(
μ0

μ

)1/2

5U (y)4 J (x, t)+ μ−5/2N3

+ μ−3/2ηl

(
ξ̇1 +

(
1 − μ−1μ0

)
ξ̇0

)
· ∇yU (y)

+ μ−3/2ηl5U (y)
4
(

hγ (x, ξ)−
(
μ0

μ

)(
1

2
μ0y · ∇x Rγ (0)

))

, (2.24)

the outer error

Sout := μ−3/2
[
∇yU (y) · ξ̇ + 5U (y)4hγ (x, ξ)

]
(1 − ηl)

+ μ1/2ξ̇ · ∇x2Hγ (x, ξ)

− μ−1/2
[
(γ − �̇)ηl

(
φ3 + 2y · ∇yφ3

) + ηl
(
∂tφ3 − μ−1ξ̇ · ∇yφ3

)

+φ3 η
′(|z3|)
μl

ξ̇ · z3
|z3|

]

+ 2μ−3/2∇yφ3 · y

|y|
(
η′ (|z3|)
μl

)

+ μ−1/2φ3

(
2

|z3|
η′(|z3|)
μ2l2

+ η′′ (|z3|)
μ2l2

)

,

(2.25)

and the radius

R(t) := μ(t)−δ, (2.26)

for some constant δ > 0 which will be chosen in (2.31) to make both the errors SinηR
and Sin(1 − ηR)+ Sout suitably small for a final contraction.

Size of SinηR . We proceed with the estimate of SinηR . More precisely, we need the
following conditions on δ, l0, l1, k:

δ + l1 < 1 (2.27)

δ ∈
(
1 − l1
2
,
1 + l1
6

)

(2.28)

l1 ≤ l0, (2.29)

k + 1 ≥ 2δ + l1, (2.30)

The condition (2.27) is used to get the estimate in the linear outer problem, and it is due
to the fact that both the heat kernel p�t and the parameter μ0(t) have an exponential
decay for t large. To make the quadratic term U 3φ̃2 smaller than Sin in the inner
problem we need the upper bound in (2.28). The lower bound is necessary to get a
positive Hölder exponent in the regularity of �̇. The last two conditions (2.29)–(2.30)
insure that Sin is controlled by the first term in (2.24). Thus, we fix the following values
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satisfying (2.27)–(2.28):

δ = 2

9
, l1 = 2

3
. (2.31)

Here and in what follows, we write a � b if there exists a constant C , independent of
t0, such that a ≤ Cb. If both the inequalities a � b and b � a hold we write a ∼ b.
Using (2.34) and (2.35) we estimate

|ηR5U (y)4
(
μ0

μ

)1/2

μ−3/2 J [�̇](x, t)| � μ−3/2

1 + |y|4
(

μl1 + μ

1 + |y|1−ε
)

,

� μ−3/2+l1

1 + |y|4

and, since we are in the region where ηR 	= 0, using (2.38), we obtain

|ηRμ−5/2N3| � μ−1/2U (y)3
(
|Hγ (x, ξ)| + |J (x, t)| + μ−1φ3ηl

)2

� μ−1/2

1 + |y|3
(

μR + μl1 + μ

1 + |y|1−ε + μ
)2

� μ−1/2

1 + |y|4μ
−δ (μ1−δ + μl1

)2

� μ−1/2−δ+2min{1−δ,l1}

1 + |y|4

Also,

|ηRμ−3/2ηl

(
ξ̇1 + (1 − μ−1μ0)ξ̇0

)
· ∇yU | � ηl

μ−3/2

1 + |y|4 R
2
(
| ∗ |ξ̇1 + μ2

)

� μ−3/2−2δ+min{1+k,2}

1 + |y|4

Now, we estimate the last term of SinηR using expansion (2.19) and μ/μ0 = e2� we
get

|ηRμ−3/2ηlU (y)
4
(

hγ (x, ξ)−
(
μ0

μ

)(
1

2
μ0y · ∇x Rγ (0)

))

| � μ−3/2+min{1,l0}

1 + |y|4 .

Combining these estimates we obtain

|ηRSin| � 1

1 + |y|4
[
μ−1/2−δ+2min{1−δ,l1} + μ−3/2−2δ+min{1+k,2} + μ−3/2+min{1,l0,l1}

]
,

123



Infinite time blow-up for the three dimensional energy...

and using the values (2.31) we get

|ηRSin| � μ− 3
2+l1

1 + |y|4 � μ−5/6

1 + |y|4

Size of Sout. For the first term in Sout we have

|(1 − ηl)∇yU · ξ̇ | � μ3/2(1 − ηl)
|μ−3/25U 4hγ (1 − ηl)| � μ5/2(1 − ηl)
|μ1/2ξ̇ · ∇x1Hγ | � μ3/2

and using the estimates given by Lemma 2.4 on φ3,∇yφ3 and ∂tφ3 we get

∣
∣
∣
∣μ

−1/2
[

(γ − �̇)ηl
(
φ3 + 2y · ∇yφ3

)

+ ηl
(
∂tφ3 − μ−1ξ̇ · ∇yφ3

)
+ φ3 η

′(|z3|)
μl

ξ̇ · z3
|z3|

]∣
∣
∣
∣ � μ3/2

Finally,

|2μ−3/2∇yφ3 · y

|y|
(
η′ (|z3|)
μl

)

+ μ−1/2φ3

(
2

|z3|
η′(|z3|)
μ2l2

+ η′′ (|z3|)
μ2l2

)

| � μ3/2.

We conclude that

|Sout| � μ 3
2 .

Size of Sin(1 − ηR). It remains to estimate the size of Sin(1 − ηR). We have

|(1 − ηR)5U 4μ−3/2 J [�̇](x, t)| � μ− 3
2+l1+2δ

1 + |y|2 (1 − ηR) (2.32)

Then,

|(1 − ηR)μ−5/2N3| � (1 − ηR)μ−1/2 1

1 + |y|3
(
|Hγ (x, ξ)| + |J (x, t)| + μ−1φ3ηl

)2

� (1 − ηR)μ
−1/2R−1

1 + |y|2
(
1 + μ2l1 + μ2

)

� (1 − ηR) 1

1 + |y|2μ
−1/2+δ.

In particular we observe that this is smaller than (2.32), thanks to (2.28). Also,

μ−3/2ηl(ξ̇1 + (1 − μ−1μ0)ξ̇0) · ∇yU (y)(1 − ηR) � μ
1
2+min{0,k− 1

2 }

1 + |y|2 (1 − ηR),
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and

| ∗ |(1 − ηR)ηl5U (y)4μ−3/2
(

hγ (x, ξ)−
(
μ0

μ

)(
1

2
μ0y · ∇x Rγ (0)

))

� R−2μ−1/2

1 + |y|2 (1 − ηR)

� μ2δ− 1
2

1 + |y|2 (1 − ηR).

Combining these estimates we find

|Sin(1 − ηR)| � μ− 3
2+l1+2δ 1

1 + |y|2 (1 − ηR(|y|)).

We conclude that

|Sin(1 − ηR)+ Sout| � μ− 3
2+l1+2δ 1

1 + |y|2 (1 − ηR)+ μ 3
2 .

2.6 Estimates of J1, J2 and�3

The following lemma gives an estimate of J1[�̇](x, t) in terms of �̇. Observe that

lim
t→∞

(
μ(t)

μ0(t)

)1/2
[

μ2(t)− |x − ξ(t)|2
(
μ(t)2 + |x − ξ(t)|2)3/2

+ Hγ (x, ξ(t))

]

= − 1

|x | + Hγ (x, 0),

thus, for t0 large, we will approximate J1 with J , that is the solution to

∂tJ = �xJ + γJ − �̇(t)Gγ (x, 0) in �× [t0 − 1,∞),
J (x, t) = 0 on ∂�× [t0 − 1,∞),
J (x, t0 − 1) = 0 in �. (2.33)

We define the L∞-weighted space

Xc:={ f ∈ L∞(t0 − 1,∞) : || f ||∞,c <∞},

where

|| f ||∞,c:= sup
t>t0−1

| f (t)μ0(t)
−c|.

Lemma 2.2 (Estimate of J1) Suppose 2γ l1 < λ1 − γ and

||�̇||∞,l1 <∞.
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Then we have

||J1(·, t)||L∞(�) � μ0(t)
l1 ||�̇||∞,l1, (2.34)

for t ≥ t0.

Since we have selected l1 < 1 in (2.31), condition (1.6) guarantees that 2γ l1 < λ1−γ .
Proof By parabolic comparison, it is enough to prove the bound for J defined as the
solution to (2.33). Indeed, we have

∣
∣
∣
∣
∣

(
μ

μ0

)1/2

�̇(t)

(
μ2 − |x − ξ |2

(
μ2 + |x − ξ |2)3/2

+ Hγ (x, ξ)

)∣
∣
∣
∣
∣
�

∣
∣
∣
∣∗�̇(t)| − 1

|x | + Hγ (x, 0)|
∣
∣
∣
∣

We decompose

J (x, t) =
∞∑

k=1

bk(t)wk(x) in L2(�), for t ≥ t0 − 1,

where wk is the k-th eigenfunction of −� on �. Plugging the decomposition into the
equation we find

bk = ck

∫ t

t0−1
e−(λk−γ )(t−s)�̇(s) ds, where ck := −

∫

�

Gγ (x, 0)wk(x) dx .

In particular, we have

||J (·, t)||L2(�) ≤ ||Gγ (·, 0)||L2(�)

∫ t

t0−1
e−(λ1−γ )(t−s)| ∗ |�̇(s) ds.

Using ||�̇||∞,l1 <∞ and 2γ l1 < λ1 − γ we obtain

||J (·, t)||L2(�) ≤ ||Gγ (·, 0)||L2(�)||�̇||∞,l1e−min{2γ l1,λ1−γ }(t−(t0−1)),

� ||�̇||∞,l1e−2γ l1(t−(t0−1))

Finally, from standard parabolic estimates, using the L2-bound and Eq. (2.33), we get
for t ≥ t0

||J (·, t)||L∞(�′) � ||�̇||∞,l1e−2γ l1t ,

for any �′ � �. By boundary regularity estimates this inequality can be extended to
� thanks to the smoothness of ∂�. ��
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Lemma 2.3 (Estimate of J2) Let J2(x, t) be the unique solution to the problem

∂t J2 =�x J2 + γ J2 −
(
μ

μ0

) 1
2
[

γ

(

μ−12Z4

(
x − ξ
μ

)

+ α3

|x − ξ |
)

+ μ−25U

(
x − ξ
μ

)4

θγ (x − ξ)
]

in �× [t0,∞),
J2(x, t) = 0 on ∂�× [t0,∞),
J2(x, t0) = 0 in �.

Suppose that 3γ < λ1. Then, there exists t0 large such that

|J2(μy + ξ, t)| � μ(t) 1

1 + |y|1−ε , (2.35)

for any ε > 0 and for all (x, t) ∈ �× [t0,∞) where y = (x − ξ)/μ.
Proof Firstly, we observe that

∣
∣
∣
∣

1 − |y|2
(1 + |y|2)3/2 + 1

|y|
∣
∣
∣
∣ � 1

|y| (1 + |y|2−ε) .

Also, by Taylor expanding the function θγ in (2.11) near the origin, we see that

|μ−25U (y)4θγ (μy)| � μ−1

1 + |y|4 |y|

� μ−1

|y| (1 + |y|2−ε) ,

where ε > 0 can be taken arbitrarily small. Thus, by parabolic comparison, it is enough
to find a supersolution to the problem

∂t u = �xu + γ u + μ−1 1

|y(x, t)|(1 + |y(x, t)|2−ε) in �× [t0,∞),
u(x, t) = 0 on ∂�× [t0,∞),
u(x, t0) = 0 in �.

Let v(x, t):=μ(t)−1u(x, t), which satisfies

∂tv = �xv + (3γ − 2�̇)v + μ−2

|y(x, t)| (1 + |y(x, t)|2−ε) in �× [t0,∞),

v = 0 on ∂�× [t0,∞),
v(x, t0) = 0 in �.
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We look for a supersolution v̄ of the form

v̄(x, t) = v0
(
x − ξ
μ

)

η

(
x − ξ
C0

)

+ v1(x, t).

We need

∂tv1 −�xv1 − (3γ − �̇)v1 ≥ η
[

− ∂tv0 + μ−2�yv0 + (3γ − �̇)v0

+ μ−2

|y|(1 + |y|2−ε)
]

+ (1 − η) μ−2

|y|(1 + |y|2−ε) + (�xη − ∂tη) v0
+ 2μ−1∇xη · ∇yv0, (2.36)

with v1 ≥ 0 on ∂� × [t0,∞) and v0(y(x, t0)) ≥ 0 for x ∈ �. Without loss of
generality let � ⊂ B1. Consider the positive radial solution v0(|y|, t) to

�yv0 + 2
1

|y| (1 + |y|2−ε) = 0 on B 1
μ(t)
,

v0 ≡ 0 on ∂B 1
μ(t)
,

given by the formula of variation of parameters

v0(|y|, t) = 2ω3

∫ 1
μ(t)

|y|
1

ρ2

∫ ρ

0

s

1 + s2−ε
ds dρ.

From this formula we obtain the following estimates in (x, t) ∈ �× [t0,∞):

|v0(|y|, t)| + |∂tv0(|y|, t)| � 1

1 + |y|1−ε ,

Thus, if |x − ξ | < C0, for C0 sufficiently small, then

− ∂tv0 + μ−2�yv0 + (3γ − �̇)v0 + μ−2

|y|(1 + |y|2−ε)
= − μ−2

|y|(1 + |y|2−ε) + O

(
1

1 + |y|1−ε
)

≤ 0.

Then, let v1 be the solution to

∂tv1 −�xv1 − (3γ − �̇)v1 = (1 − η) μ−2

|y|(1 + |y|2−ε) + (�xη − ∂tη)v0
+ 2μ−1∇xη · ∇yv0 in �× [t0,∞),
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with

v1(x, t) = 0 on ∂�× [t0,∞),
v1(x, t0) = 0 in �.

In the right-hand side we have

(1 − η) μ−2

|y|(1 + |y|2−ε) � μ1−ε,

|(�x − ∂tη)v0| � μ1−ε,
|2μ−1∇xη · ∇yv0| � μ1−ε.

Since 3γ − �̇(t) < λ1 provided that t0 is sufficiently large, the comparison principle
applies and we get |v0| � μ1−ε. Thus, we verified inequality (2.36). Also, we have
v = v1 ≥ 0 on ∂� × [t0,∞) and ηv0(y(x, t0)) ≥ 0. Thus, v is a supersolution, and
going back to the original function u = μv we get estimate (2.35) for J2. ��
Lemma 2.4 (Estimate onφ3)LetM[ξ0, μ0]bedefinedas in (2.20). If the orthogonality
conditions (2.22) on M[ξ0, μ0] hold, then there exists a bounded solution to the
problem

�yφ3 + 5U (y)4φ3(y, t) = −M[ξ0, μ0](y, t) in R3. (2.37)

We have the following estimates on φ3 and its derivatives:

|φ3(y, t)| + (1 + |y|)|∇yφ3(y, t)| + |∂tφ3(y, t)| � μ2(t) f (y, t), (2.38)

where f is a smooth bounded function.

Proof From the explicit form of the function M given in (2.20) we estimate its size
by

|M[μ0, ξ0](y, t)| ≤ μ2 1

1 + |y|2 ,

and we observe that M has only modes i = 1, 2, 3. Thus, we decompose φ3 in such
modes:

φ3(y) =
3∑

i=1

φ3,i (r)ϑi (y/r), r :=|y|, φ3,i (r):=
∫

S2
φ3(rθ)ϑi (θ) dθ.

Similarly, we define

zi (r):=
∫

S2
Zi (rθ)ϑi (θ) dθ.
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The formula of variation of constants gives

φ3,i (r) = zi (r)
∫ r

0

1

ρ2zi (ρ)2
Ii (ρ) dρ,

where

Ii (ρ):=
∫ ρ

0
Mi (s)zi (s)s

2 ds,

and

Mi (r):=
∫

S2
M(rθ)ϑi (θ) dθ.

Since

|Mi (r)| � 1

1 + r2
,

and

|zi (r)| � r

(1 + r3)
,

we deduce

|Ii (ρ)| � ρ4 as ρ → 0.

Also, by the orthogonality conditions (2.22) we have

|Ii (ρ)| = |
∫ ∞

ρ

Mi (s)zi (s)s
2 ds|

� 1

ρ
as ρ → ∞.

With these estimates we conclude

|φ3(r)| � r

1 + r3

∫ r

0

(
1 + ρ2)3
ρ4

|I(ρ)| dρ

� r

1 + r3

∫ r

0

(
1 + ρ2)3
ρ4

ρ4

1 + ρ5 dρ
� 1.

Similarly, taking the space and time derivatives of Eq. (2.37), we deduce the bounds
on ∇yφ3 and ∂tφ3. ��
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We conclude this section with summarizing the estimates of the error S[u3].
Lemma 2.5 Let 3γ < λ1, μ = μ0e2� and ξ = ξ0 + ξ1, where μ0, ξ0 are given by
(2.5) and (2.23) respectively. Assume

|�(t)| � μ0(t)
l0 , |�̇(t)| � μ0(t)

l1,

R(t) = μ−δ, |ξ̇1(t)| � μ1+k
0 ,

for positive constant δ, l0, l1, k satisfying (2.27),(2.28), (2.29) and (2.30). Then, setting
x = μy+ ξ , for t0 sufficiently large the following estimate on the error function S[u3]
holds:

S[u3](y, t) = Sin(y, t)ηR(t) (|y|)+ Sin(y, t)(1 − ηR(t)(|y|))+ Sout(y, t),

where

|Sin(y, t)ηR(t)| � μ− 3
2+l1 1

1 + |y|4 ,

|Sout(y, t)| � μ 3
2 ,

|Sin(y, t)(1 − ηR(t))| � μ− 3
2+l1+2δ 1

1 + |y|2 .

3 The inner-outer scheme

We recall that our final purpose is to find an unbounded global in time solution u to
(2.1) of the form

u = u3 + φ̃, (3.1)

for a small perturbation φ̃. The latter is constructed by means of the inner-outer gluing
method. This consists in looking for a perturbation of the form

φ̃(x, t) = μ0(t)
1/2ψ(x, t)+ ηR(t) (|y|) μ(t)−1/2φ (y, t) , (3.2)

where

ηR(t) (|y|) =
( |y|
R(t)

)

, y:=y(x, t):= x − ξ(t)
μ(t)

,

and η(s) is a cut-off function with supp η ⊂ [0, 2] and η ≡ 1 in [0, 1]. We have already
chosen R = R(t) in (2.26). In terms of φ̃ the equation reads as

0 = S[u] = −∂t u +�xu + u5

=
(
−∂t u3 +�xu3 + u53

)
− ∂t φ̃ +�x φ̃ + (u3 + φ̃)4 − u53

123



Infinite time blow-up for the three dimensional energy...

= S[u3] − ∂t φ̃ +�x φ̃ + 5u43φ̃ + N (u3, φ̃)

where

N (u3, φ̃):=(u3 + φ̃)5 − u53 − 5u43φ̃. (3.3)

Hence the problem for φ̃ is

∂t φ̃ = �x φ̃ + 5u43φ̃ + S[u3] + N (u3, φ̃) in �× [t0,∞),
φ̃ = −u3 on ∂�× [t0,∞).

Now, the main idea is to split the problem for φ̃ in a system for (ψ, φ), localizing the
inner regime. We divide the error in

S[u3] =SinηR + Sin(1 − ηR)+ Sout,

where Sin, Sout are defined in (2.24) and (2.25) respectively. Considering φ̃ as in (3.2)
we compute

∂t φ̃ = μ̇0

2μ0
μ
1/2
0 ψ + μ1/2

0 ∂tψ + μ−1/2φ∂tη

(
y(x, t)

R(t)

)

− μ̇

2μ
μ−1/2φηR

+ μ−1/2 (
∂tφ + ∇yφ · ∂t y(x, t)

)
ηR

= −γμ1/2
0 ψ + μ1/2

0 ∂tψ + μ−1/2φ

[

∇zη
( y

R

)
·
(

− Ṙ

R

y

R
− μ̇

μ

y

R
− ξ̇

μR

)]

+
(

− μ̇

2μ

)

μ−1/2φηR + μ−1/2ηR

(

∂tφ + ∇yφ ·
(

− μ̇
μ
y − ξ̇

μ

))

,

and

�x φ̃ = μ1/2
0 �xψ + μ−1/2�x

(
φ(y(x, t), t)ηR(t)(y(x, t))

)

= μ1/2
0 �xψ + μ−5/2ηR(y)�yφ(y, t)+ μ−1/2φ

(
2

|z|
η′(|z|)
μ2R2 + η′′ (|z|)

μ2R2

)

+ 2μ−1/2 1

μ
∇yφ(y, t) · z

|z|
η′(|z|)
μR

,

where z:=y/R. We split

5u43φ̃ = 5u43μ
1/2
0 ψηR + 5u43μ

1/2
0 ψ(1 − ηR)+ 5u43μ

−1/2φηR .

Hence, the full equation becomes

− γμ1/2
0 ψ + μ1/2

0 ∂tψ + μ−1/2φ∂tηR + ηRμ−1/2∂tφ
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+ ηR
{

(γ − �̇)μ−1/2(φ + 2∇yφ · y)− μ−1/2∇yφ ·
(
ξ̇

μ

)}

= μ1/2
0 �xψ + μ−5/2ηR�yφ + μ−1/2φ

(
2

|z|
η′(|z|)
μ2R2 + η′′ (|z|)

μ2R2

)

+ 2μ−1/2 1

μ
∇yφ · z

|z|
η′(|z|)
μR

+ 5u43μ
1/2
0 ψηR + 5u43μ

1/2
0 ψ(1 − ηR)+ 5u43μ

−1/2φηR

+ SinηR + Sin (1 − ηR)+ Sout

+ N (u3, φ̃)(1 − ηR)+ N (u3, φ̃)ηR .

We divide the full problem in a system. Firstly, we look for a solution ψ to

μ
1/2
0 ∂tψ =μ1/2

0 �xψ + γμ1/2
0 ψ + 5u43μ

1/2
0 ψ(1 − ηR)+ μ−1/2φ∂tηR

+ ηR
{

(γ − �̇)μ−1/2(φ + 2∇yφ · y)− μ−1/2∇yφ ·
(
ξ̇

μ

)}

+ μ−1/2φ

(
2

|z|
η′(|z|)
μ2R2 + η′′ (|z|)

μ2R2

)

+ 2μ−1/2 1

μ
∇yφ · z

|z|
η′(|z|)
μR

+ Sin (1 − ηR)+ Sout + N (u3, φ̃)(1 − ηR), in �× [t0,∞)
ψ(x, t) = − μ−1/2

0 u3(x, t) on ∂�× [t0,∞).

Thus, after dividing by μ1/2
0 , ψ solves the outer problem

∂tψ =�xψ + γψ + 5u43ψ(1 − ηR)+ μ−1
(
μ

μ0

)1/2

φ∂tηR

+ μ−1
(
μ

μ0

)1/2

ηR

{

(γ − �̇)(φ + 2∇yφ · y)− ∇yφ ·
(
ξ̇

μ

)}

+ μ−1
(
μ

μ0

)1/2 (

φ

(
2

|z|
η′(|z|)
μ2R2 + η′′ (|z|)

μ2R2

)

+ 2
∇yφ

μ
· z

|z|
η′(|z|)
μR

)

+ μ−1/2
0 Sin (1 − ηR)+ μ−1/2

0 Sout + μ−1/2
0 N (u3, φ̃)(1 − ηR),

in �× [t0,∞)
ψ(x, t) = − μ−1/2

0 u3(x, t) on ∂�× [t0,∞), (3.4)

Then, φ has to solve the problem

μ−1/2∂tφ = μ−5/2�yφ + 5u43μ
−1/2φ + 5u43μ

1/2
0 ψ + Sin + N (u3, φ̃)

in B2R(0)× [t0,∞).
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Equivalently, multiplying by μ5/2, φ solves

μ2∂tφ =�yφ + 5U 4φ + 5U 4
(
μ0

μ

)1/2

μψ(μy + ξ, t)+ B0 [φ + μψ] (μy + ξ, t)
+ μ5/2Sin(μy + ξ, t)
+ N (μ1/2u3, μ

1/2φ̃)(μy + ξ, t) in B2R(0)× [t0,∞), (3.5)

where B0 is the linear operator

B0[ f ]:=5

[(
U − μHγ + μJ [�̇] + μ−1/2φ3(y, t)η3

)4 −U 4
]

f , (3.6)

3.1 General strategy for solving the inner-outer system

We now describe the method we use to solve system (3.4)–(3.5). Firstly, for fixed
parameters �, �̇, ξ, ξ̇ and inner function φ in suitable weighted spaces, we solve
problem (3.4) in ψ = ψ[�, �̇, ξ, ξ̇ , φ]. This is done in Sect. 4. We insert such ψ in
the inner problem. At this point we need to find�, �̇, ξ, ξ̇ and φ. We make the change
of variable t(τ ) defined by the ODE

dt(τ )

d τ
= μ2(t(τ ))

t(τ0) = t0,

which explicitly gives

τ − τ0 =
∫ t

t0

ds

μ(s)2
ds (3.7)

=
∫ t

t0

ds

μ0(s)2
(1 + o(1)) ds (3.8)

= 1

4γ
μ0(t)

−2(1 + o(1)). (3.9)

Expressing Eq. (3.5) in the new variables (y, τ ) we get the inner problem

∂τφ = �yφ + 5U 4φ + H [φ,ψ,�, �̇, ξ, ξ̇ ](y, τ ) in B2R × [τ0,∞), (3.10)

where

H [φ,ψ,�, �̇, ξ, ξ̇ ](y, τ ) := 5U (y)4μ

(
μ0

μ

)1/2

ψ(μy + ξ, t(τ ))
+ B0 [φ + μψ] (μy + ξ, t(τ ))+ μ5/2Sin(μy + ξ, t(τ ))
+ N (μ1/2u3, μ

1/2φ̃)(μy + ξ, t(τ )). (3.11)
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Let Z0 be the positive radially symmetric bounded eigenfunction associated to the
only negative eigenvalue λ0 of the problem

−�yφ − 5U (y)4φ = λ0φ for φ ∈ L∞(R3).

It is known that λ0 is simple and

Z0(y) ∼ e−√|λ0||y|

|y| as |y| → ∞.

We solve (3.10) with a multiple of Z0(y) as initial datum, namely

φ(τ0, y) = e0Z0(y) in B2R, (3.12)

for some constant e0 = e0[H ] to be found. Formally, this initial datum (3.12) allows
φ to remain small along its trajectory. Indeed, multiplying (3.5) by Z0 and integrating
we obtain

μ2∂t p(t)+ λ0 p(t) = q(t),

where

p(t) :=
∫

R3
φ(y, t)Z0(y) dy, q(t) :=

∫

R3
h(y, t)Z0 dy.

The general solution p(t) is given by

p(t) = e|λ0|
∫ t
0 μ(s)

−2 ds
(

p(t0)+
∫ t

t0
μ(s)−2q(s)e−|λ0|μ(s)−2

ds

)

.

This shows that in order to get a decaying solution p(t) (and hence φ(y, t)), the
following initial conditions should hold:

p(t0) =
∫

R3
φ(y, t0)Z0(y) dy = −

∫ ∞

t0
μ(s)−2q(s)e−|λ0|μ(s)−2

ds.

This argument formally suggests that, to avoid the instability caused by Z0, the small
initial value φ(y, t0) needs to be constrained along Z0.
Another important observation is that, in order to solve the problem (3.10)–(3.12) we
need to constrain the right-hand side H to be orthogonal to {Zi }4i=1. Namely we need

∫

B2R
H(y, τ )Zi (y) dy = 0 for τ ∈ [τ0,∞) and i = 1, 2, 3, 4. (3.13)
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Indeed, the elliptic kernel generated by {Zi }4i=1 is a subset of the kernel of the parabolic
operator

μ2∂tφ = �yφ + 5U (y)4φ.

Hence, we expect to have solvability of the inhomogeneous problem (3.10) with suit-
able space-time decay if the orthogonality conditions (3.13) are satisfied.
As we shall see in Sect. 5, condition (3.13) with index i = 4 is equivalent to a nonlocal
problem in�, for fixed φ, ξ . Such operator is similar to an half-derivative in the sense
of Caputo [6], and we develop an invertibility theory in Sect. 8. In Sect. 5 we solve
(3.13) by fixed-point argument and hence we find �, ξ . A main ingredient of the
full proof is the linear theory for the inner problem developed in [11] and adapted in
dimension 3 in [15].

3.1.1 Statement of the linear estimate for the inner problem

We recall the result on the linear theory in dimension 3, proved in [15]. To state the
result, we decompose a general function h(·, τ ) ∈ L2(B2R) for any τ ∈ [τ0,∞) in
spherical modes. Let {ϑm}∞m=0 the orthonormal basis of L2(S2) made up of spherical
harmonics, namely the eigenfunctions of the problem

�S2ϑm + λmϑm = 0 in S2,

where 0 = λ0 < λ1 = λ2 = λ3 = 2 < λ4 ≤ · · · . We decompose h into the form

h(y, τ ) =
∞∑

m=1

hm(|y|, τ )ϑm
(

y

|y|
)

, h j (|y|, τ ) =
∫

S2
h(rθ, τ )ϑm(θ) dθ.

Furthermore, we write h = h0 + h1 + h⊥ where

h0 = h0 (|y|, τ ) , h1 =
3∑

m=1

hm (|y|, τ ) ϑm
(

y

|y|
)

, h⊥ =
∞∑

m=4

hm (|y|, τ ) ϑm
(

y

|y|
)

.

We solve the inner problem (3.15) for functions h in the space Xν,2+a defined by

Xν,2+a :={h ∈ L∞ (B2R × [τ0,∞)) : ||h||ν,2+a <∞}, (3.14)

where

||h||ν,2+a := sup
τ>τ0,y∈B2R

τ ν(1 + |y|2+a)|h(y, τ )|.

123



G. Ageno, M. del Pino

Proposition 3.1 Let ν, a be positive constants. Then for all sufficiently large R > 0
and any h(y, τ ) with ||h||ν,2+a <∞ such that

∫

B2R
h(y, τ )Z j (y) dy = 0 in [τ0,∞), for i = 1, 2, 3, 4,

there exist φ[h] and e0[h] which solves

∂τφ = �yφ + 5U (y)4φ + h(y, τ ) in B2R × (τ0,∞)
φ(y, τ0) = e0Z0(y) in B2R . (3.15)

They define linear operators of h that satisfy the estimates

|φ(y, τ )| + (1 + |y|)|∇yφ(y, τ )|

� τ−ν
[
R2θ0(R, a)

1 + |y|3 ||h0||ν,2+a + R3θ1(R, a)

1 + |y|4 ||h1||ν,2+a + 1

1 + |y|a ||h⊥||ν,2+a

]

,

(3.16)

and

|e0[h]| � ||h||ν,2+a,

where

θ0(R, a):=

⎧
⎪⎨

⎪⎩

1 ifa > 2,

log R ifa = 2,

R2−a ifa < 2,

, θ1(R, a):=

⎧
⎪⎨

⎪⎩

1 ifa > 1,

log R ifa = 1,

R1−a ifa < 1.

As we said in Sect. 2.3, in order to make the system for (φ,ψ) weakly coupled, φ
needs to be small at distance y ∼ R. For this reason, we need to take a > 1 in the
statement of Proposition 3.1. This makes clear why we need to improve ansatz u1 to
u3 in Sect. 2. Since in our problem h = H as in (3.10) decays as

|h| � μ1+l1 1

1 + |y|4 = τ−ν 1

1 + |y|4 ,

where τ is given in (3.7), we apply estimate (3.16) with constants

a = 2, ν = 1 + l1
2
,

in the simplified form

|φ| + (1 + |y|)|∇yφ(y, τ )| � ||h||ν,4τ−ν
[
R2 log(R)

1 + |y|3 + R3

1 + |y|4
]

, (3.17)
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and observe that

[
R2 log(R)

1 + |y|3 + R3

1 + |y|4
]

�
{
R−1 log R if|y| ∼ R,

R3 if|y| ∼ 0.

We look for φ in the space of functions

X∗:={φ(y, t) ∈ L∞(�× [t0,∞)) : ||φ||∗ <∞},

where

||φ||∗ := sup
τ∈[τ0,∞),y∈B2R

τ ν
[
R2 log(R)

1 + |y|3 + R3

1 + |y|4
]−1

× [|φ(y, τ )| + (1 + |y|)|∇yφ(y, τ )|
]

+ sup
τ∈[τ0,∞),y∈B2R
τ1,τ2∈[τ,τ+1]

τ ν
[
R2 log(R)

1 + |y|3 + R3

1 + |y|4
]−1 |φ(y, τ1)− φ(y, τ2)|

|τ1 − τ2| 12+ε

+ sup
τ∈[τ0,∞),y∈B2R
τ1,τ2∈[τ,τ+1]

τ ν
[
R2 log(R)

1 + |y|3 + R3

1 + |y|4
]−1

× (1 + |y|) |∇yφ(y, τ1)− ∇yφ(y, τ2)|
|τ1 − τ2| 12+ε , (3.18)

for ε > 0 fixed small (as in Sect. 3.1.3).
We notice that, by standard parabolic estimates, from (3.17) we also get the bound

on the Hölder seminorms in (3.18), thus

||φ||∗ ≤ C ||h||ν,4. (3.19)

3.1.2 Spaces for the parameters

We introduce weighted Hölder spaces for the parameters �, ξ . Let

X�,a,b,σ :={� ∈ C(t0,∞) : ||�||�,a,b,σ <∞},

where

||�||�,a,b,σ := sup
t>t0

{
μ(t)−a ||�||∞,[t,t+1]

} + sup
t>t0

{
μ(t)−b[�]0,σ,[t,t+1]

}
,

and

||�||∞,[t,t+1] = sup
s∈[t,t+1]

|�(s)|,
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[�]0,σ,[t,t+1]:= sup
s1,s2∈[t,t+1]

s1 	=s2

|�(s1)−�(s2)|
|s1 − s2|σ .

We look for � such that

||�||�,l0,δ0, 12+ε + ||�̇||�,l1,δ1,ε < b1, (3.20)

for some positive constant ε, δ0, δ1, l0, l1 to be chosen (see Sect. 3.1.3). We also define
X�,c,σ :=X�,c,c,σ and

||h||�,c,σ := sup
t>t0

μ(t)−c [||h||∞,[t,t+1] + [h]0,σ,[t,t+1]
]
.

We consider ξ1 such that

||ξ1||�,1+k, 12+ε + ||ξ̇1||�,1+k,ε < b2, (3.21)

for some k > 0 (see Sect. 3.1.3). The positive constants b1, b2 will be selected as
small as needed.

3.1.3 Choice of constants

Here we select the constants

l0, l1, δ0, δ1, ε, δ, k, α, β, σ, κ,

which are sufficient to find the perturbation φ̃ in (3.1) by the inner-outer gluing scheme.
Firstly, we indicate where the constants appear in the scheme:

• l0, l1, δ0, δ1, ε appear in the definition (3.20);
• k is used in the norm (3.21) for ξ ;
• δ appears in R(t) = μ−δ , that is the radius of the inner regime;
• α, β is used in the norms for the outer problem, see (4.6) and (4.14);
• σ > 0 appears in the choice of β = l1 + δ + σ in the outer problem;
• κ > 0 is the constant appearing in Proposition 4.1.

We fix the following values:

• δ = 2
9 ;

• l1 = k = 2
3 ;

• l0 = l1 + δ
2 = 7

9 ;
• σ = 2α = ε = 1

100 ;• δ1 = l1 + δ − σ − (1 − δ)(1 + α/2)(1 + 2ε);
• δ0 = l1 + δ − σ − (1 − δ)(1 + α/2)2ε;
• β = 1

2 + l1 + δ − σ ;
• κ = γ (σ − αδ)
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These choices are dictated by the following constraints, based on the estimate of the
approximate solution, the linear theory for inner (Proposition 3.1) and outer prob-
lem (Lemma 4.1), the characterization of the orthogonality conditions (6.1) and the
estimates in Proposition 6.1:

• l1 + δ < 1 to make β < 3/2 and apply the outer linear estimate (4.8);
• we need

δ ∈
(
1 − l1
2

+ ε̂, 1 + l1
6

)

, where ε̂ = (1 + α/2)(1 + 2ε)− l1 + σ
1 + (1 + α/2)(1 + 2ε)

− 1 − l1
2
.

Up to choosing σ > α > 0 and ε > 0 small enough, these range is equivalent to
(2.27), which, together with the previous restriction, impose a range for δ and l1
leading (for instance) to the choice (2.31);

• l0 ≥ l1 and k+1 ≥ 2δ+l1 to getμ5/2Sin controlled by the termμ(t)5U (y)4 J (x, t);
• σ > αδ > 0, ε > 0 and κ ∈ (0, 2γ (σ − αδ)). This allows to estimate the

Rα log R � e−κtμ−σ when we need to control the term μ−1φ�xηR in the outer
error;

• k = l1. From (5.6) we need |ξ1| + | ∗ |ξ̇1 � μ1+l1 , thus the choice of k, which is
consistent with (2.30);

• in the outer problem we obtain |ψ(x, t)| � μl1−σ R−1

1+|y|α . The nonlocal equation (5.2)
and the estimate (2.29) asks for |�(t)| � |ψ(ξ(t), t)|. Thus, this leads to the a
choice of l0 ∈ [l1, l1 + δ − σ ];

• from estimate (6.3), Eq. (5.2) and the bound on the ε-Hölder seminorm of ψ we
get

[�]0, 12+ε,[t,t+1] � [ψ(ξ(·), ·)]0,ε,[t,t+1] � μl1+δ−σ

(μR)(1+ α
2 )2ε

= μδ0 ,

which gives δ0;
• similarly, from (4.16) the Hölder estimate on the outer solution gives

[ψ(0, ·)]0, 12+ε,[t,t+1] � μl1+δ−σ (μR)−(1+ α
2 )(1+2ε),

and by Eq. (5.2) and estimate (6.5) we need

[�̇]0,ε,[t,t+1] � [ψ(0, ·)]0, 12+ε,[t,t+1].

This leads to the choice of δ1;
• after choosing σ = 2α > 0 small so that δ > σ , the constant ε is chosen small
enough to make δ1 positive (any choice of α ∈ (0, δ/2) and ε such that δ1 =
δ1(α, ε) > 0 is sufficient).
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4 Solving the outer problem

We devote this section to solve the outer problem (3.4)

∂tψ = �xψ + γψ + Vψ + f [ψ, φ,�, �̇, ξ, ξ̇ ](x, t), in �× [t0,∞),
ψ(x, t) = −μ−1/2

0 u3(x, t) on ∂�× [t0,∞),
ψ(x, t0) = ψ0(x) in �,

where ψ0(x) is any suitable small initial condition,

f (x, t) =μ−1
(
μ

μ0

)1/2

φ∂tηR

+ μ−1
(
μ

μ0

)1/2

ηR

{

(γ − �̇)(φ + 2∇yφ · y)− ∇yφ ·
(
ξ̇

μ

)}

+ μ−1
(
μ

μ0

)1/2 (

φ

(
2

|z|
η′(|z|)
μ2R2 + η′′ (|z|)

μ2R2

)

+ 2
∇yφ

μ
· z

|z|
η′(|z|)
μR

)

+ μ−1/2
0 Sin (1 − ηR)+ μ−1/2

0 Sout + μ−1/2
0 N (u3, φ̃)(1 − ηR) (4.1)

and potential

V (x, t) = 5u43(1 − ηR),

which, by the definition of u3, using again the bounds on Hγ , J , φ3 and the support
of (1 − ηR), satisfies

|V | � μ−2U (y)4|
(

1 − μHγ + J + μ−1φ3ηl

U

)

|4

� (1 − ηR) μ−2

1 + |y|4 [1 + μ(1 + |y|)]4

� (1 − ηR) μ−2

1 + |y|4

� μ−2

1 + |y|2 R
−2. (4.2)

Let

ψ1(x, t):=μ0(t)
1/2ψ(x, t).
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Then, the problem for ψ1 becomes

∂tψ1 = �xψ1 + Vψ1 + F[ψ, φ,�, �̇, ξ, ξ̇ ](x, t) in �× [t0,∞),
ψ1(x, t) = g(x, t) on �× [t0,∞),
ψ1(x, t0) = ψ1,0(x) in � (4.3)

where

F(x, t):=μ0(t)
1
2 f (x, t)

g(x, t):= − u3(x, t)

ψ1,0(x):=μ0(t0)
1
2ψ0(x).

In particular, in the proof of Proposition 4.1 we prove that for any α > 0

|F(x, t)| � e−κt0 μ
l1+δ−σμ−2

1 + |y|2+α . (4.4)

Also, using the definition of u3, in (4.17) we prove

|g(x, t)| � μ 5
2 . (4.5)

Firstly, we consider the linear version of (4.3). Let

|F(x, t)| ≤ ||F ||β−2,α+2
μβμ−2

1 + |y|α+2 , (4.6)

for some β > 0, α > 0, where ||F ||β−2,α+2 is the best constant for such inequality.
Also, for δ ∈ (0, 1/2) and σ ∈ (0, 1) we define the Hölder norms

[ f ]0,2δ,δ,�×[t,t+1] := sup
x1 	=x2∈�

t1 	=t2∈[t,t+1]

| f (x1, t1)− f (x2, t2)|
|x1 − x2|2δ + |t − t1|δ

[ f (x, ·)]σ,[t,t+1] := sup
t1 	=t2∈[t,t+1]

| f (x, t)− f (x, t)|
|t1 − t2|σ

[ f (·, t)]0,σ,� := sup
x1 	=x2∈�

| f (x1, t)− f (x2, t)|
|t1 − t2|σ

Lemma 4.1 Let F such that ||F ||β−2,α+2 < ∞ for some constants β < 3/2 and
α ∈ (0, 1). Furthermore, assume that ||easg(s)||L∞(∂�×(t0,∞)) < ∞ for some a > 0
and ||h||L∞(�) <∞. Let ψ1[F, g, h] be the unique solution to
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∂tψ1 = �xψ1 + Vψ1 + F(x, t) in �× [t0,∞),
ψ1(x, t) = g(x, t) on ∂�× [t0,∞),
ψ1(x, t0) = h(x) in �. (4.7)

Then, for b ∈ (0, λ1) and ã ∈ (0,min{a, λ1 − ε}] for ε > 0 arbitrary small, we have

|ψ1(x, t)| �||F ||β−2,α+2
μβ

1 + |y|α + e−b(t−t0)||h||L∞(�)

+ e−ã(t−t0)||easg||L∞(∂�×(t0,∞)) (4.8)

for all x = μy + ξ ∈ � and t > t0. Furthermore, the following local estimate on the
gradient holds:

|∇xψ1(x, t)| � ||F ||β−2,α+2
μβ−1

1 + |y|α+1 for |y| < R,

[∇xψ1(·, t)]0,2ε,BμR(ξ) � ||F ||β−2,α+2μ
β−1−2εR−1−2ε (4.9)

where R ≤ δμ−1 for sufficiently small δ > 0. Also, one has

[
(μR)2+α

] 1
2+ε

sup
x∈BRμ(ξ)

[ψ1(x, ·)]0, 12+ε,[t,t+1]

+
[
(μR)2+α

]ε
sup

x∈BRμ(ξ)

[ψ1(x, ·)]0,ε,[t,t+1] � ||F ||β−2,α+2μ
β. (4.10)

Proof To prove the result is enough to find a supersolution to the problem

∂tψ2 = �ψ2 + F in �× [t0,∞),
ψ2 = g on ∂�× [t0,∞),
ψ2 = h in �.

We use the notation ψ2 = ψ2[F, g, h]. Indeed, suppose that ψ̄2 is a supersolution to
this problem. By (4.2) we have

| ∗ |V ψ̄2 � μβ−2

1 + |y|2+α R(t0)
−2,

and hence ||V ψ̄2||β−2,2+α < R(t0)−2 for t0 sufficiently large. Thus, we find that a
large multiple of ψ̄2 is a supersolution of (4.7). Firstly, let F, g ≡ 0 and consider
ψ2[0, 0, h]. Let v0(x) be the solution to

−�xv0 − bv0 = 0 in �,

v0 = 1 on ∂�,
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Infinite time blow-up for the three dimensional energy...

for b ∈ (0, λ1) and define

ψ̄2 = ||h||∞e−b(t−t0)v0(x).

We claim that ψ̄2 is a supersolution for ψ2[0, 0, h]. Indeed, we have

∂t ψ̄2 −�x ψ̄2 = ||h||∞e−b(t−t0) (−bv0 −�xv0) = 0 in �× [t0,∞),
ψ̄2(x, t) = ||h||∞e−b(t−t0) ≥ 0 on ∂�× [t0,∞),
ψ̄2(x, t0) = ||h||∞v0(x) ≥ h(x) in �,

where the last inequality is a consequence of the maximum principle applied to v0.
Secondly, we look for a supersolution to ψ2[0, g, 0]. Let v1(x) to be the solution to

−�xv1 − ãv1 = 0 in �,

v1(x) = 1 on ∂�,

where ã ∈ (0,min{a, λ1 − ε}] and consider

ψ̄2(x, t) = ||easg||L∞(∂�×(t0,∞))e−ã(t−t0)v1(x).

We verify that

∂t ψ̄2 −�ψ̄2 = ||easg||∞e−ã(t−t0) (−ãv1 −�v1) = 0 in �× [t0,∞),
ψ̄2(x, t) = ||easg||∞e−ã(t−t0) ≥ g(x, t) on ∂�× [t0,∞),
ψ̄2(x, t0) = ||easg||L∞(∂�×(t0,∞))v1(x) ≥ 0 in �,

where we used ã ≤ a to get the second inequality and ã < λ1 to get the third one
by the maximum principle. It remains to find a supersolution for ψ2[F, 0, 0]. Let
ψ2[F, 0, 0] = e−c(t−t0)ψ3, where c = 2γβ so that

∂tψ3 = �xψ3 + cψ3 + μ−2

1 + |y|2+α .

We find a bounded ψ̄3 supersolution in case c < λ1, that is 3γ < λ1. Consider

ψ̄3 = ψ0

(
x − ξ
μ

)

η

(
x − ξ
d

)

+ ψ1(x, t).

We need

∂tψ1 −�xψ1 − cψ1

≥ η
[

−∂tψ0 + μ−2�yψ0 + cψ0 + μ−2

1 + |y|2+α
]
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+ (1 − η) μ−2

1 + |y|2+α + (�xη − ∂tη)ψ0 + 2μ−1∇xη · ∇yψ0, (4.11)

with ψ̄3(x, t) ≥ 0 on ∂�× [t0,∞) and initial datum ψ̄3(x, t0) ≥ 0. Suppose without
loss of generality that � ⊂ B1 and take ψ0 as the solution to

�yψ0 = − 2

1 + |y|2+α in Bμ−1

ψ0 = 0 on ∂Bμ−1 .

From the variation of parameters formula

ψ0(|y|) = 2ω3

∫ μ−1

|y|
1

ρ2

∫ ρ

0

s2

1 + s2+α
ds dρ, (4.12)

we find

|ψ0| � 1

1 + |y|α ,

and

|∂tψ0| � ∂t
(
1

μ

)

μ2
∫ μ−1

0

s2

1 + s2+α
ds + ∂t (|y(x, t)|) 1

|y|2
∫ |y|

0

s2

1 + s2+α
ds

� 1

1 + |y|α + |y|2
1 + |y|2+α

� 1

1 + |y|α

Also, if |x − ξ | < d for d fixed sufficiently small, we obtain

−∂tψ0 + μ−2�yψ0 + cψ0 + μ−2

1 + |y|2+α = − μ−2

1 + |y|2+α + O

(
1

1 + |y|α
)

< 0.

Now, we take ψ1 as the solution to

∂tψ1 −�xψ1 − cψ1 = (1 − η) μ−2

1 + |y|2+α + (�xη − ∂tη)ψ0 + 2μ−1∇xη · ∇yψ0,

ψ1 = 0 on ∂�× [t0,∞),
ψ1(x, t0) = 0 in �.

We estimate the right-hand side by

(1 − η) μ−2

1 + |y|2+α � μα,
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| (�xη − ∂tη)ψ0| � μα,
|2μ−1∇xη · ∇yψ0| � μα.

Hence, by comparison principle using c < λ1 we obtain a solution | ∗ |ψ̄3 � μα .
Thus, inequality (4.11) is satisfied. Also, ψ̄3 = 0 on ∂�× [t0,∞) and ψ3(x, t0) =
ηψ0(x, t0) ≥ 0. We conclude that ψ̄3 is a supersolution and the bound (4.8) is proven.
Now, we prove the gradient estimate (4.9). Let

ψ1(x, t) =: ψ̃ (z(x, t), τ (t)) , where z := x − ξ(t)
R(t)μ(t)

and τ̇ (t) = (R(t)μ(t))−2, that gives τ(t) ∼ μ−2.We can take τ(t0) = 2. The equation
for ψ̃ becomes

∂τ ψ̃ = �zψ̃ + a(z, τ ) · ∇zψ̃ + b(z, τ )ψ̃ + F̃(z, τ ),

where F̃(z, τ (t)) = (Rμ)2F(μRz + ξ, τ (t)), and the coefficients

a(z, τ ) := (μ0R)
[
z∂t (μ0)+ ξ̇

]
, b(z, τ ) := (Rμ)2V (μRz + ξ, τ (t))

� 1

1 + R2|z|2 ,

are uniformly bounded. Since ||F ||β−2,α+2 <∞, we have

F̃(z, τ (t)) = (Rμ)2F(μRz + ξ, τ (t)) � μβ ||F ||β−2,α+2

1 + |Rz|2+α .

We have already proved the L∞-bound

||ψ1||β,α � ||F ||β−2,α+2.

We apply standard local parabolic estimates for the gradient: let σ ∈ (0, 1) and
τ1 ≥ τ(t0)+ 2, then

[∇zψ̃1(·, τ1)]0,σ,B1(0) + ||∇zψ̃1(·, τ1)||L∞(B1(0))

� ||ψ̃ ||L∞(B2(0))×(τ1−1,τ1) + ||F̃ ||L∞(B2(0)×(τ1−1,τ1))

� μ(t(τ1 − 1))β ||F ||β−2,α+2

� μ(t(τ1))β ||F ||β−2,α+2.

In the original variables, for any t ≥ t0 + 2 we find

(Rμ)1+σ [∇xψ1(·, t)]0,σ,BμR(ξ) + Rμ||∇xψ1(·, t)||L∞(BμR(ξ)) � μβ ||F ||β−2,α+2.

(4.13)
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By similar parabolic estimates using ||∇xψ0||∞ < ∞ we can extend estimate (4.13)
up to t = t0, thus, the proof of (4.9) is complete. Now, we prove estimate (4.10). We
consider the Hölder seminorms. We perform the change of variable

ψ1(x, t) = ψ̂ (z, τ ) ,

where z := (x − ξ)/(Rμ0)
1+ α

2 and τ satisfies

dτ

dt
= 1

(μ0(t)R(t))2+α
,

that is

τ − τ0 =
∫ ∞

t0

ds

(μ0(t)R(t))2+α
ds

= C (μ0R)
−(2+α) (1 + o(1)).

The equation for ψ̂ is

∂τ ψ̂ = �zψ̂ + â(z, τ ) · ∇zψ̂ + b̂(z, τ )ψ̂ + f̂ (z, τ ),

where

â(z, τ ) = (μ0R)
1+ α

2

[
z∂t (μ0R)

1+ α
2 + ξ̇

]
,

b̂(z, τ ) = (μ0R)
2+αV ((μ0R)

1+ α
2 z + ξ, t(τ )),

F̂ = (μ0R)
2+αF((μ0R)

1+ α
2 z + ξ, t(τ ))

Then, applying local parabolic estimates on ψ̃ , we get

[ψ1(x, ·)]0, 1+2ε
2 ,[t,t+1] = sup

t1 	=t2∈[t,t+1]
|ψ1(x, t1)− ψ1(x, t2)|

|t1 − t2| 1+2ε
2

� sup
τ1,τ2∈[τ,τ+1]

| ∗ |ψ̂(z1, τ1)− ψ̂(z1, τ2)
|τ1 − τ2| 1+2ε

2

|τ1 − τ2|
|t1 − t2|

1+2ε
2

�[ψ̂(z, ·)]0, 1+2ε
2 ,[τ1,τ2]

1

[(μR)2+α] 1+2ε
2

�||F ||β−2,α+2μ
β 1

[(μR)2+α] 1+2ε
2

,

where τi = τ(ti ) and z = z(x, ti ) for i = 1, 2. Similarly, using the Hölder coefficient
(2ε, ε), we get

[ψ1(x, ·)]0,ε,[t,t+1] � μβ 1

[(μR)2+α]ε . ��
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We introduce the following weighted norms for ψ :

||ψ ||∗∗

:= sup
x∈�,t>t0

{
g1(x, t)

−1|ψ(x, t)|
}

+ sup
t>t0

{

g2(t)
−1 sup

x∈BμR(ξ)
[ψ(x, ·)]0,ε,[t,t+1]

}

+ sup
t>t0

sup
x∈BμR(ξ)

{
g3(x, t)

−1|∇xψ(x, t)|
}

+ sup
t>t0

g4(t)
−1[∇xψ]0,2ε,ε,BRμ(ξ)×[t,t+1]

+ sup
t>t0

{

g5(t)
−1 sup

x∈BμR(ξ)
[ψ(x, ·)]0, 12+ε,[t,t+1]

}

(4.14)

where

g1(x, t) = μβ

1 + |y|α , g2(t) = μβ
[
(μR)2+α

]−ε
, g3(x, t) = μβ−1

1 + |y|α+1 ,

g4(t) = μβ [μR]−1−2ε, g5(t) = μβ
[
(μR)2+α

]−( 12+ε)

and define the space of functions

X∗∗ = {ψ ∈ L∞(�× [t0,∞)) : ||ψ ||∗∗ <∞}.

Now, we are ready to solve the outer problem (3.4) for φ such that

||φ||∗ < b, (4.15)

for parameters satisfying (3.20) and (3.21).

Proposition 4.1 Assume that �, ξ1, φ satisfy (3.20), (3.21) and (4.15) respectively.
Also, suppose ψ0 ∈ C2(�̄) such that

||ψ0||L∞ + ||∇ψ0|| < e−κt0 ,

for some κ ∈ (0, 2γ (σ − αδ)). Then, there exists t0 large so that problem (3.4) has a
unique solution ψ = �[�, �̇, ξ, ξ̇ , φ] and given α > 0, there exists C∗∗ such that

||ψ ||∗∗ ≤ e−κt0C∗∗, (4.16)

where C∗∗ = C∗∗(b, b1, b2) and b, b1, b2 are the constants in (4.15), (3.20) and (3.21)
respectively.

Proof Let T1 the linear operator, defined by Lemma 4.1, such that, given β < 3/2, α >
0 and functions f , g, hwith bounded norms || f ||β−2,α+2, ||easg||∞, ||h||∞ respectively,
T [ f , g, h] is the solution to (4.7).
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Let

μ
1/2
0 ψ = ψA + ψB,

where we define ψB :=T (0,−u3, μ0(t0)1/2ψ0). From the definition of u3(x, t) we
expand for x ∈ ∂� and t0 large, to get

u3(x, t) = α3μ
1/2

(
μ2 + |x − ξ |2)1/2

− μ1/2 α3

|x − ξ |

= α3μ1/2|x − ξ |−1

[(
μ2 + |x − ξ |2

|x − ξ |2
)−1/2

− 1

]

= μ5/2 fB(x, t), (4.17)

for a smooth bounded function fB(x, t) on ∂� × [t0,∞). Hence, Lemma 4.1 gives
the bound

|ψB | � e−b(t−t0)||ψ0||L∞ + e−a(t−t0)||easu3||L∞(∂�×[t0,∞)),

for any b < λ1 and a < min{5γ, λ1 − ε} for any ε > 0.
Now, we apply the fixed point theorem to find ψA such that ψ satisfies (4.16). We
obtain a solution ψ if ψA satisfies

ψA = A(ψA), A(ψA) := T [F(ψA), 0, 0],

where F(x, t) = μ0(t)1/2 f (x, t) and f is given by (4.1). We look for ψA in

B = {ψA : ||μ−1/2
0 ψA||∗∗ < Me−κt0},

where M is a fixed large constant, independent of t and t0. We prove thatA(ψA) ∈ B
for any ψA ∈ B. Firstly, we estimate the L∞ norm of F(ψA). From (4.14) we apply
Lemma 4.1 with β = 1/2 + l1 + δ < 3/2. We recall that F = μ1/2

0 f where

f (x, t) = μ−1/2
0 N (u3, φ̃)(1 − ηR)

+ μ−1
(
μ

μ0

)1/2

φ∂tηR

+ μ−1
(
μ

μ0

)1/2

ηR

{

(γ − �̇)(φ + 2∇yφ · y)− ∇yφ ·
(
ξ̇

μ

)}

+ μ−1
(
μ

μ0

)1/2 (

φ

(
2

|z|
η′(|z|)
μ2R2 + η′′ (|z|)

μ2R2

)

+ 2
∇yφ

μ
· z

|z|
η′(|z|)
μR

)

+ μ−1/2
0 Sin (1 − ηR)+ μ−1/2

0 Sout.
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We have η′′(y/R) 	= 0 and η′(y/R) 	= 0 only if |y| ∼ R, hence we estimate

|μ−1
(
μ

μ0

)1/2

φ�η|

� μ−1||φ||∗μ1+l1

[
R2 log(R)

1 + |y|3 + R3

1 + |y|4
]

μ−2

1 + |y|2 η
′′
(∣
∣
∣
∣
x − ξ
μR

∣
∣
∣
∣

)

� μl1+δ log(R) μ−2

1 + |y|2

� e−κt0μl1+δ−σ μ−2

1 + |y|2+α . (4.18)

Using the bound on the gradient given in the definition of ||φ||∗ we obtain

∣
∣
∣
∣
∣
μ−1

(
μ

μ0

)1/2 (

2
∇yφ

μ
· z

|z|
η′(|z|)
μR

)∣
∣
∣
∣
∣

� μ−1μ1+l1

[
R2 log(R)

1 + |y|4 + R3

1 + |y|5
]( |η′(|z|)|

μ2R

)

� ||φ||∗μl1+δ log(R) μ−2

1 + |y|2

� e−κt0μl1+δ−σ μ−2

1 + |y|2+α .

Similarly, also using the bounds on �̇, ξ̇ we have

∣
∣
∣
∣
∣
μ−1

(
μ

μ0

)1/2

φ∂tηR

∣
∣
∣
∣
∣

� ||φ||∗μl1+δ log(R)
∣
∣
∣
∣η

′(|z|) z|z| ·
(

− ξ̇

μR
− z
∂t (μR)

μR

)∣
∣
∣
∣

� μl1+δ log(R) |η
′(|z|)|
μ2R2

� e−κt0μl1+δ−σ μ−2

1 + |y|2+α .

Also, since δ < 1/3, we have

∣
∣
∣
∣(μμ0)

−1/2ηR

{
(
γ − �̇)

(φ + 2∇yφ · y)− ∇yφ ·
(
ξ̇

μ

)}∣
∣
∣
∣

� μ−1μ1+l1

[
R2 log(R)

1 + |y|4 + R3

1 + |y|5
]

� μl1 ||φ||∗R3
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� μl1+δ μ
−2

R2

� e−κt0μl1+δ−σ μ−2

1 + |y|2+α .

Furthermore, using Lemma 2.5 we estimate

|μ−1/2Sout| � μ

� μl1+δ μ
−2

R2

� e−κt0μl1+δ−σ μ−2

1 + |y|2+α .

and

|μ−1/2Sin(1 − ηR)| � μl1+2δ μ−2

1 + |y|2

� e−κt0μl1+δ−σ μ−2

1 + |y|2+α .

Finally, since ||μ−1/2
0 ψA||∗∗ is bounded we get

|μ−1/2
0 N3(u3, φ̃)(1 − ηR)| �μ−1/2u33

(
μ−1/2φηR + μ1/2ψ

)2
(1 − ηR)

� μ−2

1 + |y|3
(
μ−1|φ|2η2R + μ0| ∗ |μ−1/2

0 ψA
2)
(1 − ηR)

� μ−2

1 + |y|2+α
[

μ−1||φ||2∗μ2(1+l1)
(
R−1 log(R)

)2

+ ||μ−1/2
0 ψA||2∗∗μ

μ2(l1+δ−σ)

R2α

]

� e−κt0μl1+δ−σ μ−2

1 + |y|2+α . (4.19)

Summing up these estimates we conclude that

| f (x, t)| � e−κt0μl1+δ−σ μ−2

1 + |y|2+α .

Hence, we have

|F(x, t)| � e−κt0μ
1
2+l1+δ−σ μ−2

1 + |y|2+α ,
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and Lemma 4.1 gives

|T [F(ψA), 0, 0]| � e−κt0μ
1
2+l1+δ−σ 1

1 + |y|α .

Since F ∈ L∞(� × [t0,∞)), classic parabolic estimates give ψ ∈ C1+σ̂ , 1+σ̂2 (� ×
[t0,∞)) for any σ̂ < 1 and from Lemma 4.1 we get

||μ−1/2
0 ψA||∗∗ ≤ Me−kt0 (4.20)

for sufficiently large M (independent of t0). This proves A(ψA) ∈ B. Now, we claim
that the map A(ψ) is a contraction, that is: there exists c < 1 such that, for any
ψ
(1)
A , ψ

(2)
A ∈ B,

||μ−1/2
0 A(ψ(1)A )− μ−1/2

0 A(ψ(2)A )||∗∗ ≤ c||μ−1/2
0 ψ

(1)
A − μ−1/2

0 ψ
(2)
A ||∗∗.

Since ψ appears in F(ψ) only in the nonlinear term N , we get

A(ψ(1)A )− A(ψ(2)A ) = T

[

N
(
u3, ψ

(1)
A + ψB + μ−1/2φηR

)

− N
(
u3, ψ

(2)
A + ψB + μ−1/2φηR

)
, 0, 0

]

.

From definition (3.3) we write

N
(
u3, ψ

(1)
A + ψB + μ−1/2φηR

)
− N

(
u3, ψ

(2)
A + ψB + μ−1/2φηR

)

=
[ (

u3 + ψ(1)A + ψB + μ−1/2φη
)5 − (u3 + ψ(2)A + ψB + μ−1/2φη)5

− 5u43(ψ
(1) − ψ(2))

]

=
[ (

u3 + ψ(1)A + ψB + μ−1/2φη
)5 −

(
u3 + ψ(2)A + ψB + μ−1/2φη

)5

− 5(u3 + μ−1/2φη)4μ
1/2
0

(
ψ(1) − ψ(2)

) ]

+ 5
[
(u3 + μ−1/2φη)4 − u43

]
(ψ(1) − ψ(2))

=: N1 + N2.

We estimate

|N1(x, t)| � μ−3/2U 3μ0|μ−1/2
0 (ψ

(1)
A − ψ(2)A )|2

� μ−1/2U 3|μ−1/2
0 (ψ

(1)
A − ψ(2)A )|2
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� μ−1/2

1 + |y|3
μ2(l1+δ−σ)

1 + |y|2α ||μ−1/2
0 (ψ

(1)
A − ψ(2)A )||2∗∗

� e−κt0μ
1
2+l1+δ−σ μ−2

1 + |y|2+α ||μ−1/2
0 (ψ

(1)
A − ψ(2)A )||∗∗

and

|N2(x, t)| � u33μ
−1/2
0 φημ

1
2
0 |μ−1/2

0 (ψ
(1)
A − ψ(2)A )|

� μ−3/2

1 + |y|3 ||φ||∗μ1+l1R3μ
l1+δ−σ

1 + |y|α ||μ−1/2
0 (ψ

(1)
A − ψ(2)A )||∗∗

� e−κt0μ
1
2+l1+δ−σ μ−2

1 + |y|2+α ||μ1/2
0 (ψ

(1)
A − ψ(2)A )||∗∗

Finally, using β = 1/2 + l1 + δ − σ < 3/2 we apply T [·, 0, 0] to F(ψ) we obtain

|A[ψ(1)A ] − A[ψ(2)A ]| � e−κt0μ
1
2+l1+δ−σ μ−2

1 + |y|α ||μ−1/2
0 (ψ(1) − ψ(2))||∗∗. (4.21)

Arguing as in (4.20), from (4.21) and standard parabolic estimates we obtain

||μ−1/2
0 (A[ψ(1)A ] − A[ψ(2)A ])||∗∗ ≤ c||μ−1/2

0 (ψ
(1)
A − ψ(2)A )||∗∗,

with c < 1 if t0 is taken sufficiently large. Applying the Banach fixed point theorem
we get existence and uniqueness of ψA and hence of ψ = μ

−1/2
0 (ψA + ψB) with

estimate (4.16) that is a consequence of estimates (4.8)–(4.10). ��
Remark 4.1 (Continuity with respect to the initial conditionψ0) Given an initial datum
ψ0 Proposition 4.1 defines a solution ψ = �[ψ0] to (3.4), from a small neighborhood
of 0 in the L∞(�) space with the C1-norm ||ψ ||∞ + ||∇ψ0||∞ into the Banach space
L∞ with norm ||ψ ||∗∗ defined in (4.14). In fact, from the proof of Proposition 4.1 and
the implicit function theorem, ψ0 �→ �[ψ0] is a diffeomorphism and hence

||�[ψ1
0 ] −�[ψ2

0 ]||∗∗ ≤ c
[
||ψ1

0 − ψ2
0 ||∞ + ||∇xψ

1
0 − ∇xψ

2
0 ||∞

]
,

for some positive constant c.

The function ψ = �[�, �̇, ξ, ξ̇ , φ] depends continuously on the parameters
�, �̇, ξ, ξ̇ , φ. To see this we argue similarly to [15, Proposition 4.3]. For example, fix
�̇, ξ, ξ̇ , φ and consider

ψ̄ :=ψ(1) − ψ(2) where ψ(i) = �[�i , �̇, ξ, ξ̇ , φ], for i = 1, 2

for �1,�2 satisfying (3.20). Then ψ̄ solves

∂t ψ̄ = �ψ̄ + γ ψ̄ + V [�1]ψ̄ + (V [�1] − V [�2]) ψ(2) + F[�1] − F[�2].
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One can easily check each term in F and obtain

||F[�1] − F[�2]||β−2,α+2 ≤ c||�1 −�2||l0,∞,

with c < 1 if t0 is large enough. Also, using (4.2) we find that

||V [�1] − V [�2]||β−2,α+2 ≤ c||�1 −�2||l0,∞.

Then, arguing as in the proof of (4.8), a multiple of ||�1−�2||�,l0,δ0, 12+εψ, whereψ is

the supersolution constructed in Lemma 4.1, is a supersolution for ψ̄ . Similarly, one
obtain analogue estimates fixing ξ, �̇, ξ̇ . Let us consider all the parameters fixed. We
define ψ̄ := ψ[�, �̇, ξ, ξ̇ , φ1] − ψ[�, �̇, ξ, ξ̇ , φ2], which satisfies the equation

∂t ψ̄ = �ψ̄ + V ψ̄ + F[φ1] − F[φ2].

For instance, we estimate

|μ−1
(
μ

μ0

)1/2

(φ1 − φ2) ∂tηR | �||φ1 − φ2||∗μl1R−1 log(R)μ2R2+α μ−2

1 + |y|2+α

� c||φ1 − φ2||∗μl1+δ−σ μ−2

1 + |y|2+α ,

with c < 1 when t0 is fixed large enough, and arguing as in (4.18)-(4.19), we obtain
similar estimate on the other terms of F[φ1] − F[φ2]. Having the L∞-bound, the
estimate for the gradient and the Hölder norms of ψ̄ follow as in the proof of Lemma
4.1. We summarize the continuity of ψ[�, �̇, ξ, ξ̇ , φ] with respect to the parameters
in the following Proposition.

Proposition 4.2 Under the same assumption of Proposition 4.1, the function ψ =
�[�, �̇, ξ, ξ̇ , φ] is continuous with respect to the parameters�, �̇, ξ, ξ̇ , φ. Moreover
the following estimate holds:

‖�[�(1), �̇(1), ξ (1), ξ̇ (1), φ(1)] −�[�(2), �̇(2), ξ (2), ξ̇ (2), φ(2)]‖∗∗

≤ c
{

||�(1) −�(2)||�,l0,δ0, 12+ε + ||�̇(1) − �̇(2)||�,l1,δ1,ε

+ ||ξ (1)1 − ξ (2)1 ||�,1+l1,
1
2+ε + ||ξ̇ (1)1 − ξ̇ (2)1 ||�,1+l1,ε + ||φ(1) − φ(2)||∗

}

where c < 1 provided that t0 is sufficiently large and the constants b1, b2 in (3.20),
(3.21) are sufficiently small.

5 Characterization of the orthogonality conditions (3.10)

Given the function ψ = �[�, �̇, ξ, ξ̇ , φ] provided by Proposition 4.1, we plug it in
the inner problem for φ. From the linear theory stated in Proposition 3.1, the inner
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problem (3.10) with initial datum (3.15) can be solved if the orthogonality conditions

∫

B2R
H [�, �̇, ξ, ξ̇ , φ](y, t(τ ))Zi (y) dy = 0 for t > t0, and i = 1, 2, 3, 4,

(5.1)

are satisfied. The aim of this section is to characterize this set of conditions as an
nonlocal system in�, ξ for fixedφ ∈ X∗. The next lemma shows that the orthogonality
condition with index i = 4 is equivalent to a nonlocal equation in the variable �, for
fixed φ, ξ .

Lemma 5.1 Assume that �, ξ, φ satisfy (3.20), (3.21) and (3.18) respectively. Let
ψ = �[�, �̇, ξ, ξ̇ , φ] be the solution to problem (3.4) given by Proposition 4.1.
Then, the condition (5.1) with index i = 4 is equivalent to

(1 + a[�̇, ξ ](t))J [�̇](0, t) = g(t)+ G[�, �̇, ξ, ξ̇ , φ](t) for t ∈ [t0,∞), (5.2)

where J is the solution to

∂tJ = �J + γJ − �̇(t)Gγ (x, 0) in �× [t0 − 1,∞),
J (x, t) = 0 on ∂�× [t0 − 1,∞),
J (x, t0 − 1) = 0 in �.

The function a is smooth, decays as t → 0 and a[0, 0] ≡ 0. Then, for κ ∈ (0, 2γ (σ −
αδ)), the following estimates on g and G hold:

||g||�,l0,δ1, 12+ε + ||g||�,l0,δ0,ε ≤ C0e
−κt0 ,

and

‖G[�, �̇, ξ, ξ̇ , φ]‖�,l0,δ1, 12+ε + ‖G[�, �̇, ξ, ξ̇ , φ]‖�,l0,δ0,ε
≤ e−κt0{||�||�,l0,δ0,ε + ||�̇||�,l1,δ1,ε + ||ξ1||�,1+l1,

1
2+ε + ||ξ̇1||�,1+l1,ε + ||φ||∗

}
. (5.3)

Furthermore, we have

‖G[�(1), �̇(1), ξ (1), ξ̇ (1), φ(1)] − G[�(2), �̇(2), ξ (2), ξ̇ (2), φ(2)]‖�,l0,δ1, 1+2ε
2

≤ c
{||�(1) −�(2)||�,l0,δ0, 1+2ε

2
+ ||�̇(1) − �̇(2)||�,l1,δ1,ε

+ ||ξ (1)1 − ξ (2)1 ||�,1+l0,
1
2+ε + ||ξ̇ (1)1 − ξ̇ (2)1 ||�,1+l0,ε + ||φ(1) − φ(2)||∗

}
(5.4)

with constant c < 1 provided that t0 is fixed sufficiently large and bi small for i = 1, 2.

Proof We recall that

H [φ,ψ,μ, μ̇, ξ, ξ̇ ](y, τ ):=5U (y)4μ

(
μ0

μ

)1/2

ψ(μy + ξ, t(τ ))
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+ B0 [φ + μψ] (μy + ξ, t(τ ))+ μ5/2Sin(μy + ξ, t(τ ))
+ N (μ1/2u3, μ

1/2φ̃)(μy + ξ, t(τ )).

Hence, (3.13) with index i = 4 becomes

0 =μ5/2
∫

B2R
Z4(y)Sin(y, t) dy + μ

(
μ0

μ

)1/2 ∫

B2R
Z4(y)5U (y)

4ψ(μy + ξ, t) dy

+
∫

B2R
Z4(y)B0 [φ + μψ] (μy + ξ, t) dy

+
∫

B2R
Z4(y)N (μ1/2u3, μ

1/2φ̃)(μy + ξ, t(τ )) dy

= :
4∑

j=1

i j (t).

We follow the analogue [15, Lemma5.1] to estimate the terms i j (t). Firstly, we analyze
i1. We have

i1(t) =μ5/2
∫

B2R
Sin(y, t)Z4(y) dy

=μ
(
μ0

μ

)1/2 ∫

B2R
5U (y)4 J (μy + ξ, t)Z4(y) dy

+
∫

B2R
N3(y, t)Z4(y) dy

+ μ
∫

B2R
Z4(y)5U (y)

4hγ (μy + ξ, ξ) dy
=:a1(t)+ a2(t)+ a3(t),

where we used that the integral of Z4(y)U (y)4∂yiU (y) on B2R(0) is null by symmetry
for i = 1, 2, 3. Also,

μ−1
(
μ0

μ

)−1/2

a1(t) =
∫

B2R
5U (y)4Z4(y)J [�̇](μy + ξ, t) dy

=J [�̇](0, t)
∫

B2R
5U (y)4Z4(y) dy

+ [
J [�̇](ξ, t)− J [�̇](0, t)]

∫

B2R
5U (y)4Z4(y) dy

+
∫

B2R
5U (y)4Z4(y)[J [�̇](μy + ξ, t)− J [�̇](ξ, t)] dy

=:a11[�̇](t)+ a12[�̇, ξ ](t)+ a13[�̇, ξ ](t).
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The main term in the left-hand side of (5.2) is given by

μ−1
(
μ0

μ

)−1/2

c−1
1 (1 + O(R−2))−1a11(t) = J [�̇](0, t),

where c1(1 + O(R−2)) = ∫

B2R
5U 4Z4 dy. To analyze the terms a12, we decompose

w[�̇](x, t) = J [�̇](x, t)−J [�̇](x, t) as a sum of a solution in R3 and a smooth one
in � with more decay. Then, using the Duhamel’s formula in R

3 as in [15, Proof of
(7.5)] we deduce

||a12[�̇, ξ ]||�,l0,δ1, 12+ε + ||a12[�̇, ξ ]||�,l0,δ0,ε � e−κt0{||�||�,l0,δ0, 12+ε + ||�̇||�,l1,δ1,ε
+ ||ξ1||�,1+l1,

1
2+ε

}
. (5.5)

We analyze a13 by splitting J as a sum of a solution to the same equation in R
3 and

smooth remainder in � with more decay, and, proceeding as in [15, Proof of (5.10)],
again by Duhamel’s formula in R

3 we obtain

|J [�̇](μy + ξ, t)− J [�̇](ξ, t)| = |yμ|σ�[�̇, ξ ](t)θ(|y|),

for some σ ∈ (0, 1) and bounded smooth function θ , and�[�̇, ξ ] satisfying the esti-
mate above for a12. After integration, a13[�̇, ξ ](t) satisfies (5.5). Taking into account
the behavior of J1, J2 and φ3 given in (2.34), (2.35) and (2.38) respectively, we have

a2 =
∫

B2R
Z4(y)N3(y, t) dy

=
∫

B2R
Z4

{

10
(
U (y)+ s(−μHγ + μJ + μ−1/2φ3ηl)

)3

×
(
−μHγ + μJ + μ−1/2φ3ηl

)2
}

dy

= μ2
∫

B2R
10Z4(y)U (y)

3Q[�, �̇, ξ ](y, t) dy,

for some constant s ∈ (0, 1) and bounded smooth function Q[�, ξ ](y, t) satisfying
(5.5).
Finally, Taylor expanding hγ (x, ξ) at x = ξ , we get

a3 = μ
∫

B2R
Z4(y)5U (y)

4hγ (μy + ξ, ξ) dy

= μRγ (ξ)
∫

B2R
Z4(y)5U (y)

4 dy

+ μ3
∫

B2R
Z4(y)5U (y)

4 (
y · Dxxhγ (μy

∗(y)+ ξ, ξ) · y) dy
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= μ2�2[�, ξ ](t),

for some y∗ ∈ [0, y] and a smooth bounded function�2(t). The termμ−1/2μ
−1/2
0 i1(t)

= ∑3
i=1 ai (t) gives the left-hand side in (5.2). Now, we look at i2. We decompose

μ− 1
2μ

− 1
2

0 i2(t)

=
∫

B2R
Z4(y)5U (y)

4ψ[�, ξ, �̇, ξ̇ , φ](μy + ξ, t) dy

= ψ[0, 0, 0, 0, 0](0, t)
∫

B2R
Z4(y)5U (y)

4 dy

+
∫

B2R
Z4(y)5U (y)

4 {ψ[0, 0, 0, 0, 0](μy + ξ, t)− ψ[0, 0, 0, 0, 0](0, t)} dy

+
∫

B2R
Z4(y)5U (y)

4 {
ψ[�, ξ, �̇, ξ̇ , φ](μy + ξ, t)− ψ[0, 0, 0, 0, 0](μy + ξ, t)} dy

=: b1(t)+ b2[�, ξ ](t)+ b3[�, ξ, �̇, ξ̇ , φ](t),

The term

b1(t) = ψ[0, 0, 0, 0, 0](0, t)
∫

B2R
5U (y)4Z4(y) dy,

is independent of parameters and, as a consequence of Proposition 4.1, satisfies the
estimate

||b1||�,l0,δ0,ε + ||b1||�,l0,δ1, 12+ε ≤ Ce−κt0 .

Applying the mean value theorem to ψ and using the gradient estimate we deduce the
same bound for b2. This gives the main term b1(t) + b2(t) = g(t) in the right-hand
side of (5.2). We analyze b3(t). By Proposition 4.2 applied to

ψ[�, ξ, �̇, ξ̇ , φ] − ψ[0, 0, 0, 0, 0]

we obtain

||b3||�,l0,δ1, 12+ε + ||b3||�,l0,δ0,ε �e−κt0
{

||�||�,l0,δ0, 12+ε + ||�̇||�,l1,δ1,ε

+ ||ξ̇1||�,1+l1,ε + ||ξ1||�,1+l1,
1
2+ε + ||φ||∗

}

.

Also, again as a consequence of the Lipschitz estimates in ψ we have for example

||b3[�̇1] − b3[�̇2]||�,l0,δ1, 12+ε ≤ c||�̇1 − �̇2||�,l1,δ1,ε,
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for any �̇1, �̇2 ∈ X�,l1,δ1,ε and fixed �, ξ, �̇, ξ̇ in the respective spaces. We analyze
i3. We recall that

B0[φ + μψ] = 5

[(
U − μHγ + μJ [�̇] + μ−1/2φ3(y, t)η3

)4 −U 4
]

[φ + μψ],

which is linear in φ,ψ and satisfies

|B0[φ + μψ](μy + ξ, t)| � μ

1 + |y|3μ|φ + μψ |.

It follows that

|i3(t)| �μ||φ||∗μ1+l1R3 + ||ψ ||∗∗μ2μl1+δ−σ

�e−κt0μl0 .

Then, the Hölder bounds on ψ and φ in the respective norms give estimate (5.3) for
i3, and using Proposition 4.2 we also get the Lipschitz property (5.3) for i3. Finally,
we have

|N (μ1/2u3, μ
1/2φ̃)(μy + ξ, t(τ ))|

� 1

1 + |y|3 (φ + μψ)2

� 1

1 + |y|3
(

||φ||2∗μ2(1+l1)R6 + ||ψ ||2∗∗μ2μ
2(l1+δ−σ)

1 + |y|2α
)

� e−κt0μl0 ,

and (5.3)–(5.3) for i4 follows arguing as for i3. Summing up the estimates we obtain
G[�, �̇, ξ, ξ̇ , φ](t) = b3 + i3 + i4 as in (5.2) with the properties (5.3) and (5.4). ��

Now, we characterize the conditions

∫

B2R
Zi (y)H [�, �̇, ξ, ξ̇ , φ](y, t) dy = 0, for t ∈ (t0,∞) and i = 1, 2, 3.

This characterization is given in the following lemma, whose proof, similar to the one
of Lemma 5.1, is omitted.

Lemma 5.2 The relation (5.1) for i = 1, 2, 3 is equivalent to

ξ̇1,i = ciμ0(t)
1+l1 + i [�, �̇, ξ, φ](t) (5.6)
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for smooth bounded function  which satisfies

‖ [�, �̇, ξ, φ]‖�,1+l1,
1
2+ε + ‖ [�, �̇, ξ, φ]‖�,1+l1,ε ≤ e−κt0{||�||�,l0,δ0,ε

+ ||�̇||�,l1,δ1,ε + ||ξ1||�,1+l1,
1
2+ε + ||φ||∗

}
. (5.7)

Furthermore, we have

‖ [�(1), �̇(1), ξ (1), ξ̇ (1), φ(1)] − [�(2), �̇(2), ξ (2), ξ̇ (2), φ(2)]‖�,1+l1,
1
2+ε

≤ c
{||�(1) −�(2)||�,l0,δ0, 12+ε + ||�̇(1) − �̇(2)||�,l1,δ1,ε

+ ||ξ (1)1 − ξ (2)1 ||�,1+l1,
1
2+ε + ||ξ̇ (1)1 − ξ̇ (2)1 ||�,1+l1,ε

+ ||φ(1) − φ(2)||∗
}
, (5.8)

with constant c < 1 provided that t0 is fixed sufficiently large and bi small for i = 1, 2.

6 Choice of parameters 3, �

In the previous section we have proved that if φ ∈ X∗ and �, ξ satisfy (3.20) and
(3.21) then the system of orthogonality conditions

∫

B2R
H [�, �̇, ξ, ξ̇ , φ](y, t(τ ))Zi (y) dy = 0 for t ∈ [t0,∞) and i = 1, 2, 3, 4,

is equivalent to the nonlocal system in [t0,∞)
{
(1 + a[�̇, ξ ](t))J [�̇](0, t) = g(t)+ G[�, �̇, ξ, ξ̇ , φ](t),
ξ̇1,i = ciμ0(t)2

(
1 + i [�, �̇, ξ, φ]) for i = 1, 2, 3,

(6.1)

with g,G, a as in Lemma 5.1 and  i as in Lemma 5.2. Next, we verify that this
system is solvable for �, ξ satisfying (3.20),(3.21) respectively. This relies on the
following proposition, proved in Sect. 8, about the solvability of the nonlocal operator
J [�̇](0, t) = g(t) for g as in (5.2).

Proposition 6.1 Let h : [t0,∞) → R a function satisfying ||h||�,c1,c2,ε < ∞ for some
constants ε > 0 and c1, c2 such that

0 < c2 ≤ c1 <
λ1 − γ
2γ

. (6.2)

Then there exists a function � ∈ C
1
2+ε(t0 − 1,∞) satisfying

J [�̇](0, t) = h(t) in (t0,∞), (6.3)
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where J [�̇] satisfies (2.33), and there exists a constant C1 such that

||�||�,c1,c2,ε+ 1
2

≤ C1||h||�,c1,c2,ε. (6.4)

Moreover, if ||h||�,c1,c2, 12+ε <∞ then� ∈ C1,ε(t0 −1,∞) and there exists a constant
C2 such that

||�̇||�,c1,c2,ε ≤ C2||h||�,c1,c2, 12+ε. (6.5)

Thus, the linear operators

T1 : X�,c1,c2,ε → X�,c1,c2,ε+ 1
2

h(t) �→ �[h](t), (6.6)

and

T̂1:= d

dt
◦ T1 : X�,c1,c2, 12+ε → X�,c1,c2,ε

h(t) �→ �̇[h](t), (6.7)

are well-defined and continuous.

We are ready to solve the system (6.1) in �, ξ for fixed φ ∈ X∗.

Proposition 6.2 Suppose that φ satisfies (4.15). Then, there exist � = �[φ](t) and
ξ = ξ [φ](t) to the nonlinear nonlocal system (6.1) which satisfy (3.20) and (3.21)
respectively. Moreover, they satisfy

||�[φ1] −�[φ2]||�,l0,δ0, 12+ε ≤ c||φ1 − φ2||∗,
||�̇[φ1] − �̇[φ2]||�,l1,δ1,ε ≤ c||φ1 − φ2||∗,
||ξ [φ1] − ξ [φ2]||�,1+l1,

1
2+ε ≤ c||φ1 − φ2||∗,

||ξ̇ [φ1] − ξ̇ [φ2]||�,1+l1,ε ≤ c||φ1 − φ2||∗, (6.8)

with constant c < 1 provided that t0 is fixed sufficiently large and bi small for i = 1, 2.

Proof Firstly, we observe that Eq. (5.2) can be rewritten as

J [�̇](0, t) = g1(t)+ G1[�̇,�, ξ̇ , ξ, φ](t),

where

g1(t)+ G1[�̇,�, ξ̇ , ξ ] = (1 + a[�̇, ξ ])−1[g(t)+ G[�̇,�, ξ̇ , ξ, φ]](t), (6.9)
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for new functions g1,G1 satisfying the same properties of g,G in Lemma 5.1. By
Proposition 6.1 we reduce the equation for � to a fixed point problem

�̇(t) = F1[�̇](t), F1[�̇](t) = T̂1
[
g1(t)+ G1[�, �̇, ξ, ξ̇ , φ]] ,

where T̂1 is defined in (6.7). Let

�̇0(t):=T̂1[g1](t)

and define the operator L1[h] := T̂1[h − g1]. We use the notation

L1[h] = λ[h](t):=�̇[h](t)− �̇0(t),

for any h ∈ X�,l1,δ1, 12+ε. Observe that

| ∗ |�̇[h] = | ∗ |�̇0 + |λ[h]|
� μl0 ||g||�,l0,δ1, 12+ε + μl1 ||h||�,l1,δ1, 12+ε.

Given h j ∈ X�,1+l1,
1
2+ε we consider the solution to the ODE

ξ̇1, j = c jμ0(t)
1+l1 + h j (t), (6.10)

given explicitly by

ξ1, j [h](t) = c j

∫ ∞

t
μ0(s)

1+l1 ds +
∫ ∞

t
h(s) ds:=ϒ j +

∫ ∞

t
h(s) ds.

In particular, we have

|ξ1, j (t)| � μ0(t)
1+l1 + μ0(t)

1+l1 ||h||1+l1,∞, | ∗ |ξ̇1, j (t) � μ0(t)
1+l1 ||h||1+l1,∞

We define the vector

"(t) := ξ̇ − ϒ̇ = h(t),

where h = (h1, h2, h3) satisfies ||hi ||�,1+l1,
1
2+ε <∞ for i = 1, 2, 3. We define

||h||�,1+l1,
1
2+ε:= max

i=1,2,3
||hi ||�,1+l1,

1
2+ε.

Let L2 the linear operator defined as L2[h] = " by relation (6.10) for i = 1, 2, 3. We
observe that (�̇, ξ̇ ) is a solution to (6.1) if (λ, ") satisfies

(λ, ") = A(λ, "),
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where A is the operator

A(λ, "):= (A1[λ, "],A2(λ, ")) :=
(
T̂1[Ĝ1[λ, ", φ]],L2[ ̂[λ, ", φ]]

)
,

and

Ĝ1(λ, ", φ):=G1

[

�0(t)+
∫ ∞

t
λ(s) ds, �̇0 − λ, ϒ +

∫ ∞

t
"(s) ds, ϒ̇ −",φ

]

,

 ̂(λ, ", φ):= 
[

�0(t)+
∫ ∞

t
λ(s) ds, �̇0 − λ, ϒ(t)+

∫ ∞

t
"(s) ds, ϒ̇ −",φ

]

,

with G1 and  defined in (6.9) and (5.6). We show that there exists a unique fixed
point (λ, ") = (λ[φ], "[φ]) in

B = {(λ, ") ∈ (L∞(t0,∞))4 : ||λ||�,l1,δ1,ε + ||"||�,1+l1,
1
2+ε ≤ e−κt0L}

for some L fixed large. Indeed, estimates (6.5) and (5.3) give

||A1[λ, "]||�,l1,δ1,ε ≤ C2||Ĝ1[λ, ", φ]||�,l1,δ1, 12+ε

≤ C2e
−κt0

{
||λ||�,l1,δ1,ε + ||"||�,1+l1,

1
2+ε + ||φ||∗

}
.

Also, from (5.7)

||A2[λ, "]||�,1+l1,
1
2+ε ≤ || [λ, ", φ]||�,1+l1,

1
2+ε

≤ Ce−κt0
{
||λ||�,l1,δ1,ε + ||"||�,1+l1,

1
2+ε + ||φ||∗

}
.

We have to verify that A is a contraction. For instance, we have

||A1[λ1, "] − A1[λ2, "]||�,l1,δ1,ε = ||T̂1[Ĝ1[λ1, , φ] − Ĝ1[λ2, , φ]]||�,l1,δ1, 12+ε
≤ C2||Ĝ1[λ1, , φ] − Ĝ1[λ2, , φ]||�,l0,δ1, 12+ε
≤ C2c||λ1 − λ2||�,l1,δ1,ε,

where C2, c is the constant appearing in (6.5) and (5.4) respectively. Since c can be
as small as required provided that t0 is fixed sufficiently large, we obtain that A1 is
a contraction map. By means of the Lipschitz property of  ̂ in (5.8) we can estimate
A2[λ1, "1] − A2[λ2, "] similarly. Finally, using the estimates on Ĝ,  ̂ with respect
to ", we get

||A1(λ1, "1)− A1(λ1, "1)||�,l1,δ1,ε ≤ c
[
||λ1 − λ2||�,l1,δ1,ε + ||"1 −"2||�,l1,δ1, 12+ε

]
.
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As a consequence of the Banach fixed point theorem, provided that L and t0 are fixed
large, the map A has a unique fixed point (λ, ") in the space B. Observe that

�[h](t) = −
∫ ∞

t
T̂1[h](s) ds = T1[h],

where T1 is defined in (6.6), satisfies (3.20) thanks to (6.4). Also, the components of
vector ξ1 = ∫ ∞

t "(s) ds satisfy (3.21). This proves the existence of a solution (�, ξ)
to the system (6.1) satisfying (3.20)–(3.21). With similar estimates on λ[φ1] − λ[φ2]
and "[φ1] −"[φ2], using (5.4) and (5.8), relations (6.8) follow. ��
We observe from the proof that T̂1, like an half-fractional derivative, loses 1/2-Hölder
exponent but we regain it through g,G1 as a consequence of estimates on ψ from
Proposition 4.1. This is the main reason to put all the terms of S[u3] involving directly
μ̇ in the outer error (2.25). Indeed, to get �̇ ∈ Cε it is crucial to allow H in (3.11)
(and hence Sin in (2.24)) to depend on �̇ only indirectly through ψ[�̇] or J1[�̇].
Remark 6.1 By remark 4.1 the outer solution ψ = �[ψ0] is smooth as a function of
the initial datum ψ0, provided that ||ψ0||∞ + ||∇ψ0||∞ is sufficiently small. Thus, also
the parameters �[ψ0], ξ [ψ0] found in Proposition 6.2 depend smoothly on ψ0, and
from the proof we also obtain

||�[ψ1
0 ] −�[ψ2

0 ]||∞ � ||ψ1
0 − ψ2

0 ||∞,
||ξ1[ψ1

0 ] − ξ1[ψ2
0 ]||∞ � ||ψ1

0 − ψ2
0 ||∞.

7 Final argument: solving the inner problem

This section provides the final step in the proof of Theorem 1.1. At this point, given φ
satisfying (4.15), we have a solutionψ = �[�[φ], ξ [φ], φ] to the outer problem (3.4)
and parameters �[φ], ξ [φ] such that the orthogonality conditions (5.1) are satisfied.
Thus, to get a solution

u = u3 + φ̃ = u3 + μ
1
2
0 ψ + ηRμ− 1

2 φ,

we need to prove the existence of φ such that ||φ||∗ <∞.

Proof of Theorem 1.1 Wemake a fixed point argument using the linear estimate (3.17).
Proposition 3.1 defines a linear operator T : h �→ (φ[h], e[h]) which is continuous
between the L∞-weighted space described in (3.17). Thus, the solution φ to the non-
linear inner problem satisfies

φ = Ain(φ), where Ain(φ):=T (H [φ]). (7.1)

We claim that Ain has a unique fixed point in the space

B = {φ ∈ L∞(B2R) : ||φ||∗ < b},
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for some fixed constant b large. Firstly, we prove

|H [�, ξ, �̇, ξ̇ ](y, t)| � μ1+l1

1 + |y|4 .

We recall that

H [φ,ψ,μ, μ̇, ξ, ξ̇ ](y, τ ):=5U (y)4μ

(
μ0

μ

)1/2

ψ(μy + ξ, t(τ ))
+ B0 [φ + μψ] (μy + ξ, t(τ ))+ μ5/2Sin(μy + ξ, t(τ ))
+ N (μ1/2u3, μ

1/2φ̃)(μy + ξ, t(τ )).

Using the estimate on ψ given in Proposition 4.1, we have

|5U (y)4μ
(
μ0

μ

)1/2

ψ(μy + ξ, t(τ ))| � e−κt0 μ
1+l1+δ−σ

1 + |y|4+α

and from (3.6) we get

|B0 [φ + μψ] (μy + ξ, t(τ ))| � 1

1 + |y|3 |μHγ + μJ + μ−1/2φ3η3|(φ + μψ)

� μ

1 + |y|3
(

be−κt0 μ
1+l1R3

1 + |y|4 + μ||ψ ||∗∗
μl1+δ−σ

1 + |y|α
)

� e−κt0 μ
1+l1

1 + |y|4 .

Recalling the estimates on φ at y ∼ 0 and y ∼ R given by the norm (3.18), using that
R = μ−δ with δ satisfying (2.28) we deduce

|N (μ1/2u3, μ
1/2φ̃)(μy + ξ, t(τ ))| � 1

1 + |y|3 (φ + μψ)2

� 1

1 + |y|3
(

b
μ2(1+l1)R6

1 + |y|8 + μ2μ
2(l1+δ−σ)

1 + |y|2α
)

� e−κt0 μ
1+l1

1 + |y|4 .

By Lemma 2.5 we have the main error

|μ5/2Sin(μy + ξ, t(τ ))| � μ1+l1

1 + |y|4 .
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Thanks to the previous section, H satisfies the orthogonality conditions required by
Proposition 3.1. Thus, provided that t0 is large enough, we have

||T [H ]||∗ ≤ C ||H ||ν,4 < b,

for b chosen large, where C is the constant in (3.19). This proves Ain(φ) ∈ B. Now,
we need to prove that for φ(1), φ(2) ∈ B we have

| ∗ |H [φ(1)] − H [φ(2)] � c||φ(1) − φ(2)||∗ μ1+l1

1 + |y|4 ,

for some c < 1. This is a consequence of Proposition 4.2 and Proposition 6.2. Indeed,
for instance we get

5U (y)4μ0| ∗ |e�[φ(1)]ψ[φ(1)] − e�[φ(2)]ψ[φ(2)]
= 5U (y)4μ0| ∗ |

[
e�[φ(1)] − e�[φ(2)]]ψ[φ(1)] + e�[φ(2)] [ψ[φ(1)] − ψ[φ(2)]

]

� c||φ(1) − φ(2)||∗ μ1+l1

1 + |y|4 ,

and similarly we get the same control on the other terms of H [φ(1)]−H [φ(2)]. Finally,
since the operator T : Xν,4 → X∗ is continuous, where Xν,4 is defined in (3.14) for
a = 2, by composition with H : X∗ → Xν,4 we obtain

||Ain[φ(1)] − Ain[φ(2)]||∗ ≤ c||φ(1) − φ(2)||∗,

provided that t0 is fixed sufficiently large. Thus,Ain : B → B is a contraction map and
by Banach fixed point theoremwe obtain the existence and uniqueness of φ ∈ X∗ such
that (7.1) holds. Finally, we recall that the constant e0 = e0[H ] in the initial condition
φ(y, t0) = e0Z0(y) is a linear operator of H . The existence of φ immediately defines
e0. This completes the proof of the existence of u = u3 + φ̃ in Theorem 1.1, with the
bubbling profile centered in x = 0 ∈ � and parameters satisfying (1.8). ��
Remark 7.1 (Continuity of (φ, e0)with respect toψ0)We found the inner perturbation
φ and its initial datum φ(y, t0) = e0Z0(y) based on the existence of the outer solution
�[φ] given byProposition 4.1,which in fact can be found for any initial conditionψ0 ∈
C1(�̄). Furthermore, as a consequence of the continuity of �[ψ0] and �[ψ0], ξ [ψ0]
found in Remarks 4.1 and 6.1 we obtain

| ∗ |e0[ψ1
0 ] − e0[ψ2

0 ] �
[
||ψ1

0 − ψ2
0 ||L∞(�) − ||∇ψ1

0 − ∇ψ2
0 ||L∞(�)

]
.

Since we know that �, �̇, ξ, ξ̇ , ψ depends smoothly on ψ0, by the implicit function
theorem, we deduced that map ψ0 �→ (φ[ψ0], e0[ψ0]) is C1 with respect to ψ0 ∈
C1(�̄). This allows to prove the 1-codimensional stability of Corollary 1.1, under
small perturbation.With these ingredients, we can proceed as in [11, Proof ofCorollary
1.1].
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8 Invertibility theory for the nonlocal linear problem

In this section we prove Proposition 6.1. We deduce the result by Laplace transform
method combined with asymptotic estimates of the heat kernel p�t associated to �.
It turns out that the operator J [�̇] is similar to a half-fractional integral of �̇. Thus,
roughly speaking, we expect the inverse operator to behave as a fractional derivative
of order 1/2. In fact, Proposition 6.1 can be seen as a precise statement of this idea.

For later purpose we recall some facts about the Dirichlet heat kernel. For the
definition and properties we follow [22, 32]. A function p�t (x, y) continuous on �̄×
�̄× R

+, C2 in x and C1 in t is called Dirichlet heat kernel for the problem

∂t u(x, t) = �u(x, t) in �× R
+,

u(x, t) = 0 on ∂�× [0,∞),
u(x, 0) = u0(x) in �,

if, for any y ∈ �, satisfies

∂t p
�
t (x, y) = �x p

�
t (x, y) in �× R

+,
p�t (x, y) = 0 in ∂�,

and

lim
t→0+

∫

�

p�t (x, y)u0(y) dy = u0(x),

uniformly for every function u0 ∈ C0(�̄). The existence of the Dirichlet heat kernel
is a classical result by Levi [43]. It has the following basic properties:

• p�t (x, y) ≥ 0, p�t (x, y) = p�t (y, x) and p�t (x, y) = 0 if x ∈ ∂�;
• for any y ∈ � the function p�t (x, y) ∈ C∞(R+ ×�);
• it satisfies ∂t p�t (x, y) = �x p�t (x, y) for (x, y, t) ∈ �×�× R

+.

Also, from [32, Theorem 10.13] and its proof, the heat kernel p�t (x, y) admits the
expansion

p�t (x, y) =
∑

k≥1

e−λk tφk(x)φk(y), (8.1)

where λk is the k-th Dirichlet eigenvalue of −� on � and φk the corresponding
eigenfunction and also for n ≥ 1 (see [32, Remark 10.15])

∞∑

k=n

sup
x,y∈�

|φk(x)φk(y)| <∞ (8.2)

The series (8.1) converges absolutely and uniformly in [ε,∞]×�×� for any ε > 0,
as well as in the topology of C∞(R+ ×�×�).
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Before starting the proof of Proposition 6.1, we recall an estimate on the short time
behavior of the heat kernel p�τ (x, y) due to Varadhan [55, Theorem 4.9]. We will use
it in the following form as in Hsu [37, Corollary 1.6].

Lemma 8.1 (Short time estimate of p�τ ) Let ε > 0 fixed such that Bε(0) ⊂ �. Then,
there exists τ0 > 0 such that, for y ∈ Bε(0) and τ ∈ (0, τ0) we have

pR
3

τ (0, y)(1 − e− δ2
4τ ) ≤ p�τ (0, y), (8.3)

where δ < δ0 is independent of y and

δ0 := d(∂�, ∂Bε) = min
a∈∂�,b∈∂Bε(0)

|a − b| > 0.

Proof Recall the identities in [55, p. 675]

lim sup
τ→0

4τ log(pR
3

τ (x, y)− p�τ (x, y)) ≤ −d∂�(x, y)
2, (8.4)

lim
τ→0

4τ log(pR
3

τ (x, y)) = −d(x, y)2, (8.5)

where

d∂�(x, y):= inf
z∈∂�{d(x, z)+ d(z, y)}.

From (8.4) for τ ∈ (0, τ0) we have

pR
3

τ (x, y)− e− d2
∂�
(x,y)−c(τ0)

4τ ≤ p�τ (x, y),

for all x, y ∈ �, where 0 ≤ c(τ0) = o(1) as τ0 → 0. In particular, fix x = 0 and
consider y ∈ Bε(0) ⊂ � for a small ε > 0. Then, choosing τ0 smaller if needed, we
have

d2∂�(0, y)− c(τ0) ≥ ε2 + δ20 .

Thus for y ∈ Bε(0)

e− d2
∂�
(0,y)−c(τ0)

4τ ≤ e− ε2+δ20
4τ ≤ e− d(0,y)2

4τ e− δ20
4τ ,

and (8.5) says

pR
3

τ (0, y) = e− d2(0,y)
4τ (1+o(1)) as τ → 0+.

Thus, we have for τ < τ0 small and y ∈ Bε(0)

pR
3

τ (0, y)(1 − e− δ2
4τ ) ≤ p�τ (0, y), (8.6)
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for any δ < δ0 independent of y. ��
We mention that the uniform bound (8.6) holds for y ranging in any convex subset of
the domain, see [37, p.374–375]. Also, for any τ > 0 and x, y ∈ �we have the upper
bound

p�τ (x, y) ≤ pR
3

τ (x, y), (8.7)

as a consequence of the maximum principle. Thus, Varadhan’s estimate (8.3) is a
precise statement about the idea that for small times the heat kernel “does not feel
the boundary”. We refer to Kac [38] and Dodziuk [22] for statements with the same
flavor. In the proof of Proposition 6.1 we need the following lemma.

Lemma 8.2 Define the function

I (τ ):=
∫

�

p�τ (0, y)Gγ (y, 0) dy,

where p�τ (x, y) denotes the Dirichlet heat kernel associated to � and Gγ (x, y) the
Green function of the operator −�−γ on�. Then I (τ ) has the following asymptotic
behavior:

I (τ ) =
{
O

(
e−λ1τ ) for τ → ∞,

c1,∗ 1√
τ

+ c2,∗
√
τ + c3,∗τ + O

(
τ 3/2

)
for τ → 0+, (8.8)

for some constant ci,∗ and i = 1, 2, 3.

Proof Step 1 (Asymptotic for τ → ∞).We recall that the heat kernel p�τ (x, y) admits
the series expansion (8.1) which converges absolutely and uniformly in the domain
[ε,∞)×�×� for any ε > 0, as well as in the topology C∞(R+ ×�×�). By the
uniform convergence with respect to y ∈ � we obtain for τ > 0

I (τ ) =
∫

�

∞∑

k=1

e−λkτ φk(0)φk(y)Gγ (y, 0) dy

=
∞∑

k=1

e−λkτ φk(0)
∫

�

φk(y)Gγ (y, 0) dy. (8.9)

Multiplying equation (2.7) by φk and integrating by parts we get

−λk
∫

�

Gγ (x, 0)φk(x) dx =
∫

�

Gγ (x, 0)�φk(x)

=
∫

�

φk(x)�Gγ (x, 0) dx

= −γ
∫

�

Gγ (x, 0)φk(x) dx − c3

∫

�

φk(x)δ0(x) dx

123



Infinite time blow-up for the three dimensional energy...

= −γ
∫

�

Gγ (x, 0)φk(x) dx − c3φk(0),

that gives

∫

�

Gγ (x, 0)φk(x) dx = c3
φk(0)2

λk − γ . (8.10)

We plug (8.10) into (8.9). Finally, from (8.2) we obtain the asymptotic behavior (8.8)
for τ → ∞.
Step 2 (Asymptotic for τ → 0+). Firstly, we split

I (τ ) =
∫

�

p�τ (0, y)
α3

|y| dy +
∫

�

p�τ (0, y)Hγ (y, 0) dy

= : I1(τ )+ I2(τ ).

We analyze I1(τ ). For the region Bε(0) we invoke Varadhan’s estimate (8.6) and we
obtain

∫

Bε(0)

p�τ (0, y)

|y| dy ≥
∫

Bε

e− |y|2
4τ

[4πτ ]3/2
1

|y| dy(1 − e− ε2
τ )

= 4π
∫ ε

0

e− ρ2

4τ

[4πτ ]3/2 ρ dρ(1 − e− ε2
τ )

= 1√
4πτ

∫ ε
2
√
τ

0
e−r2r dr(1 − e− ε2

τ )

= 1√
4πτ

⎛

⎝
1 − e− ε2

4τ

2

⎞

⎠

(

1 − e− ε2
τ

)

= 1

4
√
πτ

+ O

(
e− c

τ√
τ

)

for some c > 0, and by (8.7) we have

∫

Bε(0)

p�τ (0, y)

|y| dy ≤
∫

Bε(0)

pR
3

τ (0, y)

|y| dy

≤ 1

4
√
πτ

+ O

(
e− c

τ√
τ

)

.

From these bounds we conclude

∫

Bε(0)

p�τ (0, y)

|y| dy = 1

4
√
πτ

+ O

(
e− c

τ√
τ

)

.
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In the region � \ Bε(0) by (8.7) we get

∫

�\Bε(0)
p�τ (0, y)

|y| dy ≤ τ−3/2
∫ 1

ε

e− ρ2

cs ρ dρ

= τ−1/2
∫ 1√

s

ε√
s

e−r2r dr = O

(
e− c

τ√
τ

)

.

We conclude that

I1(τ ) = α3
∫

�\Bε(0)
p�τ (0, y)

|y| dy + α3
∫

Bε(0)

p�τ (0, y)

|y| dy

= c1,∗√
τ

+ O

(
e− c

τ√
τ

)

as τ → 0+, with c1,∗ = α3

4
√
πτ
.

Now, we estimate the term I2(τ ). We treat it similarly to I1(τ ) but we get a lower order
term in the expansion since Hγ (y, 0) is not singular. We use decomposition (2.10) for
Hγ (y, 0) and we consider the integral over Bε(0). Using the cosine expansion we get

θγ (y, 0) = α3 γ
2

|y| + O(|y|3).

Thus, we compute the integral associated to the first term with Varadhan’s estimate
(8.3) and the upper bound (8.7):

∫

Bε(0)
p�τ (y, 0)

1 − cos(
√
γ |y|)

|y| dy = α3 γ
2

∫

Bε(0)

e− |y|2
4τ

[4πτ ]3/2 |y| dy
(
1 + o

(
e− c

τ

))

= 4πα3
γ

2

∫ ε

0

e− ρ2

4τ

[4πτ ]3/2 ρ
3 dρ

(
1 + o

(
e− c

τ

))

= 4πα3
√
τ
γ

2

∫ ε
2
√
τ

0
e−r2r3 dr

(
1 + o

(
e− c

τ

))

= c2,∗
√
τ
(
1 + o

(
e− c

τ

))
, (8.11)

for an explicit constant c2,∗. The same computation on the remainder O
(|y|3) gives

a term of order O
(
τ 3/2

)
. Another Taylor expansion at y = 0 gives

hγ (y, 0) = ∇yhγ (0, 0) · y + 1

2
y · Dyyhγ (0, 0) · y + O(|y|3),

where Dyyhγ (0, 0) denotes the Hessian of hγ (·, 0) evaluated in y = 0. Integrating the
first term on Bε(0) against p�t (0, y) and using (8.3)–(8.7) we see by symmetry of the

integrand pR
3

t (0, y)∇yhγ (0, 0) · y that the integral gives an exponentially decaying
term. The second term in (8.12) can be treated similarly to (8.11) and gives a term of
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order c3,∗τ(1+o(1)) for some explicit constant c3,∗. The integral of p�τ (y, 0)Hγ (y, 0)
on the complement can be treated as before and gives an exponentially decay term for
τ → 0. Thus, we obtain that

I2(τ ) = c2,∗
√
τ + c3,∗τ + O

(
τ 3/2

)
as τ → 0+.

We conclude that I (τ ) = I1(τ )+ I2(τ ) has the asymptotic (8.8) for τ → 0+. ��
We start here the main proof of Proposition 6.1.

Proof of Proposition 6.1

Firstly, we observe that J (0, t0) = h(t0) is in general not compatible with a null
initial condition. For this reason it is natural to solve the problem for J starting from
t = t0 − 1. We look for �(t) for t ∈ (t0 − 1,∞). The function J is a solution to the
problem

∂tJ = �xJ + γJ − �̇(t)Gγ (x, 0) in �× (t0 − 1,∞),
J (x, t) ≡ 0 on ∂�× (t0 − 1,∞),

such that

J (0, t) = h∗(t) in (t0,∞),

where

h∗(t) =
{
h(t) t ∈ [t0,∞),
hext(t) t ∈ [t0 − 1, t0),

(8.12)

and

hext(t) = η(t)h(t0),

where η is a smooth function such that η(t0 − 1) = 0, η(t0) = 1 and

|η(t0 − ν)h(t0)− h(t0 + ν)| ≤ [h]ε,[t0,t0+1]νε,

for any ν ≤ 1. This choice gives an extension h∗(t) ∈ Cε with

||h∗||�,c1,c2,(t0−1,∞) � ||h||�,c1,c2,(t0,∞). (8.13)

Let s:=t − (t0 − 1) and for s ∈ (0,∞) define

J0(x, s) := e−γ sJ (x, s + (t0 − 1)),

β(s) := −�(s + (t0 − 1)),
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h∗
0(s) := h∗(s + (t0 − 1)). (8.14)

The function J0 is a solution to

∂sJ0(x, s) = �xJ0 + e−γ s β̇(s)Gγ (x, 0) in �× (0,∞)
J0(x, s) = 0 on ∂�× (0,∞),

such that

J0[β̇](0, s) = h∗
0(s)e

−γ s in (0,∞). (8.15)

Imposing the initial condition J (x, t0) ≡ 0 in �, that is J0(x, 0) ≡ 0, by Duhamel’s
formula we have

J0[β̇](0, s) =
∫ s

0
e−γ (s−τ)β̇(s − τ)I (τ ) dτ, (8.16)

where

I (τ ):=
∫

�

p�τ (0, y)Gγ (y, 0) dy,

and p�τ (x, y) denotes the heat kernel associated to �. The asymptotic behavior of
I (τ ) is given by Lemma 8.2. We denote the Laplace transform of a function f as

f̃ (ξ):=
∫ ∞

0
e−ξs f (s) ds.

We refer to the book [23] by Doetsch for classic properties of the Laplace transform.
Applying the Laplace transform to (8.16), using (8.15) and the basic property

˜̇f (ξ) = ξ f̃ (ξ)− f (0),

we obtain

h̃∗
0(ξ + γ ) = ˜̇β(ξ + γ ) Ĩ (ξ)

=
[
(ξ + γ )β̃(ξ + γ )− β(0)

]
Ĩ (ξ),

and hence

β̃(ξ + γ ) = β(0)

ξ + γ + h̃∗
0(ξ + γ )σ̃ (ξ), (8.17)

where

σ̃ (ξ):= 1

(ξ + γ ) Ĩ (ξ) .
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By definition we have

Ĩ (ξ) =
∫ ∞

0
e−ξs I (s) ds,

that is well defined and analytic in the right-half plane Reξ > −λ1 thanks to
Lemma 8.2. By expansion (8.8) we have

| ∗ |e−ξs I (s) � g(s), g(s) =
{

1√
s

for s → 0+,
e−(λ1+Reξ)s for s → +∞,

and g is integrable in R+ if Reξ > −λ1. Thus, using (8.9), in any half plane Reξ ≥ c
where c > −λ1 the dominated convergence theorem applies to get

Ĩ (ξ) =
∫ ∞

0
e−ξs I (s) ds

=
∫ ∞

0
e−ξs

∞∑

k=1

φk(0)2

λk − γ e
−λk s ds

=
∞∑

k=1

φk(0)2

λk − γ
∫ ∞

0
e−ξse−λk s ds

=
∞∑

k=1

φk(0)2

λk − γ
1

λk + ξ

At this point we can extend Ĩ (ξ) analytically from {ξ ∈ C : ξ > −λ1} toC\{−λk}∞k=1.
Let ξ = a + ib and rewrite the series as

Ĩ (ξ) =
∞∑

k=1

φk(0)2

λk − γ
1

λk + a + ib

=
∞∑

k=1

φk(0)2

λk − γ
λk + a

(λk + a)2 + b2
− ib

∞∑

k=1

φk(0)2

λk − γ
1

(λk + a)2 + b2
.

Since the coefficients of the series are positive, Ĩ (ξ) = 0 implies b = 0. Plugging
b = 0 into the first series we obtain that a root ξ = a of Ĩ satisfies

∞∑

k=1

φk(0)2

λk − γ
1

λk + a
= 0.

Hence, we deduce that the set of zeros of Ĩ is given by a sequence {−ak}∞k=1 where
ak ∈ (λk, λk+1). In particular,

Ĩ (ξ) 	= 0 for Reξ > −λ1. (8.18)
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Fig. 1 Contour integral CR

By standard argument [23, Theorem 33.7] on the Laplace transform, using (8.8), we
have

Ĩ (ξ) = c1,∗
√
πξ−1/2 + c2,∗

√
π

2
ξ−3/2 + c3,∗ξ−2 + O(ξ−5/2) as |ξ | → ∞,

in the half-plane Reξ > −λ1. Thus, in the same half-plane we have

σ̃ (ξ) = 1

(ξ + γ ) Ĩ (ξ)
= d1,∗ξ−1/2 + d2,∗ξ−3/2 + d3,∗ξ−2 + O(ξ−5/2) as |ξ | → ∞. (8.19)

As a consequence of (8.18), σ̃ (ξ) has a unique singularity at ξ = −γ in the half-plane
of convergence. By [23, Theorem 28.3] the function σ̃ (ξ) can be represented as a
Laplace transform of a function.1 Finally, we compute the inverse Laplace transform
by means of the Residue theorem defining the rectangular contour integral CR as in
Fig. 1, which is suggested by the proof of [23, Theorem 35.1].

For later purpose we observe that, looking at the contour integral CR , the constant
a ∈ (γ, λ1) can be taken arbitrarily close to λ1. An application of the Riemann-
Lebesgue Lemma (as in [23, p.237]) implies

lim
R→∞

∫

L2,R

eξτ σ̃ (ξ) dξ = 0,

1 We cannot have an estimate directly on β̇ at this point. Indeed, ( Ĩ (ξ))−1 is not a Laplace transform of
a function since diverges as |ξ | → ∞. However, it still can be represented as the Laplace transform of a
distribution, see [23, Theorem 29.3].
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lim
R→∞

∫

L4,R

eξτ σ̃ (ξ) dξ = 0.

Since

σ(τ) = lim
R→∞

1

2π i

∫

L1,R

eξτ σ̃ (ξ) dξ

we obtain

σ(t) = Res
(
eξ t σ̃ (ξ),−γ ) e−γ t + lim

R→∞
1

2π i

∫ −a+i R

−a−i R
eξ t σ̃ (ξ) dξ. (8.20)

We easily compute

Res
(
eξτ σ̃ (ξ),−γ ) = lim

ξ→−γ (ξ + γ ) 1

(ξ + γ ) Ĩ (ξ) =: c∞.

Now, we analyze the integral (8.20). We decompose

lim
R→∞

∫ −a+i R

−a−i R
eξτ σ̃ (ξ) dξ

= ie−aτ
∫ R

−R
eiyτ

[

σ̃ (−a + iy)− d1,∗√−a + iy
− d2,∗
(−a + iy)3/2

− d3,∗
(−a + iy)2

]

dy + ie−aτ
∫ i R

−i R
eξ t

d1,∗√−a + iy
dy

+ ie−aτ
∫ i R

−i R

d2,∗
(−a + iy)3/2

dy + ie−aτ
∫ i R

−i R

d3,∗
(−a + iy)2

dy

It is easy to see (by means of another contour to avoid the standard branch) that, up
to constants, the last three integral are respectively the inverse Laplace transform of
ξ−1/2, ξ−3/2, ξ−2. The integral

R(τ ):=
∫ R

−R
eiyτ

[

σ̃ (−a + iy)− d1,∗√−a + iy
− d2,∗
(−a + iy)3/2

− d3,∗
(−a + iy)2

]

dy

is absolutely convergent thanks to the second order expansion of σ̃ (ξ). In fact, obtain-
ing the absolute convergence of R(τ ) (and R′(τ )) is the main reason to use the sharp
Varadhan’s estimate on the heat kernel p�t . Thus, from (8.20) we obtain

σ(τ) = c∞e−γ τ + e−aτ

[
C1,∗√
τ

+ C2,∗
√
τ + C3,∗τ + R(τ )

]

,
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for some constants c∞,Ci,∗ and i = 1, 2, 3, where R(τ ) is bounded. This gives the
asymptotic behavior

σ(τ) =
⎧
⎨

⎩

c∞e−γ τ + O(e−aτ ) for τ → ∞,
C−1
1,∗√
τ

+ c∞ + O
(√
τ
)

for τ → 0+,

for any a ∈ (γ, λ1). For later purposes, we observe that σ(τ) is differentiable. Indeed,
differentiating R(τ ), we still obtain an absolutely convergent integral thanks to the
full expansion (8.19), and an application of the dominated convergence theorem gives
σ ∈ C1 with

σ ′(τ ) =
{

−γ c∞e−γ τ + O(e−aτ ) for τ → ∞,
−(2C1,∗)−1τ−3/2(1 + O(τ )) for τ → 0+,

From (8.17), taking the inverse Laplace transform of both sides, we get

β(s)e−γ s = β(0)e−γ s +
∫ s

0
e−γ (s−τ)h∗

0(s − τ)σ (τ)d τ,

that is

β(s) = β(0)+
∫ s

0
eγ τ σ (τ )h∗

0(s − τ) dτ.

Proof of (6.4) We rewrite this formula as

β(s) = β(0)+ c∞
∫ s

0
h∗
0(τ ) dτ +

∫ s

0
h∗
0(τ )

[
eγ (s−τ)σ (s − τ)− c∞

]
dτ

=
[

β(0)+ c∞
∫ ∞

0
h∗
0(τ ) dτ

]

− c∞
∫ ∞

s
h∗
0(τ ) dτ

+
∫ s

0
h∗
0(τ )

[
eγ (s−τ)σ (s − τ)− c∞

]
dτ.

We choose β(0) = −c∞
∫ ∞
0 h∗

0(τ )dτ . It remains to estimate

β1(s):= − c∞
∫ ∞

s
h∗
0(τ ) dτ,

β2(s):=
∫ s

0
h∗
0(τ )

[
eγ (s−τ)σ (s − τ)− c∞

]
dτ.

We recall that the extension h∗
0(s) has been selected so that (8.13) holds. Here and

in what follows, without losing in generality we assume the same value c = ci for
i = 1, 2. When we estimate the L∞ norm of β we will only use the L∞ norm of
h∗
0 and hence we get the same L∞-weight constant c1. Instead, when we estimate the
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C1/2+ε we need both the L∞ andCε norms of h∗
0, thus wewill get the sameCε-weight

constant c2 = min{c1, c2}. Thus, conditionally to ci < (λ1 − γ )/(2γ ), the weight
constant ci with i = 1, 2 for β and h∗

0 are respectively the same. We proceed with the
L∞ estimate of β. We have

|β1(s)| � ||h∗
0||�,c,ε

∫ ∞

s
e−2γ cτ dτ

� ||h∗
0||�,c,εμ0(s)

c,

Using hypothesis (6.2) and selecting a close enough to λ1 so that

c < a <
λ1 − γ
2γ

, (8.21)

we get

|β2(s)| � ||h∗
0||�,c,ε

∫ s

0
e−2γ cτ e−a(s−τ) ds

� ||h∗
0||�,c,εe−min{2γ c,a}s

� ||h∗
0||�,c,εμ0(s)

c.

Combining the bounds on β1 and β2 we obtain

|β(s)| � ||h∗
0||�,c,εμ0(s)

c. (8.22)

Now we estimate the (1/2 + ε)-Hölder seminorm. In the following it is enough to
assume η ∈ (0, 1). We have

|β1(s)− β1(s − η)| ≤ |
∫ s

s−η
h∗
0(τ ) dτ |

≤ ||h∗
0||∞,cμ0(s)

c|η|
≤ ||h∗

0||∞,cμ0(s)
c|η| 12+ε (8.23)

Let

l(τ ):=eγ τ σ (τ )− c∞.

Following the classical fractional integral estimate of Hardy and Littlewood [35, The-
orem 14], we decompose

β2(s)− β2(s − η) =
∫ s

0
h∗
0(s − τ)l(τ ) dτ −

∫ s−η

0
h∗
0(s − η − τ)l(τ ) dτ

= h∗
0(s)

∫ s

0
l(τ ) dτ −

∫ s

0

[
h∗
0(s)− h∗

0(s − τ)] l(τ ) dτ
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− h∗
0(s)

∫ s−η

0
l(τ ) dτ −

∫ s−η

0

[
h∗
0(s − η − τ)− h∗

0(s)
]
l(τ ) dτ

= h∗
0(s)

∫ s

s−η
l(τ ) dτ −

∫ η

0

[
h∗
0(s)− h∗

0(s − τ)] l(τ ) dτ

−
∫ s

η

[
h∗
0(s)− h∗

0(s − τ)] (l(τ )− l(τ − η)) dτ
=: A1(s, η)+ A2(s, η)+ A3(s, η).

For s − η ∈ (η, 1) we have

|A1| � |h∗
0(s)|

∫ s

s−η
1√
τ
dτ

� |h∗
0(s)|

(
s1/2 − (s − η)1/2

)

� [h∗
0]0,ε,[s,s+1]sε−

1
2 η

� ||h∗
0||�,c,εμ(s)cηε+

1
2 .

For s − η ≥ 1 we get

|A1| ≤ |h∗
0(s)|

∫ s

s−η
l(τ ) dτ

� |h∗
0(s)|

∫ s

s−η
e−aτ dτ

� |h∗
0(s)|η

� ||h∗
0||�,c,εμ(s)cη

1
2+ε.

For s − η ∈ (0, η) we obtain

|A1| �|h∗
0(s)|

∫ s

s−η
1√
τ
dτ

�[h∗
0]0,ε,[s−η,s−η+1]|s − η|εη 1

2

�||h∗
0||�,c,εμ(s)cη

1
2+ε.

Now we estimate A2. We have

|A2| ≤ ||h∗
0||�,c,εμ(s)c

∫ η

0
|τ |ε|l(τ )| dτ

� ||h∗
0||�,c,εμ(s)c

∫ η

0
τ ε

1√
τ
dτ

� ||h∗
0||�,c,εμ(s)cη

1
2+ε.
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Finally, we estimate A3. Using the L∞ norm of h∗
0 for τ > 1 and Cε seminorm for

τ < 1 we obtain

|A3| �
∫ s

η

|h∗
0(s)− h∗

0(s − τ)||l(τ )− l(τ − η)| dτ

� ||h∗
0||�,c,ε

∫ s

η

|τ |ε|l(τ )− l(τ − η)| dτ

� ||h∗
0||�,c,ε

∫ s

η

|τ |ε[τ−1/2 − (τ − η)−1/2] dτ

� ||h∗
0||�,c,εη

∫ s

η

|τ |ετ−3/2 dτ

� ||h∗
0||�,c,εη

1
2+ε

� ||h∗
0||�,c,εμ(s − 1)cη

1
2+ε

� ||h∗
0||�,c,εμ(s)cη

1
2+ε,

Combining the bounds on A1, A2, A3 and we obtain

|β2(s)− β2(s − η)| � ||h∗
0||�,c,εμ(s)c|η|

1
2+ε. (8.24)

Finally, from (8.22), (8.23) and (8.24) we obtain

||β||�,c, 12+ε � ||h∗
0||�,c,ε

Going back to the original variable t using (8.14), we obtain

||�||�,c, 12+ε � ||h∗
0||�,c,ε,

and recalling (8.13) the proof of (6.4) is complete. ��
We proceed to prove the second part of Proposition 6.1: in case h ∈ X�,c, 12+ε, then�
is differentiable and �̇ ∈ X�,c,ε.

Proof of (6.5) In the same notation of the previous lemma, we need to prove that
β1(s), β2(s) are differentiable and estimate the derivatives. Since

β1(s):= −
∫ ∞

s
h∗
0(τ ) dτ,

we clearly have β1(s) ∈ C1(0,∞) and β ′
1(s) = c∞h(s) ∈ X�,c, 12+ε by hypothesis.

To analyze β2, following [35, Theorem 19], we introduce for any ε ≥ 0 the function

β2,ε(s) =
∫ s−ε

0
h∗
0(τ )l(s − τ) dτ,
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so that β2,0(s) = β2(s). Since σ(τ) ∈ C1, we can differentiate β2,ε(s) to obtain

β ′
2,ε(s) = h∗

0(s − ε)l(ε)+
∫ s−ε

0
h∗
0(τ )l

′(s − τ) dτ
= −[h∗

0(s)− h∗
0(s − ε)]l(ε)+ l(s − ε)h∗

0(s)

+
∫ s−ε

0
[h∗

0(τ )− h∗
0(s)]l ′(s − τ) dτ.

Observe that we can choose the extension h∗
0 such that h∗

0(s) = o(s1/2) for s → 0.
Since h∗

0 ∈ X�,c, 12+ε, when ε → 0 the right-hand side tends uniformly to

l(s)h∗
0(s)+ g(s),

where

g(s):=
∫ s

0
[h∗

0(τ )− h∗
0(s)]l ′(s − τ) ds.

By hypothesis and the choice of the extension we have l(s)h∗
0(s) ∈ X�,c, 12+ε. Also,

the function g(s) is continuous since h∗
0(s) ∈ C

1
2+ε.

β2(s1)− β2(s2) = lim
ε→0

(
β2,ε(s1)− β2,ε(s2)

)

= lim
ε→0

∫ s2

s1
β ′
2,ε(τ ) dτ

=
∫ s2

s1
l(τ )h∗

0(τ )+ g(τ ) dτ,

hence

l(s)h∗
0(s)+ g(s) = β ′

2(s).

It remains to prove that g(s) ∈ X�,c,ε. Using the asymptotic ofσ ′(t) and the assumption
(6.2) with a as in (8.21) we have

|g(s)| �[h]0, 12+ε,[s−1,s]
∫ s

s−1
l ′(s − τ)|s − τ | 12+ε dτ

+ ||h||�,c, 12+ε
∫ s−1

0
l ′(s − τ)μ(τ)c dτ

�||h||�,c, 12+ε
[

μ(s)c
∫ 1

0
|w|−1+ε dw +

∫ s

0
e−2γ cτ e−a(s−τ)

]

dτ

�||h||�,c, 12+εμ(s)
c. (8.25)
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We write

g(s − η)− g(s)

=
∫ s

0
[h(s)− h(τ )] l ′(s − τ) dτ −

∫ s−η

0
[h(s − η)− h(τ )] l ′(s − η − τ) dτ

=
∫ s

0
[h(s)− h(s − u)] l ′(u) du −

∫ s

η

[h(s − η)− h(s − u)]l ′(u − η) du

= −
∫ s

η

[h(s − η)− h(s − u)] [l ′(u − η)− l ′(u)
]
du

+
∫ s

η

[h(s)− h(s − η)]l ′(u) du +
∫ η

0
[h(s)− h(s − u)]l ′(u) du

=: B1(s, η)+ B2(s, η)+ B3(s, η).

Using again assumption (6.2) we get

|B1| � ||h∗
0||0, 12+ε,[s−1,s]

∫ 1

η

|u − η| 12+ε|(u − η)−3/2 − u−3/2| du

+ ||h||�,c, 12+ε
∫ s

1
μ(s − u)η

e−a(u−η) − e−au

η
du

� ||h∗
0||�,c, 12+εμ(s)

cηε.

Also

|B2| � |h∗
0(s)− h∗

0(s − η)|η−1/2

� ||h∗
0||�,c, 12+εμ(s)

cηε,

and

|B3| � ||h∗
0||�,c, 12+εμ(s)

c
∫ η

0
u−1+ε du

� ||h∗
0||�,c, 12+εμ(s)

cηε.

This proves

|g(s)− g(s − η)| � μ(s)c||h∗
0||�,c, 12+ε|η|ε.

Combining it with (8.25) we obtain

||g||�,c,ε � ||h∗
0||�,c, 12+ε.

Summing up the estimates for β ′
1(s) and β

′
2(s) = l(s)h∗

0(s)+ g(s) we obtain

||β ′(s)||�,c,ε � ||h∗
0||�,c, 12+ε.
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Finally, in the original variable t , using (8.14) and (8.13), we obtain the bound (6.5).
��

Remark 8.1 (The initial datum J1(x, t0)) From the proof of Proposition 6.1 we have
J (t0, x) = ∫ 1

0 h∗(s)I (x, τ − s) ds where h∗
0 is an arbitrary smooth function with

h∗
0(t) = o(t1/2) for t → 0 and h∗

0(1) = h(t0), connecting to h(t) at t = t0 to maintain
the Cε regularity of h. We observe by estimate (2.2) that

||J1(·, t0)||L∞(�) � ||J [�̇](·, t0)||L∞(�) � | ∗ |�̇(t0) � μ0(t0)
l1 .

Thus, our initial datum remains positive provided that t0 is fixed sufficiently large.

Appendix A: Properties of the Robin functionH�(x, x)

In this appendix we prove some properties of the Robin function that we use in our
construction. We recall that the Green function associated to the operator −� − γ
satisfies

−�xGγ (x, y)− γGγ (x, y) = 4πα3δ(x − y) in �,

G(·, y) = 0 on ∂�. (A.1)

As usual, we split

Gγ (x, y) = �(x − y)− Hγ (x, y) where �(x) = α3

|x | ,

and the regular part Hγ (x, y) satisfies

−�x Hγ (x, y)− γ Hγ (x, y) = −γ�(x − y) in �,

Hγ (·, y) = �(· − y) on ∂�,

for any fixed y ∈ �. We recall (from [14] and reference therein) the following prop-
erties of Rγ (x):=Hγ (x, x):

(1) Rγ (x) ∈ C∞(�)
(2) ∂γ Rγ (x) < 0 and belongs to C∞(�).
(3) for each γ ∈ (0, λ1) fixed, Rγ (x)→ +∞ as x → ∂�

Lemma A.1 (Behavior near the first eigenvalue) The function Hγ (x, y) satisfies

Hγ (x, y) ∼ − 4πα3
λ1 − γ φ1(y)φ1(x), as γ ↗ λ1. (A.2)

Proof We decompose Hγ as

Hγ (x, y) = α(y)φ1(x)+ H0(x, y)+ h⊥,γ (x, y) (A.3)

123



Infinite time blow-up for the three dimensional energy...

where

α(y) :=
∫

�

(
Hγ (x, y)− H0(x, y)

)
φ1(x) dx,

and H0 satisfies

�x H0(x, y) = 0 in �, H0(x, y) = α3

|x − y| on ∂�.

Thus, for any fixed y ∈ �, h⊥,γ (x, y) is the solution to

�xh⊥,γ + γ h⊥,γ = γG0(x, y)+ α(y) (λ1 − γ ) φ1(x) in �

h⊥,γ (x, y) = 0 on ∂�. (A.4)

By definition of α(y) we have

∫

�

h⊥,γ (x, y)φ1(x) dx =
∫

�

(
Hγ (x, y)− H0(x, y)

)
φ1(x) dx − α(y)||φ1||22

= 0. (A.5)

Testing (A.1) against φ1 we get

∫

�

Gγ (x, y)φ1(x) dx = 4πα3
λ1 − γ φ1(y).

Also, testing (A.4) against φ1 and using (A.5) we obtain

0 = (−λ1 + γ )
∫

�

h⊥,γ (x, y)φ1(x) dx

= γ
∫

�

φ1(x)G0(x, y) dx + α(y)(λ1 − γ ).

Thus, we have

α(y) = − γ

λ1 − γ
∫

�

G0(x, y)φ1(x) dx

= − γ
λ1

4πα3φ1(y)

λ1 − γ , (A.6)

and plugging (A.6) in (A.3) we obtain

Hγ (x, y) = − γ
λ1

4πα3
λ1 − γ φ1(y)φ1(x)+ H0(x, y)+ h⊥,γ (x, y). (A.7)

We notice that only the first and last term in the right-hand side depends on γ . Hence,
to prove (A.2) we just need to prove that h⊥,γ (x, y) is bounded as γ → λ−

1 . This is a
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consequence of the Poincaré inequality applied to functions in H1
0 which are orthog-

onal to φ1. Indeed, expanding h⊥,γ in the L2-basis made of Laplacian eigenvalues we
get

||∇h⊥,γ ||22 =
∫

�

h⊥,γ
(−�h⊥,γ

)
dx

=
∫

�

⎛

⎝
∑

k≥2

αkφk(x)

⎞

⎠

⎛

⎝
∑

k≥2

αkφk(x)λk

⎞

⎠ dx

=
∑

k≥2

α2kλk

≥ λ2||h⊥,γ ||22.

Now, testing equation (A.4) against h⊥,γ , using (A.5) and Cauchy–Schwarz inequality
we get

(λ2 − γ ) ||h⊥,γ ||22 ≤ ||∇h⊥,γ ||22 − γ ||h⊥,γ ||22
= γ

∫

�

(

H0(x, y)− α3

|x − y|
)

h⊥,γ (x, y) dx

≤ γ ||H0(·, y)− α3

| · −y| ||2||h⊥,γ ||2.

We conclude that

||h⊥,γ ||2 ≤ γ

λ2 − γ ||H0(·, y)− α3

| · −y| ||2

≤ λ1

λ2 − λ1 ||H0(·, y)− α3

| · −y| ||2,

with the right-hand side independent of γ . By standard elliptic estimates we get

||h⊥,γ (·, y)||∞ ≤ K�(y),

with K independent of γ . This concludes the proof. ��
The following lemma gives the asymptotic behavior of γ ∗(x) as x approaches the
boundary ∂�.

Lemma A.2 The unique number γ ∗(x) ∈ (0, λ1) defined by the relation

Hγ ∗(x, x) = 0

satisfies

γ ∗(x) ∼ λ1 − 8π
[
∂νφ1(x

′)
]2
d(x, ∂�)3 as x → x ′ ∈ ∂�, (A.8)

where d(x, ∂�) = |x − x ′|.
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Proof We divide the proof in two steps. Given x ∈ � let Dx ⊂ ∂� the set of points
x ′ such that

|x − x ′| = d(x, ∂�).

If Dx is not a singleton we choose the unique x ′ = (x ′
1, x

′
2, x

′
3) with the property

x ′
i ≤ y′

i for all components i = 1, 2, 3 and point y′ ∈ Dx . This defines x ′:=x ′(x)
uniquely.

Step 1. Firstly we prove (A.8) for domains such that, for all x ∈ �, the reflection
point x ′′(x):=2x ′(x)− x satisfies

x ′′ /∈ �. (P)

We decompose

Hγ (x, y) = α3

|x ′′ − y| + F(x, y), (A.9)

where F satisfies

�x F + γ F = γα3g1(x, y) in �,

F(x, y) = 0 on ∂�, (A.10)

and

g1(x, y) := 1

|x − y| − 1

|x ′′ − y|
We write

F(x, y) = α(y)φ1(x)+ w⊥(x, y)

and select α(y) so that
∫

�
w⊥(x, y)φ1(x) dx = 0. By decomposition (A.9) and (2.8)

we obtain

α(y) =
∫

�

(F(x, y)− w⊥(x, y)) φ1(x) dx

=
∫

�

(

Hγ (x, y)− α3

|x − y′′|
)

φ1(x) dx

=
∫

�

g1(x, y)φ1(x) dx −
∫

�

Gγ (x, y)φ1(x) dx

=
∫

�

g1(x, y)φ1(x) dx + 4πα3φ1(y)

γ − λ1
The equation for w⊥ is

�w⊥ + γw⊥ = α(y)(λ1 − γ )φ1 + γα3g1(x)
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Multiplying this equation by w⊥ and integrating by parts we get

||∇w⊥(·y)||22 − γ ||w⊥(·, y)||22 = −γα3
∫

�

g1(x, y)w(x, y) dx .

Using the improved Poincaré inequality

(λ2 − γ )||w⊥||22 ≤ ||∇w⊥(·, y)||22 − γ ||w⊥(·, y)||22
and Cauchy–Schwarz we obtain

||w⊥(·, y)||2 ≤ γ

λ2 − γ α3||g1(·, y)||2 <
λ1

λ2 − λ1α3||g1(·, y)||2. (A.11)

Now, we want to estimate uniformly in y the right-hand side of

Hγ (x, y) = α3

|x ′′ − y| + φ1(x)
∫

�

g1(z, y)φ1(z) dz − 4πα3φ1(y)φ1(x)

γ − λ1 + w⊥(x, y).

Without loss of generality, suppose 0 ∈ �. Let M :=2diam(�) we have

0 <
∫

�

1

|x − y|2 dx ≤
∫

BM(�)(y)

1

|x − y|2 dx ≤ C�.

Let �′′ = {
x ′′ ∈ R

3 : x ′′ = x ′′(x) for some x ∈ �}
. We have

0 <
∫

�

1

|x ′′ − y|2 dx ≤
∫

�
′′∪�

1

|x − y|2 ≤
∫

BM2

≤ C�,

where M2 = 2 diam(�
′′ ∪�) hence we get

sup
y∈�

||g1(·, y)||2 < C�.

We combine this bound with (A.11) to get

||w⊥(·, y)||2 ≤ K�,

with K� independent of y and by standard elliptic estimates we get

sup
y∈�

||w(·, y)||∞ ≤ K�,

with a possibly larger constant K�. We conclude that

Hγ (x, y) = α3

|x ′′ − y| + 4πα3φ1(y)φ1(x)

γ − λ1 + φ1(x)B(y)+ w⊥(x, y), (A.12)
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where

B(y):=
∫

�

g1(z, y)φ1(z) dz,

with w⊥(x, y) bounded in �×�. Also we notice that

0 <
∫

�

φ1(z)
1

|z − y| dz ≤ ||φ1||∞
∫

BM(�)

1

|z − y| dz ≤ C�,

and

0 <
∫

�

φ1(x)

|x ′′(x)− y| dx ≤ ||φ1||∞
∫

BM ′′

1

|x − y| dx ≤ C�.

This proves the boundedness of B(y). Now, the equation for γ ∗(x) reads as

0 = α3

d(x, ∂�)
+ 4πα3φ1(x)2

γ ∗(x)− λ1 + φ1(x)B(x)+ w⊥(x, x).

Let c:=|∂νφ1(x ′)|. We expand φ1(x) at x ′ ∈ ∂� to get

8πc2d(x, ∂�)3

λ1 − γ ∗(x)
=

[
1 + 2cd(x, ∂�)2B(x)+ 2d(x, ∂�)w(x, x)

]

× (1 + O (d(x, ∂�)))

Since B(x) and w(x, x) are bounded, we conclude that

8πc2d(x, ∂�)3

λ1 − γ ∗(x)
∼ 1 as x → x ′ ∈ ∂�. (A.13)

Step 2. Now, we modify the method in Step 1 to obtain an expansion similar to (A.12)
and conclude that (A.8) is true for general smooth bounded domains. Let y ∈ �ε/4.
Now we prove (A.8) for all smooth domains �. Fix ε = ε(�) > 0 so small that the
set �ε :={x ∈ � : d(x, ∂�) < ε} possesses the property (P) and let ηε be a smooth
cut-off function with supp(ηε) ⊂ �ε and ηε(x) ≡ 1 for x ∈ �ε/2. We write

Hγ (x, y) = ηε(x)ηε(y)Hγ (x, y)+ (1 − ηε(x)ηε(y)) Hγ (x, y)
= α3

|x ′′ − y|ηε(x)ηε(y)+ F2(x, y)

where

F2(x, y) = ηε(x)ηε(y)F(x, y)+ (1 − ηε(x)ηε(y)) Hγ (x, y).
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We notice that ηε(x)ηε(y)F(x, y), where F satisfies (A.10), is well-defined in �
thanks to the cut-off functions. The problem for F2 is

�x F2(x, y)+ γ F2(x, y) = α3g2(x, y) in �,

F2(x, y) = 0 on ∂�,

where

g2(x, y) := g2,1(x, y)+ g2,2(x, y)+ g2,3(x, y)+ g2,4(x, y),

and

g2,1(x, y) := γ

|x − y| ,

g2,2(x, y) := −γ ηε(x)ηε(y)|x ′′ − y| ,

g2,3(x, y) := 2ηε(y)
divηε(x)

|x ′′ − y|3 ,

g2,4(x, y) := −ηε(y) �xη(x)

|x ′′ − y| .

We decompose

F2(x, y) = β(y)φ1(x)+ w2(x, y),

where β is chosen such that
∫

�
w2(x, y)φ1(x) dx = 0, that gives

β(y) =
∫

�

F2(x, y)φ(x) dx =
∫

�

φ1(x)

[

−Gγ (x, y)− ηε(x)ηε(y)

|x ′′ − y| + α3

|x − y|
]

dx

= 4πφ1(y)

−λ1 + γ
∫

�

α3φ1(x)

|x − y| dx − ηε(y)
∫

�ε

α3ηε(x)

|x ′′ − y| .

Next we prove that w2(x, y) is uniformly bounded in � × �. Using the improved
Poincaré inequality and standard elliptic estimates as in Step 1, we reduce the problem
to estimate the L2-norm of g(·, y) uniformly in y ∈ �ε/4. We have

||g2,1||22 = γ
∫

�

1

|x − y|2 dx ≤ γ
∫

BM

1

|x − y|2 dx ≤ C�,

||g2,2||22 ≤ γ
∫

�ε

1

|x ′′ − y| dx ≤ γ
∫

�
′′

1

|x − y| dx ≤ γ
∫

BM2

1

|x − y|2 ≤ C�,

||g2,4||22 ≤
∫

�ε\�ε/2
|�ηε(x)|
|x ′′ − y|2 ≤ Cε−2||g2,2||22,

||g2,3||22 ≤ C
∫

�ε\�ε/2
1

|x ′′ − y|4 ≤ C�ε
−4|�|.
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Since ε depends only on � we obtain

||g2(·, y)||22 < C�,ε.

Now, we prove the boundedness of

Bε(y) :=
∫

�

1

|z − y|φ1(z) dz
︸ ︷︷ ︸

:=B1

−
∫

�

ηε(z)ηε(y)

|z′′ − y| φ1(z) dz
︸ ︷︷ ︸

:=B2,ε

.

Indeed, we have

|B1| ≤
∫

�

φ1(z)

|z − y| dz ≤ ||φ1||∞C�,

and

|B2,ε | ≤ ηε(y)
∫

�ε

φ1(z)

|z′′ − y| dz

≤ ||φ1||∞
∫

BM2

1

|z − y| dz ≤ C�.

Finally, the equation for γ ∗(x) is

0 = Hγ ∗(x, x) = 1

2d(x, ∂�)
+ 4πφ1(x)2

γ ∗(x)− λ1 + Bε(x)φ1(x)+ w2(x, x),

and by the boundedness of Bε(x) and w2(x, x) we obtain (A.13). ��
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