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Abstract
We consider a family of singular surface quasi-geostrophic equations

∂tθ + u · ∇θ = −ν(−�)γ/2θ + (−�)α/2ξ, u = ∇⊥(−�)−1/2θ,

on [0,∞) × T
2, where ν � 0, γ ∈ [0, 3/2), α ∈ [0, 1/4) and ξ is a space-time white

noise. For the first time, we establish the existence of infinitely many non-Gaussian

• probabilistically strong solutions for every initial condition in Cη, η > 1/2;
• ergodic stationary solutions.

The result presents a single approach applicable in the subcritical, critical as well as
supercritical regime in the sense of Hairer (Invent Math 198(2):269–504, 2014). It
also applies in the particular setting α = γ /2 which formally possesses a Gaussian
invariant measure. In our proof, we first introduce a modified Da Prato–Debussche
trick which, on the one hand, permits to convert irregularity in time into irregularity
in space and, on the other hand, increases the regularity of the linear solution. Second,
we develop a convex integration iteration for the corresponding nonlinear equation
which yields non-unique non-Gaussian solutions satisfying powerful global-in-time
estimates and generating stationary as well as ergodic stationary solutions.
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1 Introduction

We are interested in construction of solutions to the surface quasi-geostrophic (SQG)
equation on T

2 driven by a fractional derivative of a space-time white noise. More
precisely,

∂tθ + u · ∇θ = −ν
γ θ + 
αξ,

u = ∇⊥
−1θ = (−∂2

−1θ, ∂1


−1θ) = (−R2θ,R1θ),

θ(0) = θ0,

(1.1)

where 
 = (−�)1/2, ν � 0, γ ∈ [0, 3/2), α ∈ [0, 1/4),R = (R1,R2) is the pair of
Riesz transforms and ξ is a space-timewhite noise and can bewritten as time derivative
of an L2-cylindrical Wiener process B on some stochastic basis (�,F , (Ft )t�0,P).
The unknown scalar field θ denotes for instance temperature in the geophysical fluid
dynamics, see e.g. [40].

As in the deterministic literature [38] on the SQG equation, we rely on a weak
formulation of the equation in Ḣ−1/2. In particular, we work with analytically weak
solutions with zero spatial mean and we profit from the fact that the nonlinearity in
(1.1) is well-defined for θ ∈ L2

loc([0,∞); Ḣ−1/2). Indeed, for any ψ ∈ C∞ it holds

〈u · ∇θ, ψ〉 = 1

2
〈θ, [R⊥·,∇ψ]θ〉, (1.2)

123



Surface quasi-geostrophic equation perturbed by...

where the commutator [R⊥·,∇ψ] = −[R2, ∂1ψ] + [R1, ∂2ψ] maps Ḣ−1/2 to Ḣ1/2

(c.f. Proposition A.1). Hence, we aim at solving (1.1) in the following sense.

Definition 1.1 We say that θ ∈ L2
loc([0,∞); Ḣ−1/2) ∩C([0,∞); B−1

∞,1) is an analyt-
ically weak solution to (1.1) provided θ is (Ft )-adapted and for any t � 0

〈θ(t), ψ〉 +
∫ t

0

1

2
〈
−1/2θ,
1/2[R⊥·,∇ψ]θ〉dt = 〈θ0, ψ〉

−
∫ t

0
〈ν
γ θ,ψ〉dt +

∫ t

0
〈
αψ, dBt 〉

holds for every ψ ∈ C∞.

Remark 1.2 By PropositionA.1, we can interpret the nonlinear term as a distribution in
H−3 space. Consequently, we can define the solution in a mild sense, and the solutions
constructed subsequently constitute mild solutions. However, in this paper, we adopt
the understanding of solutions in the weak sense rather than the mild sense, as this
approach aligns more naturally with (1.2).

Our main result reads as follows. The reader is referred to Theorem 7.1 and Theo-
rem 8.5 for the precise formulation and further details.

Theorem 1.3 Let ν � 0, γ ∈ [0, 3/2), α ∈ [0, 1/4) and let ξ be a space-time white
noise. Then the SQG equation (1.1) possesses

(1) infinitely many non-Gaussian analytically weak probabilistically strong solutions
for every θ0 ∈ Cη with η > 1/2;

(2) infinitely many non-Gaussian ergodic stationary solutions.

Remark 1.4 The main contribution of Theorem 1.3 is as follows. We discuss further
details in Sect. 1.2.

• This is thefirst result of a non-uniquenon-Gaussian constructionof global solutions
to the SQG equation (both inviscid and viscous) in the presence of a space-time
white noise, cf. [32] where the case of only spatial white noise was covered.

• To handle the irregularity in time of the space-time white noise, we develop a
modified Da Prato–Debussche trick and a novel convex integration iteration that
requires the use of all previous induction estimates, see Proposition 5.1 below.

1.1 SPDEs and criticality

The problem (1.1) falls in the category of singular stochastic partial differential equa-
tions (SPDEs) where the nonlinearity is heuristically not well defined analytically due
to the irregularity of the noise ξ . This can be seen as follows. In the scaling of the
equation, 
αξ is a random distribution of space-time regularity −1 − γ /2 − α − κ

for arbitrary κ > 0. By Schauder’s estimates in the viscous setting ν > 0 we expect a
solution θ to be γ -degrees of regularity better, i.e. −1+ γ /2− α − κ . This regularity
is always negative in our range of parameters and hence θ is only a distribution and
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the nonlinearity in the mild formulation does not make sense analytically. A further
scaling argument then determines the so-called subcritical, critical and supercritical
regimes as formulated by Hairer’s theory of regularity structures [26]. Depending on
the particular value of the parameters ν, γ , α, the SQG equation (1.1) may belong to
either one of these regimes.We also observe that the solutions constructed in Theorem
1.3 stay in Ḣ−1/2. This can potentially offer improved regularity compared to utilizing
only Schauder’s estimates when γ is small.

The problem of local well-posedness of solutions in the subcritical regime is
well-understood by Hairer’s regularity structures theory [26] and the paracontrolled
distributionsmethod byGubinelli, Imkeller and Perkowski [23]. These theories permit
to treat a large number of singular subcritical SPDEs (cf. [1, 2, 9, 28, 39]) including the
Kardar–Parisi–Zhang (KPZ) equation, stochastic quantization equations for quantum
fields as well as the SQG equation driven by space-time white noise, i.e. γ > 4/3,
α = 0, in [20]. Existence of global solutions typically relies on some special feature
of the equation at hand, like a strong drift, a particular transform or properties of an
invariant measure.We refer to [31, 32] for a detailed discussion and further references.

Additionally, in [31], non-unique global solutions to 3D Navier–Stokes equations
driven by space–time white noise were constructed via combination of paracontrolled
calculus and convex integration. In the 2D case, global unique solutions to Navier–
Stokes equations driven by space–time white noise, with an additional perturbation in
C−2+κ were obtained in [27] and sharp non-uniqueness via convex integrationmethod
was established in [36].

As previously discussed, the nonlinear term in the SQGequation (1.1) remainswell-
defined evenwhen θ ∈ Ḣ−1/2, thereby giving rise to a concept of weak solution. In the
deterministic scenario, the associated estimate for theH−1/2-normof the solution θ can
be derived, resulting in the establishment of global-in-time weak solutions. However,
in our current context, this approach is not applicable to infer global solutions due to
the singular nature of the noise.

There are only a few results in the critical and supercritical setting. In the critical
regime, extensive exploration of the 2D isotropic Kardar–Parisi–Zhang (KPZ) equa-
tion was done in [7, 10, 22] by employing Cole–Hopf’s transform. Meanwhile, the
study of the 2D anisotropic KPZ equation was addressed in [4, 5], building upon the
underlying invariant measure given by a Gaussian distribution. Notable advancements
also emerged in the domain of the critical 2D stochastic heat flow, as demonstrated by
recent developments in [8].

Transitioning to the supercritical regime, a recent series of works encompassing
[6, 15, 17, 19, 37] delved into the KPZ equation or its derivative Burgers equation for
dimensions d � 3. More specifically, these studies comprehended the d-dimensional
KPZequation orBurgers equations as limits of suitably regularized equations.Notably,
the regularization incorporated a vanishing scaling constant preceding the nonlinear-
ity. This process culminated in a stochastic heat equation as the limiting equation,
characterized by a Gaussian law, although exceptions are noted in [8].

In a related context, the work of [24] has achieved the construction of global sta-
tionary probabilistically weak solutions for the stochastic fractional Burgers equation,
bothwithin the critical and supercritical regimes by developing the so-called Itô’s trick.
In [21] the authors sketched the well-posedness for the fractional Burgers equation in
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the critical case and the SQG equation (1.1) when γ � 2, α = γ /2 by constructing
the infinitesimal generator. Moreover, using Itô’s trick they could obtain existence
of global stationary probabilistically weak solutions when γ > 0, α = γ /2. This
accomplishment has been realized through the energy solution methodology, reliant
on the associated invariant measure originating from the law of space white noise. If
α 	= γ /2 then this method may fail.

Unlike the above mentioned techniques, our construction in the present paper is
independent of the particular regime at hand and applies to the subcritical, critical
as well as supercritical case. In our previous work [32], we obtained a first result in
this direction in the case of purely spatial perturbation: ξ was a space white noise and
α ∈ [0, 1). The approach made use of the convex integration, an iterative technique
of direct construction of non-unique solutions. Even though certain time dependence
could be included in the noise, it would have to be regular, leaving the space-time
white noise out of reach. In the present manuscript, we overcome these difficulties by
introducing several new ideas.

1.2 Outline of ideas and difficulties

Already in the deterministic situation, the first problem of trying to deploy a convex
integration construction to the SQG equation is the odd structure of the SQG nonlin-
earity, as it was observed in [35, 41]. This means that the multiplier relating θ to u is an
odd function of frequency in Fourier space. This oddness relates to the boundedness of
the nonlinearity in Ḣ−1/2, a key to constructing global weak solutions [38]. However,
it remained open whether they are uniquely determined by their initial data.

The breakthrough result [3] successfully overcame the issue of odd multiplier and
constructed nontrivial high-high to low frequency interactions that led to the first non-
uniqueness result for the SQG equation. The convex integration scheme was designed
for the associatedmomentum equation satisfied by the potential velocity
−1u. Subse-
quent developments of [12] and [34] provided different convex integration schemes to
construct non-unique weak solutions. The technique developed in [34] works directly
on the level of the scalar field θ and applies also to general odd multipliers. The con-
struction of [12] is particularly appealing due to its simplicity: it applies to the scalar
function
−1θ and makes use of the special structure of the SQG nonlinearity, leading
to a concise proof. We also mention that the method in [3] has been extended to the
SQG equation driven by trace-class type additive noise in [42].

The convex integration scheme in the present paper is inspired by [32] which in
turn relied on the method of [12]. We work on the level of v := 
−1θ and in the first
step we decompose the equation with the help of a modified Da Prato–Debussche trick
with multiple benefits. Roughly speaking, we decompose v = z + f where z solves
the linear SPDE

∂t z = −ν1

γ1 z + 
−1+αξ,

where ν1 > 0, possibly γ1 	= γ and f solves the corresponding nonlinear equation (see
Sect. 3 for more details).We set the viscosity ν1 = 1 for simplicity, even in the inviscid
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setting ν = 0. The additional parameter γ1 is particularly helpful if γ and/or η are small
within their respective ranges. The conventional Da Prato–Debussche trick refers to
the case of ν1 = ν > 0 and γ1 = γ and it has been extensively applied in the literature
in various subcritical settings (c.f. [18]). It is however not suitable for our purposes
for all values of the parameters ν, γ , α, η due to the possibly critical/supercritical
nature of the SQG equation (1.1). For instance, if γ is small then even by convex
integration we are not able to treat the terms containing z in the equation for f . By
choosing γ1 > γ the regularity of z increases and the control of the mentioned terms,
even though still very delicate, becomes feasible. We emphasize that as we are in the
critical or supercritical regime, further decomposition like the Picard iteration does
not provide any gain in regularity.

The price to pay for this modification of the Da Prato–Debussche trick is the addi-
tional term 
γ1 z in the equation for f . Seemingly, there is no improvement as this
term formally has the same spatial regularity as the original noise term in the equation
for v. However, the point is that the time irregularity is eliminated, so effectively the
space-time irregularity of the noise was transformed into a spatial irregularity of
γ1 z,
bringing us closer to the convex integration technique developed in [32]. In the latter
work, however, no probability theory was involved and the proof worked for arbitrary
(deterministic) spatial distribution ξ within the appropriate regularity class.

In the present paper, we have an additional difficult term, namely, the quadratic term

z∇⊥z in the equation for f . As z only has the regularity γ1/2− α − κ for arbitrary
κ > 0, the said product is notwell defined analytically.Nevertheless, usingGaussianity
of z we may apply renormalization to define it as a Wick product : 
z∇⊥z : (see
Proposition 4.2). This is then employed in the equation for f as a replacement for
the ill-defined product. The next step is purely deterministic: via a convex integration
iterative procedure we construct approximations fn , n ∈ N0, and show that they
converge to a limit f . Finally, letting θ = 
z + 
 f we obtain a solution to the SQG
equation (1.1) in the sense of Definition 1.1.

In contrast to the deterministic framework of the convex integration method applied
to the SQG equation, as outlined in [3, 12, 34], it is also necessary to handle the addi-
tional nonlinear term that involves the process z. Unlike the lacunary Fourier modes
of the building blocks defined in [12], the variable z lacks this property. Consequently,
it becomes imperative to undertake a more intricate decomposition, akin to the dyadic
partition technique employed in Fourier space, for these specific terms. This decompo-
sition aims to ensure that the resulting components are either confined within a small
annular region or localized within a small ball.

We remark that even though the renormalized product : 
z∇⊥z : is indispensable
for the construction, the renormalization constant does not explicitly appear in the
definition of solution to (1.1). This goes back to the form of the nonlinearity, in
particular the antisymmetry of the Riesz transform and the formula (1.2).

Finally, we mention that this modified Da Prato–Debussche trick combined with
convex integration also applies to fractional Navier–Stokes equations in the supercrit-
ical and critical regime, see Sect. 9.
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1.3 Organization of the paper

In Sect. 2, we summarize frequently used notations. Section3 represents the first step
in the construction: we introduce the modified Da Prato–Debussche trick and decom-
pose the problem into a linear SPDE with irregular space-time noise and a nonlinear
PDE with spatial irregularity. In Sect. 4, we present the probabilistic construction,
namely, we employ renormalization to make sense of the analytically ill-defined prod-
uct. Section5 sets up the analytic construction via the convex integration iteration.
The detailed construction is presented in Sect. 6. Our main result on the initial value
problem is established in Sect. 7, whereas the result on non-unique ergodicity is shown
in Sect. 8. Further extension to fractional Navier–Stokes system is presented in Sect. 9.
In Appendix A, we collect several auxiliary results.

2 Notations

2.1 Function spaces and operators

Throughout the paper, we employ the notation a � b if there exists a constant c > 0
such that a � cb, and we write a 
 b if a � b and b � a. N0 := N ∪ {0}. Given a
Banach space E with a norm ‖ · ‖E , we write CE or C([0,∞); E) to denote the space
of continuous functions from [0,∞) to E . We define C1E as the space of continuous
functions with locally bounded first order derivative from [0,∞) to E . Similarly,
for α ∈ (0, 1) we define Cα

T E as the space of α-Hölder continuous functions from

[T , T +1] to E , endowed with the norm ‖ f ‖Cα
T E

= sups,t∈[T ,T+1],s 	=t
‖ f (s)− f (t)‖E

|t−s|α +
supt∈[T ,T+1] ‖ f (t)‖E . For p ∈ [1,∞] we write L p

T E = L p(0, T ; E) for the space of
L p-integrable functions from [0, T ] to E , equipped with the usual L p-norm. We also
use L p

loc([0,∞); E) to denote the space of functions f from [0,∞) to E satisfying
f |[0,T ] ∈ L p

T E for all T > 0.
We also introduce the following notations: the Fourier and the inverse Fourier

transform on R
2 are defined as

FR2 f (ζ ) =
∫

R2
e−i x ·ζ f (x)dx, F−1

R2 f (x) = 1

(2π)2

∫
R2

eix ·ζ f (ζ )dζ.

The Fourier and the inverse Fourier transform on T
2 are defined as

FT2 f (k) = f̂ (k) =
∫

T2
eix ·k f (x)dx, k ∈ Z

2, F−1
T2 f (x) = 1

(2π)2

∑
k∈Z2

eix ·k f (k).

A function on the torus can be viewed as a function on R
2 by periodic extension.

Assume that f ∈ C∞(T2) and m ∈ L1(R2) and define

Tm f (x) := F−1
T2 mFT2 f (x) = F−1

R2 mFR2 f (x),
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where the second equality follows from the fact that we view the function on T
2 as

periodic function on R
2. This implies that

‖Tm f ‖L p(T2) � ‖F−1
R2 m‖L1(R2)‖ f ‖L p(T2), 1 � p � ∞, (2.1)

‖Tm f ‖L p(T2) � ‖F−1
T2 m‖L1(T2)‖ f ‖L p(T2), 1 � p � ∞. (2.2)

For s ∈ R, we set Ḣ s = { f : ∫
T2 f dx = 0, ‖(−�)s/2 f ‖L2 < ∞} and equip it

with the norm ‖ f ‖Ḣ s = (
∑

0 	=k∈Z2 |k|2 s | f̂ (k)|2)1/2. We use (�i )i�−1 to denote the
Littlewood–Paley blocks corresponding to a dyadic partition of unity. Besov spaces
on the torus with general indices α ∈ R, p, q ∈ [1,∞] are defined as the completion
of C∞(Td) with respect to the norm

‖u‖Bα
p,q

:=
⎛
⎝ ∑

j�−1

2 jαq‖� j u‖qL p

⎞
⎠

1/q

,

with the usual interpretation as the �∞-norm when q = ∞. The Hölder–Besov space
Cα is given byCα = Bα∞,∞. Let s ∈ R. If f ∈ Bs∞,1 withmean zero, then f ∈ Ḣ s∩Cs

and

‖ f ‖Ḣ s + ‖ f ‖Cs � ‖ f ‖Bs∞,1
. (2.3)

As in [12], for two vector-valued functions v,w : R
2 → R

2 we denote

v ≈ w if v = w + ∇⊥ p

holds for some smooth scalar function p. Define the projection operator for λ � 1

̂(P�λg)(k) = ψ

(
k

λ

)
ĝ(k).

Here ψ ∈ C∞
c (R2) satisfies ψ(k) = 0 for |k| � 1 and ψ(k) = 1 for |k| � 1/2. We

also introduce the Riesz-type transformRo
j , j = 1, 2 as follows

R̂o
1(k1, k2) = 25(k22 − k21)

12|k|2 , R̂o
2(k1, k2) = 7(k22 − k21)

12|k|2 + 4k1k2
|k|2 .

We define the norm

‖q‖X := ‖q‖L∞ +
2∑
j=1

‖Ro
j q‖L∞ .
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Finally, we frequently use the following notations. For p ∈ [1,∞), β ∈ (0, 1) and
a Banach space B with norm ‖ · ‖B we denote

|||u|||pB,p := sup
t�0

E

[
sup

t�s�t+1
‖u(s)‖p

B

]
, |||u|||p

Cβ
t B,p

:= sup
t�0

E
[
‖u(s)‖p

Cβ
t B

]
.

2.2 The noise

We recall the definition of a space-time white noise ξ . Formally, ξ is a centered
Gaussian distribution with covariance

Eξ(t, x)ξ(t ′, x ′) = δ(t − t ′)δ(x − x ′),

for t, t ′ ∈ R
+, x, x ′ ∈ T

2, where δ denotes the Dirac delta function. In this paper, we
consider the space-time white noise with zero spatial mean for simplicity. The space–
time white noise ξ with zero spatial mean is the time derivative of an L2-cylindrical
Wiener process B with zero spatial mean on some stochastic basis (�,F , (Ft )t�0,P),
i.e. ξ(φ) = ∫ 〈φ, dB〉 for φ ∈ L2(R+ × T

2) with
∫

T2 φdx = 0. In this case Eξ(φ)2 =
‖φ‖2

L2(R+×T2)
.

3 Decomposition

We study the SQG equation driven by a fractional derivative of the space-time white
noise, namely

∂tθ + u · ∇θ = −ν
γ θ + 
αξ,

u = ∇⊥
−1θ = (−∂2

−1θ, ∂1


−1θ) = (−R2θ,R1θ),

θ(0) = θ0,

(3.1)

where γ ∈ [0, 3/2), α ∈ [0, 1/4) and ξ is a space-time white noise with zero spatial
average on some probability space (�,F ,P). The initial condition θ0 is generally
random, independent of the noise ξ , has zero mean and satisfies for some r � 1 and
η > 1/2

E‖θ0‖2rCη < ∞. (3.2)

We denote by (Ft )t�0 the normal filtration generated by the initial data and the cylin-
drical Wiener process B such that ∂t B = ξ . For notational simplicity we consider the
unitary viscosity ν = 1.

The main part of our construction is inspired by the convex integration result from
[12], where existence and non-uniqueness of non-trivial steady state (i.e. time inde-
pendent) solutions to the deterministic SQG equation with ξ = 0 was established.
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The highly irregular case of (3.1) requires further decomposition and probabilistic
arguments.

First, we let v := 
−1θ and observe that the equation solved by v reads as

∇ · (−∂tRv + 
v∇⊥v) = ∇ · (
γRv) + ∇ · (−R
−1+αξ),

v(0) = 
−1θ0.
(3.3)

Hence, we aim at building a convex integration procedure to solve the following
equation

−∂tRv + 
v∇⊥v ≈ 
γRv − R
−1+αξ,

v(0) = 
−1θ0,
(3.4)

where the notation≈was explained in Sect. 2. To this end, we introduce amodification
of the so-called Da Prato–Debussche trick, permitting to separate the difficulties of
probabilistic and analytic nature. More precisely, we let v := z + f where

∂t z = −
γ1 z + 
−1+αξ, z(0) = 
−1θ0, (3.5)

−∂tR f + 
γ1Rz − 
γRz + 
( f + z)∇⊥( f + z) ≈ 
γR f , f (0) = 0, (3.6)

with an additional parameter γ1 ∈ (1+ 2α, 2− 2α). The key point here is that γ1 can
generally be chosen bigger than γ in order to increase the regularity of z so that the
convex integration construction can be applied to (3.6).

Recall that the conventional Da Prato–Debussche technique, i.e. the case γ1 = γ ,
is used to remove the most irregular part 
−1+αξ from the equation in the subcritical
regime. In the critical or supercritical regime, as the nonlinear term is worse than the
noise this trick breaks down. Moreover, when γ1 is not equal to γ , the extra term 
γ1 z
appears in the nonlinear equation. This additional term formally possesses the same
spatial regularity as 
−1+αξ . Despite this, the temporal irregularity is eliminated,
leading to an improvement in the time regularity of 
γ1 z compared to 
−1+αξ . To
summarize, this modified version of the Da Prato–Debussche technique effectively
converts the irregularities in time into irregularities in space. Moreover, we further
profit from z enjoying higher regularity compared to the case γ1 = γ , which is
essential for the treatment of several other terms in (3.6).

It will be shown in Sect. 4 that z ∈ CCγ1/2−α−κ for every κ > 0 P-a.s. More-
over, (3.6) contains an analytically ill-defined product 
z∇⊥z which we will make
sense of by means of probabilistic renormalization. Namely, if η > γ1/2 − α

we will define the analytically ill-defined product : 
z∇⊥z :∈ CTCγ1−2α−2−κ ∩
C1−1/γ1−2α/γ1−κ

T C−1+κ for every κ > 0. Heuristically, for the convex integration we
require both
γ1 z and : 
z∇⊥z : to belong toC−1+. Thus, we are led to further condi-
tions−γ1/2−α > −1 andγ1−2α−2 > −1, that is,γ1 ∈ (1+2α, (2−2α)∧(2η+2α))

and α ∈ [0, 1/4).
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4 Probabilistic construction

In this section, we study the linear equation (3.5) and perform renormalization in order
to define : 
z∇⊥z :.
Proposition 4.1 Suppose that (3.2) holds for some r � 1 and η > 1/2. If κ > 0 small
enough then there exists L � 1 such that

|||z|||2r
Cγ1/2−κ−α,2r

+ |||z|||2r
C

1−α
γ1

− 1
2−κ

t Cγ1−1+κ ,2r

+|||z|||2r
C

1
2− γ+α−1

γ1
−κ

t Cγ−1+κ ,2r

+ |||z|||2r
C1/2−κ
t C−α−κ ,2r

� L2r . (4.1)

Proof This result is nowadays standard in the field of singular SPDEs. For reader’s
convenience we present some details and we follow the notation of [25, Section 9].
Let W denote the spatial Fourier transform of the space-time white noise ξ . Then W
is a space-time white noise in Fourier space in the sense that W is a complex-valued
centered Gaussian process on R

+ × (Z2\{0}) defined by the covariance

E
[∫

R+×(Z2\{0})
f (s, k)W (dsdk)

∫
R+×(Z2\{0})

g(s, k)W (dsdk)

]

= (2π)−2
∫

R+×(Z2\{0})
f (s, k)g(s,−k)dsdk,

where (s, k) ∈ R
+ × (Z2\{0}), dsdk on the right hand side denotes the product of the

Lebesgue measure on R
+ and the counting measure on Z

2 \{0}, and f , g are arbitrary
complex-valued functions in L2(R+ × (Z2\{0})).

With this notations, we observe that the solution to (3.5) is given by the mild
formulation

z(t, x) = e−t
γ1

−1θ0 +

∫
R+×(Z2\{0})

eik·x e−|k|γ1 (t−s)1s�t |k|α−1W (dsdk)

=: z1(t, x) + z2(t, x).

The regularity of z1 is C([0,∞);Cη+1) ∩ C1/2
t Cη+1−γ1/2 for all t � 0 P-a.s. as a

consequence of the standard Schauder estimate (see e.g. [43, Lemma 2.8]). Regarding
the stochastic convolution z2, we consider the Littlewood–Paley blocks (� j ) j�−1 and
have for j � −1

E|(� j z2)(t, x)|2 �
∫

R+×(Z2\{0})
θ j (k)

2e−2|k|γ1 (t−s)1s�t |k|2α−2dsdk � 2(2α−γ1) j ,

where (θ j ) j�−1 is the dyadic partition of unity associated to the Littlewood–Paley
blocks. Therefore, in view of the Gaussian hypercontractivity we obtain for every
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p � 1 and t � 0

E‖z2(t)‖p

B
γ1−κ
2 −α

p,p

� (p − 1)p/2 L̃ p,

for some L̃ > 0. By Besov embedding we deduce that

E‖z2‖p

C
γ1
2 −α−κ

� (p − 1)p/2 L̃ p,

where L̃ may change from line to line. As the next step, it is standard to consider the
time increment z2(t) − z2(r) and rewrite it in the case of 0 � r � t as

z2(t, x) − z2(r , x)

=
∫ t

0
e−|k|γ1 (t−s)

∫
eik·x |k|α−1W (dsdk) −

∫ r

0
e−|k|γ1 (r−s)

∫
eik·x |k|α−1W (dsdk)

=
∫ r

0
(e−|k|γ1 (t−s) − e−|k|γ1 (r−s))

∫
eik·x |k|α−1W (dsdk)

+
∫ t

r
e−|k|γ1 (t−s)

∫
eik·x |k|α−1W (dsdk).

Whenwe now calculateE|� j z2(t, x)−� j z2(r , x)|2, we have one factor e−|k|γ1 (t−s)−
e−|k|γ1 (r−s) from the first term on the right hand side, which can be controlled by
e−|k|γ1 (r−s)[(|k|γ1 |t − r |) ∧ 1]. We also have another factor |1 − e−|k|γ1 (t−r)|, which
can also be controlled by (|k|γ1 |t − r |) ∧ 1. Hence, we obtain for δ ∈ [0, 1]

E|� j z2(t, x) − � j z2(r , x)|2 � |t − r |δ2 j(γ1δ+2α−γ1),

where the implicit constant is independent of t and r . Using again the Gaussian
hypercontractivity together with Kolmogorov’s continuity criterion (4.1) follows by
choosing δ = 1 − κ as well as

2

γ1
− 2α

γ1
− 1 − 2κ < δ <

2

γ1
− 2α

γ1
− 1 − 2κ

γ1
,

1 − 2(γ + α − 1)

γ1
− 2κ < δ < 1 − 2(γ + α − 1)

γ1
− 2κ

γ1
.

��
Next, we construct the renormalized product : 
z∇⊥z :. To this end, we denote by

zε a spatial mollification of z and define the associated renormalized product as

: 
zε∇⊥zε := 
zε∇⊥zε − E(
z2,ε∇⊥z2,ε),

where z2,ε is the spatial mollification of z2 defined in the proof of Proposition 4.1. We
will see in Proposition 4.2 that by choosing a suitable mollifier the above expected
value is zero by symmetry.
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Proposition 4.2 Suppose that (3.2) holds with r � 1 and η >
γ1
2 − α. There exists

random distribution : 
z∇⊥z :∈ CTCγ1−2α−2−κ P-a.s. for every κ > 0, such that
: 
zε∇⊥zε :→: 
z∇⊥z : in CTCγ1−2α−2−κ P-a.s. for every κ > 0. Furthermore, if
κ > 0 small enough then there exists L � 1 such that

sup
t�0

E

[
sup

t�s�t+1
‖ : 
z∇⊥z : (s)‖r

Cγ1−2α−2−κ + ‖ : 
z∇⊥z : ‖r
C
1−1/γ1−2α/γ1−κ
t C−1+κ

]
� Lr .

Proof We recall from the proof of Proposition 4.1 that z splits into its initial part z1
and the stochastic convolution z2. Let z2,ε be a space mollification of z2. By a direct
calculation we see that

E(
z2,ε∇⊥z2,ε)(t) = i
∫

R×(Z2\{0})
e−2|k|γ1 (t−s)ϕε(|k|)210�s�t |k|2α k

⊥

|k| dsdk = 0,

because the integrand is antisymmetric under the change of variables k �→ −k. Here,
ϕε(|k|) = ϕ(ε|k|) for a smooth compactly supported function ϕ with ϕ(0) = 1. In
particular, the mollification is given by a radially symmetric cut-off in Fourier space.

Thus, the renormalized product

: 
z2,ε∇⊥z2,ε := 
z2,ε∇⊥z2,ε − E(
z2,ε∇⊥z2,ε),

reads as

: 
z2,ε∇⊥z2,ε : (t, x) =
∫

ei(k1+k2)x e−|k1|γ1 (t−s1)e−|k2|γ1 (t−s2)10�s1�t10�s2�t

× ϕε(|k2|)ϕε(|k1|)|k1|α|k2|α k⊥
2

|k2|W (dη1)W (dη2),

where ηi = (si , ki ) ∈ R
+×(Z2\{0}) for i = 1, 2. Similarly to the proof of Proposition

4.1 it holds for j � −1

E|� j (: 
z2,ε∇⊥z2,ε :)(x)|2

�
∫

θ j (k1 + k2)
2e−2|k1|γ1 (t−s1)e−2|k2|γ1 (t−s2)10�s1,s2�tϕε(|k1|)2ϕε(|k2|)2|k1|2α |k2|2αdη1dη2

�
∫

θ j (k1 + k2)
2 1

|k1|γ1−2α |k2|γ1−2α dk1dk2 � 2 j(4−2γ1+4α),

where we used [44, Lemma 3.10] in the last step. Thus, using the Gaussian hyper-
contractivity, Besov embedding and Kolmogorov’s continuity criterion and a similar
argument as in Proposition 4.1, we obtain the desired regularity for : 
z2,ε∇⊥z2,ε :
uniformly in the mollification parameter ε, which also guarantees the existence of a
limit as ε → 0. We denote this limit as : 
z2∇⊥z2 :.

Consequently, we define

: 
z∇⊥z := 
z1∇⊥z1 + 
z1∇⊥z2 + 
z2∇⊥z1+ : 
z2∇⊥z2 :
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Since z1 ∈ C([0,∞);Cη+1) ∩ C1/2
t Cη+1−γ1/2 with η > 1/2 > 1 + α − γ1/2, we

have

E

[
sup

t�s�t+1

(
‖
z1∇⊥z1‖rCγ1−2α−2−κ + ‖
z1∇⊥z2‖rCγ1−2α−2−κ + ‖
z2∇⊥z1‖rCγ1−2α−2−κ

)]

� E

[
sup

t�s�t+1

(
‖θ0‖2rCη + ‖θ0‖rCη‖z2‖rCγ1/2−α−κ

)]
� Lr .

Similarly, using η > γ1/2 − α we have

E
[
‖
z1∇⊥z1‖r

C
1−1/γ1−2α/γ1−κ
t C−1+κ

+ ‖
z1∇⊥z2‖r
C
1−1/γ1−2α/γ1−κ
t C−1+κ

+ ‖
z2∇⊥z1‖r
C
1−1/γ1−2α/γ1−κ
t C−1+κ

]

� E
[
‖θ0‖2rCη + ‖θ0‖rCη

(
‖z2‖r

C
1−1/γ1−2α/γ1−κ
t C1+α−γ1/2

+ ‖z2‖rCtCγ1/2−α−κ

)]
� Lr .

Here,weused the interpolation andProposition4.1 to bound‖z2‖C1−1/γ1−2α/γ1−κ
t C1+α−γ1/2

and ‖z1‖C1−1/γ1−2α/γ1−κ
t C2+2α+η−γ1

. Hence, the result follows. ��

Remark 4.3 We observe that ignoring the initial condition, the constant L in both
Propositions 4.1 and 4.2 is determined by the Gaussianity of the noise together with
certain universal estimates which depend on the function spaces at hand, such as the
Besov embedding.

5 Analytic construction

In this section, we develop our iterative procedure which leads to the construction of
solutions to (3.6). We define ML := CL2 for a universal constant C > 0 given below
and L � 1 given as the maximum of the constants L appearing in Proposition 4.1
and Proposition 4.2. We consider an increasing sequence {λn}n∈N0 which diverges to∞, and a sequence {rn}n∈N which is decreasing to 0. Specifically, we choose a ∈ N,

b ∈ N, β ∈ (0, 1) and let

λn = a(bn), rn = MLλ
β
0λ−β

n , �n = λ−1
n , μn = λζ

n,

where β will be chosen sufficiently small, a sufficiently large and ζ sufficiently small.
We first assume that

∑
m∈N0

r1/2m � M1/2
L + M1/2

L

∑
m�1

aβ/2−mbβ/2�M1/2
L + M1/2

L

1 − a−bβ/2 � 3M1/2
L ,
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and

∑
m∈N

λ
β/2
0 λ

−β/4b
m � λ

β/4
0 + λ

β/4
0

∑
m�1

aβ/4−mbβ/4 � λ
β/4
0 + λ

β/4
0

1 − a−bβ/4 � 3λβ/4
0 ,

which requires

abβ � 16. (5.1)

Further necessary conditions on these parameters will be given below, in particular in
Sect. 6.1.

The iteration is indexed by a parameter n ∈ N0. At each step n, a pair ( fn, qn) is
constructed and it solves the approximate equation

− ∂tR fn + 
 fn∇⊥ fn + 
zn∇⊥ fn + 
 fn∇⊥zn
+ P�λn (: 
z∇⊥z : +
γ1Rz − 
γRz) ≈ 
γR fn + ∇qn, fn(0) = 0,

(5.2)

where zn = P�λn z with P�λn introduced in Sect. 2. In comparison to (3.6), this
equation includes the additional error qn , which shall eventually vanish with n → ∞,
as well as the additional projection P�λn . Both fn and qn are compactly supported
in Fourier on frequencies of order at most λn . We observe that the noise is added in
(5.2) scale by scale. This is needed in order to preserve the frequency localization.
Applying the divergence to (5.2) yields therefore an approximation of (3.3). Due to
the application of divergence, we only need to consider the mean-free parts of all
the terms in (5.2). For notational simplicity, we do so without further modifying the
notation.

As the next step, we start the iteration by letting f0 = 0. Then, (5.2) yields

∇q0 ≈ P�λ0(: 
z∇⊥z : +
γ1Rz − 
γRz),

and taking q0 mean-free we estimate for κ > 0

‖q0‖X � ‖z‖Cγ1/2−κ−α + ‖ : 
z∇⊥z : ‖Cγ1−2−κ−2α .

Here, we used γ1 − 2α − 2 > −1, − γ1
2 − α > −1, γ1/2 − γ − α > −1. Thus,

Proposition 4.1 and Proposition 4.2 imply

(
sup
t�0

E sup
s∈[t,t+1]

‖q0(s)‖rX
)1/r

� CL2 � ML .
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Given f0, . . . fn , the next iteration fn+1 is constructed through an induction argu-
ment so that the following estimates hold true for every n ∈ N0

(
sup

t�2−n+2
E sup

s∈[t,t+1]
‖ fn+1(s) − fn(s)‖2r

B1/2
∞,1

)1/2r

� M0r
1/2
n + r1/2n+1, (5.3)

(
E sup

s∈[2−n−1,2−n+2]
‖ fn+1(s) − fn(s)‖2r

B1/2
∞,1

)1/2r

� M0M
1/2
L + r1/2n+1, (5.4)

(
E sup

s∈[0,2−n−1]
‖ fn+1(s) − fn(s)‖2r

B1/2
∞,1

)1/2r

� r1/2n+1, (5.5)

and for 1/2 < ϑ < 1/2 + β/4b

(
sup

t�2−n+2
E sup

s∈[t,t+1]
‖ fn+1(s) − fn(s)‖2rCϑ

)1/2r

� M0M
1/2
L λ

β/2
0 λ

−β/4b
n+1 + r1/2n+1,

(5.6)

and for δ > β/2

||| fn+1 − fn|||B1/2−δ
∞,1 ,2r

� r1/2n+1, (5.7)

and

(
sup

t�2−n
E sup

s∈[t,t+1]
‖qn+1(s)‖rX

)1/r

� rn+1, (5.8)

(
E sup

s∈[0,2−n ]
‖qn+1(s)‖rX

)1/r

� ML +
n+1∑
k=1

rk � 3ML , (5.9)

and

||| fn+1(t)|||B1/2
∞,1,2r

� 10M0M
1/2
L (5.10)

for a constant M0 independent of a, b, β, ML , and

||| fn+1|||C1/2
t B1/2

∞,1,2r
� M0M

1/2
L λ

1/2
n+1, (5.11)

and for δ > β/2

‖ fn+1‖C1/2
t B−δ

∞,1,2r
� M1/2

L + M0M
1/2
L

n+1∑
k=1

λ−δ
k � M1/2

L + 3M0M
1/2
L . (5.12)
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Proposition 5.1 Assume (3.2) holds true for some r � 1 and η > 1/2. There exists a
choice of parameters a, b, β, ζ such that the following holds true: Let ( fi , qi )ni=0 for
some n ∈ N0 be (Ft )-adapted so that

(1) for every i = {0, . . . , n}, ( fi , qi ) solves (5.2) with n replaced by i ,
(2) for every i = {0, . . . , n} and every t � 0, the frequencies of fi (t) and qi (t) are

localized in a ball of radius � 6λi and � 12λi , respectively,
(3) the estimates (5.8)–(5.12) hold true with n + 1 replaced by i ∈ {0, . . . , n},
(4) the estimates (5.3)–(5.7) hold true with n replaced by i ∈ {0, . . . , n − 1}.
Then there exists an (Ft )-adapted ( fn+1, qn+1) which solves (5.2) on the level n + 1
and such that for every t � 0 the frequencies of fn+1(t) and qn+1(t) are localized in
a ball of radius � 6λn+1 and � 12λn+1, respectively, and the estimates (5.3)–(5.12)
are satisfied.

Moreover, for any ε > 0 we can choose the parameter a large enough depending
on ML such that

||| fn+1 − fn|||B1/2−δ
∞,1 ,2r

� ε/2n+1. (5.13)

The detailed proof of this key technical result is presented in Sect. 6. Nevertheless,
in order to facilitate the first reading of the manuscript, the reader may assume that
it has already been proven and directly continue with Sects. 7 and 8. Here, we apply
Proposition 5.1 to establish our main results concerning the solutions to the initial
value problem as well as stationary and ergodic stationary solutions.

6 Detailed iteration – proof of Proposition 5.1

This section is devoted to the proof of Proposition 5.1, split into several subsections.
In the first step, we summarize the conditions on our parameters needed to recover all
the iterative assumptions. After a preliminary step of mollification, we introduce the
perturbation gn+1 which in turn permits to define the next iteration fn+1. The inductive
estimates on fn+1 are proved in Sect. 6.4. The new error qn+1 is implicitly defined via
the mollification of (5.2) on the level n and (5.2) on the level n + 1. The inductive
estimates on qn+1 are established in Sect. 6.5. While some estimates are similar to our
previous work [32] or to the deterministic result [12], major difficulties arise in the
treatment of certain terms including the linear solution z due to the supercritical nature
of our setting. These estimates are very delicate and are among the main novelties of
this manuscript. See in particular the control of qz in Sect. 6.5.

6.1 Conditions on parameters

In the sequel, we use the following basic bounds on the parameters

β < 3/2 − γ, β + 1

b

(
3

2
+ α + κ

)
+ κ <

1

2
, ζ > 1/b + β/2.
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The following conditions are necessary for the terms containing z (see Sect. 6.5 below):
for the control of qN , we postulate

(
1 − γ1

2
−α

)
∧ (γ1 − 1 − 2α) ∧

(
1 + γ1

2
− γ − α

)
> bβ + 2κ,

(
1 − 1

γ1
− 2α

γ1

)
∧
(

1

γ1
− α

γ1
− 1

2

)
∧
(
1

2
− γ + α − 1

γ1

)
> β + κ,

whereas for the control of qz we require

ζ + βb + 3κ <
γ1

2
− α − 1

2
.

We can choose 2(γ + α − 1) < 1 + 2α < γ1 < (2 − 2α) ∧ (2η + 2α) and ζ > 0
small enough such that

ζ <
γ1

2
− α − 1

2
.

Then we choose b large enough such that ζ > 1/b and all the conditions are satisfied if
β and κ are small enough. Moreover, we can choose a large enough to absorb implicit
constant and such that (5.1) holds.

6.2 Mollification step

As usual in the number of convex integration schemes, we start with a mollification
of the previous iteration fn . To this end, we consider {ϕε}ε>0, a family of standard
positive mollifiers with support of ϕ in (0, 1). We use one-sided mollifiers as this
will preserve the initial datum as well as adaptedness. Next, we extend fn and qn to
negative times by taking the values at t = 0. Consequently, the equation also holds
for t < 0 as ∂t fn(0) = 0 by our construction. We define the mollification of fn , qn in
time by convolution as follows

f� = fn ∗t ϕ�n+1 , q� = qn ∗t ϕ�n+1 ,

where � := �n+1 = λ−1
n+1. Then both f� and q� are (Ft )-adapted. We apply mollifica-

tion on both sides of (5.2) and obtain

− ∂tR f� + 
 f�∇⊥ f� + 
zn∇⊥ f� + 
 f�∇⊥zn + P�λn [: (
z∇⊥z) : +
γ1Rz − 
γRz]�
≈ 
γR f� + ∇q� + Rcom,

f�(0) = 0,
(6.1)

where

Rcom = 
 f�∇⊥ f� − (
 fn∇⊥ fn) ∗t ϕ� + 
zn∇⊥ f�
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+
 f�∇⊥zn − (
zn∇⊥ fn + 
 fn∇⊥zn) ∗t ϕ�.

In view of (5.11) for fn we obtain for b(1/2 − β/2) > ϑ > 1/2

||| f� − fn|||Cϑ ,2r � �1/2λ
ϑ−1/2
n ||| fn|||C1/2

t B1/2
∞,1,2r

� M0λ
−1/2
n+1 M1/2

L λϑ
n � 1

4
r1/2n+1,

(6.2)

and

||| f�|||C1/2
t B1/2

∞,1,2r
� ||| fn|||C1/2

t B1/2
∞,1,2r

� M0M
1/2
L λ

1/2
n , (6.3)

and for δ > β/2 by (5.12) for fn

||| f�|||C1/2
t B−δ

∞,1,2r
� ||| fn|||C1/2

t B−δ
∞,1,2r

� M1/2
L + M0M

1/2
L

n∑
k=1

λ−δ
k . (6.4)

6.3 Perturbation step – construction of fn+1

The construction of fn+1 is done by perturbing the mollified solution f�. We first
introduce a smooth function

χ̃n+1(t) = ϕ� ∗ ‖qn‖X (t) + rn .

Then ‖q�‖X � χ̃n+1 and ‖χ̃ ′
n+1(t)‖C0 � �−1 sups∈[t−�,t] ‖qn(s)‖X .We also introduce

the following cut-off function

χ(t) =

⎧⎪⎨
⎪⎩
0, t � 2−n−1,

∈ (0, 1), t ∈ (2−n−1, 2−n),

1, t � 2−n .

Here in the middle interval we smoothly interpolate so that it holds ‖χ ′‖C0 � 2n+1.
Now, define the perturbation gn+1 by

gn+1 = χ g̃n+1, (6.5)

where similarly to [12, (2.10)] we define g̃n+1 by

g̃n+1(t, x) =
2∑
j=1

a j,n+1(t, x) cos(5λn+1l j · x),

a j,n+1 = 2

√
χ̃n+1

5λn+1
P�μn+1

√
C0 + Ro

j
q�

χ̃n+1
, (6.6)
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where l1 = ( 35 ,
4
5 )

T , l2 = (1, 0)T and C0 � 2 is a fixed constant.

Remark 6.1 A few remarks concerning the perturbation gn+1:

• gn+1 is mean zero due to (6.6). As L as well as the parameters a, b, β are deter-
ministic and q� is (Ft )-adapted, g̃n+1 is (Ft )-adapted.

• We note that sinceμn+1 is much smaller than λn+1, the spatial frequencies of g̃n+1
are localized to λn+1. Its Fourier coefficients take the form for k ∈ Z

2

̂̃gn+1(k)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑2
j=1

√
χ̃n+1
5λn+1

〈√
C0 + Ro

j
q�

χ̃n+1
, P�μn+1e

−i(k+5λn+1l j )·x
〉
, if |k + 5λn+1l j | � μn+1,

∑2
j=1

√
χ̃n+1
5λn+1

〈√
C0 + Ro

j
q�

χ̃n+1
, P�μn+1e

−i(k−5λn+1l j )·x
〉
, if |k − 5λn+1l j | � μn+1,

0, otherwise.

This will be employed frequently throughout the paper.

And finally, the new iteration fn+1 is defined as

fn+1 := f� + gn+1,

which is also mean zero and (Ft )-adapted.
Next, we derive a few estimates that facilitate the verification of the inductive

estimates below in Sect. 6.4 and Sect. 6.5. In view of the definition of g̃n+1, we obtain

‖g̃n+1(t)‖B1/2
∞,1

=
∑
j

2 j/2‖� j g̃n+1‖L∞ �
∑

j :2 j∼λn+1

2 j/2‖� j g̃n+1‖L∞ � λ
1/2
n+1‖g̃n+1‖L∞

� λ
1/2
n+1

(
(C0 + 1)

χ̃n+1(t)

5λn+1

)1/2

� M0

3
χ̃n+1(t)

1/2. (6.7)

Here we used the following argument in the third step: By 2 j ∼ λn+1 there exists
c1, c2 > 0 such that c1λn+1 � 2 j � c2λn+1. Hence log2 c1 + log2 λn+1 � j �
log2 c2 + log2 λn+1 and

∑
j :2 j∼λn+1

1 � 1.

For the Cϑ -estimate we have

‖g̃n+1(t)‖Cϑ = sup
j
2 jϑ‖� j g̃n+1(t)‖L∞ � sup

j :2 j∼λn+1

2 jϑ‖� j g̃n+1(t)‖L∞

� λϑ
n+1‖g̃n+1(t)‖L∞

� λϑ
n+1

(
(C0 + 1)

χ̃n+1(t)

5λn+1

)1/2

� M0λ
ϑ−1/2
n+1 χ̃n+1(t)

1/2. (6.8)
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Furthermore, we obtain for δ > β/2

‖g̃n+1(t)‖B1/2−δ
∞,1

=
∑
j

2 j(1/2−δ)‖� j g̃n+1(t)‖L∞

� λ
1/2−δ
n+1

(
(C0 + 1)

χ̃n+1(t)

5λn+1

)1/2

. (6.9)

Moreover, we obtain for s � t � s + 1

‖a j,n+1(t) − a j,n+1(s)‖L∞ � λ
−1/2
n+1

√|χ̃n+1(t) − χ̃n+1(s)|

+ λ
−1/2
n+1 χ̃n+1(s)

1/2

√∥∥∥R
o
j q�(t)

χ̃n+1(t)
− Ro

jq�(s)

χ̃n+1(s)

∥∥∥
L∞

� λ
−1/2
n+1 �−1/2‖qn‖1/2C[t−2,t]X |t − s|1/2

+ λ
−1/2
n+1

√
‖χ̃n+1(s)Ro

j q�(t) − χ̃n+1(t)Ro
jq�(s)‖L∞

χ̃n+1(t)

� λ
−1/2
n+1 �−1/2‖qn‖1/2C[t−2,t]X |t − s|1/2,

which implies that

‖a j,n+1‖C1/2
t L∞ � ‖qn‖1/2C[t−2,t]X . (6.10)

Finally, we obtain

‖∂t a j,n+1(t)‖L∞ � λ
−1/2
n+1 χ̃

−1/2
n+1 |χ̃ ′

n+1|
+ λ

−1/2
n+1 χ̃

1/2
n+1(�

−1χ̃−1
n+1‖qn‖Ct X + ‖q�‖X |χ̃ ′

n+1|χ̃−2
n+1)

� λ
−1/2
n+1 r−1/2

n �−1‖qn‖Ct X . (6.11)

6.4 Inductive estimates for fn+1

From the construction we see that supp f̂n+1 ⊂ {|k| � 6λn+1} and fn+1(0) = 0. We
first prove (5.3) and (5.6). Combining (6.2), (6.7) we obtain

sup
s�2−n+2

(
E sup

t∈[s,s+1]
‖ fn+1(t) − fn(t)‖2r

B1/2
∞,1

)1/2r

� ||| f� − fn|||B1/2
∞,1,2r

+ sup
s�2−n+2

(
E sup

t∈[s,s+1]
‖gn+1(t)‖2r

B1/2
∞,1

)1/2r

� r1/2n+1 + M0

3
r1/2n + M0

3
sup

s�2−n+1

(
E sup

t∈[s,s+1]
‖qn(t)‖rX

)1/2r

� r1/2n+1 + M0r
1/2
n ,
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which implies (5.3). Here in the last second step we used � � 2−n+1 and in the last
step we used (5.8) for qn . Similarly using (6.8) and rn = MLλ

β
0λ

−β
n we have for

ϑ < 1
2 + β

4b

sup
s�2−n+2

(
E sup

t∈[s,s+1]
‖ fn+1(t) − fn(t)‖2rCϑ

)1/2r

� M0M
1/2
L λ

β/2
0 λ

−β/4b
n+1 + r1/2n+1,

which implies (5.6). Also combining (6.2) and (6.7), (5.9) for qn we obtain

(
E sup

t∈[2−n−1,2−n+2]
‖ fn+1(t) − fn(t)‖2r

B1/2
∞,1

)1/2r

� M0M
1/2
L + r1/2n+1.

Using (6.2) we obtain

(
E sup

t∈[0,2−n−1]
‖ fn+1(t) − fn(t)‖2r

B1/2
∞,1

)1/2r

� r1/2n+1.

Thus (5.4) and (5.5) hold. Moreover, we have for t � 0

sup
s�0

(
E sup

t∈[s,s+1]
‖ fn+1(t)‖2r

B1/2
∞,1

)1/2r

�
n∑

k=0

sup
s�0

(
E sup

t∈[s,s+1]
‖ fk+1(t) − fk(t)‖2r

B1/2
∞,1

1t∈(2−k−1,2−k+2]c
)1/2r

+ sup
s�0

⎛
⎝E sup

t∈[s,s+1]

(
n∑

k=0

‖ fk+1(t) − fk(t)‖B1/2
∞,1

1t∈(2−k−1,2−k+2]

)2r
⎞
⎠

1/2r

.

The first term on the right hand side is bounded by
∑n

k=0(M0r
1/2
k + 2r1/2k+1) as a

consequence of the division into s � 2−k+2 and s � 2−k+2 and application of
(5.3) and (5.5) for k = 0, . . . , n. For the second term we use the fact that each t
only belongs to three intervals of (2−k−1, 2−k+2] and we apply (5.4) to bound it by
3M0M

1/2
L + ∑n

k=0 r
1/2
k+1. Thus by (5.1), (5.10) follows for fn+1.

The estimates (5.7) and (5.13) follow from (6.9) and (6.2). Now, we estimate the
C1/2
t B1/2

∞,1-norm. We use (6.10) and (5.8), (5.9) to obtain

|||g̃n+1|||C1/2
t B1/2

∞,1,2r
�

∑
j :2 j∼λn+1

2 j/2|||� j g̃n+1|||C1/2
t L∞,2r

� λ
1/2
n+1|||qn|||1/2X ,r � (M0 − 2)M1/2

L λ
1/2
n+1. (6.12)
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The time derivative of χ is bounded by 2n+1 � λn+1. Hence (5.11) holds at the level
n + 1 by (6.3). Similarly we have

|||χ g̃n+1|||C1/2
t B−δ

∞,1,2r
� M0M

1/2
L λ−δ

n+1,

Thus (5.12) at the level n + 1 follows from (6.4).

6.5 Inductive estimate for qn+1

In order to obtain a formula for the error qn+1 we subtract (6.1) from (5.2) at level
n + 1. This leads to

∇qn+1 ≈ χ2
g̃n+1∇⊥ g̃n+1 + ∇q�︸ ︷︷ ︸
∇qM

+ 
gn+1∇⊥ f� + 
 f�∇⊥gn+1︸ ︷︷ ︸
∇qT

−
γRgn+1︸ ︷︷ ︸
∇qD

−∂tRgn+1︸ ︷︷ ︸
∇qI

+ Rcom + P�λn+1 (: 
z∇⊥z : +
γ1Rz − 
γRz) − P�λn (: 
z∇⊥z : +
γ1Rz − 
γRz) ∗ ϕ�︸ ︷︷ ︸
∇qN

+ 
gn+1∇⊥zn+1 + 
 f�∇⊥(zn+1 − zn) + 
zn+1∇⊥gn+1 + 
(zn+1 − zn)∇⊥ f�︸ ︷︷ ︸
∇qz

.

The main new difficulties compared to our previous work [32] appear in the part qz .
Note that as the left hand side is mean free, the right hand side is also mean free. Then
for each term on the right hand side we can subtract its mean part and in the following
we do not change the notation for simplicity. For the mean free part we define the
inverse of ∇ by �−1∇·.

As a consequence of the above formula for qn+1, we deduce that supp q̂n+1 ⊂
{|k| � 12λn+1} as required in Proposition 5.1. In the remainder of this section, we are
concerned with the iterative estimates (5.8) and (5.9). Recall that in qM , the perturba-
tion χ g̃n+1 plugged in the nonlinearity cancels part of the old error χ2q�, but it only
acts for t � 2−n−1. Hence, the error qM can only be shown to be small for t � 2−n .
For t < 2−n we can only use the trivial estimate and hence qM is not smaller than
qn here. Other terms, for instance the one including the time derivative of χ already
see the problem for times t ∈ [2−n−1, 2−n], which in turn dictates the formulation of
(5.8) and (5.9).

We first focus on the most difficult part qz which requires further decomposition in
Fourier space and then we proceed with the remaining terms.

6.5.1 Estimate of qz

It will be seen below that no splitting of the time interval is needed for this term, it
can be directly controlled for all t � 0. Since we only need to consider the mean free
part of qz , it is sufficient to bound its C−1+-norm, meaning, the norm in C−1+ς for
some ς > 0 arbitrarily small. For 
g̃n+1∇⊥zn+1 which is localized at frequencies
proportional to λn+1 we have by (6.7) and Proposition 4.1 for κ > 0
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|||
gn+1∇⊥zn+1|||C−1+,r � λ−1
n+1|||
g̃n+1∇⊥zn+1|||Cκ ,r � λ−1

n+1|||
g̃n+1|||Cκ ,2r |||∇⊥zn+1|||Cκ ,2r

� λ−1
n+1λ

1/2+κ
n+1 λ

1−γ1/2+α+2κ
n+1 ML � 1

35
rn+1.

Here we used Hölder’s inequality in the second step and we used β <
γ1
2 −α− 1

2 −3κ .
The estimate for 
zn+1∇⊥gn+1 is similar.

The remainder of this Sect. 6.5.1 is devoted to the estimate of the difficult term

 f�∇⊥(zn+1 − zn) + 
(zn+1 − zn)∇⊥ f�. Here, the smallness must come from the
difference zn+1− zn but it is delicate to capture without postulating further restrictions
on our parameters. In the first step, we recall that � = �n+1, f� = fn ∗ ϕ� = ( f�n +
gn) ∗ ϕ� where f�n = fn−1 ∗ ϕ�n . Then we write


 f�∇⊥(zn+1 − zn) + 
(zn+1 − zn)∇⊥ f�

= 
 f�n ∗ ϕ�∇⊥(zn+1 − zn) + 
(zn+1 − zn)∇⊥ f�n ∗ ϕ�

+ 
gn ∗ ϕ�∇⊥(zn+1 − zn) + 
(zn+1 − zn)∇⊥gn ∗ ϕ� =: I1 + I2,

where I1 denotes the second line and I2 denotes the third line. Additionally, we intro-
duce further decomposition of the difference zn+1 − zn . Namely,

zn+1 − zn =
N∑
l=0

∑
k

1Cl (k) ̂(zn+1 − zn)(k)ek, (6.13)

where ek(x) = 1
(2π)2

eik·x , N = �(b − 1)/ζ� + 1, C0 = {|k|∞ � 10λn} and for
l = 1, . . . N we define

Cl = {10μl−1
n λn < |k|∞ � 10μl

nλn}.

These sets split the Fourier support of zn+1 − zn into annuli which permits us to use
either the upper or the lower bound on the Fourier support in various estimates so that
we are able to balance the required conditions on parameters. Here and in the sequel
we denote |k|∞ = max{k1, k2}. By definition we have

‖∇ f�n‖L∞ + ‖
 f�n‖L∞ � λ
1/2
n ‖ f�n‖B1/2

∞,1
, (6.14)

and
∥∥∥∥∥
∑
k

1Cl (k) ̂(zn+1 − zn)(k)ek

∥∥∥∥∥
C1+

� (λnμ
l
n)

1+2κ+α−γ1/2‖zn+1 − zn‖Cγ1/2−α−κ .

(6.15)

Here we used (2.2) and [25, Lemma 8.7] to deduce ‖F−1
T2 1Cl‖L1(T2) � log2(μl

nλn).

By the decomposition of zn+1 − zn in (6.13) we obtain the decomposition
of I1 = ∑N

l=0 I
l
1. That is, each I l1 is given by I1 with zn+1 − zn replaced by
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∑
k 1Cl (k) ̂(zn+1 − zn)(k)ek . As I 01 is localized outside a ball of radius λn/3, we use

(6.14), (6.15), Hölder’s inequality and (5.10) on the level n and Proposition 4.1 to
obtain that the part of |||qz|||X ,r corresponding to I 01 is controlled by

|||I 01 |||C−1+,r � λ−1+κ
n |||I 01 |||L∞,r

� λ−1+κ
n λ

1/2
n ||| f�n |||B1/2

∞,1,2r
λ
1+2κ+α−γ1/2
n |||zn+1 − zn|||Cγ1/2−α−κ ,2r

� λ
−1/2+κ
n λ

1+2κ−γ1/2+α
n ML � 1

35(N + 1)
rn+1,

where we used 1/2 + βb + 3κ <
γ1
2 − α.

Moreover, as each I l1, l = 1, . . . , N , is localized outside a ball of radius μl−1
n λn ,

(6.14), (6.15) and Hölder’s inequality lead to

|||I l1|||C−1+,r � (λnμ
l−1
n )−1+κλ

1/2
n ||| f�n |||B1/2

∞,1,2r
(λnμ

l
n)

1+2κ+α−γ1/2|||zn+1 − zn |||Cγ1/2−α−κ ,2r

� λ
−1/2+κ
n λ

1+2κ−γ1/2+α+ζ
n ML � 1

35(N + 1)
rn+1

provided (5.10) for fn−1 and Proposition 4.1. We also used the condition on the
parameters to deduce that the exponent ofμn is smaller than 1 and that 1/2+βb+3κ <
γ1
2 − α − ζ .
In order to estimate I2, we decompose as follows

I2 = 5λn[gn ∗ ϕ�∇⊥(zn+1 − zn) + (zn+1 − zn)∇⊥gn ∗ ϕ�]
+ (
gn − 5λngn) ∗ ϕ�∇⊥(zn+1 − zn)

+ (
 − 5λn)(zn+1 − zn)∇⊥gn ∗ ϕ�

=: I21 + I22 + I23 ≈ I22 + I23,

where the last step follows from gn ∗ ϕ�∇⊥(zn+1 − zn) + (zn+1 − zn)∇⊥gn ∗
ϕ� = ∇⊥((zn+1 − zn)gn ∗ ϕ�). We employ again the decomposition (6.13) and
get I22 = ∑N

l=0 I
l
22, where each I l22 is given by I22 with zn+1 − zn replaced by∑

k 1Cl (k) ̂(zn+1 − zn)(k)ek . By Lemma A.2 we obtain


g̃n − 5λn g̃n =
2∑
j=1

l j · ∇a j,n sin(5λnl j · x) + T (1)
5λnl j

a j,n cos(5λnl j · x)

+ T (2)
5λnl j

a j,n sin(5λnl j · x),

which by Lemma A.3 implies that

‖
gn − 5λngn‖L∞ � (λn−1 + λ−1
n μ2

n + λ−2
n μ3

n)λ
−1/2
n χ̃

1/2
n ,
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where we bound the derivative of a j,n as follows:

‖∇a j,n‖L∞ � λ
−1/2
n χ̃

1/2
n

‖∇R0
j q�n‖L∞

χ̃n
� λ

−1/2
n χ̃

1/2
n λn−1.

Here we used the fact that q�n is localized on frequencies of order at most λn−1. Thus
by (6.15) and Hölder’s inequality we obtain

|||I 022|||C−1+,r

� (λn−1 + λ−1
n μ2

n + λ−2
n μ3

n)λ
−1/2
n (|||qn−1|||1/2X ,r + r1/2n−1)λ

1+2κ−γ1/2+α
n |||zn+1 − zn |||Cγ1/2−α−κ ,2r

� λ
1/b−1/2
n λ

1+2κ−γ1/2+α
n ML � 1

35(N + 1)
rn+1,

where we used the condition 1/2 + 2κ + 1/b + βb <
γ1
2 − α.

Moreover, as I l22 is localized in ball of radius λnμ
l−1
n we obtain byHölder’s inequal-

ity and (6.15)

|||I l22|||C−1+,r � (λnμ
l−1
n )−1+κ(λn−1 + λ−1

n μ2
n + λ−2

n μ3
n)λ

−1/2
n (|||qn−1|||1/2X ,r + r1/2n−1)

× (λnμ
l
n)

1+2κ−γ1/2+α|||zn+1 − zn|||Cγ1/2−α−κ ,2r

� λ
1/b−1/2+ζ
n λ

3κ−γ1/2+α
n ML � 1

35(N + 1)
rn+1.

Here we used the conditions on parameters to deduce λ−1
n μ2

n + λ−2
n μ3

n � 1 and that
the other exponent of μn is smaller than 1 and that 3κ + ζ + 1/b+ βb <

γ1
2 + 1

2 − α.

Finally, we concentrate on I23 which requires a different decomposition. In partic-
ular, we let N0 = �b/ζ� + 1 and for l = 1, . . . , N0 we define

Al = {k : |k + 5λnl1|∞ � 5μl
n}, Āl = {k : |k − 5λnl1|∞ � 5μl

n},
Bl = {k : |k + 5λnl2|∞ � 5μl

n}, B̄l = {k : |k − 5λnl2|∞ � 5μl
n}.

Let Dl = Al ∪ Āl ∪ Bl ∪ B̄l . Then it holds

I23 =
∑
k

1D1(k)(|k| − 5λn) ̂(zn+1 − zn)(k)ek∇⊥gn ∗ ϕ�

+
N0−1∑
l=1

∑
k

1Dc
l ∩Dl+1(k)(|k| − 5λn) ̂(zn+1 − zn)(k)ek∇⊥gn ∗ ϕ�

=: I 023 +
N0−1∑
l=1

I l23.
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Then we obtain on D1 |k| � 5λn + Cμn which by Proposition 4.1 implies that

|||I 023|||C−1+,r �
∣∣∣∣
∣∣∣∣
∣∣∣∣
∑
k

1D1(k)(|k| − 5λn) ̂(zn+1 − zn)(k)ek

∣∣∣∣
∣∣∣∣
∣∣∣∣
Hκ/2,2r

|||∇⊥g̃n ∗ ϕ�|||Cκ ,2r

� λζ
n |||zn+1 − zn|||Hκ/2,2rλ

1/2+κ
n |||g̃n|||C1/2,2r

� λ
ζ+1/2+α−γ1/2+3κ
n ML � 1

35N0
rn+1.

Here we used (6.7) for g̃n and 1
2 + 3κ + βb <

γ1
2 − α − ζ.

On Dc
l we have

|k + 5λnl1|∞ > 5μl
n, |k − 5λnl1|∞ > 5μl

n, |k + 5λnl2|∞ > 5μl
n,

|k − 5λnl2|∞ > 5μl
n

which by Remark 6.1 implies that the term I l23 is localized outside a ball of radius μl
n .

Indeed, by Remark 6.1 we know that FT2 g̃n(m) 	= 0 only if one of the following four
cases happens

|m + 5λnl1| � μn, |m − 5λnl1| � μn, |m + 5λnl2| � μn, |m − 5λnl2| � μn .

In any case we obtain |k + m| > 4μl
n . Thus,

‖I l23‖C−1+ � μ−l+κ
n∥∥∥∥∥

∑
k

1Al+1∪ Āl+1∪Bl+1∪B̄l+1
(k)(|k| − 5λn) ̂(zn+1 − zn)(k)ek

∥∥∥∥∥
L∞

‖∇⊥g̃n ∗ ϕ�‖L∞ .

Here we used (2.1) and [25, Lemma 8.7] to deduce ‖F−1
T2 1Dc

l
‖L1(T2) � (logμn)

8.
To estimate the right hand side, we distinguish two cases: l + 1 < 1/ζ � l + 2 and
l � 1/ζ − 1.

Case I. If l + 1 < 1/ζ � l + 2 then 10μl+1
n < λn and we can take a large enough

such that 10μl+1
n < 1

4λn . As the sets Al+1, Āl+1, Bl+1, B̄l+1 are disjoint, we can
consider them separately. In what follows, we only consider the case of 1Al+1 , the
others being similar. Let φ ∈ C∞(R2) such that φ(x) = 1 for |x | � 1 and φ(x) = 0
for |x | > 2. Then

∑
k

1Al+1(k)(|k| − 5λn) ̂(zn+1 − zn)(k)ek

=
∑
k

1Al+1(k)φ

( |k + 5λnl1|
10μl+1

n

)
(|k| − 5λn) ̂(zn+1 − zn)(k)ek
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Similarly to the proof of Lemma A.3 (see [12, Lemma 3.3]) it holds for m(k) =
φ( k+5λnl1

10μl+1
n

)(|k| − 5λn) that

‖F−1
R2 m‖L1(R2) � μl+1

n . (6.16)

Indeed,

F−1
R2 m(x) = (2π)−2

∫
φ

(
k + 5λnl1

10μl+1
n

)
(|k| − 5λn)e

ik·xdk

= λn(2π)−2
∫

φ

(
k

10μl+1
n

)(∣∣∣∣ kλn − 5l1

∣∣∣∣ − 5

)
eik·xdke−5iλnl1·x

= λn(2π)−2
∫

φ

(
k

10μl+1
n

)
φ1

(
k

λn

)
eik·xdke−5iλnl1·x

Here φ1(k) = |k − 5l1| − 5 is smooth and |φ1(k)| � |k| for |k| � 1/2. Thus (6.16)
follows from the following

∥∥∥∥F−1
R2

(
φ

( ·
10μl+1

n

)
φ1

( ·
λn

))∥∥∥∥
L1

=
∥∥∥∥F−1

R2

(
φ1

(
10μl+1

n ·
λn

)
φ

)∥∥∥∥
L1

� λ−1
n μl+1

n .

Hence we obtain by (2.1) and (2.2) that

∥∥∥∥∥
∑
k

1Al+1(k)(|k| − 5λn) ̂(zn+1 − zn)(k)ek

∥∥∥∥∥
L∞

� μl+1
n

∥∥∥∥∥
∑
k

1Al+1(k) ̂(zn+1 − zn)(k)ek

∥∥∥∥∥
L∞

� μl+1+κ
n ‖zn+1 − zn‖L∞ ,

where we used [25, Lemma 8.7] to deduce ‖F−1
T2 1Al+1‖L1(T2) � (logμn)

2. Thus by
Hölder’s inequality it holds that

|||I l23|||C−1+,r � μ−l+2κ
n μl+1

n |||zn+1 − zn |||L∞,2rλ
1/2
n |||g̃n |||B1/2

∞,1,2r

� μ−l+2κ
n μl+1

n |||z|||Cγ1/2−α−κ ,2rλ
−γ1/2+α+2κ
n λ

1/2
n |||g̃n |||B1/2

∞,1,2r
� 1

35N0
rn+1.

Here we used Proposition 4.1 and (6.7) for g̃n and 1
2 + 3κ + βb <

γ1
2 −α − ζ.

Case II. For the case that l � 1/ζ − 1 we obtain λn � μl+1
n and

|||I l23|||C−1+,r � μ−l+κ
n

∣∣∣∣
∣∣∣∣
∣∣∣∣
∑
k

1Dl+1 (|k| − 5λn) ̂(zn+1 − zn)(k)ek

∣∣∣∣
∣∣∣∣
∣∣∣∣
L∞,2r

‖∇⊥ g̃n ∗ ϕ�‖L∞,2r .
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Then we have
∣∣∣∣
∣∣∣∣
∣∣∣∣
∑
k

1Dl+1(|k| − 5λn) ̂(zn+1 − zn)(k)ek

∣∣∣∣
∣∣∣∣
∣∣∣∣
L∞,2r

�
∣∣∣∣
∣∣∣∣
∣∣∣∣
∑
k

1Dl+1
̂(zn+1 − zn)(k)ek

∣∣∣∣
∣∣∣∣
∣∣∣∣
C1+,2r

+ λn

∣∣∣∣
∣∣∣∣
∣∣∣∣
∑
k

1Dl+1
̂(zn+1 − zn)(k)ek

∣∣∣∣
∣∣∣∣
∣∣∣∣
L∞,2r

� (μ
(l+1)(1−γ1/2+α+2κ)
n + λnλ

−γ1/2+α+2κ
n )|||z|||Cγ1/2−α−κ ,2r ,

where we used (2.2) and [25, Lemma 8.7] to deduce ‖F−1
T2 1Dl+1‖L1(T2) � (logμn)

8

and in the last step for the first term we used the upper bound of Fourier support and
for the second bound we used the lower bound of Fourier support. This implies that

|||I l23|||C−1+,r � λ
ζ− γ1

2 +α+3κ+ 1
2

n ML � 1

35N0
rn+1.

Here, we used μ−l−1
n � λ−1

n and the condition 1
2 + 3κ + βb <

γ1
2 − α − ζ .

To summarize the results of this subsection, we proved that

|||qz|||X ,r � 1

7
rn+1

and this will be combined with the estimates in the next subsection to deduce (5.8)
and (5.9).

6.5.2 Estimate of the other parts of qn+1

In the sequel, we are mostly inspired by [32] and [12], but some differences appear
here in the treatment of the additional terms.

Let us start with qM . If t � 2−n , we proceed similarly to the proof of Proposition 3.1
in [12] with rn replaced by χ̃n+1 and obtain

‖χ2�−1∇ · (
g̃n+1∇⊥g̃n+1 + ∇q�)‖X
� logμn+1(μ

−1
n+1λn)

2χ̃n+1 + logμn+1(μn+1λ
−1
n+1)

2χ̃n+1 + λnλ
−1
n+1χ̃n+1,

which by (5.8) and (5.9) on the level n in particular implies that

(
sup

t�2−n
E sup

s∈[t,t+1]
‖χ2�−1∇ · (
g̃n+1∇⊥g̃n+1 + ∇q�)‖rX

)1/r

� 1

7
rn+1.

In particular, we used the fact that ζ > 1/b + β/2, the implicit constants depend on
M0 and we choose a large enough to absorb them.

If t ∈ [0, 2−n] we have the additional term (1− χ2)q�, which can be controlled as

‖(1 − χ2)q�(t)‖X � sup
s∈[t−�,t]

‖qn(s)‖X ,
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hence by (5.9) on the level n we obtain

(
E sup

s∈[0,2−n ]
‖(1 − χ2)q�‖rX

)1/r

� ML +
n∑

k=1

rk .

The second term which requires the splitting into t � 2−n and t ∈ [2−n−1, 2−n] is
qI , the remaining terms can be controlled directly for t � 0. In particular, one part of
qI is bounded directly for t � 0 using (6.11) as

|||χ�−1∇ · ∂tRg̃n+1|||X ,r � log λn+1

λn+1
λ

−1/2
n+1 r−1/2

n λn+1|||qn|||X ,r � 1

14
rn+1.

and the part containing the time derivative of χ appears for t ∈ [2−n−1, 2−n] and is
bounded by

|||�−1∇ · Rg̃n+1∂tχ |||X ,r � 2n+1λ
−3/2
n+1 M1/2

L log λn+1 � 1

14
rn+1.

For qT , we proceed similarly to [12] and using the definition of g̃n+1 we deduce

‖�−1∇ · (χ
g̃n+1∇⊥ f� + χ
 f�∇⊥g̃n+1)‖X
� log λn+1‖g̃n+1‖L∞(‖
 f�‖L∞ + ‖∇⊥ f�‖L∞)

� log λn+1‖ fn‖Ct B
1/2
∞,1

λ
1/2
n (χ̃n+1λ

−1
n+1)

1/2,

which by Hölder’s inequality implies that

|||�−1∇ · (χ
g̃n+1∇⊥ f� + χ
 f�∇⊥g̃n+1)|||X ,r

� log λn+1||| fn|||B1/2
∞,1,2r

λ
1/2
n λ

−1/2
n+1 (|||qn|||1/2X ,r + r1/2n ) � 1

7
rn+1,

provided (5.10) for fn and 1/2 > 1/(2b) + β.

For qD we recall that the support of the Fourier transform of g̃n+1 is contained in
an annulus. Hence application of (6.7) leads to

|||qD|||X ,r � λ
γ−1
n+1

√
MLλ−1

n+1 � 1

7
rn+1,

provided β < 3/2 − γ .
For qN we have

∇qN = (P�λn+1 − P�λn )(: 
z∇⊥z : +
γ1Rz − 
γRz)

+ P�λn (: 
z∇⊥z : +
γ1Rz − 
γRz)

− P�λn (: 
z∇⊥z : +
γ1Rz − 
γRz) ∗ ϕ� =: ∇q1N + ∇q2N .
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Then we obtain

‖q1N‖X � λ
1−γ1+2α+2κ
n ‖ : 
z∇⊥z : ‖Cγ1−2α−2−κ + λ

γ1/2+α−1+2κ
n ‖
γ1 z‖C−γ1/2−α−κ

+ λ
γ−γ1/2+α−1+2κ
n ‖
γ z‖C−γ+γ1/2−α−κ ,

and

‖q2N‖X � �1−1/γ1−2α/γ1−κ‖ : 
z∇⊥z : ‖
C
1−1/γ1−2α/γ1−κ
t C−1+κ

+ �1/γ1−α/γ1−1/2−κ‖
γ1 z‖
C
1/γ1−α/γ1−1/2−κ
t C−1+κ

+ �
1
2−γ /γ1−α/γ1+1/γ1−κ‖
γ z‖

C
1
2−γ /γ1−α/γ1+1/γ1−κ

t C−1+κ
,

which by Proposition 4.1 and Proposition 4.2 implies that

|||qN |||X ,r � 1

7
rn+1,

provided (1− γ1
2 −α) ∧ (γ1 − 1− 2α) ∧ (1+ γ1

2 − γ − α) > bβ + 2κ and (1− 1
γ1

−
2α
γ1

) ∧ ( 1
γ1

− α
γ1

− 1
2 ) ∧ ( 12 − γ+α−1

γ1
) > β + κ.

Moreover, we get

‖Rcom‖X � log λn�
1/2
n+1‖
 fn∇⊥ fn‖C1/2

t L∞

+ log λn�
1/2
n+1(‖ fn‖Ct B1∞,1

+ ‖zn‖Ct B1∞,1
)‖ fn‖C1/2

t B1∞,1

+ log λn�
1/2−κ
n+1 ‖zn‖C1/2−κ

t B1∞,1
‖ fn‖Ct B1∞,1

which by Proposition 4.1 and (5.10), (5.11) for fn and Hölder’s inequality implies

|||Rcom|||X ,r � log λn�
1/2
n+1λ

3/2
n ML + log λn�

1/2−κ
n+1 λ

3/2+α+2κ
n ML � 1

7
rn+1,

where we used that β + 1
b ( 32 + α + κ) + κ < 1

2 .
Altogether, the above estimates give the control of qn+1 for t ∈ [2−n,∞) and (5.8)

follows. In addition, for small times we conclude that

(
E sup

s∈[0,2−n ]
‖qn+1(s)‖rX

)1/r

� rn+1 + ML +
n∑

k=1

rk .

Hence (5.9) holds and the proof of Proposition 5.1 is therefore complete.
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7 Initial value problem

Theorem 7.1 Let δ > 0 and κ > 0 be arbitrary. For any F0-measurable initial
condition θ0 with zero mean satisfying (3.2) for some r � 1 and η > 1/2, there exist
infinitely many, (Ft )-adapted, non-Gaussian, analytically weak solutions θ to (3.1) in
the sense of Definition 1.1, with the initial condition θ0 and belonging to

L p
loc([0,∞); B−1/2

∞,1 ) ∩ C([0,∞), B−1/2−δ
∞,1 )

∩C1/2−κ([0,∞), B−1−δ
∞,1 ) P-a.s. for all p ∈ [1,∞).

Furthermore, there exists ϑ > 1/2 so that

sup
s�4

[
E sup

t∈[s,s+1]
‖θ‖2r

Bϑ−1
∞,1

]1/2r

+ |||θ |||
C1/2−κ
t B−1−δ

∞,1 ,2r
� 1 (7.1)

and for every ε > 0 the solutions can be constructed so that

|||θ − 
z|||
B−1/2−δ

∞,1 ,2r
� ε. (7.2)

Proof We repeatedly apply Proposition 5.1 and obtain a sequence of (Ft )-adapted
processes ( fn, qn), n ∈ N0, such that fn → f in L2r (�,C([0,∞); B1/2−δ

∞,1 )) as
a consequence of (5.7). Moreover, using (5.3), (5.4), (5.5) we have for every p ∈
[1,∞), T > 1

[
E
(∫ T

0
‖ fn+1 − fn‖p

B1/2
∞,1

dt

)2r/p]1/2r

�
[
E
(∫ T

2−n+2
‖ fn+1 − fn‖p

B1/2
∞,1

dt

)2r/p]1/2r

+
⎡
⎣E

(∫ 2−n+2

2−n−1
‖ fn+1 − fn‖p

B1/2
∞,1

dt

)2r/p
⎤
⎦
1/2r

+
⎡
⎣E

(∫ 2−n−1

0
‖ fn+1 − fn‖p

B1/2
∞,1

dt

)2r/p
⎤
⎦
1/2r

� 2−n/pM1/2
L + r1/2n+1 + r1/2n .

This implies that the sequence fn , n ∈ N0, converges in L2r (�, L p(0, T ; B1/2
∞,1)) for

all p ∈ [1,∞). Accordingly, fn → f also in L2r (�, L p
loc([0,∞); B1/2

∞,1)). Further-
more, by (5.8), (5.9) it follows for all p ∈ [1,∞), T > 1 that

[
E
(∫ T

0
‖qn(t)‖p

Xdt

)r/p
]1/r

� rn + ML2
−n/p → 0, as n → ∞.

Thus, by (2.3) and similarly as in [12] the process θ = 
 f + 
z satisfies (3.1)
in the analytically weak sense. More precisely, we define θn = 
 fn + 
zn and from
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(5.2) we obtain for any ψ ∈ C∞

〈θn(t) − P�λnθ0, ψ〉 =
∫ t

0
〈(θn − 
zn)R⊥(θn − 
zn)

+ (θn − 
zn)R⊥
zn + 
znR⊥(θn − 
zn)

+ P�λn : (
z∇⊥z) : +∇qn,∇ψ〉 − 〈
γ θn, ψ〉ds
+
∫ t

0
〈P�λn


αψ, dBs〉.

Since 〈R j f , g〉 = −〈 f ,R j g〉 the above rewrites as

〈θn(t) − P�λn θ0, ψ〉 =
∫ t

0
−1

2
〈θn − 
zn, [R⊥,∇ψ](θn − 
zn)〉

− 1

2
〈
zn, [R⊥,∇ψ](θn − 
zn)〉

− 1

2
〈(θn − 
zn), [R⊥,∇ψ]
zn〉 − 1

2
〈
z, [R⊥,∇P�λnψ]
z〉

− 〈∇qn,∇ψ〉 − 〈
γ θn, ψ〉ds +
∫ t

0
〈P�λn


αψ, dBs〉. (7.3)

Here, we used the fact that

−1

2
〈
z, [R⊥,∇P�λnψ]
z〉 = 〈P�λn : (
z∇⊥z) :,∇ψ〉

which holds true by approximation and in particular no renormalization constant is
needed.

Let now n → ∞. Then

∫ ·

0
〈P�λn


αψ, dBs〉 →
∫ ·

0
〈
αψ, dBs〉 in L2(�,C[0,∞)).

As θn → θ in L2r (�, L p
loc([0,∞); B−1/2

∞,1 ) ∩ C([0,∞); B−1/2−δ
∞,1 )) and qn → 0

in Lr (�, L p
loc([0,∞); L∞)) for all p ∈ [1,∞) and zn → z in L2r (�,C([0,∞);

Cγ1/2−α−κ), we apply PropositionA.1 and (2.3)we deduce that terms in (7.3) converge
to their natural limits as in Definition 1.1 and hence θ satisfies (1.1) in the sense of
Definition 1.1. By (5.12) and lower-semicontinuity we obtain

|||θ − 
z|||
C1/2
t B−1−δ

∞,1 ,2r
� M1/2

L + 3M0M
1/2
L . (7.4)

Also (5.13) implies (7.2).
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Next, we show that (7.1) follows from (5.6). By (5.6) and (5.1) we know for some
ϑ > 1/2

sup
s�4

(
E sup

t∈[s,s+1]
‖θ − 
z‖2r

Bϑ−1
∞,1

)1/2r

� 3M0M
1/2
L aβ/4 + 3M1/2

L . (7.5)

Here, ϑ might be different from ϑ in (5.6) and by (5.6) we could always find such ϑ .
Non-uniqueness of solutions as well as the existence of infinitely many solutions

and even a continuum of solutions follow from exactly the same argument as [32,
Sections 3.2.2−3.2.4] except that we have to take expectation during the computation
and apply (6.10).

If θ0 is non-Gaussian, we could choose a large enough to guarantee that P�λ0θ0
is non-Gaussian. Accordingly, also the projection of the linear solution P�λ0 z is non-
Gaussian as θ0 is independent of the driving noise. This finally implies that also θ is
non-Gaussian since P�λ0 f = 0.

If θ0 is Gaussian, then we can redefine our iteration starting from f0 = χ Z , where
Z : �×T

2 → R is a smooth bounded non-Gaussian randomvariablewith only finitely
many non-zero Fourier modes, measurable with respect to F0 and independent of the
driving noise and from θ0, where we may need to augment F0 and also the filtration
(Ft ); and χ : [0,∞) → R is a smooth cut-off function which equals to 0 for t � 1/2
and equals to 1 for t > 1. Thenwe could chooseλ0 large enough such that P�λ0 Z = Z .

Thus (5.2) on the level n = 0 reads as

− RZ∂tχ + χ2
Z∇⊥Z + χ
z0∇⊥Z + χ
Z∇⊥z0
+P�λ0(: 
z∇⊥z : +
γ1Rz − 
γRz) − χ
γRZ ≈ ∇q0

Hence, for some r � 1

|||q0|||X ,r � ML .

From the definition of gn , we observe that the spatial frequencies of gn are localized
to λn which will not influence f̂n(k) for |k| � λ0. For f� it follows from the proof
of Proposition 5.1 that

∑
n∈N

�n � 1 and for t � 2 f̂�(k) = f̂0(k) = Ẑ(k) for
|k| � λ0. Consequently for t � 2 f̂n(k) = Ẑ(k) for |k| � λ0 which implies that
θ̂ (k) = ̂(
z + 
Z)(k) for |k| � λ0. Thus θ is non-Gaussian by independence and
the result follows. ��

8 Stationary and ergodic stationary solutions

In this section, we study the long time behavior of solutions to (3.1) constructed in
the previous sections. In particular, we show that they generate stationary as well as
ergodic stationary solutions. Moreover, non-uniqueness of both types of stationary
solutions holds.
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As it is common in the context of equations without uniqueness, we understand
stationarity in terms of shift operators on trajectories instead of the more classical
framework of Markov semigroups. We define the trajectory space for the solution and
the noise as T := C(R; B−1/2

p,1 ) ×C(R; B−1−κ
p,p ) for some p ∈ [2,∞) and κ > 0 and

the shifts St , t ∈ R on this space are given by

St (θ, B)(·) = (θ(· + t), B(· + t) − B(t)) t ∈ R, (θ, B) ∈ T .

Formally ∂t B = ξ and B represents the noise part in (3.1). The set of probability
measures on T is denoted by P(T ). We have all in hand to formulate the notion of
stationary solution.

Definition 8.1 We say that ((�,F , (Ft ),P), θ, B) is a stationary solution to (1.1)
provided B is a (Ft )-cylindrical Wiener process on L2 with zero spatial mean and
(θ, B) satisfies (1.1) in the analytically weak sense on (−∞,∞), more precisely

〈θ(t), ψ〉 +
∫ t

s

1

2
〈
−1/2θ,
1/2[R⊥·,∇ψ]θ〉dr

= 〈θ(s), ψ〉 −
∫ t

s
〈 ν
γ θ,ψ〉dr +

∫ t

s
〈
αψ, dBr 〉, ∀ψ ∈ C∞(T2), t � s,

and its law is shift invariant, that is,

L[St (θ, B)] = L[θ, B] for all t ∈ R.

Note that stationary solutions satisfy the equation on R. Thus, in the first step, we
shall extend the convex integration solutions from Theorem 7.1 from R

+ to R. We
simply define θ(t) = θ(4) for t � 4 and we choose two sided Brownian motion for
B which is already defined on R. For the sequel it is irrelevant that the equation is not
satisfied for time t � 4 or that we neglected the initial value. We made this choice in
order to be able to apply (7.1) uniformly on R.

A Krylov–Bogoliubov argument then shows that the approach of Sect. 7 leads to
convex integration solutions which generate stationary solutions as limits of their
ergodic averages.However, it is convenient to replace the initial value problem solution
z by the unique stationary solution to the linear equation (3.5), namely, to let

z(t) =
∫ t

−∞
e−(t−s)
γ1


α−1dBs . (8.1)

It satisfies the estimates of Proposition 4.1 and can be used to construct the renormal-
ized product : 
z∇⊥z : as in Proposition 4.2. These are the stochastic elements that
we now employ in the iterative construction of Sect. 5.

Theorem 8.2 Let θ be a convex integration solution starting from θ0 = 0 with z given
by (8.1), obtained through the iteration in Theorem 7.1 and extended to R by the
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above construction. Then there exists a sequence Tn → ∞ and a stationary solution
((�̃, F̃ , (F̃t ), P̃), θ̃ , B̃) to (3.1) such that for some τ � 0

1

Tn

∫ Tn

0
L[St+τ (θ, B)]dt → L[θ̃ , B̃] weakly in P(T ) as n → ∞.

Moreover, it holds true some δ ∈ (0, 1), κ > 0 small enough

|||θ̃ |||
B−1/2+δ

∞,1 ,2r
+ |||θ̃ |||

C1/2−κ
t B−1−δ

∞,1 ,2r
� 1. (8.2)

Proof It follows from (7.1) and the construction that there exists δ ∈ (0, 1), κ > 0 so
that for every N ∈ N

sup
s∈R

E
[
‖θ(· + s)‖

C([−N ,N ];B−1/2+δ
∞,1 )

+ ‖θ(· + s)‖C1/2−κ ([−N ,N ];B−1−δ
∞,1 )

]

� sup
s∈R

N∑
i=−N

E
[
‖θ(· + s)‖

C([i,i+1];B−1/2+δ
∞,1 )

+ ‖θ(· + s)‖C1/2−κ ([i,i+1];B−1−δ
∞,1 )

]

� N . (8.3)

Next, for T � 0 and τ � 0 we define the following ergodic average as the probability
measure on T

ντ,T := 1

T

∫ T

0
L[St+τ (θ, B)]dt,

and we show that the family ντ,T , T � 0, is tight. To this end, we define for R > 0
and κ > 0

BR := ∩∞
N=M

{
g; ‖g‖C1/2−κ ([−N ,N ];B−1−δ

∞,1 )
+ ‖g‖

C([−N ,N ];B−1/2+δ
∞,1 )

� RN

}
,

which is relatively compact in C(R; B−1/2
p,1 ). Since St B is a Wiener process for every

t ∈ R, the law of St B does not change with t ∈ R and is tight. Then we use (8.3) to
deduce that there exists a compact set Kε in T such that

sup
t∈R

P(St (θ, B) ∈ Kc
ε ) < ε.

This implies

ντ,T (Kc
ε ) = 1

T

∫ T

0
P(St+τ (θ, B) ∈ Kc

ε )dt < ε.

Nowwe could use excatly the same argument as [32, Theorem 4.2] to obtain the result.
��
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Corollary 8.3 There are infinitely many non-Gaussian stationary solutions.

Proof For the non-uniqueness of stationary solutions, we start the iteration in Propo-
sition 5.1 with f0 = Z . Here, Z is a smooth deterministic function with only finitely
many non-zero Fourier modes such that we could choose λ0 large enough to have
P�λ0 Z = Z . Thus (5.2) on the level n = 0 reads as


Z∇⊥Z + 
z0∇⊥Z + 
Z∇⊥z0 + P�λ0(: 
z∇⊥z :
+
γ1Rz − 
γRz) − 
γRZ ≈ ∇q0

Hence, for some r � 1

|||q0|||X ,r � ML .

Now, we run the convex integration based on Proposition 5.1 and we get a limit
f = limn→∞ fn . Thus, as in Proposition 5.1 we could choose a large enough so that
(5.13) holds which implies that the solution θ obtained in Theorem 7.1 extended to R

as explained above satisfies

sup
s�4

E sup
t∈[s,s+1]

‖θ − 
z − 
Z‖
B−1/2−δ

∞,1
� ε.

Then for any t > 0 and τ � 4, Eντ,T−τ ‖θ(t) − 
z(t) − 
Z‖
B−1/2−δ

∞,1
� ε. As in the

proof of Theorem 8.2 we have tightness of (θ, B) and we modify the stochastic basis
to construct a new stochastic process (θ̃ , B̃) as a stationary solution to (1.1). Taking
the limit we obtain by lower-semicontinuity

Ẽ‖θ̃ (t) − 
z̃(t) − 
Z‖
B−1/2−δ

∞,1
� ε.

Here z̃(t) = ∫ t
−∞ e−(t−s)
γ1


α−1d B̃s . The convergence of the z part follows from

z̃(t) = 
α−1 B̃t −
∫ t

−∞
e−(t−s)
γ1


γ1+α−1 B̃sds

and convergence of B̃ part.
In order to prove non-Gaussianity, we choose Z to be a bounded random variable,

measurable with respect to F0, independent of the driven noise and such that P�λ0 Z
is non-Gaussian, where we may need to augment F0 and also the filtration (Ft ). The
same argument as Theorem 7.1 implies that for |k| � λ0 θ̂ (k) = ̂(
z + 
Z)(k) is
non-Gaussian. As this holds for any t > 0 and z is stationary and Z independent of
t it follows that the law of θ̂t (k) does not change over time which implies that θ̃ is
non-Gaussian. Non-uniqueness is achieved by choosing different Z . ��

We proceed with the definition of ergodic stationary solution which coincides with
the notion of ergodicity of the dynamical system

(
T ,Borel(T ), (St , t ∈ R),L[θ, B]).
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Definition 8.4 A stationary solution ((�,F , (Ft ),P), θ, B) is ergodic provided

L[θ, B](A) = 1 or L[θ, B](A) = 0 for all A ⊂ T Borel and shift invariant.

As a consequence of Theorem 8.2 we obtain their existence, non-uniqueness and
non-Gaussianity.

Theorem 8.5 There exist K > 0 and an ergodic stationary solution ((�,F , (Ft ),

P), θ, B) satisfying for some δ ∈ (0, 1), κ > 0

|||θ |||
B−1/2+δ

∞,1 ,2r
+ |||θ |||

C1/2−κ
t B−1−δ

∞,1 ,2r
� K , (8.4)

and it holds

|||θ − 
z − 
Z |||
B−1/2−δ

∞,1 ,2r
� 1. (8.5)

Here z = ∫ t
−∞ e−(t−s)
γ1


α−1dBs and Z is a smooth deterministic function with
only finitely many non-zero Fourier modes. In particular, there are infinitely many
non-Gaussian ergodic solutions.

Proof The result is obtained by a classical Krein–Milman argument [16] and Theo-
rem 8.2. Indeed, the set of all laws of stationary solutions satisfying (8.4) and (8.5)
is non-empty, convex, tight and closed which follows from the same argument as the
proof of Theorem 8.2 and Corollary 8.3. Hence there exists an extremal point, which
is an ergodic stationary solution. Non-uniqueness is achieved by choosing different Z .
Non-Gaussianity follows from the fact that the stationary solution satisfies for |k| � λ0

θ̂ (k) = ̂(
z + 
Z)(k)with Z as in Corollary 8.3 also form a non-empty, convex, tight
and closed set. ��

9 Extension to fractional Navier–Stokes equations

Let us consider a singular fractional Navier–Stokes equations on T
2. The equations

govern the time evolution of the fluid velocity u and read as

∂t u + div(u ⊗ u) + ∇P = −ν
γ u + 
−1+αξ,

divu = 0,

u(0) = u0.

(9.1)

Here P is the associated pressure, ξ is the space-time white noise with mean zero
and ν � 0, α ∈ [0, 1/2), γ ∈ [0, 1). We choose the exponent in the derivative of the
noise this way in order to compare our result to [21, Example 5.1 iii.]. In the latter
work, the authors considered the 2D Navier–Stokes equations in the vorticity form
with noise 
αξ and α = γ /2. Going back to the velocity level therefore gains one
derivative and leads to the formulation (9.1). The equation in [21] formally possesses
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a Gaussian invariant measure, which can be used to obtain existence and uniqueness
for γ � 1 and existence for γ ∈ (0, 1). Similarly to the SQG equation (1.1) we obtain
non-uniqueness but here we can cover the full supercritical regime. As a matter of
fact, our approach also applies to the Euler setting ν = 0.

We decompose the velocity as u = z + v where

∂t z + ∇Pz = −
γ1 z + 
−1+αξ, divz = 0, z(0) = u0, (9.2)

∂tv − 
γ1 z + ν
γ z + div(v + z) ⊗ (v + z) + ∇Pv = −ν
γ v, divv = 0, v(0) = 0,
(9.3)

with an additional parameter γ1 ∈ (2α, 2− 2α). We can apply the convex integration
from [13, 14] to obtain existence and non-uniqueness of global solutions for every
u0 ∈ C1−2α satisfying the divergence free condition. Although the construction [13,
14, 29, 30, 33] is formulated for γ = 1, it also holds for γ < 1 since the fractional
Laplacian is easier to control and the rest of the proof does not change. In fact, by
Proposition 4.1 it follows that z ∈ CTCγ1/2−α−κ . To use convex integration method
we require that 
γ1 z, 
γ z ∈ C−1+, i.e. γ1 < 2 − 2α, γ < 2 − 2α. Then for these
terms 
γ1 z, 
γ z we can use a similar argument as for the SQG equation in this paper.
Moreover, we need that z is a function in L2 which requires γ1 > 2α. This leads to
our condition 2α < γ1 < 2−2α and α < 1/2. For the error part containing the z term
we can use a similar argument as in [11, 36] since z is a function and the treatment of
the other terms is similar to [13, 14]. To summarize, we cover the supercritical regime
in the velocity form of [21, Example 5.1 iii.] and obtain the following result.

Theorem 9.1 Fix γ ∈ [0, 2 − 2α), α ∈ [0, 1/2). For any divergence free initial
condition u0 ∈ C1−2α P-a.s. there exists an (Ft )-adapted analytically weak solution
u to (9.1) with u(0) = u0 which belongs to L p

loc([0,∞); L2) ∩ C([0,∞);W−1,1)

P-a.s. for all p ∈ [1,∞). There are infinitely many such solutions u.

Remark 9.2 In comparison to the SQG situation, the Navier–Stokes setting is actually
easier. The reason is the different form of the nonlinearity in the equationwhere convex
integration is applied:
z∇⊥z compared to div(z⊗ z). Particularly, the Navier–Stokes
nonlinearity is well-defined for z merely function valued whereas the SQG setting
requires more regularity of z. If γ is small then z defined via the conventional Da
Prato–Debussche trick with γ1 = γ is not function valued and the method does not
work. Making γ1 > γ makes z more regular which can be nicely combined with
convex integration to treat even supercritical/critical situations.

Appendix A. Some auxiliary results

In this part, we recall some auxiliary lemmas from [12]. The first result is rather
classical and permits to rewrite the nonlinearity and formulate the notion of weak
solution as in Definition 1.1.
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Proposition A.1 [12, Proposition 5.1] Let R = R j , j = 1, 2. Assume that φ ∈ H3

and θ ∈ Ḣ−1/2. Then we have

‖[R, φ]θ‖Ḣ1/2 � ‖φ‖Ḣ3‖θ‖Ḣ−1/2 .

The second result is a kind of Leibniz rule useful in the estimate of the new stress
in Sect. 6.5.

Lemma A.2 [12, Lemma 2.1] Let |l| = 1, λl ∈ Z
2, and g(x) = a(x) cos(λl · x). Then


g = λg + l · ∇a sin(λl · x) + (T (1)
λl a) cos(λl · x) + (T (2)

λl a) sin(λl · x),

where

̂
T (1)

λl a(k) =
( |λl + k| + |λl − k|

2
− λ

)
â(k),

̂
T (2)

λl a(k) = i

( |λl + k| − |λl − k|
2

− l · k
)
â(k).

Finally, in order to control the operators in Lemma A.2, we rely on the following.

Lemma A.3 [12, Lemma 3.3] Assume b0 : T
2 → R with supp(b̂0) ⊂ sup{|k| � μ}

and 10 � μ � 1
2λ. Then

‖T (1)
λl b0‖L∞ � λ−1μ2‖b0‖L∞ ,

‖T (2)
λl b0‖L∞ � λ−2μ3‖b0‖L∞ .
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