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Abstract
We prove that twisted �2-Betti numbers of locally indicable groups are equal to the
usual �2-Betti numbers rescaled by the dimension of the twisting representation; this
answers a question of Lück for this class of groups. It also leads to two formulae:
given a fibration E with base space B having locally indicable fundamental group, and
with a simply-connected fiber F , the first formula bounds �2-Betti numbers b(2)

i (E)

of E in terms of �2-Betti numbers of B and usual Betti numbers of F ; the second
formula computes b(2)

i (E) exactly in terms of the same data, provided that F is a
high-dimensional sphere. We also present an inequality between twisted Alexander
and Thurston norms for free-by-cyclic groups and 3-manifolds. The technical tools we
use come from the theory of generalised agrarian invariants, whose study we initiate
in this paper.

1 Introduction

Motivated by the Gauss–Bonnet theorem, and seeking “Zusammenhänge und Bindun-
gen [...] zwischen den topologischen Eigenschaften einerseits und den differentialge-
ometrischen Eigenschaften andererseits”, Heinz Hopf formulated in 1932 [20, Page
224] a somewhat vague question about the relationship between curvature of even-
dimensional Riemannian manifolds and their Euler characteristic. The question was
then given an explicit form, now known as the Hopf Conjecture. The version of the
conjecture for negatively curved manifolds can be found in the work of Yau [50, Prob-
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lem 10]), and states: every closed Riemannian 2n-manifold M of negative sectional
curvature satisfies (−1)nχ(M) > 0, where χ(M) denotes the Euler characteristic of
M .

Since Riemannian manifolds of negative sectional curvature are aspherical, one can
replace the geometric assumption by a topological one. Thiswas done byThurston (see
[29, Problem 4.10]), who formulated the following conjecture: every closed aspherical
2n-dimensional manifold M satisfies (−1)nχ(M) � 0.

An attack strategy for resolving Hopf Conjecture was proposed by Singer, as
reported by Dodziuk [10, Conjecture 2] and Yau [50]. What is now known as the
Singer Conjecture states that the �2-Betti numbers b(2)

i (M) of a closed aspherical n-
manifold M should vanish in all dimensions, except perhaps the middle dimension
n
2 , if it exists; moreover, if the manifold is negatively curved, then the middle �2-
Betti number should be strictly positive. Knowing the �2-Betti numbers allows one to
compute the �2-Euler characteristic, which for manifolds is equal to the usual Euler
characteristic by the L2 Index Theorem of Atiyah [3]. Therefore, the Singer Con-
jecture implies Hopf and Thurston Conjectures. Furthermore, Singer Conjecture was
established for locally symmetric spaces by Borel [5] (see also [42]), a large class of
manifolds of classical interest.

Singer Conjecture is a statement about aspherical manifolds. But such manifolds
can be used as building blocks in constructions of more general spaces. One example
of this is a fibration over an aspherical manifold. If one could connect the �2-Betti
numbers of such fibrations with those of the aspherical base spaces, then, on the one
hand, the Singer conjecture would yield a statement about �2-Betti numbers of some
not necessarily aspherical manifolds, and on the other hand, the conjecture could
potentially be disproved by finding a suitable not necessarily aspherical example.

In this article we give a method of computing �2-Betti numbers for fibrations F →
E → B when F is sufficiently similar to a high-dimensional sphere, andwhenπ1(B) is
virtually locally indicable. Recall that a groupG is locally indicable if every non-trivial
finitely generated subgroup admits an epimorphism onto Z. A group G is virtually
locally indicable if G has a finite-index locally indicable subgroup.

Theorem 1.1 Let F → E → B be a fibration of connected finite CW-complexes, with
π1(B) being virtually locally indicable. If F is simply connected, or more generally,
if the map π1(E) → π1(B) induced by the fibration is an isomorphism, then

b(2)
i (E) �

i∑

j=0

b j (F) · b(2)
i− j (B)

for every i ∈ N.
If moreover the homology of F with C-coefficients is non-zero in at most two degrees,

0 and n with n � max{2, dim B} (e.g., F is a sphere of dimension at least 2), then for
every i ∈ N we have

b(2)
i (E) = b(2)

i (B) + bn(F) · b(2)
i−n(B).
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In fact, we prove a more general result, Theorem 4.1, whose statement is perhaps
too involved for this introduction; Theorem 1.1 summarises items (i) and (ii) of The-
orem 4.1. Also, Theorem 4.1 makes the connection between Theorem 1.1 and Singer
Conjecture explicit.

Using techniques similar to those underpinning Theorem 1.1, in Sect. 4 we will
prove the following results.

Corollary 1.2 Let F → E → B be a fiber bundle of compact connected manifolds
such that F is simply connected and B is a surface (possibly with boundary) with
|π1(B)| = ∞ (which holds except when B is either S2, the 2-disk, or the projective
plane P2). Then for every i ∈ N we have

b(2)
i (E) = −χ(B)bi−1(F).

Corollary 1.3 Let F → E → B be a fiber bundle of compact connected manifolds
such that F is simply connected and B is an orientable prime 3-manifold with empty
or toroidal boundary and infinite fundamental group. Then b(2)∗ (E) = 0.

In the setting of all of the above results, the �2-homology of E is related via the
Leray–Serre spectral sequence to the homology of B with �2-coefficients twisted by
the action of π1(B) on the usual C-homology of F , as noticed by Lück [39] (see
Sect. 4). Our proof of Theorem 4.1 thus follows from relating the twisted �2-Betti
number of B to b(2)∗ (B).

In fact, the question of the nature of twisted �2-Betti numbers can be askedmore gen-
erally, in the realm of group theory; in particular, for a group G and an n-dimensional
complex representation σ , Lück asked whether the �2-Betti numbers of G twisted by
σ are equal to the corresponding usual �2-Betti numbers multiplied by n (see Question
4.2). In Theorem 4.4 we prove that this is indeed the case when G is locally indicable.

After the first version of this article appeared online, Boschheidgen–Jaikin-Zapirain
in [4] related the twisted and untwisted �2-Betti numbers for sofic groups. We remark
that it is unclear whether the main result of [4] generalises our Theorem 4.4 as it is
currently unknown if locally indicable groups are sofic.

Another setting in which one wishes to twist homology with finite-dimensional
representations is that of knots and 3-manifolds. Here one studies for example the
twisted Alexander polynomial, which was introduced as a refined version of the clas-
sical Alexander polynomial, by Lin [34] for knot groups and Wada [49] for general
finitely presented groups. (Note that although Lin’s paper was published later, it was
finished in 1990, and thus the introduction of the twisted Alexander polynomial is
attributed to both Lin and Wada.) It is used to distinguish certain knots from their
inversions [31]. Twisted Alexander polynomials can also detect fiberedness of char-
acters, as proven by Friedl–Vidussi [16]. This fact is crucially used in two important
recent results of Jaikin-Zapirain [24] and Liu [36]. We refer the reader to [17] for a
survey on this topic.

Every twisted Alexander polynomial leads to a twisted Alexander norm, a function
H1(G, R) → [0,∞). The �2-analogue of this for locally indicable groups is the
Thurston norm ‖ · ‖T : H1(G, R) → [0,∞). (This terminology is justified, since this
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latter norm coincides with Thurston’s famous norm [48] in the case of 3-manifolds,
as proven by Friedl–Lück [15] – see Example 3.17.)

The classical Thurston norm on a 3-manifold M is closely related to fibrations of
M over the circle S1: the unit ball B of ‖ ·‖T is a polytope and there exists a collection
of top dimensional faces of B such that a character φ ∈ H1(M, Z) induces such a
fibration if and only if φ belongs to the interior of the positive cone of one of those top
dimensional faces [48, Theorem 3]. The same statement also holds for free-by-cyclic
groups [27, Theorem 5.29].

Despite of its significance, a disadvantage of the Thurston norm is that it is hard to
compute in general. In the seminal paper [41],McMullen showed that for 3-manifolds,
the Alexander norm, which is computationally much easier, provides a lower bound
to the Thurston norm. McMullen’s result was extended in [13] to the case of free-by-
cyclic groups. We extend these results further to cover twisted Alexander norms:

Theorem 1.4 (Theorems 7.1 and 7.2) Let G be either

• a (finitely generated free)-by-(infinite cyclic) group, or
• the fundamental group of a closed connected orientable 3-manifold that fibers

over S1.

Then for every finite-dimensional representation σ : G → GLn(C) and every charac-
ter φ ∈ H1(G, Z) we have

‖φ‖σ � n · ‖φ‖T ,

where ‖φ‖σ (resp. ‖φ‖T ) denotes the twisted Alexander norm of φ with respect to σ

(resp. the Thurston norm of φ). Moreover, equality holds when φ is a fibered character,
i.e., when ker φ is finitely generated.

The 3-manifold case of the above theorem was first proved by Friedl–Kim [12] by a
different method.

Both the Alexander polynomial and �2-homology form part of the unified the-
ory of agrarian invariants; the same holds true for their twisted analogues – both
twisted �2-homology and twisted Alexander polynomials are manifestations of agrar-
ian invariants of a generalized kind, whose study we initiate here.

Outline of the paper. We recall the necessary definitions and results in Sect. 2. We
then introduce agrarian invariants (of a generalized kind) in Sect. 3. We study twisted
�2-Betti numbers in Sect. 4, where Theorem 1.1 and Corollaries 1.2, 1.3 are proved.
The rest of the paper, i.e., Sects. 5 through 7, are devoted to the study of the Thurston
and twisted Alexander norms.

2 Preliminaries

2.1 Twisted group rings

We now recall the construction of twisted group rings, which will be used in dealing
with twisted �2-Betti numbers.
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Definition 2.1 Let R be an associative ring with unity. Denote the group of units of R
by R×. Let G be a group and let

c : G → Aut(R), g �→ cg,

τ : G × G → R×, (g, g′) �→ τ(g, g′)

be functions such that

cg(cg′(r)) = τ(g, g′) · cgg′(r) · τ(g, g′)−1,

τ (g, g′)τ (gg′, g′′) = cg(τ (g′, g′′)) · τ(g, g′g′′),

where g, g′, g′′ ∈ G and r ∈ R. The pair (c, τ ) is the pair of structure functions. We
denote by RG the free R-module with basis G and write elements of RG as finite
R-linear combinations

∑
g∈G rg ∗ g of elements of g. When convenient, we shorten

1 ∗ g to g. The structure functions endow RG with the structure of an (associative)
twisted group ring by declaring

(r ∗ g) · (r ′ ∗ g′) = (r · cg(r
′) · τ(g, g′)) ∗ (gg′)

and extending linearly. For details see [43, Section 1.2].
If cg = idR and τ(g, g′) = 1 for all g, g′ ∈ G, in which case we say the structure

functions (c, τ ) are trivial, then RG is called the untwisted group ring, in which case
we will write elements of RG as

∑
g∈G rg instead of

∑
g∈G r ∗ g, and we will also

shorten r ∗ 1 to r .

Note that τ(1, 1)−1 ∗ 1 is the multiplicative identity of the twisted group ring.

Notation 2.2 We will mostly use the notation RG for a twisted group ring. However,
in Sect.3.2 we will talk about two group ring structures on RG, one twisted and the
other one untwisted. There, we will denote the twisted group ring by R ∗ G and the
untwisted one by RG.

In the sequel, we reserve the name group rings for untwisted group rings.
Since all our rings are unital, we require ring homomorphisms to respect units.

Example 2.3 Let φ : G → H be a surjective group homomorphism with kernel K .
We choose a set-theoretic section s : H → G, i.e., a map between the underlying sets
such that φ ◦ s = idH . Let (ZK )H be the twisted group ring with structure functions
ch(r) = s(h)rs(h)−1 and τ(h, h′) = s(h)s(h′)s(hh′)−1. The untwisted group ring
ZG is then isomorphic to the twisted group ring (ZK )H via the map

g �→ (g(s ◦ φ)(g)−1) ∗ φ(g).

2.2 Ore localization

The notion of the Ore localization is a generalization of the classical notion of the
field of fractions of an integral domain. We will use this notion to rationalize a given
agrarian map in Sect. 3.2.
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Let R be a ring and let T ⊂ R be a subset of R that does not include any zero-
divisors. We say T satisfies the left Ore condition if for all r ∈ R and t ∈ T , there
exist r1 ∈ R, t1 ∈ T such that r1t = t1r . The (left) Ore localization of R with respect
to T is

Ore(R, T ) = {t−1r | t ∈ T , r ∈ R}.

It is a well defined ring - for details, see [43, Theorem 4.1] and its proof.
If R has no non-trivial zero divisor, T is the set of non-zero elements of R, and T

satisfies the left Ore condition, then we briefly say that R satisfies the Ore condition
and call the Ore localization of R with respect to T the Ore localization of R; we
denote it by Ore(R), and note that it is a skew field (division ring).

Example 2.4 Let D be a skew field and let H be a torsion-free amenable group. Every
twisted group ring DH that is a domain satisfies the Ore condition – this follows from
[46], and in this form is stated for example in [27, Theorem 2.14].

2.3 Laurent power series and orders

Let R be a ring, let α be an automorphism of R, and let t /∈ R be a symbol. The ring
of twisted Laurent power series in t with coefficients in R is the set

R((t)) =
{ ∞∑

i=k

ri t
i | k ∈ Z, ri ∈ R

}
.

Our convention is ri = 0 for i < k.
The multiplication on R((t)) is given by the convention

t · r = α(r) · t .

With this multiplication and the obvious summation R((t)) is a ring. The function α is
called the twisting structure of R((t)). If α = idR then R((t)) will be called the ring of
(untwisted) Laurent power series and t will be called a central variable.

Remark 2.5 Let x = ∑∞
i=k ri t i ∈ R((t)). If rk is invertible in R, then x is invertible in

R((t)). Indeed, the inverse of x can be found by solving linear equations.

For the rest of this subsection we restrict ourselves to the case where R = D is a
skew field and α = idD , in which case D((t)) is a skew field.

For each x = ∑∞
i=k di t i ∈ D((t)), if dk �= 0, then we define the order of t in x as

ordt x = k;

and if x = 0, then ordt x = ∞ by definition. It is easy to check that if x, y ∈
D((t)) � {0}, then

ordt (xy) = ordt x + ordt y.
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So ordt restricts to a homomorphism ordt : D((t))×ab → Z, where D((t))×ab denotes the
abelianization of the group of units D((t))× of D((t)). Taking 0 into account, we can
also view ordt as a semi-group homomorphism

ordt : D((t))×ab � {0} → Z � {∞}.

Here our convention is ∞ + n = ∞ for all n ∈ Z � {∞}.

2.4 Degree of rational functions

The notion of the degree serves as a convenient way to compute the Thurston norm
and, more generally, the agrarian norm. Let D be a skew field, let H be a finite-rank
free abelian group with basis X , and let DH be the untwisted group ring. Note that
DH is a domain and satisfies the Ore condition by Example 2.4.

Let t ∈ X . We would like to define the t-degree function in this subsection, which
depends on the choice of X . We thus use the following convention to emphasize the
role played by X .

Notation 2.6 We will denote DH by D[X±] and the Ore localization Ore(DH) by
D(X).

For each p ∈ D[X±] � {0}, we defined the degree of t in p, denoted degt p, as
the maximal power of t in p minus the minimal power of t in p. Note that degt is
not an extension of the usual notion of the degree of a polynomial. For p = 0, we
define degt p = −∞. The degree function can be extended to D(X): for every element
f ∈ D(X), the degree of t in f , denoted degt f , is

degt f = degt p − degt q,

where p, q ∈ DH , q �= 0 and q−1 p = f . Here, our convention is−∞+n = −∞ for
all n ∈ Z. The well-definedness of degt f is an easy exercise using the Ore condition.

We define an order function ordt with respect to the basis X by embedding D(X)

into a Laurent series ring and using Sect. 2.4. First, let K be the subgroup of H
generated by X �{t} and let E = Ore(DK ). Thenwe have a natural map α : D(X) ↪→
E((t)) by expanding every rational function into a Laurent power series: Let f ∈
E[t]�{0} ⊂ D(X). Factorize f as f = dtk ·(1+∑�

i=1 di t i ), where d, di ∈ E, d �= 0.
Define

α( f −1) =
⎛

⎝1 +
∞∑

j=1

(
−

�∑

i=1

di t
i

) j⎞

⎠ · d−1t−k .

Every element of D(X) can be written as a fraction q−1 p with p, q ∈ E[t], q �= 0.
Define

α(q−1 p) = α(q−1) · p.
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That α is well defined follows from the universal property of the Ore localization.
The function α embeds D(X) into E((t)) as a subfield, and so we can view each

element f ∈ D(X) as an element of E((t)) and compute ordt f . Once again, this
t-order depends on the basis X .

There is a ring homomorphism β : E[t±] → E[t±] such that β(etk) = et−k for
all e ∈ E, k ∈ Z. For f ∈ D(X), let p, q ∈ D[X ] such that f = q−1 p and define

β( f ) = β(q)−1β(p).

That β is well defined follows from the universal property of the Ore localization.
Thus, β extends to a map (still denoted by) β : E(t) → E(t), which can be easily

seen to be a ring homomorphism. Also, β is the inverse of itself, so it is in fact a ring
automorphism. We have

degt f = − ordt f − ordt β( f ). (1)

Just like ordt , the function degt descends to a semi-group homomorphism

degt : D(X)×ab � {0} → Z � {−∞}.

2.5 Dieudonné determinant

The Dieudonné determinant is a generalization to skew fields of the classical notion of
determinant over a commutative field. It is indispensable in our definition of agrarian
torsion and thuswe recall its definition here. Let D be a skewfield and let A = (Ai j ) be
an n × n-matrix over D. The canonical representative of the Dieudonné determinant
detcD A ∈ D is defined inductively as follows:

(1) If n = 1, then detcD A = a11.
(2) If the last row of A consists of zeros only, then detcD A = 0.
(3) If ann �= 0, then we form the (n − 1) × (n − 1)-matrix A′ = (a′

i j ) by setting

a′
i j = ai j − aina−1

nn anj and declare detcD A = detcD A′ · ann .
(4) Otherwise, let j < n be maximal such that anj �= 0. Let A′ be obtained from A

by interchanging columns j and n. Then set detcD A = − detcD A′.

The Dieudonné determinant detD A of A is defined to be the image of detcD A in
D×
ab � {0}, where D×

ab is the abelianization of the multiplicative group of D.

Remark 2.7 The Dieudonné determinant satisfies the following [9]:

(1) detD(AB) = detD A ·detD B for all square matrices A, B of the same dimension.
(2) If A′ is obtained from A by adding a multiple of a row to another row, then

detD A′ = detD A.
(3) If A is upper-triangular, then detD A is the image of

∏n
i=1 aii in D×

ab � {0}.
(4) A is invertible over D if and only if detD(A) �= 0.
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2.6 Polytope group and polytope homomorphism

In this subsection, we recall the notion of the polytope homomorphism, which is used
later to construct the agrarian polytope. Let V be an R-vector space.

Definition 2.8 A polytope in V is the convex hull of finitely many points of V . Given
two polytopes P, Q, the Minkowski sum of P, Q, denoted P + Q, is the polytope

{p + q | p ∈ P, q ∈ Q}.

Let H be a finite-rank free abelian group. Below, we take the vector space V to be
H1(H , R) ∼= H ⊗Z R.

Definition 2.9 Apolytope in H1(H , R) is called integral if it is the convex hull of some
finite subset of the lattice H ⊂ H1(H , R) ∼= H ⊗Z R. The polytope group P(H) of
H is the abelian group generated by formal differences P − Q of non-empty integral
polytopes P, Q in H1(H , R)with addition (P−Q)+(P ′−Q′) = (P+P ′)−(Q+Q′)
and relations P − Q = P ′ − Q′ if P + P ′ = Q + Q′.

The unit of the group is the one-vertex polytope {0}, which we will denote by 0.
Also, instead of writing P − 0 for a polytope P we will simply write P , and every
element of P(H) of this form will be referred to as a single polytope.

Let D be a skew field and let DH be the (untwisted) group ring.

Definition 2.10 The Newton polytope P(p) of an element p = ∑
h∈H dhh ∈ DH is

the convex hull of the support supp(p) = {h ∈ H | dh �= 0} in H1(H , R).

Definition 2.11 The group homomorphism

P : (Ore(DH))×ab → P(H), P(q−1 p) = P(p) − P(q)

is called the polytope homomorphism of DH .

The well-definedness of P is an easy exercise using the Ore condition. That P is a
group homomorphism is proved in [27, Lemma 3.12].

The following is a special case of [27, Theorem 3.14].

Theorem 2.12 Let A be a square matrix over DH with detOre(DH)(A) �= 0. Then
P(detOre(DH)(A)) is a single polytope.

2.7 A lemma about matrices over skew fields

In this subsection, we prove a technical lemma about matrices, which will be used
several times in the sequel. Let D be a skew field and let t be a central variable. Let
D((t)) be the ring of Laurent power series of t with coefficient in D. Consider a matrix
M of the form

M = Id + N · t,
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where N = (ni j ) ∈ Mn(D((t))) and each entry of N has t-order at least 0, i.e.,
ordt ni j � 0 for all i, j . In order to compute detD((t)) M , we use the following process
to turn M into an upper-triangular matrix:

(∗) This process consists of n steps. In the i th step, we use elementary row opera-
tions to eliminate all ( j, i)-entries with j > i . In other words, for each j > i , we
add a suitable left multiple of the i th row to the j th row so that the resulting matrix
has 0 as its ( j, i)-entry.

Note that in order to carry out the (∗) process, at the i th step we need the resulting
matrix to have a non-zero (i, i)-entry, which is a priori unclear and thus it is a priori
unclear whether the n steps in process (∗) can all be carried out. The following lemma
affirms the feasibility of (∗).

Lemma 2.13 After each step of process (∗), we will get a matrix M ′ = Id+N ′ ·t , where
each entry of N ′ has t-order at least 0. In particular, M ′ has non-zero diagonal entries,
and thus all n steps of process (∗) can be carried out and the matrix obtained from
process (∗), say M = (mi j ), is upper-triangular and we have for all i , mii = 1+nii ·t ,
where ordt nii � 0. In particular, M is invertible.

Proof First, after step 0 (that is, before we do anything), the lemma is clear.
Suppose after step i − 1, we get a matrix M ′ = (m′

jk) = Id + N ′ · t , where each
entry of N ′ has t-order at least 0. Consider step i . Let j > i . Step i turns each entry
m′

jk into

m′′
jk = m′

jk − m′
j i (m

′
i i )

−1m′
ik .

Note that ordt (m′
j i (m

′
i i )

−1m′
ik) � 1. If j �= k then ordt m′

jk � 1 and thus
ordt m′′

jk � 1. If j = k thenm′
jk = 1+n′

jk ·t for some n′
jk ∈ D((t))with ordt n′

jk � 0,
and thus m′′

jk = 1 + n′′
jk · t for some n′′

jk ∈ D((t)) with ordt n′′
jk � 0. ��

2.8 Behavior of the degree function under representations of skew fields

Let D be a skew field and let t be a central variable. Let n ∈ N
+ and suppose that

there is a ring homomorphism σ : D → Mn(D). (Recall that ring homomorphisms are
unital, i.e., they send the identity to the identity.)We extend σ to a ring homomorphism
(still denoted by) σ : D((t)) → Mn(D((t))) by

σ

( ∞∑

i=k

di t
i

)
=

∞∑

i=k

σ(di ) · t i .

The goal of this subsection is:

Lemma 2.14 For every k ∈ N
+ and A ∈ Mk(D[t±]) we have

degt detD(t) σ (A) = n · degt detD(t) A,
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where σ(A) is the matrix obtained by applying σ to every entry of A.

Before the proof of Lemma 2.14, we state a useful corollary.

Corollary 2.15 The representation σ extends to a ring homomorphism D(t) →
Mn(D(t)).

Proof By Lemma 2.14 applied with k = 1, the matrix σ(p) is invertible in Mn(D(t))
for every non-zero p ∈ D[t]. By the universal property of the Ore localization, σ

extends to a ring homomorphism

D(t) = Ore(D[t]) → Ore(Mn(D[t]), T ) = Mn(D(t)),

where T ⊂ Mn(D[t]) is the set of non-zero divisors. Here, the last equality follows
from the universal property of the Ore localization and the following two observations
about the natural inclusion Mn(D[t]) ↪→ Mn(D(t)):

(i) Every matrix A ∈ T is invertible in Mn(D(t)). Indeed, suppose A is not invertible
over Mn(D(t)). Then there is a non-zeromatrix B ∈ Mn(D(t)) such that B ·A = 0.
Using the Ore condition, one can find a non-zero element p ∈ D[t] such that p · B
is a matrix over D[t]. But then A is a non-trivial zero divisor as p · B · A = 0, a
contradiction.

(ii) Every ring homomorphism φ : Mn(D[t]) → R that maps every element of T to
an invertible element uniquely extends to a ring homomorphism Mn(D(t)) → R.
Indeed, for every matrix A ∈ Mn(D(t)), there exists a non-zero element p ∈ D[t]
such that p · A is a matrix over D[t]. Note that p · Id ∈ T and thus φ(p · Id)
is invertible in R. So if φ can be extended to Mn(D(t)), it has to map A to
φ(p · Id)−1 · φ(p · A), which shows uniqueness. To extend φ, define φ(A) =
φ(p · Id)−1 · φ(p · A). We have to check that this is well defined. Assume that
there is another non-zero element q ∈ D[t] such that q · A ∈ Mn(D[t]). Then by
the Ore condition there exist r , s ∈ D[t], s �= 0 such that r p = sq. In particular
we have r p �= 0 and also r �= 0. We have

φ(p · Id)−1 · φ(p · A) = φ(p · Id)−1 · φ(r · Id)−1 · φ(r p · A)

= φ(r p · Id)−1 · φ(r p · A)

= φ(sq · Id)−1 · φ(sq · A)

= φ(q · Id)−1 · φ(s · Id)−1 · φ(sq · A)

= φ(q · Id)−1 · φ(q · A). ��
The lemma below is the first step towards proving Lemma 2.14.

Lemma 2.16 For all z ∈ D((t)),

ordt detD((t)) σ (z) = n · ordt z.
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Proof The lemma is trivial if z = 0. So let z = ∑∞
i=� di t i ∈ D((t)) � {0}, where

di ∈ D and d� �= 0. Then

z = d� · t� ·
( ∞∑

i=�

d−1
� di t

i−�

)
.

Thus

ordt detD((t)) σ (z) = ordt detD((t)) σ (d�) + ordt detD((t)) σ (t�)

+ ordt detD((t)) σ

( ∞∑

i=�

d−1
� di t

i−�

)
.

Since d� �= 0, σ(d�) is an invertible matrix over D. Thus,

ordt detD((t))(σ (d�)) = 0.

By Lemma 2.13, we have

ordt detD((t)) σ

( ∞∑

i=�

d−1
� di t

i−�

)
= 0.

Note also that

ordt detD((t))(Idn · t�) = n�.

We thus have ordt detD((t)) σ (z) = n� = n · ordt z, as desired. ��
Proof of Lemma 2.14 First consider z ∈ D(t). Letα : D(t) → D((t))be the embedding
given in Sect. 2.4 and let z′ = detcD(t) σ (z) be the canonical representative of the
Dieudonné determinant. Then

ordt detD(t) σ (z) = ordt z′ = ordt α(z′) = ordt detD((t)) σ (z) = n · ordt z,

where the last equality follows from Lemma 2.16.
Let β : D(t) → D(t) be the ring automorphism constructed in Sect. 2.4. We also

view β as an automorphism of the semi-group (D(t))×ab � {0}. We have

ordt β(detD(t) σ (z)) = ordt detD(t) β(σ (z)) = ordt detD(t) σ (β(z)) = n · ordt β(z),

where the third equality follows from Lemma 2.16.
Equation (1) then implies

degt detD(t) σ (z) = n · degt z. (2)
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Now consider the matrix A. By elementary row operations over D(t) we can turn
A into an upper-triangular matrix over D(t). In more details, there are elementary
matrices U1, . . . , Uκ ∈ Mk

(
D(t)

)
whose diagonal entries are all ±1 such that B =

(
∏κ

i=1 Ui )A ∈ D(t) is an upper-triangular matrix. So

degt detD(t) B = degt (± detD(t) A) = degt detD(t) A.

Thematrix σ(B) is a block-wise upper-triangularmatrix. Note that detD(t) σ (Ui ) =
±1 for all i . Thus

detD(t) σ (B) =
(

k∏

i=1

detD(t) σ (Ui )

)
· detD(t) σ (A) = ± detD(t) σ (A).

As B is upper-triangular, detcD(t) B is the image of the product of its diagonal entries

in (D(t))×ab. As σ(B) is block-wise upper-triangular, detD(t) σ (B) is the product of
the Dieudonné determinants of the diagonal blocks. Combining these with equation
(2), we see that

degt detD(t) σ (B) = n · degt detD(t) B = n · degt detD(t) A. ��

2.9 Locally indicable groups and Linnell skew fields

A group G is locally indicable if every non-trivial finitely generated subgroup of G
admits an epimorphism onto Z.

Example 2.17 All free groups are locally indicable. More generally, except for the
fundamental group of the projective plane P2, all surface groups are locally indicable.
Indeed, suppose S �= P2 is a surface. If S is not closed, then π1(S) is free and thus is
locally indicable. If S = S2 is the 2-sphere, then π1(S) is of course locally indicable.
In all other cases b1(S) �= 0 and thus π1(S) has a surjection onto Z. The kernel K
of this surjection corresponds to an infinite cyclic cover of S and thus is a free group.
So π1(S) is a semi-direct product π1(S) = K � Z with K free, and thus is locally
indicable.

The following lemmata are well known to experts. We include proofs for complete-
ness.

Lemma 2.18 Suppose that N and Q are locally indicable groups and a group G fits
into a short exact sequence

1 → N → G → Q → 1.

Then G is locally indicable.
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Proof Let H be a non-trivial finitely generated subgroup of G. Let φ : G → Q be the
quotient map with ker φ = N . Then φ(H) is a finitely generated subgroup of Q. If
φ(H) �= {1}, then, as Q is locally indicable, φ(H) has a surjection onto Z and thus so
does H . If φ(H) = {1} then H � N and, as N is locally indicable, H has a surjection
onto Z. ��
Lemma 2.19 Free products of locally indicable groups are locally indicable.

Proof Let G = ∗i∈I Gi be a free product of locally indicable groups Gi and let
{1} < H � G be a finitely generated subgroup of G. For each i , let αi : G → Gi be
the natural homomorphism. If αi (H) �= {1} for some i , then H has a surjection onto
Z as Gi is locally indicable. So it suffices to prove that the subgroup

⋂
i∈I ker(αi ) is

locally indicable. By the Kurosh subgroup theorem,
⋂

i∈I ker(αi ) is a free product:

⋂

i∈I

ker(αi ) = F ∗ (∗ j∈J K j ),

where F is a free group and each K j is a conjugate of a subgroup of some Gi . As⋂
i∈I ker(αi ) is normal in G, each K j is isomorphic to a subgroup of the intersection⋂
i∈I ker(αi ) ∩ Gi ′ for some i ′ ∈ I . As

⋂
i∈I ker(αi ) ∩ Gi ′ = {1} for all i ′ ∈ I ,

K j = {1} for all j and
⋂

i∈I ker(αi ) = F is a free group, which is locally indicable.
��

To obtain more examples of locally indicable groups we briefly recall some notions
from the theory of 3-manifolds. For details the reader is referred to the book [1]. Let
M be a compact connected orientable irreducible 3-manifold with empty or toroidal
boundary. M is called non-positively curved if there is aRiemannianmetric on the inte-
rior of M with non-positive sectional curvature. M is called geometric if M supports

one of the geometries S3, S2 × R
1, R

3,NIL,SOL, S̃L2(R), H
3, H

2 × R.

Proposition 2.20 Suppose that M is a compact connected orientable 3-manifold with
empty or toroidal boundary. Then π1(M) is virtually locally indicable, i.e., π1(M)

has a finite-index locally indicable subgroup.

Proof First consider the case where M is prime. If M is not irreducible, then M =
S1 × S2 and π1(M) = Z is locally indicable. So let us assume that M is irreducible. If
M is not a closed graph manifold, then M is non-positively curved. Indeed, the non-
positive curvature of M follows from the resolution of the Virtually Haken Conjecture
[2], Thurston’s Hyperbolization Theorem [47] and work of Leeb [32]. Work of Agol,
Duchamp, Gruenberg, Haglund, Kahn, Krob, Marković, Liu, Perelman, Przytycki,
Rhemtulla, and Wise (see [1, (G.30)] for an explanation) imply that if M is non-
positively curved then π1(M) is virtually bi-orderable and thus is virtually locally
indicable [33].

If M is a non-geometric closed graph manifold, then by [30, Lemma 2.1] M has
a finite-sheeted cover N whose Seifert pieces are products of circles with orientable
surfaces of genus at least two.We claim that b1(N ) > 0. Indeed, π1(N ) acts on a finite
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graph (V , E) with vertex stabilizers the fundamental group of its Seifert pieces and
edge stabilizers isomorphic to Z

2. By [6, Theorem 2], there is a long exact sequence

· · · →
⊕

e∈E

H1(Stab(e), Q) →
⊕

v∈V

H1(Stab(v), Q) → H1(π1(N ), Q) → · · ·

For each v ∈ V and each edge e incident to v, Stab(v) is the fundamental group of a
Seifert piece S1 × �, where � is a surface of genus at least two, and e corresponds
to a boundary component of � (if e is a loop then it corresponds to two boundary
components). Therefore, b1(S1 × �) � deg(v) + 4. So

b1(N ) = dimQ H1(π1(N ), Q)

�
∑

v∈V

dimQ H1(Stab(v), Q) −
∑

e∈E

dimQ H1(Stab(e), Q)

�
∑

v∈V

deg(v) + 4|V | − 2|E |

=4|V | > 0.

We claim that π1(N ) is locally indicable. Let H � π1(N ) be a finitely generated
non-trivial subgroup. If H is of finite index, then b1(H) � b1(N ) > 0. If H is of
infinite index, then the proof of [21, Theorem 6.1] (see also [22, Lemma 2]) shows
that b1(H) � 1. So in any case H has a surjection onto Z.

Now suppose that M is a closed geometric graph manifold. Then M cannot support
the H

3 geometry. If M supports one of the geometries S3, S2 × R
1, R

3,NIL,SOL,
then by [18, Lemmata 8.1, 9.2, 10.1, 11.1], π1(M) is either virtually free abelian or
virtually Z � Z, and thus is virtually locally indicable.

If M supports the S̃L2(R) geometry then π1(M) is a semi-direct product π1(M) =
Z � F for some non-cyclic free group F and thus is locally indicable.

If M supports the H
2 ×R geometry then π1(M) is virtually a product Z× F where

F is a non-cyclic free group, and thus is virtually locally indicable. This finishes the
proof for the case where M is prime.

In the general case, the prime decomposition theorem implies that π1(M) is a free
product:

π1(M) = ∗n
i=1π1(Mi ),

where Mi are prime 3-manifolds. By the previous part of the proof, for each i there is
a finite-index locally indicable normal subgroup Hi of π1(Mi ). Let H be the kernel
of the natural homomorphism

π1(M) →
n⊕

i=1

(π1(Mi )/Hi ).
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Then H is a finite-index normal subgroup ofπ1(M). By theKurosh subgroup theorem,
H is a free product:

H = F ∗ (∗ j∈J K j ),

where F is a free group and each K j is a conjugate of a subgroup of some π1(Mi ).
As H is normal, each K j is isomorphic to a subgroup of H ∩ π1(Mi ) = Hi for some
i , which is locally indicable. By Lemma 2.19, H is locally indicable, being a free
product of locally indicable groups. ��

Let G be a locally indicable group. By [26, Theorem 1.1], G satisfies the Atiyah
conjecture overC. LetDG be the division closure ofCG inUG , the algebra of affiliated
operators of the group von Neumann algebra of G. Since G is obviously torsion-free,
DG is a skew field [38, Lemma 10.39] and is called the Linnell skew field of CG. See
also [35].

2.10 Hughes-free skew fields

The notion of Hughes-freeness was introduced by Hughes [23] in order to prove
isomorphism between certain skew fields.

Definition 2.21 Let R be a ring. An R-field consists of a skew field D and a ring
homomorphism β : R → D. The skew field D is called an epic R-field if D is the
skew field generated by β(R).

Definition 2.22 Let DG be a twisted group ring with D a skew field and G a locally
indicable group. An epic DG-fieldβ : DG → E isHughes-free if for every non-trivial
finitely generated subgroup H of G, every normal subgroup N of H with H/N ∼= Z,
and every h1, · · · , hn ∈ H in distinct cosets of N in H , the sum EN β(h1) + · · · +
EN β(hn) is direct, where EN is the division closure of β(DN ) in E , and DN is the
subring of DG generated by D and N .

Example 2.23 Let G be a locally indicable group. Then its Linnell skew field is a
Hughes-free CG-field [26, Corollary 6.2].

2.11 Specialization, universality and Lewin groups

Let R be a ring.

Definition 2.24 Given two epic R-fieldsβ : R → D andβ ′ : R → D′, a specialization
of D to D′ with respect to R is a pair (S, α)where S is a subring of D containing im β,
the map α : S → D′ is a ring homomorphism with α ◦ β = β ′, and every element in
S not mapped to 0 by α is invertible in S.

Definition 2.25 An epic R-field β : R → D is called the universal R-field if for every
epic R-field D′ there is a specialization of D to D′ with respect to R. If in addition
the map R → D is injective, then D is called the universal field of fractions of R.
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Definition 2.26 A group G is Lewin if for every twisted group ring DG with D a skew
field, there is a Hughes-free universal DG-field.

Let G be a finitely generated Lewin group. By [25, Proposition 4.1], G is locally
indicable and thus there is a natural embedding τ : CG → DG of CG into its Linnell
skew field DG .

Let q : G � Gfab be the natural quotient homomorphism ofG onto itsmaximal free
abelian quotient Gfab. Let X be a basis of Gfab and let x ∈ X . Consider the group ring
DG Gfab. Sincewe are interested in computing degx , the difference between the highest
and the lowest power of x with respect to the basis X , we will denote Ore(DG Gfab)

by DG(X) to emphasize the role played by X .
Let σ : G → GLn(C) be a complex representation of G of finite dimension n. For

reasons that will be clear later, we are interested in the representations

σ ⊗Z q : G → GLn(C(X)), (σ ⊗Z q)(g) = σ(g)q(g),

σ ⊗C τ ⊗Z q : G → GLn(DG(X)), (σ ⊗C τ ⊗Z q)(g) = σ(g)τ (g)q(g).

Let M ∈ Mm(ZG) be a square matrix over ZG. By applying σ ⊗Z q and
σ ⊗C τ ⊗Z q to every entry of M we obtain matrices (σ ⊗Z q)(M) ∈ Mmn(C(X))

and (σ ⊗C τ ⊗Z q)(M) ∈ Mmn(DG(X)), respectively.

Lemma 2.27 We have the inequality

degx detC(X)(σ ⊗Z q)(M) � degx detDG (X)(σ ⊗C τ ⊗Z q)(M).

Proof We would like to apply [13, Proposition 4.1]. Let Y = X � {x}. Consider the
ring R = CG[Y ±]. The ring CG[X±] = R[x±] is the ring of Laurent polynomials
over R. Consider two R-fields

β : R → DG(Y ), β(g) = τ(g), β(y) = y for all g ∈ G, y ∈ Y ,

β ′ : R → C(Y ), β ′(g) = 1, β ′(y) = y for all g ∈ G, y ∈ Y .

Consider the representation

σ ⊗C idCG ⊗Z q : G → GLn(R[x±]).

As above, by applying σ ⊗C idCG ⊗Z q to every entry of M we get a matrix
(σ ⊗C idCG ⊗Z q)(M). Note that β ′ can be extended to a map from R[x±] to C(X)

by setting β ′(x) = x . With this convention we can then apply β ′ to each entry of the
matrix (σ ⊗C idCG ⊗Z q)(M) to get a square matrix β ′((σ ⊗C idCG ⊗Z q)(M)) over
C(X). Note that

(σ ⊗Z q)(M) = β ′((σ ⊗C idCG ⊗Z q)(M)).
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Similarly, we can extend β to a map from R[x±] to DG(X) by setting β(x) = x . We
have

(σ ⊗C τ ⊗Z q)(M) = β((σ ⊗C idCG ⊗Z q)(M)).

By [25, Theorem 3.7],DG is the universal field of fractions ofCG. Therefore, there
exists a specialization of DG(Y ) to C(Y ) with respect to R. The desired result thus
follows from [13, Proposition 4.1]. ��

2.12 Rational semirings

In this and the next two subsections we recall results about rational semirings that are
necessary in the study of twisted �2-Betti numbers. By a semiring R we mean a set
together with an associative commutative addition and an associative multiplication
with identity element 1R which is distributive over the addition. Let U be a group and
let R be a semiring. We say that R is a rational U-semiring if

(i) There is a map �: R → R, r �→ r�, called the rational structure on R.
(ii) R is a U -biset, i.e., U acts on both sides of R in a compatible way: (ur)v = u(rv)

for all u, v ∈ U , r ∈ R.
(iii) For every u, v ∈ U and r ∈ R, (urv)� = v−1r�u−1.

Example 2.28 Let G be a group and let R be a ring with a ring homomorphism
σ : CG → R. Then R is a C

×G-biset with the action given by

(c1g1, c2g2, r) �→ σ(c1g1) · r · σ(c2g2)

for all c1, c2 ∈ C
×, g1, g2 ∈ G, r ∈ R. Let S be the division closure of σ(CG) in R.

Then S is a rational C
×G-semiring under the rational map given by the following: if

s ∈ S is invertible in R then s� = s−1; otherwise, s� = 0.

A morphism of rational U-semirings  : R1 → R2 is a map such that

(i) (r + r ′) = (r) + (r ′);
(ii) (rr ′) = (r)(r ′) and (1R1) = 1R2 ;
(iii) (r�) = (r)� for all r ∈ R1;
(iv) (urv) = u(r)v for all u, v ∈ U , r ∈ R1.

Below, we recall the construction of the universal rational U-semiring Rat(U ). It
is characterized by the following universal property:

Lemma 2.29 [8, Lemma 4.7] If R is a rational U-semiring, then there exists a unique
morphism of rational U-semirings  : Rat(U ) → R.

Before defining Rat(U ), we present some definitions and notation:

• If X is a set, then the free additive semigroup on X is NX � {0}. Here, our
convention is 0 ∈ N. Note that if X is a multiplicative monoid with a U -biset
structure, then NX � {0} is naturally a U -semiring.
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• If X is a U -biset, then X×n
U is the set of equivalence classes of words in X of

length n with respect to the relation generated by

x1x2 · · · (xi u)xi+1 · · · xn ∼ x1x2 · · · xi (uxi+1) · · · xn

for all x1, x2, · · · , xn ∈ X , u ∈ U . The multiplicative free monoid on X over
U is defined as

U�X =
∞⋃

n=0

X×n
U

where by definition X×0
U = U . The monoid structure is defined as follows: for

x, y ∈ U�X , if x, y ∈ U , then xy ∈ U is just the product under the group
operation of U ; if x ∈ U and y ∈ (U�X) � U , then xy is given by the left
action of U on (U�X) � U ; if x ∈ (U�X) � U and y ∈ U , then xy is given
by the right action of U on (U�X) � U ; finally, if x, y ∈ (U�X) � U , then
xy is the concatenation of x and y. Observe that N[U�X ] � {0} is naturally a
U -semiring.

• If X is a U -biset, then X� denotes a disjoint copy of X together with a bijective
map X → X�, x �→ x�, and a U -biset structure given by

ux�v = (v−1xu−1)�

for all u, v ∈ U , x ∈ X .

The universal rational U-semiring is defined as follows:

• First consider the U -semiring NU � {0} and set X0 = ∅, X1 = (NU � {0})�.
• Suppose n � 1, Xn is a U -biset and Xn−1 is a U -sub-biset of Xn . Consider the

U -semiring N[U�Xn]� {0} and the U -sub-biset N[U�Xn]�N[U�Xn−1]. Define

Xn+1 = (N[U�Xn] � N[U�Xn−1])� ∪ Xn .

• Then X = ⋃
n�0 Xn is a U -biset. Let

Rat(U ) = N[U�X ] � {0}.

For later reference, we note the following.

Theorem 2.30 ([8, Lemma 5.4 and Theorem 5.7]) If α ∈ Rat(U ), then there exists a
subgroup source(α) � U with the following properties.

(i) source(α) is finitely generated and α ∈ Rat(source(α)) · U.
(ii) If V is a subgroup of U such that α ∈ Rat(V ) · U, then source(α) � V .

An element α ∈ Rat(U ) is called primitive if α ∈ Rat(source(α)).
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2.13 Trees and complexity

Let T be the set of all finite rooted trees up to isomorphism. Here we recall that T has
a well-order satisfying certain properties and is a U -semiring for any group U . The
order will be used to define a complexity on elements of Rat(U ).

Denote by 0T the one-vertex tree. If 0T �= X ∈ T , denote by fam(X) the finite
family of finite rooted trees obtained from X by deleting the root and all incident
edges, where the root of an element Y ∈ fam(X) is the unique vertex of Y that is
incident to the root of X . We denote by exp(X) the tree obtained from X by adding
a new vertex which is declared to be the root of exp(X), and a new edge joining it to
the root of X .

Let X , Y ∈ T . The sum X + Y ∈ T is the rooted tree obtained by identifying the
roots of X , Y and declaring it to be the root of X + Y . The product X · Y is defined as
follows: if one of X , Y is 0T , then X ·Y = 0T by definition; if X , Y �= 0T , the product
X · Y is obtained by adding pairwise elements of fam(X) with elements of fam(Y ),
and then connecting all the resulting finite rooted trees by adding a new vertex with
incident edges to their roots, and declaring the new vertex to be the root of X · Y , i.e.,

X · Y =
∑

X ′∈fam(X)
Y ′∈fam(Y )

exp(X ′ + Y ′).

The rational map of T is given by

X� = exp2(X).

The group U acts on both sides of T by the trivial action. With these operations, T is
a rational U -semiring.

Let Tn ⊂ T be the subset consisting of all elements with at most n edges. The
following defines a well-order on T [8, Lemma 3.3]:

• 0T is the least element of T .
• Suppose thatTn−1 has already been ordered for some n � 1. Let X , Y ∈ Tn �{0T }.
Let log(X) be the largest element of Tn−1 in fam(X), so exp(log(X)) is a summand
of X , and denote its complement by X − exp(log(X)) ⊂ Tn−1. Define X > Y
if either log(X) > log(Y ) or log(X) = log(Y ) and X − exp(log(X)) > Y −
exp(log(Y )).

By Lemma 2.29, there is a unique map

Tree : Rat(U ) ∪ {0} → T

that maps 0 to 0T . For α ∈ Rat(U ) ∪ {0}, the image Tree(α) is called the complexity
of α.

Remark 2.31 If V � U is a subgroup then by Lemma 2.29 there is a unique map

TreeV : Rat(V ) ∪ {0} → T
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that maps 0 to 0T . If α ∈ Rat(V ) ∪ {0} ⊂ Rat(U ) ∪ {0}, then TreeV (α) = Tree(α)

for all α ∈ Rat(V ) ∪ {0}, i.e., the complexity of α does not depend on whether we
consider α as an element of Rat(V ) ∪ {0} or Rat(U ) ∪ {0}.

2.14 Tree complexity associated to groups

LetG be a locally indicable group, let τ : CG → DG be the natural embedding into the
Linnell skew field, and let σ : G → GLn(C) be a finite-dimensional representation.

For every subgroup H � G, we think of the Linnell skew field DH as a subring of
DG . Let D̃H be the division closure of (σ ⊗C τ)(CH) in Mn(DG). Note that by the
definition of the division closure, D̃H is a subring of Mn(DH ), that is,

D̃H � Mn(DH ). (3)

The map σ ⊗C τ is a ring homomorphism from CH to Mn(DG). Then under the
rational map given by Example 2.28, D̃H is a rational C

× H -semiring. Lemma 2.29
then gives a map

H : Rat(C× H) ∪ {0} → D̃H .

Lemma 2.32 The image im(H ) equals D̃H .

Proof First note that im(H ) is a ring. Indeed, since −Id ∈ im(H ), for every
x ∈ im(H ), we also have −x = (−1) · x ∈ im(H ).

Second, note that the target ofH is D̃H , and sowe automatically have the inclusion
im(H ) ⊂ D̃H . To prove the reverse containment, first note that im(H ) contains
(σ ⊗C τ)(CH). Let x ∈ im(H ). Then there exists α ∈ Rat(C× H) ∪ {0} such
that H (α) = x . If x is invertible in Mn(DG), then x is invertible in D̃H , and then
x−1 = x� = H (α�) ∈ im(H ). So im(H ) contains the division closure of
(σ ⊗C τ)(CH) in Mn(DG), that is, D̃H . ��

Let T be the set of finite rooted trees. As in Sect. 2.13, we get a map

Tree : Rat(C× H) ∪ {0} → T .

The H -complexity of an element x ∈ D̃H is defined as

TreeH (x) = min{Tree(α) | α ∈ Rat(C× H) ∪ {0},H (α) = x}.

By Lemma 2.32, TreeH is defined on the whole of D̃H . We say that

α ∈ Rat(C× H) ∪ {0}

realizes the H-complexity of x if H (α) = x and Tree(α) = TreeH (x).
Now suppose that H is finitely generated and H = N � 〈t〉 for some normal sub-

group N � H and infinite-order element t ∈ H . For simplicity, we denote τ(t) ∈ DH
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by t and σ(t) · τ(t) ∈ D̃H by s. Note that conjugation by t induces an automor-
phism DN → DN , x �→ t xt−1. Indeed, DN is the division closure of τ(CN ) in DG ,
and hence tDN t−1 is the division closure of tτ(CN )t−1 = τ(tCNt−1) = τ(CN ).
Therefore, tDN t−1 and DN are division closures of the same ring in DG , and hence
coincide.

We now see that the conjugation A �→ s As−1 induces an automorphism of
Mn(DN ). Also, similarly to the above proof, one can show that the conjugation
A �→ s As−1 induces an automorphism of D̃N . Therefore, we can form DN ((t)),
D̃N ((s)) and Mn(DN )((s)), the rings of twisted Laurent power series with twisting
structures given by these conjugation automorphisms. It is a standard fact that DH

can be identified with a subring of DN ((t)); it quickly follows for example from [28,
Proposition 2.23]. It is clear that Mn(DN ((t))) = Mn(DN )((s)). Hence, the contain-
ment (3) implies that D̃H and D̃N can be identified with subrings of Mn(DN )((s)).
The following is essentially [26, Proposition 5.1].

Proposition 2.33 Let x ∈ D̃H and assume that for every 0 �= y ∈ D̃H such that
TreeH (y) < TreeH (x), y is invertible in D̃H . Then x ∈ D̃N ((s)).

Moreover, write x as a Laurent power series

x =
∑

i

xi s
i ,

where xi ∈ D̃N for all i . Then

TreeH (xi ) � TreeH (x)

for all i , and equality holds for some i if and only if x = xi si .

Proof We will apply [26, Proposition 5.1] with

A = Mn(DN ), P = Mn(DN )((s)), DN ,P = D̃N , DH ,P = D̃H

in the notation of the proposition. We need to verify that D̃N (resp. D̃H ) is the division
closure of (σ ⊗C τ)(CN ) (resp. (σ ⊗C τ)(CH)) in Mn(DN )((s)), where we think of
σ ⊗C τ as a ring homomorphism from CN (resp. CH ) to Mn(DN )((s)).

Consider D̃H . First, suppose that y ∈ D̃H is invertible in Mn(DN )((s)) =
Mn(DN ((t))). By (3), the entries of the matrix y lie in the skew field DH . So y is
invertible in Mn(DH ), and thus in Mn(DG). So y is invertible in D̃H . So D̃H contains
the division closure of (σ ⊗C τ)(CH) in Mn(DN )((s)), say R. As a subring of D̃H ,
R can be identified with a subring of Mn(DG). Let z ∈ R be such that z is invertible
in Mn(DG). By (3), z ∈ D̃H is a matrix over DH . So z is invertible in Mn(DH ),
and thus in Mn(DN ((t))). So z is invertible in R. This implies that R � D̃H , and
therefore finishes the verification that D̃H is the division closure of (σ ⊗C τ)(CH) in
Mn(DN )((s)). The verification for D̃N is similar and straightforward.

By [26, Proposition 5.1], we have x ∈ D̃N ((s)). Write x as a Laurent power series
x = ∑

i xi si , where xi ∈ D̃N for all i . Now, [26, Proposition 5.1] implies that
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TreeH (xi si ) � TreeH (x) for all i , and equality holds for some i if and only if x = xi si .
To finish the proof, simply note that for all z ∈ D̃N and all i , TreeH (z) = TreeH (zsi ).��

3 Agrarian invariants

The notion of agrarian groupswas introduced in [27], but the idea dates back toMalcev
[40]. The notion of agrarian invariants was later introduced and studied by Henneke
and the first author in [19].

3.1 Agrarianmaps

LetG be agroup.Anagrarian mapofG is a finite dimensional left linear representation
σ : G → GLn(D) of G over a skew field D, where GLn(D) denotes the group of
invertible n × n-matrices over D.

Remark 3.1 In [19], the authors define an agrarian map to be a 1-dimensional rep-
resentation G → GL1(D) over a skew field. As we will see in Examples 3.4 and
3.18, general finite-dimensional representations arise naturally in the study of twisted
invariants. We therefore generalize the work of [19] and define an agrarian map to be
a general finite-dimensional representation.

3.2 Rationalization

If G is finitely generated, then it has a maximal free abelian quotient denoted Gfab. Let
q : G � Gfab be the natural quotient map, and let DGfab and QGfab be the untwisted
group rings. View q : G → Ore(QGfab) as another representation and form the tensor
product representation

σ ⊗Z q : G → GLn(Ore(DGfab)), (σ ⊗Z q)(g) = σ(g)q(g),

called the rationalization of σ . (SinceQGfab is commutative, Ore(QGfab) is of course
a familiar field of rational functions in multiple variables.)

For the rest of this subsection suppose n = 1, i.e., we have a homomorphism
σ : G → D×. In [19], Henneke and the first author introduce the following rational-
ization of the agrarianmap σ . Let K = ker q. As explained in Example 2.3, by picking
a set-theoretic section s : Gfab → G, we obtain a twisted group ring (ZK )Gfab with
a natural isomorphism ZG ∼= (ZK )Gfab. The maps s and σ together induce a twisted
group ring structure D∗Gfab (here the notation is used to distinguish the twisted group
ring D ∗Gfab from the untwisted group ring DGfab). The restriction σ |ZK : ZK → D
naturally induces a ring homomorphism (ZK )Gfab → D ∗ Gfab between the twisted
group rings. Note that there is a natural embedding D ∗ Gfab ↪→ Ore(D ∗ Gfab). By
definition, the HK-rationalization of σ , denoted σ̃ : ZG → Ore(D ∗ Gfab), is the
composition

ZG ∼= (ZK )Gfab → D ∗ Gfab → Ore(D ∗ Gfab).
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The following Lemma 3.2 can be easily extracted from the proof of [25, Proposition
3.5].Weprovide the proof for the convenience of the reader.Roughly speaking, Lemma
3.2 implies that σ ⊗Z q and σ̃ are equivalent for the purpose of defining agrarian
invariants. The reader is referred to Remark 3.15 below for the precise meaning of this
equivalence.

Lemma 3.2 There is an isomorphism α : Ore(D ∗ Gfab) → Ore(DGfab) such that the
following hold.

(i) α ◦ σ̃ = σ ⊗Z q.
(ii) For all x ∈ DGfab, view x and α(x) as functions x, α(x) : Gfab → D. Then

supp(x) = supp(α(x)).

Proof For all d ∈ D and h ∈ Gfab, let

α(d ∗ h) = d · σ(s(h)) · h,

where the product d ∗ h on the left-hand side is considered as an element of D ∗ Gfab,
and the right-hand side product is considered as an element of DGfab. By extending
α linearly across D ∗ Gfab we get a map α : D ∗ Gfab → DGfab. Item (ii) follows
immediately.

We check that α is a ring homomorphism. First, α obviously preserves addition.
Second, note that the identity of D ∗ Gfab is σ(s(1))−1 ∗ 1. Indeed, for all d ∈ D and
h ∈ Gfab,

(
σ
(
s(1)

)−1 ∗ 1
)

· (d ∗ h) =
(
σ
(
s(1)

)−1
σ
(
s(1)

)
dσ

(
s(1)

)−1

σ
(
s(1)

)
σ
(
s(h)

)
σ
(
s(h)

)−1
)

∗ h

= d ∗ h.

Since α(σ(s(1))−1 ∗ 1) = σ(s(1))−1 · σ(s(1)) · 1 = 1, the function α preserves the
identity.

Third, for all d1, d2 ∈ D and h1, h2 ∈ Gfab,

α
(
(d1 ∗ h1) · (d2 ∗ h2)

) = α
((

d1σ
(
s(h1)

)
d2σ

(
s(h1)

)−1

σ
(
s(h1)

)
σ
(
s(h2)

)
σ
(
s(h1h2)

)−1
)

∗ (h1h2)
)

= d1σ
(
s(h1)

)
d2σ

(
s(h2)

) · (h1h2),

α(d1 ∗ h1) · α(d2 ∗ h2) = d1σ
(
s(h1)

)
h1 · d2σ

(
s(h2)

)
h2

= d1σ
(
s(h1)

)
d2σ

(
s(h2)

) · (h1h2).

Thus, α preserves multiplication. This show that α is a ring homomorphism.
We define an inverse of α as follows. Let β : DGfab → D∗Gfab be given by setting

β(dh) =
(

dσ
(
s(h)

)−1
)

∗ h,
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for all d ∈ D, h ∈ Gfab, and then extending linearly across DGfab. It is easy to check
that β is indeed the inverse ofα, and thusα : D∗Gfab → DGfab is a ring isomorphism.

Therefore,α extends to a ring isomorphismbetween theOre localizations. It remains
to check item (i). Let g ∈ G, let h = q(g) ∈ Gfab. Then

α(̃σ (g)) = α(σ(gs(h)−1) ∗ h) = σ(gs(h)−1)σ (s(h)) · h = σ(g) · h = σ(g)q(g).

as desired. ��

3.3 Agrarian Betti numbers

In the sequel, tensor products happen between left and right modules, i.e., if R is a
ring, then M ⊗R N is the tensor product of a right R-module M and a left R-module
N . Moreover, if S ⊂ M, T ⊂ N are not submodules, then we define

S ⊗R T = {s ⊗ t | s ∈ S, t ∈ T }.

Let (C∗, ∂∗) be a chain complex of free right ZG-modules.

Convention 3.3 In the sequel, Dn will denote the n-dimension right D-module with
column vectors as elements. We will write Dn

σ for the ZG-D-bimodule that is Dn as
a set with the left action induced by σ (i.e., g · v = σ(g) · v for all g ∈ G, v ∈ Dn

σ )
and the right action given by coordinate-wise multiplication.

If G is finitely generated, let q : G → Gfab be the natural quotient map onto the max-
imal free abelian quotient Gfab of G and let X be a basis of the free abelian group Gfab.
For simplicity we will write (Ore(DGfab))

n
σ (resp. (D(X))n

σ ) for (Ore(DGfab))
n
σ⊗Zq

(resp. (D(X))n
σ⊗Zq). Note that the left action of G on (Ore(DGfab))

n
σ

∼= (D(X))n
σ is

given by g · v = σ(g)q(g) · v for all g ∈ G, v ∈ (Ore(DGfab))
n
σ

∼= (D(X))n
σ .

Tensoring C∗ with Dn
σ over ZG gives rise to a chain complex C∗ ⊗ZG Dn

σ , which
is a complex of right D-modules. So H∗(C∗ ⊗ZG Dn

σ ) is also a right D-module. The
i th σ -agrarian Betti number of C∗ is

bσ
i (C∗) = dimD Hi (C∗ ⊗ZG Dn

σ ).

If C∗ is a projective resolution of Z over ZG, then we obtain the i th σ -agrarian
Betti number of G:

bσ
i (G) = dimD Hi (G, Dn

σ )

where the homology is computed with respect to the representation σ .

Example 3.4 (Twisted �2-Betti numbers) Suppose that G is locally indicable (twisted
�2-Betti numbers can be defined for any group, but for the purpose of this paper
we restrict ourselves to locally indicable ones). Let η : G → GLn(C) be a finite-
dimensional complex representation. Recall thatDG denotes the Linnell skew field of
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G and τ : ZG → DG denotes the natural embedding. Let

σ = η ⊗C τ : G → GLn(DG), σ (g) = η(g)τ (g).

Then the i th twisted �2-Betti number of C∗ with respect to η is

b(2),η
i (C∗) = bσ

i (C∗).

If η is the trivial representation G → GL1(C) that sends every g ∈ G to 1, then we
denote b(2),η

i (C∗) by b(2)
i (C∗) and call it the i th (untwisted) �2-Betti number of C∗.

Remark 3.5 A widely used definition of �2-Betti numbers is the following. LetN (G)

be the von Neumann alebra of G. Then

b(2)
i (C∗) = dimN (G) Hi (C∗ ⊗ZG N (G)),

where dimN (G) denotes the von Neumann dimension. By [15, Theorem 3.6 (2)], this
definition is the same as the one in Example 3.4 when G is locally indicable.

Lemma 3.6 Suppose that G is finitely generated with Gfab non-trivial. Then bσ⊗Zq
0 (G) =

0.

Proof There exists a presentation G = 〈X | R〉 with an element x ∈ X such that q(x)

is an element of a basis Y of Gfab. Below, we denote Ore(DGfab) by D(Y ) and when
we talk about the q(x)-order, we mean the order with respect to Y .

Construct a K (G, 1) CW-complex BG from the presentation complex of G =
〈X | R〉 by adding cells of dimension greater than or equal to 3, and let EG be the
universal cover of BG. Consider the cellular chain complex of EG consisting of right
G-modules:

· · · → C1
∂1−→ C0 → 0.

Let p be the unique 0-dimensional cell of BG and let e be the edge of BG labeled
by x . There exists a lift p̃ (resp. ẽ) of p (resp. e) such that

∂1(̃e) = p̃ · (1 − x).

Consider the map

∂1 ⊗ZG id(D(Y ))n
σ
: C1 ⊗ZG ((D(Y ))n

σ → C0 ⊗ZG (D(Y ))n
σ .

Let

∂ ′
1 : (̃e · (ZG)) ⊗ZG ((D(Y ))n

σ → C0 ⊗ZG ((D(Y ))n
σ
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be the restriction of ∂1⊗ZG id((D(Y ))n
σ
. Note that for every column vector v ∈ (D(Y ))n

σ ,
we have

∂ ′
1(̃e ⊗ v) = ( p̃ · (1 − x)) ⊗ v = p̃ ⊗ (v − σ(x) · q(x) · v).

Let B be the standard D(Y )-basis of ((D(Y ))n
σ . Then under the bases {̃e} ⊗ZG B and

{ p̃} ⊗ZG B, the matrix representative of ∂ ′
1 has the form

Id − σ(x) · q(x).

Since σ(x) is a matrix over D, each entry of σ(x)q(x) has q(x)-order at least 1. So
Lemma 2.13 implies that Id − σ(x) · q(x) is invertible, and thus ∂ ′

1 is surjective. It
follows that ∂1 ⊗ZG id(D(Y ))n

σ
is surjective as well and thus bσ⊗Zq

0 (G) = 0. ��
The σ -agrarian Euler characteristic of C∗ is

χσ (C∗) =
∞∑

i=0

(−1)i bσ
i (C∗)

provided that the sum is well defined, i.e., only finitely many of the values bσ
i (C∗) are

non-zero, and all non-zero terms are finite.
If in addition C∗ is a free resolution of Z over ZG, then we obtain the σ -agrarian

Euler characteristic of G:

χσ (G) =
∞∑

i=0

(−1)i bσ
i (G).

Proposition 3.7 If C∗ is finite, i.e., each Ci has finite rank and there are only finitely
many non-zero modules Ci , then

∞∑

i=0

(−1)i bσ
i (C∗) = n ·

∞∑

i=0

(−1)i rkZG Ci = n · χ(C∗),

where χ(C∗) denotes the usual Euler characteristic of C∗. In particular,

χσ (G) = n · χ(G)

if G is of type F, i.e., there is a K (G, 1) space that is a finite CW-complex.

Proof For all i , decompose Ci ⊗ZG Dn
σ as

Ci ⊗ZG Dn
σ = Bi ⊕ Hi ⊕ C ′

i ,

where Bi is the image of ∂i ⊗ZG idDn
σ
, Hi ∼= Hi (C∗ ⊗ZG Dn

σ ), and ∂i ⊗ZG idDn
σ

maps C ′
i isomorphically onto Bi−1 and restricts to the trivial map on Bi ⊕ Hi . The
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decomposition is possible as Ci ⊗ZG Dn
σ is a right-module over the skew field D.

Then

dimD Bi = dimD C ′
i+1.

Therefore,

∞∑

i=0

(−1)i dimD Hi =
∞∑

i=0

(−1)i dimD(Ci ⊗ZG Dn
σ ) = n ·

∞∑

i=0

(−1)i rkZG(Ci ). ��

Proposition 3.8 Suppose that G is finitely generated and is the fundamental group of
the mapping torus T f of a cellular self-map f : Y → Y of a connected CW-complex
Y with finite d-skeleton. Let C∗ be the cellular chain complex of the universal cover
T̃ f of T f . Then for i � d,

bσ⊗Zq
i (C∗) = 0.

Proof For each i , by lifting each i-cell of Y ⊂ T f to an i-cell in the universal cover
T̃ f , we obtain a set Bi ⊂ Ci . Let

Ai+1 = {� × [0, 1] | � ∈ Bi },
Ai+1 = spanZG Ai , Bi = spanZG Bi .

(Here the subscript keeps track of dimension and so we useAi+1 instead ofAi .) Then
Ai ∪Bi is aZG-basis ofCi = Ai ⊕ Bi . Let V be the standard basis of (Ore(DGfab))

n
σ .

ThenAi ⊗ZG V (resp. Bi ⊗ZG V ) is an Ore(DGfab)-basis of Ai ⊗ZG (Ore(DGfab))
n
σ

(resp. Bi ⊗ZG (Ore(DGfab))
n
σ ).

Now suppose i � d. Let

Pi : Ci ⊗ZG (Ore(DGfab))
n
σ → Bi ⊗ZG (Ore(DGfab))

n
σ

be the projection corresponding to the direct sum decomposition

Ci ⊗ZG (Ore(DGfab))
n
σ = (Ai ⊗ZG (Ore(DGfab))

n
σ ) ⊕ (Bi ⊗ZG (Ore(DGfab))

n
σ ),

and let ∂ ′
i+1 be the restriction of ∂i+1 ⊗ZG id(Ore(DGfab))n

σ
to Ai+1.

The natural map T f → S1 that maps Y to a single point induces a group homo-
morphism G → Z, which factors through a homomorphism Gfab → Z. Let X be a
basis of the free abelian group Gfab such that there exists t ∈ X that is mapped to a
generator of Z by the homomorphism Gfab → Z. Below, we denote Ore(DGfab) by
D(X) and when we talk about t-order, we mean the order with respect to the basis X .

The matrix representative of Pi ◦ ∂ ′
i+1 under the basesAi+1 ⊗ZG V and Bi ⊗ZG V

has the form Id+ M · t where M is a matrix over D[X � {t}]. In particular, each entry
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of M · t has t-order at least 1. By Lemma 2.13, Pi ⊗ZG ∂ ′
p+1 is invertible. In particular,

dimD(X) im(∂i+1 ⊗ZG id(D(X))n
σ
) � dimD(X) im(∂ ′

i+1 ⊗ZG id(D(X))n
σ
)

= dimD(X)(Bi ⊗ZG (D(X))n
σ )

= n · |Bi |.

The same argument with i − 1 in place of i shows that

dimD(X) ker(∂i ⊗ZG id(D(X))n
σ
)

= dimD(X) Ci ⊗ZG (D(X))n
σ − dimD(X) im(∂i ⊗ZG id(D(X))n

σ
)

� n · (|Ai | + |Bi |) − n · |Bi−1|
= n · |Bi |,

where the last equality follows from |Ai | = |Bi−1|.
So

bσ⊗Zq
i (C∗) = dimD(X) ker(∂i ⊗ZG id(D(X))n

σ
) − dimD(X) im(∂i+1 ⊗ZG id(D(X))n

σ
)

� 0.

As the reverse inequality automatically holds, the desired result follows. ��

Corollary 3.9 Suppose that G is a (type F)-by-(infinite cyclic) group. Then bσ⊗Zq∗
(G)= 0.

3.4 Agrarian torsion

Suppose that C∗ is finite, that it comes with a preferred basis BC∗ , and that C∗ is
σ -acyclic, i.e., bσ

i (C∗) = 0 for all i , which implies that C∗ ⊗ZG Dn
σ is contractible

(see, e.g., [44, Proposition 1.7.4]). Let γ (resp. d) be a chain contraction (resp. the
boundary map) of C∗ ⊗ZG Dn

σ . Then d + γ : Ceven ⊗ZG Dn
σ → Codd ⊗ZG Dn

σ is an
isomorphism of right D-modules, where Ceven (resp. Codd) is the direct sum of the
even (resp. odd) dimensional components of C∗. Tensoring the preferred basis of C∗
with the standard basis V of Dn

σ gives rise to a preferred basis B∗ = BC∗ ⊗ZG V
for C∗ ⊗ZG Dn

σ . Represent d + γ by a matrix M over D using B∗. The σ -agrarian
torsion, denoted by ρσ (C∗), is the Dieudonné determinant detD M .

Remark 3.10 By [7, (15.3)], the value of ρσ (C∗) does not depend on the choice of γ . In
more details, the chain complex C∗ ⊗ZG Dn

σ is an acyclic (Mn(D), {Id})-complex in
the notation of [7, (15.3)], which states that different choices of the chain contraction
yield the sameWhitehead torsion.As the agrarian torsion is theDieudonné determinant
of the Whitehead torsion, it does not depend on the choice of the chain contraction.

For computational purposes we record the following:
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Remark 3.11 Suppose that B′∗ is another basis of C∗ ⊗ZG Dn
σ and the change of basis

matrix from B∗ to B′∗ has Dieudonné determinant ±1. Let N be the matrix repre-
sentative over d + γ under the new basis B′∗. Then detD N = ± detD M , since the
Dieudonné determinant is multiplicative.

Remark 3.12 Let f : A → B be a homomorphism between based finite-rank free right
ZG-modules and suppose the matrix representative of f under the chosen bases is M
(so f coincideswith left-multiplication by M). Tensoring these baseswith the standard
basis for Dn

σ yields bases for A ⊗ZG Dn
σ and B ⊗ZG Dn

σ . The matrix representative of
f ⊗ZG idD under these bases is given by σ(M) (since A ⊗ZG Dn

σ and B ⊗ZG Dn
σ are

right D-modules, f ⊗ZG idD is given by left-multiplication by σ(M)). Here, σ(M)

is the matrix obtained by applying σ to each entry of M .

3.5 Agrarian polytope and agrarian norm

Now further suppose that G is finitely generated. Recall that there is a natural map
q : G � Gfab of G onto its maximal free abelianization Gfab. Let σ : G → GLn(D)

be a representation over a skew field D. Suppose that C∗ is (σ ⊗Z q)-acyclic. Then
the σ -agrarian polytope with respect to C∗ is P(ρσ⊗Zq(C∗)), where

P : (Ore(DGfab))
×
ab → P(Gfab)

is the polytope homomorphism defined in Sect. 2.6. Recall that P(ρσ⊗Zq(C∗)) is a
difference of two Newton polytopes: P(ρσ⊗Zq(C∗)) = P1 − P2. Let φ ∈ H1(G, Z)

be a character. The σ -agrarian norm of φ is defined as

‖φ‖σ,C∗ = max
{
k ordx (z) | z ∈ P1} − min

{
k ordx (z) | z ∈ P1}

− max
{
k ordx (z) | z ∈ P2} + min

{
k ordx (z) | z ∈ P2}.

Note that the maxima and minima exist as both P1 and P2 are compact.
In general, the agrarian norm need not be a semi-norm, but we will prove in Sect. 6

that it is a semi-norm in many interesting cases, justifying the terminology. Our proof
relies on the following observation:

Lemma 3.13 If P(ρσ⊗Zq(C∗)) is a single polytope, i.e., P2 = 0, then ‖φ‖σ,C∗ is a
semi-norm.

It will be convenient to work with a second definition of ‖ · ‖σ,C∗ : First find a
character ψ ∈ H1(G, Z) such that φ = kψ for some k ∈ N and ψ is a primitive
integral character. Choose a basis X of Gfab such that there is an x ∈ X withψ(x) = 1
and ψ(y) = 0 for all y ∈ X � {x}. Define

‖φ‖σ,C∗ = k · degx ρσ⊗Zq(C∗),

where degx is the notion introduced in Sect. 2.4 and is computed with respect to the
basis X .

123



Agrarian and �2-Betti numbers...

Remark 3.14 The equivalence between the two definitions of ‖ · ‖σ,C∗ can be seen as
follows. For every z ∈ P1 ∪ P2, the value ψ(z) is computed by first writing z as a
monomial in terms of the elements of X , and then letting ψ(z) to be the power of x in
this monomial, i.e.,

ψ(z) = ordx (z),

where ordx is computed with respect to the basis X . Therefore,

‖φ‖σ,C∗ = max
{
k ordx (z) | z ∈ P1} − min

{
k ordx (z) | z ∈ P1}

− max
{
k ordx (z) | z ∈ P2} + min

{
k ordx (z) | z ∈ P2}

= k · degx ρσ⊗Zq(C∗).

Remark 3.15 In the case n = 1, [19] provides an alternative definition for the agrarian
polytope, whichwe call theHK-polytope for σ for themoment. TheHK-polytope for σ
is defined using σ̃ : G → Ore(D ∗ Gfab), the HK-rationalization of σ , where D ∗ Gfab
denotes the twisted group ring of Sect. 3.2. We sketch the construction here and refer
the reader to [19] for details. The HK-polytope is defined only when bσ̃

i (C∗) = 0 for
all i , so let us assume this is indeed the case. Generalizing Sect. 2.6, one can define
a polytope homomorphism P̃ : Ore(D ∗ Gfab)

×
ab → P(Gfab). Then the HK-polytope

for σ is P̃(ρσ̃ (C∗)), where ρσ̃ denotes the σ̃ -agrarian torsion.
The isomorphism α : Ore(D ∗ Gfab) → Ore(DGfab) provided by Lemma 3.2

implies that bσ̃
i (C∗) = 0 if and only if bσ⊗Zq

i (C∗) = 0. So the HK-polytope for σ

is well defined if and only if our σ -agrarian polytope is well defined. Moreover, let
x ∈ D ∗ Gfab and consider α(x). View x and α(x) as functions x, α(x) : Gfab → D.
Then supp(x) = supp(α(x)). It follows that the HK-polytope coincides with our
agrarian polytope. The benefit of our approach is that it only uses the untwisted group
ring, which is computationally simpler.

Before giving examples of the agrarian norm we would like to first prove its homo-
topy invariance. The proof of the following proposition combines ideas of [19] and
[27].

Proposition 3.16 (Homotopy invariance) Let C∗, C ′∗ be homotopy equivalent finite
based chain complexes of free ZG-modules. Suppose that C∗ is (σ ⊗Z q)-acyclic.
Then so is C ′∗ and there is an equality between the agrarian polytopes

P(ρσ⊗Zq(C∗)) = P(ρσ⊗Zq(C ′∗)).

In particular, there is an equality between the corresponding agrarian norms

‖ · ‖σ,C∗ = ‖ · ‖σ,C ′∗ .

Proof For simplicity, denote Ore(DGfab) by E and write En
σ for the G-E-bimodule

which is the same as En as a set with the left G-action given by σ ⊗Z q and a right
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E-module structure given by coordinate-wise multiplication. Let f : C∗ → C ′∗ be a
(chain) homotopy equivalence. Then f ⊗ZG idEn

σ
is a homotopy equivalence between

C∗ ⊗ZG En
σ and C ′∗ ⊗ZG En

σ . Thus, C ′∗ ⊗ZG En
σ is acyclic.

Consider the mapping cone cone∗( f ) with basis the union of bases of C∗ and C ′∗.
Since f is a homotopy equivalence, cone∗( f ) is contractible and hence its Whitehead
torsion ρ(cone∗( f )) is defined. Moreover, cone∗( f ) ⊗ZG En

σ is also contractible and
has (see Remark 3.12)

ρσ⊗Zq(cone∗( f )) = detE
(
(σ ⊗Z q) (ρ (cone∗( f )))−1

)
.

There is a short exact sequence

0 → C ′∗ → cone∗( f ) → �C∗ → 0,

where �C∗ is the suspension of C∗. Since

cone∗( f ⊗ZG idEn
σ
) = cone∗( f ) ⊗ZG En

σ

and

�(C∗ ⊗ZG En
σ ) = �C∗ ⊗ZG En

σ ,

the above short exact sequence is still exact after tensoring with En
σ . Now, [7, (17.2)]

(thinking of these modules as (D, {±1})-modules in the sense of [7]) yields

ρσ⊗Zq(C ′∗) · (ρσ⊗Zq(C∗))−1

= ρσ⊗Zq(cone∗( f )) = detE
(
(σ ⊗Z q) (ρ (cone∗( f )))−1

)
,

and thus

P(ρσ⊗Zq(C ′∗)) − P(ρσ⊗Zq(C∗)) = P
(
detE

(
(σ ⊗Z q) (ρ (cone∗( f )))−1

))
.

Since (σ ⊗Z q)(ρ(cone∗( f ))) is a matrix over DGfab, P((σ ⊗Z q)(ρ(cone∗( f ))))

is a single polytope by Theorem 2.12. Since ρ(cone∗( f )) is invertible over ZG,
(σ ⊗Z q)((ρ(cone∗( f )))−1) is well defined and is a matrix over DGfab. Theorem
2.12 then implies that

P
(
(σ ⊗Z q)

(
(ρ (cone∗( f )))−1

))

is also a single polytope. We have

P((σ ⊗Z q)(ρ(cone∗( f )))) + P
(
(σ ⊗Z q)

(
(ρ (cone∗( f )))−1

))
= P(Id) = 0,
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and so P((σ ⊗Zq)(ρ(cone∗( f ))))=−P((σ ⊗Zq)((ρ(cone∗( f )))−1)). But since both
are single polytopes, P((σ ⊗Z q)(ρ(cone∗( f ))))=P((σ ⊗Z q)((ρ(cone∗( f )))−1))

= 0. ��
Suppose that G is of type F and is (σ ⊗Z q)-acyclic. Let C∗, C ′∗ be two finite

type based free resolutions of Z over ZG. The above proposition then implies that
‖ · ‖σ,C∗ = ‖ · ‖σ,C ′∗ and thus the agrarian norm does not depend on the choice of
resolution. In this case, we will simply denote ‖ · ‖σ,C∗ by ‖ · ‖σ and call it the
σ -agrarian norm of G.

Example 3.17 (Thurston norm) Suppose that G is type F locally indicable and has
vanishing �2-Betti numbers. Let τ : CG ↪→ DG be the embedding of CG into the
Linnell skew field. Then the Thurston norm, denoted by ‖ · ‖T , is the τ -agrarian norm
‖ · ‖τ . If G is the fundamental group of a connected orientable irreducible 3-manifold
M �= S1 × D2 with empty or toroidal boundary, then ‖ · ‖T is exactly the classical
Thurston semi-norm of M by combining Theorem 5.1 below and [15, Theorem 0.2].
The corresponding agrarian polytope P(ρτ⊗Zq) is the universal L2-torsion polytope
defined in [14, Section3.2], and2P(ρτ⊗Zq) is the dualThurstonpolytope [14,Theorem
3.35].

Example 3.18 (Twisted Alexander norm) Suppose that G is (type F)-by-(infinite
cyclic) and σ : G → GLn(C) is a complex representation. The twisted Alexander
norm with respect to σ is the agrarian norm ‖ · ‖σ . If σ is the trivial representation
G → GL1(C) that sends every g ∈ G to 1, then ‖ · ‖σ is called the (untwisted)
Alexander norm.

4 Twisted �2-Betti numbers

This section is devoted to the proof of the following result.

Theorem 4.1 Let F → E → B be a fibration of connected finite CW-complexes,
or more generally, topological spaces that are homotopy equivalent to connected
finite CW-complexes. Suppose that π1(B) is virtually locally indicable. If F is simply
connected, or more generally, if the map π1(E) → π1(B) induced by the fibration is
an isomorphism, then:

(i) For all i ∈ N we have b(2)
i (E) �

∑i
j=0 b j (F) · b(2)

i− j (B).
(ii) If the homology of F with C-coefficients is non-zero in at most two degrees, 0 and

n with n � max{2, dim B}, then for every i ∈ N we have

b(2)
i (E) = b(2)

i (B) + bn(F) · b(2)
i−n(B).

(iii) If B is a closed aspherical manifold of odd dimension and satisfies the Singer
Conjecture, then for all i , we have

b(2)
i (E) = 0.
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(iv) If B is a closed aspherical manifold with dim B = 2n that satisfies the Singer
Conjecture, then for all i , we have

b(2)
i (E) = bi−n(F) · b(2)

n (B).

If in addition B is a closed negatively curved Riemannian manifold, then by the
Singer Conjecture, b(2)

n (B) > 0. For every i such that bi (F) > 0, we have

b(2)
n+i (E) > 0.

In particular, if F is a closed orientable manifold, then

b(2)
n+dim F (E) > 0.

We prove this theorem by giving an affirmative answer to the following Question
4.2 due to Lück for locally indicable groups.

Question 4.2 (Lück) Let G be a group, σ : G → GLn(C) a complex representation
of G, and C∗ a chain complex of ZG-modules. Is it true that

b(2),σ
i (C∗) = n · b(2)

i (C∗)

for all i?

Our strategy to answer Question 4.2 is to interpret (twisted) �2-Betti numbers as
special cases of agrarian Betti numbers and then extend every complex representation
of a locally indicable group G to a representation of DG . The details will be given in
Theorems 4.3 and 4.4. For the rest of this section, let G be a locally indicable group,
DG the Linnell skew field of G, τ : CG ↪→ DG the natural inclusion, and σ : G →
GLn(C) a complex representation. Consider the left G-moduleDn

σ , which is the same
as Dn

G as a set, with the left G-action given by the tensor product representation
σ ⊗C τ : G → GLn(DG) and a right DG -module structure given by coordinate-wise
multiplication. Here, once again the subscript indicates that the left G-action on Dn

σ

is given by σ ⊗C τ . By Example 3.4, the (twisted) �2-Betti numbers are special cases
of agrarian Betti numbers:

b(2)
i (C∗) = dimDG Hi (C∗ ⊗ZG DG) = bτ

i (C∗),

b(2),σ
i (C∗) = dimDG Hi (C∗ ⊗ZG Dn

σ ) = bσ⊗Cτ
i (C∗)

for all i . So Lück’s question will be answered if we can relate bσ⊗Cτ
i (C∗) to bτ

i (C∗).

Theorem 4.3 Let G be a locally indicable group, τ : G → DG the natural map of
G into its Linnell skew field, and σ : G → GLn(C) a finite-dimensional complex
representation. Then σ ⊗C τ extends to a ring homomorphism σ̃ : DG → Mn(DG).
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Proof For all H � G, let D̃H be the division closure of (σ ⊗C τ)(CH) in Mn(DG).
Let Rat(C×G) be the universal rational C

×G-semiring. Section2.14 gives us a map

 : Rat(C×G) ∪ {0} → D̃G .

By Remark 2.31 and Lemma 2.32, (Rat(C× H) ∪ {0}) = D̃H , where we think of
Rat(C× H) ∪ {0} as a subset of Rat(C×G) ∪ {0}.

Let T be the set of finite rooted trees. Section2.14 gives us the notion of G-
complexity TreeG(x) ∈ T of x ∈ D̃G . We first prove that D̃G is a skew field by
inducting on the G-complexity. Our proof uses the idea of the proof of [26, Theorem
6.1].

Consider a non-zero element x ∈ D̃G . If TreeG(x) = 1T , then x ∈ (σ ⊗Cτ)(C×G)

is invertible. Now assume that TreeG(x) > 1T and that for all 0 �= y ∈ D̃G

with TreeG(y) < TreeG(x), y is invertible in D̃G . Take α ∈ Rat(C×G) realizing
the G-complexity of x . By Theorem 2.30 (i) we may assume that α is primitive
because multiplying by an element in C

×G does not change the complexity nor
the conclusion about the invertibility of x . Set H to be the image of source(α)

under the homomorphism C
×G → C

×G/C
× = G. Then α ∈ Rat(C× H) and so

x ∈ (Rat(C× H)) = D̃H . If H = {1}, then D̃H = C · Id and since x �= 0, it is
invertible. If H �= {1}, then by Theorem 2.30 (i), H is finitely generated, and thus
there exists a normal subgroup N � H and an element t ∈ H of infinite order such
that H = N � 〈t〉.

Consider the H -complexityTreeH givenbySect. 2.14.Note that for all 0 �= y ∈ D̃H

with TreeH (y) < TreeH (x), we have

TreeG(y) � TreeH (y) < TreeH (x) = TreeG(x). (4)

Indeed, by definition we have TreeG(y) � TreeH (y). Note that TreeG(x) = Tree(α),
where the latter is computed by thinking of α as an element of Rat(C×G). Note also
that TreeH (x) � Tree(α), where the latter is computed by thinking of α as an element
of Rat(C× H). As pointed out by Remark 2.31, the two ways of computing Tree(α)

yield the same answer. Thus, we also have TreeH (x) � TreeG(x). The induction
hypothesis together with (4) then says that y is invertible in D̃G .

For simplicity, denote τ(t) by t and σ(t) · τ(t) by s. Let

DN ((t)), D̃N ((s)), Mn(DN )((s))

be the twisted Laurent power series rings given by Sect. 2.14. By Proposition 2.33
we have x ∈ D̃N ((s)). So x can be written as a Laurent power series x = ∑

i xi si

with xi ∈ D̃N . We claim that there are at least two non-zero summands in
∑

i xi si .
Otherwise, we would have α ∈ Rat(C×N )t i for some i , and so source(α) ⊂ C

×N ,
and hence H � N , a contradiction.

Thus, Proposition 2.33 implies that TreeH (xi ) < TreeH (x) for all i . Inequality (4)
implies that

TreeG(xi ) < TreeG(x).
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Thus, the induction hypothesis implies that if xi �= 0 then it is invertible in D̃G , and
thus in D̃N and Mn(DN ), by (3). So x is invertible in Mn(DN )((s)) = Mn(DN ((t))),
by Remark 2.5. Note that x belongs to the subring Mn(DH ). So x is invertible in
Mn(DH ), and thus in Mn(DG). So x is invertible in D̃G . Therefore, D̃G is a skew
field.

We will now show that D̃G is a Hughes-free CG-field. Let H ′ � G be any non-
trivial finitely generated subgroup and suppose H ′ = N ′

� 〈t ′〉 for some normal
subgroup N ′ � H ′ and an infinite-order element t ′ ∈ H ′. Since DG is a Hughes-free
CG-field, by considering every entry of the matrices, we see that the sum

Mn(DN ′) + Mn(DN ′) · τ(t ′) + · · · + Mn(DN ′) · τ(t ′) f

is direct for every f ∈ N
+. The containment (3) then implies that the sum

D̃N ′ + D̃N ′ · σ(t ′)τ (t ′) + · · · + D̃N ′ · σ(t ′) f τ(t ′) f

is also direct, and thus D̃G is a Hughes-free CG-field. The main result of [23] then
implies that there exists a ring homomorphism σ̃ : DG → Mn(DG) that extends
σ ⊗C τ . ��

Consider the DG-DG-bimodule M , that is the same as Dn
G as a set, with the left

DG-module structure given by c•v = σ̃ (c)·v for all c ∈ DG, v ∈ M , and the rightDG -
module structure given by coordinate-wisemultiplication.Given any rightDG -module
U , the action • then induces a tensor product U ⊗DG M , (u · c) ⊗ v = u ⊗ (c • v) =
u ⊗ (̃σ (c) · v) for all u ∈ U , c ∈ DG , v ∈ M . Note that U ⊗DG M ∼= MdimDG U as a
right DG-module and thus

dimDG U ⊗DG M = n · dimDG U . (5)

Here we adopt the convention 0 · ∞ = 0 and n · ∞ = ∞ for all n > 0.

Theorem 4.4 Let G be a locally indicable group, let C∗ be a ZG-chain complex, and
let σ : G → GLn(C) be a linear representation of G. Then for all i we have

b(2),σ
i (C∗) = n · b(2)

i (C∗).

Proof Identify

C∗ ⊗ZG Dn
σ

∼= C∗ ⊗ZG DG ⊗DG M .

As a left-module over the division ringDG (with the action given by •), M is free and
thus for all i

Hi (C∗ ⊗ZG DG ⊗DG M) ∼= Hi (C∗ ⊗ZG DG) ⊗DG M .

The desired result then follows from (5). ��
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Question 4.2 arises naturally in the process of computing �2-Betti numbers of
fibrations. The following argument can be easily extracted from the proof of [39,
Lemma 5.4].We reproduce it here for the convenience of the reader. Let F → E → B
be a fibration of connected finite CW-complexes, ormore generally, topological spaces
that are homotopy equivalent to connected finite CW-complexes, such that π1(B) is
locally indicable and the induced homomorphism π1(E) → π1(B) is bijective (e.g.,
when F is simply connected). The Leray–Serre spectral sequence then yields

E2
p,q = Hp(C∗(B̃) ⊗Z[π1(B)] (Hq(F, C) ⊗C Dπ1(B)))

⇒ Hp+q(C∗(Ẽ) ⊗Z[π1(E)] Dπ1(B)), (6)

whereZπ1(B) acts on Hq(F, C)⊗CDπ1(B) by the diagonal action andZπ1(E) acts on
Dπ1(B) via the induced isomorphism π1(E) ∼= π1(B). Thus, E2

p,q is the �2-homology
of B twisted by the representation η : B → GL(Hq(F, C)). Theorem 4.4 then implies

dimDπ1(B)
E2

p,q = b(2),η
p (B) = bq(F) · b(2)

p (B). (7)

Below, we prove Theorem 4.1, and Corollaries 1.2 and 1.3.

Proof of Theorem 4.1 Suppose first that π1(B) is locally indicable. Since Dπ1(B) is a
skew field, the spectral sequence (6) implies that Hn(C∗(Ẽ) ⊗Z[π1(E)] Dπ1(B)) is a
a direct sum of subquotients of E2

i,n−i for i = 0, 1, · · · , n. Together with (7), this
implies (i).

Suppose that the assumption of (ii) holds. ThenTheorem4.4 implies that the spectral
sequence (6) stabilizes at the E2-page with

dimDπ1(B)
E2

p,q =

⎧
⎪⎨

⎪⎩

b(2)
p (B), if q = 0

bn(F) · b(2)
p (B), if q = n

0, otherwise.

Item (ii) follows from a computation using the spectral sequence (6).
Suppose that the assumption of (iii) holds. Then the Singer Conjecture implies that

b(2)∗ (B) = 0. Theorem 4.4 implies that the E2-page of the spectral sequence (6) is 0,
from which (iii) follows.

Suppose that the assumption of (iv) holds. Then Theorem 4.4 implies that the
spectral sequence (6) stabilizes at the E2-page with

dimDπ1(B)
E2

p,q =
{

bq(F) · b(2)
n (B), if p = n

0, otherwise.

Item (iv) follows from computation using the spectral sequence (6). This finishes the
proof for the special case where π1(B) is locally indicable.

Let us consider the general case where π1(B) ∼= π1(E) are virtually locally indica-
ble. Let B̂ be a d-sheeted cover of B for some d such that π1(B̂) is locally indicable,
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and let Ê be the pullback of E → B along B̂ → B. Then we have a fibration

F → Ê → B̂

with π1(Ê) = π1(B̂) locally indicable.
Note that dim B � n if and only if dim B̂ � n, B is a closed aspherical manifold if

and only if so is B̂, and B̂ is a Riemannian manifold with negative sectional curvature
as so is B. By the above, items (i), (ii), (iii), (iv) hold with Ê in place of E and B̂ in
place of B. By [38, Theorem 1.35 (9)], we have for all i

b(2)
i (Ê) = d · b(2)

i (E), b(2)
i (B̂) = d · b(2)

i (B),

which finishes the proof. ��
Proof of Corollary 1.2 In this case, the spectral sequence (6) has only one non-zero
column, and thus stabilizes. By Example 2.17, π1(B) is locally indicable. Thus, the
desired result follows from Theorem 4.4 and

b(2)
i (B) =

{
−χ(B), if i = 1

0, otherwise. ��
Proof of Corollary 1.3 By Proposition 2.20, π1(B) is virtually locally indicable. Thus,
the corollary follows fromTheorem 4.1 (i) and the computation of the �2-Betti number
of 3-manifolds [37, Theorem 0.1]. ��
Remark 4.5 Combining Theorem 4.1, Proposition 2.20 and [37, Theorem 0.1], one
can obtain a general version of Corollary 1.3 for all compact connected orientable 3-
manifolds B with empty or toroidal boundary. Instead of having b(2)∗ (E) = 0 we will
have that b(2)∗ (E) can be computed by a homological spectral sequence that stabilizes
at the E2-page. We leave the precise statement to the reader.

5 Agrarian norm and Euler characteristic

If M is a closed connected orientable irreducible 3-manifold and φ ∈ H1(M, Z) is
a character induced by a fibration F → M → S1 of M over the circle S1, then
‖φ‖T = −χ(F), where ‖φ‖T is the Thurston norm of φ [48]. The goal of the current
section is Theorem 5.1 below, which generalizes the above result of [48]. In Sects. 6
and 7,wewill apply Theorem5.1 to deduce the equality between the twistedAlexander
and Thurston norms for fibered characters.

Theorem 5.1 Let G be a type F group, σ : G → GLn(D) a representation over a
skew field D, φ ∈ H1(G, Z) be a primitive character and q : G → Gfab the natural
quotient map from G onto its maximal free abelian quotient Gfab. If bσ⊗Zq∗ (G) = 0,
then ‖φ‖σ and χσ⊗Zq(ker φ) are well defined and

‖φ‖σ = −χσ⊗Zq(ker φ).
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Below, we use the notation of the above theorem. Let H = ker φ, let t ∈ G such
that φ(t) = 1, let t̄ = q(t), let X be a basis of Gfab such that t̄ ∈ X and φ(x) = 0
for all x ∈ X � {t̄}, let BG be a finite K (G, 1) CW-complex, let EG be the universal
cover of BG, let q̄ : G � Gfab/〈t̄〉 the natural quotient map, and let Y = X � {t̄}. To
emphasize the role played by X and Y , we denote Ore(DGfab) by D(X) and Ore(DL)

by D(Y ), where L is the subgroup of Gfab generated by Y . We write (D(Y )[t̄±])n
σ

for the ZG-D(Y )[t̄±]-bimodule that equals (D(Y )[t̄±])n as a set, with the left action
of G induced by σ and the right action given by coordinate-wise multiplication. And
we write (D(Y ))n

σ for the ZH -D(Y )-bimodule defined in the same manner as in
Convention 3.3.

As D(Y ) is a sub-skew field of D(x), D(X) is flat over D(Y ). It follows that for
all k, we have

dimD(X) Hk(C∗(EG) ⊗ZH (D(X))n
σ ) = dimD(Y ) Hk(C∗(EG) ⊗ZH (D(Y ))n

σ ),

where (C∗(EG), ∂ EG∗ ) is the cellular chain complex of EG and the right-hand side
tensor product is takenwith respect to the representationσ ⊗Z q̄ . Therefore,χσ⊗Zq(H)

is well defined if and only if so is χσ⊗Zq̄(H), and if they are both well defined,

χσ⊗Zq(H) = χσ⊗Zq̄(H). (8)

Note that there is an isomorphism of chain complexes of D(Y )-modules

C∗(EG) ⊗ZH (D(Y ))n
σ

∼=−→ C∗(EG) ⊗ZG (D(Y )[t̄±])n
σ , (9)

which maps e ⊗ d to e ⊗ d for all e ∈ C∗(EG) and d ∈ (D(Y ))n
σ . The inverse of this

map sends e ⊗ dt̄k to (etk) ⊗ (σ (t))−k(d). Note also the following isomorphism of
chain complexes of D(X)-modules

C∗(EG) ⊗ZG (D(Y )[t̄±])n
σ ⊗D(Y )[t̄±] D(X) ∼= C∗(EG) ⊗ZG (D(X))n

σ . (10)

For simplicity, let

(C∗, ∂∗) = (C∗(EG) ⊗ZG (D(Y )[t̄±])n
σ , ∂ EG∗ ⊗ZG id(D(Y )[t̄±])n

σ
).

For k ∈ N, let BEG
k be a ZG-basis of Ck(EG) consisting of cells of dimension k, and

let V be the standard D(Y )[t̄±]-basis of (D(Y )[t̄±])n
σ . Then

Bk = {� ⊗ v | � ∈ BEG
k , v ∈ V } ⊂ C∗

is a D(Y )[t̄±]-basis for C∗. By definition, ‖φ‖σ is computed using the basis B∗. But
in order to prove the theorem we will use another basis that is equivalent to B∗.

Lemma 5.2 There are two families of subsets of C∗, {B′
k}∞k=0 and {B′′

k }∞k=0, such that
the following hold for every k.
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(i) B′
k ∪ B′′

k is a basis of Ck and the change of basis matrix M from Bk to B′
k ∪ B′′

k
satisfies detD(X)(M) = ±1, where we think of M as a matrix over D(X) to take
the determinant.

(ii) Denote by spanD(Y )[t̄±] the linear span over D(Y )[t̄±]. Then

∂k(spanD(Y )[t̄±](B′
k)) ⊂ spanD(Y )[t̄±](B′′

k−1),

spanD(Y )[t̄±](B′′
k ) = ker ∂k .

(iii) Let ∂k : spanD(Y )[t̄±](B′
k) → spanD(Y )[t̄±](B′′

k−1) be the restriction of ∂k . Then

the matrix representative of ∂k under the bases B′
k and B′′

k−1, denoted [∂k], is a
diagonal matrix over D(Y )[t̄±] with non-zero diagonal entries.

Proof Weprove the lemma by an induction on k. First note that (i) through (iii) hold for
k = 0 with B′

0 = ∅,B′′
0 = B0. Now suppose that we have found {B′

k}K
k=0 and {B′′

k }K
k=0

that satisfy (i) through (iii) for k � K . Let MK+1 be the matrix representative of ∂k+1
under the bases BK+1 and B′

K ∪ B′′
K .

The Laurent polynomial ring D(Y )[t̄±] is a principal ideal domain. By the
Euclidean algorithm, we can multiply MK+1 on the left and right by elemen-
tary matrices over D(Y )[t̄±] whose diagonal entries are ±1 to turn MK+1 into a
diagonal matrix NK+1 over D(Y )[t̄±]. The left (resp. right) multiplication of ele-
mentary matrices corresponds to the change of the basis B′

K ∪ B′′
K (resp. BK+1).

Since non-zero elements of spanD(Y )[t̄±](B′
K ) have non-zero boundaries, we have

∂K+1(CK+1) ⊂ spanD(Y )[t̄±](B′′
K ). Therefore, we may assume that the change of

basis process leavesB′
K invariant and turnsB′′

K into another basis of spanD(Y )[t̄±](B′′
K ).

Since ∂K (spanD(Y )[t̄±](B′′
K )) = 0, such a change of basis processwill not change [∂ K ].

Thus, we can modify B′′
K while still have (i) through (iii) hold for k � K .

Let B′
K+1 (resp. B′′

K+1) be the part of the new basis of CK+1 corresponding to the
non-zero (resp. zero) diagonal entries of NK+1. Then (i) and (ii)(ii) follow immediately.
Item (iii) is equivalent to |B′

K+1| = |B′′
K |. Consider

CK+1 ⊗D(Y )[t̄±] D(X)
∂K+1⊗D(Y )[t̄±]idD(X)−−−−−−−−−−−−→ CK ⊗D(Y )[t̄±] D(X).

And consider the subsets

B′
K+1 ⊗ {1},B′′

K+1 ⊗ {1} ⊂ CK+1 ⊗D(Y )[t̄±] D(X),

BK ⊗ {1},B′′
K ⊗ {1} ⊂ CK ⊗D(Y )[t̄±] D(X).

Since D(X) is flat over D(Y )[t̄±], (B′
K+1 ∪ B′′

K+1) ⊗ {1} (resp. (B′
K ∪ B′′

K ) ⊗ {1}) is
a D(X)-basis of CK+1 ⊗D(Y )[t̄±] D(X) (resp. CK ⊗D(Y )[t̄±] D(X)).

Let N be thematrix representative of ∂K+1⊗D(Y )[t̄±]idD(X) under the bases (B′
K+1∪

B′′
K+1)⊗{1} and (B′

K ∪B′′
K )⊗{1}. Then N is the (|B′

K+1|+|B′′
K+1|)×(|B′

K |+|B′′
K |)-

matrix with [∂K+1] at the top left corner and 0 elsewhere. In particular,

|B′
K+1| = rkD(X)(∂K+1 ⊗D(Y )[t̄±] idD(X)),
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where rkD(X) denotes the rank of the image. Similarly,

|B′
K | = rkD(X)(∂K ⊗D(Y )[t̄±] idD(X)),

and thus

|B′′
K | = dimD(X) ker(∂K ⊗D(Y )[t̄±] idD(X)).

As bσ⊗Zq(G) = 0, C∗ ⊗D(Y )[t̄±] (D(X))n
σ is acyclic. Combining with equation (10)

this yields

rkD(X)(∂K+1 ⊗D(Y )[t̄±] idD(X)) = dimD(X) ker(∂K ⊗D(Y )[t̄±] idD(X)),

from which (iii) follows. ��
Proof of Theorem 5.1 Fix k ∈ N. Let e1, · · · , e�k be the elements of B′′

k and let
f1, · · · , f�k be the diagonal entries of [∂k+1]. For i = 1, 2, · · · , �k , let

Sk,i = {ei · t̄ j | j = 0, 1, · · · , (degt̄ fi ) − 1},

where we use the notion of degree introduced in Sect. 2.4. Let

Sk =
�k⋃

i=1

Sk,i ⊂ Ck .

There is a D(Y )-module homomorphism from spanD(Y )[t̄±](B′′
k ) to spanD(Y )(Sk)

that sends each ei · t̄ j in spanD(Y )[t̄±](B′′
k ) to the ei · t̄ j in spanD(Y )(Sk) for j =

0, 1, · · · , (degt̄ fi ) − 1. This homomorphism induces a D(Y )-module isomorphism

spanD(Y )[t̄±](B′′
k )/ im ∂k+1 ∼= spanD(Y )(Sk).

By (9),

bσ⊗Zq̄
k (H) = dimD(Y )(spanD(Y )[t̄±](B′′

k )/ im ∂k+1) = degt̄ detD(X)[∂k+1],

where we think of [∂k+1] as a matrix over D(X) in order to take the determinant. It
then follows from (8) that

χσ⊗Zq(H) =
∞∑

k=0

(−1)k degt̄ detD(X)[∂k+1]. (11)

On the other hand, by Lemma 5.2 (i) and (iii), C∗ decomposes as a direct sum of
chain complexes of the form

0 → spanD(Y )[t̄±](B′
k)

[∂k ]−−→ spanD(Y )[t̄±](B′′
k−1) → 0.
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By tensoring with D(X)we see that C∗(EG)⊗ZG (D(X))n
σ decomposes as the direct

sum of chain complexes of the form

0 → spanD(X)(B′
k ⊗ {1}) [∂k ]−−→ spanD(X)(B′′

k−1 ⊗ {1}) → 0,

where we think of [∂k] as a matrix over D(X).
By Lemma 5.2 (i) and Remark 3.11,

‖φ‖σ =
∞∑

k=0

(−1)k degt̄ detD(X)[∂k]. (12)

The desired result follows from equations (11) and (12). ��

6 Aspherical groups

In this section,weprove the semi-normproperty of the agrarian normand the inequality
between the twisted Alexander and Thurston norms for certain aspherical groups. Let
G be a finitely presentated group and let q : G → Gfab be the natural homomorphism
of G onto its maximal free abelian quotient Gfab. We start with a method to modify a
given finite group presentation.

Lemma 6.1 Let G be a group given by a finite presentation

G = 〈X | R〉. (13)

Then there exists a finite presentation

G = 〈Y | S〉. (14)

such that the tuple (q(y) : y ∈ Y , q(y) �= 0) is a basis for Gfab and the presentation
complexes of (13) and (14) are homotopy equivalent.

Moreover, if φ ∈ H1(G, Z) is a primitive integral character, then we can further
guarantee that there exists y ∈ Y such that φ(y) = 1 and φ(y′) = 0 for all y′ ∈
Y � {y}.

This is a standard exercise in applying Nielsen transformations. We outline the
argument for the convenience of the reader.

Proof (Sketch proof) For xi �= x j ∈ X , by replacing xi with xi x j or xi x−1
j and doing

the corresponding replacement among the relations of R that contain xi , we obtain
a presentation G = 〈X ′ | R′〉. We call the passage from 〈X | R〉 to 〈X ′ | R′〉 a
Nielsen transformation. Let K (resp. K ′) be the presentation complex of 〈X | R〉
(resp. 〈X ′ | R′〉). Then to pass from K to K ′, one can subdivide the edge labeled by
xi into two edges and identify one of these new edges with x j or x−1

j . This process
can be reversed, up to homotopy, and hence K and K ′ are homotopy equivalent. Now,

123



Agrarian and �2-Betti numbers...

starting from 〈X | R〉 and inductively performing Nielsen transformations, we can
obtain the desired presentation, essentially performing Gaussian elimination in the
Z-module Gfab. ��

For the rest of this section, suppose G is a semi-direct product H � Z with H a
type F subgroup. Let σ : G → GLn(D) be a representation over a skew field D. Then
G is (σ ⊗Z q)-acyclic by Proposition 3.8, and thus the agrarian norm ‖ · ‖σ is well
defined. If rk(Gfab) = 0 then all agrarian norms are trivial. So below we assume that
rk(Gfab) � 1.

6.1 Semi-norm property

Lemma 6.2 If Gfab ∼= Z then ‖ · ‖σ is a semi-norm if and only if χ(H) � 0.

Proof The desired conclusion follows from Theorem 5.1 and Proposition 3.7. ��
Next, let us further suppose that G is aspherical, i.e., G has a finite presentation

G = 〈X | R〉 (15)

such that the corresponding presentation complex has contractible universal cover. By
Lemma 6.1 we may assume that X = {xi }k+m

i=1 with {q(xi )}k
i=1 being a basis for Gfab

and q(xk+1) = q(xk+2) = · · · = q(xk+m) = 0.

Proposition 6.3 Suppose that G is a group that is (type F)-by-(infinite cyclic) and
aspherical, and satisfies rk Gfab � 2. Then for every linear representation σ : G →
GLn(D) of G over a skew field D, the function ‖ · ‖σ is a semi-norm.

Remark 6.4 The above proposition is no longer true if rk Gfab � 2 is dropped. An
easy example is given by G = Z.

Proof Let K be the presentation complex of (15). Consider the cellular chain complex
of K̃ , the universal cover of K .

C∗ : 0 ZGk+m−1
ZGk+m

ZG 0,
M2 M1

where M2 is a (k + m) × (k + m − 1) matrix over ZG and

M1 = (1 − x1, · · · , 1 − xk+m).

Note that we must have ZGk+m−1 in dimension 2 as χ(G) = 0 (see, e.g., Proposition
3.7 and Corollary 3.9). The corresponding maps are given by the left multiplication
by M2 and M1.

Let

A∗ : 0 ZGk+m−1
ZGk+m−1 0 0,

B∗ : 0 0 ZG ZG 0,

M ′
2

1−x1
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where M ′
2 is the matrix obtained from M2 by deleting the first row. We then have a

short exact sequence of ZG-chain complexes

0 → A∗ → C∗ → B∗ → 0 (16)

that in every degree is split.
Let Y = {q(xi )}k

i=1. We identify Ore(DGfab) with D(Y ) to emphasize the role
played by Y . By tensoring it with (D(Y ))n

σ using the representation σ ⊗Z q, we obtain
the sequence

0 → A∗ ⊗ZG (D(Y ))n
σ → C∗ ⊗ZG (D(Y ))n

σ → B∗ ⊗ZG (D(Y ))n
σ → 0. (17)

Since the sequence (16) splits in every degree, the sequence (17) is exact.
Consider the unique non-zero differential of B∗ ⊗ZG (D(Y ))n

σ , which is given by
the left multiplication by the matrix

(σ ⊗Z q)(1 − x1) = Id + σ(−x1)q(x1).

Every entry of σ(−x1)q(x1) has q(x1)-order at least 1. So Lemma 2.13 implies that
(σ ⊗Z q)(1− x1) is invertible, and thus the chain complex B∗ ⊗ZG (D(Y ))n

σ is exact.
This, together with the exactness of C∗ ⊗ZG (D(Y ))n

σ (by Corollary 3.9), yields that
A∗ ⊗ZG (D(Y ))n

σ is also exact.
LetρA (resp.ρB, ρC ) be theReidemeister torsion of A∗⊗ZG (D(Y ))n

σ (resp. B∗⊗ZG
(D(Y ))n

σ , C∗ ⊗ZG (D(Y ))n
σ ). Then (see, e.g., [7, (17.2)])

ρC = ρA · ρB . (18)

Let P : D(Y ) → P(Gfab) be the polytope homomorphism. Equation (18) implies

P(ρC ) = P(detD(Y )(σ ⊗Z q)(M ′
2)) − P(detD(Y )(σ ⊗Z q)(1 − x1)). (19)

Since M ′
2 is a square matrix overZG, (σ ⊗Z q)(M ′

2) is a square matrix over DGfab.
By Theorem 2.12,

P(detD(Y )(σ ⊗Z q)(M ′
2)) ∈ P(D[Y ±])

is a single polytope, and thus (19) implies

P(ρC ) ∈ P(D[Y ±]) − P(D[x±
1 ]). (20)

By the assumption rk Gfab � 2 we also have q(x2) ∈ Y . The above argument with
x2 in place of x1 yields

P(ρC ) ∈ P(D[Y ±]) − P(D[x±
2 ]),

which together with (20) implies that P(ρC ) is a single polytope, which by Lemma
3.13 yields the desired result. ��
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6.2 Inequality between the Alexander and Thurston norms

The inequality between the Alexander and Thurston norms for 3-manifolds was dis-
covered by McMullen [41], whose result was then generalized by Friedl–Kim [12]
and Funke and the first author [13]. In the current and subsequent sections, we recover
the result of [12] and generalize the result of [13].

Theorem 6.5 Suppose that G is an aspherical (Lewin type F)-by-(infinite cyclic)
group. Let ‖ · ‖T be the Thurston norm of G. Then for all finite dimensional com-
plex representations σ : G → GLn(C) and all φ ∈ H1(G, Z), one has

‖φ‖σ � n · ‖φ‖T .

Moreover, if ker φ is of type F then we have

‖φ‖σ = −n · χ(ker φ) = n · ‖φ‖T . (21)

Proof Without loss of generality,wemayassume thatφ is a primitive integral character.
By Lemma 6.1, there is a finite presentation

G = 〈x1, · · · , xk+m | R〉

such that

(i) Y = {q(xi )}k
i=1 is a basis for Gfab;

(ii) q(xk+1) = q(xk+2) = · · · = q(xk+m) = 0;
(iii) φ(x1) = 1 and φ(x2) = φ(x3) = · · · = φ(xk) = 0.

Let DG be the Linnell skew field of G and let τ : CG → DG be the natural
embedding. We identify Ore(CGfab) (resp. Ore(DG Gfab)) with C(Y ) (resp. DG(Y ))
to emphasize the role played by Y . For simplicity, we also denote q(x1) by s. Equation
(19) implies

‖φ‖σ = degs detC(Y )(σ ⊗Z q)(M ′
2) − degs detC(Y )(σ ⊗Z q)(1 − x1). (22)

Similarly,

‖φ‖T = degs detDG (Y )(τ ⊗Z q)(M ′
2) − degs detDG (Y )(τ ⊗Z q)(1 − x1), (23)

Since G is Lewin [25, Theorem 3.7 (3)] and the skew fields considered here are C

and DG , Lemma 2.27 implies

degs detC(Y )(σ ⊗Z q)(M ′
2) � degs detDG (Y )(σ ⊗C τ ⊗Z q)(M ′

2). (24)

Consider the representation σ ⊗C τ : G → GLn(DG). Theorem 4.3 extends σ ⊗C τ

to a ring homomorphism σ̃ : DG → Mn(DG). By repeatedly using Corollary 2.15,
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we further extends σ̃ to ring homomorphism σ̃ : DG(Y ) → Mn(DG(Y )) such that
σ̃ (y) = Id · y for all y ∈ Y . We have

σ̃
(
(τ ⊗Z q)(M ′

2)
) = (σ ⊗C τ ⊗Z q)(M ′

2).

Lemma 2.14 thus implies

degs detDG (Y )(σ ⊗C τ ⊗Z q)(M ′
2) = n · degs detDG (Y )(τ ⊗Z q)(M ′

2). (25)

Thinkof detC(Y )(σ⊗Zq)(1−x1) as a polynomial in s with coefficient inC(Y � {s}).
Then the highest power of s in detC(Y )(σ ⊗Z q)(1 − x1) is sn with coefficient
detC(Y ) σ (−x1). The lowest power of s in detC(Y )(σ ⊗Z q)(1 − x1) is s0 = 1 with
coefficient 1. Thus,

degs detC(Y )(σ ⊗Z q)(1 − x1) = n = n · degs detDG (Y )(τ ⊗Z q)(1 − x1). (26)

We conclude from (22), (23), (24), (25) and (26) that

‖φ‖σ � ‖φ‖σ⊗Cτ = n · ‖φ‖T .

If ker φ is of type F , then by Theorem 5.1,

‖φ‖σ = −χσ⊗Zq(ker φ). (27)

By Proposition 3.7, we have

χσ⊗Zq(ker φ) = n · χ(ker φ). (28)

and

‖φ‖T = −χτ (ker φ). (29)

By Theorem 5.1 again, we have

χτ (ker φ) = χ(ker φ). (30)

Equation (21) follows by combining (27), (28), (29) and (30). ��

7 Application to free-by-cyclic and 3-manifold groups

7.1 Free-by-cyclic groups

Let G be a (finitely generated free)-by-(infinite cyclic) group. Then G is locally indi-
cable. In particular, the Thurston norm ‖ · ‖T of G is well defined.
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Theorem 7.1 For any (finitely generated free)-by-(infinite cyclic) group G and any
representation σ : G → GLn(D), the function ‖ · ‖σ is a semi-norm.

Moreover, if D = C is the field of complex numbers, then for every φ ∈ H1(G, Z),

‖φ‖σ � n · ‖φ‖T (31)

and equality holds when φ is a fibered character, i.e., when ker φ is finitely generated.

Proof First, suppose Gfab = Z. Let φ ∈ H1(G, Z) be the unique (up to sign) primitive
integral character. Then ker φ is a finitely generated free group, and thus is of type
F and satisfies χ(ker φ) � 0. That ‖ · ‖σ is a semi-norm follows from Lemma 6.2.
Theorem 6.5 implies that

‖φ‖σ = −n · χ(ker φ) = n · ‖φ‖T .

Suppose rk Gfab � 2. SinceG is aspherical (see, e.g., [13, Lemma3.1]), Proposition
6.3 implies that ‖ · ‖σ is a semi-norm. Since every finitely generated subgroup of G is
of type F [11], a character φ ∈ H1(G, Z) is fibered if and only if ker φ is of type F .
Moreover, by [25, Theorem 1.1 and Theorem 3.7 (2)], G is (Lewin type F)-by-(infinite
cyclic). Inequality (31), as well as the equality for fibered characters, follows from
Theorem 6.5. ��

7.2 3-manifold groups

Let G be the fundamental group of a closed connected orientable 3-manifold M that
fibers over S1. Then G fits into a short exact sequence

1 → π1(S) → G → Z → 1.

By Example 2.17, π1(S) andZ are locally indicable, and thus G is locally indicable
by Lemma 2.18. In particular, the Thurston norm ‖ · ‖T of G is well defined. The goal
of this subsection is the following.

Theorem 7.2 Suppose that G is the fundamental group of a closed connected ori-
entable 3-manifold M that fibers over S1. Then for any representation σ : G →
GLn(D) of G over a skew field D, the agrarian norm ‖ · ‖σ is well defined. Moreover,

(i) if M �= S1 × S2, then ‖ · ‖σ is a semi-norm;
(ii) if D = C, then for every φ ∈ H1(G, Z),

‖φ‖σ � n · ‖φ‖T (32)

where‖ · ‖T is the Thurston norm of G. Moverover, if φ is a fibered character, then

‖φ‖σ = n · ‖φ‖T . (33)
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Proof There is a closed surface S such that M decomposes as a fiber bundle S → M →
S1. In particular, M is a mapping torus of a cellular self map of a finite connected
CW-complex. That ‖ · ‖σ is well defined thus follows from Proposition 3.8.

We have G = π1(S)�Z. If rk Gfab = 1, then items (i) and (ii)follow fromTheorem
5.1 and Lemma 6.2. Below we assume rk Gfab � 2.

Let M̃ be the universal cover of M . By the proof of [41, Theorem 5.1], M̃ has a
G-equivariant CW structure whose cellular chain complex has the form

C∗ : 0 C3 C2 C1 C0 0,
∂3 ∂2 ∂1

where there are ZG-bases {p} of C0, {ei }k
i=1 of C1, { fi }k

i=1 of C2, {t} of C3, and there
is a generating set {gi }k

i=1 of G with the following properties:

(i) ∂1(ei ) = p · (1 − gi ), ∂3(t) = ∑k
j=1 f j · (1 − g j ).

(ii) X = {q(gi )}m
i=1 is a basis of Gfab for some m � k, and q(gi ) = 0 for i > m,

where q : G → Gfab is the natural surjection of G onto its maximal free abelian
quotient Gfab.

We denote the matrix representative of ∂∗ under the above bases by [∂∗].
Consider the chain complexes

A∗ : 0 ZG ZG 0 0 0,

B∗ : 0 0 ZGk−1
ZGk

ZG 0,

E∗ : 0 0 ZGk−1
ZGk−1 0 0,

F∗ : 0 0 0 ZG ZG 0.

1−g1

U ∂1

W

1−g1

Here, U is the matrix obtained from the matrix [∂2] by deleting the first column, and
W is obtained from U by deleting the first row.

We then have exact sequences of chain complexes

0 → A∗ → C∗ → B∗ → 0,

0 → E∗ → B∗ → F∗ → 0,

that in each degree are split.
Let σ : G → GLn(D) be a representation over a skew field D. Recall that X =

{q(gi )}m
i=1 is a basis of Gfab. As before we denote Ore(DGfab) by D(X) to emphasize

the role played by X . Below, the q(g1)-order will be taken with respect to X .
Upon tensoring with (D(X))n

σ via σ ⊗Z q, they become the following sequences

0 → A∗ ⊗ZG (D(X))n
σ → C∗ ⊗ZG (D(X))n

σ → B∗ ⊗ZG (D(X))n
σ → 0, (34)

0 → E∗ ⊗ZG (D(X))n
σ → B∗ ⊗ZG (D(X))n

σ → F∗ ⊗ZG (D(X))n
σ → 0. (35)

Both sequences are exact, since the original sequences split in every degree.
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Consider the unique non-zero differentials in A∗ ⊗ZG (D(X))n
σ and F∗ ⊗ZG

(D(X))n
σ , which are given by the left multiplication by the matrix

(σ ⊗C τ)(1 − g1) = Id + σ(−g1)q(g1).

Note that every entry of σ(−g1)q(g1) has q(g1)-order at least 1. So Lemma 2.13
implies that (σ ⊗C τ)(1−g1) is invertible, which in turn implies that A∗⊗ZG (D(X))n

σ

and F∗ ⊗ZG (D(X))n
σ are exact. Since G is (type F)-by-(infinite cyclic), Corollary

3.9 implies that C∗ ⊗ZG (D(X))n
σ is exact. It follows that B∗ ⊗ZG (D(X))n

σ is also
exact, which in turn implies that E∗ ⊗ZG (D(X))n

σ is also exact.
Let ρA (resp. ρB, ρC , ρE , ρF ) be the Reidemeister torsion of A∗ ⊗ZG (D(X))n

σ
(resp. B∗ ⊗ZG (D(X))n

σ , C∗ ⊗ZG (D(X))n
σ , E∗ ⊗ZG (D(X))n

σ , F∗ ⊗ZG (D(X))n
σ ).

Then (see, e.g., [7, (17.2)])

ρC = ρA · ρB = ρA · ρE · ρF = detD(X)(σ ⊗Z q)(W ) · (detD(X)(Id − σ(g1)q(g1)))
−2.

Let P : D(X) → P(Gfab) be the polytope homomorphism. Since W is a matrix
over ZG, Theorem 2.12 implies that

P(detD(X)(σ ⊗Z q)(W )) ∈ P(D[X±])

is a single polytope. Therefore,

P(ρC ) ∈ P(D[X±]) − P(D[q(g1)
±]).

We have assumed that rk Gfab � 2. In particular, q(g2) �= 0. The above argument
with g2 in place of g1 yields that

P(ρC ) ∈ P(D[X±]) − P(D[q(g2)
±])

and thus P(ρC ) is a single polytope, which means that ‖ · ‖σ is a semi-norm.
We proceed to prove item (ii). Suppose that D = C is the field of complex numbers.

Letφ ∈ H1(G, Z)�{0}.Without loss of generality,wemayassume thatφ is a primitive
integral character. Let Y be a basis of Gfab such that there is s ∈ Y with φ(s) = 1
and φ(y) = 0 for all y ∈ Y � {s}. For any right ZG-module N , N ⊗ZG (D(X))n

σ

and N ⊗ZG (D(Y ))n
σ are naturally isomorphic. Thus, we obtain the following exact

sequences from (34) and (35)

0 → A∗ ⊗ZG (C(Y ))n
σ → C∗ ⊗ZG (C(Y ))n

σ → B∗ ⊗ZG (C(Y ))n
σ → 0,

0 → E∗ ⊗ZG (C(Y ))n
σ → B∗ ⊗ZG (C(Y ))n

σ → F∗ ⊗ZG (C(Y ))n
σ → 0,

which imply that

‖φ‖σ = degs detC(Y )(σ ⊗Z q)(W ) − 2 · degs detC(Y )(Id − σ(g1)q(g1)). (36)
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Let τ : CG → DG be the natural embedding of CG into its Linnell skew field.
The same argument with τ in place of σ yields

‖φ‖T = degs detDG (Y )(τ ⊗Z q)(W ) − 2 · degs detDG (Y )(Id − τ(g1)q(g1)). (37)

We prove that

degs detC(Y )(Id − σ(g1)q(g1)) = n · degs detDG (Y )(Id − τ(g1)q(g1)). (38)

Write q(g1) as a monomial in Y :

q(g1) = sr ·
∏

y∈Y �{s}
yry ,

where we use multiplicative notation for the abelian group Gfab.
First consider the case r = 0. Then degs detC(Y )(Id − σ(g1)q(g1)) is either 0 or

−∞. We have shown that Id − σ(g1)q(g1) is invertible, so

degs detC(Y )(Id − σ(g1)q(g1)) = 0.

Clearly, degs detDG (Y )(Id − τ(g1)q(g1)) = 0. Thus, (38) holds in this case.
Consider the case r �= 0. Without loss of generality we may assume r > 0 (the

case r < 0 can be analyzed in the same way). Think of

detC(Y )(Id − σ(g1)q(g1))

as a polynomial in s with coefficients in C(Y � {s}). Then the highest power of s
in detC(Y )(Id − σ(g1)q(g1)) is snr with coefficient detC σ(g1) · ∏

y∈Y �{s} ynry . The

lowest power of s in detC(Y )(Id − σ(g1)q(g1)) is s0 = 1 with coefficient 1. Thus,
degs detC(Y )(Id − σ(g1)q(g1)) = nr . Since degs detDG (Y )(Id − τ(g1)q(g1)) = r ,
equation (38) also holds in this case.

Theorem 4.3 extends the representation σ ⊗C τ : G → GLn(DG) to a ring homo-
morphism σ̃ : DG → Mn(DG). By repeatedly using Corollary 2.15, we further extend
σ̃ to a ring homomorphism (still denoted by) σ̃ : DG(Y ) → Mn(DG(Y )) such that
σ̃ (y) = y · Id for all y ∈ Y . Then

σ̃ ((τ ⊗Z q)(W )) = (σ ⊗C τ ⊗Z q)(W ).

Note that π1(S) is Lewin. Indeed, there is a homomorphism π1(S) → Z whose
kernel is the fundamental group of a non-compact surface, and thus is free. Therefore,
π1(S) is a semi-direct product of a free group with Z. It follows that π1(S) is Lewin
and thus so is G [25, Theorems 1.1 and 3.7].

Lemmata 2.27 and 2.14 then imply

degs detC(Y )(σ ⊗Z q)(W ) � degs detDG (Y )(σ ⊗C τ ⊗Z q)(W )

=n · degs detDG (Y )(τ ⊗Z q)(W ),
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which, together with (36), (37) and (38) finishes the proof of (32).
If φ is a fibered character, then ker φ is the fundamental group of some closed

surface [45] and thus is of type F . Theorem 5.1 then implies that

‖φ‖σ = −χσ⊗Zq(ker φ). (39)

By Proposition 3.7, we have

χσ⊗Zq(ker φ) = n · χ(ker φ). (40)

and

‖φ‖T = −χτ (ker φ). (41)

By Theorem 5.1 again, we have

χτ (ker φ) = χ(ker φ). (42)

Equation (33) follows by combining (39), (40), (41) and (42). ��
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