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Abstract
In this paper, we continue investigating the second variation of Perelman’s ν-entropy
for compact shrinking Ricci solitons. In particular, we improve some of our previous
work in Cao and Zhu (Math Ann 353(3):747–763, 2012), as well as the more recent
work inMehrmohamadi and Razavi (arXiv:2104.08343, 2021), and obtain a necessary
and sufficient condition for a compact shrinking Ricci soliton to be linearly stable. Our
work also extends similar results of Hamilton, Ilmanen and the first author in Cao et
al. (arXiv:math.DG/0404165, 2004) (see also Cao and He in J Reine Angew Math,
2015:229–246, 2015) for positive Einstein manifolds to the compact shrinking Ricci
soliton case.

1 Introduction

This is a sequel to our previous paper [11], in which we derived the second variation
formula of Perelman’s ν-entropy for compact shrinking Ricci solitons and obtained
certain necessary condition for the linear stability of compact Ricci shrinkers.

Recall that a complete Riemannian manifold (Mn, g) is called a shrinking Ricci
soliton if there exists a smooth vector field V on Mn such that the Ricci tensor Rc of
the metric g satisfies the equation
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Rc + 1

2
LV g = 1

2τ
g,

where τ > 0 is a constant and LV g denotes the Lie derivative of g in the direction
of V . If V is the gradient vector field ∇ f of a smooth function f , then we have a
gradient shrinking Ricci soliton given by

Rc + ∇2 f = 1

2τ
g, (1.1)

for some constant τ > 0. Here, ∇2 f denotes the Hessian of f , and f is called a
potential functionof theRicci soliton.Clearly,when f is a constantwehave anEinstein
metric of positive scalar curvature. Thus, gradient shrinking Ricci solitons include
positive Einstein manifolds as a special case. In the following, we use (Mn, g, f ) to
denote a gradient shrinking Ricci soliton.

Gradient shrinkingRicci solitons are self-similar solutions toHamilton’sRicci flow,
and often arise as Type I singularity models in the Ricci flow as shown by Naber [35],
Enders–Müller–Topping [20] and Cao–Zhang [12]; see also Zhang [42]. As such, they
play a significant role in the study of the formation of singularities in the Ricci flow
and its applications. Therefore, it is very important to either classify, if possible, or
understand the geometry of gradient shrinking Ricci solitons.

Hamilton [26] showed that any 2-dimensional complete gradient shrinking Ricci
soliton is isometric to either S2, or RP2, or the Gaussian shrinking soliton on R

2. In
dimension n = 3, by using the Hamilton-Ivey curvature pinching, Ivey [27] proved
that a compact shrinking soliton must be a spherical space form S

3/�. Furthermore,
for n = 3, a complete classification follows from the works of Perelman [39], Naber
[35], Ni–Wallach [36], and Cao–Chen–Zhu [7] that any three-dimensional complete
gradient shrinking Ricci soliton is either isometric to the Gaussian soliton R

3 or a
finite quotient of either S3 or S2 × R.

However, in dimension n ≥ 4, there do exist non-Einstein and non-product gra-
dient shrinking Ricci solitons. Specifically, in dimension n = 4, Koiso [29] and the
first author [4] independently constructed a gradient Kähler–Ricci shrinking soliton
on CP

2#(−CP
2), and Wang–Zhu [40] found another one on CP

2#(−2CP2). In the
noncompact case, Feldman–Ilmanen–Knopf [21] constructed a U (2)-invariant gradi-
ent shrinking Kähler–Ricci soliton on the tautological line bundleO(−1) ofCP1, i.e.,
the blow-up of C2 at the origin. Very recently, a noncompact toric gradient shrinking
Kähler–Ricci soliton on the blowup of CP1 × C at one point was found by Bamler–
Cifarelli–Conlon–Deruelle [2]. These are the only known examples of nontrivial (i.e.,
non-Einstein) and non-product complete shrinking Ricci solitons in dimension 4 so
far. We remark that the constructions in [4, 21, 29, 40] all extend to higher dimen-
sions. For additional examples in higher dimensions, see, e.g., Angenent–Knopf [1],
Dancer–Wang [19], Futaki–Wang [22], and Yang [41].

Ricci solitons can be viewed as fixed points of the Ricci flow, as a dynamical system
on the space of Riemannian metrics modulo diffeomorphisms and scalings. In [38],
Perelman introduced theW-functional
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W(ĝ, f̂ , τ̂ ) =
∫
M

[τ̂ (R̂ + |∇ f̂ |2) + f̂ − n](4πτ̂ )−
n
2 e− f̂ d V̂ ,

on any compact manifold Mn , where ĝ is a Riemannian metric on M , R̂ is its scalar
curvature, f̂ is any smooth function on Mn , and τ̂ > 0 is a positive parameter. The
associated ν-entropy is defined by

ν(ĝ) = inf

{
W(ĝ, f̂ , τ̂ ) : f̂ ∈ C∞(M), τ̂ > 0, (4πτ̂ )−

n
2

∫
M
e− f̂ d V̂ = 1

}
,

which is always attained by some f̂ and τ̂ . Furthermore, Perelman showed that the ν-
entropy ismonotone increasing under theRicci flow, and its critical points are precisely
given by gradient shrinking Ricci solitons (Mn, g, f ) satisfying (1.1). In particular, it
follows that all compact shrinking Ricci solitons are necessarily gradient ones.

By definition, a compact shrinking Ricci soliton (Mn, g, f ) is linearly stable (or
ν-stable) if the second variation of the ν-entropy is nonpositive at g. In [8], Hamilton,
Ilmanen and the first author initiated the study of linear stability of compact shrinking
Ricci solitons. They obtained the second variation formula of Perelman’s ν-entropy for
positive Einstein manifolds and investigated their linear stability. Among other results,
they showed that, while the round sphere Sn is linearly stable and the complex projec-
tive space CPn is neutrally linearly stable1, many known positive Einstein manifolds
are unstable. In particular, all product Einstein manifolds and Fano Kähler–Einstein
manifolds with Hodge number h1,1 > 1 are unstable. More recently, a complete
description of the linear stability (or instability) of irreducible symmetric spaces of
compact type was provided by He and the first author [9]. Meanwhile, in [11], we
derived the second variation formula of Perelman’s ν-entropy for compact shrinking
Ricci solitons which we now recall.

Let (Mn, g, f ) be a compact shrinking Ricci soliton satisfying (1.1) and
Sym2(T ∗M) denote the space of symmetric (covariant) 2-tensors on M . For any
h = hi j ∈ Sym2(T ∗M), consider the variation g(s) = g + sh and let

div f h = e f div(e− f h) = div h − h(∇ f , ·), (1.2)

div†f be the adjoint of div f with respect to the weighted L2-inner product

(·, ·) f =
∫
M

< ·, · > e− f dV , (1.3)

� f h := �h − ∇ f · ∇h, (1.4)

and

L f h = 1

2
� f h + Rm(h, ·) = 1

2
� f hik + Ri jklh jl . (1.5)

1 Recently, Knopf and Sesum [28] showed that CPn is not a local maximum of the ν-entropy, hence is
dynamically unstable as first shown by Kröncke [31].
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Then the second variation δ2gν(h, h) of the ν-entropy is given in [11] by

δ2gν(h, h) = d2

ds2

∣∣∣∣
s=0

ν(g(s)) = 1

(4πτ)n/2

∫
M

< N f h, h > e− f dV ,

where the Jacobi operator (also known as the stability operator) N f is defined by

N f h := L f h + div†f div f h + 1

2
∇2v̂h − Rc

∫
M < Rc, h > e− f dV∫

M Re− f dV
, (1.6)

and v̂h is the unique solution of

� f v̂h + v̂h

2τ
= div f div f h,

∫
M

v̂he
− f dV = 0.

For more details, we refer the reader to our previous paper [11] or Sect. 2 below. Note
that Sym2(T ∗M) admits the following standard direct sum decomposition:

Sym2(T ∗M) = Im(div†f ) ⊕ Ker(div f ). (1.7)

The first factor

Im(div†f ) = {div†f (ω) | ω ∈ 	1(M)}
= {LX g | X = ω
 ∈ X (M)}

represents deformations g(s) of g by diffeomorphisms. Since the ν-entropy is invariant
under diffeomorphisms, the second variation vanishes on this factor.

In [11], we observed that div f (Rc) = 0 and showed that Rc is an eigen-tensor
of L f with eigenvalue2 1/2τ , i.e., L f Rc = 1

2τ Rc. Moreover, for any linearly stable
compact shrinking Ricci soliton, we proved that 1/2τ is the only positive eigenvalue of
L f onKer(div f )withmultiplicity one. Very recently,Mehrmohamadi andRazavi [32]
made some new progress. In particular, they showed that N f vanishes on Im(div†f ),
extending a similar result in [8, 9] for positive Einstein manifolds to the compact
shrinking Ricci soliton case. In addition, in terms of the operator L f , they showed
that (i) if a compact shrinking Ricci soliton (Mn, g, f ) is linearly stable, then the
eigenvalues of L f on Sym2(T ∗M), other than 1

2τ with multiplicity one, must be less
than or equal to 1

4τ ; (ii) if a compact shrinking soliton (Mn, g, f ) has L f ≤ 0 on
Sym2(T ∗M), except on scalar multiples of Rc, then (Mn, g, f ) is linearly stable (see
Theorems 1.3 and 1.4 in [32], respectively).

Clearly, the nonpositivity of the second variation of ν, i.e., δ2gν(h, h) ≤ 0, is implied
by the nonpositivity of the stability operator N f on the space Sym2(T ∗M) of sym-
metric 2-tensors. Thus, studying linear stability of compact shrinking Ricci solitons

2 Note the different sign convention we used in [11] for eigenvalues of L f : In [11], λ is an eigenvalue of
L f if −L f h = λh for some symmetric 2-tensor h 	= 0.
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requires a closer look into the eigenvalues and eigenspaces of N f , especially its lead-
ing term L f defined by (1.5), acting on Sym2(T ∗M). Since div f (Rc) = 0, we can
further decompose Ker(div f ) as

Ker(div f ) = R · Rc ⊕ Ker(div f )0,

where R · Rc = {ρRc | ρ ∈ R} is the one dimensional subspace generated by the
Ricci tensor Rc, and

Ker(div f )0 = {h ∈ Ker(div f )

∣∣∣∣
∫
M

< h, Rc > e− f dV = 0} (1.8)

denotes the orthogonal complement ofR·Rc inKer(div f )with respect to theweighted
inner product (1.3). Accordingly, we can refine the decomposition of Sym2(T ∗M) in
(1.7) by

Sym2(T ∗M) = Im(div†f ) ⊕ R · Rc ⊕ Ker(div f )0. (1.9)

In this paper, by exploring decomposition (1.9), we are able to further improve our
previous work in [11] and the work of Mehrmohamadi and Razavi [32]. Our main
results are as follows.

Theorem 1.1 Let (Mn, g, f ) be a compact shrinking Ricci soliton satisfying Eq. (1.1).
Then,

(i) the decomposition of Sym2(T ∗M) in (1.9) is both invariant underL f and orthog-
onal with respect to the second variation δ2gν of the ν-entropy.

(ii) the eigenvalues of L f on Im(div†f ) are strictly less than
1
4τ .

Theorem 1.2 A compact shrinking Ricci soliton (Mn, g, f ) is linearly stable if and
only if L f ≤ 0 on Ker(div f )0.

Remark 1.1 Theorems 1.1 and 1.2 above are extensions of similar results by Hamilton,
Ilmanen and the first author in [8] (see also Theorem 1.1 in [9]) for positive Einstein
manifolds.

While there have been a lot of progress in recent years in understanding geometry
of general higher dimensional (n ≥ 4) complete noncompact gradient shrinking Ricci
solitons, especially in dimension four, e.g., [10, 13, 14, 16, 30, 33, 34] and [2, 18],
very little is known about the geometry of general compact shrinking Ricci solitons
in dimension n = 4 or higher. On the other hand, for possible applications of the
Ricci flow to topology, one is mostly interested in the classification of stable shrinking
solitons, since unstable ones could be perturbed away hence may not represent generic
singularities of the Ricci flow. Thus, exploring the variational structure of compact
Ricci shrinkers becomes rather significant.

We point out thatHall andMurphy [24] have proven that compact shrinkingKähler–
Ricci solitons with Hodge number h1,1 > 1 are unstable, thus extending the result
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of Cao–Hamilton–Ilmanen [8] for Fano Kähler–Einstein manifolds to the shrink-
ing Kähler–Ricci soliton case. In particular, the Cao–Koiso soliton on CP

2#(−CP
2)

and Wang–Zhu soliton on CP
2#(−2CP2) are unstable. In addition, Hall–Haslhofer–

Siepmann [23] and Hall–Murphy [25] have shown that the Page metric [37] on
CP

2#(−CP
2) is unstable. Most recently, Biquard and Ozuch [3] proved that the

Chen–LeBrun–Weber metric [15] on CP
2#(−2CP2) is also unstable. We hope our

new results in this paper will play a significant role in future study of linear stability
of shrinking Ricci solitons, especially in classifying compact 4-dimensional linearly
stable shrinking Ricci solitons.

2 Preliminaries

In this section, we fix our notation and recall some useful facts that will be used in the
proof of Theorem 1.1. First of all, by scaling the metric g, we may assume that τ = 1
in Eq. (1.1) so that

Rc + ∇2 f = 1

2
g. (2.1)

We also normalize f so that

(4π)−
n
2

∫
M
e− f dV = 1.

From now on, we shall assume that (Mn, g, f ) is a compact shrinking Ricci soliton
satisfying (2.1).

As in [11], for any symmetric 2-tensor h = hi j and 1-form ω = ωi , we denote

div ω := ∇iωi , (div h)i := ∇ j h ji .

Moreover, as done in [6, 11], we define div f (·) := e f div(e− f (·)), or more specifi-
cally,

div f ω = divω − ω(∇ f ) = ∇iωi − ωi∇i f , (2.2)

and

div f h = div h − h(∇ f , ·) = ∇ j hi j − hi j∇ j f . (2.3)

We also define the operator div†f on functions by

div†f u = −∇u, u ∈ C∞(M) (2.4)
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and on 1-forms by

(div†f ω)i j = −1

2
(∇iω j + ∇ jωi ) = −1

2
Lω
gi j , (2.5)

where ω
 is the vector field dual to ω and L denotes the Lie derivative, so that

∫
M
e− f

〈
div†f ω, h

〉
dV =

∫
M
e− f 〈

ω, div f h
〉
dV , (2.6)

for any symmetric 2-tensor h.
Clearly, div†f is just the adjoint of div f with respect to the weighted L2-inner

product

(·, ·) f =
∫
M

< ·, · > e− f dV . (2.7)

Remark 2.1 If we denote by div∗ the adjoint of div with respect to the usual L2-inner
product

(·, ·) =
∫
M

< ·, · > dV , (2.8)

then, as pointed out in [6], one can easily verify that

div†f = div∗ . (2.9)

Finally, we denote

� f := e f div(e− f ∇) = � − ∇ f · ∇, (2.10)

which is self-adjoint with respect to the weighted L2-inner product (2.7),

Rm(h, ·)ik := Ri jklh jl ,

and define the operator

L f h = 1

2
� f h + Rm(h, ·) (2.11)

on the space of symmetric 2-tensors. It is easy to see that, like � f ,L f is a self-adjoint
operator with respect to the weighted L2-inner product (2.7).

Now we restate the second variation of the ν-entropy derived in [11] with τ = 1.

123



H.-D. Cao and M. Zhu

Theorem 2.1 [11]Let (Mn, g, f ) be a compact shrinkingRicci soliton satisfying (2.1).
For any symmetric 2-tensor h = hi j , consider the variation g(s) = gi j + shi j . Then
the second variation δ2gν(h, h) is given by

δ2gν(h, h) = d2

ds2

∣∣∣∣
s=0

ν(g(s)) = 1

(4π)n/2

∫
M

〈
N f h, h

〉
e− f dV , (2.12)

where the stability operator N f is given by

N f h := L f h + div†f div f h + 1

2
∇2v̂h − Rc

∫
M < Rc, h > e− f dV∫

M Re− f dV
, (2.13)

and the function v̂h is the unique solution of

� f v̂h + v̂h

2
= div f div f h,

∫
M

v̂he
− f dV = 0. (2.14)

Next, we recall the following facts (see, e.g., Lemmas 3.1 and 3.2 in [11]).

Lemma 2.1 [11] Let (Mn, g, f ) be a compact shrinking Ricci soliton satisfying (2.1).
Then,

(i) Rc ∈ Ker(div f );
(ii) L f (Rc) = 1

2 Rc.

We shall also need the following useful identities found byMehrmohamadi-Razavi
[32]; see also Colding andMinicozzi [17], inwhich they derivedmore general versions
of identities (2.15)–(2.20) that are valid for smooth metric measure spaces.

Lemma 2.2 [17, 32] Let (Mn, g, f ) be a compact shrinking Ricci soliton satisfying
(2.1). Then, for any function u, 1-form ω and symmetric 2-tensor h, the following
identities hold

∇� f u = � f ∇u − 1

2
∇u, (2.15)

div f � f ω = � f div f ω + 1

2
div f ω, (2.16)

div†f � f ω = 2L f div
†
f ω − 1

2
div†f ω, (2.17)

2L f (Lω
g) = L(� f ω)
g + 1

2
Lω
g, (2.18)

2 div f L f h = � f div f h + 1

2
div f h, (2.19)

div f (Lω
g) = −2 div f div
†
f ω = � f ω + ∇(div f ω) + 1

2
ω. (2.20)

For the readers’ convenience and the sake of completeness, we provide a quick
proof here.
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Proof The above identities follow from direct computations given below.
• For (2.15):

∇i� f u = ∇i∇ j∇ j u − ∇i∇ j f ∇ j u − ∇ j f ∇i∇ j u

= �∇i u + Ri j jk∇ku − 1

2
∇i u + Ri j∇ j u − ∇ j f ∇ j∇i u

= � f ∇i u − 1

2
∇i u.

• For (2.16): It follows from (2.15) that

∫
M
u div f (� f ω) e− f dV =

∫
M

− < � f ∇u, ω > e− f dV

=
∫
M

−
〈
∇(� f u) + 1

2
∇u, ω

〉
e− f dV

=
∫
M
u

(
� f div f ω + 1

2
div f ω

)
e− f dV .

• For (2.17):

2L f div
†
f ω = −1

2
� f (∇iω j + ∇ jωi ) − Rik jl(∇kωl + ∇lωk).

Notice that

� f ∇iω j = ∇k∇k∇iω j − ∇k f ∇k∇iω j

= ∇k(∇i∇kω j + Rki jlωl) − ∇k f (∇i∇kω j + Rki jlωl)

= ∇i�ω j + Ril∇lω j + Rki jl∇kωl + ∇k Rki jlωl + Rki jl∇kωl

− ∇i (∇k f ∇kω j ) + ∇i∇k f ∇kω j + Rki jl∇k f ωl

= ∇i� f ω j − 2Rik jl∇kωl + 1

2
∇iω j .

• For (2.18): According to (2.5), (2.18) is equivalent to (2.17).
• For (2.19): Similar to the proof of (2.16), (2.19) is the adjoint of (2.17) with

respect to the inner product (2.7).
• For (2.20):

div f (Lω
g) j = ∇i (∇iω j + ∇ jωi ) − ∇i f (∇iω j + ∇ jωi )

= � f ω j + ∇ j∇iωi + R jkωk − ∇ j (∇i f ωi ) + ∇ j∇i f ωi

= � f ω j + ∇ j div f ω + 1

2
ω j .


�
Remark 2.2 Some of the identities in Lemma 2.2 were first obtained in [9] for positive
Einstein manifolds.
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For positive Einstein manifolds, He and the first author also showed in [9] that the
restriction of N f to the subspace Im(div†f ) is zero, i.e., N f

∣∣
Im(div†f )

= 0, a fact first

noted in Cao–Hamilton–Ilmanen [8]. By using identities (2.16), (2.18) and (2.20) in
Lemma 2.2, Mehrmohamadi and Razavi [32] were able to generalize this to the case
of compact shrinking Ricci solitons.

Lemma 2.3 [32] Let (Mn, g, f ) be a compact shrinking Ricci soliton satisfying (2.1).
Then, we have

N f |Im(div†f )
= 0.

Proof Notice that, according to (2.20) and (2.16),

div f div f (Lω
g) = div f

(
� f ω + ∇ div f ω + 1

2
ω

)

= 2� f (div f ω) + div f ω.

(2.21)

Thus, if we denote by ξ = Lω
g, then according to (2.14)

v̂ξ = 2 div f ω. (2.22)

Now, by (2.5), (2.18), (2.20) and (2.22), we obtain

−2N f (div
†
f ω) = N f (Lω
g)

= L f (Lω
g) + div†f div f (Lω
g) + ∇2(div f ω)

= 1

2
L(� f ω)
g + 1

4
Lω
g + div†f (� f ω) + div†f

(∇(div f ω)
)

+ 1

2
div†f ω + ∇2(div f ω)

= 0.

(2.23)


�

3 Proof of themain theorems

In this section, we prove Theorems 1.1 and 1.2 stated in the introduction. Once again,
by scaling the metric g, we normalize τ = 1 and assume that (Mn, g, f ) is a compact
shrinking Ricci soliton satisfying

Rc + ∇2 f = 1

2
g. (3.1)

First of all, recall that we have the following direct sum decomposition

Sym2(T ∗M) = Im(div†f ) ⊕ R · Rc ⊕ Ker(div f )0, (3.2)

123



Linear stability of compact shrinking Ricci solitons

where R · Rc is the one dimensional subspace generated by the Ricci tensor Rc and
Ker(div f )0, as defined in (1.8), denotes the orthogonal complement of R · Rc in
Ker(div f ) with respect to the weighted inner product

∫
M < ·, · > e− f dV .

We divide the proof of Theorem 1.1 into two propositions.

Proposition 3.1 The subspaces Im(div†f ), R ·Rc, Ker(div f )0 are invariant subspaces
of the linear operatorL f . Moreover, (3.2) is an orthogonal decompositionwith respect
to the quadratic form δ2gν(h, h) of the second variation in Theorem 2.1.

Proof Firstly, by (2.17),

L f (div
†
f ω) = 1

2
div†f

(
� f ω + 1

2
ω

)
∈ Im(div†f ).

This shows that Im(div†f ) is invariant under L f .
Next, from Lemma 2.1(ii), we have

L f Rc = 1

2
Rc.

Hence, R · Rc is an invariant subspace of L f .
Finally, for any h ∈ Ker(div f )0, it follows from (2.19) that

div f (L f h) = 1

2

(
� f div f h + 1

2
div f h

)
= 0.

Moreover, since L f Rc = 1
2 Rc, it follows that

∫
M

< L f h, Rc > e− f dV =
∫
M

< h,L f Rc > e− f dV

= 1

2

∫
M

< h, Rc > e− f dV = 0,

i.e., L f h ∈ Ker(div f )0. Therefore, Ker(div f )0 is also invariant under L f .
Furthermore, the invariant subspace property just demonstrated together with the

fact that Im(div†f ),R ·Rc, and Ker(div f )0 are mutually orthogonal to each other (with
respect to the weighted inner product) immediately imply that the decomposition (1.9)
of Sym2(T ∗M) is also orthogonal with respect to the second variation δ2gν(h, h) of
the ν-entropy. 
�
Proposition 3.2 Let (Mn, g, f ) be a compact shrinking Ricci soliton satisfying (3.1).
Then, the eigenvalues of L f on Im(div†f ) are strictly less than

1
4 .

Proof Suppose that λ is an eigenvalue of L f on Im(div†f ), and

L f (Lω
g) = λLω
g
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for some Lω
g ≡ −2 div†f ω ∈ Im(div†f ) withLω
g 	= 0. We need to show λ < 1
4 .

Since N f = 0 on Im(div†f ) by Lemma 2.3, from (2.22) and (2.23), we have

0 = N f (Lω
g)

= L f (Lω
g) + div†f div f Lω
g + ∇2 div f w

= λLω
g + div†f div f Lω
g + ∇2 div f ω

= −2λ div†f ω − 2 div†f div f div
†
f ω − div†f ∇ div f ω

= − div†f (2λω + 2 div f div
†
f ω + ∇ div f ω).

(3.3)

Claim. The following identity holds,

� f div f ω = (2λ − 1) div f ω. (3.4)

Indeed, it follows from (2.18) that

2L f (Lω
g) = L(� f ω+ 1
2ω)
g.

From (2.21), we know that

v̂L
ω
 g = 2 div f ω.

Here, for any symmetric 2-tensor h, v̂h is given by (2.14). Hence,

2v̂L f (Lω
 g) = v̂L
(� f ω+ 1

2w)

g

= 2 div f (� f ω + 1

2
ω)

= 2(� f div f ω + div f ω),

where, in the last step above, we have used (2.16).
Since L f (Lω
g) = λLω
g, we get

� f div f ω + div f ω = v̂L f (Lω
 g)

= λv̂L
ω
 g

= 2λ div f ω,

i.e.,

� f div f ω = (2λ − 1) div f ω.

This proves the Claim.
Now, we divide the rest of our argument into two cases.
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Case 1: div f ω is not a constant.
In this case, by the Claim, div f ω is an eigenfunction of� f with eigenvalue 1−2λ.

On the other hand, from [11], we know that the first eigenvalue of � f is greater than
1/2. Thus, 1 − 2λ > 1

2 ; hence λ < 1
4 .

Case 2: div f ω is a constant.
In this case, we have

∫
M

| div f ω|2e− f dV =
∫
M

< ω, div†f div f ω > e− f dV

= −
∫
M

< ω,∇(div f ω) > e− f dV

= 0.

It follows that div f ω = 0. So (3.3) becomes

div†f (λω + div f div
†
f ω) = 0.

Multiplying both sides of the above identity by div†f ω and integrating yields

∫
M

(
λ| div†f ω|2 + | div f div

†
f ω|2

)
e− f dV = 0.

Since div†f ω = − 1
2Lω
g 	= 0 by assumption, we have λ ≤ 0 < 1/4.

Therefore, we have shown that λ < 1
4 . This concludes the proof of Proposition 3.2

and Theorem 1.1. 
�
Finally, we are ready to prove Theorem 1.2.

Proof By Theorem 2.1, a compact shrinking Ricci soliton (Mn, g, f ) is linearly stable
if and only if

δ2gν(h, h) := 1

(4π)n/2

∫
M

< N f h, h > e− f dV ≤ 0

for every h ∈ Sym2(T ∗M) = Im(div†f ) ⊕ R · Rc ⊕ Ker(div f )0.

However, by Theorem 1.1(i) (i.e., Proposition 3.1), we have

∫
M

< N f h, h > e− f dV =
∫
M

< N f h1, h1 > e− f dV +
∫
M

< N f h2, h2 > e− f dV

+
∫
M

< N f h0, h0 > e− f dV

=
∫
M

< N f h2, h2 > e− f dV +
∫
M

< N f h0, h0 > e− f dV ,
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where

h = h1 + h2 + h0, with h1 ∈ Im(div†f ), h2 ∈ R · Rc, h0 ∈ Ker(div f )0,

and, in the last equality, we have used the fact that δ2gν(h1, h1) = 0 for h1 ∈ Im(div†f )
due to the diffeomorphism invariance of the ν-entropy.

On the other hand, since div f Rc = 0 andL f Rc = 1
2 Rc by Lemma 2.1, we obtain

N f (Rc) = L f Rc −
∫
M |Rc|2e− f dV∫
M R e− f dV

Rc

= L f Rc − 1

2
Rc = 0,

where we have used the fact that
∫
M

|Rc|2e− f dV = 1

2

∫
M
R e− f dV ,

because the scalar curvature R satisfies the well-known equation� f R = R−2|Rc|2.
Hence, N f = 0 on R · Rc, and it follows that

∫
M

< N f h2, h2 > e− f dV = 0.

Also, as N f = L f on Ker(div f )0, we immediately conclude that

∫
M

< N f h, h > e− f dV =
∫
M

< N f h0, h0 > e− f dV

=
∫
M

< L f h0, h0 > e− f dV .

Therefore, δ2gν(h, h) ≤ 0 if and only if

∫
M

< L f h0, h0 > e− f dV ≤ 0.

This finishes the proof of Theorem 1.2. 
�
Remark 3.1 In the proof of Theorem 1.2, if we use Lemma 2.3 instead of Theorem 1.1
(i) thenwewould get the followingmore explicit information about the Jacobi operator
N f .

Proposition 3.3

N f =

⎧⎪⎨
⎪⎩
0, on Im(div†f );
0, on R · Rc;
L f on Ker(div f )0.

(3.5)
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In particular, N f ≤ 0 on Sym2(T ∗M) if and only if L f ≤ 0 on Ker(div f )0.

Remark 3.2 Suppose ξ = Lω
g is an eigen-tensor of L f for some 1-form ω, with

L f ξ = λξ.

Then one can show that div†f div f ξ and ∇2 div f ω are also eigen-tensors of L f with
the same eigenvalue, i.e.,

L f (div
†
f div f ξ) = λ(div†f div f ξ),

and

L f (∇2 div f ω) = λ(∇2 div f ω).

Indeed, if L f (ξ) = λξ then, by using the identity

div†f div f (L f h) = L f (div
†
f div f h) (3.6)

shown in [32], we have

L f (div
†
f div f ξ) = div†f div f (L f ξ)

= λ(div†f div f ξ).

On the other hand, by setting u = div f ω and combining (3.4) with (2.18) and (2.15),
we get

2L f (∇2u) = L f (L∇ug)

= 1

2
L(� f (du))
g + 1

2
L 1

2∇ug

= 1

2
L∇(� f u+u)g

= 1

2
L2λ∇ug

= 2λ∇2u.

To conclude our paper, we mention two open problems.

Conjecture 1 (Hamilton; 2004 [5, 6]) S
4 and CP

2 are the only ν-stable four-
dimensional positive Einstein manifolds.

Conjecture 2 (Cao; 2006 [5, 6]) A ν-stable compact shrinking Ricci soliton is neces-
sarily Einstein, at least in dimension four.

123



H.-D. Cao and M. Zhu

Remark 3.3 Besides S4 and CP
2, the other known positive Einstein 4-manifolds are

the Kähler–Einstein manifolds CP1 × CP
1, CP2#(−kCP2) (3 ≤ k ≤ 8), and the

(non-Kähler Einstein but conformally Kähler) Page metric [37] on CP2#(−CP
2) and

Chen–LeBrun–Weber metric [15] onCP2#(−2CP2). Note that, for n > 4, He and the
first author [9] have found a strictly stable positive Einstein manifold, other than the
round sphere Sn , in dimension 8.
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