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Abstract
We introduce new techniques to study the differential complexes associated to tube
structures onM×T

m of corankm, in whichM is a compact manifold andT
m is them-

torus. By systematically employing partial Fourier series, for complex tube structures,
we completely characterize global solvability, in a given degree, in terms of a weak
form of hypoellipticity, thus generalizing existing results and providing a broad answer
to an open problem proposed by Hounie and Zugliani (Math Ann 369(3–4):1177–
1209, 2017). We also obtain new results on the finiteness of the cohomology spaces
in intermediate degrees. In the case of real tube structures, we extend an isomorphism
for the cohomology spaces originally obtained by Dattori da Silva and Meziani (Math
Nachr 289(17–18):2147–2158, 2016) in the case M = T

n . Moreover, we establish
necessary and sufficient conditions for the differential operator to have closed range
in the first degree.
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1 Introduction

We investigate the global solvability and the cohomology spaces of differential com-
plexes associated with certain systems of first-order differential operators on compact
manifolds. More precisely, let M be a smooth, compact, connected and oriented n-
dimensional manifold, and let ω1, . . . , ωm be smooth, complex, closed 1-forms on M ,
and let T

m .= R
m/2πZ

m . On �
.= M × T

m , we consider the involutive subbundle
V ⊂ CT� whose sections are annihilated by

ζk
.= dxk − ωk, k ∈ {1, . . . ,m}, (1.1)

in which x = (x1, . . . , xm) denote the usual coordinates on T
m . Such V gives rise to

a complex of vector bundles and first-order differential operators over � [5, 10], here
constructed as follows: for each q ∈ {0, . . . , n}, let �q denote the bundle of q-forms
over M and �q its pullback via the projection � → M . The smooth sections of the
latter are locally written as

f =
∑′

|J |=q

f J (t, x)dtJ , (1.2)

in which f J ∈ C∞(U × T
m) and (U ; t1, . . . , tn) is some local chart of M . Denote by

dt the exterior derivative in M and define a differential operator

d′ .= dt +
m∑

k=1

ωk ∧ ∂

∂xk
: C∞(�;�q) −→ C∞(�;�q+1), (1.3)

that satisfies d′◦d′ = 0.Our goal is to investigate global solvability—that is, closedness
of the range—of (1.3) in any degree q ∈ {0, . . . , n − 1}, and to provide a better
understanding of the smooth cohomology spaces

Hq
d′(C∞(�))

.= ker{d′ : C∞(�;�q) −→ C∞(�;�q+1)}
ran{d′ : C∞(�;�q−1) −→ C∞(�;�q)} , (1.4)

for q ∈ {0, . . . , n} (with standard conventions regarding the endpoints1).
Our motivation to work in this setting is an attempt to encompass the model in [3,

4, 8, 9] where the global solvability of d′ in� = M ×T
1 is studied and also the model

in [6] where the authors were able to find isomorphisms for the cohomology spaces
when� = T

n×T
m . Below, we summarize what we understand to be three of themain

themes that keep intertwining throughout the paper, and their major consequences.

1 All differential complexes presented in this paper are “completed as zero” in negative degrees.
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Cohomology of tube structures

1.1 The relationship between solvability and regularity

Our first result is an equivalence between global solvability of d′ and a weak notion
of hypoellipticity (Theorem 4.4). This is a generalization of [9, Corollary 7.2] that
holds in arbitrary degree, for any smooth, complex tube structure of arbitrary corank,
and thus provides a broad answer to the Open Problem 2 in [8]. All the steps of this
implication are explained in Remark 4.3, Corollary 4.5 and Remark 4.6.

The main statement can be summarized as follows:

Theorem 1.1 For each q ∈ {0, . . . , n − 1}, the following are equivalent:

(1) d′ : C∞(�;�q) → C∞(�;�q+1) has closed range.
(2) For every u ∈ D ′(�;�q) such that d′u ∈ C∞(�;�q+1) there exists v ∈

C∞(�;�q) such that d′v = d′u.

The second property above is what we will call almost global hypoellipticity (AGH).

1.2 Isomorphism formulas for the cohomology spaces

Concerning the cohomology spaces for real tube structures, we prove certain isomor-
phisms (5.10), similar to the main result in [6]. In that work, M is the n-torus, and
their result roughly states that, under suitable conditions, we have

Hq
d′(C∞(�)) ∼= C∞(Tr )⊗ Hq

dR(M), (1.5)

in which r is the rank of a group associated to ω1, . . . , ωm . For a general M , however,
our approach (see Sect. 5.1) generalizes and provides a better understanding of such
result by decomposing the action of our operator in convenient subspaces. While the
complete statement of our results requires a bit of notation, below we will provide
rough versions of them for the convenience of the reader.

Assume that ω1, . . . , ωm are closed and real-valued 1-forms on M . We define the
following subgroup2 of Z

m :

�ωωω
.=

{
ξ ∈ Z

m ; ξ ·ωωω .=
m∑

k=1

ξkωk is an integral 1-form
}
.

We interpret the ξ ∈ Z
m as frequencies for the partial Fourier series with respect

to x ∈ T
m . Roughly speaking, by applying Fourier series to cohomology classes in

Hq
d′(C∞(�)) and splitting them into frequencies belonging to �ωωω and to Z

m\�ωωω, one
is naturally led to the direct sum decomposition

Hq
d′(C∞(�)) ∼= Hq

d′(C∞
�ωωω
(�))⊕ Hq

d′(C∞
Zm\�ωωω(�))

2 A word of caution: a different, more general definition of �ωωω will be given later on; one that encompasses
the case when ω1, . . . , ωm are complex-valued (4.3).
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(the definition of the summands can be found in Sect. 5.1). Then, as a result of a series
of arguments in Sect. 5.1, we obtain the following representation of the first factor
above (which, again, assume no hypotheses on the given tube structure):

Hq
d′(C∞

�ωωω
(�)) ∼= C∞(Tr )⊗ Hq

dR(M),

where r is the rank of �ωωω as a group. In order to reach (1.5), we are necessarily
lead to the problem of determining conditions for the vanishing of the second factor
Hq
d′(C∞

Zm\�ωωω(�)): this is done in Theorem 5.7, where, besides the obvious requirement
of closedness of the range of d′, we find an unexpected obstruction (5.11) for the
validity of (1.5). Therefore, the main result in [6] does not extend, in general, when
M is not an n-torus.

Indeed, for surfaces, this obstruction—which is related both to the nature of the tube
structure and the topologyofM—isnot present in anydegreewhenM is either a 2-torus
or a 2-sphere, but is present at q = 1 when M has genus g ≥ 2. We show in Sect. 7.2
how to construct tube structures that satisfy all the hypotheses required by [6], but that
do not satisfy (1.5).We conjecture that (5.11) holds in any degreewhenM is a compact
Lie group and the tube structure is real, thus providing a complete generalization of
the results in [6]. We plan to investigate this topic further in a forthcoming work.

1.3 Characterization of solvability in the first degree

Still assuming our 1-forms ω1, . . . ωm to be real, in Sect. 5.2 we provide a complete
characterization of global solvability for the first degree of our complexes in terms
of Diophantine conditions à la [3, 4]. Here, this is our main result, a restatement of
Theorem 5.12:

Theorem 1.2 Assume ω1, . . . , ωm real-valued. The following are equivalent:

(1) d′ : C∞(�) → C∞(�;�1) has closed range.
(2) Given {βν}ν∈N ⊂ C∞(M;�1) a sequence of closed integral 1-forms and

{ξν}ν∈N ⊂ Z
m\�ωωω such that |ξν | → ∞, we have that {|ξν |ν(ξν · ωωω − βν)}ν∈N

is unbounded in C∞(M;�1).

The second condition above is called the property of weak non-simultaneous approx-
imability for the collection (ω1, . . . , ωm), which is further discussed in Sect. 5.2.

The systematic use of the key Lemma 4.1 and its implications not only provides a
better understanding of the different notions of global solvability present in previous
works (that use the so-called compatibility conditions, see Remark 4.3) but also results
into relatively short and straightforward proofs without the need of usual techniques,
such as dualizing with the top degree, or the use of a priori inequalities. Indeed, our
method automatically supply a formal solution (Definition 4.7), obtained by solving
a system of simpler differential equations (with the help of compatibility conditions)
that appears after performing the partial Fourier transform. The question then becomes
when the formal solution is a true solution, and here the Diophantine condition plays
a role.
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1.4 Final results: finiteness theorems and results on surfaces

In Sects. 6 and 7, we revisit complex tube structures, and derive a handful of necessary
conditions for finiteness of the cohomology spaces. The results we proved led us to
conjecture whether Hq

d′(C∞(�)) is finite dimensional only if it is isomorphic with
Hq
dR(M)—true, notably, when (5.11) holds and r = 0 (Theorem 7.5), as well as in

every other situation in which we were able to compute. For example, when M is a
surface, we obtain a quite complete description (Sect. 7.1).
Convention. Except where explicitly stated, the 1-forms ω1, . . . , ωm are assumed to
be complex-valued.

2 Preliminaries

2.1 Global solvability in abstract complexes and related concepts

Let X be a smooth, compact, connected and oriented manifold, and E be a complex
vector bundle over X . The spaceC∞(X; E) of smooth sections ofE carries its standard
Fréchet topology; by endowing X with a Riemannian metric and E with a Hermitian
metric, onemaywrite it as the projective limit of a suitable sequence of Sobolev spaces
of sections ofE. We also letD ′(X; E) be the space of distribution sections ofE, which
will be identified with the topological dual of C∞(X; E

∗).
Let E,F be vector bundles over X and P a differential operator from E to F.

Definition 2.1 We say that P is almost globally hypoelliptic (AGH) if

∀u ∈ D ′(X; E), Pu ∈ C∞(X; F) �⇒ ∃v ∈ C∞(X; E) such that Pv = Pu.

We have:

Theorem 2.2 If P is (AGH), then P : C∞(X; E) → C∞(X; F) has closed range.

This result is proved in [2, Theorem 3.5] for scalar operators; its proof extends to
vector-valued operators in a straightforward way, hence we omit it. A converse fails
to hold even for very simple operators, but is valid for many classes of operators
[1, 2], including (1.3), as we will prove in Theorem 4.4 below.

Let G be a third vector bundle over X and Q a differential operator from F to G

such that Q ◦ P = 0. We define two cohomology spaces

HP,Q(F (X))
.= ker{Q : F (X; F) −→ F (X; G)}

ran{P : F (X; E) −→ F (X; F)} , F = C∞ or D ′.

Our goal is to understand these two cohomology spaces separately, as well as their
relationship. The inclusions C∞(X; ∗) ↪→ D ′(X; ∗) (∗ = E,F,G) induce a linear
morphism

HP,Q(C
∞(X)) −→ HP,Q(D

′(X)) (2.1)
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which may be neither injective nor surjective. However,

P is (AGH) ⇐⇒ (2.1) is injective,

being therefore independent of Q, and a property of P alone. One should recall the
traditional notion of global hypoellipticity for complexes, that is:

∀ f ∈ D ′(X; F), Q f ∈ C∞(X; G) �⇒
∃u ∈ D ′(X; E) such that f − Pu ∈ C∞(X; F). (2.2)

Since Q( f − Pu) = Q f , (2.2) implies that Q is (AGH). Additionally, we have that

∀ f ∈ D ′(X; F), Q f = 0 �⇒ ∃u ∈ D ′(X; E) such that f − Pu ∈ C∞(X; F),

which is equivalent to the surjectivity of (2.1). We state this result more precisely:

Proposition 2.3 Property (2.2) holds if and only if Q is (AGH) and (2.1) is onto.

The transpose tP is a differential operator from F
∗ to E

∗, yielding new maps

tP :
{

D ′(X; F
∗) −→ D ′(X; E

∗)
C∞(X; F

∗) −→ C∞(X; E
∗) ,

the latter being the restriction of the former. In the presence of a second operator Q
satisfying Q ◦ P = 0, we want to determine necessary conditions on f ∈ C∞(X; F)

so as to be able to solve Pu = f with u ∈ C∞(X; E). Obviously, we must have

f ∈ ker{Q : C∞(X; F) −→ C∞(X; G)}. (2.3)

Moreover, if v ∈ D ′(X; F
∗) is such that tPv = 0, then

〈v, f 〉 = 〈v, Pu〉 = 〈tPv, u〉 = 0,

that is,

f ∈ ker{tP : D ′(X; F
∗) −→ D ′(X; E

∗)}o. (2.4)

However, by Functional Analysis, the annihilator in (2.4) equals the closure of ran{P :
C∞(X; E) → C∞(X; F)}, and since Q ◦ P = 0, the range of P is contained in
ker{Q : C∞(X; F) → C∞(X; G)}, which is closed in C∞(X; F). We conclude:

ker{tP : D ′(X; F
∗) −→ D ′(X; E

∗)}o ⊂ ker{Q : C∞(X; F) −→ C∞(X; G)},

hence the compatibility condition (2.3) is redundant in light of (2.4). We therefore
introduce the following definition in spite of the presence of the operator Q.
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Definition 2.4 We say that P is globally solvable if for every f ∈ C∞(X; F) satisfy-
ing

〈v, f 〉 = 0 for every v ∈ D ′(X; F
∗) such that tPv = 0

there exists u ∈ C∞(X; E) such that Pu = f .

In other words, P is globally solvable if and only if the range of P is closed.

2.2 Partial Fourier series for sections of3q

Given f ∈ C∞(�;�q), for each ξ ∈ Z
m , we define an element f̂ξ ∈ C∞(M;�q)

as follows: if U ⊂ M is a coordinate open set in which f is written as (1.2) then

f̂ξ (t)
.=

∑′

|J |=q

f̂ J (t, ξ)dtJ =
∑′

|J |=q

(∫

Tm
e−i xξ f J (t, x)dx

)
dtJ , t ∈ U .

Note that since �(t,x) = �t for every x ∈ T
m , each dtJ can be thought as a section

of either �q or �q . One can check that the construction above is independent of the
choice of coordinates onU , hence defines well a differential form of degree q in M . It
is useful to regard f̂ξ as a current on M , that is, we define f̂ξ : C∞(M;�n−q) → C

by

g �→ 〈 f̂ξ , g〉M .= 〈 f , e−i xξ ∧ g ∧ dx〉 =
∫

�

f ∧ e−i xξ ∧ g ∧ dx, (2.5)

with dx
.= dx1 ∧ · · · ∧ dxm ; both definitions yield the same object. This extends our

construction to q-currents, yielding linear maps

Fξ :
{
C∞(�;�q) −→ C∞(M;�q)

D ′(�;�q) −→ D ′(M;�q)

defined by the assignment f �→ f̂ξ .

Proposition 2.5 The map Fξ : C∞(�;�q) → C∞(M;�q) is continuous.

Going in the other direction we define linear maps

Eξ :
{
C∞(M;�q) −→ C∞(�;�q)

D ′(M;�q) −→ D ′(�;�q)
(2.6)

by f �→ (2π)−meixξ ∧ f .

Lemma 2.6 For every ξ ∈ Z
m, we have that Fξ ◦ Eξ is the identity on C∞(M;�q)

and Fξ ◦ Eη = 0 if η �= ξ , for every q ∈ {0, . . . , n}.
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Proposition 2.7 Given f ∈ C∞(�;�q) we have

f = 1

(2π)m
∑

ξ∈Zm

eixξ f̂ξ (2.7)

with convergence in C∞(�;�q). In particular, f = 0 if and only if f̂ξ = 0 for all
ξ ∈ Z

m.

2.3 Fourier analysis of d′

Let ωωω
.= (ω1, . . . , ωm) with each ωk being a complex, closed 1-form on M . Given

ξ ∈ Z
m , we write

ξ ·ωωω .=
m∑

k=1

ξkωk ∈ C∞(M;�1)

and define d′
ξ : C∞(M;�q) → C∞(M;�q+1) by

d′
ξ f

.= d f + i(ξ ·ωωω) ∧ f ,

a first-order differential operator that satisfies d′
ξ ◦ d′

ξ = 0, thus forming a complex
whose smooth cohomology spaces we denote by

Hq
ξ (C

∞(M))
.= ker{d′

ξ : C∞(M;�q) −→ C∞(M;�q+1)}
ran{d′

ξ : C∞(M;�q−1) −→ C∞(M;�q)} , q ∈ {1, . . . , n}
(2.8)

and, as usual, H0
ξ (C

∞(M))
.= ker{d′

ξ : C∞(M) −→ C∞(M;�1)}.
In the next section, we start a deeper study of these zero-order perturbations of the

de Rham complex. For the moment, we focus on their formal aspects related to the
Fourier analysis of the complex d′. The proofs of the next results are standard.

Lemma 2.8 The following transposition formulas hold.

(1) For f ∈ C∞(�;�q) and g ∈ C∞(�;�n−q−1), we have

∫

�

d′ f ∧ g ∧ dx = (−1)q+1
∫

�

f ∧ d′g ∧ dx .

(2) For f ∈ C∞(M;�q) and g ∈ C∞(M;�n−q−1), we have

∫

M
d′
ξ f ∧ g = (−1)q+1

∫

M
f ∧ d′−ξ g

for every ξ ∈ Z
m.
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Corollary 2.9 For each ξ ∈ Z
m, the following commutation relations hold:

(1) d′ ◦ Eξ = Eξ ◦ d′
ξ ;

(2) Fξ ◦ d′ = d′
ξ ◦ Fξ .

3 Zero-order perturbations of the de Rham complex

Motivated by the introduction of the operators d′
ξ in Sect. 2.3, we discuss a general

class of operators on M that are perturbations of the exterior derivative. Let ω be a
complex, smooth, closed 1-form on M , and define, for q ∈ {0, . . . , n}:

Dω
.= d + iω ∧ · : C∞(M;�q) −→ C∞(M;�q+1). (3.1)

Note that d′
ξ = Dω when ω = ξ ·ωωω. These are first-order differential operators, satis-

fying Dω ◦Dω = 0 since ω is closed. The operators Dω define a differential complex,
which is elliptic since Dω has the same principal symbol as d. Such a differential
complex, however, does not come from an involutive structure on M (for instance,
Dω(1) = iω �= 0), hence we cannot apply solvability results from this theory to it.
Given any open set U ⊂ M , we define

Hq
ω(F (U ))

.= ker{Dω : F (U ;�q) −→ F (U ;�q+1)}
ran{Dω : F (U ;�q−1) −→ F (U ;�q)} , F = C∞ or D ′. (3.2)

In particular, Hq
ξ (C

∞(M)) = Hq
ω(C

∞(M)) when ω = ξ ·ωωω. If ω is exact in U , say

dφ = ω|U for a φ ∈ C∞(U ), then deiφ = ieiφω|U and

d(eiφ f ) = deiφ ∧ f + eiφd f = eiφDω f

whatever f ∈ D ′(U ;�q). In particular, for q = 0, if U is connected,

f ∈ D ′(U ), Dω f = 0 �⇒ f = const. · e−iφ, (3.3)

thus the sheaves of homogeneous solutions of Dω in smooth functions and in distribu-
tions are one and the same; we will denote this sheaf bySω. A crucial feature is that
Sω is locally isomorphic with the constant sheafS0—its stalks are copies of C—but
not globally in general (see below). We have commutative diagrams

D ′(U ;�q) D ′(U ;�q+1)

D ′(U ;�q) D ′(U ;�q+1)

Dω

eiφ · eiφ ·
d

and the same holds for smooth sections. Since eiφ �= 0 on U , we conclude that

Hq
ω(F (U )) ∼= Hq

dR(U ), F = C∞ or D ′, (3.4)

the right-hand side standing for the usual de Rham cohomology space.

123



G. Araújo et al.

Let Fq denote the sheaf of germs of smooth or distributional sections (depending
on the case) of �q , that is, forms and currents. We have the exactness in degree
q ∈ {1, . . . , n} of the sequence

· · · Fq Fq+1 · · · .Dω Dω Dω (3.5)

Indeed, by the Poincaré Lemma, every point t ∈ M has a neighborhood in which ω is
exact, thus we can apply the isomorphism (3.4) and use that the exterior derivative d is
locally solvable at t in degree q ∈ {1, . . . , n} (this is usually stated for smooth forms,
but also holds for currents). In particular, in both cases the sequence (3.5) provides
fine resolution ofSω, so on any open set U , we have

Hq
ω(C

∞(U )) ∼= Hq
ω(D

′(U )) ∼= Hq(U ;Sω),

the right-hand side denoting the q-th cohomology space with values in the sheaf
Sω. Specifically, the natural homomorphism of sheaves �0 : C∞

0 → D ′
0 induces

homomorphisms �q : C∞
q → D ′

q , forming a homomorphism between resolutions

0 Sω C∞
0 · · · C∞

q C∞
q+1 · · ·

0 Sω D ′
0 · · · D ′

q D ′
q+1 · · ·

id

Dω

�0

Dω Dω

�q

Dω

�q+1

Dω Dω Dω Dω

.

Hence, for each q ∈ {0, . . . , n}, the map

�
q∗ : Hq

ω(C
∞(U )) −→ Hq

ω(D
′(U )), U ⊂ M, (3.6)

which is precisely the one induced by the inclusion map C∞(U ;�q) ↪→ D ′(U ;�q)

on the quotients, is an isomorphism3—we have just proved a special case of the so-
called Atiyah–Bott Lemma. Unwinding quotients in (3.2), one deduces that:

Theorem 3.1 Given an open set U ⊂ M, we have that:

(1) For every f ∈ C∞(U ;�q) such that there exists u ∈ D ′(U ;�q−1) with Dωu =
f , there exists v ∈ C∞(U ;�q−1) such that Dωv = f . I.e., Dω|U is (AGH).

(2) For every f ∈ D ′(U ;�q) satisfying Dω f = 0, there exist g ∈ C∞(U ;�q) and
u ∈ D ′(U ;�q−1) such that f − g = Dωu.

Proof Clearly, the first claim is equivalent to the injectivity of (3.6), while the second
one is equivalent to its surjectivity—both of them established above. ��

In particular, Dω is (AGH) in each degree. On time, we recall that, by elliptic theory,
all the cohomology spaces Hq

ω(C∞(M)) are finite dimensional since M is compact.
Both properties will be used heavily, often without mention, from here on.

3 See e.g. [12, Theorem 3.13] but especially the remark by its end concerning naturality.
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Another consequence of (3.3) is that, given a coordinate ballU ⊂ M , a function in
Sω(U ) either vanishes identically or is never zero. In particular, the zero set of a global
homogeneous solution f ∈ Sω(M) is both open and closed, so by connectedness,
such an f also either vanishes everywhere or not at all.

Lemma 3.2 Either Sω(M) = {0} or dimCSω(M) = 1. The latter case happens if
and only ifSω is isomorphic with the constant sheaf S0.

Proof Suppose there exists f ∈ Sω(M) non-zero. By the previous remarks, f never
vanishes. We will prove that any g ∈ Sω(M) is a constant times f . On an open set
U ⊂ M in whichω is exact, we have by (3.3) that f |U = c1e−iφ and g|U = c2e−iφ for
some constants c1, c2 ∈ Cwith c1 �= 0.Hence (g/ f )|U = c−1

1 c2, and, since such open
sets cover M , we reach the conclusion that g/ f is locally constant: by connectedness,
this must be actually a constant function. Now, we prove that multiplication by f
defines a sheaf isomorphismS0 → Sω, a claim that we check locally. Given t ∈ M ,
take a coordinate open ball U ⊂ M around it. We have

h ∈ S0(U ) �⇒ h = const. �⇒ h · f |U = const. · f |U ∈ Sω(U ),

so we have a monomorphismS0(U ) → Sω(U ). But, since ω|U has a primitive, any
g ∈ Sω(U ) is a multiple of f |U , hence that monomorphism is also surjective. ��
Corollary 3.3 If ω is exact then Sω

∼= S0.

Proof If φ ∈ C∞(M) is a primitive of ω, then Dω(e−iφ) = 0, i.e., e−iφ ∈ Sω(M). ��
Remark 3.4 The sheaf Sω is always locally isomorphic to S0; the isomorphism can
be made global precisely when Sω admits a non-vanishing global section.

Lemma 3.5 Given two closed 1-forms ω1, ω2 on M such that Sω1(M) �= {0} �=
Sω2(M), we have that Sω1+ω2(M) �= 0.

Proof If f1 (resp. f2) is a section ofSω1 (resp.Sω2 ) then f1 f2 is a section ofSω1+ω2 .
Indeed:

d( f1 f2) = d f1 ∧ f2 + f1 ∧ d f2 = −iω1 ∧ f1 ∧ f2 − i f1 ∧ ω2 ∧ f2
= −i(ω1 + ω2) ∧ ( f1 f2).

In particular, if f1 ∈ Sω1(M) and f2 ∈ Sω2(M) are both non-zero then f1 f2 ∈
Sω1+ω2(M) is non-zero. ��
Theorem 3.6 The set

ZM
.= {[ω] ∈ H1

dR(M) ; Sω
∼= S0} = {[ω] ∈ H1

dR(M) ; Sω(M) �= {0}}

is a group.
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Proof Notice that ZM is well-defined: if ω,ω• are two closed 1-forms in the same
cohomology class such thatSω

∼= S0 then alsoSω• ∼= S0. Indeed, in that case there
exists φ ∈ C∞(M) such that ω• = ω + dφ: since Sω

∼= S0 by assumption and
Sdφ ∼= S0 by Corollary 3.3, it follows from Lemmas 3.5 and 3.2 that Sω• ∼= S0.

The same argument shows thatZM is an additive submonoid of H1
dR(M). Regarding

inverses, if [ω] ∈ ZM then there exists a non-vanishing f ∈ Sω(M); clearly,

d f + i f ω = 0 �⇒ d(1/ f )− i(1/ f )ω = 0.

Therefore, 1/ f is a non-vanishing element of S−ω(M), so −[ω] ∈ ZM . ��
Remark 3.7 Recall that a real closed 1-form α is integral if

∫
γ
α ∈ 2πZ for every

1-cycle γ in M . It follows from [4, Lemma 2.1] that

ZM = {[ω] ∈ H1
dR(M) ; Reω is integral and Imω is exact}. (3.7)

4 Formal characterization of the closure of rand′

In this section, we address the issue of formal solvability (i.e., at the level of par-
tial Fourier series) and relate it with the notion of global solvability in degree
q ∈ {1, . . . , n}. Now that we have all the tools at our disposal, the proofs are pretty
straightforward.

Lemma 4.1 For f ∈ C∞(�;�q), the following are equivalent:

(1) f belongs to the closure of ran{d′ : C∞(�;�q−1) → C∞(�;�q)};
(2) f̂ξ is d′

ξ -exact for every ξ ∈ Z
m.

Remark 4.2 The notion of f̂ξ being d′
ξ -exact is unambiguous: if d′

ξuξ = f̂ξ is solvable
in distributions,we can alwaysfind a smooth solution since d′

ξ is (AGH) (Theorem3.1).

Proof Let f ∈ C∞(�;�q) and suppose there exists {uν}ν∈N ⊂ C∞(�;�q−1) such
that d′uν → f in C∞(�;�q). By Proposition 2.5 we have that

d′
ξFξ (uν) = Fξ (d

′uν) −→ f̂ξ in C∞(M;�q).

Therefore, f̂ξ belongs to the closure of ran{d′
ξ : C∞(M;�q−1) → C∞(M;�q)},

which is already closed in C∞(M;�q)—for instance, by Theorems 2.2 and 3.1—
hence:

f̂ξ ∈ ran{d′
ξ : C∞(M;�q−1) −→ C∞(M;�q)}, ∀ξ ∈ Z

m . (4.1)

Conversely, if f ∈ C∞(�;�q) is such that (4.1) holds, then for each ξ ∈ Z
m there

exists uξ ∈ C∞(M;�q−1) such that d′
ξuξ = f̂ξ , hence in the topology ofC∞(�;�q)

we have

f = 1

(2π)m
∑

ξ∈Zm

eixξ ∧ d′
ξuξ = lim

ν→∞ d′( 1

(2π)m
∑

|ξ |≤ν
eixξ ∧ uξ

)
,
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which proves that f lies in the closure of ran{d′ : C∞(�;�q−1) → C∞(�;�q)}. ��
Remark 4.3 Lemma 4.1 helps to settle the question of equivalence between differ-
ent formulations of compatibility conditions appearing in the literature (hence, the
equivalence between different notions of (smooth) global solvability).

Consider, for instance, the space E ⊂ C∞(�;�1) determined by the compatibility
conditions in [8, 9] (which deal with the casem = 1, q = 1). Given f ∈ C∞(�;�1),
it follows easily from de Rham Theorem that, if f̂ξ is d′

ξ -exact for every ξ ∈ Z
m , then

f ∈ E ; whereas the converse follows from results in [8, 9]: if f ∈ E , a solution to
d′
ξuξ = f̂ξ is obtained for every ξ ∈ Z

m , first in some covering space of M , and then
in M by a convenient choice of initial conditions. In particular, E equals the closure
of ran{d′ : C∞(�) → C∞(�;�1)} in that case.
The previous lemma yields our first major result; which, together with Theorem 2.2,
entails Theorem 1.1.

Theorem 4.4 If (1.3) has closed range, then it is (AGH).

Proof Suppose that d′ : C∞(�;�q) → C∞(�;�q+1) has closed range and let
u ∈ D ′(�;�q) be such that f

.= d′u ∈ C∞(�;�q+1). Then f̂ξ = d′
ξ ûξ , that is, f̂ξ

is d′
ξ -exact for every ξ ∈ Z

m . By Lemma 4.1, f belongs to ran{d′ : C∞(�;�q) →
C∞(�;�q+1)}, so there exists v ∈ C∞(�;�q) such that d′v = f = d′u. ��
It generalizes [9, Corollary 7.2] (and preceding results):

Corollary 4.5 If the operator d′ : C∞(�) → C∞(�;�1) satisfies the property

∀u ∈ D ′(�), d′u = 0 �⇒ u = const., (4.2)

then it has closed range if and only if it is globally hypoelliptic.

Proof This is an immediate consequence of Theorems 2.2 and 4.4, since global hypoel-
lipticity is equivalent to (AGH) when (4.2) holds. ��
Remark 4.6 Notice that (4.2) holds in the case considered in [9, Corollary 7.2] (m = 1,
ω = ib with b real, closed and non-exact) thanks to [4, Lemma 2.2]. See also further
discussion below about the group �ωωω.

Definition 4.7 We say that an f ∈ C∞(�;�q) is formally solvable if for each ξ ∈ Z
m

there exists uξ ∈ C∞(M;�q−1) such that d′
ξuξ = f̂ξ .

A sufficient condition for that to happen is that there exists u in C∞(�;�q−1)—or
even inD ′(�;�q−1)—such that d′u = f : Lemma 4.1 entails the following converse.

Corollary 4.8 The following are equivalent:

(1) d′ : C∞(�;�q−1) → C∞(�;�q) has closed range.
(2) For every formally solvable f ∈ C∞(�;�q) there exists u ∈ C∞(�;�q−1) such

that d′u = f .
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Before we move on, we must introduce an important set of frequencies. For ωωω =
(ω1, . . . , ωm), the mapping ξ ∈ Z

m �→ [ξ · ωωω] ∈ H1
dR(M) is a homomorphism of

groups, hence

�ωωω
.= {ξ ∈ Z

m ; [ξ ·ωωω] ∈ ZM } (4.3)

is a subgroup ofZm . In particular, either one of the threemutually exclusive alternatives
hold:

(1) �ωωω = {0};
(2) �ωωω is infinite and proper; or
(3) �ωωω = Z

m .

Using (3.7) one has, for instance, that:

�ωωω = {0} ⇐⇒ Re(ξ ·ωωω) non-integral or Im(ξ ·ωωω) non-exact,∀ξ ∈ Z
m\{0}

�⇒ Reωk non-integral or Imωk non-exact,∀k ∈ {1, . . . ,m};

while

�ωωω = Z
m ⇐⇒ Re(ξ ·ωωω) integral and Im(ξ ·ωωω) exact,∀ξ ∈ Z

m

⇐⇒ Reωk integral and Imωk exact,∀k ∈ {1, . . . ,m}.

5 Applications to real structures

Throughout this section, ω1, . . . , ωm are assumed real. In this case,

�ωωω = {ξ ∈ Z
m ; ξ ·ωωω is integral}.

5.1 Isomorphism theorems

For X ⊂ Z
m we set, for each q ∈ {0, . . . , n},

C∞
X (�;�q)

.= { f ∈ C∞(�;�q) ; f̂ξ = 0, ∀ξ ∈ Z
m\X},

and for f ∈ C∞(�;�q), we consider its projection on C∞
X (�;�q):

fX
.= 1

(2π)m
∑

ξ∈X
eixξ ∧ f̂ξ .

It follows that f = fX + fZm\X and hence

C∞(�;�q) = C∞
X (�;�q)⊕ C∞

Zm\X (�;�q).
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Notice moreover that

d′C∞
X (�;�q) ⊂ C∞

X (�;�q+1)

and that

d′u = f ⇐⇒ d′uX = fX and d′uZm\X = fZm\X .

It thus makes sense to define

Hq
d′(C∞

X (�))
.= ker{d′ : C∞

X (�;�q) −→ C∞
X (�;�q+1)}

ran{d′ : C∞
X (�;�q−1) −→ C∞

X (�;�q)} ,

hence, we have

Hq
d′(C∞(�)) ∼= Hq

d′(C∞
X (�))⊕ Hq

d′(C∞
Zm\X (�)).

We denote by π : M̃ → M the universal covering of M . For each k ∈ {1, . . . ,m}
there exists ψk ∈ C∞(M̃; R) such that dψk = π∗ωk on M̃ (since the latter form is
exact). More generally, for ξ ∈ Z

m we set

ψψψξ
.=

m∑

k=1

ξkψk ∈ C∞(M̃; R), (5.1)

hence dψψψξ = π∗(ξ ·ωωω). In an open set U ⊂ M in which πU : Ũ → U is diffeomor-
phism (Ũ ⊂ M̃ being another open set) we have

deiψψψξ ◦π−1
U = ieiψψψξ ◦π−1

U (ξ ·ωωω) on U .

If ξ ∈ �ωωω, then ξ · ωωω is integral, hence by [3, Lemma 2.3], if P, Q ∈ M̃ satisfy
π(P) = π(Q) then ψψψξ (P) − ψψψξ (Q) ∈ 2πZ, we can define for every ξ ∈ �ωωω a
smooth function

M � t �−→ eiψψψξ ◦π−1(t), (5.2)

even though π−1 is not a function. It follows that

eiψψψξ ◦π−1 ∈ S(−ξ ·ωωω)(M)\{0}, ∀ξ ∈ �ωωω.

We define a map � : M̃ × T
m → M̃ × T

m by

�(t̃, x1, . . . , xm)
.= (t̃, x1 − ψ1(t̃), . . . , xm − ψm(t̃)),
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in which the sum xk −ψk(t̃) takes place in R/(2πZ). In particular, � is a diffeomor-
phism with inverse

�−1(t̃, x1, . . . , xm) = (t̃, x1 + ψ1(t̃), . . . , xm + ψm(t̃)).

Proposition 5.1 Assume ω1, . . . , ωm real-valued and let f ∈ C∞
�ωωω
(�;�q). Then

�( f )
.= 1

(2π)m
∑

ξ∈�ωωω
eixξ−iψψψξ ◦π−1

f̂ξ (5.3)

defines an element in C∞
�ωωω
(�;�q). The map

� : C∞
�ωωω
(�;�q) −→ C∞

�ωωω
(�;�q)

is a linear isomorphism and satisfies d′ ◦� = dt ◦�.

Proof Writing the partial Fourier series of f , we have that

f (t, x) = 1

(2π)m
∑

ξ∈�ωωω
eixξ f̂ξ (t).

We define F
.= (π × idTm )∗ f , which is a smooth q-form on M̃ × T

m . By continuity
of the pullback map, it follows that

F(t̃, x) = 1

(2π)m
∑

ξ∈�ωωω
eixξ (π∗ f̂ξ )(t̃),

with convergence in the space of smooth q-forms on M̃×T
m . If we change coordinates

using the diffeomorphism �, we obtain

(�∗F)(t̃, x) = 1

(2π)m
∑

ξ∈�ωωω
ei(xξ−ψψψξ (t̃))(π∗ f̂ξ )(t̃),

which we will show that descends to M × T
m as �( f ). The sequence of truncated

sums

fν(t)
.= 1

(2π)m
∑

ξ∈�ωωω|ξ |≤ν

eixξ f̂ξ (t), ν ∈ N,

which approximates f in C∞(�;�q), certainly satisfy

�∗(π × idTm )∗ fν −→ �∗F on M̃ × T
m
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whereas

gν(t)
.= 1

(2π)m
∑

ξ∈�ωωω|ξ |≤ν

eixξ−iψψψξ ◦π−1(t) f̂ξ (t), ν ∈ N,

satisfy (π × idTm )∗gν = �∗(π × idTm )∗ fν clearly, hence

(π × idTm )∗gν −→ �∗F on M̃ × T
m . (5.4)

To prove convergence of {gν}ν∈N in C∞(�;�q), it suffices to check it onU × T
m

for a suitably small open set U ⊂ M : its limit will then be automatically a globally
defined q-form �( f ) on M × T

m , and can be easily seen to be a section of �q . This
is the case if, say, there exists an open set Ũ ⊂ M̃ such that πU : Ũ → U is a
diffeomorphism. Since the previous convergence (5.4) takes place in Ũ × T

m as well
by restriction, in which πU × idTm is invertible, we conclude that {gν}ν∈N converges
in U × T

m , proving our claim.
It is clear that (5.3) holds (as �( f ) is by definition the limit of {gν}ν∈N), hence of

course�( f ) ∈ C∞
�ωωω
(�;�q): by continuity of each mapFξ , Eq. (5.3) gives its Fourier

coefficients explicitly. Moreover:

(2π)md′�( f ) =
(
dt +

m∑

k=1

ωk ∧ ∂

∂xk

)
∑

ξ∈�ωωω
eixξ−iψψψξ ◦π−1

f̂ξ

=
∑

ξ∈�ωωω

(
eixξdt (e

−iψψψξ ◦π−1
f̂ξ )+

m∑

k=1

∂eixξ

∂xk
ωk ∧ (e−iψψψξ ◦π−1

f̂ξ )

)

=
∑

ξ∈�ωωω

(
eixξ−iψψψξ ◦π−1

(
dt f̂ξ − i(ξ ·ωωω) ∧ f̂ξ

)
+ i(ξ ·ωωω) ∧ eixξ−iψψψξ ◦π−1

f̂ξ
)

=
∑

ξ∈�ωωω
eixξ−iψψψξ ◦π−1

d̂t fξ

= (2π)m�(dt f ),

that is: �−1 ◦ d′ ◦� = dt on C∞
�ωωω
(�;�q). ��

A similar calculation shows that, if

�ξ : C∞(M;�q) −→ C∞(M;�q), �ξ (h)
.= eiψψψξ ◦π−1

h,

then �−1
ξ ◦ d′

ξ ◦�ξ = d, whatever ξ ∈ �ωωω.

Theorem 5.2 Assumeω1, . . . , ωm real-valued. Then,d′ : C∞(�;�q) → C∞(�;�q+1)

has closed range if and only if given a formally solvable f ∈ C∞
Zm\�ωωω(�;�q+1), there

exists u ∈ C∞(�;�q) such that d′u = f .
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Proof The direct implication is granted by Corollary 4.8; we prove the converse. Let
f ∈ C∞(�;�q+1) be such that for each ξ ∈ Z

m there exists uξ ∈ C∞(M;�q)

satisfying d′
ξuξ = f̂ξ . Write f = f�ωωω + fZm\�ωωω and notice that both f�ωωω and fZm\�ωωω

are also formally solvable. By hypothesis, there exists v ∈ C∞(�;�q) such that
d′v = fZm\�ωωω : we must solve d′u = f�ωωω .

We claim that g
.= �−1 f�ωωω ∈ C∞

�ωωω
(�;�q+1) is formally solvable w.r.t. dt in �.

Indeed, ĝξ = 0 for ξ ∈ Z
m\�ωωω, while for ξ ∈ �ωωω, we have

d′
ξuξ = f̂ξ �⇒ dt�

−1
ξ uξ = (�−1

ξ d′
ξ�ξ )�

−1
ξ uξ = �−1

ξ f̂ξ = Fξ (�
−1 f�ωωω) = ĝξ .

But global solvability of dt is a general fact—see Lemma 5.3 below—which will
also play a role later on. It then follows from Corollary 4.8 applied to dt that there
exists w ∈ C∞(�;�q) such that dtw = g. Note that we can replace w with w�ωωω , if
necessary, and assume that w ∈ C∞

�ωωω
(�;�q). If we set u

.= �w ∈ C∞
�ωωω
(�;�q) then

d′u = d′�w = �dtw = �g = f�ωωω

and we are done. ��
Lemma 5.3 The map dt : C∞(�;�q) → C∞(�;�q+1) has closed range.

Proof We endow M with a Riemannian metric and let�
.= dd∗ +d∗d be the Laplace–

Beltrami operator acting on forms on M ; it is elliptic of order 2 and therefore satisfies
elliptic estimates: given k ∈ Z+ there exists Ck > 0 such that

‖ψ‖H k+2(M;�q ) ≤ Ck
(‖�ψ‖H k (M;�q ) + ‖ψ‖H k (M;�q )

)
, ∀ψ ∈ H k+2(M;�q),

where H k are Sobolev spaces. A standard argument shows that

‖ψ‖H k+2(M;�q ) ≤ Ck‖�ψ‖H k (M;�q ), ∀ψ ∈ H k+2(M;�q), L2- orthogonal to ker�.

The following orthogonal decomposition w.r.t. the L2(M) metric is also well-
known:

C∞(M;�q) = ker�⊕ ran d ⊕ ran d∗ (5.5)

(all operators acting on smooth forms), hence in particular, for ψ ∈ ran d∗,

‖ψ‖H k+2(M;�q ) ≤ Ck‖d∗dψ‖H k (M;�q ) ≤ C ′
k‖dψ‖H k−1(M;�q+1)

since in that case�ψ = d∗dψ . We conclude that, for each k ∈ Z+, there exist ck > 0
and j ∈ Z+ such that

‖ψ‖H k (M;�q ) ≤ ck‖dψ‖H j (M;�q+1), ∀ψ ∈ ran d∗. (5.6)
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Now, we obtain our conclusion by means of Theorem 2.2. Let u ∈ D ′(�;�q)

be such that dt u ∈ C∞(�;�q+1). Then, for every ξ ∈ Z
m , we have that

dûξ ∈ C∞(M;�q+1) by Corollary 2.9, hence, by Theorem 3.1, there exists
vξ ∈ C∞(M;�q) such that dvξ = dûξ ; thanks to (5.5) we can further assume
that vξ ∈ ran d∗. By (5.6), for each k ∈ Z+, there exist ck > 0 and j ∈ Z+ such that

‖vξ‖H k (M;�q ) ≤ ck‖dvξ‖H j (M;�q+1), ∀ξ ∈ Z
m .

Moreover, since dt u is smooth and Fξ (dt u) = dûξ , for every j ∈ Z+ and s > 0,
there exists a constant A j,s > 0 such that

‖dûξ‖H j (M;�q+1) ≤ A j,s(1 + |ξ |2)−s, ∀ξ ∈ Z
m,

and so, for c′
k,s

.= ck A j,s , we have

‖vξ‖H k (M;�q ) ≤ c′
k,s(1 + |ξ |2)−s, ∀ξ ∈ Z

m . (5.7)

The latter ensures that the series

v
.= 1

(2π)m
∑

ξ∈Zm

eixξ ∧ vξ

converges in L2(�;�q) since

1

(2π)m
∑

ξ

∫

�

‖eixξ vξ (t)‖2�q
t
dV (t, x) =

∑

ξ

∫

M
‖vξ (t)‖2�q

t
dVM (t)

≤ (c′
0,2m)

2
∑

ξ

(1 + |ξ |2)−2m < ∞.

Moreover, for each ξ ∈ Z
m , we have that v̂ξ = vξ , hence dv̂ξ = dûξ , so dtv = dt u.

Estimates (5.7) further ensure that v ∈ C∞(�;�q). ��
Remark 5.4 We have proved, in Theorem 5.2, that d′ is always �ωωω-globally solvable,
that is, if f ∈ C∞

�ωωω
(�;�q+1) is formally solvable, then there exists u ∈ C∞(�;�q)

such that d′u = f , with no further hypotheses.

5.1.1 Reduction in cohomology

Assume ω1, . . . , ωm real-valued. The map � descends to a linear isomorphism

Hq
d′(C∞

�ωωω
(�)) ∼= Hq

dt
(C∞

�ωωω
(�))

thanks to its properties deduced above. Now, we provide a more detailed description
of those spaces, for which we introduce some notation. Take ξ (1), . . . , ξ (r) a basis of
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�ωωω as a Z-module4, thus, for each ξ ∈ �ωωω, there exists a unique η ∈ Z
r such that

ξ = η1ξ
(1) + · · · + ηrξ

(r) .= η · ξ0

in which ξ0
.= (ξ (1), . . . , ξ (r)). We also define a smooth map θ : T

m → T
r by

θ(x1, . . . , xm)
.=

(
x · ξ (1), . . . , x · ξ (r)

)
.

Note that

r∑

j=1

(x · ξ ( j))η j = x1
( r∑

j=1

ξ
( j)
1 η j

)
+ · · · + xm

( r∑

j=1

ξ
( j)
m η j

)
= x · ξ

thus

eiθ(x)·η =
r∏

j=1

(eix ·ξ ( j) )η j = eix ·(η·ξ0) = eixξ .

Proposition 5.5 Assume ω1, . . . , ωm real-valued. Then the pullback θ∗ : C∞(Tr ) →
C∞
�ωωω
(Tm) is a linear isomorphism.

Proof We write an f ∈ C∞(Tr ) as

f = 1

(2π)r
∑

η∈Zr

eiyη f̂η

with convergence in C∞(Tr ). Hence

θ∗ f = 1

(2π)r
∑

η∈Zr

eiθ(x)·η f̂η = 1

(2π)r
∑

η∈Zr

ei x(η·ξ0) f̂η

meaning that

Fξ (θ
∗ f ) =

{
(2π)m−r f̂η, if ξ = η · ξ0 ∈ �ωωω;
0, if ξ /∈ �ωωω.

In particular, θ∗ f ∈ C∞
�ωωω
(Tm). Moreover, θ∗ is injective since θ∗ f = 0 implies

that f̂η = 0 for all η ∈ Z
r . As for surjectivity, given g ∈ C∞

�ωωω
(Tm), let

f
.= 1

(2π)r
∑

η∈Zr

eiyη ĝη·ξ0 ∈ C∞(Tr )

4 One should pay special attention to the case r = 0, i.e., �ωωω = {0}. When properly interpreted
(e.g. T

0 = {1}, C∞(T0) = C, etc.), most of the results below are trivial in that case.
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which clearly satisfies θ∗ f = g.
Note that |ξ | and |η| are comparable, so a series converges inC∞(Tr ) if and only if

its image by θ∗ converges in C∞
�ωωω
(Tm). Indeed, we can complete ξ0 to a basis of R

m ,

so we can write A = (ξ (1), . . . , ξ (r), ξ (r+1), . . . , ξ (m)), in which A is a matrix whose
j-th column equals ξ ( j). It follows that multiplication of A by (η, 0) ∈ Z

m yields

(η, 0) · A = η · ξ0 = ξ.

Since A is invertible, it follows that c|η| ≤ |ξ | ≤ C |η| for some constants c,C > 0. ��
Now given q ∈ {0, . . . , n}, for any f ∈ C∞(�;�q) and x ∈ T

m , we define
f (x) ∈ C∞(M;�q) by “fixing the x-variable”, i.e. f (t, x) = f (x)(t) for every
t ∈ M .As such, if dt f = 0, thend f (x) = 0, and, ifwepick closed forms τ1, . . . , τbq ∈
C∞(M;�q) such that [τ1], . . . , [τbq ] is a basis of Hq

dR(M), then for each x ∈ T
m we

write

[ f (x)] =
bq∑

�=1

a�(x)[τ�] in Hq
dR(M)

for some uniquely determined coefficients a1(x), . . . , abq (x). Things can be arranged
so that x ∈ T

m �→ a�(x) ∈ C are all smooth.
Indeed, by endowing M with a Riemannian metric, we may pick τ1, . . . , τbq as a

basis of ker�, the space of harmonic q-forms on M , which is orthonormal w.r.t. the
L2 inner product on C∞(M;�q). Then there exists ux ∈ C∞(M;�q−1) such that

f (x) =
bq∑

�=1

a�(x)τ� + dt ux ,

thus realizing the last sum as the orthogonal projection of f (x) onto ker� (see (5.5)):

a�(x) = 〈 f (x), τ�〉L2(M;�q ) =
∫

M
〈 f (t, x), τ�(t)〉�q

t
dVM (t), � ∈ {1, . . . , bq},

(5.8)

are therefore smooth w.r.t. x .
Notice also that a1(x), . . . , abq (x) depend only on the cohomology class of f : if

f • .= f + dtv for some v ∈ C∞(�;�q−1) then

f •(x) = f (x)+ dtv(x) =
bq∑

�=1

a�(x)τ� + dt (ux + v(x)).

It follows from (5.8) that, for every ξ ∈ Z
m ,

Fξ (a�) =
∫

Tm
e−i xξ

∫

M
〈 f (t, x), τ�(t)〉�q

t
dVM (t)dx = 〈 f̂ξ , τ�〉L2(M;�q ). (5.9)
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If we further assume that f ∈ C∞
�ωωω
(�;�q), then by (5.9) we have Fξ (a�) = 0

whenever ξ /∈ �ωωω, that is, a� ∈ C∞
�ωωω
(Tm), so, by Proposition 5.5, there is a unique

a•
� ∈ C∞(Tr ) such that a� = θ∗(a•

� ). We define

T : Hq
dt
(C∞

�ωωω
(�)) −→ C∞(Tr )⊗ Hq

dR(M)

by

T([ f ]) .=
bq∑

�=1

a•
� ⊗ [τ�].

Theorem 5.6 Assume ω1, . . . , ωm real-valued. Then T is a linear isomorphism.

Proof The surjectivity is obvious; given a•
1, . . . , a

•
bq

∈ C∞(Tr ), we have

f
.=

bq∑

�=1

(θ∗a•
� )τ� �⇒ T([ f ]) =

bq∑

�=1

a•
� ⊗ [τ�].

As for injectivity, if a dt -closed f ∈ C∞
�ωωω
(�;�q) is such that T([ f ]) = 0, then

a1 = · · · = abq = 0. Since dt f = 0, it follows that d f̂ξ = 0 for every ξ ∈ �ωωω, and so

we can find aξ� ∈ C and uξ ∈ C∞(M;�q−1) such that

f̂ξ =
bq∑

�=1

aξ� τ� + duξ , ∀ξ ∈ �ωωω.

Note that for ξ /∈ �ωωω we have f̂ξ = 0. By (5.9), we have, for each � ∈ {1, . . . , bq}
and ξ ∈ �ωωω, using that τ� ∈ ker� = ker d ∩ ker d∗:

Fξ (a�) = aξ� + 〈duξ , τ�〉L2(M;�q ) = aξ� .

By the assumption that a� = 0 for every � ∈ {1, . . . , bq}, we reach the conclusion that
f̂ξ is exact for every ξ ∈ Z

m , that is, f is formally dt -solvable. By Corollary 4.8 and
Lemma 5.3, we conclude that f is dt -exact, i.e. [ f ] = 0 in Hq

dt
(C∞

�ωωω
(�)). ��

5.1.2 Summary of the section

When ω1, . . . , ωm are real, we always have linear isomorphisms

Hq
d′(C∞(�)) ∼= Hq

d′(C∞
�ωωω
(�))⊕ Hq

d′(C∞
Zm\�ωωω(�))
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and

Hq
d′(C∞

�ωωω
(�)) ∼= Hq

dt
(C∞

�ωωω
(�)) ∼= C∞(Tr )⊗ Hq

dR(M); (5.10)

recall that r is the dimension of �ωωω as a Z-module. We finish this section with the
following theorem,which introduces a condition thatwill appear later in amore general
situation, and that we will prove to hold in several cases (for notation, see (2.8)).

Theorem 5.7 Assume ω1, . . . , ωm real-valued. Suppose that d′ : C∞(�;�q−1) →
C∞(�;�q) has closed range and

Hq
ξ (C

∞(M)) = 0, ∀ξ ∈ Z
m\�ωωω. (5.11)

Then

Hq
d′(C∞

Zm\�ωωω(�)) = {0}.

In particular, in that case (1.5) holds.

Proof Let f ∈ C∞
Zm\�ωωω(�;�q) be such that d′ f = 0. Hence d′

ξ f̂ξ = 0, and by (5.11),

there existsuξ ∈ C∞(M;�q−1) such that d′
ξuξ = f̂ξ for every ξ ∈ Z

m\�ωωω. Therefore
f is formally solvable, and by Theorem 5.2, there exists u ∈ C∞(�;�q−1) such that
d′u = f . Replacing u by uZm\�ωωω yields the desired result. ��

5.2 Global solvability in the first degree

Theorem 5.2 tells us that the obstruction to global solvability of d′ is encoded in the
frequencies ξ ∈ Z

m\�ωωω. This fact motivates us to consider the following Diophantine
condition. Our approach in this section follows and adapts ideas from [3], hence we
omit some proofs.

Definition 5.8 A collection ωωω = (ω1, . . . , ωm) of real closed 1-forms on M is said to
be strongly simultaneously approximable if there exist a sequence of closed integral
1-forms {βν}ν∈N ⊂ C∞(M;�1) and {ξν}ν∈N ⊂ Z

m\�ωωω such that |ξν | → ∞ and

{|ξν |ν(ξν ·ωωω − βν)}ν∈N is bounded in C∞(M;�1). (5.12)

Otherwise, it is said to be weakly non-simultaneously approximable.

Such notions depend only on the classes [ω1], . . . , [ωm] ∈ H1
dR(M). Indeed, if for

each k ∈ {1, . . . ,m} we have ω•
k
.= ωk + dγk for some γk ∈ C∞(M; R) then

ξ ·ωωω• = ξ ·ωωω + ξ · dγγγ , ∀ξ ∈ Z
m,

in whichωωω• .= (ω•
1, . . . , ω

•
m) and γγγ

.= (γ1, . . . , γm): by integrating both sides against
an arbitrary 1-cycle, it follows that ξ ·ωωω• is integral if and only if so is ξ ·ωωω, that is,
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�ωωω• = �ωωω. Moreover,

|ξν |ν(ξν ·ωωω − βν) = |ξν |ν(ξν ·ωωω• − (βν + ξν · dγγγ ))

and since each βν + ξν · dγγγ is integral, it follows that ωωω• is strongly simultaneously
approximable whenever ωωω is.

As a finitely generated Abelian group, H1(M; Z) admits a primary decomposition
Z
d ⊕ Zp1 ⊕ . . .⊕ Zpt . We consider σ1, . . . , σd smooth 1-cycles whose homological

classes form a basis of its free part Z
d , and the map I : H1

dR(M; R) → R
d given by

I ([α]) .= 1

2π

(∫

σ1

α, . . . ,

∫

σd

α

)
.

Since
∫
σ
α = 0 if σ belongs to some Zpi , it follows that a closed 1-form α is integral

(resp. rational) if and only if I ([α]) ∈ Z
d (resp. I [α] ∈ Q

d ). By de Rham Theorem,
we conclude that I is a linear isomorphism and that the classes of σ1, . . . , σd , regarded
as elements of H1(M; R) ∼= H1

dR(M; R)∗, form an R-basis for the latter vector space.
We associate to ωωω the following family of vectors:

v�
.= 1

2π

(∫

σ�

ω1, . . . ,

∫

σ�

ωm

)
∈ R

m, � ∈ {1, . . . , d}. (5.13)

These, as well, depend only on [ω1], . . . , [ωm] ∈ H1
dR(M) by Stokes Theorem.

Proposition 5.9 The collectionωωω is strongly simultaneously approximable if and only
if there are sequences {ην}ν∈N ⊂ Z

d and {ξν}ν∈N ⊂ Z
m\�ωωω such that |ξν | → ∞ and

{|ξν |ν(ξν · v� − ην�)}ν∈N is bounded in R for every � ∈ {1, . . . , d}. (5.14)

Proof Let Z1 ⊂ C∞(M;�1) be the space of real, closed 1-forms, endowed with the
subspace topology, and define J : Z1 → R

d by J (α)
.= I ([α]). It is continuous—

as the composition of I (a linear map between finite dimensional spaces) and the
projection Z1 → H1

dR(M; R)—hence maps bounded sets to bounded sets. If ωωω is
strongly simultaneously approximable, there exist a sequence of closed integral 1-
forms {βν}ν∈N ⊂ C∞(M;�1) and {ξν}ν∈N ⊂ Z

m\�ωωω such that |ξν | → ∞ such
that (5.12) holds. Letting ην

.= I ([βν]) ∈ Z
d , we have, for each � ∈ {1, . . . , d}, that

J (|ξν |ν(ξν ·ωωω − βν))� = |ξν |ν(J (ξν ·ωωω)− J (βν))� = |ξν |ν(ξ · v� − ην�) (5.15)

must be the �-th coordinate of a bounded sequence in R
d , yielding our first claim.

For the converse, we start with a digression. Let ker� ⊂ Z1 denote the space of
harmonic 1-forms w.r.t. some Riemannian metric, which is well-known to be finite
dimensional and hence has a well-defined norm topology; we have more, the map
α ∈ ker� �→ [α] ∈ H1

dR(M; R) is a linear isomorphism. Moreover, ker� inher-
its a Fréchet topology from C∞(M;�1), which matches the former one, by [11,
Theorem 9.1]. Therefore the restriction J : ker� → R

d is a linear isomorphism,
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hence a topological one by finiteness; in particular, an S ⊂ ker� is bounded if and
only if J (S) ⊂ R

d is bounded. We further pick ϑ1, . . . , ϑd a basis of ker� dual to
[σ1], . . . , [σd ] ∈ H1(M; R), in the sense that

1

2π

∫

σ�

ϑ�′ = δ��′ , ∀�, �′ ∈ {1, . . . , d}.

Such a choice makes ϑ1, . . . , ϑd integral.
Now, suppose there are sequences {ην}ν∈N ⊂ Z

d and {ξν}ν∈N ⊂ Z
m\�ωωω such that

|ξν | → ∞ and (5.14) holds. Then

βν
.=

d∑

�=1

ην�ϑ� ∈ ker�

is integral and J (βν) = ην for every ν ∈ N. Since (5.15) holds once more for each
� ∈ {1, . . . , d}, we have from (5.14) that {J (|ξν |ν(ξν ·ωωω−βν))}ν∈N must be a bounded
sequence in R

d : the conclusion follows from our digression, since we may assume
w.l.o.g. ω1, . . . , ωm ∈ ker�. ��
Corollary 5.10 The collection ωωω is weakly non-simultaneously approximable if and
only if there exist C, ρ > 0 such that (see (5.13))

max
1≤�≤d

|ξ · v� − η�| ≥ C |ξ |−ρ, ∀η ∈ Z
d , ∀ξ ∈ Z

m\�ωωω. (5.16)

Remark 5.11 (1) Notice that

�ωωω = {ξ ∈ Z
m ; ξ · v� ∈ Z, ∀� ∈ {1, . . . , d}};

(2) The inequality (5.16) is equivalent to condition (DC) in [6, Section 2] for the
d × m matrix whose rows are v1, . . . , vd . When �ωωω = {0}, it recovers the stan-
dard notion of non-simultaneous approximability for collections of vectors in [7,
Definition 1.1] (see further connections with previous conditions in the literature
there);

(3) If v1, . . . , vd ∈ Q
m , which corresponds to case when ω1, . . . , ωm are all rational

1-forms, we pick a non-zero λ ∈ Z+ such that λv� ∈ Z
m for every � ∈ {1, . . . , d}.

Hence, given ξ ∈ Z
m\�ωωω, theremust exist an �0 ∈ {1, . . . , d} forwhich ξ ·v�0 /∈ Z,

thus, for any η ∈ Z
d , we must have

ξ · v�0 − η�0 �= 0 �⇒ λ(ξ · v�0 − η�0) ∈ Z\0
�⇒ λ max

1≤�≤d
|ξ · v� − η�| ≥ 1,

that is, (5.16) holds with C
.= λ−1 and ρ > 0 arbitrary.

Now,we can state our characterization of solvability in thefirst degree in terms of the
Diophantine condition just introduced (reworded as Theorem 1.2 in the Introduction).
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Theorem 5.12 Assumeω1, . . . , ωm real-valued. Themapd′ : C∞(�) → C∞(�;�1)

has closed range if and only if the collectionωωω is weakly non-simultaneously approx-
imable.

Proof (�⇒): Suppose there exist a sequence of integral 1-forms {βν}ν∈N ⊂
C∞(M;�1) and {ξν}ν∈N ⊂ Z

m\�ωωω such that |ξν | → ∞ and (5.12) holds. We may
assume that ξν �= ξν′ whenever ν �= ν′. Let ϕν ∈ C∞(M̃; R) be such that dϕν = π∗βν
and define

f (t, x)
.= 1

(2π)m

∞∑

ν=1

eixξν−iϕν◦π−1(t)(ξν ·ωωω − βν)(t),

which, we claim, is smooth and formally solvable. As we saw in (5.2), we have that

M � t �−→ e−iϕν◦π−1(t)

is a well-defined smooth function since βν is integral. Therefore, we define, for every
ξ ∈ Z

m , a smooth 1-form on M

fξ
.=

{
e−iϕν◦π−1

(ξν ·ωωω − βν), if ξ = ξν,

0, otherwise.

Note that, in order to prove that f is a well-defined smooth 1-form, it is enough
to prove that every point of M belongs to a coordinate system (U ; t1, . . . , tn), with
α ∈ Z

n+ and s > 0, there exists C > 0 such that

sup
U

‖∂αt fξν‖ ≤ C(1 + |ξν |)−s, ∀ν ∈ N,

in which the norm ‖ · ‖ in the left-hand side is the sum of the absolute values of the
coordinate components of the 1-form w.r.t. the local frame dt1, . . . , dtn . By hypothe-
sis (5.12), we may assume that, for each γ ∈ Z

n+, there exists B > 0 such that

sup
U

‖∂γt (ξν ·ωωω − βν)‖ ≤ B|ξν |−ν, ∀ν ∈ N.

It remains to prove that the derivatives of e−iϕν◦π−1
are bounded by some constant

times a power of |ξν |. We can assume that U is small enough in order to have a
diffeomorphism πU : Ũ → U and so

e−iϕν◦π−1(t) = e−iϕν◦π−1
U (t)

for every t ∈ U and so, since ϕν is real, our claim follows from the identity

n∑

j=1

∂(ϕν ◦ π−1
U )

∂t j
dt j = βν = −(ξν ·ωωω − βν)+ ξν ·ωωω,
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since the right-hand of the equality above clearly is bounded by a constant times |ξν |,
hence proving that f ∈ C∞(�;�1). The next step is to prove that f is formally
solvable. Since f̂ξ = 0, if ξ /∈ {ξν}ν∈N, it follows that f̂ξ is d′

ξ -exact for such values
of ξ ; for ξ = ξν we have

d′
ξν
e−iϕν◦π−1 = de−iϕν◦π−1 + ie−iϕν◦π−1

(ξν ·ωωω)
= −ie−iϕν◦π−1

βν + ie−iϕν◦π−1
(ξν ·ωωω) = f̂ξν .

It remains to prove that there is no u ∈ C∞(�) such that d′u = f . If such an u
exists, then d′

ξ ûξ = f̂ξ for every ξ ∈ Z
m , in particular ûξν − e−iϕν◦π−1 ∈ ker d′

ξν
for

every ν ∈ N. But since ξν /∈ �ωωω, we have by [4, Lemma 2.1] that ker d′
ξν

= {0}, hence
ûξν = e−iϕν◦π−1

for every ν ∈ N and then

‖ûξν‖2L2(M)
=

∫

M
dVM , ν ∈ N,

does not decrease fast, contradicting the smoothness of u.
(⇐�): Suppose that f ∈ C∞(�;�1) is formally solvable, i.e., for every ξ ∈ Z

m ,
there exists uξ ∈ C∞(M) such that d′

ξuξ = f̂ξ . Thanks to Theorem 5.2, we only need
to prove that there exists u ∈ C∞(�) such that d′u = fZm\�ωωω . The natural candidate
is

u
.= 1

(2π)m
∑

ξ∈Zm\�ωωω
eixξuξ ,

and it suffices to prove that the series above converges in C∞(�). This claim is local,
so we must verify that every point of M belongs to a coordinate ball U enjoying the
following property: for each α ∈ Z

n+ and s > 0, there exists C > 0 such that

|∂αt uξ (t)| ≤ C(1 + |ξ |)−s, ∀ξ ∈ Z
m\�ωωω, ∀t ∈ U . (5.17)

We write

ωk =
n∑

j=1

ωk jdt j , ωk j ∈ C∞(U ),

on U for k ∈ {1, . . . ,m}, and

f =
n∑

j=1

f j dt j , f j ∈ C∞(U × T
m),

on U × T
m . We may assume ωk j is bounded in the sup norm in U .
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Lemma 5.13 Suppose that given s > 0 there exists C > 0 such that

|uξ (t)| ≤ C(1 + |ξ |)−s, ∀ξ ∈ Z
m\�ωωω, ∀t ∈ U . (5.18)

Then (5.17) holds true.

Proof We proceed by induction on |α|; the base |α| = 0 is (5.18). For the general case,
the equality d′

ξuξ = f̂ξ can be written in U as

∂uξ
∂t j

+ i
m∑

k=1

ξkωk j uξ = Fξ ( f j ), j ∈ {1, . . . , n}.

If α = (α1, . . . , αn), α j > 0 and β
.= α − e j , in which e j is the j-th vector of the

canonical basis of R
n , then

∂αt uξ = ∂
β
t ∂t j uξ = ∂

β
t

(
Fξ ( f j )− i

m∑

k=1

ξkωk j uξ

)
,

and we use that f is smooth and s > 0 in (5.17) is arbitrary. ��
We fix t0 ∈ M and prove that (5.18) holds in a coordinate ball U centered at t0.

As in Sect. 5.1, we assume that πU : Ũ → U is a diffeomorphism and consider the
functionsψψψξ ∈ C∞(M̃; R). Then on U we have, for all ξ ∈ Z

m ,

d(eiψψψξ ◦π−1
U uξ ) = eiψψψξ ◦π−1

U d′
ξuξ = eiψψψξ ◦π−1

U f̂ξ

which, integrating along any curveγ inU connecting t0 to t yields, byStokesTheorem,

uξ (t) = ei(ψψψξ ◦π−1
U (t0)−ψψψξ ◦π−1

U (t))uξ (t0)+ e−iψψψξ ◦π−1
U (t)

∫

γ

eiψψψξ ◦π−1
U f̂ξ .

Since f is smooth andψψψξ is real-valued, the last equality shows that (5.18) holds true
provided that we prove that, given s > 0, there exists B > 0 such that

|uξ (t0)| ≤ B(1 + |ξ |)−s, ∀ξ ∈ Z
m\�ωωω,

which we do next.
By the Hurewicz’s Theorem, we may assume that σ1, . . . , σd all have base point

t0. We lift them to curves σ̃� : [0, 1] → M̃ whose endpoints we denote by

Q0
.= σ̃�(0), Q�

.= σ̃�(1), � ∈ {1, . . . , d}.

We integrate along σ̃� both sides of the equality

d(eiψψψξ π∗uξ ) = eiψψψξ π∗ f̂ξ
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and use Stokes Theorem again to conclude that, since π(Q�) = π(Q0) = t0,

(
ei(ψψψξ (Q�)−ψψψξ (Q0)) − 1

)
uξ (t0) = eiψψψξ (Q0)

∫

σ̃�

eiψψψξ π∗ f̂ξ .

Moreover,

ψψψξ (Q�)−ψψψξ (Q0) =
∫

∂σ̃�

ψψψξ =
∫

σ̃�

dψψψξ =
∫

σ̃�

π∗(ξ ·ωωω) =
∫

σ�

ξ ·ωωω, (5.19)

so, for ξ ∈ Z
m\�ωωω, there exists � such thatψψψξ (Q�)−ψψψξ (Q0) /∈ 2πZ, hence

uξ (t0) = eiψψψξ (Q0)

(
ei(ψψψξ (Q�)−ψψψξ (Q0)) − 1

)
∫

σ̃�

eiψψψξ π∗ f̂ξ

for any such �. Using again that f is smooth andψψψξ is real-valued, it suffices to prove
that there exist c, ρ > 0 such that

max
1≤�≤d

∣∣∣ei(ψψψξ (Q�)−ψψψξ (Q0)) − 1
∣∣∣ ≥ c|ξ |−ρ, ∀ξ ∈ Z

m\�ωωω. (5.20)

To conclude, we use the following technical lemma, whose proof we omit.

Lemma 5.14 There exists ε > 0 such that, for each ξ ∈ Z
m\�ωωω, at least one of the

following conditions holds:

(1) For every � ∈ {1, . . . , d} there exists p� ∈ Z such that

∣∣∣ei(ψψψξ (Q0)−ψψψξ (Q�)) − 1
∣∣∣ ≥ 1

2

∣∣ψψψξ (Q0)−ψψψξ (Q�)− 2π p�
∣∣ ;

(2) There exists � ∈ {1, . . . , d} such that

∣∣∣ei(ψψψξ (Q0)−ψψψξ (Q�)) − 1
∣∣∣ ≥ ε.

ByLemma 5.14, wemay assume that, for every ξ ∈ Z
m\�ωωω, there are p1, . . . , pd ∈

Z such that

max
1≤�≤d

∣∣∣ei(ψψψξ (Q�)−ψψψξ (Q0)) − 1
∣∣∣ ≥ 1

2
max
1≤�≤d

∣∣ψψψξ (Q�)−ψψψξ (Q0)− 2π p�
∣∣ .

It follows from (5.19) and (5.13) that

max
1≤�≤d

∣∣∣ei(ψψψξ (Q�)−ψψψξ (Q0)) − 1
∣∣∣ ≥ π max

1≤�≤d
|ξ · v� − p�|.

Since we are assuming that ωωω is weakly non-simultaneously approximable, we can
use Corollary 5.10 to conclude that (5.20) holds. ��
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6 Formal Fourier analysis of cohomology spaces

Allowing again ω1, . . . , ωm to be complex-valued, we add a third characterization of
solvability to our list in Corollary 4.8.

Proposition 6.1 The following are equivalent:

(1) For every formally solvable f ∈ C∞(�;�q) there exists u ∈ C∞(�;�q−1) such
that d′u = f .

(2) The map

Hq
d′(C∞(�)) −→

∏

ξ∈Zm

Hq
ξ (C

∞(M)) (6.1)

given by [ f ] �→ ([ f̂ξ ])ξ∈Zm is injective.

Proof First, we prove that solvability implies the injectivity of (6.1). Let [ f ] ∈
Hq
d′(C∞(�)) be such that [ f̂ξ ] = 0 in Hq

ξ (C
∞(M)) for every ξ ∈ Z

m , i.e., f̂ξ is
d′
ξ -exact for each ξ ∈ Z

m , i.e., f is formally solvable. By the solvability, it follows

that [ f ] = 0 in Hq
d′(C∞(�)), proving the injectivity.

Conversely, a formally solvable f ∈ C∞(�;�q) is d′-closed, hence it deter-
mines a class [ f ] ∈ Hq

d′(C∞(�)). Formal solvability of f ensures that [ f̂ξ ] = 0
in Hq

ξ (C
∞(M)) for every ξ ∈ Z

m . Thus, if (6.1) is injective, we have [ f ] = 0 in

Hq
d′(C∞(�)), which is precisely what we wanted to prove. ��
Next, we study the map induced by Eξ in cohomology. Unlike in the previous

proposition for the map induced by Fξ , its injectivity always holds true and requires
no extra hypotheses.

Proposition 6.2 For each ξ ∈ Z
m, Eξ induces an injection Hq

ξ (C
∞(M)) ↪→

Hq
d′(C∞(�)). Their direct sum induces the following injection:

⊕

ξ∈Zm

Hq
ξ (C

∞(M)) −→ Hq
d′(C∞(�)). (6.2)

Proof Let [ f ] ∈ Hq
ξ (C

∞(M)). Then, by Corollary 2.9,

d′Eξ f = Eξd′
ξ f = 0

and the class of Eξ f in Hq
d′(C∞(�)) is well-defined. Indeed, if [ f •] = [ f ] in

Hq
ξ (C

∞(M)), then there exists v ∈ C∞(M;�q−1) such that d′
ξ v = f − f •, hence

Eξ f − Eξ f • = Eξd′
ξ v = d′Eξ v.

Thus [Eξ f •] = [Eξ f ] in Hq
d′(C∞(�)). Moreover, if [Eξ f ] = 0 in Hq

d′(C∞(�)), then
there exists u ∈ C∞(�;�q−1) such that d′u = Eξ f , hence, by Lemma 2.6, we have

f = FξEξ f = Fξd
′u = d′

ξ ûξ
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hence the assignment [ f ] �→ [Eξ f ] is injective. More generally, if

∑

ξ∈Zm

[ fξ ] ∈
⊕

ξ∈Zm

Hq
ξ (C

∞(M))

is such that

∑

ξ∈Zm

Eξ fξ ∈ C∞(�;�q) is d′-exact

(the smoothness is possible by taking 0 as representative whenever [ fξ ] = 0), then
for some u ∈ C∞(�;�q−1), we have

d′u =
∑

ξ∈Zm

Eξ fξ = 1

(2π)m
∑

ξ∈Zm

eixξ ∧ fξ �⇒ d′
ξ ûξ = fξ , ∀ξ ∈ Z

m,

that is, [ fξ ] = 0 in Hq
ξ (C

∞(M)) for every ξ ∈ Z
m . ��

7 General finiteness theorems

Assume ω1, . . . , ωm complex-valued. The next result is the heart of our forthcoming
analysis.

Theorem 7.1 Given q ∈ {0, . . . , n}, the following are equivalent:

(1) Hq
d′(C∞(�)) is finite dimensional;

(2) d′ : C∞(�;�q−1) → C∞(�;�q) has closed range and there exists a finite set
F ⊂ Z

m such that

Hq
ξ (C

∞(M)) = {0}, ∀ξ ∈ Z
m\F .

In this case:

Hq
d′(C∞(�)) ∼=

⊕

ξ∈F
Hq
ξ (C

∞(M)).

Proof It is a standard argument in Functional Analysis that, if Hq
d′(C∞(�)) is finite

dimensional, then the denominator in (1.4) is a closed subspace ofC∞(�;�q). More-
over, since themap (6.2) is injective, finiteness of Hq

d′(C∞(�)) entails that only finitely
many terms in that direct sum are non-zero. Conversely, if d′ : C∞(�;�q−1) →
C∞(�;�q) has closed range, then the map (6.1) is injective (by Corollary 4.8 and
Proposition 6.1), i.e. Hq

d′(C∞(�)) injects into

∏

ξ∈F
Hq
ξ (C

∞(M))
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which is finite dimensional since so is every factor and F is finite. It follows that
dim Hq

d′(C∞(�)) < ∞, and we have a sequence of injections (6.2)-(6.1) between
finite dimensional spaces

⊕

ξ∈F
Hq
ξ (C

∞(M)) −→ Hq
d′(C∞(�)) −→

∏

ξ∈F
Hq
ξ (C

∞(M))

with isomorphic endpoints. The conclusion follows. ��
Below we will use that, by (3.4) and the definition of �ωωω (4.3):

ξ ∈ �ωωω �⇒ Sξ ·ωωω ∼= S0 �⇒ Hq
ξ (C

∞(M)) ∼= Hq
dR(M), ∀q ∈ {0, . . . , n}. (7.1)

Proposition 7.2 Assume �ωωω �= {0}. Given q ∈ {0, . . . , n}, if Hq
d′(C∞(�)) is finite

dimensional, then Hq
ξ (C

∞(M)) = {0} for every ξ ∈ Z
m—in particular, Hq

dR(M) =
{0}—hence Hq

d′(C∞(�)) = {0}.
Proof Pick a non-zero η ∈ �ωωω and a non-vanishing function f ∈ Sη(M). Given
u ∈ C∞(M;�q) and ξ ∈ Z

m , we have that

d( f u)+ i((ξ + η) ·ωωω) ∧ ( f u) = d f ∧ u + f du + i f (ξ ·ωωω + η ·ωωω) ∧ u)

= f (du + i(ξ ·ωωω) ∧ u)

hencemultiplication by f maps Hq
ξ (C

∞(M)) to Hq
ξ+η(C∞(M)); sincemultiplication

by 1/ f reverses this job we have Hq
ξ (C

∞(M)) ∼= Hq
ξ+η(C∞(M)) for every ξ ∈ Z

m .

Thus, if some Hq
ξ (C

∞(M)) is non-zero, then so are infinitely many of them, and the
left-hand side of (6.2) must contain infinitely many copies of it: injectivity of (6.2)
would then lead us to a contradiction, hence proving our first claim. Now, it follows
from Theorem 7.1 (with F = ∅) that Hq

d′(C∞(�)) vanishes. ��

Corollary 7.3 If 0 < dim Hq
d′(C∞(�)) < ∞ for some q, then �ωωω = {0}.

Interesting special cases of the results above are obtained for q ∈ {0, n}, for then
Hq
dR(M) is one-dimensional (compare with [4, Lemma 2.2]).

Proposition 7.4 Suppose that:

(1) �ωωω = Z
m;

(2) Hq
dR(M) = {0}; and

(3) d′ : C∞(�;�q−1) → C∞(�;�q) has closed range.

Then Hq
d′(C∞(�)) = {0}.

Proof The first hypothesis ensures that all the factors in the direct product in (6.1) are
copies of Hq

dR(M), which is zero by the second hypothesis; the third one implies that
Hq
d′(C∞(�)) embeds there, which is therefore also zero. ��
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Theorem 7.5 If (5.11) holds, then

Hq
d′(C∞(�)) is finite dimensional ⇐⇒ Hq

d′(C∞(�)) ∼= Hq
dR(M). (7.2)

Proof We have by (5.11) and (7.1):

⊕

ξ∈Zm

Hq
ξ (C

∞(M)) =
⊕

ξ∈�ωωω
Hq
ξ (C

∞(M)) ∼=
⊕

ξ∈�ωωω
Hq
dR(M)

which is isomorphic with Hq
d′(C∞(�)) by Theorem 7.1 provided the latter space

is finite dimensional. Two possibilities arise: either Hq
dR(M) is zero (in which case

Hq
d′(C∞(�)) vanishes too) or not; in the latter case, there must be at most finitely

many indices in the last direct sum (by finite dimensionality) i.e. �ωωω is a finite set.
Since this is a subgroup of Z

m , we have that �ωωω = {0} i.e. there is a single term in
that direct sum, namely Hq

0 (C
∞(M)) = Hq

dR(M). In both cases we get (7.2). ��

7.1 Calculations on surfaces

In the case dim M = 2, we know that

dim Hq
dR(M) =

{
1, if q = 0, 2,

2g, if q = 1,

in which g is the genus of M . It follows from the Atiyah-Singer Index Theorem that
the index of the elliptic complex d′

ξ on M , that is,

2∑

q=0

(−1)q dim Hq
ξ (C

∞(M)), (7.3)

depends only on the principal symbol of d′
ξ , which is the same as that of the exterior

derivative. In particular, (7.3) does not depend on ξ , hence equals

2∑

q=0

(−1)q dim Hq
ξ (C

∞(M)) =
2∑

q=0

(−1)q dim Hq
dR(M) = χ(M) = 2 − 2g,

the Euler characteristic of M . We already knew this for ξ ∈ �ωωω by (7.1); the extra
information comes for ξ /∈ �ωωω, in which case by definition

H0
ξ (C

∞(M)) = Sξ ·ωωω(M) = {0}.

Also, it follows from the second part of Lemma 2.8 that

H2
ξ (C

∞(M)) ∼= H0−ξ (D ′(M))∗ ∼= H0−ξ (C∞(M))∗
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also vanishes, since −ξ /∈ �ωωω. We conclude that for ξ /∈ �ωωω we have

dim Hq
ξ (C

∞(M)) =
{
0, if q = 0, 2,

2g − 2, if q = 1.

Case g = 0. In the case M is the 2-sphere, we always have �ωωω = Z
m , since every

closed 1-form is exact by simply connectedness. Hence:

• H0
d′(C∞(�)) and H2

d′(C∞(�)) are infinite dimensional (Proposition 7.2);
• H1

d′(C∞(�)) is finite dimensional if and only if d′ : C∞(�) → C∞(�;�1) has
closed range, in which case (Theorem 7.1)

H1
d′(C∞(�)) ∼=

⊕

ξ∈Zm

H1
ξ (C

∞(M)) ∼=
⊕

ξ∈Zm

H1
dR(M) = {0}.

Case g = 1. In the case M is the 2-torus, since no de Rham cohomology space
vanishes, we must have that every Hq

d′(C∞(�)) is infinite dimensional, unless �ωωω =
{0} (Proposition 7.2). In this case we have that

⊕

ξ∈Zm

Hq
ξ (C

∞(M)) = Hq
dR(M)⊕

⊕

ξ /∈�ωωω
Hq
ξ (C

∞(M)) = Hq
dR(M)

is in particular finite dimensional, hence (7.2) holds for each q ∈ {0, 1, 2} (finiteness
granted when q = 0 thanks to Theorem 7.1).
Case g ≥ 2. As in the previous case, every Hq

d′(C∞(�)) is infinite dimensional,
except when �ωωω = {0}, in which case:

• for q ∈ {0, 2}, we have
⊕

ξ∈Zm

Hq
ξ (C

∞(M)) = Hq
dR(M)⊕

⊕

ξ /∈�ωωω
Hq
ξ (C

∞(M)) = Hq
dR(M)

hence (7.2) holds, with finiteness ensured at least for q = 0;
• for q = 1, we have that

⊕

ξ∈Zm

H1
ξ (C

∞(M)) = H1
dR(M)⊕

⊕

ξ /∈�ωωω
H1
ξ (C

∞(M))

is infinite dimensional, hence so is H1
d′(C∞(�)) by Proposition 6.2.

7.2 On the existence of an isomorphism under global solvability

Finally, back again to the case when ω1, . . . , ωm are real, the main result in [6]—in
which M = T

n—essentially states that, under a hypothesis that is equivalent to the
global solvability in degree 1 of the operator d′, we have

Hq
d′(C∞(Tm+n)) ∼= C∞(Tr )⊗ Hq

dR(T
m). (7.4)
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This inspired us to prove our isomorphism (5.10), which considers only the cohomol-
ogyofq-forms associatedwith the cluster�ωωω.Wewill showbelow that an isomorphism
similar to (7.4) is not true for general M , even assuming solvability in the first degree.

Indeed, back to the case dim M = 2, g ≥ 2, let ωωω
.= {λϑ1} (corank 1) in which ϑ1

is as in the proof of Proposition 5.9 (d = 2g > 0 there). Therefore, if λ ∈ R\Q, then
�ωωω = {0} thus r = 0, hence C∞(Tr ) ⊗ H1

dR(M) ∼= H1
dR(M) cannot be isomorphic

with the infinite dimensional H1
d′(C∞(�)), even when d′ : C∞(�) → C∞(�;�1)

has closed range (for instance, if λ is a non-Liouville number, by Theorem 5.12).
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