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Abstract

The Clifford 2-torus in S* and the equlaterial 2-torus in S° are known as the only min-
imal immersions of 2-tori into spheres by the first eigenfunctions (called X{-minimal
for short). For n > 3, the Clifford n-torus in S2*~! might be the only known exam-
ple of A1-minimal n-tori in the literature. By discussing the general construction of
homogeneous minimal flat n-tori in spheres, we construct several new examples of
A1-minimal flat 3-tori and 4-tori. In particular, the existence of 2-parameter family of
non-congruent A1-minimal flat 4-tori is shown for the first time. We obtain the com-
plete classification for A1-minimal immersions of conformally flat 3-tori and 4-tori in
spheres, by some detailed investigations of shortest vectors in lattices, which could be
of independent interests. Using them, we also solve the Berger’s problem (finding the

maximal value of the dilation-invariant functional A (g)V(g)%) among all flat 3-tori
and 4-tori.
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1 Introduction

The study of minimal immersions of Riemannian manifolds into spheres is an inter-
esting topic in differential geometry. It builds a deep link between the spectral theory
and minimal submanifold theory. The famous theorem of Takahashi [31] states that
the isometric immersion x : (M", g) — S™ is minimal, if and only if the coordinate
functions of x are eigenfunctions of the Laplacian with respect to the eigenvalue 7.

Given a closed Riemannian manifold (M", g), we denote the volume and the first
eigenvalues of (M", g) respectively by V(g) and 1(g). The dilation-invariant func-
tional

L1(g) 2 1)V (g)n

on the set of all smooth Riemannian metrics is a basic functional considered in spectral
theory. It was shown in [10] (see also [12]) that the critical metric of £(g) among
all smooth Riemannian metrics on M" (called A1-critical metric) admits an isometric
minimal immersion of M" in spheres by the first eigenfunctions (called \{-minimal
immersion).

Moreover, it was proved by Hersch [15] that on the topological 2-sphere, among
all smooth Riemannian metrics, 8 is the maximal value of £{(g), which can only
be attained by the standard metric. In 1973, Berger [1] obtained the maximal value
of £1(g) on the topological 2-torus among all flat metrics. This value is attained
by the A;-minimal immersion of the equilateral 2-torus in S°. Since then, finding
the uniform upper bound of £ (g) among all smooth metrics is referred as Berger’s
problem. By introducing the conformal volume, Li and Yau [21] solved the case of
RP? in 1982, whose upper bound is attained by the A;-minimal immersion of R P>
in §* (i.e., Veronese surface). Due to also the work of El Soufi and Ilias [9], on any
closed manifold of dimension n, Li—Yau’s conformal volume can be used to provide
an upper bound for £;(g) in the conformal class [g]. In the mean time, they also
show that for the conformal manifold (M", [¢]) admitting a A |-minimal immersion in
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spheres, the volume of such Aj-minimal immersion is exactly equal to the conformal
volume. Therefore it realizes the supremum for £ (g) in [g]. Furthermore, for a given
conformal manifold, Montiel-Ros [23] and El Soufi-Ilias [10] proved there exists at
most one A1-minimal metric in the conformal class. Combining this with the existence
of X1-maximal metric, Nadirashvili finally solved the Berger’s problem completely
for the topological 2-torus in [25]. We point out that for the case of Klein bottle,
the Berger’s problem has also been solved due to the work of Nadirashvili [25],
Jakobson-Nadirashvili-Polterovich [17] and El Soufi-Giacomini-Jazar [13], where one
X1-minimal immersion of the Klein bottle is presented (see [16, 17]). For surfaces
of higher genus, we refer to [19, 22, 28] and references therein. In contrast to the
dimension 2, Colbois and Dodziuk proved in [4] that there is no uniform bound for the
functional £;(g) on any closed manifold of dimension n > 3. This implies that one
might consider the Berger’s problem restricting to a given conformal class (see [11,
18, 27] and reference therein), for which the investigation of A{-minimal immersions
of higher dimensional manifolds into spheres plays an important role.

In the literature, there have been several known classes of A{-minimal submanifolds
in spheres. A famous conjecture of Yau states that any closed embedded minimal
hypersurface in S"+1 i A;-minimal. Due to the work of Muto—Onita—Urakawa [24]
and Tang—Yan [32] on this conjecture (see also [34]), we know all isoparametric
hypersurfaces and some ones of their focal submanifolds form a class of Aj-minimal
submanifolds in spheres. Another class of examples is due to Takahashi [31], who
proved that for any positive integer k, up to a dilation of the metric, any compact
irreducible homogeneous Riemannian manifold can be immersed minimally into a
certain sphere by the kth eigenfunctions (we call it Ag-minimal immersion for short).
Later, the case of sphere equipped with the constantly curved metric was investigated
in detail by Do Carmo and Wallach [6]. It was proved that when n > 3, the linearly
full Ax-minimal immersion of n-sphere has rigidity if and only if & < 3. Moreover,
they also proved that the immersion will span the full k-eigenspace when k < 3. In
this paper, we will show that these two properties do not hold for minimal flat tori of
dimension 4, even for the case of A;-minimal immersion. To be precise, we construct
a Aj-minimal flat 4-torus in S!', which has rigidity but does not span the whole
eigenspace (see Example 4.9). Furthermore, a 2-parameter family of non-congruent
A1-minimal flat 4-torus in S?3 is also constructed, among which there is a 1-parameter
family living in S'°, neither rigid nor fully-spanning the eigenspace (see Example 1.1,
Proposition 6.3 and Remark 6.4).

By Kenmotsu [20] and Bryant [2], all minimal flat 2-tori in spheres are homo-
geneous. Let A, denote a lattice of rank n. In [2], Bryant proved that a flat torus
T? = R/A, admits minimal immersions in spheres, if and only if the Gram matrix of
A, is rational (i.e., all entries are rational numbers) up to some dilation. This implies
there are infinite non-congruent minimal flat 2-tori in spheres. But among them, there
are only two A1-minimal ones: the Clifford 2-torus in 83, and the equilateral 2-torus in
S°. This classification is due to the work of Montiel-Ros [23] and El Soufi-Ilias [10].

In contrast to the plentiful results on dimension 2 in the literature, minimal flat tori of
higher dimension haven’t been investigated so much, especially for those A|-minimal
ones. As far as we know, the Clifford n-torus in S**~! is the only known A-minimal
example (see [26]). In this paper, we construct four non-congruent Aj-minimal flat
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Table 1 The classification of A|-minimal immersions of confromally flat 3-tori

2
s" Total Numbers Reducible Irreducible Examples rM@V(gn
s? 1 1 0 E.g. 4.2 472
3
s7 2 1 1 E.g 42,43 43—‘/31712, 3Y/4x?
3
s 1 0 1 Eg 44 82,2
V9
st 1 0 1 Eg 45 4322

3-tori, a 2-parameter family and another sixteen non-congruent X |-minimal flat 4-tori
in spheres. Among them, the 2-parameter family described as follows is the most
interesting.

Example 1.1 Denote by {e¢;} the standard basis of R*. The flat 4-torus
T4 = R4/Spanz{el —e4, e —ey4,e3 — eq,2e4}

admits a 2-parameter family of non-congruent A;-minimal immersions in S* given
as follows:

(alein(u1+ug+u3+u4)’ alein(u1+u2—u3—u4)’ aleiﬂ(ul—u2+u3—u4)’ alein(—u1+u2+u3—u4)’

im(uy+ur+usz—ug) im(uy+ur—uz+ug) im(uy—uxtuz+us)

ae

a3e2mu1 , 61362mu27 a362mu3’ a362mu4>’

im(uy—uxz—u3z—u
, ae (u1—uz—u3 4)’

, dze , dze

where 0 < a; <a» < a3 and a12 + a% + a% = }1. See Sect. 6 for more details.

It turns out that the examples constructed in Sect. 4 exhaust all non-congruent A1-
minimal immersions of conformally flat 3-tori and 4-tori into spheres.

Theorem 1 (1) Up to congruence, there are five Ai-minimal immersions of confor-
mally flat 3-tori in spheres, see Table 1.

(2) Up to congruence, there are sixteen, as well as a 2-parameter family, A1-minimal
immersions of conformally flat 4-tori in spheres, see Table 2.

For the definition of irreducible and reducible appearing in Tables 1 and 2, see Sect. 4.

The construction of these examples is based on the variational characterizations (see
Theorems 3.2 and 3.6) we obtained for homogeneous minimal flat tori in spheres.
Roughly speaking, the construction of a homogeneous minimal flat n-torus in some
sphere is equivalent to finding a 2-tuple {Y, Q} (we call it matrix data) satisfying some
constrains, where Q_1 is a Gram matrix of the lattice corresponding to this torus, and
Y is a set of finite integer vectors in Z" describing the linear relations between lattice
vectors involved in the minimal immersion. Theoretically, all homogeneous minimal
flat tori in spheres can be constructed by the approaches we provided (see Sect. 3.1).
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To construct Aj-minimal flat n-tori, we also need to deal with the problem of finding all
shortest vectors in a lattice, which is important but difficult in the theory of lattice (or
geometry of numbers). Fortunately, a result of Ryshkov [29] proved in Minkowski’s
reduction theory can be used in our construction to overcome this obstacle.

To classify all Aj-minimal immersions of conformally flat 3-tori and 4-tori in
spheres, it follows from the work of El Soufi and Ilias [10] that we only need to
classify all A{-minimal immersions of flat 3-tori and 4-tori in spheres. It turns out that
they are all homogeneous (in fact, a sufficient condition is given in Proposition 2.7 for
general minimal flat tori in spheres to be homogeneous). Note that the moduli space of
flat tori (modulo isometry) is SL(n, Z) \ GL(n, R) / O(n) (see [36], or Sect.2). The
action of SL(n, Z) makes the classification highly nontrivial. However, our variational
characterization suggests that all we need to do is to find out all the possible integer
sets Y, where Q is uniquely determined if it exists. To do this, a coarse classification
to lattices of rank no more than 4 is given at first (see Theorem 5.8), from which some
necessary constrains on Y can be obtained. Then after introducing some invariants to
the set of shortest lattice vectors, we can determine all the possibilities of ¥ up to the
action of SL(n, Z).

The volumes for these A;-minimal flat tori we construct are also calculated (see
Sect. 4). It follows from the theory of conformal volume that these A1-minimal metrics

maximize the functional A1(g)V ( g)% in their respective conformal classes. Among all

A1-minimal flat 3-tori, the maximal value of A;(g) V(g)% is 4/272, and it is 4/272
among all A-minimal flat 4-tori (see Tables 1 and 2). In fact, using the investigation
about lattices given in Sects. 5 and 6, we can prove the following theorem, which can
be seen as a generalization of Berger’s result from flat 2-tori to flat 3 and 4-tori.

Theorem 2 Consider the dilation-invariant functional .1 (g)V (g) T on the topological
n-torus.
(1) When n = 3, among all flat metrics,

M)V (g)n <4272,

and the equality is attained by the A1-minimal flat 3-torus given in Example 4.5.
(2) When n = 4, among all flat metrics,

M(g)V(g)n <422,

and the equality is attained by those A1-minimal flat 4-tori given in Example 1.1.

Inspired by this theorem, it is natural to consider the Berger’s problem on confor-
mally flat 3-tori and 4-tori: whether 4~/272 and 4+/272 are respectively the upper
bounds of 11(g) V(g)% on the topological 3-torus and 4-torus among all smooth con-
formally flat metrics.

In [11], El Soufi and Ilias exhibited a class of flat n-tori for which the endowed
flat metric maximizes X (g)V(g)% on its conformal class (see Corollary 3.1 in their
paper). Combining their result with our work (Theorems 1 and 5.8), we can partially
solve the above problem.
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Theorem 3 Suppose g is a smooth Riemannian metric on the the topological n-torus.
If g is conformal equivalent to a flat metric whose first eigenspace is of dimension no
less than 2n, then Al(g)V(g)% < 43272 when n = 3, and kl(g)V(g)% < 472
whenn = 4.

The paper is organized as follows. In Sect.2, we firstly recall the basic spectral
theory of flat tori, and then discuss the homogeneity of minimal flat tori in spheres.
Section 3 is devoted to presenting our basic setup on homogeneous minimal flat tori,
as well as the variational characterizations obtained for them. New examples of A-
minimal flat 3-tori and 4-tori are constructed in Sect. 4. We devote Sect. 5 to investigate
the shortest vectors of lattices, where a coarse classification is given to lattices of rank
no more than 4. The classification of Aj-minimal immersions of conformally flat 3-
tori and 4-tori are obtained in Sect.6. A class of Aj-minimal flat n-tori is presented
in Sect.7 as an application of our construction method in higher dimensions. Finally,
Sect. 8 is devoted to discussing Berger’s problem on conformally flat 3-tori and 4-tori,
where Theorems 2 and 3 are proved.

2 On isometric minimal immersions of flat tori

In this section, we will firstly recall the basic theory of flat tori. Then a sufficient
condition for minimal flat tori in spheres to be homogeneous will be given.

2.1 Flat tori and lattices

It is well known that a flat torus 7" of dimension n can be described as
" = Rn/Al’h

where A, is a lattice of rank n on R”. Set L, to be the generator matrix of A,,
which means A, can be generated by row vectors of L,. Two tori 7" = R"/A,
and T" = R" / A, are isometric if and only if A, and A, are isometric, i.e., there
ex1sts an orthogonal matrix O and an unimodular matrix U € SL(n, Z), such that

L,=U L O, where L, (W.r.t. Ln) is a generator matrix of lattice A, (W.r.t. An) It
follows that the moduli space of flat n-tori is

SL(n,Z)\ GL(n,R) / O(n).

The dual lattice of A, is defined to be a lattice A}, whose generator matrix L
satisfies L, (L)' = I,,. The spectrum of 7" = R" /A, is

Spec(T") = i4n2|$|2 ‘g c A:},

and €27 &)1 is an eigenfunction corresponding to the eigenvalue 472 |£|?, where u =
(uy,up, -+, uy) is the coordinates of R”, such that the flat metric on R” (T") can be

written as du? + du3 + - - + du?.
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2.2 Minimal homogeneous flat tori in spheres

Let T" = R"/A, be a flat torus. Assume 7 is an eigenvalue of this torus, whose

eigenspace is of dimension 2N. It follows that there are exactly N distinct lattice

vectors (up to 1) having the length ‘2/—75' in the dual lattice A}, which are denoted by

§1.52, ..., éN.

By the theorem of Takahashi, any minimal isometric immersion of 7" in spheres can
be expressed as follows:

x=(010 - Oy)A: T" =R"/A, — SV, M

where ©, = (cos@, sin@,), 0, =2 (& ,u)for 1 <r < N,and Aisa2N x 2N
matrix. Write

App A - Ay
Ayl Ay - Aan All Al2
. .. . s A = A21 A22 ’

rs rs

AA" =
An1 An2 - ANN
we have the following conclusions.

Lemma 2.1 {9, +0,

lgr;ﬁsgN}ﬂ[0,:|:29j‘1§j§N}=®.
Proof This follows from the fact that 0 < |&, £ &| < |2&;] for r #s. O

Lemma 2.2 Foreveryr,1 <r < N, we have

a
)
r

Proof By definition, we have A2 = A2]. From |x| = 1, we can obtain that

2= 3" LA} — AP cos20,) + (AL} + AZD) + (A]F + A7) sin(26,)

1<r<N

+ > AN — AT cos@; + 0y) + (A} + AT cos(0, — Oy)
1<r#s<N

+ (Al + AXD)sin(0, + 65) + (A} — Al sin(g, — 6,)].

Note thatforall 1 <r < N,6, # 0.Soitfollows from the Lemma?2.1 that A}l — A22 =
0, A2+ A2l = 0, which complete the proof. O
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Since x is an isometric immersion, we have

ox Ox
—,—) =0, 1=<kl=<n, (2)
duy ou

where u = (uy, us, -+, up) is the coordinates of R”. Using the expression (1) of x,

(2) can be rewritten as below:

Zérk5r1®r <_01 é) Arr <(1) _01)

01 0-1 Sk
O + D (Ernéot + Eakér) Oy (_1 0) Ars (1 0 ) =15 0O
r<s

where &, is the k-th coordinates of &, and we have used the fact that

01 0-1 01 0-1
©r (—10)A” (1 0>®§=®S (—10)"” <1 o>®tr’

which can be verified easily. It follows from Lemma 2.2 that the first term in the left
hand side of the Eq. (3) is constant. Hence for all 1 < k,[ < n, we have

0= (Enka +Ex&DI(AL — A7) cos(6, + 05) + (AL} + A7) cos(6, — )

r<s

+(A)2 + AL sin(6, +6,) + (A2 — Al2)sin(9, — 6y)].

Define £ = {&, £ &, 1 <r < s < n}, we call the set of pairs @
(GrvEs)seees By £y Grprrs —Espar)s s s —E5))
n-set if
Ert &= =&,+&, =6, — &= =&, &, =n€eC’.
Using |§;;| = [&;;| we have
.n) = &, 1 + &, 1> £ 206, &;) = 2(&,.m) >0, 1<j=q.
It is straightforward to verify that £§,, ..., :I:é,q, +&,, ..., £& , are distinct with

each other.
Denote by §; © &, the symmetric product of &, and &, we have the following
lemma. ' ' ' '

Lemma23 Let x : T" = R"/A, —> S™ be a linearly full minimal flat torus.
If for any n € &, the n-set forms a linearly independent set of symmetric products
{6r) O &, 6 O &syy o &, O&, ), then m is odd and x is homogeneous.
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Proof Set

A 411 22 a 411 22
lrasa = Arysy, — Arpsgr 1 S A =Py Iy, = Ay, + AL,

p+1=<b=gq.

By the linear independence of trigonometric functions, it follows from (4) that
Trisys -« Irgs, satisfy the following linear equations:

(&r j&sik + EriiEsy s
+($r2j§szk + i:rzkgszj)trzsz
+ot (érququ + Squéxqj)trqsq =0, 1<j,k=<n. (5)

Note that (5) is equivalent to

tr1s1$r1 O] Esl + trzszéfrz o Esz +--- 4 trqsquq © SS,, =0.

It implies #,5; = O forall 1 < j < g, since these symmetric products are linearly
independent. Similarly, the other coefficients also vanish in (4) and we have A,y =
0(r #s).

By embedding S” into , we can assume the immersion x has the form as
given in (1). From Lemma 2.2 and A, = 0 (r # s), the matrix A in the expression
(1) satisfies

SZN—I

AA! :diag{al,al,az,az,...,aN,aN},
with
agta+---+av=1 0sap=ap=<---=<ay, 1 <j=N.

Consider the QR decomposition of A’, there exists an upper triangular matrix L
such that

t .
L'L = dlag{al,al,az,ag, ...,aN,aN},

which implies L must be diagonal, i.e.,
L:diag{@, N TN AN A mm}
Hence, up to an orthogonal transformation, x can be expressed as below:
x=(0) 0, @N)diag{ﬁ, Jar, Jaz, ﬁmm}

Since x is linearly full, we can obtain that m is odd, and x is the orbit of a torus group
acting at

(Vai, a1, Jax, Jaz, ..., [ansi, a’”T“)'
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Definition 2.4 A finite set V of rank k& in R” is called unimodular, if all the k-
dimensional parallelepipeds spanned in V have a same volume.

Remark 2.5 Suppose V is a finite set of rank k and satisfies the unimodular condition,
then for {vy, va, ..., v} and {wy, wa, ..., w;}, which are two arbitrary collections of
[ vectors in V with [ < k, there must have

VIAVLA---Ay =W AwWr A--- AW

when Spang{vy, va, ..., v} = Spang{w;, wa, ..., wi}.

Lemma 2.6 If{&1, &, ..., &N} satisfies the unimodular condition, then for any n € &,
the n-set forms a linearly independent set {&;, © &, &, O &5y, ..., &, O &, }-

Proof We claim that 1, &, &,, ..., &, , are linearly independent. Then by extending
n.&.6, ..., érq} to a basis of R”, it is easy to see that
‘i:rl @srla §r2 @Srp ey %-rq @grq» $r1 @7]» srz @777 ey %—rq @77

are linearly independent. Combining this with &, = £( — &;,), we can derive that

Sﬁ@gﬂa éerESQ’ sy Erq QESq

are linearly independent.

Now it suffices to prove the above claim. We prove it by contradictions. First we
extend 7 to a maximal linearly independent subset in {, §,,&,, ..., &, }, which can
be assumed tobe {n, &, &,,, ..., &, ) witht <g+1.Thenn, & ,&,,...,&,_,,&,
must be linearly dependent. It is left to discuss the following two cases.

The first case is that &, &,,, ..., &,_,, &, are linearly dependent.

Let

Sr, = Clsrl + CZ'i:rz +oeee + Ct—lgr,,l . (6)

It follows from the unimodular condition that these coefficients all take values in
{0, =1}. Taking inner product of (6) with n, we can obtain

-1
Y ei=1. @)
j=1
Note that
Es,/\grl /\"'/\é’_r,,l Zi'?/\§r1 /\"'/\%_r,f] 7&0
Forany 1 < j <1 — 1, using &, = £(n —§;,;), we have
ES; /\Em AN /\Erj,| /\ESJ' /\Erj+| AN /\ér,_l = :t(cj - 1)53[ /\‘i:rl AR /\‘i:r,_l-
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From the unimodular condition again we get
cj—1e€{0,£1}, 1<j=<r-1,

which implies ¢; € {0, 1} forall 1 < j <t — 1. Combining this with (7), we derive
that only one c; is nonzero and equals 1. It follows that &, = &, contradicting with

the fact that £§,,, ..., £&, ” +&,, ..., & , are distinct with each other.
The second case is that &.,&,,, ..., &, are linearly independent. Then we can
assume
n=cib, +cokp A ooee + i, (8)

Taking inner product of (8) with n, we can obtain

t
Y ej=2. 9)
j=1
On the other hand, using ésj =+(n— Erj), we have

gsj' ==+ (Clérl +-+ Cj—l%‘rjfl + (cj - l)érj +cj+l‘i:rj+1 + -+ Ct%_r,) , I<j=<t
It follows from the unimodular condition that
cj,cj—1ef{0,£1}, 1 <j=<1t,

which implies ¢; € {0,1} for all 1 < j < t. Combining this with (9), we derive
that only two c; are nonzero and equal 1, which can be assumed to be ¢ and c;. It
follows that n = &, + &,,. So we have &,, = ££;, also contradicting to the fact that
&, ..., :i:é,q, &, ..., iésq are distinct. O

By Lemmas 2.3 and 2.6 we immediately obtain the following proposition.

Proposition 2.7 Let x : T" = R"/A,, —> S™ be a linearly full minimal flat torus. If
{&1, &2, ..., ENY satisfies the unimodular condition, then m is odd and x is homoge-
neous.

Remark 2.8 In Sect. 6, we will show that all A|-minimal flat tori of dimension no more
than 4 are homogeneous. In fact all of them satisfy the unimodular condition with only
one exception.

3 Variational characterizations of homogeneous minimal flat tori
In this section, we give two variational characterizations for homogeneous minimal

flat n-tori in spheres, from which two construction approaches can be derived. The
construction of A|-minimal flat n-tori is also discussed.
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Letx : T" = R"/A, — S™ be a homogeneous minimal isometric immersion,
with the metric given by

472
T(du%+du§+~-~+duﬁ).

Suppose {& j}?/:l are all lattice vectors (up to 1) in A of length 1. From the homo-
geneity of x, we can assume m = 2N — 1 and write x as follows:

X = (cleiel, czemz, ...... , cNeigN), (10)

where 6; = 2n(§;,u), 1 < j < N.Then we have

ot , &1
(&) & 1
(€18 &) . = (1)
%) \én
Assume {11, 12, ..., n,} is a generator of A’. Then there exist integers a je such
that
§j=apmtajm -+ +ajim, 1=j=N.
We denote
Aj = (aj,, ajys e caj), Y =(A,--- Ay, 1<j<N,

Set

M
It is a positive-definite matrix, called Gram matrix of A}. It is well-known that the
volume of x equals ——Z-

J/n"det(Q)°

Remark 3.1 The minimal immersion x given in (10) is uniquely determined by the
following data set

(Y, 0, (¢, 5, ex)),

which is called the matrix data of x, and will be used to present examples in Sect. 4.
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It is obvious that the condition |£;| = 1 is equivalent to
AjQA, =1, (12)

i.e., A; lies on the hyper-ellipsoid Q determined by

Furthermore, it is straightforward to verify that the flat condition (11) is equivalent to
1
GAAL +AAY A + e ANAN = ;Q‘l. (13)

3.1 Two variational characterizations
Consider the space S(n) of n x n symmetric matrices over R, which is a w-
dimensional Euclidean space endowed with the inner product:

(81, 8$2) =tr(85152), 81,52 € S(n).

For any given vector v € R", I1,(v) := {M|(v'v, M) = vMv' =a,a € R}is an
affine hyperplane dividing S(n) into two half spaces:

SH) = {MlvMv' > a}, S, (v) = {MlvMv' < a}.

Let X be the set of semi-positive definite matrices. Then it is well known that ¥ =
NyeRrn Sg' (v) is a convex cone in S(n) with the set of positive definite matrices as
its interior, which is denoted by .. By our definition, we have Q! € %, and
A’jAjGE,lfij.

Given a subset X C Z", let Cx be the convex hull spanned by A’A for all A € X,
and Vy be the affine subspace NgexI11(A) C S(n). Moreover, we also consider the
smooth linear submanifold Wy = Vx N ¥ (see Fig. 1), whose geometric meaning is
the set of all hyper-ellipsoids passing through X.

With respect to these notations, the condition (12) is equivalent to Q € Wy, and

(13) is equivalent to Q74 € Cy.
Theorem 3.2 Let x : T" = R"/A,, — SN~ be an isometric homogeneous immer-
sion. If x is minimal, then Q is a critical point of the determinant function restricted
on Wy, where Y is the set of integer vectors determined by x, and Q the Gram matrix
of A} under some chosen generator.

Conversely, given a set X of integer vectors, if Q is a critical point of the determinant

—1
function restricted on Wy and QT lies in the convex hull Cx, then the torus R" /A,
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Fig.1 Wy in =4

determined by Q=" (as the Gram matrix of A, ) admits an isometric minimal immersion
. Q2N-—1

inS .

Proof Let y(t) be a smooth curve in Wy passing through Q at t = 0. Set f(r) £
det y (¢), it is easy to verify that

£©0) = £O) (0", ().

As an isometric homogeneous immersion, x is minimal if and only if Q0 € Wy,
Q! € Cy. The conclusion follows from that Span{A’A | A € Y} is the normal space
of Wy at y(0) = Q. O

Remark 3.3 We point out that if Q is a critical point of the determinant function
-1

restricted on Wy, then QT lies in Span{A’A|A € X} automatically. In fact let

Q + 1S be an arbitrary segment in Wy, then it follows from (Q~!, §)=0 that

—1
(Q—, 0+185) =1,
n

which implies Q74 € Span{A’A| A € X}.
As aresult, if all the vectors A; in X can be arranged as row vectors to form a block
diagonal matrix, then the critical point Q is also block diagonal.

Although the following conclusion is well known, we give a proof here for com-
pleteness.

Lemma 3.4 The function In o det restricted on ¥ is strictly concave.
Proof Given a positive definite matrix P € X, Let y () be asmooth curve in X4 with

y'(0) = § € S(n)\{0}. Let f(¢) = Inodet(y(z)), then we have f/(t) = tr (y(t)’lS)
and

F0) = —tr (P—lsp—ls) — _w(HSHHSH) = —|HSH|* <0,
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where H is a square root of the positive definite matrix p1 (i.e., H 2 = P’l), and
we have used the fact that S € S(n). O

Therefore, for any given subset X C Z", if Wx # &, the determinant function
det has only one critical point in Wy, which is the maximal point. This leads to the
following corollary about uniqueness.

Corollary 3.5 Let x : T" = R"/A, — S*M L and 5 - " = R"/T\n — SN pe
two isometric homogeneous minimal immersions, if after choosing suitable generators
respectively, x and X share the same subset Y C Z", then T" and T"™ are isometric.
Moreover, x is congruent to X if {A’A| A € Y} are linearly independent.

It seems that we can use the following approach to construct a homogeneous min-
imal immersion of flat torus. Choose a subset X C Z", determine whether Wy is not
empty, and then discriminate whether the maximal point Q of det restricted on Wy
lies in the the convex hull Cy.

Note that in general the dimension of Vx is n(n + 1)/2 — 4(X), which implies Wy
could be empty if X involves too many vectors. Even if Vx exists, it also could have
no intersection with X . For example, we will get a degenerated matrix when

111 1 —1/2-1)2
X=| 1 11 |, forwhich 0= [-1/2 1 —1,2
1 11 —1/2-1/2 1

It seems to be a challenge to obtain a general method by which one can efficiently
construct the desirable integer set X.

Next we give an alternative method to determine homogeneous minimal immersions
of flat tori, by use of a variational characterization of Q’1 (comparing Theorem 3.2).

Theorem 3.6 Let x : T" = R"*/A, — S*™ ! be a homogeneous minimal flat torus,
where N is the half dimension of the eigenspace of T" corresponding to n. If x is

21
minimal and linearly full, then QT lies in the interior of Cy, and is a critical point of
the determinant function restricted on Cy.
Conversely, given a finite set X of integer vectors such that Cx N X4 # O, if
[e]

P e Cy is acritical point of the determinant function restricted on Cy, then the torus
R" /A, determined by nP (as the Gram matrix of A, ) admits an isometric minimal
immersion in some S*N71,

-1
Proof For the first part of this theorem, QT € Cy just follows from the flat condition

-1

(13). To prove that QT is a critical point of det restricted on Cy, we only need to
check whether the derivatives of det | ¢, at this point equal zero, which can be computed
directly and are omitted here.

For the converse part, suppose X = {A1, Az, ---, Ak}, and P = Zf‘:l yjA;.Aj.
It follows from P € Cx that y; > Oforall 1 < j < k. We only need to prove that
P;l € Wx, i.e.,
P—l
(— A%A) =1, 1<j<k (14)
n .
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Fig.2 Cy and its faces

For any given 2 < j < k, consider the line segment
yjt)="PrP +I(AtjAj — AtlAl).

It is obvious that for sufficient small ¢, y;(¢) lies in Cx. So P is a critical point of
det(y;(¢)), which implies that (Pt yj’. (0)) = 0. Therefore we have

(P~ ALA ) = (P71 ATAY), 2<j <k

It follows from ZI;-:] yj = 1 that

~

n= (P!, P) Zy, Pl ALA Z (P71 AN Ay = (P71, ALAY),

which completes the proof. O
Remark 3.7 The above theorem provides another approach to construct minimal flat
tori. One can choose a finite set X of integer vectors such that Cx N X4 # & (see

Fig.2), and calculate the the maximal point P of det on Cx. If P € Cy, then the
matrix data {P74, X} provides a minimal flat n-torus. Otherwise, let Cx+ be the face

o
of Cx so that P € Cx (such face could have high codimension and the existance is
—1 . ..
due to the compactness of Cy), then {PT, X'} provides a minimal flat n-torus.

This remark can be seen as a generalization of Bryant’s characterization to minimal
flat 2-tori in spheres, see Proposition 3.3 in [2].

3.2 Homogeneous 11-minimal flat tori

To determine homogeneous A1-minimal immersions of flat tori, one has to solve the
following problem.
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Problem Firstly how to choose a subset X C Z", such that in Wy there is a maximal

o]
point Q of det, and Q~'/n € Cx. Then how to discriminate in the interior of the
hyper-ellipsoid determined by Q, whether there exist other nonzero integer vectors,
i.e., to discriminate whether vQv' > 1 hold for all v € 7Z"\{0}.
In X, the infinite constraints

vMv' > 1 for all v € Z"\{0} (15)

define a non-compact convex domain 2.

So X can determine a homogeneous Ai-minimal immersion of some flat torus if
and only if Q € 9K2. Given a positive definite matrix Q, it seems that to verify whether
Q € 0%, i.e., satisfying (15), infers an infinite process. However, due to Minkowski’s
reduction theory of lattices (see [30] for reference), only finite inequalities need to be
checked. This can also be seen from the following simple theorem.

Theorem 3.8 For a given n x n positive definite matrix Q with diagonal entries 1,
there exist n integers a;(Q) > 0 (1 < k < n) such that vQv' > 1 for all v € Z™"\{0}
if and only if it holds for all integer vectors in

SElv=(1,....v0) €Z" ||| <a(Q), 1 <k <n}.

Proof Let {&;} be a basis of R" with Gram matrix Q, Il the (n — 1)-dimensional
subspace spanned by &1, ..., &—1, &+1, - . ., €. So the distance of & to Iy is a fixed
value di > 0, which can be determined from the entries a;; of Q by using the least
square method, such as

dy =&l =18 1P = 1=18) P = 1=(@1ns -+ A1) @)1 2 iy @lns s A1)’
(16)

where E,;r is the orthogonal projection of &, into IT,,.
Suppose ax (Q) is the integer such that a;(Q) — 1 < dk_1 < ar(Q), then we will
get |a| > |cx|ldy > 1 forany o = c1&1 + - - - + ¢, &, when some |cx| > ax(Q). O

Although the criterion given in the above theorem only infers finite steps, it still
requests a lot of computations. Forn < 6, we give an alternative criterion which comes
from Minkowski’s reduction theory (see [29]). For the case n > 6, so far we do not
find such an explicit description in the literature. Applied to our case, the criterion is
stated as below.

Theorem 3.9 Suppose Q is an n x n positive definite matrix with diagonal entries 1,
and n < 6. Then vQV' > 1 holds for all v € Z"\{0}, if and only if, it holds for those
integer vectors v, whose entries take values from the first n integers in each rows below
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with arbitrary sign (“+” or “="):

4 Examples of 1;-minimal flat tori of dimension 3 and 4

In this section, we present a series of A1-minimal immersions for flat tori 73 = R3/A3
and T* = R*/A4, which are all homogeneous. Instead of giving the explicit petty
immersions, we use the matrix data

{Y! Q» (C%,C%, e 1C]2\])}

introduced in the last section (see Remark 3.1). Recall that Q is a Gram matrix of the
lattice A under some chosen generator, which can determine a flattorus 7" = R" /A ;
N denotes the number of distinct shortest lattice vectors of A up to £1, i.e., the half
dimension of the first eigenspace of flat torus 7" = R"/A,; Y isan n x N integer
matrix describing the linear relations of those shortest lattice vectors; 01'2 involves the
information of immersion.

First of all, given two Aj-minimal tori f; : 7" — S™i(i = 1, 2), one can construct
anew Aj-minimal (n1 + ny)-torus by the following direct product (see [3, 33, 35])

f= <\/n1l:-1nz S, \/mlfnz fz) T T S a7

In the sequel, A1-minimal torus constructed in such way is called reducible, and those
non-product ones are called irreducible.

Remark 4.1 A reducible A1-minimal flat torus constructed from two homogeneous and
A1-minimal tori is also homogeneous. For such torus, by definition, suitable generator
of the corresponding dual lattice can be chosen such that the matrix Y is block diagonal.
Then it follows from Remark 3.3 that the Gram matrix Q is also block diagonal.
Conversely, a A1-minimal flat torus given by diagonal data set is a reducible A-
minimal flat torus.

Example 4.2 As stated in the introduction, the Clifford torus and equilateral torus are
two (only two) Aj-minimal flat 2-torus, whose matrix data are

(10 (10 s oo (11
=(11). =) @a=(11)
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1 -1 101 111
_ 3 r 2 2 oy (Lt 11
o=(1 ) =8 (34 })

Taking one from these two tori, considering the direct product (as in (17)) of it with
the unite circle in R2, we can obtain two examples of A1-minimal flat 3-torus in S° and

S7, whose volume is respectively S‘T@n3 and %nS. Their matrix data can be stated as
follows:
100 100 111
Q: 010 ) Y = 010 ) (c2762762): PRI )
001 001
1 =50 1010
2 2 2 2 1
o=(-1 o). v=lo110). @ aad=(5557).
0 01 0001

Next we give some data with neither Q nor Y being block diagonal, which are
obtained originally by applying our variational characterization, where some tedious
but routine computation is involved, and we omit it here. Alternatively, one can verify
directly that all these data fit (12) and (13), and satisfy the criterion given in Theorem
3.9, hence provide irreducible examples of A;-minimal flat tori.

Example 4.3 N=4. The following matrix data

1 =1 _1
373 1001
o=|-% 1 -1]. y'=0101],
_1_1 4 0011
3 3

115 3 3 3
2 2 2 2 2 2v_(r 2 2 2 5
(C]1C21 C3,C4, C5766)_<61 63 48» 16» 167 16)
gives a A 1-minimal flat 3-torus in S7, which is irreducible, linearly full and has volume

273,

Example 4.4 N=5. The following matrix data

1 =1 _1

2% 10101

o=|-31 -], v=|01101],
11 00011
477

(3, 3, 3, 3, cg)
(22212
“\9°9°9°9’9

gives a A1-minimal flat 3-torus in S°, which is irreducible, linearly full and has volume
32v3 .3
27 :
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Example 4.5 N=6. The following matrix data

1 -1 0 101001
1 1
o=|-1 1 1|, v=[o11011
0 -5 1 000111
(¢}, 3, 3, cF, cg, )

gives a Aj-minimal flat 3-torus in S! whichis irreducible, linearly full and has volume

We will prove in the next section that Examples 4.2 to 4.5 enumerate all examples
of A;-minimal flat 3-tori in spheres.

Example 4.6 Taking the direct products (as in (17)) of two A;-minimal flat 2-tori, one
can obtain three reducible A1-minimal flat 4-tori in S7, S” and S'!, they are all linearly

full with volumes 7%, %3714 and %n“, respectively.
Taking the direct product (as in (17)) of one A1-minimal flat 3-torus given in Exam-
ples 4.3 to 4.5 with the unite circle in R2, we can obtain another three reducible

A 1-minimal flat 4-tori in S?, s and S13, they are all linearly full with volumes %5 4
%7‘(4 and v/27%, respectively.
For brevity, we omit the data set of these 6 reducible A1-minimal flat 4-tori.

Example 4.7 N = 5. The following matrix data

1 -1 _1_1
4 4 4 10001
0- e y_|orool
- _%_él‘ 1 _41_‘ ’ —loo101 )’
1 _1_1 00011
17171
(cl, 3. 3. 3. ¢d)

Il
7N
DN | —
| —
| —
| —
| =
S—

gives a A1-minimal flat 4-torus in S®, which is irreducible, linearly full and has volume
16v5 4

—25]'(.

Example 4.8 N = 6. The following matrix data

1 =L _1_1

2 6 6 101001
-2 1 —1-1 011001
_1_1 4 _1| 000101 |’
6 6 3
1 _1_1 4 000011
6 6 3
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2 2 2 2 2 2
(c1, 65, 3, c§, C5, cg) = (

115 3 3 3
66 48" 167 16" 16

gives a Aj-minimal flat 4-torus in S whichis irreducible, linearly full and has volume
3_4
5 T .

Example 4.9 N = 7. The following matrix data

1 =L _1_1
2 4 4 1010101
0 e y_|or10101
- _%_‘_1‘1 él‘ ’ 10001100}
L _1 1 0000011
474 1%
1 1 1 1 11
(C%a C%v C%v C£%9 C%, C%a C%) = <67 ga 07 67 Ea 89 8)

gives a A1-minimal flat 4-torus in 813, which is irreducible, and has volume %n“.
Note that it is not linearly full in SI3 but in S!!. As far as we know, this is the first
explicit example of A-minimal immersion in the literature that does not span the whole

first eigenspace. Note that branched minimal surfaces with extra eigenfunctions have
been studied by Ejiri and Kotani in [7, 8].

Example 4.10 N = 7. The following matrix data

T
273178 1010101
0 —5 1 =13 yo_|or1o101
oot [ T T looorton )
1 _1_1 4 0000011
~§3 78 "%

S

1 11 1 1 11
2 2 2 2 2 2 2y (2 - -
(Cl, ¢y, €3, Cy4, C5, Cg, C7)—<6, 66 12" 12° 6 6)

gives a A1-minimal flat 4-torus in S'3, which is irreducible, linearly full and has volume

Example4.11 N = 7. The following matrix data

V13=7 J13=7 4—/13

LT TS 1001001
SR S 0101011
0= 12 6 2 Y =
VS S ENE I 0011011 |
12 6 2
Vi3-4 V13-7 V13-7 4 0000111
6 12 12

2 2 2 2 2 2 2
(c1, ¢35, 3, ¢, c5, cg, €7)
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(V13-2 5-V13 5-13 VI3-2 VI3-2 VI3-2 5-I3
12 8 8 T 1207 12 7 12712

gives a Aj-minimal flat 4-torus in S'3, which is irreducible, linearly full and has

26/13=70 _4
-— 3 T

As far as we know, this is the first example of A 1-minimal immersion in the literature
whose Gram matrix are not rational, comparing to that minimal 2-tori always have
rational Gram matrices up to a rescaling(see [2]).

volume

Example 4.12 N = 8. The following matrix data

1 1
I =30 - 10100101
0 -1 -3o0 po_|ortorion
o 0_% 1 _}1 ’ 100011101}
Lo 1 00000011
-1 0 —3
11111 1 11
2 2 2 2 2 2 2 2
(Cls C2s C3, C47 C57 c63 C71 CS) = (gv gv gs gv 50 ﬁv 69 8)

gives a A1-minimal flat 4-torus in S!5, whichis irreducible, linearly full and has volume

Example 4.13 N = 8. The following matrix data

1 D VA B A
22 s 2 10101001
0= -3 1 3-%¥V3-2f ., _|o1101011

Tl V3 1_ 3 1l “looot11011 |’
R S N 00000111
V3 1 /3
- V3=253-5 1
2 2 2 2

2 2 2 2
(Cl, Cy, C3, Cy, C5, Cg, C7, CS)

=<3—J§ V3 3-V3 V3 3-V3 V3 3 3—J§>

12 120 12 120 12 0120 120 12

gives a A1-minimal flat 4-torus in S'3, which is irreducible, linearly full and has volume

%ﬁn“. This is another example of Aj-minimal immersion whose Gram matrix
are not rational.

Example 4.14 N = 9. The following matrix data

1 =1 o -1
2 6 101001001
0~ -3 1 -5 3 yi_|o1tortool
"o -1 -t " Tlooortionn )
11 1 000000111
5 6 2
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2 2 2 2 2 2 2 2 2
(Cls Cy, C3, Cy4, C5, Cg, Cy7, Cg, 09)

(111 1 1 1 111
T \8 8 1271278 12”8 8 8

gives a Aj-minimal flat 4-torus in S!7. whichis irreducible, linearly full and has volume

16 4
37'[.

Example 4.15 N = 9. The following matrix data

| _l_11
273 1% 101010010
0 -1 -1 y_|or1otori
SRS 000110110 |
1 L _1 000001111
i "171

(C%, 63, C_%, CZ, cg, cg, C%, C§, 65)
AN U T N O O
“\9°9°9°9°9°9°9° 9’ 9

gives a A1-minimal flat 4-torus in S!7, which is irreducible, linearly full and has volume

V3,

Example 4.16 N = 10. The following matrix data

1 -30 0 1010010001
1 1
o210 pr_forrorroort
0 -5 1 —3 | 0001110111 |’
0 0 -1 0000001111
2 2 2 2 2

2 2 2 2 2
(Cl, Cy, C3, C4, C5, Cg, C7, Cg, Cyg, 6‘10)

1 1 1 1 1 1 1 1 1 1
“\10° 107 107 107 10” 10° 10" 10" 10" 10

gives a Aj-minimal flat 4-torus in S!9, whichis irreducible, linearly full and has volume
4

«/_57[.

We will prove in the next section that Examples 4.6 to 4.16, and Example 1.1
enumerate all examples of Aj-minimal flat 4-tori in spheres.

5 Shortest vectors in lattices

As mentioned in the introduction, the classification of A;-minimal tori of dimension
3 and 4 in spheres relies on deep investigation of shortest lattice vectors for lattices of
rank 3 and 4. This section is devoted to the discussion of some related properties of
lattices, which are of independent interest.
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Let A} be a lattice of rank n, N be the number of distinct shortest lattice vectors
of Ay up to &1, and E be the set of these N shortest vectors, which are denoted by

1,6,...,8N.
For simplicity, in the sequel, these shortest vectors are assumed to be of unit length.

Definition 5.1 A set of k + 1 vectors in R" is called a generic (k + 1)-tuple if it is of
rank k and any k vectors in it are linearly independent.

Definition 5.2 A lattice A} with N > n is called s-reducible if there is a non-trivial
decomposition R" = V| @ V; such that

[l
I

(ENVHUENW).
It will be called s-irreducible otherwise.

It is easy to see that if N = n,or N = n + 1 and E is not a generic (n + 1)-tuple,
or rank(E8) < n, then A is s-reducible.

Lemma 5.3 Foran s-irreducible lattice A, of rankn > 3, there always exists a generic
k-tuple in E for some k > 4.

Proof Let {&1,...,&,} C E be of rank n. Suppose the opposite that there are only
generic 3-tuples in E. Then for any n + 1 < i < N, when we write & as a linear
combination of these generator vectors, there are exactly two non-zero coefficients.
From the s-irreducible assumption we know N > n + 2. We can assume &,y =
a1&1 + ax& with ajay # 0. Consider two subspaces Vi e Span{&s, ..., &,} and
%) £ Span{&i, &}, it follows that there exists at least one vector, say &2, belonging
to neither V; nor V5.

We assume &> = b1&] + b2&3 with b1by # 0. Then it is straightforward to verify

that {&;, &3, &,11, £,+2) forms a generic 4-tuple, which gives us a contradiction. O

Definition 5.4 A lattice A} is called prime if this lattice can be generated by any n
linearly independent vectors in E.

Remark 5.5 By definition, for a prime lattice, E always satisfies the unimodular con-
dition defined in Definition 2.4.

The following conclusion is easy to obtain.

Lemma5.6 Let A} be a prime lattice generated by {uy, ..., a,} C &. Then for any
& € B, we have

E=aja1 4+ -+ aya,, a; €{0,x1}.
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For the lattices of rank no more than 4, we obtain a sufficient condition to discrim-
inate whether it is prime. The covering radius in lattice theory will be used, which is
defined for a lattice A} as follows:

W(AD) 2 inf {r ‘R" = Upen: B'(p, r)},

where B" (p, r) is the ball centered at p with radius r. Any ball with radius larger than
1(A) must contain a point of A’. The following well-known estimate (see [14]) will
be used to prove our main theorem in this section.

Lemma5.7 Let A} be a lattice of rank n, if rank(E) = n and the shortest vectors of
A} are of unit length,

then

nAy) < 4.

Theorem 5.8 Suppose A is a lattice of rank n with rank(E)=n. If n < 4, then either
A} is prime, or it can be generated by the row vectors of

(18)

V= O O =
= O = O
D= — O O
-0 O O

Proof 1t is obviously true for n = 1. Suppose it is true forn = k — 1 (< 3), we will
show that in the case of n = k the conclusion is also true. Let {&1, &, - - - , &} be any
given linearly independent shortest vectors in A}. Let A}_, be the sublattice of rank
k — 1 containing {&3, - - - , &}. Then it follows from the inductive hypothesis that there
exists a generator {n1, &, --- , &} of A,t such that

&1 ayay ---ap\ (m
& 1 &
&k 1 &k
where ay, az, ...,ax € Z, we can assume they are all non-negative and a; > 0 by

changing directions of these vectors. Since 0y + c&2,&2,...,& (c € Z) is still a
generator of A}, we get

&l =a1(n +c&) + (a2 —ca)ér + - - - + arés.

So suitable value ¢ will make a; > a» — ca; > 0. Therefore, we may assume a; >
a; >0for2 <i <k.

Ifa; = 1thena; = 0for2 <i < kandwederivethat&y, &, ..., & isagenerator of
ApIfap > 2,letn = nf- + an, where T (w.r.t. L) denotes the orthogonal projection
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onto [Ty £ Spang{&s, ..., &} (w.r.t. the normal space of Iy ). So & = amlL + él—r
and
> — 11> 1—1g1F 1
O < 1.2 = 1 = 1 < —.
Il a% a% 4

It follows that the intersection of k-ball B¥(0, 1) with the hyperplane IT = nf- + Iy
isa (k — 1)-ball B¥"!(n{, r) with

2 T
, ar—1 &3
ro = Tt =% =7
aj aj 4

When k < 4, we can see r is larger than the covering radius of A,’:fl . Therefore, in
B*~1(ni,r) C B¥(0, 1), there exists at least one point of A} N I1. This contradicts

with our assumption that 1 is the shortest length of A}. Similarly, in the case of k = 4,

ifr? > 43'1’ we can also obtain a contradiction.

Therefore, when k = 4, we have r2 = %. Thisyieldsa; =2 and & IT = 0. Moreover,
ay = a3 = a4 = 1. Otherwise, say a4 = 0, then

3 211\ (m
&\ = 1 &,
&3 1) \&

which implies in the sublattice Spany{n1, &2, &3}, the shortest vectors &1, &2, &3 can
not form a generator, which contradicts with the induction hypothesis.
Note that élT = 0 means & is orthogonal to other &;. It follows from 2n; =

& — & — & —E4and || > 1 that £ + & + &| > +/3. Moreover, using

E1+86 -8 &

= > 1,
5 Im +&| >

we have |& — &3 — £4] > /3. Similarly, |&, — &3 +&4] > V3and |& + & — & > V3.
Combining these with the following identities,

&+ &8+l + 18 — & — &l + 18 — & + &P + 16 + & — &
= 4(1&* + 151 + |&l®) = 12,

we can derive that
ot +al=lh -G -l =l -G +al=h+& &> =3

which implies {£], &, &3, &} forms an orthonormal basis of R* and we complete the
proof of this theorem. O
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Given a lattice A} of rank n, to investigate the set E constituted by all shortest
lattice vectors up to =1, we can consider the intersections of it with all sublattices of
rank n — 1. Let

m(E) £ max [ﬁ(E NA) ‘ A C A} is a sublattice of rank n — 1}, (19)

and E’ be one of the intersection attaining m(Z). Note that there may be more than
one such intersections.

In the rest part of this section, we always assume A’ is a prime lattice of rank n.
For such lattice, we have m(E) > n — 1. Let E be a chosen intersection attaining
m(E), we assume that

E/ = {51, %‘2, ey Sm(E)}v

and A} is generated by {£1, &, ..., &,—1, &m(z)+1}. Then there exist N integer vectors

A = @1, ain, ... ai)}Y, C 2",

such that
&1 A ?
& A 2
= : : (20)
SN AN En—l
Em(E)+1

Obviously, {A1, A2, ..., Ay—1, Am(E)+1} is the standard basis of R". It follows from
the prime assumption and Lemma 5.6 that

aji €{0,£1}, 1<j<N,1<i=<n.

Moreover, by changing the direction of some vectors in E if necessary, we can assume
the last coordinate of A; equals O for 1 <i <m(E8),and 1 form(E) +1 <i < N.

We will still abuse the notation Y to denote either the set constituted by A;, or the
matrix constructed by A; as in (20). Note that the prime assumption on & C A} is
equivalent to saying that any n linearly independent vectors in Y form a generator of
7. For applications in the next section, we conclude some further properties of prime
lattices in the following four lemmas.

Lemma 5.9 For a prime lattice, in terms of matrix, all minors of Y' can only take
values in {0, £1}.

Proof Suppose the opposite that there is anonzero minor involving the i th, ipth, . .., ixth
rows and jith, jath, ..., jith columns that is not equal to 1, then Z" can not be gen-
erated by {Aj, Aj,, ..., Aj}tand {A;, . Ai,, ..., Aj,}, since

|Aj1/\"'/\Ajk/\Aik+1/\"'/\Ain|>1’
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where {ix41,...,i,} is the complementary set of {if,...,ix} in {1,2,...,n —
1,m(E) + 1}. This gives a contradiction with our prime assumption. O

Lemma5.10 Foranygivenl <i <nandm(E)+1 < j,k < N,wehaveaj;ay; >0,
where aj; is the ith coordinate of A ;.

) s ans
Proof Assume aj;ax; < 0. Then from aj, = ar, = 1 we get the minor {’ i" =
42, which is a contradiction with our prime assumption. O

For a subset I C {1,2,...,n}, we say a subset X C Z" has a partial order

according to I, if for any given two vectors &, n € X, their ith coordinates &;, n; and
Jjth coordinates &;, n; satisfy

& —n)Ej—n)) =0, i,jel.

Lemma 5.11 Ifthere is a vector Aj € Y such that three coordinates {aj;,, aji,, ajiy }
of Aj satisfy

ajidji, = 1, ajiy =0,
then for any 1 <r < N, we have
Qrjy Ariy = 0,

and the subset Yj, £ [Ax € Y |akiy = 1} has a partial order according to {iy, iz}, so
does the subset Yi; = {Ay € Y | agiy = —1).

Proof Similarly as in the proof of Lemma 5.10, by considering the minor @jir Griy

i

Ajiy Ariy
we can derive the first conclusion.

Given two arbitrary vectors Ay, A; € Y;;, we have ay;; = aj;; = 1, which implies
aki, a;ll, and a/i,2 a11,2
respectively. Therefore, ax;, — ay;, and ax;, — ay;, all take values in {0, +1}. Consider
the minor

akiyaii; > 0 and ag,a;;, > 0 by considering the minors

bl

Ajiy Akiy Aljy
Ajiy Akiy aliy| = E£[(aki; — aiiy) — (i, — aii)].
0 1 1
It follows from the prime assumption that (ax;, — ay;,)(aki, — ai,) > 0. Similar
discussion can be applied to Y;;. O

Lemma5.12 IfA|+Ax+---+A,_1+Aug)+1 belongs to Y, then all the coordinates
of any Aj € Y must be either > 0 or < 0. Especially, after changing the directions of
some vectors, all entries of Y take values in {0, 1}.
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Proof Let Ag = A1 +Ax+---+ A,_1 + Apg)+1. If there is a vector A; € Y which
doesn’t satisfy the conclusion, then one can find a 2-minor in Ag and A ; taking values
other than {0, +1}. This gives a contradiction with our prime assumption. O

The following definition will also be used in the next section.

Definition 5.13 A vector in Z" is called k-null, if it has exactly n — k nonzero coordi-
nates. Under some fixed generator of A}, a lattice vector in A} is called k-null if its
coordinate vector is k-null.

6 Classification of conformally flat and 1;-minimal 3-tori and 4-tori

It follows from the works of Montiel-Ros [23] and El Soufi-Ilias [10] that for each
conformal structure on compact manifold (M", [go]), there exists at most one metric
g € [go] so that (M", g) can be minimally immersed into a sphere by the first eigen-
functions. Moreover, if (M", go) is homogeneous, then such Aj-minimal metric must
be go itself (up to a constant dilation). Note that the flat torus 7" is homogeneous, so
we only need to classify all non-congruent A{-minimal immersions of falt 3-tori and
4-tori in spheres.

Letx : T" =R"/A, — S*~! be a A;-minimal flat torus. Here we do not assume
it is linearly full, and denote by N the number of distinct shortest lattice vectors of A’
up to %1, i.e., the half dimension of the first eigenspace of flat torus 7" = R"/A,,.
Without loss of generality, we assume this shortest length is 1. It is well known that
N > n (see Corollary 3.4 in [5]). Let E be the set of these N shortest vectors, which
are denoted by &1, &, ..., &x. Then according to Remark 4.1, x is reducible if and
only if A’ is s-reducible defined as in Sect. 5.

6.1 Classification of conformally flat 3-tori

Theorem 6.1 Up to congruence, there are five distinct A1 -minimal immersions of con-
Jformally flat 3-tori in spheres. Two of them are reducible ones given in Example 4.2,
others are irreducible ones given in Examples 4.3 to 4.5. They are all listed in the
Table 1.

Proof For A;-minimal flat 3-torus, it follows from Theorem 5.8 that the dual lattice A§
is always prime. Hence by Remark 5.5 and Proposition 2.7, the A.|-minimal immersion
x is homogeneous. Then it follows from Corollary 3.5 that we only need to prove the
corresponding integer set ¥ of x is exactly that given in Examples 4.3 to 4.5, for which
{ATA| A € Y}is of rank N can be easily checked.

Suppose x is irreducible. It follows from Lemma 5.3 that there exists a generic
4-tuple in E, which is assumed to be {£1, &>, &3, £4}. Moreover, we choose {&1, &>, &3}
to be a generator of A% so that &4 = &) + & + &3. Then Lemma 5.12 implies that all
coordinates of lattice vectors in E can be assumed to take values in {0, 1}. Therefore
E\ {&1, &, &3, &4} is constituted by 1-null lattice vectors, the number of which is no
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more than 3. On the other hand, from

Er+&)NE+EIANE+8) =285 A& NEs,

we know this number can not be 3, which implies N < 6. If N = 4, we obtain
Example 4.3.If N = 5, we obtain Example 4.4 by making a permutation to {£, &>, &3}
such that the only 1-null lattice vector in E is &1 + &;. Similarly, we arrive at Example
4.5 for N = 6. O

6.2 Classification of conformally flat 4-tori

For A{-minimal flat 4-torus, it follows from Theorem 5.8 that the dual lattice Aj{ is
prime with only one exception, which is generated by the row vectors of (18). We will
firstly discuss the Aj-minimal immersion of such exceptional torus.

Lemma 6.2 The Ai-minimal isometric immersion of such exceptional torus is homo-
geneous.

Proof It follows from (18) that the shortest vectors of A} are composed of the following
column vectors & and —§&;,

1000172 1/2 1/2-1/2 172 1/2 1/2 1)2
0100172 1/2-1/2 1/2 1/2 1/2-1/2-1)2
00101/2—-1/2 1/2 1/2 1/2-1/2 1/2-1/2 |
00011/2—-1/2-1/2-1/2-1/2 1/2 1/2-1)2

21

which can be divided into three blocks: Iy, S, S’. It is obvious that S is an orthogonal
matrix and $3 = I4.

It suffices to show that the symmetric products from any 7-set are linearly indepen-
dent, where the conclusion arises according to Lemma 2.7.

Suppose n = &, &, . Either {£,,, &, } comes from the same block which can be
assumed Iy and thus |n|2 = 2, or from different blocks which can be assumed I and
S so that |5|> = 1 or 3. Here we have used the symmetry induced by S.

When |5|? = 3, we may assume the first coordinate of 7 being 3/2. Then it is easy
to verify that there is no other possibilities for {+§,,, £&;;} (note that these vectors
have to be distinct). Clearly, &, © &, is linearly independent.

When |n|> = 2, the other pairs {&,, &} must also come from a same block, for
&, and &, have to be orthogonal. We may assume n = (1, 1, 0, 0) such that all pairs
{&,, &, } are given as follows,

n==& +& =& +& =& +&p.

Then by direct computation, we obtain that &1 © &, &5 O &6 and &9 © & are linearly
independent.

@ Springer



Y.Ll etal.

When [|> = 1, 5 is one of the shortest vectors. We may assume 7 = &s such that
all pairs {&,,, &, } are given as follows,

n=E&—§6n=5+&1=§8+&0=2E& +&.

Then it is straightforward to verify that &; © &12, &2 © &11, &3 © &1 and &4 © &9 are
linearly independent. O

Proposition 6.3 For such exceptional torus, there is altogether a 2-parameter family
of A -minimal isometric immersions in S up to congruence, given as follows (see
also Example 1.1):

(alezn(u1+u2+u3+u4)’ alezn(u1+u27u37u4), alem(u|fuz+u37u4), alezn(7u1+u2+u37u4)’

i (uy+uz+uz—ug) im(uy+ur—u3z+ug) im(uy—ur+uz+ug) im(uy—upy—u3z—uy)
9

are

2imu 2imu 2imu 2imu
aze”™ " aze”™"? aze™""3 aze” M),

,aze ,aze ,aze

(22)
i

where 0 < a; < ar < a3 anda12+a§+a§ =3
Proof From (21) one can see that A} can be generated by —&1, —&>, —&3, &5 whose

Gram matrix is
100

010 23)

= O
(e}
D=
— D= ) —

1
2
By a straightforward computation, we can derive that the matrix Y characterizing all
shortest lattice vectors up to £1 is given by

110010011001\’
101001010101
011000110011
111111110002

We point out that the order of A; in Y does not coincide with that of £ in (21). Moreover,
for any cf + c% <1/4,

1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 22 2 2
(sz €2, €35 €3, Z_Cl_cz’ 1—01—027 Z_CI_CZ’ Z_CI_CZ’ €1 €1, €1, Cl)

(24)
defines a A1-minimal isometric immersion. In fact, these enumerate all possibilities of
the A1-minimal isometric immersion, since the rank of {A’A | A € Y} is 10, which can

be verified directly. Define a; = ,/c%, a, = ,/% — c% — c%, az = ,/c%, then these

immersions can be written down explicitly as (22).

Next, we discuss the congruence of these immersions. Note that an ambient con-
gruence induces an isometry on the flat torus 7" = R"/A,. It is well known that
there are two kinds of isometries on 7”. One is produced by the translations on R".
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It is obvious that the ambient congruence corresponding to such isometry can not
transform one immersion of the form (22) to another. The other is induced from the
orthogonal transformations on R” which preserve the lattice A,, and then A’. Since
such orthogonal transformations preserve the lengths and angles of lattice vectors, they
induce perturbations between the sets {14}, {£S} and {£S 2}, which further induce
perturbations on {ay, az, az}. O

Remark 6.4 The immersion given in (21) can be seen as a twist product:
x(W 2 (a1 f@S), arf WS, a3f W) € 8"2ar) x 8(2ar) x 87 (2a3) € 82,

where u = (uy, uz, u3, ug), f(u) = (27 2imu2 Q2imus G2imuay and § is the
following orthogonal matrix of order 3:

12 12 1/2-1/2
12 1/2-1/2 1/2
12 -1/2 12 1/2
1/2 =1/2 =172 —1/2

The flat torus involved in x (u) is
R*/Spany{e; — ey, e2 — eq, €3 — e4, 2e4),

with the volume 277%. Note that when a3 = % x (u) reduces to the double covering of
the Clifford 4-torus with the underlying flat torus

R*/Spany{e1, e2, €3, e4).

Theorem 6.5 Up to congruence, Examples 4.6 to 4.16, and Proposition 6.3 exhaust
all A1-minimal immersions of conformally flat 4-tori in spheres. They are all listed in

the Table 2.

Proof The exceptional case has been discussed in Proposition 6.3. Next, we assume
A} is prime. It follows from Remark 5.5 and Proposition 2.7 that the Aj-minimal
immersion x is homogeneous. Combining this with Corollary 3.5, we only need to
prove the corresponding integer set Y of x is exactly that given in Example 4.6 ~
Example 4.16, for which {A’A | A € Y} is of rank N can be easily checked.

Note that all reducible ones have be given in Example 4.6. We will complete the clas-
sification of irreducible ones through the following lemmas and propositions involving
prime lattices of rank 4. O

In the rest discussion, when some generator of A} is chosen, we will identify the
lattice vectors with their coordinates with respect to the given generator such that all
vectors belong to Z*.

Lemma 6.6 Suppose Aj isans-irreducible prime lattice of rank 4, if there is no generic
S-tuple in B, then N <7 and Y takes the form as given in Example 4.9.
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Proof 1t follows from Lemma 5.3 that there always exists a generic 4-tuple in E. Set
{n1, n2, 13, n4} to be a generator of A} such that the generic 4-tuple is given by

1, m2, m3, s = 1+ n2 + 3}

Using Lemma 5.12, we can assume that all the coordinates of lattice vectors in E N
Spany{n1, n2, n3} take values in {0, 1}.

Since A} is s-irreducible, there is at least one vector in E\Spany{n1, 12, n3} other
than n4. Let 1 be such vector which can not be 2-null. Otherwise, n = n; & n4 for
some 1 < j < 3 and then {11, n2, 13, N4, 15, n}\{n;} is a generic 5-tuple. So we can
assume 7 is (ag, a2, 0, 1) by the symmetry of ny, n2, n3. It follows from Lemma 5.11
that ajax > 0. Therefore, after changing the direction of 1 and 54 if necessary we
can assume a| = ap = 1. Moreover, using Lemma 5.10 and the partial order accord-
ing to {1, 2, 3} (see Lemma 5.11), we know there exists no other 1-null vectors in
E\Spangy{n1, n2, n3}, which means E\Spany{n1, n2, n3} = {n4, n}.

If n1 + n3 (resp. n2 + n3) belongs to E, then {n4, 1, ns} together with {n + n3, n1}
(resp. {n2 + n3, n2}) constitute a generic 5-tuple. Therefore, besides {11, n2, 03, 15},
11 + 12 is the only vector may appear in & from Spany{n1, 72, n3}, which completes
the proof of this lemma. O

—~

Lemma 6.7 Suppose B contains a generic 5-tuple X. Then we can choose &' such
that 4(E' N X) = 3.

Proof We assume X = {n1, n2, 13, 14, 5} and ns = 11 + n2 + n3 + n4. Choose
{n1, n2, N3, n4} to be a generator of A, then by Lemma 5.12 we have all coordinates
of vectors in E taking values in {0, 1}. Since rank(E’) = 3, it suffices to prove that
we can choose &’ such that #(E' N X) > 3.

If & contains only 0-null or 3-null vectors (i.e. n;) then E = {n1, n2, 03, 74, N5}
and m(E) = 3. For m(E) > 3, &’ contains at least a 1-null or 2-null vector. Note that
by rechoosing a generator of Aj in X, a given 2-null vector (such as n; 4 n2) can be
transformed to a 1-null vector (such as 11 + 12 + 13 by choosing {ns5, —n3, —n4, —11}
as a new generator). Therefore, without loss of generality, we assume there is a 1-null
vector n £y 4+ + 13 € &

It is easy to see that if #(E' N {n1, n2, n3}) = 2 then ' = E N Spany{n, n2, n3}.

If 8(E'N{n1, n2, n3}) = 1, we can assume itis n;. Since §(ENSpany {n1, n2, n3}) >
4and ny, n € E', weknow g(E"\Spany{n1, n2, n3}) > 2 in which all the vectors have
coordinates 1 with respect to 74. It follows from Lemma 5.11 that the existence of

—~

n = n1 + m + n3 implies the vectors in & \ Spany{n;, n2, n3} obey the partial
order according to {1, 2, 3}, which means there is at most one k-null vector in &’
Spany{n1, n2, n3} for every 0 < k < 3. When &’ \ Spany{ni, n2, n3} is composed of
exactly two vectors, we get Z N Spany{n1, n2, n3} also attaining m(Z) so that it can be
chosen as the &’ we desired. Or else, &’ must contain 74 or 5. Since ns —n4 = n € &/,
we have &’ must contain both 14 and 15 simultaneously, which implies 1, n4, 15 € E'.
The third one in E' \ Spany{n1, n2, n3} must be 1 + n4 if it’s 2-null or 7y + 73 + 04
if it’s 1-null. Otherwise, 1, or n3 will be contained in &’. Moreover, only one of these
two vectors could appear in E’ for they violate the partial order according to {1, 2, 3}.
This is obviously a case of N = 7.
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If & N {ni,m,n3} = @ then E N Spany{ni, n2, n3} = {n}. Similarly, we have
g(E'\Spany{n1, n2, n3}) > 3 and all the vectors in E" \ Spany{ni, n2, 3} admit at
most one k-null vector for every 0 < k < 3. Therefore, ' N {n4, ns} # @ and thus
n4,ns5 € E'. Note that there are still others left in ' \ Spany{n1, n2, n3}. However,
any 1-null (resp. 2-null) minus 75 (resp. n4) will yield & N {51, n2, n3} # ¥. Hence

we finish the proof by this contradiction. O

Remark 6.8 From the proof of above two lemmas one can see that for N > 8, we
can always choose a generic 5-tuple and a generator of A} as in Lemma 6.7 such that
E' = E N Spany{n;, n2, n3}and n € E'.

Proposition 6.9 If N < 7 and there exists a generic S5-tuple in &, then we can find a
generator of A} such that Y takes the form as given in Examples 4.7, 4.8, 4.10 and
4.11.

Proof Suppose {n1, n2, 13, N4, 15} is a generic S-tuple in &, withns = n1+n2+n3+
ns. When N = 5, it is easy to see that after choosing {11, 12, 113, 74} to be a generator
of A}, we obtain Y as given in Example 4.7.

When N > 6, similarly as discussed in the proof of Lemma 6.7, we can assume

N1, M2, N3, N1 + 12+ 03,04, 05 € E.

For the case of N = 6, by choosing {n1, 12, 73, 14} to be a generator of A}, we
arrive at Example 4.8. For the case of N = 7, if the remainder lattice vector lies on
Spanyz{n1, n2, n3}, then we obtain Y as given in Example 4.10 after a permutation
in {n1, n2, n3}. Now we assume the remainder lies on E\Spany{ni, 2, n3}. Either it
is 1-null, which can be assumed 7, + 13 + n4 without loss of generality, so that we
arrive at Example 4.11. Or it is 2-null, which can be assumed 13 + n4 without loss of
generality. Then choosing {—(n1 + 72 + 13), s, —(3 + n4), —n2} as a generator of
Aj, we also obtain Y as in Example 4.11. O

Proposition 6.10 If N > 8, then there exist a generator of A} such thatY takes the
form as given in Examples 4.12 to 4.16.

Proof 1t follows from Remark 6.8 that there exist a generic 5-tuple {11, 12, 13, N4, 15}
and Z’ such that

’

mum,ms,nEni+m+mbe &, ns=n+n+n+n.

By choosing {11, n2, n3, na} as a generator of A7, it follows from Lemma 5.12 that
all coordinates of vectors in Y can only take values in {0, 1}.

If m(E) = 4, the vectors in E other than 7y, 2, 13, 1, n4, n5 don’t lie on
Spany{n1, n2, n3}. As in the proof of Lemma 6.7, they can be assumed n3 + n4 and
12 + 13 + n4 due to the partial order according to {1, 2, 3} (see Lemma 5.11). It means
2(E N Spany{n2, 3, na}) = 5 against m(E) = 4. Som(E) > 5.

When m(E) = 5, we can assume 1| + np € E after making a permutation to
{n1, m, n3}. Note thatn, ns € Spang{ni +n2, n3, n4}, neither n3+n4 nor n1 +n2+n4
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appears in & which will make #(2 N Spany{n; + n2, n3, n4}) > 6 > m(E). Due to
the partial order according to {1, 2, 3} and the symmetry of 1 and 1, there is at most
one 1-null vector in & \ Spany{n1, n2, n3} which can be assumed 7, + 13 + 14, and
at most one 2-null vector in & \ Spany{n1, 72, n3} which can be assumed 1 + n4. So
N < 9.If N = 9, both > 4+ 13 + 14 and 12 + n4 exist and Y takes the form as given in
Example 4.15. If N = 8 and only 1, + 13 + 14 exists, then we arrive at Example 4.13.
If N = 8 and only 12 + n4 exists, then after choosing {—n2, —11, —n3, 5} as a new
generator, we can also obtain Y as given in Example 4.13.

When m(E) = 6, up to a permutation of {11, 12, 73}, we can assume 11 + 12, 72 +
n3 € . From

Mm+n)Am+n)A@+n3) Ang= 1 +n3+n4) A 01+ n2)
A +n3) Ans
=m+n)Am+n)A@ +m)Ans =201 An2 ANz Ang,

we know none of 11 + 13, 71 + 13 + 14 or n2 + n4 can be contained in E. Combining
this with the partial order according to {1, 2, 3} and the symmetry of 1 and 73, there is
at most one 1-null vector in &\ Spany{n1, n2, n3} which can be assumed 12 413 + 4,
and at most one 2-null vector in & \ Spany {71, n2, n3} which can be assumed 73 + 4.
So N < 10.If N = 8 then Y takes the form as given in Example 4.12. If N = 10,
both 172 + 13 + n4 and 13 + n4 exist, which leads to Example 4.16. If N = 9 and
only 13 + n4 exists, then we obtain Y as given in Example 4.14. If N = 9 and only
172 + 13 + na exists, then after choosing {—n3, —n2, —n1, 5} as a new generator, we
have also Y taking the form as given in Example 4.14.

The non-existence of 11 + n3 implies m(E) < 7 and we finish the proof. O

Remark 6.11 Through the discussion in this section, we can obtain that in a prime

lattice of rank n < 4, there exists at most w distinct lattice vectors of shortest
length up to 1.

7 On A1-minimal flat tori of higher dimension
Similarly as in Sect. 4, we can construct many examples of higher dimensional A1-
minimal flat tori in spheres. For simplicity, we choose a certain class to introduce in

this section.
Consider the set X,, C Z" given by the column vectors of

11---1 nx"(";l)

@ Springer



Classification of minimal immersions of conformally flat...

We call X, the ladder set. It is straightforward to verify that Wy, is a singleton
set, only contains

1 =1
1
2 2
_1
2
Qn: .
1
1l -3
-1
By direct computation, we can obtain that
n n—1 n-=-2 .- 3 2 1
n—1m-0D2m-2)2--- 3.2 2.2 2
n—2mn-22m-33--- 3.3 3.2 3

-1 _ . . . . . .
0, T hrl : : : : : : . (25
-m—=33m—-32n-2

3.2 3.3 .
2 2.2 3.2 «..n=22m—-12n-1
1 2 3 eeon=2 n—1 n
and 5
-1
Qn = " + 1 <AIIA1 + Alez + e + Atn(nzﬁ»l) An(n;l)) . (26)
Moreover, for any (aj, az, - - - , a,) € Z"\0, we have
n n—1
(@, a2, -+, an) Onlar, az, -+, ay)' = Za,-z - Zaiam
i=1 i=1
n—-1. - 2 2 2
T Gt @)
‘ 2 2
i=1
with the equality holding if and only if (a;, a2, - - - , a,) comes from X,,.
Proposition 7.1 The matrix data set {X,,, Qn, ﬁ(l, 1,---, 1)} provides a ’i-

o 2o Qu(n+1)—1 ol io T 2v2)" n
minimal flat torus in' S , which is linearly full and has volume N TN TR

One can see that when we take n = 2, 3, 4, we obtain the equilateral torus, Exam-
ples 4.5, and 4.16, respectively.
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Next, foragiven 1 < k < n, we consider the integer set X, x obtained by removing
the last n — k rows from the ladder set X, i.e.,

1
1
1
e . (28)

n,k .. :
1 1 1 nx(n(n{1)+k)

Remark 7.2 Note that when k = n, X, x = X,, which can automatically determine
a Ap-minimal flat n-torus as discussed above. When k = 1, X, x is a block diagonal
matrix, from which a reducible A;-minimal flat n-torus can be obtained.

Next let us consider the case of 2 < k < n — 1. Such kind of X, x is called the
faulted ladder set.

Lemma 7.3 Define

Onk = Qn+ %(En,n—k + En—k.n),
where E; ; = el(ej and e; is the i-th row of I, then Qp x € Wx, ,, and
O,k = Ru+ Sk — T,
with
ro= (%) si=(7 ga). = s
o, 0

Proof The first conclusion is easy to be verified, we only prove the second one.
Write

- 2 . . . .
Q"I_n+1 Z in+1—=j)(Eij+Eji)+ Zl(n+1_l)Ei,i .
I<i<j=n 1<i<n
It follows that
Ro==| Y in—p(E;+Ej)+ Y im—0DEi]. (29
I<i<j=n-—1 1<i<n—1

2 . .
S = 1 Z i(k+1—=i) (En—ktin—k+j + En—itjin—k+i)
+ <i<j<k
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+Y ik 1= D Eniin—kti | » (30)
1<i<k
2 . .
T, = T Z itk = i) (En—itin—k+j + En—itjn—k+i)
l<i<j<k—1
(31)

+ Z l(k - i)Enkari,nflﬁH

I<i<k—1

Note that we can also express O, « as follows:

Qn k= n-l — —1 (En n—1+ Enfl n) + —1 (En n—k + Enfk n)’
’ 1 2 ’ ’ 2k ’ ’
On—k 1 E ! E + E
Qk Z(En—k—i-l,n—k + n—k,n—k+l) + _2l( n,n—k "—kv”)

Qn—k 1 1
= Qk*l - E(En,n—l + En—l,n)_z(En—k—H,n—k

1

1
+ Enfk,nkarl)‘l'ﬂ(En,nfk + Enfk,n)~

(32)
Combining the fact that
Ei jEr;=368;kEir, 1=1i,j,k,l<n
with (29) ~ (32), we can obtain that
I,_ n—k—i
Qn,kRn = < n-l 0) + Z TEn,iv
n—k<i<n-—1
0 k—i
Qn,kSk :< Ik) - Z & En—k.n—k+i,
1<i<k
0 i k—i
Qn,ka = I 0 - Z %En,n7k+i - Z TEnfk,n7k+i,
1<i<k-—1 1<i<k-—1
O

from which the conclusion follows.

It follows from (26) that

: \S)

2 n—1 Jj
1 t
= (A ArtF Ay Ano ”) n ZZ D /(/2+1>+i,
2 : :
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n—1 j+l+k—n n=2 j+l+k—n

Sk = kH.Z > Am+1) A e T Z > Am+1> LA D

j=n—k i=l1 j=n—k i=l

where A? is the i-th column vector of X; ¢ Note that in Q;}{, the coefficient of

t o :
A/(H—l)+ AL/Z“).H 18

2.2 2 20k%+k—n)

P T krl kT kD)

forn —k<j<n-—-2andl <i < j+1+k—n;theothercoefﬁcientsare% >0
or ﬁ > 0.
Proposition 7.4 Suppose2 <k <n — 1.

(1) When k* 4+ k > n, the faulted ladder set X;,k given in (28) can determine a
linearly full and \1-minimal flat n-torus in S""—D+2k=1,

(2) When k* + k = n, the faulted ladder set X;lz,k given in (28) can determine a
linearly full and A -minimal flat torus in a sphere of dimension n(n — 1) —k*+3k — 1,
with k(k — 1) dimensional eigenfunctions redundant.

Proof We assume A is the lattice determined by O, « (1 < k < n), with {&1, --- , &,}
being a generator. Let A, be the dual lattice. Define <c%, c%, ~~~~~~ , c%(n +1)+k> as
altl)

follows:

2(k*> +k —n

g, n—k<j<n—-2andl <i<j+1+4+k—n;

5 nk(k + 1)

C,2i(1+1)+i: -, j<n—kandl <i <j;
2 n
2

_ others.

k+1
Since the matrix data set {Xn,k, Onks (c%, c%, ~~~~~~ ’C%‘"“)-s-k)} satisfy (12) and

altl)

(13), they can determine an isometric minimal immersion of 7" = R"/A, in
Sn(n71)+2k71.

We are left to show 1 is the shortest length in A, and all the lattice vectors of this
length having coordinates vectors as given in X, x up to the sign.

Consider the sublattice generated by {1, - - - , §,—1}. Itis obvious that it takes Q,—1
as the Gram matrix. Using (27), we know 1 is the shortest length in this sublattice.
Next, we will use Theorem 3.8 to show this is also true for A .

Firstly, we calculate the distance from &, to the hyperplane Spang {&;, ..., &,-1}.
Define v £ (vy, ..., vy_1), where v,y = 1/(2k), v,—1 = —1/2 and the others are
0. By (16) we get

- k=1 k+1 1
dﬁ:l—vgmhw==1—-3;-:-zz->Z,
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which implies for any vector &€ = a1 + - - - + a,&, € A}, if |a,| > 1 then [§] > 1.
When a,, = 0, as a lattice vector in the sublattice, it is obvious that |£| > 1, with
equality holding if and only if 4(aj.as, ..., a,—1) belongs to X,,_1, which can be
embedded into X, x. So we only need to discuss the case of a, = £1. By considering
—£ if necessary, we can assume a, = 1. Then we have

1
2 2 2
E°—1=ay+---+a,_ —aiay — - —ap_2ay,-1 —ap_1 + 7k

= N 1
:ZE(ai_ai'H) +§(a1 —1>+zan_k,
i=1

which is greater than O when a,_; > 0. For the case of a,_; = 0, it is obvious
that |£]> — 1 > 0, and the equality holds if and only if a; = --- = ap—1 = 0 and
ap = --- =a, = 1forsome p > n — k, which exactly corresponds to a certain row
of X, k. When a,_x < 0, using Cauchy inequality, we have

n—1 1 n—1 2 1 )
D @ —a)’ = o ( > (@ —ai+1)) = (=@’ > —Zans,

i=n—k i=n—k
from which it follows that |€|> — 1 > 0, and we finish the proof. O

L - : Vk(2v/2)"
Remark 7.5 The A;-minimal flat torus in this section has volume N NG
n(k+1)

k < n). It comes from the fact that det Q, r = TR which again indicates Qj
is positive-definite. One can easily check that Example 4.4, 4.12 and 4.14 exactly
correspond to the case (n, k) = (3, 2), (4, 2) and (4, 3), respectively.

7" (1 <

8 Berger’s problem on conformally flat 3-tori and 4-tori

As recalled in the introduction, on n-tori (n > 3), there is no solution to the Berger’s
problem, i.e., one can not expect a uniform upper bound for £(g) among all smooth
Riemannian metrics. However, if restricted to the flat metric, or a certain class of some
conformally flat metrics, we can solve the Berger’s problem for n < 4. That is, we
will prove Theorems 2 and 3 given in the introduction.

Note that finding the upper bound for 11 (g)V (g) i among all flat n-tori, is equivalent
to find the upper bound for volumes of all flat n-tori with 472 as the first eigenvalue,
which can be done by calculating the minimum of the determinant of those lattices
(of rank n) with 1 as the shortest length. Since a shortest lattice vector can always be
extended to be the first vector of a generator, in terms of the Gram matrix, we only
need to calculate the minimum of det on the following set:

Q 2 {Qex,[0n=10v0v>1forllveZ"\0}},
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where Q;; is the entry of Q. We still use the notation E to denote the set of shortest
lattice vectors up to %1 in a given lattice A}.

Lemma 8.1 For the lattice A} determined by Q € Qy, ifrank(E) < n, then Q is not
a minimal point of det on 2.

Proof We assume Z is contained in the (n — 1)-dimensional sublattice A, _; with a

generator {&, - -+ , &,_1} and a is a vector in A\ A,_1 such that {&, --- , &,—1, a}is
a generator of A’.

Set « = a' + al, in which «' is the orthogonal projection of « onto
Span{éy, - -+, &1} Let A} , be a new lattice generated by {&1, - -+ , &1, & — rat)

for 0 <t < 1, Ik, be the affine hyperplane defined by Z?;ll ci& + k(o — tal)
(c;i e R) forany k € Z.

Note that there exists an integer K > 0 such that [Tz o N B(0,1) = @ if and
only if |k| > K. By continuity, there is 0 < 7y < 1 such that for any 0 < ¢t < 1o,
Iy, N B(0, 1) = ¥ if and only if |k| > K.

Asfor0 < |k| < K, itis easy to see that for any vector of AZ,z NIl ;, its orthogonal

projection onto Span{&q, - - - , §,—1} does not depend on ¢, while Iy , N B(0, 1) is a
family of co-centered (n — 1)-dimensional closed balls expanding as ¢ goes from 0 to #.
Given the fact that all the vectors of A:,o N Ik o are located outside of [Ty 0N B(0, 1),
there exists #; > 0 such that all the vectors of A; , NIy ; are still located outside of

Iy, N B, 1) forany 0 < < 1.

Set § = min{rg, - - - , tx }. Then the lattice AZ’ 5 admits the same shortest vectors as
A while the Gram matrix Qj satisfying det Qs = (det(&, -+ , &—1, ¢ — Sal)? =
(1 —8)2det Q. o

Due to Theorem 5.8 and (23), for a lattice A} with rank(E) = n < 4, we can
always choose a generator of A’ such that the Gram matrix takes 1 as its diagonal
entries. Set

2 E2{0ex;|Qi=1foralll <i <n, andvQv' > 1 forallv e Z"\{0}}.
(33)
Then according to Lemma 8.1, we have the minimum of det on 21 can only be attained
on 2.

Lemma 8.2 2 is convex and compact.

Proof The convexity of €2; is obvious. To prove the compactness, we only need to
prove that 2, is both bounded and closed.

Suppose Q € . It follows from (Q, Q) = trQ? < (trQ)? = n? that Q; is
bounded.

Next, we prove that €2 is closed. Suppose {Q,} is a convergent sequence in €27,
whose limit is denoted by Q. We denote by D, (resp. Dox) the leading principal
minor of order k for Q, (resp. Qo). Note that for all 1 < k < n, the submatrix
corresponding to Dy is also positive definite. It can determine a sublattice of rank &,
which also takes 1 as the shortest length. It follows from the Theorem 13 in [30] (a
corollary of the Minkowski’s first theorem) that
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where V (S¥) is the volume of the standard round k-sphere. By continuity, we have
k

Doy > %f) > O forall | <k < n, which implies Qg € X. In the mean time, it

is obvious that the diagonal entries of Qg are all 1 and v Qgv’ > 1 forall v € Z™"\{0}.

So we get Qo € €27, and thus €25 is closed. O

Lemma 8.3 2, is a convex polytope.

Proof We denote by {0, +1}" the set of integer vectors whose coordinates take values
only in {0, 1}. Define

Q;i=1foralll <i <n, and vat > 1 for all nonzero v € {0, £1}" {.

(34
For simplicity, we only prove the case of n < 4. To prove the higher dimensional case,
one only need to replace the integer set {0, £1}" in 23 by the finite set of integer vectors
appearing in Minkowski’s reduction theory (see [30]). It follows from Theorem 3.9
that 2, = Q23N X5

We claim that Q2 = 3. For this, let us consider the topology on €23 induced
from the ambient space S(n). It is easy to show that €23 is convex, which implies
23 is connected. Seeing €2, as a subset in €23, we can firstly derive that it is closed
by Lemma 8.2. On the other hand, note that ¥ is open in S(n), it follows from
Qo = Q3 N X that 7 is also open in Q3. Then the claim follows from the fact that
Qo #0.

It is not hard to see that the constraints vQv’ > 1 for all nonzero v € {0, +1}"
define a polyhedron in S(n) by the intersection of finite half-spaces, and €23 is one
of its facets. Combining this and Lemma 8.2, we derive that Q2 = Q3 is a convex
polytope. O

Q3£ {QeS(n)

According to the concavity of Inodet on ¥ introduced in Lemma 3.4, one can
easily obtain the next conclusion.

Lemma 8.4 The minimum of det on 2, is attained at some vertex of 2,.

Lemma 8.5 Suppose Q is a vertex of 2, then §(E) > "("TH)

Proof Since Q is a vertex and dim S(n) = w, it satisfies the constraints given in

(34), among which there should be a system of linear equations with rank @ Asa
result, there should be at least @ integer vectors such that vQuv’ = 1, from which

the conclusion follows. O

Proposition 8.6 Suppose n < 4, then every vertex of Q, can determine a A1-minimal
flat n-torus in some sphere. Up to congruence, these Ai-minimal flat n-tori are

(1) the equilaterial 2-torus in S’ given in Example 4.2 for n = 2;

(2) the A1-minimal flat 3-torus in S'! given in Example 4.5 for n = 3;
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Fig.3 27 and the distribution of all A{-minimal flat 3-tori

(3) the Ai-minimal flat 4-torus in S'° given in Example 4.16, or those \1-minimal flat
4-tori given in Example 1.1 forn = 4.

Proof Firstly, for these examples, using their matrix data, one can check directly that
the Gram matrix Q belongs to €25, and the rank of {A’A|A € Y} is exactly w
Therefore they all correspond to the vertices of €2;.

Suppose Q is a vertex of €2. If the lattice determined by Q is not prime, then we
arrive at the only exceptional torus, and the conclusion follows from Proposition 6.3.

Next, we assume the lattice determined by Q is prime. Let X be the set of integer
vectors corresponding to E. Combining Remark 6.11 and Lemma 8.5, we can derive
that (&) = w Furthermore, it follows from the discussion in Sect.6 that X is
exactly the ladder set X, up to a unimodular transformation in SL(n, Z). Note that
Wx, is a singleton set. So Q is congruent to Q, by a unimodular transformation in

SL(n, Z), which completes the proof of this proposition. O

Remark 8.7 It follows from Theorem 3.2, Remark 3.3 that for every facets of €2,
in general one can determine a unique flat torus which admitting the A|-minimal
immersion in spheres. Conversely, when n < 4, every Aj-minimal flat torus can
determined a Gram matrix Q in 5.

luwv
For instance, when n = 3, 2, is constituted by matrices |« 1 w |, with u, v, w
vw 1
all taking values in [—%, %], and satisfying

@ Springer



Classification of minimal immersions of conformally flat...

—1

IA

ut+tvt+w<l1, —-1<u+v—w<l1, -1

<u—-v+w<l —1<u—v—w<l.

It is straightforward to verify that there is a correspondence between the Aj-minimal
flat 3-tori and the barycenters of facets of €2;. In Fig.3, it shows the two reducible
ones described in Example 4.2 respectively correspond to the gray point (center of
the body) and the green point (center of the square), and those points painted by blue
(center of the triangle), red (center of the edge) and pink (the vertex) corresponds to
Examples 4.3 to 4.5, respectively.

Combining Lemma 8.4 with Proposition 8.6, we can directly calculate the minimum
of det on 2, (hence on 21), from which Theorem 2 follows.

For a given flat metric gg on n-torus 7", it was proved by El Soufi and Ilias in [11]
that gop maximizes £(g) in [go], if the first eigenspace of g¢ is of dimension no less
than 2n. Combining this with Theorem 2, we can obtain Theorem 3.
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