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Abstract
We prove that, for any closed semialgebraic subset W of Rn and for any positive
integer p, there exists a Nash function f : Rn \ W −→ (0,∞) which is equivalent
to the distance function from W and at the same time it is �p-regular in the sense
that |Dα f (x)| ≤ Cd(x,W )1−|α|, for each x ∈ R

n\W and each α ∈ N
n such that

1 ≤ |α| ≤ p, where C is a positive constant. In particular, f is Lipschitz. Some
applications of this result are given.

Mathematics Subject Classification Primary 14P20 ; Secondary 57R35 · 14P10 ·
32B20

1 Introduction

The Calderón-Zygmund theorem on regularization of the distance function asserts that
for any closed subset W ⊂ R

n there exists a C∞-function f : Rn\W −→ (0,∞)

equivalent to the distance function fromW ; i.e. there exists a constant A > 0 such that
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A−1d(x,W ) ≤ f (x) ≤ Ad(x,W ), for each x ∈ R
n \ W

and, moreover, there are constants Bα > 0 (α ∈ N
n), such that

|Dα f (x)| ≤ Bα(d(x,W ))1−|α|, for each x ∈ R
n \ W and each α ∈ N

n .

It was introduced in connection with a study of elliptic partial differential equations
(cf. [2]) and appears a useful tool in analysis (cf. [14, Chapter VI]).

Since semialgebraic geometry (cf. [1]) togetherwith its generalizations (subanalytic
geometry (cf. [13]), o-minimal geometry (cf. [3])) appears very valuable in areas of
applied mathematics such as robotics and CAD, it was an interesting open question if
the Calderón-Zygmund theorem has a counterpart in the semialgebraic category. Our
aim is to give a positive answer; namely, we prove the following.

Theorem 1.1 For any closed semialgebraic subset W of Rn and any positive integer
p, there exists a Nash function (i.e. semialgebraic and C∞ ) f : Rn\W −→ (0,∞)

and positive constants A, B such that, for each x ∈ R
n \ W

A−1d(x,W ) ≤ f (x) ≤ Ad(x,W ), (1.1)

and

|Dα f (x)| ≤ B(d(x,W ))1−|α|, where α ∈ N
n and |α| ≤ p. (1.2)

The proof of Theorem 1.1 is based on �p-regular stratifications (see Sect. 2) intro-
duced by the second author with Krzysztof Kurdyka in [7], in connection with a
subanalytic version of theWhitney extension theorem, combined with a version of the
Efroymson-Shiota approximation theorem, cited below (see Theorem 1.4). In fact, we
will need the following generalization of the notion of�p-regular function considered
in [7].

Definition 1.2 Let W ⊂ R
n be a closed semialgebraic subset, let p, k ∈ Z, where

p > 0. Let Ω ⊂ R
n be an open semialgebraic subset disjoint from W . We say that a

semialgebraic C p-function f : Ω −→ R is �k
p(W )-regular if there exists a constant

M > 0 such that

|Dα f (x)| ≤ Md(x,W )k−|α|,

for each x ∈ Ω and α ∈ N
n such that 1 ≤ |α| ≤ p.

When f is �1
p(∂Ω)-regular we say that f is �p-regular (as in [7]).

Our main effort in this paper is focused on proving the following approximation
theorem for Lipschitz functions (notice that the distance function is a particular case).

Theorem 1.3 Let W ⊂ R
n be any closed semialgebraic subset and let p be a positive

integer. Let g : Rn −→ R be any semialgebraic Lipschitz function vanishing on W.
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Then, for any κ > 0, there exists a �1
p(W )-regular function f : Rn \ W −→ R such

that, for each x ∈ R
n \ W,

| f (x) − g(x)| ≤ κd(x,W ).

The proof of Theorem 1.3 is based on a special�0
p(W ) partition of unity, which we

establish in Section 3, and we believe has its own interest. It is also worth noting that
Theorem 1.3 with the given proof holds true in the setting of any o-minimal structure
on the field of real numbers R.

We will use a special case of the Efroymson-Shiota approximation theorem. To
quote this, we first recall the definition of the semialgebraic C p-topology.Let G and H
be open semialgebraic subsets in Rn and in Rm , respectively. Let p be a non-negative
integer. Denote by N p(G, H) the set of all semialgebraic C p-mappings from G to
H ; i.e. C p-mappings with semialgebraic graphs. Let f ∈ N p(G, H). Then basic
neighborhoods of f in N p(G, H) in the semialgebraic C p-topology are of the form

Uε( f ) = {h ∈ N p(G, H) : |Dα f (x) − Dαh(x)| ≤ ε(x),

whenever α ∈ N
n , |α| ≤ p and x ∈ G},

where ε : G −→ (0,∞) is any semialgebraic positive continuous function on G.

Theorem 1.4 (Efroymson-Shiota approximation theorem) Nash mappings (i.e. semi-
algebraic and C∞ ) from G to H are dense in N p(G, H) in the semialgebraic
C p-topology.

This deep result originating in the paper of Efroymson [4] for p = 0 (compare
also [11]), was completed and generalized, for any non-negative p, by Shiota in [12].
In fact, Shiota’s formulation is stronger than Theorem 1.4; namely, the sets G and H
above can be any Nash submanifolds embedded in R

n and in Rm , respectively.
It is now a simple matter to see that Theorem 1.1 is a consequence of first applying

Theorem 1.3, where we put g(x) = d(x,W ), followed by Theorem 1.4, applied to a
resulting f . Hence, the rest of our paper is devoted to proving Theorem 1.3.

2 3p-regular cells

We recall after [7] (see also [8], [9] and [10]), the definition of �p-regular cells inRn .

Definition 2.1 Let p be a positive integer. We say that S is an open �p-regular cell in
R
n if

S is any open interval in R, when n = 1; (2.1)

S = {(x ′, xn) : x ′ ∈ T , ψ1(x
′) < xn < ψ2(x

′)}, (2.2)

where x ′ = (x1, . . . , xn−1), T is an open �p-regular cell in R
n−1 and every ψi

(i ∈ {1, 2}) is either a semialgebraic �p-regular function on T (see Definition
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1.2) with values in R, or identically equal to −∞, or identically equal to +∞, and
ψ1(x ′) < ψ2(x ′), for each x ′ ∈ T , when n > 1.

Extending the above definition, we say that S is an m-dimensional �p-regular cell
in Rn , where m ∈ {0, . . . , n − 1}, if

S = {(u, w) : u ∈ T , w = ϕ(u)}, (2.3)

where u = (x1, . . . , xm), w = (xm+1, . . . , xn), T is an open �p-regular cell in R
m ,

and ϕ : T −→ R
n−m is a semialgebraic �p-regular mapping.

Remark 2.2 One easily checks by induction that every �p-regular cell is Lipschitz in
the sense that each of the functions ψi in (2.2), if finite, as well as the mapping ϕ in
(2.3), are Lipschitz. Besides, every�p-regular cell inRn is a semialgebraic connected
C p-submanifold of Rn .

Definition 2.3 Let us recall that a (semialgebraic) C p-stratification of a (semialge-
braic) subset E of Rn is a finite decomposition S of E into (semialgebraic) connected
C p-submanifolds of Rn , called strata, such that for each stratum S ∈ S, its boundary
in E ; i.e. ∂E S := (S\S) ∩ E is the union of some strata of dimensions < dim S. If
A1, . . . , Ak (k ∈ N) are subsets of E , we call a stratification S compatible with the
subsets A1, . . . , Ak , if each A j is a union of some strata.

The following proposition is crucial in the proof of Theorem 2.6 below, which is a
fundamental theorem on �p-stratifications.

Proposition 2.4 ([8, Corollary to Proposition 4 ])LetΦ : Ω −→ R be a semialgebraic
C1-function defined on a semialgebraic open subset Ω of Rn such that

∣
∣
∣
∂Φ

∂x j

∣
∣
∣ ≤ M ( j ∈ {1, . . . , n}),

where M is a positive constant, and let p be a positive integer. Then there exists a
closed semialgebraic nowhere dense subset Z ofΩ such that� is of class C p onΩ \ Z
and

|DαΦ(u)| ≤ C(n, p)Md(u, Z ∪ ∂�),

whenever u ∈ Ω \ Z, α ∈ N
n, 1 ≤ |α| ≤ p, and where C(n, p) is a positive integer

depending only on n and p.

Remark 2.5 If Φ : Ω −→ R is a semialgebraic Lipschitz function with a constant M
defined on a semialgebraic open subset Ω of Rn , then there exists a closed semialge-
braic nowhere dense subset Z ′ of Ω such that Φ is of class C1 on Ω \ Z ′ and

∣
∣
∣
∂Φ

∂x j

∣
∣
∣ ≤ M on Ω \ Z ′.
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Theorem 2.6 Let p be a positive integer. Given any finite number A1, . . . , Ak of semi-
algebraic subsets of a semialgebraic subset E of Rn, and a semialgebraic Lipschitz
mapping g : E −→ R

d , where d ∈ N, there exists a semialgebraic C p-stratification
S of E compatible with sets A1, . . . , Ak and such that every stratum S ∈ S, after an
orthogonal linear change of coordinates1 in Rn, is a �p-regular cell in Rn and if S is
open then g|S is �p-regular, while in the case dim S = m < n, when S is of the form
(2.3),

the mapping T 
 u �−→ g(u, ϕ(u)) ∈ R
d is �p-regular. (2.4)

Proof The proof follows the inductive procedure as in the proof of Proposition 4 in
[7] (or that of Theorem 3 in [8]); i.e. the induction on dim E . The only difference is
that, at each inductive step, constructing strata of dimension < m, we have to take
into account the Lipschitz mapping g restricted to strata of dimension m making use
of Remark 2.5 and Proposition 2.4. �

3 A partition of unity

Definition 3.1 LetW be a closed semialgebraic subset ofRn and let Z ⊂ R
n \W . We

will consider the following open neighborhoods of Z in Rn

Gη(Z ,W ) := {x ∈ R
n \ W : d(x, Z) < ηd(x,W )},

where η > 0. (We adopt the convention that d(x,∅) = ∞.)

The main result of this section is the following theorem on �0
p(W )-partition of

unity, which can be considered as a semialgebraic counterpart of the famous Whitney
partition of unity.

Theorem 3.2 Let W be a closed semialgebraic subset of Rn and let U1, . . . ,Us be
any finite covering of Rn \W by semialgebraic subsets. Then, for any positive integer
p and any η > 0, there exist �0

p(W )-regular functions ωi : R
n \ W −→ [0, 1]

(i ∈ {1, . . . , s}) such that ω1+· · ·+ωs ≡ 1 onRn \W and suppωi ⊂ Gη(Ui ,W )

(i ∈ {1, . . . , s}), where supp ωi denotes the closure of {x ∈ R
n\W : ωi (x) �= 0} in

R
n \ W.

Before starting the proof of Theorem 3.2, we will prove a few simple lemmas.

Lemma 3.3 Let W be a closed semialgebraic subset of Rn and let Ω be an open
semialgebraic subset of Rn disjoint from W. If f : Ω −→ R is a �k

p(W )-regular

function and g : Ω −→ R is a �l
p(W )-regular function, where k, l, p ∈ Z, p > 0

and if there exists A > 0 such that | f (x)| ≤ Ad(x,W )k and |g(x)| ≤ Ad(x,W )l , for
each x ∈ Ω , then the function f g is �k+l

p (W )-regular.

Proof Directly from the Leibnitz formula. �
1 By [10], permutations of coordinates x1, . . . , xn suffice.
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Lemma 3.4 Let W be a closed semialgebraic subset of Rn and let Ω be an open
semialgebraic subset of Rn disjoint from W. If f : Ω −→ R is a �k

p(W )-regular

function,where k, p ∈ Z, p > 0, and there exists a > 0 such that ad(x,W )k ≤ | f (x)|,
for each x ∈ Ω , then the function 1/ f is �−k

p (W )-regular.

Proof Observe that Dα(1/ f ) (α ∈ N
n\{0}), is a linear combination, with integral

coefficients independent of f , of products of the form

f −(m+1)(Dβ1 f ) . . . (Dβm f ),

where 1 ≤ m ≤ |α|, β1, . . . , βm ∈ N
n\{0}, and ∑m

i=1 βi = α. Hence, we get

|Dα(1/ f )(x))| ≤ Cd(x,W )−k(m+1)d(x,W )k−|β1| . . . d(x,W )k−|βm | =
Cd(x,W )−k−|α|,

where C > 0. �
Lemma 3.5 Let W be a closed semialgebraic subset ofRn, letΩ be an open semialge-
braic subset ofRn disjoint from W and let p be a positive integer. If f : Ω −→ R is a
bounded �0

p(W )-regular function and Φ : R −→ R is a semialgebraic C p-function,

then Φ ◦ f is a �0
p(W )-regular function.

Proof Observe that if α ∈ N
n and 1 ≤ |α| ≤ p, then Dα(Φ ◦ f ) can be represented as

a linear combination, with integral coefficients independent of Φ and f , of products
of the form

Φ(i)( f )(Dβ1 f ) . . . (Dβi f ),

where 1 ≤ i ≤ |α| and β1, . . . , βi ∈ N
n\{0} are such that β1 + · · · + βi = α. Hence,

for some constant C > 0

|Dα(Φ ◦ f )(x)| ≤ Cd(x,W )−|β1| . . . d(x,W )−|βi | = Cd(x,W )−|α|.

�
Definition 3.6 LetW be a closed semialgebraic subset ofRn and let Z ⊂ R

n \W . We
will say that the property Bn(Z ,W ) holds, if for any positive integer p and for any
η > 0 there exists a �0

p(W )-regular function ψ : Rn \ W −→ [0, 1] such that

ψ ≡ 1 on Gρ(Z ,W ), with some ρ ∈ (0, η), and (3.1)

suppψ ⊂ Gη(Z,W). (3.2)

Lemma 3.7 If W is a closed semialgebraic subset of Rn, Z1, Z2, Z ⊂ R
n \ W and

ε, η ∈ (0,+∞), then

Gη(Z1 ∪ Z2,W ) = Gη(Z1,W ) ∪ Gη(Z2,W ) and

Gε(Gη(Z ,W ),W ) ⊂ Gε+η+εη(Z ,W ).
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Proof The first being straightforward, we will check the second inclusion. Let x ∈
Gε(Gη(Z ,W ),W ). Hence, d(x,Gη(Z ,W )) < εd(x,W ). It follows that there exists
y ∈ Gη(Z ,W ) such that |x− y| < εd(x,W ). On the other hand d(y, Z) < ηd(y,W );
thus,

d(x, Z) ≤ |x − y| + d(y, Z) < εd(x,W )

+ηd(y,W ) ≤ εd(x,W ) + η[|x − y| + d(x,W )]
< εd(x,W ) + ηεd(x,W ) + ηd(x,W ) = (ε + η + εη)d(x,W ).

�
Lemma 3.8 If W is a closed semialgebraic subset of Rn and Z1, . . . , Zk ⊂ R

n\W
and if Bn(Zi ,W ) holds for every i ∈ {1, . . . , k}, then Bn(

⋃k
i=1 Zi ,W ) holds.

Proof Take a piecewise polynomial C p-function P : R −→ [0, 1] such that P(t) = 1,
when t ≤ 1/3, and P(t) = 0, when t ≥ 2/3. For any given η > 0, letψi : Rn\W −→
[0, 1] (i ∈ {1, . . . , k}) be a�0

p(W )-regular function such thatψi = 1 onGρ(Zi ,W ),

where ρ ∈ (0, η), and suppψi ⊂ Gη(Zi ,W ). Since, by Lemma 3.7,Gη(
⋃k

i=1 Zi ,W )

= ⋃k
i=1 Gη(Zi ,W ), the function

ψ : Rn \ W 
 x �−→ 1 − P

(
k

∑

i=1

ψi (x)

)

∈ [0, 1]

is a �0
p(W )-regular function (by Lemma 3.5) corresponding to

⋃k
i=1 Zi . �

Proposition 3.9 For any closed semialgebraic subset W of Rn and any semialgebraic
Z ⊂ R

n \ W, the property Bn(Z ,W ) holds.

Proof We argue by induction on m = dim Z . If m = 0, in view of Lemma 3.8, one
can assume that Z = {z} is a singleton. If η > 0, then there exists ρ ∈ (0, η) and
0 < r < R such that

Gρ({z},W ) ⊂ B(z, r) ⊂ B(z, R) ⊂ Gη({z},W ),

where B(z, r) := {x ∈ R
n : |x − z| ≤ r}. Now, it is enough to take a semialgebraic

C p-functionψ : Rn −→ [0, 1] such thatψ = 0 onRn\B(z, R) andψ = 1 on B(z, r).

Let nowm ∈ {1, . . . , n−1} and assume thatBn(Z ′,W ) holds for any semialgebraic
subset Z ′ ⊂ R

n \ W , such that dim Z ′ < m.
By Theorem 2.6 applied to the sets Z and W and to the Lipschitz function g(x) :=

d(x,W ), combined with Lemma 3.8 and the induction hypothesis, we reduce the
general case to that where Z is a �p-regular cell (2.3);

Z = {(u, w) : u ∈ T , w = ϕ(u)},

123



B. Kocel-Cynk et al.

where u = (x1, . . . , xm), w = (xm+1, . . . , xn), T is an open �p-regular cell in R
m ,

and ϕ : T −→ R
n−m is a semialgebraic �p-regular mapping, and moreover, the

function

T 
 u �−→ d
(

(u, ϕ(u)),W
) ∈ R

is �p-regular.
It is elementary that if M ≥ 0 is a Lipschitz constant of the mapping ϕ, then putting

L := 1/
√
1 + M2, we have

∀x = (u, w) ∈ T × R
n−m : L|w − ϕ(u)| ≤ d(x, Z) ≤ |w − ϕ(u)| (3.3)

and

∀ x ∈ R
n \ (T × R

n−m) : d(x, Z) ≥ Ld(x, ∂Z). (3.4)

Take any η such that

0 < η < L. (3.5)

Fix any η′ ∈ (0, η). By the induction hypothesis applied to Z ′ := ∂Z\W , where
∂Z := Z\Z , there exists a �0

p(W )-regular function λ : Rn \ W −→ [0, 1] such that
supp λ ⊂ Gη′(Z ′,W ) and λ ≡ 1 on Gρ′(Z ′,W ), for some ρ′ ∈ (0, η′).

Put

ψ(x) = ψ(u, w) := (

1 − λ(x)
)

P

(

|w − ϕ(u)|2
γ d

(

(u, ϕ(u)),W
)2

)

+ λ(x),

where x = (u, w) ∈ T × R
n−m , P is a function from the proof of Lemma 3.8 and

γ > 0 is a constant to be carefully chosen. We will show that the function ψ extends
by means of λ to a �0

p(W )-regular function ψ : R
n\W −→ [0, 1], provided that

γ > 0 is sufficiently small.
Fix any δ ∈ (0, L). According to (3.4), the set

H := {x ∈ R
n \ W : d(x, Z) > δd(x, ∂Z)} ∪ Gρ′(Z ′,W )

is an open neighborhood of the set
[

R
n\(T × R

n−m)
]\W in the set Rn \ W .

Lemma 3.10 We claim that if γ > 0 is sufficiently small, thenψ = λ on (T ×R
n−m)∩

H.

Indeed, let x ∈ (T × R
n−m) ∩ H . If x ∈ Gρ′(Z ′,W ), then clearly ψ(x) = λ(x),

so let us assume that x /∈ Gρ′(Z ′,W ); i.e.

d(x, ∂Z \ W ) ≥ ρ′d(x,W ). (3.6)
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The following two cases are possible: d(x, ∂Z) = d(x, (∂Z)\W ), or
d(x, ∂Z) = d(x, (∂Z) ∩ W ).
In the first case, we have in view of (3.6)

d
(

(u, ϕ(u)),W
) ≤ |(u, ϕ(u)) − x | + d(x,W )

≤ |w − ϕ(u)| + (1/ρ′)d(x, ∂Z) ≤ |w − ϕ(u)| + (

1/(ρ′δ)
)

d(x, Z)

≤ |w − ϕ(u)| + (

1/(ρ′δ)
)|w − ϕ(u)|.

Hence

|w − ϕ(u)|2
γ d

(

(u, ϕ(u)),W
)2 ≥ (ρ′δ)2

γ (1 + ρ′δ)2
> 2/3,

if only

0 < γ <
3(ρ′δ)2

2(1 + ρ′δ)2
. (3.7)

In the second case, we have

d
(

(u, ϕ(u)),W
) ≤ |(u, ϕ(u)) − x | + d(x,W )

≤ |w − ϕ(u)| + d(x, (∂Z) ∩ W ) = |w − ϕ(u)| + d(x, ∂Z)

< |w − ϕ(u)| + (1/δ)d(x, Z) ≤ |w − ϕ(u)| + (1/δ)|w − ϕ(u)|.

Hence, if γ satisfies (3.7), then we have again

|w − ϕ(u)|2
γ d

(

(u, ϕ(u)),W
)2 ≥ δ2

γ (1 + δ)2
>

(ρ′δ)2

γ (1 + ρ′δ)2
> 2/3,

since ρ′ < 1.
It follows that if γ satisfies (3.7), then

P

(

|w − ϕ(u)|2
γ d

(

(u, ϕ(u)),W
)2

)

= 0,

hence ψ(x) = λ(x), which ends the proof of Lemma 3.10.
Now, we will show that, if γ > 0 satisfies (3.7), then supp ψ ⊂ Gη(Z ,W ). Let

x ∈ R
n \ W and x /∈ Gη′(Z ,W ), so

d(x, Z) ≥ η′d(x,W ). (3.8)

In the case when x ∈ H , we have d(x, Z ′) ≥ d(x, Z) ≥ η′d(x,W ); hence,
ψ(x) = λ(x) = 0. In the case when x /∈ H , we have in particular that x ∈ T ×R

n−m .
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As before, d(x, Z ′) ≥ d(x, Z) ≥ η′d(x,W ); hence, λ(x) = 0. Moreover,

d
(

(u, ϕ(u)),W
) ≤ |(u, ϕ(u)) − x | + d(x,W )

≤ |w − ϕ(u)| + (1/η′)d(x, Z) ≤ |w − ϕ(u)|η
′ + 1

η′ ;

hence, if γ satisfies (3.7),

|w − ϕ(u)|2
γ d

(

(u, ϕ(u)),W
)2 ≥ (η′)2

γ (1 + η′)2
>

(ρ′δ)2

γ (1 + ρ′δ)2)
> 2/3,

consequently

P

(

|w − ϕ(u)|2
γ d

(

(u, ϕ(u)),W
)2

)

= 0, thus ψ(x) = λ(x) = 0.

It follows that supp ψ ⊂ Gη(Z ,W ).
Now we will find ρ ∈ (0, η) such that ψ ≡ 1 on Gρ(Z ,W ). Assume first that

0 < ρ < ρ′δ (3.9)

and take any x ∈ Gρ(Z ,W ); i.e. d(x, Z) < ρd(x,W ).
If x ∈ Gρ′(Z ′,W ), then ψ(x) = λ(x) = 1, so in what follows we can assume that

x /∈ Gρ′(Z ′,W ); i.e.

d(x, Z ′) ≥ ρ′d(x,W ). (3.10)

Consider two possible cases exactly as in the proof of Lemma 3.10. If d(x, ∂Z) =
d(x, Z ′), then by (3.9) and (3.10)

d(x, Z) < ρd(x,W ) < ρ′δd(x,W ) ≤ δd(x, Z ′) = δd(x, ∂Z),

which implies that x /∈ H . If d(x, ∂Z) = d(x, (∂Z) ∩ W ), then

d(x, Z) < ρd(x,W ) < ρ′δd(x,W ) < δd(x,W ) ≤ δd(x, (∂Z) ∩ W ) = δd(x, ∂Z),

which again implies that x /∈ H .
Consider now x ∈ Gρ(Z ,W ) \ H . Then in particular x = (u, w) ∈ T × R

n−m

and, according to (3.3),

L|w − ϕ(u)| ≤ d(x, Z) < ρd(x,W ) ≤ ρ|x − (u, ϕ(u))| + ρd
(

(u, ϕ(u)),W
)

= ρ|w − ϕ(u)| + ρd
(

(u, ϕ(u)),W
)

.
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Hence, if we assume that

0 < ρ < L
√

γ√
3 + √

γ
, (3.11)

then

|w − ϕ(u)|2
γ d

(

(u, ϕ(u)),W
)2 ≤ ρ2

γ (L − ρ)2
< 1/3;

consequently,

P

(

|w − ϕ(u)|2
γ d

(

(u, ϕ(u)),W
)2

)

= 1, thus ψ(x) = 1.

We conclude that ψ ≡ 1 on Gρ(Z ,W ), if only ρ satisfies (3.9) and (3.11).
Now we will check that ψ : Rn −→ [0, 1] is �0

p(W ) regular. Since ψ = λ on
H and λ is �0

p(W )-regular, due to induction hypothesis, it suffices to check �0
p(W )-

regularity on R
n \ (H ∪ W ). Moreover, since supp ψ ⊂ Gη(Z ,W ) and ψ ≡ 1 on

Gρ(Z ,W ), it suffices to check �0
p(W )-regularity, assuming that

x ∈ R
n \ (H ∪ W ), d(x, Z) < ηd(x,W ), (3.12)

and d(x, Z ′) > ρ′d(x,W ).

For x = (u, w) ∈ T × R
n−m satisfying (3.12), we have by (3.3) and (3.5) that

d(x,W ) ≤ d
(

(u, ϕ(u)),W
) + |x − (u, ϕ(u))|

≤ d
(

(u, ϕ(u)),W
) + (1/L)d(x, Z) < d

(

(u, ϕ(u)),W
) + (η/L)d(x,W );

consequently,

d(x,W ) <
L

L − η
d
(

(u, ϕ(u)),W ). (3.13)

Since by (3.3), (3.12) and (3.13)

|w − ϕ(u)|
d
(

(u, ϕ(u)),W
) ≤ (1/L)d(x, Z)

(

1 − (η/L)
)

d(x,W )
<

η

L − η
,

and

|w − ϕ(u)|2
d
(

(u, ϕ(u)),W
)2 =

n
∑

j=m+1

[ x j − ϕ j (u)

d
(

(u, ϕ(u)),W
)

]2
,
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where ϕ = (ϕm+1, . . . , ϕn), it follows from Lemmas 3.4, 3.3 and 3.5 consecutively
applied, that it suffices to check that every function f j (x) = f j (u, w) := ϕ j (u)

and the function g(x) = g(u, w) := d
(

(u, ϕ(u)),W
)

are �1
p(W )-regular2 on the set

(3.12).
To this end, take any α ∈ N

n \ {0} such that |α| ≤ p. Then for any x = (u, w)

satisfying (3.12),

|Dα f j (x)| ≤ Cd(u, ∂T )1−|α| ≤ CL1−|α|d
(

(u, ϕ(u)), ∂Z)1−|α|

≤ CL1−|α| max
[

d
(

(u, ϕ(u)), Z ′)1−|α|
, d

(

(u, ϕ(u)), (∂Z) ∩ W
)1−|α|]

,

where C is a positive constant.
On the other hand, by (3.3) and (3.12),

d
(

(u, ϕ(u)), Z ′) ≥ d(x, Z ′) − |w − ϕ(u)| ≥ d(x, Z ′) − (1/L)d(x, Z)

≥ d(x, Z ′) − (δ/L)d(x, ∂Z) ≥ d(x, Z ′) − (δ/L)d(x, Z ′)

≥ ρ′(1 − δ

L

)

d(x,W ),

and, by (3.13),

d
(

(u, ϕ(u)), (∂Z) ∩ W
) ≥ d

(

(u, ϕ(u)),W
)

>
(

1 − η

L

)

d(x,W ).

It follows that |Dα f j (x)| ≤ C̃d(x,W )1−|α|, where C̃ is a positive constant. The same
estimate holds for g, which ends the proof that ψ is �0

p(W )-regular.
To finish the proof of Proposition 3.9, it remains to consider the case m = n; i.e. Z

is an open semialgebraic subset ofRn\W . Let η > 0. By induction hypothesis applied
to Z ′ := ∂Z \ W , there exists a �0

p(W )-regular function λ : Rn\W −→ [0, 1] such
that supp λ ⊂ Gη(Z ′,W ) and λ ≡ 1 on Gρ(Z ′,W ), for some ρ ∈ (0, η). Now, we
define

ψ(x) :=
{

1, when x ∈ Z

λ(x), when x ∈ [

(Rn \ W ) \ Z
] ∪ Gρ(Z ′,W ).

Clearly, ψ : Rn \ W −→ [0, 1] is �0
p(W )-regular, supp ψ ⊂ Gη(Z ,W ) and

ψ ≡ 1 on Gρ(Z ,W ). �
Proof of Theorem 3.2 By Proposition 3.9, for each i ∈ {1, . . . , s}, there exists a
�0

p(W )-regular function ψi : R
n\W −→ [0, 1] such that supp ψi ⊂ Gη(Ui , Z)

and ψi ≡ 1 on Gρi (Ui ,W ), for some ρi ∈ (0, η). By Lemmas 3.4 and 3.3, the
functions

ωi := ψi

ψ1 + · · · + ψs
(i ∈ {1, . . . , s})

2 x j was omitted as obviously �1
p(W )-regular.
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are the required partition of unity.

4 Proof of Theorem 1.3

By Theorem 2.6, applied to g and the set W , we obtain a �p-regular stratification
R
n\W = C1 ∪ · · · ∪ Cs of the set Rn \ W , such that, for each i ∈ {1, . . . , s}, the

stratumCi , after an orthogonal linear change of coordinates inRn , is a�p-regular cell
in R

n and if Ci is open then g|Ci is �p-regular, while in the case dimCi = m < n,
when Ci is of the form

Ci = {(u, w) ∈ Di × R
n−m : w = ϕi (u)}, (4.1)

where Di is open in Rm and ϕi : Di −→ R
n−m is �p-regular, then

the mapping Di 
 u �−→ g(u, ϕi (u)) ∈ R
d is �p-regular. (4.2)

Additionally, without any loss in generality, we can assume that

dimC1 ≤ dimC2 ≤ · · · ≤ dimCs . (4.3)

If Ci is of the form (4.1) and Mi is a Lipschitz constant of ϕi , then we put

Li := 1/
√

1 + M2
i . If dimCi = n, we put Li := 1. Let A be a Lipschitz constant of

g.
To simplify the notation, we will write in this section Gη(Z) in the place of

Gη(Z ,W ), for any η > 0 and any semialgebraic subset Z ⊂ R
n \ W . This will

not lead to a confusion because the set W is fixed in this section.
Given any κ > 0 as in Theorem 1.3, fix any θ ∈ (0, 1) so small that A(θ/Li ) < κ ,

for each i ∈ {1, . . . , s}. We define by induction on i ∈ {1, . . . , s}, a sequence of
semialgebraic sets Z1 ⊂ C1, . . . , Zs ⊂ Cs , and two sequences of positive numbers
ηs < δs < ηs−1 < δs−1 < · · · < η1 < δ1 < θ such that

d(x,C1 ∪ · · · ∪ Ci ) < ηi d(x,W ) �⇒ (4.4)

x ∈ Gηi (Zi ) ∪ Gηi (Gηi−1(Zi−1)) ∪ · · · ∪ Gηi (Gηi−1(. . . (Gη1(Z1)) . . . ));

there exists a �1
p(W )-regular function fi : Gδi (Zi ) −→ R (4.5)

such that ∀ x ∈ Gδi (Zi ) : | fi (x) − g(x)| ≤ A(δi/Li )d(x,W );

for every j ∈ {1, . . . , i} there exists εi j ∈ (0, δ j ) such that (4.6)

Gηi (Gηi−1(. . . (Gη j (Z j )) . . . )) ⊂ Gεi j (Z j ).

To begin the inductive definition, we put Z1 := C1. Since C1 is the first stratum,
its boundary ∂Z1 := Z1\Z1 is contained in W . Take any δ1 < min{θ, L1}. Then, for
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each x ∈ Gδ1(Z1), we have

d(x, Z1) < δ1d(x,W ) ≤ δ1d(x, ∂Z1);

hence, by (3.4), x = (u, w) ∈ D1 × R
n−m1 , where m1 = dimC1. Therefore, we

can define

f1(x) = f1(u, w) := g(u, ϕ1(u)).

Then, by (3.3),

| f1(x) − g(x)| = |g(u, ϕ1(u)) − g(u, w)| ≤ A|w − ϕ1(u)|
≤ AL−1

1 d(x,C1) ≤ A(δ1/L1)d(x,W ).

To check that f1 is �1
p(W )-regular, we take any α ∈ N

n \ {0} such that |α| ≤ p. Then
we have by (4.2)

|Dα f1(x)| ≤ B1d(u, ∂D1)
1−|α| ≤ B1(L1)

1−|α|d
(

(u, ϕ1(u)), ∂Z1
)1−|α|

≤ B1(L1)
1−|α|[d(x, ∂Z1) − |w − ϕ1(u)|

]1−|α|

≤ B1(L1)
1−|α|[d(x, ∂Z1) − L−1

1 d(x, Z1)
]1−|α|

≤ B1(L1)
1−|α|(1 − δ1

L1

)1−|α|
d(x,W )1−|α|,

where B1 is a positive constant. Fix any η1 ∈ (0, δ1) and put ε11 := η1.
To define Zi+1, where i < s, observe that, due to (4.3) and (4.4),

(∂Ci+1) \ W ⊂ C1 ∪ · · · ∪ Ci ⊂ Gηi (Zi ) ∪ · · · ∪ Gηi (Gηi−1(. . . (Gη1(Z1)) . . . )).

Put

Zi+1 := Ci+1 \
[

Gηi (Zi ) ∪ · · · ∪ Gηi (Gηi−1(. . . (Gη1(Z1)) . . . ))
]

.

By (4.4)

∀ z ∈ Zi+1 : d(z, ∂Ci+1) = min
{

d(z, (∂Ci+1) \ W ), d(z, (∂Ci+1) ∩ W )
}

≥ min
{

d(z,C1 ∪ · · · ∪ Ci ), d(z,W )
} ≥ ηi d(z,W ). (4.7)

Assume first that dimCi+1 < n. Then we choose δi+1 ∈ (0, ηi/(1 + ηi )) in such
a way that

δi+1

ηi − δi+1(ηi + 1)
< Li+1. (4.8)
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We will now check that

Gδi+1(Zi+1) ⊂ Di+1 × R
n−mi+1 . (4.9)

Indeed, take any x ∈ Gδi+1(Zi+1). There exists z ∈ Zi+1 such that |x − z| <

δi+1d(x,W ). By (4.7), we have

|x − z| < δi+1
(|x − z| + d(z,W )

) ≤ δi+1|x − z| + δi+1

ηi
d(z, ∂Ci+1)

≤ (

δi+1 + δi+1

ηi

)|x − z| + δi+1

ηi
d(x, ∂Ci+1)

hence,

d(x,Ci+1) ≤ |x − z| <
δi+1

ηi − δi+1(ηi + 1)
d(x, ∂Ci+1)

which, in view of (4.8) and (3.4), implies that x ∈ Di+1 × R
n−mi+1 .

In view of (4.9), the following definition of fi+1 : Gδi+1(Zi+1) −→ R is possible

fi+1(x) = fi+1(u, w) := g(u, ϕi+1(u)).

Then, we have

| fi+1(x) − g(x)| ≤ A|w − ϕi+1(u)| ≤ (A/Li+1)d(x,Ci+1)

≤ (A/Li+1)d(x, Zi+1) < A(δi+1/Li+1)d(x,W ).

Now we want to check that fi+1 is �1
p(W )-regular. Let α ∈ N

n \ {0} be such that
|α| ≤ p and let x ∈ Gδi+1(Zi+1). Then there exists z ∈ Zi+1 such that |x − z| <

δi+1d(x,W ). By (4.2) and (4.7), we get

|Dα fi+1(x)| ≤ Bi+1d(u, ∂Di+1)
1−|α|

≤ Bi+1(Li+1)
1−|α|d

(

(u, ϕi+1(u)), ∂Ci+1
)1−|α|

≤ Bi+1(Li+1)
1−|α|[d(z, ∂Ci+1) − |(u, ϕi+1(u)) − z|

]1−|α|

≤ Bi+1(Li+1)
1−|α|[ηi d(z,W ) − |(u, ϕi+1(u)) − z|

]1−|α|

≤ Bi+1(Li+1)
1−|α|[ηi d(x,W ) − ηi |x − z| − |x − z| − |(u, ϕi+1(u)) − x |

]1−|α|

≤ Bi+1(Li+1)
1−|α|[ηi d(x,W ) − (ηi + 1)|x − z| − |w − ϕi+1(u)|

]1−|α|

≤ Bi+1(Li+1)
1−|α|[ηi d(x,W ) − (ηi + 1)δi+1d(x,W ) − (1/Li+1)d(x,Ci+1)

]1−|α|

≤ Bi+1(Li+1)
1−|α|[ηi d(x,W ) − (ηi + 1)δi+1d(x,W ) − (1/Li+1)d(x, Zi+1)

]1−|α|

≤ Bi+1(Li+1)
1−|α|[ηi d(x,W ) − (ηi + 1)δi+1d(x,W ) − (δi+1/Li+1)d(x,W )

]1−|α|

= Bi+1[ηi − δi+1(ηi + 1)]1−|α|(Li+1 − δi+1

ηi − δi+1(ηi + 1)

)1−|α|
d(x,W )1−|α|,
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where Bi+1 is a positive constant.
Assume now that dimCi+1 = n. Then we fix any δi+1 ∈ (0, ηi/(1 + ηi )).

If x ∈ Gδi+1(Zi+1), then there exists z ∈ Zi+1 such that |x − z| < δi+1d(x,W ),
and by (4.7)

|x − z| < δi+1|x − z| + δi+1d(z,W ) ≤ δi+1|x − z| + δi+1

ηi
d(z, ∂Ci+1);

thus,

|x − z| <
δi+1

(1 − δi+1)ηi
d(z, ∂Ci+1) < d(z, ∂Ci+1).

It follows that

Gδi+1(Zi+1) ⊂ Ci+1; (4.10)

hence we can define fi+1 as the restriction g|Ci+1 of g to Ci+1. Clearly, fi+1 is
Λ1

p(W )-regular and corresponding condition (4.5) is trivially satisfied, since then the
left-hand side is identically zero.

Nowwewill need to specifyηi+1 ∈ (0, δi+1). To this endwewill need the properties
of the operation Gδ expressed in Lemma 3.7. We take any ηi+1 ∈ (0, δi+1) so small
that

εi+1, j := εi j + ηi+1 + ηi+1εi j < δ j ( j ∈ {1, . . . , i})

and εi+1,i+1 := ηi+1, both in the case dimCi+1 < n as well as when dimCi+1 = n.
This choice ensures (4.6) for i + 1 in the place of i , according to Lemma 3.7.

Now we will check the property (4.4) for i + 1 in the place of i .
Let d(x,C1 ∪ · · · ∪ Ci ∪ Ci+1) < ηi+1d(x,W ).
If d(x,C1 ∪ · · · ∪ Ci ∪ Ci+1) = d(x,C1 ∪ · · · ∪ Ci ), then by (4.4),

x ∈ Gηi (Zi ) ∪ Gηi (Gηi−1(Zi−1)) ∪ · · · ∪ Gηi (Gηi−1(. . . (Gη1(Z1)) . . . )).
If d(x,C1 ∪ · · · ∪ Ci ∪ Ci+1) = d(x, Zi+1), then certainly d(x, Zi+1) <

ηi+1d(x,W ); thus, x ∈ Gηi+1(Zi+1).
It remains the case, when d(x,C1 ∪ · · · ∪ Ci ∪ Ci+1) =

d
(

x,Ci+1 ∩ [

Gηi (Zi ) ∪ Gηi (Gηi−1(Zi−1)) ∪ · · · ∪ Gηi (Gηi−1(. . . (Gη1(Z1)) . . . ))
])

.

Then

d
(

x,Gηi (Zi ) ∪ Gηi (Gηi−1(Zi−1)) ∪ · · · ∪ Gηi (Gηi−1(. . . (Gη1(Z1)) . . . ))
)

< ηi+1d(x,W ); thus,

x ∈ Gηi+1(Gηi (Zi )) ∪ Gηi+1(Gηi (Gηi−1(Zi−1))) ∪ . . .

· · · ∪ Gηi+1(Gηi (Gηi−1(. . . (Gη1(Z1)) . . . ))).
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To finish the proof of Theorem 1.3, we put

Ui := Gηs (. . . (Gηi (Zi )) . . . ), for i ∈ {1, . . . , s},

and choose η > 0 so small that Gη(Ui ) ⊂ Gδi (Zi ), for each i ∈ {1, . . . , s} (see
(4.6) and Lemma 3.7). It follows from (4.4) that U1, . . . ,Us is a covering of Rn \ W .
We take now the partition of unity {ωi } (i ∈ {1, . . . , s}) adapted to this covering
and to η according to Theorem 3.2. In virtue of Lemma 3.3, for each i ∈ {1, . . . , s},
the function fiωi is Λ1

p(W )-regular on Gδi (Zi ) and obviously extends by zero to a
Λ1

p(W )-regular function defined on Rn \ W and, by (4.5), for each x ∈ R
n\W ,

| fi (x)ωi (x) − g(x)ωi (x)| ≤ A(δi/Li )d(x,W )ωi (x)

≤ A(θ/Li )d(x,W )ωi (x) < κd(x,W )ωi (x).

Hence the function

f := f1ω1 + · · · + fsωs,

is Λ1
p(W )-regular on Rn \ W and for each x ∈ R

n \ W

| f (x) − g(x)| ≤
s

∑

i=1

| fi (x)ωi (x) − g(x)ωi (x)| ≤
s

∑

i=1

κd(x,W )ωi (x) = κd(x,W ),

which ends the proof of Theorem 1.3.

5 Two applications

We give here two almost immediate consequences of Theorem 1.1. The first one is
another proof of a theorem of Bierstone, Milman and Pawłucki (cf. [3, C.11]) that,
given any positive integer p, any closed semialgebraic (or, more generally, definable
in some o-minimal structure S) subset W of Rn is the zero-set of some semialgebraic
(respectively, definable in S) C p-function defined onRn . We will prove the following.

Theorem 5.1 Let W be a closed semialgebraic subset of Rn and let p be a positive
integer. Then there exists a semialgebraic function h : Rn −→ [0,∞) of class C p,
which is Nash on Rn \W and such that W = h−1(0). Moreover, h is equivalent to the
(p + 1)-th power of the distance function from the set W .

In the proof wewill use the following elementary Hestenes Lemma (cf. [15, Lemme
4.3]).

Lemma 5.2 Let W be a closed subset of an open subset Ω of Rn. If h : Ω\W −→ R

is a C p-function and

lim
x→a

Dαh(x) = 0,
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for each a ∈ W ∩ Ω \ W and each α ∈ N
n such that |α| ≤ p, then h extends by zero

to a C p-function on Ω , p-flat on W.

Proof of Theorem 5.1 By Theorem 1.1 there exists a semialgebraic �1
p(W )-regular

Nash function f : Rn \ W −→ (0,∞) equivalent to the function R
n\W 
 x �−→

d(x,W ). When we put h := f p+1, we have, for any α ∈ N
n such that |α| ≤ p and

any x ∈ Ω \ W

Dαh(x) =
∑

β1+···+βp+1=α

α!
β1! . . . βp+1!D

β1 f (x) . . . Dβp+1 f (x). (5.1)

It follows that

|Dαh(x)| ≤
∑

β1+···+βp+1=α

C
(

d(x,W )
)1−|β1| . . .

(

d(x,W )
)1−|βp+1|

≤ C̃
(

d(x,W )
)p+1−|α|

, where C and C̃ are positive constants,

which implies that limx→a Dαh(x) = 0, for each a ∈ W ∩ Rn\W . �
Our second application concerns approximation of semialgebraic subsets by Nash

compact hypersurfaces in the Hausdorff metric. To formulate the result let us denote
byKn the set of all nonempty compact subsets ofRn . Recall that theHausdorff metric
on Kn is defined by the formula

dH(A, B) := max{sup
x∈A

d(x, B), sup
y∈B

d(y, A)}.

Theorem 5.3 Let W be a non-empty, compact, nowhere dense semialgebraic subset
of Rn. Then there exists a semialgebraic family of Nash compact hypersurfaces {Ht }
(0 < t < θ) such that

lim
t→0

dH(Ht ,W ) = 0.

Proof Let f : Rn \ W −→ (0,∞) be a Nash function such that for some positive
constant A

∀ x ∈ R
n \ W : A−1d(x,W ) ≤ f (x) ≤ Ad(x,W ). (5.2)

By Sard’s theorem, the function f has only finitely many critical values; hence, the
set Ht := f −1(t) is a Nash hypersurface in R

n , for all t > 0 sufficiently small. We
will show that Ht are compact and their Hausdorff limit is W , when t tends to 0. For
any subset X of Rn and any η > 0 put

Xη := {x ∈ R
n : d(x, X) < η}.
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To this end, it is enough to show that, for any positive η there exists δ > 0 such that
for each t ∈ (0, δ)

Ht ⊂ W η and W ⊂ Hη
t . (5.3)

As for the first inclusion (5.3), let x ∈ Ht . Then by (5.2), A−1d(x,W ) ≤ t ; hence,
if t < A−1η, then x ∈ W η.

As for the second inclusion (5.3), let us define function

λ(ε) := sup
a∈W

d(a, ∂W ε), for any ε > 0. (5.4)

We claim that

lim
ε→0

λ(ε) = 0. (5.5)

Otherwise, by the Curve Selection Lemma, there should exist a semialgebraic contin-
uous arc γ : (0, ξ) −→ W , where ξ > 0, such that

lim
ε→0

γ (ε) = a, for some a ∈ W , and

d(γ (ε), ∂W ε) > μ, for some μ > 0 and each ε ∈ (0, ξ).

The last would mean that

B(γ (ε), μ) ⊂ {x ∈ R
n : d(x,W ) ≤ ε}, for each ε ∈ (0, ξ).

But B(γ (ε), μ) → B(a, μ) and {x ∈ R
n : d(x,W ) ≤ ε} → W , as ε → 0; hence,

B(a, μ) ⊂ W , a contradiction with our assumption that W is nowhere dense.
Let η > 0. By (5.5), there exists δ > 0 such that λ(δ) < η. It follows that then

d(a, ∂W δ) < η, for each a ∈ W .

Fix any a ∈ W . There exists z ∈ ∂W δ such that |a − z| = d(a, ∂W δ). Observe that
the line segment [a, z] has its endpoints respectively in W and in ∂W δ . By (5.2),

f −1[0, δ/A) ⊂ W δ;

hence, there exists y ∈ f −1(δ/A)∩ [a, z]. Then |a − y| ≤ |a − z| < η and y ∈ Hη
δ/A,

which shows that W ⊂ Hη
δ/A. �

Theorem 5.3 is deepened and generalized in our separate article [6].
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6 Final remarks

Most of the results of our article remain true in a more general context of o-minimal
structures expanding the field of real numbersRwith the same proofs, where the term
semialgebraic should be replaced by definable and a Nash mapping - by a definable
C∞ mapping.

As for Theorem 1.1, however, it relies heavily on the Efroymson-Shiota approx-
imation theorem. Theorem 1.4 was generalized by A. Fischer [5, Theorem 1.1]) to
o-minimal structures admittingC∞-cell decompositions inwhich the exponential func-
tion is definable (the case of non-polynomially bounded structures). For the case of
general polynomially bounded o-minimal structures admitting C∞-cell decomposi-
tions a big progress has been made recently by the last author and Guillaume Valette,
who proved that in such structures the Efroymson-Shiota approximation theoremholds
true for p ≤ 1 ( [16, Theorem 4.8]). In particular, this result allows us to prove the
following generalization of Theorem 5.1.

Theorem 6.1 Let D be a polynomially bounded o-minimal structure expanding R

which admits C∞-cell decompositions. Then, for any closed D-definable subset W of
R
n and any positive integer p, there exists a D-definable C p-function h : Rn −→

[0,∞) which is C∞ on R
n \ W and such that W = h−1(0).

Proof By [16, Theorem 1.1], there exists a D-definable C∞-function f : Rn\W −→
[0,∞) such that

∀ x ∈ R
n \ W : A−1 f (x) ≤ d(x,W ) ≤ A f (x),

where A is a positive constant. If N is an integer greater than p, then for any α ∈
N
n \{0} such that |α| ≤ p the derivative Dα( f N ) is a linear combination with integral

coefficients independent of f of products

f N−k(Dβ1 f ) . . . (Dβk f ),

where k ∈ {1, . . . , p}, β1, . . . , βk ∈ N
n\{0} and β1 + · · · + βk = α. It follows

from the Łojasiewicz inequality and the Hestenes lemma that for N sufficiently big
the function

h(x) :=
{

f N (x), when x ∈ R
n \ W

0, when x ∈ W

is the required function. �
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